Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUSRE46317 E1
Type de publicationOctroi
Numéro de demandeUS 14/171,746
Date de publication21 févr. 2017
Date de dépôt3 févr. 2014
Date de priorité3 juil. 2007
Autre référence de publicationUS8086417, US8315832, US20090009194, WO2009006556A1
Numéro de publication14171746, 171746, US RE46317 E1, US RE46317E1, US-E1-RE46317, USRE46317 E1, USRE46317E1
InventeursRyan D. Seguine
Cessionnaire d'origineMonterey Research, Llc
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Normalizing capacitive sensor array signals
US RE46317 E1
Résumé
An embodiment of the present invention is directed to a method for reporting position information. Position information received from a plurality of capacitive sensors in an array of capacitive sensors is adjusted based on predetermined adjustment values to generate adjusted position information. Each predetermined adjustment value is associated with at least one of the plurality of capacitive sensors. A signal representative of the adjusted position information is generated. In another embodiment, the sensitivity of at least one of the capacitive sensors is adjusted based on the position of the at least one capacitive sensor within the array.
Images(11)
Previous page
Next page
Revendications(20)
What is claimed is:
1. A method for reporting position information, the method comprising:
adjusting position information received from a plurality of capacitive sensors in an array of capacitive sensors based on predetermined adjustment values to generate adjusted position information, wherein each predetermined adjustment value is associated with at least one of the plurality of capacitive sensors, and wherein each predetermined adjustment value is derived from a distance between the at least one of the plurality of capacitive sensors and a connection of the array of capacitive sensors; and
generating a signal representative of the adjusted position information.
2. The method of claim 1, wherein each predetermined adjustment value is derived from a position of the at least one of the plurality of capacitive sensors within the array of capacitive sensors.
3. The method of claim 1, wherein each predetermined adjustment value is a scalar value, and the predetermined adjustment values are stored in a matrix corresponding to the array of capacitive sensors.
4. The method of claim 3, wherein the adjusting of the position information comprises multiplying the position information received from the plurality of capacitive sensors by the respective predetermined adjustment values.
5. The method of claim 1, further comprising performing a centroid computation based on the adjust position information.
6. The method of claim 1, wherein the array of capacitive sensors comprises a high impedance substrate.
7. A method for reporting position information comprising:
adjusting the sensitivity of at least one capacitive sensor in a capacitive sensor array based on a distance between the at least one capacitive sensor and a connection of the capacitive sensor array;
receiving position information from the at least one capacitive sensor; and
generating a signal representative of the position information.
8. The method of claim 7, further comprising generating the position information with the at least one capacitive sensor, wherein the generating of the position information comprises charging the at least one capacitive sensor based on the operation of a switch.
9. The method of claim 8, wherein the operation of the switch is controlled by a pseudo random generator.
10. The method of claim 7, wherein the adjusting of the sensitivity of the at least one capacitive sensor comprises adjusting a scan time of the at least one capacitive sensor.
11. The method of claim 10, wherein the adjusting of the scan time of the at least one capacitive sensor comprises adjusting a current source coupled to the at least one capacitive sensor.
12. The method of claim 10, wherein the adjusting of the scan time of the at least one capacitive sensor comprises adjusting the pulse width modulation of a pulse width modulator.
13. The method of claim 10, wherein the at least one capacitive sensor is coupled to a capacitor, and the adjusting of the scan time of the at least one capacitive sensor comprises adjusting a reference voltage to which a voltage across the capacitor is compared.
14. The method of claim 10, wherein the at least one capacitive sensor is coupled to a capacitor, and the adjusting of the scan time of the at least one capacitor comprises adjusting the capacitance of the capacitor.
15. A method for reporting position information, the method comprising:
storing a plurality of predetermined adjustment values, wherein each predetermined adjustment value is associated with at least one of a plurality of capacitive sensors in an array of capacitive sensors, and wherein each predetermined adjustment value is derived from a distance between at least one of the plurality of capacitive sensors and a connection of the array of capacitive sensors; and
generating a signal based on the predetermined adjustment values and received position information.
16. The method of claim 15, wherein generating the signal further comprises adjusting position information received from the plurality of capacitive sensors based on the stored predetermined adjustment values to generate adjusted position information.
17. The method of claim 15, wherein each predetermined adjustment value is a scalar value, and the predetermined adjustment values are stored in a matrix corresponding to the array of capacitive sensors.
18. The method of claim 17, further comprising adjusting the position information by multiplying the received position information by the respective predetermined adjustment values.
19. The method of claim 15, further comprising performing a centroid computation based on the adjusted position information.
20. The method of claim 15, wherein the array of capacitive sensors comprises a high impedance substrate.
Description
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/167,552, filed Jul. 3, 2008, which claims the benefit of U.S. Provisional Application No. 60/947,903, filed on Jul. 3, 2007, both of which are incorporated herein by reference.

FIELD OF THE INVENTION

Embodiments of the present invention generally relate to capacitive sensor arrays.

BACKGROUND OF THE INVENTION

As computing technology has developed, user interface devices have advanced correspondingly. User interfaces have become increasingly significant in the usability of a computing device.

One particular user interface becoming increasingly popular is touch screen or track pad which uses an array of capacitive sensors using high impedance capacitance substrates. The sensor array is typically connected to detection logic via a portion of the sides of the array. The sensor array is divided up into rows and columns each with corresponding capacitive sensing elements. In order for a signal of a capacitive sensing element to be processed, the signal must travel though the rest of the row or column to be received by the detection logic. The greater the distance from the connection of the sensor array, the greater signal loss that occurs due to series impedance as the signal travels through the array to the detector logic. For example, for a sensor array having connections on the bottom and right, signals registered in the upper left corner will experience signal loss as the signals travel through the array connections. In contrast, signals registered at the bottom right of the array will have much less signal loss. The non-uniform signal loss characteristic may lead to inaccurate position determination across the face of the user interface panel. For an array of high impedance row and column sensors, the reduction in sensitivity occurs worse at the corner that is furthest away from the detection logic connection.

Thus, conventional user interface designs have signal loss issues as signals from sensors remote from the connection of a sensory array are impacted by the series impedance of the sensor array.

SUMMARY OF THE INVENTION

Accordingly, embodiments of the present invention are directed to a system and method for processing position signal information using high impedance capacitive sensors. The processing of the signal information overcomes the signal loss caused by series impedance of an array of capacitive sensors. Embodiments of the present invention thus facilitate accurate reporting of position information from an array of capacitive sensors that utilize high impedance capacitive substrates.

More specifically, an embodiment of the present invention is directed to a method for processing a position signal. The method includes receiving a first position signal from a capacitive sensor and determining a proximity of the capacitive sensor to a connection of an array of capacitive sensors. The sensitivity of the capacitive sensor is then adjusted (e.g., by adjusting the scan time) and a second position signal (e.g., including a more sensitive sensor reading) is received from the capacitive sensor. The second position signal may then be reported.

Another embodiment of the present invention is directed to a system for processing position information using capacitive sensors. The system includes a position signal receiver for receiving a position signal from an array of capacitive sensors and a position information module for accessing information corresponding with the position signal. The information may include values to be applied to the position signal. The system further includes a sensor sensitivity control module for adjusting the sensitivity of a capacitive sensor (e.g., adjusting the scan time or applying a value corresponding to the location of a sensor) and a position signal reporting module for reporting the position signal to a coupled device (e.g., computing device).

Another embodiment of the present invention is a method for reporting position information using capacitive sensors. The method includes receiving position information from a capacitive sensor and accessing a value corresponding to the position information. The value accessed may correspond to the location of the capacitive sensor within an array of capacitive sensors. The method further includes adjusting the position information based on the value corresponding to the position information and reporting the adjusted position information.

Another embodiment of the present invention is a method for processing a position signal. The method includes receiving a first position signal from a plurality of active capacitive sensors and determining a proximity of the plurality of active capacitive sensors to a connection of an array of capacitive sensors. The method further includes adjusting the sensitivity of the active capacitive sensors and receiving a second position from the plurality of active capacitive sensors. The second position signal (e.g., more sensitive signal) may then be reported.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings.

FIG. 1 shows block diagram of an exemplary capacitive sensor array, in accordance with one embodiment of the present invention

FIG. 2 shows an exemplary sensor circuit, in accordance with one embodiment of the present invention.

FIG. 3 shows an exemplary timing diagram or voltage graph of a capacitor of the exemplary sensor circuit of FIG. 2, in accordance with an embodiment of the present invention.

FIG. 4 shows the exemplary sensor circuit of FIG. 2 with an equivalent resistance during phase 1, in accordance with an embodiment of the present invention.

FIG. 5 shows another exemplary sensor circuit, in accordance with another embodiment of the present invention.

FIG. 6 shows the exemplary sensor circuit of FIG. 5 with an equivalent resistance, in accordance with an embodiment of the present invention.

FIG. 7 shows a block diagram of a system for processing position information, in accordance with another embodiment of the present invention.

FIG. 8 shows a flowchart of an exemplary process for reporting position information, in accordance with an embodiment of the present invention.

FIG. 9 shows a flowchart of an exemplary process for processing a position signal, in accordance with an embodiment of the present invention.

FIG. 10 shows a flowchart of an exemplary process for processing a position signal, in accordance with an embodiment of the present invention.

DETAILED DESCRIPTION

Reference will now be made in detail to the preferred embodiments of the claimed subject matter, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the claimed subject matter to these embodiments. On the contrary, the claimed subject matter is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the claimed subject matter as defined by the claims. Furthermore, in the detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the claimed subject matter. However, it will be obvious to one of ordinary skill in the art that the claimed subject matter may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the claimed subject matter.

FIG. 1 shows block diagram of an exemplary capacitive sensor array, in accordance with one embodiment of the present invention. Capacitive sensor array 100 may provide a user interface (e.g., touchpad, track pad, touch screen, and the like) for a variety of devices including, but not limited to, servers, desktop computers, laptops, tablet PCs, mobile devices, music devices, video devices, cellular telephones, and smartphones etc. Capacitive sensor array 100 may include a plurality of sensor elements in a row and column configuration that utilize a high impedance capacitance substrate. Another possible structure for a capacitive sensing array is described in US Patent Application Publication No. 2007/0229470.

Sensor capacitor 102 illustrates an exemplary capacitive sensor cell in capacitive sensor array 100. Capacitive sensor array 100 may be configured in a variety of ways including, but not limited to, a square, a rectangle, a circle, or a ring etc. Connections 104 facilitate coupling of capacitive sensor array 100 to detection logic for detecting and reporting a user contact and its position to a coupled device (e.g., computing device).

In one embodiment, capacitive sensor array 100 is made of a material having an impedance which impacts signals received from sensor circuits remote from connections 104. For example, signals from sensor circuits in the upper left of capacitive sensor array 100 may be reduced or impacted by series impedance as the signal travels through the array to connections 104. It is appreciated that as the distance between connections 104 and a sensor of capacitive sensor circuit array 100 increases, the impact of the series impedance of capacitive sensor array 100 increases. Embodiments of the present invention address this decrease in sensitivity to provide a more accurate position determination.

Example Circuits

FIGS. 2 and 4-6 illustrate example components used by various embodiments of the present invention. Although specific components are disclosed in circuits 200, 400, 500, and 600 it should be appreciated that such components are examples. That is, embodiments of the present invention are well suited to having various other components or variations of the components recited in systems 200, 400, 500, and 600. It is appreciated that the components in systems 200, 400, 500, and 600 may operate with other components than those presented, and that not all of the components of systems 200, 400, 500, and 600 may be required to achieve the goals of systems 200, 400, 500, and 600.

FIG. 2 shows an exemplary sensor circuit 200, in accordance with one embodiment of the present invention. Sensor circuit 200 includes Vdd signal 202, current source 204, comparator 208, timer 210, data processing module 212, oscillator 214, reference voltage 226, external modification capacitor 216, ground signal 224, sensor capacitor 222 (located in the sensor array), switch 220 and switch 218. Current source 204 may be a current DAC (Digital to Analog converter). Circuits of the type shown in FIG. 2 are described in more detail in U.S. Pat. Nos. 7,307,485 and 7,375,535.

In one embodiment, circuit 200 may operate in three phases. In a first phase (See 302, FIG. 3), switch 218 alternatively couples current source 204 to sensor capacitor 222 and current source 204 charges or settles external modification capacitor 216 to a start voltage, Vstart. In one embodiment, the start voltage may be governed the voltage current function expressed by:

V Start = 1 f · C x · iDAC
Where f is the frequency of the switching of switch 218, Cx is the capacitance of the sensor capacitor 222, and iDAC is the current of current source 204.

It is appreciated that the capacitance of sensor capacitor 222 (one of the capacitors of array 100 of FIG. 1) varies with the presence of objects (e.g., a finger). For example, the presence of a finger may increase the capacitance and thereby result in a lower starting voltage. Conversely, a higher starting voltage may result from no finger being present.

In a second phase (See 304, FIG. 3), the sensor capacitor 222 is decoupled from current source 204 by switch 218 and sensor capacitor 222 is discharged by coupling to ground signal 224 via switch 220. External modification capacitor 216 may be charged by current source 204 until the voltage across it increases to reference voltage 226 at which time comparator 208 is tripped which disables timer 210. In one embodiment, voltage on the external modification capacitor 216 is reduced through a low pass filter in series with external modification capacitor 216 to the input of comparator 208.

In one embodiment, timer 210 is a counter (e.g., 16-bit). The raw number of counts on timer 210 measures the time required from Vstart to Vref (reference voltage 226) and may be used to determine if a finger is present on sensor capacitor 222. The raw counts are taken after each measurement sequence (e.g., after each charge of sensor capacitor 222 and tripping of comparator 208) and then compared to a stored baseline number of counts with no finger present on sensor capacitor 222. If the difference between the raw counts and the baseline counts exceeds a threshold, then sensor activation is detected for that sensor. The value of the counter may measure how long it took for the voltage across external modification capacitor 216 to reach the threshold or reference voltage 226 and can then be used to determine what the start voltage was which is a measure of whether or not a finger was present.

For example, when no finger is present, 100 cycles may be required to bring the voltage across external modification capacitor 216 to reference voltage 226. When a finger is present, 105 cycles may be required to bring the voltage across external modification capacitor 216 to reference voltage 226. If there is a threshold of three cycles to indicate the presence of an object, as long as the number of the change in cycles is greater than three, the sensor may be determined or considered to be active. It is appreciated that a difference threshold larger than zero prevents noise or other interference from appearing as an active sensor.

The time (or count) measured by timer 210 may be used by data processing module 212 to the detection logic to process the data and make decisions based on the capacitive inputs (e.g., sensors triggered by presence of a finger). Lower starting voltages (e.g., when a finger is present) lead to longer charge times as the current from the current source 204 flows into the external modification capacitor 216 and increases the voltage at the same rate. If the start voltage is low, the time or count measured by timer 210 will be relatively large because current source 204 will have to provide more charge to external modification capacitor 216 to reach reference voltage 226. If the start voltage is relatively high (e.g., no finger present), the time or count measured by time 210 is low as current source 204 provides less current to external modification capacitor 216 to reach reference voltage 226.

In a third phase (See 306, FIG. 3), the sensor scan is completed and current source 204 is turned off. During the third phase, the time or count from timer 210 may be processed and stored. Voltage on the external modification capacitor 216 decreases as charge dissipates by leakage currents until the next scan begins. In one embodiment, the amount of time that the voltage decreases is strictly dependent upon the firmware between each scan and the CPU (Central Processing Unit) clock speed. It is appreciated that the next scan may then start with the first phase on the same sensor circuit or another sensor circuit (e.g., an adjacent or active sensor circuit).

In another embodiment, comparator 208 may be replaced with an analog-to-digital converter (ADC). Charge from the sensor capacitor 222 is transferred to external modification capacitor 216 acting as a filter capacitor for a prescribed number of cycles. After the prescribed number of cycles is complete, the voltage on external modification capacitor 216 is measured by the ADC and the output of the ADC is proportional to the size of sensor capacitor 222. The measured value of the ADC may then be used to determine the presence of an object.

FIG. 3 shows an exemplary voltage graph of the exemplary sensor circuit of FIG. 2 in operation, in accordance with an embodiment of the present invention. Graph 300 includes vertical axis 320 corresponding to the voltage of external modification capacitor 216 and horizontal axis 322 corresponding to the time (or counts) which may be measured by timer 210. Graph 300 further includes voltage markers 316 corresponding to reference voltage 226 and voltage marker 318 corresponding to the start voltage.

As mentioned above, circuit 200 may operate in three phases. Graph 300 illustrates phase 1 with region 302 during which the voltage on external modification capacitor 216 is settled or brought to a start voltage.

Graph 300 illustrates phase 2 with region 304 during which external modification capacitor 216 is charged via current source 204 to reference voltage 226. The amount of time needed to reach reference voltage 226 is used by data processing module 212 to determine whether an object (e.g., finger) is present. It is appreciated that the voltage of external modification capacitor 216 may exceed reference voltage 226 before comparator 208 trips timer 210. To increase the sensitivity of this detection mechanism, the duration of 304 can be increased which will increase the resolution of the reading.

Graph 300 further illustrates phase 3 with region 306 during which external modification capacitor 216 is discharged. It is appreciated that external modification capacitor 216 may be discharged while other capacitive sensors of a capacitive sensor array are scanned.

FIG. 4 shows an exemplary sensor circuit with an equivalent resistance, in accordance with phase 1 of the circuit of FIG. 2. Sensor circuit 400 includes Vdd signal 202, current source 204, comparator 208, timer 210, data processing 212, oscillator 214, reference voltage 226, external modification capacitor 216, ground signal 224, sensor capacitor 222, and equivalent resistance 430.

In the first phase, a current value for current source 204 may be determined which results in a start voltage across equivalent resistance 430 that is below reference voltage 226.

The equivalent resistance 430 may be governed the voltage current function expressed by:

R Equivalent = 1 f s · C x
Where fs is the switching frequency of phases 1 and 2 as described herein, and Cx is the capacitance of sensor capacitor 22.

As shown, equivalent resistance 430 is inversely proportional to the capacitance of sensor capacitor 222. The presence of an object (e.g., finger) on a sensor therefore increases the capacitance of the sensor, which decreases equivalent resistance 430 formed by the switching phases 1 and 2. A decreased equivalent resistance results in a lower starting voltage by V=IR. In one embodiment, the start voltage may be governed the voltage current function expressed by:

V Start = 1 f s · C x · iDAC
Where fs is the switching frequency of phases 1 and 2 as described herein, and Cx is the capacitance of sensor capacitor 222 and iDAC is current of current source 204.

A lower starting voltage corresponds to an increased time for current source 204 to charge up external modification capacitor 216, thereby resulting in a larger time that timer 210 will operate. Data processing module 212 may thus process the increased value from timer 210 to indicate the presence of an object relative to the equivalent resistance 430.

FIG. 5 shows an exemplary sensor circuit, in accordance with another embodiment of the present invention. Sensor circuit 500 includes Vdd 502, pseudo random generator 504, oscillator 506, frequency modifier 508, pulse-width modulator 510, counter 512, data processing module 514, and gate 516, latch 518, comparator 520, reference voltage 522, discharge resistor 526, ground signal 524, external modification capacitor 528, sensor capacitor 530, switch 532, switch 534, and switch 536.

Switches 532 and 534 are controlled by pseudo random generator 504, which modulates the voltage across external modification capacitor 528 about reference voltage 522 in charge up and charge down steps. Pseudo random generator 504 reduces the electromagnetic inference susceptibility and radiated emissions of capacitive sensing circuits. In one embodiment, external modification capacitor 528 is larger than sensor capacitor 530.

In one embodiment, switch 534 is used to charge sensor capacitor 530. The capacitance of sensor capacitor 530 varies with the presence of an object (e.g., a finger). After the charging of sensor capacitor 530, switch 534 is decoupled and switch 532 is coupled thereby allowing the charge of sensor capacitor 530 to flow to external modification capacitor 528.

As the charge in external modification capacitor 528 increases, so does the voltage across external modification capacitor 528. The voltage across external modification capacitor 528 may be an input to comparator 520. When the input to comparator 520 reaches the threshold voltage or reference voltage 522, discharge resistor 526 is connected and charge is bled off of external modification capacitor 528 at a rate determined by the starting voltage across the external modification capacitor 528 and the value of discharge resistor 526. As the voltage across external modification capacitor 528 decreases and the voltage passes reference voltage 522, discharge resistor 526 is disconnected from ground 524 via switch 536.

The charge/discharge cycle of the external modification capacitor 528 is manifested as a bit stream on the output of comparator 520. The bit-stream of comparator 520 is ‘ANDed’ with pulse-width modulator 510 via and gate 516 to enable timer 512. Pulse width modulator 510 sets the time-frame or measurement window in which the bit-stream enables and disables timer 512. The capacitance measurement and therefore the presence of an object is a matter of comparing the bit-stream of the comparator to the known, baseline value.

The value of reference voltage 522 affects the baseline level of counts or time measured by timer 512 from a sensor when no finger is on the sensor. This voltage on an external modification capacitor 528 may reach the reference voltage before comparator 520 trips, so the value of reference voltage 522 affects the amount of time that it takes external modification capacitor 528 to charge to reference voltage 522, decreasing the density of the bit-stream during a scan.

The output of timer 512 is used for processing the level of capacitance change and determining the sensor activation state. The duration of these steps is compared relative to each other by looking at the comparator bit-stream density. If the density of the bit-stream is relatively high, the sensor is read as “on”. The bit-stream output of comparator 520 is synchronized with system clock via latch 518.

FIG. 6 shows an equivalent resistance of the circuit of FIG. 5, in accordance with an embodiment of the present invention. Sensor circuit 600 includes Vdd 502, oscillator 506, frequency modifier 508, pulse-width modulator 510, counter 512, data processing module 514, and gate 516, latch 518, comparator 520, reference voltage 522, discharge resistor 526, ground signal 5247 external modification capacitor 528, switch 536, and equivalent resistance 640.

Sensor capacitor 530 is replaced with equivalent resistance 540. Equivalent resistance 640 is inversely proportional to the capacitance of sensor capacitor 530. As such, the presence of an object (e.g., a finger) will result in an increase in capacitance and a corresponding reduction in the resistance of equivalent resistance 640. The reduction of equivalent resistance 640 thereby allows more current to charge external modification capacitor 528 and thereby allowing the voltage across external modification capacitor 528 to reach reference voltage 522 relatively faster.

Example System

FIG. 7 illustrates example components used by various embodiments of the present invention. Although specific components are disclosed in system 700 it should be appreciated that such components are examples. That is, embodiments of the present invention are well suited to having various other components or variations of the components recited in system 700. It is appreciated that the components in system 700 may operate with other components than those presented, and that not all of the components of system 700 may be required to achieve the goals of system 700.

FIG. 7 shows a block diagram of a system for processing position information, in accordance with another embodiment of the present invention. System 700 may be coupled to an array of capacitive sensors comprising a plurality of sensor circuits as described herein.

Position signal receiver 702 receives position signals from an array of capacitive sensors. As described herein, the position signals may be received from one or more sensor circuits of an array of capacitive sensors. The position signals may further originate from multiple sensors comprising a centroid.

Position information module 704 accesses information corresponding with the position signal received by position signal receiver 702. The information may correspond with the position signal and include location information of a capacitive sensor within the array of capacitive sensors. For example, information regarding the relative location of a capacitive sensor relative to a connection (e.g., connections 104) of an array of capacitive sensors may be accessed. It is appreciated that values may be accessed as new position information is received from active sensors (e.g., as an object moves around).

The information may further include a scalar value for adjusting a position signal. The scalar value may be dependent on the sensor's distance from the detection logic and therefore based on the sensor's location within the array. In one embodiment, the value may be based on the percentage of reduction of the signal impacted by the impedance of the array as the signal is transmitted to a connection of a capacitive sensor array. For example, the scalar value may be used to increase a signal level by 50% of a capacitive sensor in the top left of a capacitive sensor in the array where the connections are in the bottom right. The scalar value may be based on the capacitive sensor's location resulting in a 50% reduction in the signal received at the connections of the array. It is appreciated that a scalar value corresponding to sensors adjacent to the connections of an array of capacitive sensors may not need to be applied.

In one embodiment, the scalar values may be stored in a matrix with each sensor circuit having a corresponding scalar value. For example, scalar values for adjusting position signals from sensor circuits remote from the connection of the array of capacitive sensors may be greater than the scalar values for sensor circuits near or adjacent to the connections of the array of capacitive sensors.

Scalar values corresponding to each sensor circuit may further facilitate more accurate readings from the array of capacitive sensors. For example, due to the impact of impedance on an array of capacitive sensors, centroid readings may be pulled down and to the right because the reading from sensors up and to the left are increasingly impacted by the series impedance of the array of capacitive sensors thereby having decreased sensitivity. The adjusting of centroid with the scalar values allows the centroid to be adjusted to compensate for the impact of the capacitance and thereby the centroid can be more accurately reported.

In another embodiment, all the sensor values may be adjusted by the same scalar value. For example, a scalar value may be multiplied or applied to each signal of each capacitive sensor in an array of capacitive sensors.

Sensor sensitivity control module 706 adjusts the sensitivity of one or more capacitive sensors. The sensor sensitivity control module 706 may adjust the sensitivity of one or more active capacitive sensors or a plurality of the capacitive sensors (e.g., including active and inactive sensors) in an array of capacitive sensors.

Sensor sensitivity control module 706 adjusts the sensitivity of one or more capacitive sensors by adjusting a scan time of the one or more capacitive sensors. The adjustment of the scan time of the capacitive sensors facilitates greater resolution and signal levels in readings from the capacitive sensors. The sensitivity may be adjusted according to the proximity of the sensors to the connections of the array of capacitive sensors. In one embodiment, the adjustment of the scan time increases the resolution and signals levels by increasing the detection period (e.g., phase 2 of circuit 200).

In one embodiment, a current source (e.g., current source 204) or capacitor (e.g., external modification capacitor 216) of a sensor circuit (e.g., circuit 200) may be adjusted to increase scan time. The adjustment of the current or capacitor value may result in increased counts or time measured by timer 210. For example, the current of a current source (e.g., current source 204) may be reduced which thereby increases the time before the reference voltage is reached and thereby increases the scan time.

In another embodiment, a pulse width modulator (e.g. pulse width modulator 510) may be adjusted to increase period of an output of a bit-stream of a circuit (e.g., circuit 500). The increased period of the output of the bit-stream enables higher raw counts or times to be measured thereby increasing the resolution of the sensor.

Sensor sensitivity control module 706 may further adjust the sensitivity of one or more capacitive sensors based on information corresponding to a location within the array of capacitive sensors including, but not limited to, scalar values accessed via position information module 704.

Position signal reporting module 708 reports the position signal. Position signal reporting module 708 may report a position signal after that has been adjusted by sensor sensitivity control module 706. For example, a first position signal may be received and a second signal may be reported after the sensitivity of the corresponding sensor has been adjusted by sensor sensitivity control module 706.

Example Operations

With reference to FIGS. 8-10, exemplary flowcharts 800-1000 each illustrate example blocks used by various embodiments of the present invention. Although specific blocks are disclosed in flowcharts 800-1000, such blocks are examples. That is, embodiments are well suited to performing various other blocks or variations of the blocks recited in flowcharts 800-1000. It is appreciated that the blocks in flowcharts 800-1000 may be performed in an order different than presented, and that not all of the blocks in flowcharts 800-1000 may be performed.

FIG. 8 shows a flowchart 800 of an exemplary process for reporting position information, in accordance with an embodiment of the present invention. The blocks of flowchart 800 may be performed by a data processing portion (e.g., data processing module 212 or data processing module 514) of a sensor circuit (e.g., sensor circuits 200 and 400-600).

At block 802, first position information regarding an interaction is received from a number of capacitive sensors. As described herein, the position information may include a centroid computation and may be received from one or more capacitive sensors in an array of capacitive sensors. Sensors reporting a signal that exceeds a threshold are active and contribute to the centroid computation.

At block 804, an adjustment value corresponding to the position information is accessed. As described herein, the adjustment value corresponding to the position information may be based on a location of the active capacitive sensor within an array of capacitive sensors relative to the connections of the array. For example, a larger adjustment value may correspond to sensors whose signal is impacted by the series impedance of the array of capacitive sensors as the signal travels to the connections of the array of capacitive sensors. In one embodiment, each capacitive sensor in the array may have a respective adjustment value assigned to it based on its relative distance to the detector logic. At step 804, the adjustment values are obtained for the active sensors participating in the centroid computation.

At block 806, the first position information is adjusted based on the adjustment values corresponding to the position information to calculate an adjusted position information. The adjusting may include multiplying the signals corresponding to the first position information with the adjustment values which may be scalar values. As described herein, the values may be applied to active sensors or one or more sensors of the array of capacitive sensors. It is appreciated that the adjustment of the position information may improve the signal level reported by sensor and thereby compensate for the impact of impedance on the array of capacitive sensors. In accordance with the embodiment described above, the sensor readings for the active sensors are multiplied by their respective adjustment values. This new data is then used to determine an adjusted position.

At block 808, a position of the interaction is computed using the adjusted signals. In one embodiment, the centroid is again calculated based on the adjusted position information.

At block 810, the position of the interaction as computed in 808 is reported. As described herein, the position of the interaction (e.g., centroid) may be reported to the device (e.g., computing device and the like) coupled to the array of capacitive sensors.

FIG. 9 shows a flowchart 900 of an exemplary process for processing a position signal, in accordance with another embodiment of the present invention. The blocks of flowchart 900 may be performed by a data processing portion (e.g., data processing module 212 or data processing module 514) of a sensor circuit (e.g., sensor circuits 200 and 400-600). It is appreciated that blocks or select blocks of flowchart 900 may be repeated as the position signal (e.g., centroid) moves around an array of capacitive sensors.

At block 902, the array of capacitive sensors is in a low sensitivity mode with all sensors scanned. In one embodiment, the array of capacitive sensors may operate in a low sensitivity mode while no interactions with the array are detected.

At block 904, whether an interaction with the array of capacitive sensors has occurred is detected. If there is no interaction detected, the capacitive sensor array remains in low sensitivity mode at block 902. If an interaction is detected, the capacitive sensor array may proceed to block 906.

At block 906, a first position signal is received from a first plurality of capacitive sensors. As described herein, the first position signal may be computed from a centroid and may be received from a plurality of capacitive sensors which are part of an array of capacitive sensors.

At block 908, a proximity of the plurality of capacitive sensors to a connection of an array of capacitive sensors is determined on an individual level. As described herein, the relative locations of one or more capacitive sensors to the connections of an array of capacitive sensors may be determined.

At block 910, the sensitivity of all capacitive sensors in the array of capacitive sensors is adjusted. The sensitivity of one or more capacitive sensors may be adjusted to increase the resolution and signal level, thereby compensating for the impact of the impedance of an array of capacitive sensors. Adjusting the sensitivity of all of the sensors allows enhanced tracking of an object as movement is detected.

The sensitivity of the capacitive sensors may be adjusted by adjusting the scan time of the capacitive sensors based individually on their location within the array. As described herein, the scan time of an individual sensor circuit may be adjusted by adjusting the current (e.g., lowering the current) for charging a capacitor of a current source (e.g., current source 204), adjusting a pulse width modulation (e.g., of pulse width modulator 410), a voltage threshold (e.g., reference voltage 226 or 422), or adjusting a capacitance of an integration capacitor (e.g., external modification capacitor 428). In one embodiment, the adjustment of the scan time increases the resolution and signals levels by increasing the detection period (e.g., phase 2 of circuit 200).

In one embodiment, the scan time may be adjusted according to the position of one or more capacitive sensors. For example, the scan time of sensors in the upper left could be increased more than the scan time in the middle of a capacitive sensor array where the connections of the array are in the lower right. In one embodiment, each sensor may have a respective adjustment factor that is based on its distance from the detecting logic.

At block 912, a second position signal is received from a second plurality of capacitive sensors. The second position signal may be received after the sensitivity of the sensors has been adjusted as described herein. It is appreciated that the second plurality of sensors may be different from the first plurality of sensors where the object has moved before the sensitivity of the sensors has been adjusted. The first plurality of sensors and the second plurality of sensors may be same when the object has not moved. At block 914, the second position signal is reported.

FIG. 10 shows a flowchart of an exemplary process for processing a position signal, in accordance with an embodiment of the present invention. The blocks of flowchart 1000 may be performed by a data processing portion (e.g., data processing module 212 or data processing module 514) of a sensor circuit (e.g., sensor circuits 200 and 400-600). It is appreciated that blocks or select blocks of flowchart 1000 may be repeated as the position signal (e.g., centroid) moves around an array of capacitive sensors.

At block 1002, the array of capacitive sensors is in a low sensitivity mode with all sensors scanned. In one embodiment, the array of capacitive sensors may operate in a low sensitivity mode while no interactions with the array are detected.

At block 1004, whether an interaction with the array of capacitive sensors has occurred is detected. If there is no interaction detected, the capacitive sensor array remains in low sensitivity mode at block 1002. If an interaction is detected, the capacitive sensor array may proceed to block 1006.

At block 1006, a first position signal is received from a plurality of active capacitive sensors. As described herein, the first position signal may be coupled from a centroid and may be received from a plurality of capacitive sensors which are part of an array of capacitive sensors.

At block 1008, a proximity of the plurality of active capacitive sensors to a connection of an array of capacitive sensors is determined. As described herein, the relative locations of one or more capacitive sensors to the connections of an array of capacitive sensors may be determined.

At block 1010, the sensitivity of the active capacitive sensors in the array of capacitive sensors is adjusted. The sensitivity of one or more capacitive sensors may be adjusted to increase the resolution and signal level, thereby compensating for the impact of the impedance of an array of capacitive sensors. Adjusting the sensitivity of the active capacitive sensors saves power over increasing the sensitivity of all the capacitive sensors.

The sensitivity of the capacitive sensors may be adjusted by adjusting the scan time of the capacitive sensors. As described herein, the scan time of an individual sensor circuit may be adjusted by adjusting the current (e.g., lowering the current) for charging a capacitor of a current source (e.g., current source 204), adjusting a pulse width modulation (e.g., of pulse width modulator 410), a voltage threshold (e.g., reference voltage 226 or 422), or adjusting a capacitance of an integration capacitor (e.g., external modification capacitor 428). In one embodiment, the adjustment of the scan time increases the resolution and signals levels by increasing the detection period (e.g., phase 2 of circuit 200). It is appreciated that adjusting the scan time of the active capacitive sensors saves scan time over increasing the scan time of the entire array of capacitive sensors.

In one embodiment, the scan time may be adjusted according to the position of one or more active capacitive sensors. For example, the scan time of sensors in the upper left could be increased more than the scan time in the middle of a capacitive sensor array where the connections of the array are in the lower right. In one embodiment, each sensor may have a respective adjustment factor that is based on its distance from the detecting logic.

At block 1012, a second position signal is received from the plurality of active capacitive sensors with heightened sensitivity. The second position signal may be received after the sensitivity of the sensors has been adjusted as described herein. At block 1014, the second position signal is reported.

Thus, embodiments of the present invention compensate for the impedance of an array of capacitive sensors. Thus, a substantial improvement in accuracy and performance of arrays of capacitive sensors is achieved.

Embodiments of the present invention are thus described. While the present invention has been described in particular embodiments, it should be appreciated that the present invention should not be construed as limited by such embodiments, but rather construed according to the below claims.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US426614414 mai 19795 mai 1981Emhart Industries, Inc.Detection means for multiple capacitive sensing devices
US428371315 janv. 197911 août 1981Tektronix, Inc.Waveform acquisition circuit
US44384044 janv. 198220 mars 1984Tektronix, Inc.Signal sampling system
US44751514 nov. 19822 oct. 1984Harald PhilippSwitching amplifier circuit
US44975751 nov. 19825 févr. 1985Tektronix, Inc.Optical fiber test instrument calibrator
US47360972 févr. 19875 avr. 1988Harald PhilippOptical motion sensor
US47361912 août 19855 avr. 1988Karl E. MatzkeTouch activated control method and apparatus
US47730243 juin 198620 sept. 1988Synaptics, Inc.Brain emulation circuit with reduced confusion
US48021033 juin 198631 janv. 1989Synaptics, Inc.Brain learning and recognition emulation circuitry and method of recognizing events
US48313251 avr. 198716 mai 1989General Signal CorporationCapacitance measuring circuit
US48765345 févr. 198824 oct. 1989Synaptics IncorporatedScanning method and apparatus for current signals having large dynamic range
US487946125 avr. 19887 nov. 1989Harald PhilippEnergy field sensor using summing means
US49357029 déc. 198819 juin 1990Synaptics, Inc.Subthreshold CMOS amplifier with offset adaptation
US49539289 juin 19894 sept. 1990Synaptics Inc.MOS device for long-term learning
US49623424 mai 19899 oct. 1990Synaptics, Inc.Dynamic synapse for neural network
US504975831 oct. 199017 sept. 1991Synaptics, IncorporatedAdaptable CMOS winner-take all circuit
US505582720 févr. 19908 oct. 1991Harald PhilippFiber optic security system
US505992018 mai 199022 oct. 1991Synaptics, IncorporatedCMOS amplifier with offset adaptation
US506862228 févr. 199026 nov. 1991Synaptics, IncorporatedCMOS amplifier with offset adaptation
US507375931 oct. 199017 déc. 1991Synaptics, IncorporatedAdaptable current mirror
US508304425 mai 198921 janv. 1992Synaptics, IncorporatedSynaptic element and array
US509528410 sept. 199010 mars 1992Synaptics, IncorporatedSubthreshold CMOS amplifier with wide input voltage range
US509730519 févr. 199117 mars 1992Synaptics CorporationIntegrating photosensor and imaging system having wide dynamic range
US510714919 août 199121 avr. 1992Synaptics, Inc.Linear, continuous-time, two quadrant multiplier
US510926131 oct. 199028 avr. 1992Synaptics, IncorporatedCMOS amplifier with offset adaptation
US51190384 févr. 19912 juin 1992Synaptics, CorporationCMOS current mirror with offset adaptation
US51209966 juin 19909 juin 1992Synaptics, IncorporatedSynaptic element and array
US512280017 juil. 198916 juin 1992Harald PhilippVariable successive approximation converter
US512668519 août 199130 juin 1992Synaptics, IncorporatedCircuits for linear conversion between voltages and currents
US51461065 févr. 19918 sept. 1992Synaptics, IncorporatedCMOS winner-take all circuit with offset adaptation
US516089922 oct. 19913 nov. 1992Synaptics, IncorporatedAdaptable MOS current mirror
US51665629 mai 199124 nov. 1992Synaptics, IncorporatedWritable analog reference voltage storage device
US520454928 janv. 199220 avr. 1993Synaptics, IncorporatedSynaptic element including weight-storage and weight-adjustment circuit
US524355415 oct. 19927 sept. 1993Synaptics, IncorporatedWritable analog reference voltage storage device
US52488731 sept. 199228 sept. 1993Synaptics, IncorporatedIntegrated device for recognition of moving objects
US526059216 sept. 19919 nov. 1993Synaptics, IncorporatedIntegrating photosensor and imaging system having wide dynamic range with varactors
US52709636 juil. 199014 déc. 1993Synaptics, IncorporatedMethod and apparatus for performing neighborhood operations on a processing plane
US527640718 juin 19924 janv. 1994Synaptics, IncorporatedSense amplifier
US52890237 août 199222 févr. 1994Synaptics, IncorporatedHigh-density photosensor and contactless imaging array having wide dynamic range
US530332910 déc. 199112 avr. 1994Synaptics, IncorporatedContinuous synaptic weight update mechanism
US530501713 juil. 199219 avr. 1994Gerpheide George EMethods and apparatus for data input
US532495830 juil. 199228 juin 1994Synaptics, IncorporatedIntegrating imaging systgem having wide dynamic range with sample/hold circuits
US533121530 juil. 199219 juil. 1994Synaptics, IncorporatedElectrically adaptable neural network with post-processing circuitry
US53369366 mai 19929 août 1994Synaptics, IncorporatedOne-transistor adaptable analog storage element and array
US533921316 nov. 199216 août 1994Cirque CorporationPortable computer touch pad attachment
US53493032 juil. 199320 sept. 1994Cirque CorporationElectrical charge transfer apparatus
US537478731 août 199320 déc. 1994Synaptics, Inc.Object position detector
US53815155 nov. 199210 janv. 1995Synaptics, IncorporatedTwo layer neural network comprised of neurons with improved input range and input offset
US538446714 oct. 199324 janv. 1995AVL Gesellschaft fur Verbrennungskraftmaschinen und Messtechnik m.b.H. Prof.Dr.Dr.h.c. Hans ListOptoelectronic measuring device for monitoring a combustion chamber
US540819425 juin 199318 avr. 1995Synaptics, IncorporatedAdaptive analog minimum/maximum selector and subtractor circuit
US548820417 oct. 199430 janv. 1996Synaptics, IncorporatedPaintbrush stylus for capacitive touch sensor pad
US54950772 juin 199427 févr. 1996Synaptics, Inc.Object position and proximity detector
US554187827 juin 199430 juil. 1996Synaptics, IncorporatedWritable analog reference voltage storage device
US55435883 déc. 19936 août 1996Synaptics, IncorporatedTouch pad driven handheld computing device
US55435902 sept. 19946 août 1996Synaptics, IncorporatedObject position detector with edge motion feature
US55435917 oct. 19946 août 1996Synaptics, IncorporatedObject position detector with edge motion feature and gesture recognition
US55559072 juin 199517 sept. 1996Philipp; HaraldDivided box for valve controller
US55656587 déc. 199415 oct. 1996Cirque CorporationCapacitance-based proximity with interference rejection apparatus and methods
US556670230 déc. 199422 oct. 1996Philipp; HaraldAdaptive faucet controller measuring proximity and motion
US562989125 mars 199613 mai 1997Synaptics, IncorporatedWritable analog reference voltage storage device
US564637716 févr. 19958 juil. 1997Oda; YasuoPoint detecting device and method of same
US564864225 oct. 199415 juil. 1997Synaptics, IncorporatedObject position detector
US567091524 mai 199623 sept. 1997Microchip Technology IncorporatedAccurate RC oscillator having peak - to - peak voltage control
US568203222 févr. 199628 oct. 1997Philipp; HaraldCapacitively coupled identity verification and escort memory apparatus
US573016526 déc. 199524 mars 1998Philipp; HaraldTime domain capacitive field detector
US575736827 mars 199526 mai 1998Cirque CorporationSystem and method for extending the drag function of a computer pointing device
US57639098 nov. 19969 juin 1998Synaptics, IncorporatedIntegrating imaging system with phototransistor having wide dynamic range
US576745713 nov. 199516 juin 1998Cirque CorporationApparatus and method for audible feedback from input device
US579618331 janv. 199618 août 1998Nartron CorporationCapacitive responsive electronic switching circuit
US581269814 juil. 199722 sept. 1998Synaptics, Inc.Handwriting recognition system and method
US584107830 oct. 199624 nov. 1998Synaptics, Inc.Object position detector
US584426511 juil. 19961 déc. 1998Synaptics, IncorporatedSense amplifier for high-density imaging array
US58546256 nov. 199629 déc. 1998Synaptics, IncorporatedForce sensing touchpad
US586158315 juil. 199619 janv. 1999Synaptics, IncorporatedObject position detector
US586187511 déc. 199619 janv. 1999Cirque CorporationMethods and apparatus for data input
US586424211 déc. 199526 janv. 1999Synaptics IncorporatedOne-transistor adaptable analog storage element and array
US586439212 déc. 199626 janv. 1999Avl List GmbhMethod for optically detecting gas bubbles moving in a coolant
US588041128 mars 19969 mars 1999Synaptics, IncorporatedObject position detector with edge motion feature and gesture recognition
US588923613 nov. 199530 mars 1999Synaptics IncorporatedPressure sensitive scrollbar feature
US59144652 sept. 199422 juin 1999Synaptics, Inc.Object position detector
US59147084 avr. 199622 juin 1999Cirque CorporationComputer input stylus method and apparatus
US592031015 nov. 19966 juil. 1999Synaptics, IncorporatedElectronic device employing a touch sensitive transducer
US592656615 nov. 199620 juil. 1999Synaptics, Inc.Incremental ideographic character input method
US594273319 oct. 199524 août 1999Synaptics, Inc.Stylus input capacitive touchpad sensor
US594305212 août 199724 août 1999Synaptics, IncorporatedMethod and apparatus for scroll bar control
US596951324 mars 199819 oct. 1999Volterra Semiconductor CorporationSwitched capacitor current source for use in switching regulators
US602342229 sept. 19988 févr. 2000Synaptics, Inc.Method for changing the weight of a synaptic element
US602827124 mars 199822 févr. 2000Synaptics, Inc.Object position detector with edge motion feature and gesture recognition
US60289596 avr. 199922 févr. 2000Synaptics, Inc.Incremental ideographic character input method
US609743214 mai 19971 août 2000Synaptics, Inc.Sense amplifier for high-density imaging array
US614810414 janv. 199914 nov. 2000Synaptics, Inc.Incremental ideographic character input method
US618545026 janv. 19986 févr. 2001Physio-Control Manufacturing CorporationDigital sliding pole fast-restore for an electrocardiograph display
US61882286 nov. 199813 févr. 2001Harald PhilippHammer having integral stud and mains sensor
US61883919 juil. 199813 févr. 2001Synaptics, Inc.Two-layer capacitive touchpad and method of making same
US62225287 mars 199724 avr. 2001Cirque CorporationMethod and apparatus for data input
US623938921 juin 199929 mai 2001Synaptics, Inc.Object position detection system and method
US624944713 août 199919 juin 2001Tyco Electronics Logistics AgSystem and method for determining output current and converter employing the same
US62627172 juil. 199817 juil. 2001Cirque CorporationKiosk touch pad
US62803918 févr. 199928 août 2001Physio-Control Manufacturing CorporationMethod and apparatus for removing baseline wander from an egg signal
US628870712 juin 199711 sept. 2001Harald PhilippCapacitive position sensor
US63040142 oct. 199816 oct. 2001Synaptics (Uk) LimitedMotor control system
US63201849 juil. 199920 nov. 2001Avl List GmbhOptoelectric measuring device for monitoring combustion processes
US632384625 janv. 199927 nov. 2001University Of DelawareMethod and apparatus for integrating manual input
US632685930 juin 20004 déc. 2001Telefonaktiebolaget Lm Ericsson (Publ)Oscillator circuit having trimmable capacitor array receiving a reference current
US63770097 sept. 200023 avr. 2002Harald PhilippCapacitive closure obstruction sensor
US638092920 sept. 199630 avr. 2002Synaptics, IncorporatedPen drawing computer input device
US638093118 mai 200130 avr. 2002Synaptics IncorporatedObject position detector with edge motion feature and gesture recognition
US641467124 mars 19982 juil. 2002Synaptics IncorporatedObject position detector with edge motion feature and gesture recognition
US643030520 déc. 19966 août 2002Synaptics, IncorporatedIdentity verification methods
US644107310 août 200027 août 2002Taki Chemical Co., Ltd.Biological materials
US644891130 juil. 200110 sept. 2002Cirrus Logic, Inc.Circuits and methods for linearizing capacitor calibration and systems using the same
US645251426 janv. 200017 sept. 2002Harald PhilippCapacitive sensor and array
US645735524 août 20001 oct. 2002Harald PhilippLevel sensing
US64660367 sept. 199915 oct. 2002Harald PhilippCharge transfer capacitance measurement circuit
US647306913 nov. 199529 oct. 2002Cirque CorporationApparatus and method for tactile feedback from input device
US648989927 juil. 20003 déc. 2002Synaptics (Uk) LimitedPosition detector
US64987204 janv. 200224 déc. 2002Cirque CorporationConnector and support system for a touchpad keyboard for use with portable electronic appliances
US64993599 juil. 200131 déc. 2002Nartron CorporationCompressible capacitance sensor for determining the presence of an object
US6506983 *5 mars 199914 janv. 2003Elo Touchsystems, Inc.Algorithmic compensation system and method therefor for a touch sensor panel
US652212815 oct. 199818 févr. 2003Synaptics (Uk) LimitedPosition sensor having compact arrangement of coils
US652341629 août 200125 févr. 2003Kawasaki Steel CorporationMethod for setting shape and working stress, and working environment of steel member
US653497024 mai 199918 mars 2003Synaptics (Uk) LimitedRotary position sensor and transducer for use therein
US653520027 août 200118 mars 2003Harald PhilippCapacitive position sensor
US657055710 févr. 200127 mai 2003Finger Works, Inc.Multi-touch system and method for emulating modifier keys via fingertip chords
US658363223 janv. 200124 juin 2003Micronas GmbhMethod of determining very small capacitances
US65870933 nov. 20001 juil. 2003Synaptics IncorporatedCapacitive mouse
US661093612 août 199726 août 2003Synaptics, Inc.Object position detector with edge motion feature and gesture recognition
US66246407 févr. 200123 sept. 2003Fluke CorporationCapacitance measurement
US663958611 avr. 200128 oct. 2003Cirque CorporationEfficient entry of characters from a large character set into a portable information appliance
US664285719 janv. 20014 nov. 2003Synaptics IncorporatedCapacitive pointing stick
US664992427 sept. 200018 nov. 2003Avl List GmbhOptoelectronic measuring device
US66677405 janv. 200123 déc. 2003Synaptics (Uk) LimitedPosition sensor
US667330830 août 20016 janv. 2004Kabushiki Kaisha ToshibaNickel-base single-crystal superalloys, method of manufacturing same and gas turbine high temperature parts made thereof
US667793228 janv. 200113 janv. 2004Finger Works, Inc.System and method for recognizing touch typing under limited tactile feedback conditions
US668073111 janv. 200120 janv. 2004Cirque CorporationFlexible touchpad sensor grid for conforming to arcuate surfaces
US66834622 nov. 200127 janv. 2004Agilent Technologies, Inc.Apparatus for and method of measuring capacitance with high accuracy
US670551128 mai 199816 mars 2004Synaptics (Uk) LimitedTransducer and method of manufacture
US671481731 août 200130 mars 2004Medtronic Physio-Control Manufacturing Corp.Hard paddle for an external defibrillator
US673086322 juin 20004 mai 2004Cirque CorporationTouchpad having increased noise rejection, decreased moisture sensitivity, and improved tracking
US675085223 janv. 200315 juin 2004Synaptics, Inc.Object position detector with edge motion feature and gesture recognition
US677464410 avr. 200210 août 2004Dialog Semiconductor GmbhMethod and circuit for compensating MOSFET capacitance variations in integrated circuits
US67815773 juil. 200124 août 2004Alps Electric Co., Ltd.Capacitive sensor-based input device
US678822124 déc. 19987 sept. 2004Synaptics (Uk) LimitedSignal processing apparatus and method
US678852126 sept. 20027 sept. 2004Fujitsu Quantum Devices LimitedCapacitor and method for fabricating the same
US679821816 mai 200128 sept. 2004Semiconductor Ideas To Market (Itom) B.V.Circuit for measuring absolute spread in capacitors implemented in planary technology
US680927513 mai 200226 oct. 2004Synaptics, Inc.Rotary and push type input device
US68564338 sept. 200315 févr. 2005Pioneer CorporationHolographic recording medium and holographic recording/reproducing apparatus using the same
US687320320 oct. 200329 mars 2005Tyco Electronics CorporationIntegrated device providing current-regulated charge pump driver with capacitor-proportional current
US688853828 mars 20023 mai 2005Synaptics (Uk) LimitedPosition sensor
US689372411 mars 200317 mai 2005Grand Tek Advance Material Science Co., Ltd.Silicone-polyester-polysilicate hybrid compositions for thermal resistance coating
US690340226 mars 20037 juin 2005Fujitsu Quantum Devices, Ltd.Interdigital capacitor having a cutting target portion
US69045707 juin 20017 juin 2005Synaptics, Inc.Method and apparatus for controlling a display of data on a display screen
US6933931 *21 août 200323 août 2005Ceronix, Inc.Method and apparatus of position location
US694981126 mars 200327 sept. 2005Fujitsu Quantum Devices LimitedDevice having interdigital capacitor
US696997817 mars 200329 nov. 2005Rf Micro Devices, Inc.DC-DC converter with reduced electromagnetic interference
US697016019 déc. 200229 nov. 20053M Innovative Properties CompanyLattice touch-sensing system
US697512320 déc. 200113 déc. 2005Maxtor CorporationMethod and apparatus for calibrating piezoelectric driver in dual actuator disk drive
US70060787 mai 200228 févr. 2006Mcquint, Inc.Apparatus and method for sensing the degree and touch strength of a human body on a sensor
US703078210 mars 200418 avr. 2006Synaptics (Uk) LimitedPosition detector
US70308608 oct. 199918 avr. 2006Synaptics IncorporatedFlexible transparent touch sensing system for electronic devices
US70462301 juil. 200216 mai 2006Apple Computer, Inc.Touch pad handheld device
US706803928 avr. 200427 juin 2006Agilent Technologies, Inc.Test structure embedded in a shipping and handling cover for integrated circuit sockets and method for testing integrated circuit sockets and circuit assemblies utilizing same
US707531614 sept. 200411 juil. 2006Alps Electric Co., Ltd.Capacitance detector circuit, capacitance detection method, and fingerprint sensor using the same
US710997826 mars 200419 sept. 2006Synaptics, Inc.Object position detector with edge motion feature and gesture recognition
US711955016 sept. 200410 oct. 2006Fujitsu LimitedCapacitance difference detecting circuit and MEMS sensor
US71331401 avr. 20047 nov. 2006Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.Apparatus and measurement procedure for the fast, quantitative, non-contact topographic investigation of semiconductor wafers and other mirror like surfaces
US713379323 juil. 20047 nov. 2006Synaptics (Uk) LimitedMagnetic calibration array
US71419687 oct. 200428 nov. 2006Quasar Federal Systems, Inc.Integrated sensor system for measuring electric and/or magnetic field vector components
US71419877 oct. 200428 nov. 2006Quantum Applied Science And Research, Inc.Sensor system for measurement of one or more vector components of an electric field
US714870430 oct. 200312 déc. 2006Harald PhilippCharge transfer capacitive position sensor
US71515286 juin 200219 déc. 2006Cirque CorporationSystem for disposing a proximity sensitive touchpad behind a mobile phone keypad
US72121895 mars 20031 mai 2007Synaptics IncorporatedCapacitive mouse
US723930227 août 20033 juil. 2007In-Gwang KimPointing device and scanner, robot, mobile communication device and electronic dictionary using the same
US728897721 janv. 200530 oct. 2007Freescale Semiconductor, Inc.High resolution pulse width modulator
US72981241 déc. 200420 nov. 2007Semiconductor Components Industries, L.L.C.PWM regulator with discontinuous mode and method therefor
US730748514 nov. 200511 déc. 2007Cypress Semiconductor CorporationCapacitance sensor using relaxation oscillators
US737553519 sept. 200520 mai 2008Cypress Semiconductor CorporationScan method and topology for capacitive sensing
US740031812 janv. 200415 juil. 2008Cirque CorporationTouchpad having increased noise rejection, decreased moisture sensitivity, and improved tracking
US742363526 août 20059 sept. 2008Cirque CorporationSingle-layer touchpad having touch zones
US742997624 nov. 200330 sept. 2008Avago Technologies Ecbu Ip (Singapore) Pte. Ltd.Compact pointing device
US74663077 janv. 200316 déc. 2008Synaptics IncorporatedClosed-loop sensor on a solid-state object position detector
US749235815 juin 200417 févr. 2009International Business Machines CorporationResistive scanning grid touch panel
US76636076 mai 200416 févr. 2010Apple Inc.Multipoint touchscreen
US770144019 déc. 200520 avr. 2010Avago Technologies Ecbu Ip (Singapore) Pte. Ltd.Pointing device adapted for small handheld devices having two display modes
US772837728 août 20061 juin 2010Agile Rf, Inc.Varactor design using area to perimeter ratio for improved tuning range
US786887525 oct. 200611 janv. 2011Samsung Electronics Co., Ltd.Touch sensitive display device and method thereof
US7920134 *13 juin 20075 avr. 2011Apple Inc.Periodic sensor autocalibration and emulation by varying stimulus level
US7965281 *3 oct. 200621 juin 2011Synaptics, Inc.Unambiguous capacitance sensing using shared inputs
US80864173 juil. 200827 déc. 2011Cypress Semiconductor CorporationNormalizing capacitive sensor array signals
US848253623 juil. 20099 juil. 2013Cypress Semiconductor CorporationCompensation of signal values for a touch sensor
US200200636884 oct. 200130 mai 2002Synaptics IncorporatedCapacitive mouse
US2002019102917 avr. 200219 déc. 2002Synaptics, Inc.Touch screen with user interface enhancement
US2003006288924 oct. 20023 avr. 2003Synaptics (Uk) LimitedPosition detector
US2003008075530 oct. 20021 mai 2003Kabushiki Kaisha Honda Denshi GikenProximity sensor and object detecting device
US200300912205 nov. 200215 mai 2003Toko, Inc.Capacitive sensor device
US2005002434117 avr. 20023 févr. 2005Synaptics, Inc.Touch screen with user interface enhancement
US200500311751 juil. 200410 févr. 2005Seiko Epson CorporationInput device, electronic apparatus, and method for driving input device
US20050243894 *29 avr. 20043 nov. 2005Yuhui ChenMethods and circuits for frequency modulation that reduce the spectral noise of switching regulators
US2006003268015 août 200516 févr. 2006Fingerworks, Inc.Method of increasing the spatial resolution of touch sensitive devices
US2006018162716 déc. 200517 août 2006Recon/Optical, Inc.Hybrid infrared detector array and CMOS readout integrated circuit with improved dynamic range
US2006027380417 juin 20047 déc. 2006Commissariat A L'energie AtomiqueCapacitive measuring sensor and associated ,measurement method
US20060279548 *8 juin 200514 déc. 2006Geaghan Bernard OTouch location determination involving multiple touch location processes
US20060290677 *23 juin 200528 déc. 2006Lyon Benjamin BTrackpad sensitivity compensation
US200700249702 nov. 20041 févr. 2007Johan LubDichroic guest-host polarizer comprising an oriented polymer film
US20070052690 *25 oct. 20068 mars 20073M Innovative Properties CompanyCalibration of force based touch panel systems
US2007022946927 nov. 20064 oct. 2007Ryan SeguineNon-planar touch sensor pad
US2007022947027 nov. 20064 oct. 2007Warren SnyderCapacitive touch sense device having polygonal shaped sensor elements
US20080100586 *26 oct. 20061 mai 2008Deere & CompanyMethod and system for calibrating a touch screen
TW315495B Titre non disponible
Citations hors brevets
Référence
1Chapweske, Adam; "The PS/2 Mouse Interface," PS/2 Mouse Interfacing, 2001, retrieved on May 18, 2006; 10 pages.
2Cypress Semiconductor Corporation, "CY8C21×34 Data Sheet," CSR User Module, CSR V.1.0; Oct. 6, 2005; 36 pages.
3Cypress Semiconductor Corporation, "Cypress Introduces PSoC(TM)-Based Capacitive Touch Sensor Solution," Cypress Press Release; May 31, 2005; ; retrieved on Feb. 5, 2007; 4 pages.
4Cypress Semiconductor Corporation, "Cypress Introduces PSoC(TM)-Based Capacitive Touch Sensor Solution," Cypress Press Release; May 31, 2005; <http://www.cypress.com/portal/server>; retrieved on Feb. 5, 2007; 4 pages.
5Cypress Semiconductor Corporation, "FAN Controller CG6457AM and CG6462AM," PSoC Mixed Signal Array Preliminary Data Sheet; May 24, 2005; 25 pages.
6Cypress Semiconductor Corporation, "PSoC CY8C20×34 Technical Reference Manual (TRM)," PSoC CY8C20×34 TRM, Version 1.0, 2006; 218 pages.
7Cypress Semiconductor Corporation, "PSoC Mixed-Signal Controllers," Production Description; ; retrieved on Sep. 27, 2005; 2 pages.
8Cypress Semiconductor Corporation, "PSoC Mixed-Signal Controllers," Production Description; <http://www.cypress.com/portal/server>; retrieved on Sep. 27, 2005; 2 pages.
9Cypress Semiconductor Corporation, "Release Notes srn017," Jan. 24, 2007; 3 pages.
10Dennis Seguine, "Capacitive Switch Scan," AN2233a, Application Note, CY8C21×34, Apr. 7, 2005; 6 pages.
11International Search Report for International Application No. PCT/US08/69107 dated Oct. 2, 2008; 2 pages.
12Lee, Mark; "EMC Design Considerations for PSoC CapSense Applications," Cypress Semiconductor Corporation, Application Note AN2318; Sep. 16, 2005; 6 pages.
13Requirement for Restriction/Election for U.S. Appl. No. 13/156,297 dated Dec. 1, 2011; 6 pages.
14Sedra, Adel S. et al., "Microelectronic Circuits," 3rd Edition, Oxford University Press, pp. xiii-xx and 861-883, 1991; 20 pages.
15Seguine, Ryan; "Layout Guidelines for PSoC CapSense," Cypress Semiconductor Corporation, Application Note AN2292; Jul. 22, 2005; 13 pages.
16Taiwanese Office Action for Application No. 097125030 dated Feb. 6, 2014; 2 pages.
17U.S. Appl. No. 13/156,297: "Normalizing Capacitive Sensor Array Signals" Ryan D. Seguine et al., filed Jun. 8, 2011; 48 pages.
18USPTO Advisory Action for U.S. Appl. No. 11/230,719 dated Nov. 30, 2007; 3 pages.
19USPTO Advisory Action for U.S. Appl. No. 11/605,506 dated Apr. 12, 2010; 3 pages.
20USPTO Final Rejection for U.S. Appl. No. 11/230,719 dated Sep. 7, 2007; 9 pages.
21USPTO Final Rejection for U.S. Appl. No. 11/273,708 dated Jul. 5, 2007; 8 pages.
22USPTO Final Rejection for U.S. Appl. No. 11/605,506 dated Dec. 21, 2010; 14 pages.
23USPTO Final Rejection for U.S. Appl. No. 11/605,506 dated Feb. 3, 2010; 14 pages.
24USPTO Final Rejection for U.S. Appl. No. 11/605,819 dated Feb. 2, 2010; 15 pages.
25USPTO Final Rejection for U.S. Appl. No. 13/156,297 dated May 3, 2012; 22 pages.
26USPTO Non Final Rejection for U.S. Appl. No. 12/167,552 dated May 18, 2010; 12 pages.
27USPTO Non-Final Rejection for U.S. Appl. No. 11/230,719 dated Aug. 28, 2006; 7 pages.
28USPTO Non-Final Rejection for U.S. Appl. No. 11/230,719 dated Jan. 16, 2007; 8 pages.
29USPTO Non-Final Rejection for U.S. Appl. No. 11/230,719 dated May 11, 2006; 5 pages.
30USPTO Non-Final Rejection for U.S. Appl. No. 11/230,719 dated May 25, 2006; 5 pages.
31USPTO Non-Final Rejection for U.S. Appl. No. 11/273,708 dated Mar. 19, 2007; 16 pages.
32USPTO Non-Final Rejection for U.S. Appl. No. 11/605,506 dated Aug. 11, 2009; 11 pages.
33USPTO Non-Final Rejection for U.S. Appl. No. 11/605,819 dated Aug. 11, 2009; 12 pages.
34USPTO Non-Final Rejection for U.S. Appl. No. 13/156,297 dated Feb. 23, 2012; 13 pages.
35USPTO Notice of Allowance for U.S. Appl. No. 11/230,719 dated Jan. 16, 2008; 4 pages.
36USPTO Notice of Allowance for U.S. Appl. No. 11/273,708 dated Aug. 9, 2007; 4 pages.
37USPTO Notice of Allowance for U.S. Appl. No. 12/167,552 dated Aug. 19, 2011; 9 pages.
38USPTO Notice of Allowance for U.S. Appl. No. 12/167,552 dated Nov. 12, 2010; 8 pages.
39USPTO Notice of Allowance for U.S. Appl. No. 13/156,297 dated Jul. 9, 2012; 8 pages.
40USPTO Notice of Allowance for U.S. Appl. No. 13/156,297 dated Sep. 18, 2012; 8 pages.
41Van Ess, David; "Simulating a 555 Timer with PSoC," Cypress Semiconductor Corporation, Application Note AN2286, May 19, 2005; 10 pages.
42Written Opinion of the International Searching Authority for International Application No. PCT/US08/69107 dated Oct. 2, 2008; 5 pages.
Classifications
Classification internationaleG01D5/24
Classification coopérativeG01D5/24
Événements juridiques
DateCodeÉvénementDescription
11 août 2016ASAssignment
Owner name: CYPRESS SEMICONDUCTOR CORPORATION, CALIFORNIA
Free format text: PARTIAL RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT;REEL/FRAME:039708/0001
Effective date: 20160811
Owner name: SPANSION LLC, CALIFORNIA
Free format text: PARTIAL RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT;REEL/FRAME:039708/0001
Effective date: 20160811
14 sept. 2016ASAssignment
Owner name: MONTEREY RESEARCH, LLC, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CYPRESS SEMICONDUCTOR CORPORATION;REEL/FRAME:040028/0054
Effective date: 20160811