Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUSRE46362 E1
Type de publicationOctroi
Numéro de demandeUS 14/750,817
Date de publication11 avr. 2017
Date de dépôt25 juin 2015
Date de priorité16 nov. 2009
Autre référence de publicationEP2322113A1, EP2322113B1, US8469953, US20110118730
Numéro de publication14750817, 750817, US RE46362 E1, US RE46362E1, US-E1-RE46362, USRE46362 E1, USRE46362E1
InventeursArnold V. DeCarlo
Cessionnaire d'origineCovidien Lp
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Twin sealing chamber hub
US RE46362 E1
Résumé
Devices and methods for cooling microwave antennae and microwave hub construction are disclosed herein. The cooling system and hub can be utilized with a variety of microwave antenna types. A microwave hub is utilized to provide cooling fluids to a microwave antenna. The hub is constructed using no glue or adhesive for holding the different parts of the chambers in place. O-rings provide an increased reliability and consistency for fluid-tight seals in the hub. The various parts of the hub are form fitted and work together with the o-rings.
Images(4)
Previous page
Next page
Revendications(14)
What is claimed is:
1. A microwave assembly, comprising:
a hub, the hub comprising a proximal end, a distal end, an input port and an output port;
a first insert, the first insert having a center hole;
a second insert; the second insert having a center hole, and an end portion;
a first lumen path and a second lumen path concentrically oriented respective to each other and wherein the first lumen path is connected to the center hole of the first insert and the second lumen path is connected to the center hole of the second insert;
a handle, the handle functionally connected to a probe;
a first chamber defined by the first insert; and
a second chamber defined by the first insert and the second insert,
wherein the first insert is inserted into the proximal end of the hub, the proximal end of the hub being adapted to receive the first insert, the second insert is inserted into the distal end of the hub, the hub adapted to receive the second insert, the first lumen path and the second lumen path extend through the center hole of the second insert and through the distal end of the hub, and the handle is inserted into the proximal end of the hub in abutting engagement with the first insert.
2. The microwave assembly of claim 1, wherein the hub further comprises an interior surface, and further comprising:
a first o-ring adapted to fit around the first insert creates a seal against the interior surface;
a second o-ring adapted to fit around the handle creates a seal against the interior surface; and
a third o-ring adapted to fit around the second insert creates a seal against the interior surface.
3. The microwave assembly of claim 2, wherein the first chamber is between the first and second o-rings and the second chamber is between the first and third o-rings, wherein the first chamber is in fluid communication with the input port and the second chamber is in fluid communication with the output port.
4. The microwave assembly of claim 1, wherein the second insert is attached to the distal end of the hub.
5. The microwave assembly of claim 1, wherein the hub comprises a stop in the interior surface and the first insert abuts the stop.
6. The microwave assembly of claim 1, wherein the hub comprises a stop in the interior surface and the first insert abuts the stop, and the interior surface circumferentially decreases from the proximal end to a predetermined location toward a center point of the hub and ceases to decrease circumferentially before the stop; and wherein the interior surface circumferentially decreases from the distal end to a predetermined location toward the center point of the hub and ceases to decrease circumferentially.
7. The microwave assembly of claim 1, wherein the hub comprises a stop in the interior surface and the first insert abuts the stop, the interior surface circumferentially decreases from the proximal end to a predetermined location toward a center point of the hub and ceases to decrease circumferentially before the stop; and wherein the interior surface circumferentially decreases from the distal end to a predetermined location toward the center point of the hub and ceases to decrease circumferentially, and the hub further comprises an extension adapted to extend laterally away from the center of the hub and to engage the handle to disallow incorrect insertion of the handle into the proximal end of the hub.
8. A microwave assembly, comprising:
a hub, the hub comprising a proximal end, a distal end, an input port and an output port;
a first insert, the first insert having a center hole;
a second insert; the second insert having a center hole, and an end portion;
a first lumen path and a second lumen path concentrically oriented respective to each other and wherein the first lumen path is received in the center hole of the first insert and the second lumen path is received in the center hole of the second insert;
a first chamber defined by the first insert and the hub; and
a second chamber defined by the first insert, the second insert, and the hub.
9. The microwave assembly of claim 8, wherein the hub further comprises an interior surface, and further comprising:
a first o-ring adapted to fit around the first insert creates a seal against the interior surface;
a second o-ring adapted to fit around the handle creates a seal against the interior surface; and
a third o-ring adapted to fit around the second insert creates a seal against the interior surface.
10. The microwave assembly of claim 9, wherein the first chamber is between the first and second o-rings and the second chamber is between the first and third o-rings, wherein the first chamber is in fluid communication with the input port and the second chamber is in fluid communication with the output port.
11. The microwave assembly of claim 8, wherein the second insert is attached to the distal end of the hub.
12. The microwave assembly of claim 8, wherein the hub comprises a stop in the interior surface and the first insert abuts the stop.
13. The microwave assembly of claim 8, wherein the hub comprises a stop in the interior surface and the first insert abuts the stop, and the interior surface circumferentially decreases from the proximal end to a predetermined location toward a center point of the hub and ceases to decrease circumferentially before the stop; and wherein the interior surface circumferentially decreases from the distal end to a predetermined location toward the center point of the hub and ceases to decrease circumferentially.
14. The microwave assembly of claim 8, wherein the hub comprises a stop in the interior surface and the first insert abuts the stop, the interior surface circumferentially decreases from the proximal end to a predetermined location toward a center point of the hub and ceases to decrease circumferentially before the stop; and wherein the interior surface circumferentially decreases from the distal end to a predetermined location toward the center point of the hub and ceases to decrease circumferentially, and the hub further comprises an extension adapted to extend laterally away from the center of the hub and to engage the handle to disallow incorrect insertion of the handle into the proximal end of the hub.
Description
BACKGROUND

The present invention relates generally to the field of ablation. More particularly, the present invention relates to apparatus, systems, and methods for cooling electrosurgical probes or microwave antennas. More particularly, the present invention relates to methods of assembly of electro-surgery and microwave antennas.

During the course of surgical procedures, it is often necessary for medical personnel to utilize electrosurgical instruments to ablate tissue in a body. High frequency probes or antennas are often utilized to ablate tissue in a body. In use, the probes or antennas are connected to a high frequency power source to heat body tissue when inserted into the tissue. Among the drawbacks of such devices is the potential that the probes or antennas will overheat, thus causing damage to the bodily tissue or causing damage to the instrument. A cooling system may be used in conjunction with the instrument to provide cooling of the instrument and often to the tissue adjacent to the instrument so as to provide optimal thermal characteristics in the instrument and the tissue. In the event that the heat is not dissipated in the instrument, charring of the tissue or failure of the instrument can occur.

Surgical systems exist that provide cooling systems for the instrument. Existing systems provide a flow of a cooling fluid to the instrument thus cooling the instrument and potentially the tissue adjacent to or abutting the targeted tissue. These systems generally employ a mechanism whereby the cooling fluid flows into a hub through a chamber. The fluid flows into a lumen path and down to the tip of the instrument, providing cooling along the shaft of the instrument. The fluid returns to another chamber in the hub and exits through a fluid egress channel.

The chambers, lumen paths, hub and seals of a hub are constructed in a manner requiring an adhesive, or glue, to maintain their integrity during stress. It is known that during use, pressure is created in the interior of the hub causing stress at the seal locations, in the chambers and at the connection points. However, adhesives or glue can be inconsistent and unreliable. Not only can adhesives breakdown under stress or heat conditions, but the application of the adhesives during the manufacturing process can be inconsistent. These breakdowns and inconsistencies can lead to malfunctions and inadequate cooling.

SUMMARY OF THE INVENTION

According to one embodiment of the present invention, there is provided an electro surgical hub. The hub is adapted to provide cooling fluid to probes that extend from a distal end of the hub. The probes are utilized by medical personnel to ablate tissue in a body.

Two chambers and a dual path lumen provide cooling liquid to a probe. Cooling fluid enters into the hub and is channeled from a first chamber through a lumen path which transports the fluid to the probes for cooling purposes. An insert defines the boundary for the first chamber and causes the cooling fluid to spin, thus reducing the presence of air bubbles. The insert is adapted to accommodate a first o-ring to form a seal between the first chamber and a second chamber. A connector connected to the probes which conducts power to the probe, is also adapted to accommodate a second o-ring to form a seal on the back side of the first chamber.

The cooling fluid returns through a second lumen path and enters a second chamber. A plug is adapted to accommodate a third o-ring to form a second seal on the second chamber. The plug has an annular ring utilized to center the plug in the hub and maintain the third o-ring in position during high stress conditions.

In general, the apparatus of the present invention is directed to a twin sealing chamber ablation hub constructed without glues or adhesives. The system offers a method of construction that improves reliability in the chamber seals. The apparatus includes a geometry whereby air bubbles which can cause hot spots on the ablation probe are substantially removed from the cooling liquid.

There is accordingly a need for an electrosurgical hub that provides consistency in manufactured result as well as reliability under stress conditions. There is a need for a hub that overcomes the breakdown of adhesives. There is also a need for a hub that allows for consistent manufacturing procedures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a view of an embodiment of the invention showing twin chambers in a hub with inserts providing separation of the chambers;

FIG. 2 is an alternate view of an embodiment of the invention showing twin chambers in a hub with inserts providing separation of the chambers; and

FIG. 3 is a view of an insert of an embodiment of the invention.

DETAILED DESCRIPTION OF THE EMBODIMENTS

In one embodiment of the invention, a twin chamber microwave ablation hub comprises a plurality of inserts and o-rings causing seals between the chambers. A first chamber provides fluidic connection to an input port and a second chamber provides fluidic connection to an exit port. A dual path lumen provides fluidic connection from the first chamber to the second chamber. The first and second chambers are adapted to minimize the presence of air bubbles in a cooling fluid as the fluid travels through the input port and the first chamber, through a first path in the lumen to the distal end of an ablation probe. The cooling fluid returns via a second path in the lumen to the second chamber and exits the hub via the exit port. The first path and second path are concentric.

The term “probe” is not limited to the present embodiment or depiction. Naturally, the efficacy of the present invention may be optimized by different types of devices intended to facilitate energy focalization in a body, such as electrodes, antennas or other suitable device. The term “probe” is used to include any device, mechanism or structure capable of being inserted into a body and allowing an energy source to be focalized for ablation or other medical treatment.

FIG. 1 is a view of an embodiment of the invention showing a hub 10 and probe 20. Hub 10 comprises a first chamber 30, a second chamber 40, a first lumen path 50, a second lumen path 60, a first port 70 and a second port 72. First port 70 fluidicly couples to first chamber 30. First chamber 30 fluidicly couples to first lumen path 50. First lumen path 50 extends along a substantial portion of the probe 20. The second lumen path 60 extends around and along the first lumen path 50 and fluidicly couples with the second chamber 40.

The first 30 and second 40 chambers are defined by inserts inside the hub 10. A first insert 80 fits inside one end of hub 10. In one embodiment, the first chamber 30 is at one end by the first insert toward the handle end of the hub 10. The first insert 80 is positioned against stops 88. Stops 88 provide a positioning stop on the interior walls 90 of the hub for the first insert 80. The stops 88 provide a more precise positioning for the first insert 80 and eliminate placement guesswork. This allows for ease of insertion by providing a physical indicator of the proper insertion position.

The interior walls 90 of the hub 10 may be graduated so that they are of decreasing diameter from the handle end of the hub to the stops 88. This also allows for ease of insertion as well as precision in placement. In an embodiment of the invention, the graduation of the interior walls ceases prior to the stop 88, creating a zone where the interior wall 90 is flat. As discussed below, the flat zone in wall 90 allows for more reliable sealing of the first chamber 30.

An o-ring 82 is positioned in space 83 of the insert first 80. It is understood that the space 83 is a groove or other indentation in the first insert 80. When the first insert 80 in inserted into the hub 10 to the proper depth, the o-ring 82 will contact the flat portion of the interior wall. The o-ring 82 provides for continued sealing in the event of slight movement or slight inaccuracies in the manufacture of the first insert 80 or hub 10. The flat area allows for continued contact of the o-ring 82 in the event of slight movement. The o-ring 82 provides a water-tight seal for the first chamber 30. Accordingly, any cooling fluid will not flow around chamber 30 and past stops 88.

The second chamber 40 is positioned distally of the first chamber 30, toward the probe end of the hub 10. As noted above, the first insert 80 is inserted inside the hub 10 to stops 88. One end of the second chamber 40 is formed by the back side of the first insert 80. The second chamber 40 is completed by second insert 95 opposite the first insert 80. Insert 95 is inserted into the distal end of the hub 10 opposite the first insert 80. In one embodiment, the interior walls of the hub 10 at the distal end are graduated so that they are of decreasing diameter from the end of hub 10 to the interior. The graduation of the interior walls ceases at the location where the o-ring 84 reside. This creates a flat zone which allows continued sealing in the event of slight movement or slight inaccuracies in the manufacture of the insert 95 or hub 10. The graduation of the interior walls of hub 10 allow for ease of insertion of insert 95 as well as precision in placement.

The insert 95 comprises an end portion 96 adapted to provide a stopping mechanism. The end portion 96 acts to contact the end of hub 10. End portion 96 abuts the hub 10 and provides for precision in placement. An o-ring 84 is positioned in the second insert 95 to contact the interior wall 90 when the second insert 95 is inserted into the hub 10. The O-ring 84 is positioned in space 98 of the second insert 95. The o-ring 84 provides a water-tight seal for the second chamber 40. Accordingly, cooling fluid will not flow around chamber 40 or into the first chamber 30. The second insert 95 is molded to hub 10 on the opposite end of the hub 10 from handle 100. The molding maintains closure and sealing during high pressure conditions.

When the second insert 95 is inserted, a centered position in the hub is desired to help eliminate any leakage that may occur otherwise. An annular ring 120 is utilized to maintain a centered position of the second insert 95 and the o-ring 84 within the hub 10. When the second insert 95 in inserted so that the end portion 96 abuts the hub 10, the annular ring 120 contacts the interior wall 90 and disallows movement of the second insert 95.

A third o-ring 86 is positioned in handle 100. The third o-ring 86 provides a fluid seal on the back side of chamber 30. The handle 100 in inserted into the end of the hub 10 opposing the position of insert 95. In an embodiment, the handle 100 is molded to hub 10. The handle 100 is adapted to abut or closely abut first insert 80. The position of insert 80 is maintained by the handle 100 under high pressure conditions.

Handle 100 connects to the probe 20. Box 110 disallows improper insertion of the handle 100 and ensures that the probe 20 is connected properly through the hub 10. Box 110 protrudes away from the hub to disallow upside down insertion of the handle 100. The probe 20 protrudes through the first 30 and second 40 chambers and first 80 and second 95 inserts.

FIG. 2 is a perspective view of an embodiment of the invention showing hub 210 and probe 220 extending from within the handle 299 out through the distal end of the hub 210. The probe 220 connects within the handle 299 to a power source (not shown). Hub 210 comprises a first chamber 230, a second chamber 240, a first lumen path 250, a second lumen path 260 and a first 270 and second 272 port. In an embodiment, the first 270 and second 272 ports are angled in relation to the axis of the hub 210 so that they are not perpendicular to the axis. The angle of the ports 270, 272 forms an acute angle toward the proximal end of the hub 210. The handle 299 forms a seal at the proximal end of the hub 210.

A first insert 280 forms the first chamber 230 between the handle 299 and the first insert 280. A second insert 295 forms the second chamber 240 between the first insert 280 and the second insert 295. The first chamber 230 is sealed by an o-ring 282 on the distal end of the chamber 230 and an o-ring 286 on the proximal end of the chamber 230. The second chamber 240 is sealed by o-ring 282 and an o-ring 284 on the distal end of the second chamber 240. Each O-ring 282, 284, 286 resides in a groove, or other formation, formed to receive the o-ring in the first insert 280, the second insert 295 and the handle 299, respectively.

The first lumen path 250 forms a fluid passage allowing a cooling fluid to travel from the first chamber 230 along the probe 220 to the distal end of the probe 220. The cooling fluid provides a cooling action along the length and tip (not shown) of the probe 220. The second lumen path 260 provides a return passage for the cooling liquid and is fluidicly coupled to the second chamber 240. The cooling liquid returns concentrically and outside the first lumen path 250 and empties into the second chamber 240.

As noted above relating to FIGS. 1 and 2, the first insert (80 in FIGS. 1 and 280 in FIG. 2) defines a boundary for the first chamber (30 in FIGS. 1 and 230 in FIG. 2) and causes the cooling fluid to spin and thus reduce the presence of air bubbles. FIG. 3 provides a detailed view of the first insert 280. As noted above, the first insert 280 creates the first chamber (230 FIG. 2). The first insert 280 creates the chamber by using a seal 310 in the hub (210 FIG. 2). In an embodiment, the seal 310 is an o-ring which fits in a grooved portion 320, or other formed recess, of the insert. The grooved portion 320 is adapted to accommodate the o-ring 310.

Cooling fluid flows into the first chamber and fills the space within the first insert 280. The geometry 325 on the insert 280 is concave and induces spin in the cooling fluid as it enters the first chamber. The vortex type action induced on the cooling fluid allows it to move around the probe as it moves down the first lumen path. The vortex action aids in the elimination of air bubbles which may cause overheating of the probe.

The first insert 280 comprises a plurality of legs 330. In one embodiment, four legs 330 provide support for the first insert 280. The legs 330 provide a mechanism to abut the handle (not shown in FIG. 3) when the hub (not shown in FIG. 3) is assembled. The legs 330 will push against the handle to force the insert 280 against the stops on the interior of the hub.

Referring again to FIG. 1, regarding the operation of the invention. Cooling fluid flows into the first port 70 and fills the first chamber 30. In one embodiment, the first chamber 30 is sized so that it fills with fluid relatively rapidly. The first insert 80 is shaped so that the fluid entering the first chamber 30 spins in a circular manner. The spinning of the fluid causes any residual air bubbles to be removed from the probe 20 and the walls of the first chamber 30. Air bubbles are known in the art to cause over-heating of the probe 20 and lead to failure of the device. The o-ring 82 in the first insert 30 seals the chamber 30, thus not allowing fluid to enter the second chamber 40. It is understood by those skilled in the art that the first insert 30 provides sealing. The o-ring 82 provides an extra level of sealing to ensure integrity under pressure conditions.

The handle 100 has the O-ring 86 to create a seal on the back side of the first chamber 30. It is understood by those skilled in the art that the handle 100 provides a level of sealing. The o-ring 86 provides an extra level of sealing to ensure integrity under pressure conditions. The cooling fluid flows out of chamber 30 and through the first lumen path 50. The first lumen path 50 carries the cooling fluid to the proximal end of the probe 20 providing a cooling effect on the probe 20. The cooling fluid returns to the hub 10 via the second lumen path 60. The cooling fluid empties from the second lumen path 60 into the second chamber 40. The second chamber is sealed by the o-ring 82 on one end which is positioned in the first insert 80 and the o-ring 84 which is positioned in the second insert 95. It is understood by those skilled in the art that the second insert 95 provides a level of sealing. The o-ring 84 provides and extra level of sealing to ensure integrity under pressure conditions.

As the cooling fluid pressure increases in the hub 10, the pressure will cause a separating force on the components within the hub 10. This pressure will stress the position of the o-ring 82 in the first insert 80 and the o-ring 84 of the second insert 95. An external geometry (not shown) positioned on the outside of the handle 100 will hold the handle 100 in place and resist movement of the inserts 80, 95 and o-rings 82, 84.

Referring again to FIG. 2, the microwave assembly is easily manufactured with the hub 210, the first insert 280, the second insert 295 and the handle 299. The first insert 280 is inserted into the hub 210 until it abuts the stops 288 which are formed on the inside of the hub 210. The o-ring 282 in the first insert provides a seal against the interior wall of hub 210. In an embodiment, the wall of the hub 210 is graduated so that the circumference lessens toward the middle of the hub 210. The graduation levels off and ceases as the wall nears the stop 288 to allow a location for the o-ring 282 to seal.

The interior lumen path 260 connects to the central hole 292 in the first insert 280. The lumen paths 250, 260 protrude through the end of the hub 210. The second insert 295 is inserted over the lumen paths 250, 260 and into the distal end of the hub 210. O-ring 284 fits in a groove around the second insert 295 and forms a seal against the interior wall of the hub 210. In one embodiment, the wall at the distal end of the hub 210 is also graduated so that the circumference lessens toward the middle of the hub 210. The graduation levels off and ceases at a predetermined location which coincides with the position of the o-ring 284. The second insert 295 is molded to the distal end of the hub 210 to provide stability during high pressure situations.

The handle 299 and the probes are inserted into the proximal end of the hub 210. The probe 220 passes through the central holes in the inserts 280, 295 and helps create and enforce the lumen paths 250, 260. In an embodiment, the handle 299 and probe 220 are pre-assembled to maintain a sound electrical connection. A lip portion 298 extends from the portion of the hub 210 opposite the ports 270, 272. The lip portion 298 allows the insertion of the handle 299 in only one way to assure proper insertion of the handle 299. Insertion of the handle 299 provides sufficient pressure on the first insert 280 to maintain the insert 280 in the proper position. The stop 288 on the interior of the hub 210 wall prevents the first insert from being inserted too far inside the hub 210. The handle 299 is then molded to the hub 210.

It is understood that the above described embodiments are only illustrative of the application of the principles of the present disclosure. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present disclosure. The appended claims are intended to cover such modifications and arrangements.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US512939618 sept. 199014 juil. 1992Arye RosenMicrowave aided balloon angioplasty with lumen measurement
US516761925 mai 19901 déc. 1992Sonokineticss GroupApparatus and method for removal of cement from bone cavities
US53016876 juin 199112 avr. 1994Trustees Of Dartmouth CollegeMicrowave applicator for transurethral hyperthermia
US5312400 *9 oct. 199217 mai 1994Symbiosis CorporationCautery probes for endoscopic electrosurgical suction-irrigation instrument
US537064416 juil. 19936 déc. 1994Sensor Electronics, Inc.Radiofrequency ablation catheter
US5507744 *30 avr. 199316 avr. 1996Scimed Life Systems, Inc.Apparatus and method for sealing vascular punctures
US554513730 mars 199513 août 1996Urologix, Inc.Device for asymmetrical thermal therapy with helical dipole microwave antenna
US560369714 févr. 199518 févr. 1997Fidus Medical Technology CorporationSteering mechanism for catheters and methods for making same
US56243928 août 199429 avr. 1997Saab; Mark A.Heat transfer catheters and methods of making and using same
US56930826 sept. 19942 déc. 1997Fidus Medical Technology CorporationTunable microwave ablation catheter system and method
US574124925 nov. 199621 avr. 1998Fidus Medical Technology CorporationAnchoring tip assembly for microwave ablation catheter
US597434313 janv. 199726 oct. 1999Bruker SaProbe, particulary a urethral probe, for heating of tissues by microwave and for the measurement of temperature by radiometry
US598050521 janv. 19989 nov. 1999Medi-Dyne Ince.Overlapping welds for catheter constructions
US599344716 août 199630 nov. 1999United States SurgicalApparatus for thermal treatment of tissue
US59958751 oct. 199730 nov. 1999United States SurgicalApparatus for thermal treatment of tissue
US601458126 mars 199811 janv. 2000Ep Technologies, Inc.Interface for performing a diagnostic or therapeutic procedure on heart tissue with an electrode structure
US606155121 oct. 19989 mai 2000Parkervision, Inc.Method and system for down-converting electromagnetic signals
US61065243 juil. 199722 août 2000Neothermia CorporationMethods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue
US611710125 nov. 199812 sept. 2000The Regents Of The University Of CaliforniaCircumferential ablation device assembly
US613952726 sept. 199631 oct. 2000Vnus Medical Technologies, Inc.Method and apparatus for treating hemorrhoids
US618697831 juil. 199713 févr. 2001Target Therapeutics, Inc.Braid reinforced infusion catheter with inflatable membrane
US618835514 déc. 199813 févr. 2001Super Dimension Ltd.Wireless six-degree-of-freedom locator
US62103674 août 19993 avr. 2001Microwave Medical Systems, Inc.Intracorporeal microwave warming method and apparatus
US623502421 juin 199922 mai 2001Hosheng TuCatheters system having dual ablation capability
US627711328 mai 199921 août 2001Afx, Inc.Monopole tip for ablation catheter and methods for using same
US635501622 févr. 199912 mars 2002Medtronic Percusurge, Inc.Catheter core wire
US63987816 mars 20004 juin 2002Gyrus Medical LimitedElectrosurgery system
US64854864 août 199826 nov. 2002Trustees Of Dartmouth CollegeSystem and methods for fallopian tube occlusion
US6494892 *17 juin 199917 déc. 2002Suros Surgical Systems, Inc.Disposable hub for a surgical cutting instrument
US64967378 déc. 200017 déc. 2002Urologix, Inc.Thermal therapy catheter
US64967386 févr. 200117 déc. 2002Kenneth L. CarrDual frequency microwave heating apparatus
US65142492 mars 20004 févr. 2003Atrionix, Inc.Positioning system and method for orienting an ablation element within a pulmonary vein ostium
US65477882 mars 200015 avr. 2003Atrionx, Inc.Medical device with sensor cooperating with expandable member
US659928816 mai 200129 juil. 2003Atrionix, Inc.Apparatus and method incorporating an ultrasound transducer onto a delivery member
US662995118 juil. 20017 oct. 2003Broncus Technologies, Inc.Devices for creating collateral in the lungs
US662997413 févr. 20027 oct. 2003Gyrus Medical LimitedTissue treatment method
US66350555 mai 199821 oct. 2003Microsulis PlcMicrowave applicator for endometrial ablation
US66452341 févr. 200211 nov. 2003Alsius CorporationCardiovascular guiding catheter with heat exchange properties and methods of use
US66525155 nov. 199925 nov. 2003Atrionix, Inc.Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall
US66766576 déc. 200113 janv. 2004The United States Of America As Represented By The Department Of Health And Human ServicesEndoluminal radiofrequency cauterization system
US670604023 nov. 200116 mars 2004Medlennium Technologies, Inc.Invasive therapeutic probe
US672309122 févr. 200120 avr. 2004Gyrus Medical LimitedTissue resurfacing
US67401083 avr. 200225 mai 2004Urologix, Inc.Thermal treatment catheter having preferential asymmetrical heating pattern
US677007017 mars 20003 août 2004Rita Medical Systems, Inc.Lung treatment apparatus and method
US678018316 sept. 200224 août 2004Biosense Webster, Inc.Ablation catheter having shape-changing balloon
US68478487 janv. 200325 janv. 2005Mmtc, IncInflatable balloon catheter structural designs and methods for treating diseased tissue of a patient
US68694317 sept. 200122 mars 2005Atrionix, Inc.Medical device with sensor cooperating with expandable member
US68934363 janv. 200217 mai 2005Afx, Inc.Ablation instrument having a flexible distal portion
US69327762 juin 200323 août 2005Meridian Medicalssystems, LlcMethod and apparatus for detecting and treating vulnerable plaques
US699792521 oct. 200214 févr. 2006Atrionx, Inc.Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall
US700493827 nov. 200228 févr. 2006Medwaves, Inc.Radio-frequency-based catheter system with improved deflection and steering mechanisms
US704706811 déc. 200116 mai 2006C.R. Bard, Inc.Microelectrode catheter for mapping and ablation
US70490686 nov. 200123 mai 2006The University Of North Carolina At Chapel HillMicroelectronic device for electrochemical detection of nucleic acid hybridization
US708906316 mai 20018 août 2006Atrionix, Inc.Deflectable tip catheter with guidewire tracking mechanism
US711383231 janv. 200226 sept. 2006Cnr Consiglio Nazionale Deile RicercheInterstitial microwave antenna with miniaturized choke hyperthermia in medicine and surgery
US719735618 mai 200427 mars 2007Meridian Medical Systems, LlcMicrowave detection apparatus
US720044521 oct. 20053 avr. 2007Asthmatx, Inc.Energy delivery devices and methods
US723382016 avr. 200319 juin 2007Superdimension Ltd.Endoscope structures and techniques for navigating to a target in branched structure
US72610011 déc. 200528 août 2007Krohne AgMagnetoinductive flowmeter and method for producing a magnetoinductive flowmeter
US726339825 juin 200328 août 2007Meridian Medical Systems, LlcApparatus for measuring intravascular blood flow
US72755478 oct. 20032 oct. 2007Boston Scientific Scimed, Inc.Method and system for determining the location of a medical probe using a reference transducer array
US728511615 mai 200423 oct. 2007Irvine Biomedical Inc.Non-contact tissue ablation device and methods thereof
US72941259 juil. 200413 nov. 2007Scimed Life Systems, Inc.Methods of delivering energy to body portions to produce a therapeutic response
US73004361 déc. 200427 nov. 2007Rhytec LimitedTissue resurfacing
US730355812 août 20024 déc. 2007Boston Scientific Scimed, Inc.Fluid cooled apparatus for supporting diagnostic and therapeutic elements in contact with tissue
US740216811 avr. 200522 juil. 2008Xtent, Inc.Custom-length stent delivery system with independently operable expansion elements
US741048629 déc. 200412 août 2008Biosense Webster, Inc.Ablation catheter having stabilizing array
US74387125 mars 200321 oct. 2008Scimed Life Systems, Inc.Multi-braid exterior tube
US74608984 oct. 20062 déc. 2008Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US746701528 sept. 200516 déc. 2008Neuwave Medical, Inc.Segmented catheter for tissue ablation
US750722910 oct. 200324 mars 2009Micro Therapeutics, Inc.Wire braid-reinforced microcatheter
US755991623 sept. 200514 juil. 2009Syntheon, LlcCatheter with controllable stiffness and method for operating a selective stiffening catheter
US760805627 oct. 200627 oct. 2009Wilson-Cook Medical Inc.Steerable catheter devices and methods of articulating catheter devices
US761150823 août 20053 nov. 2009Wisconsin Alumni Research FoundationFloating sleeve microwave antenna for tumor ablation
US769797214 juil. 200313 avr. 2010Medtronic Navigation, Inc.Navigation system for cardiac therapies
US770689426 avr. 200527 avr. 2010Medtronic, Inc.Heart wall ablation/mapping catheter and method
US771325917 mars 200811 mai 2010Advanced Cardiovascular Systems, Inc.Guiding catheter shaft with improved radiopacity on the wire braid
US772260429 mars 200425 mai 2010C.R. Bard, Inc.Braided mesh catheter
US773433023 mars 20058 juin 2010Meridian Medical Systems, LlcMethod and apparatus for detecting and treating vulnerable plaques
US7766844 *21 avr. 20043 août 2010Smith & Nephew, Inc.Surgical instrument aspiration valve
US776946926 juin 20063 août 2010Meridian Medical Systems, LlcIntegrated heating/sensing catheter apparatus for minimally invasive applications
US782439220 août 20032 nov. 2010Boston Scientific Scimed, Inc.Catheter with thin-walled braid
US78269047 févr. 20062 nov. 2010Angiodynamics, Inc.Interstitial microwave system and method for thermal treatment of diseases
US783321815 avr. 200816 nov. 2010Medtronic Vascular, Inc.Catheter with reinforcing layer having variable strand construction
US785068520 juin 200614 déc. 2010Medtronic Ablation Frontiers LlcAblation catheter
US792185511 déc. 200612 avr. 2011Asthmatx, Inc.Method for treating an asthma attack
US793366030 mars 200526 avr. 2011Meridian Medical SystemsApparatus for detecting and treating vulnerable plaques
US7981051 *5 nov. 200819 juil. 2011Senorx, Inc.Biopsy device with fluid delivery to tissue specimens
US799335124 juil. 20029 août 2011Pressure Products Medical Supplies, Inc.Telescopic introducer with a compound curvature for inducing alignment and method of using the same
US802135118 août 200520 sept. 2011Medtronic Vascular, Inc.Tracking aspiration catheter
US807553212 mars 200813 déc. 2011Cvdevices, LlcDevices, systems, and methods for pericardial access
US815279514 avr. 200810 avr. 2012Cardiofocus, Inc.Method and device for cardiac tissue ablation
US818246629 déc. 200622 mai 2012St. Jude Medical, Atrial Fibrillation Division, Inc.Dual braided catheter shaft
US82063731 juil. 200826 juin 2012Boston Scientific Scimed, Inc.Medical device including braid with coated portion
US820638012 juin 200926 juin 2012Advanced Caridiac Therapeutics Inc.Method and apparatus for measuring catheter contact force during a medical procedure
US822656612 juin 200924 juil. 2012Flowcardia, Inc.Device and method for vascular re-entry
US825198728 août 200828 août 2012Vivant Medical, Inc.Microwave antenna
US82774389 juin 20102 oct. 2012Boston Scientific Scimed, Inc.Guide catheter with removable support
US82895513 août 200916 oct. 2012Ricoh Company, Ltd.Approach for processing print data without a client print driver
US829288127 mai 200923 oct. 2012Vivant Medical, Inc.Narrow gauge high strength choked wet tip microwave ablation antenna
US83287995 août 200911 déc. 2012Vivant Medical, Inc.Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure
US83288005 août 200911 déc. 2012Vivant Medical, Inc.Directive window ablation antenna with dielectric loading
US832880117 août 200911 déc. 2012Vivant Medical, Inc.Surface ablation antenna with dielectric loading
US834074014 oct. 200925 déc. 2012Cairos Technologies AgGarment for monitoring physiological properties
US834314528 sept. 20091 janv. 2013Vivant Medical, Inc.Microwave surface ablation using conical probe
US839409217 nov. 200912 mars 2013Vivant Medical, Inc.Electromagnetic energy delivery devices including an energy applicator array and electrosurgical systems including same
US841230627 mars 20072 avr. 2013Wisconsin Alumni Research FoundationVoltage standing wave suppression for MR-guided therapeutic interventions
US846785314 nov. 201118 juin 2013Medtronic Navigation, Inc.Navigation system for cardiac therapies
US847624227 sept. 20062 juil. 2013Medifocus, Inc.Pre-conditioning/fixation for disease treatment heat activation/release with thermo-activated drugs and gene products
US851555425 nov. 200920 août 2013Meridian Medical Systems, LlcRadiometric heating/sensing probe
US863246121 juin 200621 janv. 2014Koninklijke Philips N.V.System, method and apparatus for navigated therapy and diagnosis
US865545418 juil. 201318 févr. 2014Covidien LpTargeted cooling of deployable microwave antenna with cooling chamber
US867293226 mars 200718 mars 2014Neuwave Medical, Inc.Center fed dipole for use with tissue ablation systems, devices and methods
US876848527 nov. 20031 juil. 2014Medical Device Innovations LimitedTissue ablation apparatus and method of ablating tissue
US879526830 août 20135 août 2014Covidien LpMicrowave antenna
US885218022 avr. 20137 oct. 2014Covidien LpSystem and method for monitoring ablation size
US890600822 mai 20129 déc. 2014Covidien LpElectrosurgical instrument
US89204104 mai 201230 déc. 2014Covidien LpPeripheral switching device for microwave energy platforms
US893663120 août 201020 janv. 2015Covidien LpApparatus and methods for treating hollow anatomical structures
US89451135 avr. 20123 févr. 2015Covidien LpElectrosurgical tissue ablation systems capable of detecting excessive bending of a probe and alerting a user
US895122518 mai 200610 févr. 2015Acclarent, Inc.Catheters with non-removable guide members useable for treatment of sinusitis
US896829014 mars 20123 mars 2015Covidien LpMicrowave ablation generator control system
US896830011 déc. 20123 mars 2015Covidien LpElectrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure
US90173282 mai 201328 avr. 2015Covidien LpPolyp encapsulation system and method
US903969824 nov. 201026 mai 2015Medwaves, Inc.Radio frequency ablation system with tracking sensor
US906668115 mars 201330 juin 2015Covidien LpMethods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US912563923 nov. 20058 sept. 2015Pneumrx, Inc.Steerable device for accessing a target site and methods
US200200228365 sept. 200121 févr. 2002Gyrus Medical LimitedElectrosurgery system
US20030004508 *26 août 20022 janv. 2003Stryker CorporationSurgical handpiece with self-sealing switch assembly
US200301914515 avr. 20029 oct. 2003Kevin GilmartinReinforced catheter system
US2005021594231 janv. 200529 sept. 2005Tim AbrahamsonSmall vessel ultrasound catheter
US20050245920 *30 avr. 20043 nov. 2005Vitullo Jeffrey MCell necrosis apparatus with cooled microwave antenna
US2006000983315 août 200512 janv. 2006Trivascular, Inc.Delivery system and method for bifurcated graft
US200600850548 sept. 200520 avr. 2006Zikorus Arthur WMethods and apparatus for treatment of hollow anatomical structures
US2006008963712 juil. 200527 avr. 2006Werneth Randell LAblation catheter
US2006016741623 nov. 200527 juil. 2006Mark MathisSteerable device for accessing a target site and methods
US200602415646 avr. 200626 oct. 2006Creganna Technologies LimitedSteerable catheter assembly
US2006025310221 déc. 20059 nov. 2006Nance Edward JNon-expandable transluminal access sheath
US2007007328527 sept. 200529 mars 2007Darion PetersonCooled RF ablation needle
US2007008831920 sept. 200419 avr. 2007Vison-Sciences, Inc.Braided minimally invasive channel
US20070208351 *6 mars 20066 sept. 2007Karen TurnerImplantable medical endoprosthesis delivery system with hub
US2007028791211 mai 200713 déc. 2007Khuri-Yakub Butrus TFunctional imaging using capacitive micromachined ultrasonic transducers
US20080027424 *28 juil. 200631 janv. 2008Sherwood Services AgCool-tip thermocouple including two-piece hub
US2008009116910 déc. 200717 avr. 2008Wayne HeidemanSteerable catheter using flat pull wires and having torque transfer layer made of braided flat wires
US2008014705616 juil. 200719 juin 2008MicrablateEnergy delivery systems and uses thereof
US20080161890 *3 janv. 20073 juil. 2008Boston Scientific Scimed, Inc.Methods, systems, and apparatuses for protecting esophageal tissue during ablation
US2008020803927 mars 200728 août 2008Wisconsin Alumni Research FoundationSystem and method of performing therapeutic endovascular interventions
US2008022816714 mars 200818 sept. 2008Stephan MittermeyerCatheter with pressure sensor system
US2008025550715 juin 200616 oct. 2008Medtronic Vascular, Inc.Catheter Assembly Having a Grooved Distal Tip
US2008026234226 mars 200823 oct. 2008Superdimension, Ltd.CT-Enhanced Fluoroscopy
US20080287946 *30 juil. 200820 nov. 2008Decarlo Arnold VCool-Tip Thermocouple Including Two-Piece Hub
US2009007640928 juin 200719 mars 2009Ardian, Inc.Methods and systems for thermally-induced renal neuromodulation
US20090138010 *14 nov. 200828 mai 2009Tyco Healthcare Group I.PWedge Coupling
US200901871808 janv. 200923 juil. 2009Vivant Medical, Inc.Choked Dielectric Loaded Tip Dipole Microwave Antenna
US2009022200227 févr. 20093 sept. 2009Vivant Medical, Inc.Intracooled Percutaneous Microwave Ablation Probe
US200902342203 mars 200917 sept. 2009Simens AktiengesellschaftCatheter and associated medical examination and treatment device
US201000363695 déc. 200711 févr. 2010Bangor UniversityMicrowave array applicator for hyperthermia
US2010018519120 janv. 200922 juil. 2010Meridian Medical Systems, LlcMethod and apparatus for aligning an ablation catheter and a temperature probe during an ablation procedure
US2010026213414 avr. 200914 oct. 2010Vivant Medical, Inc.Frequency Identification for Microwave Ablation Probes
US2010026819616 avr. 200921 oct. 2010Pacesetter, Inc.Braided peelable catheter and method of manufacture
US201100042051 juil. 20106 janv. 2011Chu Chun YiuMethods and devices for delivering microwave energy
US2011005445825 août 20093 mars 2011Vivan Medical, Inc.Microwave Ablation with Tissue Temperature Monitoring
US2011008572014 mai 201014 avr. 2011Superdimension, Ltd.Automatic Registration Technique
US2011013075024 nov. 20102 juin 2011Medwaves, Inc.Radio frequency ablation system with tracking sensor
US2011016651820 août 20107 juil. 2011Tyco Healthcare Group, L.P.Apparatus and methods for treating hollow anatomical structures
US2011016651920 août 20107 juil. 2011Tyco Healthcare Group, L.P.Apparatus and methods for treating hollow anatomical structures
US2011028233611 mai 201017 nov. 2011Vivant Medical, Inc.Electrosurgical Devices with Balun Structure for Air Exposure of Antenna Radiating Section and Method of Directing Energy to Tissue Using Same
US201103015876 avr. 20118 déc. 2011Innovative Pulmonary Solutions, Inc.System and method for pulmonary treatment
US2012002935928 juil. 20102 févr. 2012Welch Allyn, Inc.Handheld medical microwave radiometer
US2012003560320 janv. 20109 févr. 2012Advanced Cardica Therapeutics Inc.Method and apparatus for minimizing thermal trauma to an organ during tissue ablation of a different organ
US2012006548114 nov. 201115 mars 2012Medtronic Navigation, Inc.Navigation System for Cardiac Therapies
US2012007182230 juin 201122 mars 2012Enrique RomoSteerable catheters
US201200781758 déc. 201129 mars 2012Tyco Healthcare Group LpAngled tip catheter
US2012007823011 nov. 201129 mars 2012CONCEPTUS, INC. A California CorporationDeployment actuation system
US201202777303 mai 20121 nov. 2012Amr SalahiehSteerable Delivery Sheaths
US2013013797711 févr. 201330 mai 2013Boston Scientific Scimed, Inc.Hybrid micro guide catheter
US2013019748112 mars 20131 août 2013Xiaoping GuoCatheter Shaft and Method of Its Manufacture
US2013019748214 mars 20131 août 2013Terumo Kabushiki KaishaFixing device and catheter set
US2013023798022 avr. 201312 sept. 2013Covidien LpSystem and method for monitoring ablation size
US2013024176914 mars 201219 sept. 2013Vivant Medical, Inc.Microwave Ablation Generator Control System
US201302456242 mai 201319 sept. 2013Covidien LpPolyp encapsulation system and method
US201302535008 mai 201326 sept. 2013Covidien LpTissue ablation system with internal and external radiation sources
US2013026161728 mai 20133 oct. 2013Covidien LpPower-stage antenna integrated system with high-strength shaft
US2013026162027 mars 20123 oct. 2013Vivant Medical, Inc.Microwave-Shielded Tissue Sensor Probe
US201302679465 avr. 201210 oct. 2013Vivant Medical, Inc.Electrosurgical Tissue Ablation Systems Capable of Detecting Excessive Bending of a Probe and Alerting a User
US2013028956030 avr. 201231 oct. 2013Vivant Medical, Inc.Limited Reuse Ablation Needles and Ablation Devices for Use Therewith
US201302968414 mai 20127 nov. 2013Vivant Medical, Inc.Peripheral Switching Device for Microwave Energy Platforms
US2013030405718 juil. 201314 nov. 2013Covidien LpElectrosurgical devices with choke shorted to biological tissue
US2013031740722 mai 201228 nov. 2013Vivant Medical, Inc.Energy-Delivery System and Method for Controlling Blood Loss from Wounds
US201303174951 août 201328 nov. 2013Covidien LpBroadband microwave applicator
US2013031749922 mai 201228 nov. 2013Vivant Medical, Inc.Electrosurgical Instrument
US2013032491026 avr. 20135 déc. 2013Covidien LpAblation device with drug delivery component and biopsy tissue-sampling component
US2013032491129 mai 20135 déc. 2013Covidien LpAblation device with drug delivery component
US2013033866116 juil. 201319 déc. 2013Covidien LpTissue Impedance Measurement Using a Secondary Frequency
US2013034554119 juin 201326 déc. 2013Covidien LpElectrosurgical device incorporating a photo-acoustic system for interrogating/imaging tissue
US2013034555115 mars 201326 déc. 2013Covidien LpMethods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US2013034555215 mars 201326 déc. 2013Covidien LpMethods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US2013034555315 mars 201326 déc. 2013Covidien LpMethods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US2013034569915 mars 201326 déc. 2013Covidien LpAblation device having an expandable chamber for anchoring the ablation device to tissue
US201400000983 juin 20132 janv. 2014Covidien LpMicrowave antenna probes and methods of manufacturing microwave antenna probes
US2014000565511 déc. 20122 janv. 2014Vivant Medical, Inc.Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure and method of manufacturing same
US201400056573 juin 20132 janv. 2014Covidien LpMicrowave antenna probes
US2014001866815 mars 201316 janv. 2014Covidien LpSystem and method for detecting critical structures using ultrasound
US2014001867718 juin 201316 janv. 2014Covidien LpHeat-distribution indicators, thermal zone indicators, electrosurgical systems including same and methods of directing energy to tissue using same
US2014001879318 juin 201316 janv. 2014Covidien LpHeat-distribution indicators, thermal zone indicators, electrosurgical systems including same and methods of directing energy to tissue using same
US201400947894 sept. 20133 avr. 2014Covidien LpDevices and methods for optical detection of tissue contact
US2014009479216 juil. 20133 avr. 2014Covidien LpHeat-sensitive optical probes
US2014009479316 juil. 20133 avr. 2014Covidien LpDevice and method for heat-sensitive agent application
US2014009479422 août 20133 avr. 2014Covidien LpElectro-thermal device
US201400947974 sept. 20133 avr. 2014Covidien LpDevices and methods for optical detection of tissue contact
US2015002234216 juil. 201322 janv. 2015Travis E. WillSystems and methods for automated personal emergency responses
US2015006594427 août 20135 mars 2015Covidien LpDrug-delivery device for use with ablation device
US2015006596427 août 20135 mars 2015Covidien LpDrug-delivery cannula assembly
USD22336731 août 197011 avr. 1972 Magnetic tape reel adapter
USD26302022 janv. 198016 févr. 1982 Retractable knife
USD26684227 juin 19809 nov. 1982 Phonograph record spacer
USD27830619 déc. 19809 avr. 1985 Microwave oven rack
USD29589325 sept. 198524 mai 1988Acme United CorporationDisposable surgical clamp
USD29589426 sept. 198524 mai 1988Acme United CorporationDisposable surgical scissors
USD35421831 mars 199310 janv. 1995Fiberslab Pty LimitedSpacer for use in concrete construction
USD4246938 avr. 19999 mai 2000 Needle guide for attachment to an ultrasound transducer probe
USD42469423 oct. 19989 mai 2000Sherwood Services AgForceps
USD42520123 oct. 199816 mai 2000Sherwood Services AgDisposable electrode assembly
USD44988623 oct. 199830 oct. 2001Sherwood Services AgForceps with disposable electrode
USD4579586 avr. 200128 mai 2002Sherwood Services AgVessel sealer and divider
USD4579596 avr. 200128 mai 2002Sherwood Services AgVessel sealer
USD48703927 nov. 200224 févr. 2004Robert Bosch CorporationSpacer
USD49699715 mai 20035 oct. 2004Sherwood Services AgVessel sealer and divider
USD49918115 mai 200330 nov. 2004Sherwood Services AgHandle for a vessel sealer and divider
USD5253616 oct. 200418 juil. 2006Sherwood Services AgHemostat style elongated dissecting and dividing instrument
USD5313116 oct. 200431 oct. 2006Sherwood Services AgPistol grip style elongated dissecting and dividing instrument
USD53394230 juin 200419 déc. 2006Sherwood Services AgOpen vessel sealer with mechanical cutter
USD5350276 oct. 20049 janv. 2007Sherwood Services AgLow profile vessel sealing and cutting mechanism
USD5414186 oct. 200424 avr. 2007Sherwood Services AgLung sealing device
USD5419389 avr. 20041 mai 2007Sherwood Services AgOpen vessel sealer with mechanical cutter
USD56466213 oct. 200418 mars 2008Sherwood Services AgHourglass-shaped knife for electrosurgical forceps
USD5769321 mars 200516 sept. 2008Robert Bosch GmbhSpacer
USD59473613 août 200823 juin 2009Saint-Gobain Ceramics & Plastics, Inc.Spacer support
USD59473728 oct. 200823 juin 2009Mmi Management Services LpRebar chair
USD6062032 janv. 200915 déc. 2009Cambridge Temperature Concepts, Ltd.Hand-held device
USD6134126 août 20096 avr. 2010Vivant Medical, Inc.Vented microwave spacer
USD6340105 août 20098 mars 2011Vivant Medical, Inc.Medical device indicator guide
USD6818105 mars 20127 mai 2013Covidien LpErgonomic handle for ablation device
CN1103807A17 nov. 199321 juin 1995刘中一Multi-frequency micro-wave therapeutic instrument
DE390937C13 oct. 19223 mars 1924Adolf ErbVorrichtung zur Innenbeheizung von Wannenoefen zum Haerten, Anlassen, Gluehen, Vergueten und Schmelzen
DE1099658B29 avr. 195916 févr. 1961Siemens Reiniger Werke AgSelbsttaetige Einschaltvorrichtung fuer Hochfrequenzchirurgiegeraete
DE1139927B3 janv. 196122 nov. 1962Friedrich LaberHochfrequenz-Chirurgiegeraet
DE1149832B25 févr. 19616 juin 1963Siemens Reiniger Werke AgHochfrequenz-Chirurgieapparat
DE1439302A126 oct. 196323 janv. 1969Siemens AgHochfrequenz-Chirurgiegeraet
DE2407559A116 févr. 197428 août 1975Dornier System GmbhTissue heat treatment probe - has water cooling system which ensures heat development only in treated tissues
DE2415263A129 mars 19742 oct. 1975Aesculap Werke AgSurgical H.F. coagulation probe has electrode tongs - with exposed ends of insulated conductors forming tong-jaws
DE2429021A118 juin 19748 janv. 1976Erbe ElektromedizinRemote control for HF surgical instruments - uses cable with two conductors at most
DE2439587A117 août 197427 févr. 1975Matburn Holdings LtdElektrochirurgische vorrichtung
DE2455174A121 nov. 197422 mai 1975Termiflex CorpEin/ausgabegeraet zum datenaustausch mit datenverarbeitungseinrichtungen
DE2460481A120 déc. 197424 juin 1976Delma Elektro Med AppElectrode grip for remote HF surgical instrument switching - has shaped insulated piece with contact ring of sterilizable (silicon) rubber
DE2504280A11 févr. 19755 août 1976Hans Heinrich Prof Dr MeinkeVorrichtung zum elektrischen gewebeschneiden in der chirurgie
DE2540968A113 sept. 197517 mars 1977Erbe ElektromedizinCircuit for bipolar coagulation tweezers - permits preparation of tissues prior to coagulation
DE2602517A123 janv. 197629 juil. 1976Dentsply Int IncElektrochirurgische vorrichtung
DE2627679A121 juin 197613 janv. 1977Marcel LamideyBlutstillende hochfrequenz-sezierpinzette
DE2803275A126 janv. 19782 août 1979Aesculap Werke AgHF surgical appts. with active treatment and patient electrodes - has sensor switching generator to small voltage when hand-operated switch is closed
DE2820908A112 mai 197823 nov. 1978Joseph SkovajsaVorrichtung zur oertlichen behandlung eines patienten insbesondere fuer akupunktur oder aurikulartherapie
DE2823291A127 mai 197829 nov. 1979Rainer Ing Grad KochCoagulation instrument automatic HF switching circuit - has first lead to potentiometer and second to transistor base
DE2946728A120 nov. 197927 mai 1981Erbe ElektromedizinHF surgical appts. for use with endoscope - provides cutting or coagulation current at preset intervals and of selected duration
DE3045996A15 déc. 19808 juil. 1982Medic Eschmann HandelsgesellscElectro-surgical scalpel instrument - has power supply remotely controlled by surgeon
DE3120102A120 mai 19819 déc. 1982Fischer Fa F LAnordnung zur hochfrequenzkoagulation von eiweiss fuer chirurgische zwecke
DE3143421A12 nov. 198127 mai 1982Agency Ind Science TechnLaser scalpel
DE3510586A123 mars 19852 oct. 1986Erbe ElektromedizinControl device for a high-frequency surgical instrument
DE3604823A115 févr. 198627 août 1987Flachenecker GerhardHochfrequenzgenerator mit automatischer leistungsregelung fuer die hochfrequenzchirurgie
DE3711511C14 avr. 198730 juin 1988Hartmann & Braun AgVerfahren zur Bestimmung der Gaskonzentrationen in einem Gasgemisch und Sensor zur Messung der Waermeleitfaehigkeit
DE3904558A115 févr. 198923 août 1990Flachenecker GerhardRadio-frequency generator with automatic power control for radio-frequency surgery
DE3942998A127 déc. 19894 juil. 1991Delma Elektro Med AppElectro-surgical HF instrument for contact coagulation - has monitoring circuit evaluating HF voltage at electrodes and delivering switch=off signal
DE4238263A112 nov. 199219 mai 1993Minnesota Mining & MfgAdhesive comprising hydrogel and crosslinked polyvinyl:lactam - is used in electrodes for biomedical application providing low impedance and good mechanical properties when water and/or moisture is absorbed from skin
DE4303882A110 févr. 199318 août 1994Kernforschungsz KarlsruheCombined instrument for separating and coagulating in minimally invasive surgery
DE4303882C210 févr. 19939 févr. 1995Kernforschungsz KarlsruheKombinationsinstrument zum Trennen und Koagulieren für die minimal invasive Chirurgie
DE4339049A116 nov. 199318 mai 1995Erbe ElektromedizinSurgical system and instruments configuration device
DE8712328U111 sept. 198718 févr. 1988Jakoubek, Franz, 7201 Emmingen-Liptingen, DeTitre non disponible
DE10224154A127 mai 200218 déc. 2003Celon Ag Medical InstrumentsApplication device for electrosurgical device for body tissue removal via of HF current has electrode subset selected from active electrode set in dependence on measured impedance of body tissue
DE10310765A112 mars 200330 sept. 2004Dornier Medtech Systems GmbhMedical thermotherapy instrument, e.g. for treatment of benign prostatic hypertrophy (BPH), has an antenna that can be set to radiate at least two different frequency microwave signals
DE10328514B320 juin 20033 mars 2005Aesculap Ag & Co. KgEndoscopic surgical scissor instrument has internal pushrod terminating at distal end in transverse cylindrical head
DE19608716C16 mars 199617 avr. 1997Aesculap AgBipolar surgical holding instrument
DE19717411A125 avr. 19975 nov. 1998Aesculap Ag & Co KgMonitoring of thermal loading of patient tissue in contact region of neutral electrode of HF treatment unit
DE19751106A118 nov. 199728 mai 1998Eastman Kodak CoLaser printer with array of laser diodes
DE19751108A118 nov. 199720 mai 1999Beger Frank Michael Dipl DesigElectrosurgical operation tool, especially for diathermy
DE19801173C115 janv. 199815 juil. 1999Kendall Med Erzeugnisse GmbhClamp connector for film electrodes
DE19848540A121 oct. 199825 mai 2000Reinhard KalfhausCircuit layout and method for operating a single- or multiphase current inverter connects an AC voltage output to a primary winding and current and a working resistance to a transformer's secondary winding and current.
DE29616210U118 sept. 199614 nov. 1996Winter & Ibe OlympusHandhabe für chirurgische Instrumente
DE102004022206A14 mai 20041 déc. 2005Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Arbeit, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen BundesanstaltSensor for measuring thermal conductivity comprises a strip composed of two parallel sections, and two outer heating strips
DE102009015699A131 mars 20096 mai 2010Rohde & Schwarz Gmbh & Co. KgBreitband-Antenne
DE202005015147U126 sept. 20059 févr. 2006Health & Life Co., Ltd., Chung-HoBiosensor test strip with identifying function for biological measuring instruments has functioning electrode and counter electrode, identification zones with coating of electrically conductive material and reaction zone
EP0246350A123 mai 198625 nov. 1987Erbe Elektromedizin GmbH.Coagulation electrode
EP0521264A211 mai 19927 janv. 1993W.L. Gore & Associates GmbHAntenna device with feed
EP0556705A110 févr. 199325 août 1993DELMA ELEKTRO-UND MEDIZINISCHE APPARATEBAU GESELLSCHAFT mbHHigh frequency surgery device
EP0558429A124 févr. 19931 sept. 1993PECHINEY RECHERCHE (Groupement d'Intérêt Economique géré par l'ordonnance no. 67-821 du 23 Septembre 1967)Method of simultaneous measuring of electrical resistivety and thermal conductivity
EP0648515A113 oct. 199419 avr. 1995SADIS BRUKER SPECTROSPIN, SOCIETE ANONYME DE DIFFUSION DE L'INSTRUMENTATION SCIENTIFIQUE BRUKER SPECTROSPIN (S.A. à Direct.)Antenna for microwave heating of tissue and catheter with one or more antennas
EP0836868A219 sept. 199722 avr. 1998Gebr. Berchtold GmbH & Co.High frequency surgical apparatus and method for operating same
EP0882955A16 juin 19979 déc. 1998Endress + Hauser GmbH + Co.Level measuring apparatus using microwaves
EP1034747A13 mars 200013 sept. 2000Gyrus Medical LimitedElectrosurgery system and instrument
EP1034748A13 mars 200013 sept. 2000Gyrus Medical LimitedUHF electrosurgery system
EP1055400A119 mai 200029 nov. 2000Gyrus Medical LimitedAn electrosurgical instrument
EP1159926A219 mai 20015 déc. 2001Aesculap AgScissor- or forceps-like surgical instrument
EP2147651A124 juil. 200927 janv. 2010Tyco Healthcare Group, LPSuction coagulator with thermal insulation
EP2322113A116 nov. 201018 mai 2011Vivant Medical, Inc.Twin sealing chamber hub
FR179607A Titre non disponible
FR1275415A Titre non disponible
FR1347865A Titre non disponible
FR2235669A1 Titre non disponible
FR2276027A1 Titre non disponible
FR2313708A1 Titre non disponible
FR2502935A1 Titre non disponible
FR2517953A1 Titre non disponible
FR2573301A1 Titre non disponible
FR2862813A1 Titre non disponible
FR2864439A1 Titre non disponible
JP2000342599A Titre non disponible
JP2000350732A Titre non disponible
JP2001003776A Titre non disponible
JP2001008944A Titre non disponible
JP2001029356A Titre non disponible
JP2001037775A Titre non disponible
JP2001128990A Titre non disponible
JP2001231870A Titre non disponible
JP2008142467A Titre non disponible
JPH09492A Titre non disponible
JPH055106A Titre non disponible
JPH0540112A Titre non disponible
JPH0856955A Titre non disponible
JPH0910223A Titre non disponible
JPH06343644A Titre non disponible
JPH07265328A Titre non disponible
JPH08252263A Titre non disponible
JPH11244298A Titre non disponible
KR20070093068A Titre non disponible
KR20100014406A Titre non disponible
KR20120055063A Titre non disponible
SU166452A Titre non disponible
SU401367A1 Titre non disponible
SU727201A2 Titre non disponible
WO1994016632A128 janv. 19944 août 1994Cardima, Inc.Intravascular method and system for treating arrhythmia
WO1997024074A130 déc. 199610 juil. 1997Microgyn, Inc.Apparatus and method for electrosurgery
WO2000010456A17 juil. 19992 mars 2000Super Dimension Ltd.Intrabody navigation system for medical applications
WO2000036985A217 déc. 199929 juin 2000Celon Ag Medical InstrumentsElectrode assembly for a surgical instrument provided for carrying out an electrothermal coagulation of tissue
WO2000057811A123 mars 20005 oct. 2000Urologix, Inc.Thermal therapy catheter
WO2001000114A123 juin 20004 janv. 2001Vahid SaadatApparatus and methods for treating tissue
WO2001067035A19 mars 200113 sept. 2001Super Dimension Ltd.Object tracking using a single sensor or a pair of sensors
WO2002045790A229 nov. 200113 juin 2002Medtronic Ave, Inc.Hyperthermia radiation apparatus and method for treatment of malignant tumors
WO2006084676A18 févr. 200617 août 2006H.S. - Hospital Service - S.P.A.Microwave device for the ablation of tissues
WO2008068485A26 déc. 200712 juin 2008Medical Device Innovations LimitedMicrowave array applicator for hyperthermia
WO2010035831A128 sept. 20091 avr. 2010京セラ株式会社Cutting insert, cutting tool, and cutting method using cutting insert and cutting tool
Citations hors brevets
Référence
1Alexander et al., "Magnetic Resonance Image-Directed Stereotactic Neurosurgery: Use of Image Fusion with Computerized Tomography to Enhance spatial Accuracy" Journal Neurosurgery, 83 (1995), pp. 271-276.
2Anderson et al., "A Numerical Study of Rapid Heating for High Temperature Radio Frequency Hyperthermia" International Journal of Bio-Medical Computing, 35 (1994), pp. 297-307.
3Anonymous. (1987) Homer Mammalok™ Breast Lesion Needle/Wire Localizer, Namic ® Angiographic Systems Division, Glens Falls, New York, (Hospital products price list), 4 pages.
4Anonymous. (1999) Auto Suture MIBB Site Marker: Single Use Clip Applier, United States Surgical (Product instructions), 2 pages.
5Anonymous. (1999) MIBB Site Marker, United States Surgical (Sales brochure), 4 pages.
6Anonymous. (2001) Disposable Chiba Biopsy Needles and Trays, Biopsy and Special Purpose Needles Cook Diagnostic and Interventional Products Catalog (products list), 4 pages.
7Anonymous. Blunt Tubes with Finished Ends. Pointed Cannula, Popper & Sons Biomedical Instrument Division, (Products Price List), one page, Jul. 19, 2000.
8Anonymous. Ground Cannulae, ISPG, New Milford, CT, (Advertisement) one page, Jul. 19, 2000.
9B. F. Mullan et al., (May 1999) "Lung Nodules: Improved Wire for CT-Guided Localization," Radiology 211:561-565.
10B. Levy M.D. et al., "Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy" Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003.
11B. Levy M.D. et al., "Update on Hysterectomy New Technologies and Techniques" OBG Management, Feb. 2003.
12B. Levy M.D., "Use of a New Vessel Ligation Device During Vaginal Hysterectomy" FIGO 2000, Washington, D.C.
13B. T. Heniford M.D. et al., "Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer" Oct. 1999.
14Bergdahl et al., "Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator" Journal of Neurosurgery 75:1 (Jul. 1991), pp. 148-151.
15Bulletin of the American Physical Society, vol. 47, No. 5, Aug. 2002, p. 41.
16C. F. Gottlieb et al., "Interstitial Microwave Hyperthermia Applicators having Submillimetre Diameters", Int. J. Hyperthermia, vol. 6, No. 3, pp. 707-714, 1990.
17C. H. Durney et al., "Antennas for Medical Applications", Antenna Handbook: Theory Application and Design, p. 24-40, Van Nostrand Reinhold, 1988 New York, V.T. Lo, S.W. Lee.
18Carbonell et al., "Comparison of the Gyrus PlasmaKinetic Sealer and the Valleylab LigaSure.TM. Device in the Hemostasis of Small, Medium, and Large-Sized Arteries" Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center,Charlotte, NC 2003.
19Carus et al., "Initial Experience With the LigaSure.TM. Vessel Sealing System in Abdominal Surgery" Innovations That Work, Jun. 2002.
20Chicharo et al., "A Sliding Goertzel Algorithm" Aug. 1996 DOS pp. 283-297 Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL, vol. 52, No. 3.
21Chou, C.K., (1995) "Radiofrequency Hyperthermia in Cancer Therapy," Chapter 941n Biologic Effects of Nonionizing Electromagnetic Fields, CRC Press, Inc., pp. 1424-1428.
22Chung et al., "Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSureTM " Diseases of the Colon & Rectum, vol. 46, No. 1, Jan. 2003.
23Cosman et al., "Methods of Making Nervous System Lesions" In William RH, Rengachary SS (eds): Neurosurgery, New York: McGraw-Hill, vol. 111, (1984), pp. 2490-2499.
24Cosman et al., "Radiofrequency Lesion Generation and its Effect on Tissue Impedence", Applied Neurophysiology, 51:230-242, 1988.
25Cosman et al., "Theoretical aspects of Radiofrequency Lesions in the Dorsal Root Entry Zone" Neurosurgery 15: (1984), pp. 945-950.
26Crawford et al., "Use of the LigaSure.TM. Vessel Sealing System in Urologic Cancer Surger" Grand Rounds in Urology 1999, vol. 1, Issue 4, pp. 10-17.
27Dulemba et al., "Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy" Sales/Product Literature; Jan. 2004.
28E. David Crawford, "Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery" Sales/Product Literature 2000.
29E. David Crawford, "Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex" Sales/Product Literature 2000.
30Esterline Product Literature, "Light Key: Visualize a Virtual Keyboard. One With No Moving Parts", Nov. 1, 2003; 4 pages.
31Esterline, "Light Key Projection Keyboard" 2004 Advanced Input Systems, located at: http://www.advanced-input.com/lightkey>last visited on Feb. 10, 2005.
32Esterline, "Light Key Projection Keyboard" Advanced Input Systems, located at: <http://www.advanced-input.com/lightkey> 2002.
33European Search Report EP 03721482 dated Feb. 6, 2006.
34European Search Report EP 04009964 dated Jul. 28, 2004.
35European Search Report EP 04013772 dated Apr. 11, 2005.
36European Search Report EP 04015980 dated Nov. 3, 2004.
37European Search Report EP 04015981.6 dated Oct. 25, 2004.
38European Search Report EP 04027314 dated Mar. 31, 2005.
39European Search Report EP 04027479 dated Mar. 17, 2005.
40European Search Report EP 04027705 dated Feb. 10, 2005.
41European Search Report EP 04710258 dated Oct. 15, 2004.
42European Search Report EP 04752343.6 dated Jul. 31, 2007.
43European Search Report EP 04778192.7 dated Jul. 1, 2009.
44European Search Report EP 05002027.0 dated May 12, 2005.
45European Search Report EP 05002769.7 dated Jun. 19, 2006.
46European Search Report EP 05013463.4 dated Oct. 7, 2005.
47European Search Report EP 05013895 dated Oct. 21, 2005.
48European Search Report EP 05014156.3 dated Jan. 4, 2006.
49European Search Report EP 05016399 dated Jan. 13, 2006.
50European Search Report EP 05017281 dated Nov. 24, 2005.
51European Search Report EP 05019130.3 dated Oct. 27, 2005.
52European Search Report EP 05019882 dated Feb. 16, 2006.
53European Search Report EP 05020665.5 dated Feb. 27, 2006.
54European Search Report EP 05020666.3 dated Feb. 27, 2006.
55European Search Report EP 05021025.1 dated Mar. 13, 2006.
56European Search Report EP 05021197.8 dated Feb. 20, 2006.
57European Search Report EP 05021777 dated Feb. 23, 2006.
58European Search Report EP 05021779.3 dated Feb. 2, 2006.
59European Search Report EP 05021780.1 dated Feb. 23, 2006.
60European Search Report EP 05021935 dated Jan. 27, 2006.
61European Search Report EP 05021936.9 dated Feb. 6, 2006.
62European Search Report EP 05021937.7 dated Jan. 23, 2006.
63European Search Report EP 05021939 dated Jan. 27, 2006.
64European Search Report EP 05021944.3 dated Jan. 25, 2006.
65European Search Report EP 05022350.2 dated Jan. 30, 2006.
66European Search Report EP 05023017.6 dated Feb. 24, 2006.
67European Search Report EP 05025423.4 dated Jan. 19, 2007.
68European Search Report EP 05025424 dated Jan. 30, 2007.
69European Search Report EP 05810523 dated Jan. 29, 2009.
70European Search Report EP 06000708.5 dated May 15, 2006.
71European Search Report EP 06002279.5 dated Mar. 30, 2006.
72European Search Report EP 06005185.1 dated May 10, 2006.
73European Search Report EP 06005540 dated Sep. 24, 2007.
74European Search Report EP 06006717.0 dated Aug. 11, 2006.
75European Search Report EP 06006961 dated Oct. 22, 2007.
76European Search Report EP 06006963 dated Jul. 25, 2006.
77European Search Report EP 06008779.8 dated Jul. 13, 2006.
78European Search Report EP 06009435 dated Jul. 13, 2006.
79European Search Report EP 06010499.9 dated Jan. 29, 2008.
80European Search Report EP 06014461.5 dated Oct. 31, 2006.
81European Search Report EP 06018206.0 dated Oct. 20, 2006.
82European Search Report EP 06019768 dated Jan. 17, 2007.
83European Search Report EP 06020574.7 dated Oct. 2, 2007.
84European Search Report EP 06020583.8 dated Feb. 7, 2007.
85European Search Report EP 06020584.6 dated Feb. 1, 2007.
86European Search Report EP 06020756.0 dated Feb. 16, 2007.
87European Search Report EP 06022028.2 dated Feb. 13, 2007.
88European Search Report EP 06023756.7 dated Feb. 21, 2008.
89European Search Report EP 06024122.1 dated Apr. 16, 2007.
90European Search Report EP 06024123.9 dated Mar. 6, 2007.
91European Search Report EP 06025700.3 dated Apr. 12, 2007.
92European Search Report EP 07000885.9 dated May 15, 2007.
93European Search Report EP 07001480.8 dated Apr. 19, 2007.
94European Search Report EP 07001481.6 dated May 2, 2007.
95European Search Report EP 07001485.7 dated May 23, 2007.
96European Search Report EP 07001488.1 dated Jun. 5, 2007.
97European Search Report EP 07001489.9 dated Dec. 20, 2007.
98European Search Report EP 07001491 dated Jun. 6, 2007.
99European Search Report EP 07001527.6 dated May 18, 2007.
100European Search Report EP 07007783.9 dated Aug. 14, 2007.
101European Search Report EP 07008207.8 dated Sep. 13, 2007.
102European Search Report EP 07009026.1 dated Oct. 8, 2007.
103European Search Report EP 07009028 dated Jul. 16, 2007.
104European Search Report EP 07009029.5 dated Jul. 20, 2007.
105European Search Report EP 07009321.6 dated Aug. 28, 2007.
106European Search Report EP 07009322.4 dated Jan. 14, 2008.
107European Search Report EP 07010672.9 dated Oct. 16, 2007.
108European Search Report EP 07010673.7 dated Oct. 5, 2007.
109European Search Report EP 07013779.9 dated Oct. 26, 2007.
110European Search Report EP 07015191.5 dated Jan. 23, 2007.
111European Search Report EP 07015601.3 dated Jan. 4, 2007.
112European Search Report EP 07015602.1 dated Dec. 20, 2007.
113European Search Report EP 07018375.1 dated Jan. 8, 2008.
114European Search Report EP 07018821 dated Jan. 14, 2008.
115European Search Report EP 07019173.9 dated Feb. 12, 2008.
116European Search Report EP 07019174.7 dated Jan. 29, 2008.
117European Search Report EP 07019178.8 dated Feb. 12, 2008.
118European Search Report EP 07020283.3 dated Feb. 5, 2008.
119European Search Report EP 07253835.8 dated Dec. 20, 2007.
120European Search Report EP 08001019 dated Sep. 23, 2008.
121European Search Report EP 08004975 dated Jul. 24, 2008.
122European Search Report EP 08006731.7 dated Jul. 29, 2008.
123European Search Report EP 08006733 dated Jul. 7, 2008.
124European Search Report EP 08006734.1 dated Aug. 18, 2008.
125European Search Report EP 08006735.8 dated Jan. 8, 2009.
126European Search Report EP 08011282 dated Aug. 14, 2009.
127European Search Report EP 08011705 dated Aug. 20, 2009.
128European Search Report EP 08012829.1 dated Oct. 29, 2008.
129European Search Report EP 08015842 dated Dec. 5, 2008.
130European Search Report EP 08019920.1 dated Mar. 27, 2009.
131European Search Report EP 08169973.8 dated Apr. 6, 2009.
132European Search Report EP 09156861.8 dated Aug. 4, 2009.
133European Search Report EP 09161502.1 dated Sep. 2, 2009.
134European Search Report EP 09166708 dated Oct. 15, 2009.
135European Search Report EP 10014675 dated Feb. 24, 2011 (7 pages).
136European Search Report EP 98300964.8 dated Dec. 13, 2000.
137European Search Report EP 98944778 dated Nov. 7, 2000.
138European Search Report EP 98958575.7 dated Oct. 29, 2002.
139Geddes et al., "The Measurement of Physiologic Events by Electrical Impedence" Am. J. MI, Jan. Mar. 1964, pp. 16-27.
140Goldberg et al. (1995) "Saline-enhanced RF Ablation: Demonstration of Efficacy and Optimization of Parameters", Radiology, 197(P): 140 (Abstr).
141Goldberg et al., "Image-guided Radiofrequency Tumor Ablation: Challenges and Opportunities-Part I", (2001) J Vasc. Interv. Radio, vol. 12, pp. 1021-1032.
142Goldberg et al., "Tissue Ablation with Radiofrequency: Effect of Probe Size, Gauge, Duration, and Temperature on Lesion Volume" Acad Radio (1995) vol. 2, No. 5, pp. 399-404.
143Goldberg et al., "Image-guided Radiofrequency Tumor Ablation: Challenges and Opportunities—Part I", (2001) J Vasc. Interv. Radio, vol. 12, pp. 1021-1032.
144H. Schwarzmaier et al., "Magnetic Resonance Imaging of Microwave Induced Tissue Heating" Dept. of Laser Medicine & Dept. of Diagnostic Radiology; Heinrich-Heine-University, Duesseldorf, Germany; Dec. 8, 1994; pp. 729-731.
145Heniford et al., "Initial Results with an Electrothermal Bipolar Vessel Sealer" Surgical Endoscopy (2001) 15:799-801.
146Herman at al., "Laparoscopic Intestinal Resection With the LigaSureTM Vessel Sealing System: A Case Report" Innovations That Work, Feb. 2002.
147Humphries Jr. et al., "Finite-Element Codes to Model Electrical Heating and Non-Linear Thermal Transport in Biological Media", Proc. Asme HTD-355, 131 (1997).
148Ian D. McRury et al., The Effect of Ablation Sequence and Duration on Lesion Shape Using Rapidly Pulsed Radiofrequency Energy Through Electrodes, Feb. 2000, Springer Netherlands, vol. 4; No. 1, pp. 307-320.
149International Search Report PCT/US01/11218 dated Aug. 14, 2001.
150International Search Report PCT/US01/11224 dated Nov. 13, 2001.
151International Search Report PCT/US01/11340 dated Aug. 16, 2001.
152International Search Report PCT/US01/11420 dated Oct. 16, 2001.
153International Search Report PCT/US02/01890 dated Jul. 25, 2002.
154International Search Report PCT/US02/11100 dated Jul. 16, 2002.
155International Search Report PCT/US03/09483 dated Aug. 13, 2003.
156International Search Report PCT/US03/22900 dated Dec. 2, 2003.
157International Search Report PCT/US03/37110 dated Jul. 25, 2005.
158International Search Report PCT/US03/37111 dated Jul. 28, 2004.
159International Search Report PCT/US03/37310 dated Aug. 13, 2004.
160International Search Report PCT/US04/04685 dated Aug. 27, 2004.
161International Search Report PCT/US04/13273 dated Dec. 15, 2004.
162International Search Report PCT/US04/15311 dated Jan. 12, 2004.
163International Search Report PCT/US05/36168 dated Aug. 28, 2006.
164International Search Report PCT/US08/052460 dated Apr. 24, 2008.
165International Search Report PCT/US09/31658 dated Mar. 11, 2009.
166International Search Report PCT/US98/18640 dated Jan. 29, 1998.
167International Search Report PCT/US98/23950 dated Jan. 14, 1998.
168International Search Report PCT/US99/24869 dated Feb. 11, 2000.
169Jarrett et al., "Use of the LigaSureTM Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy" Sales/Product Literature 2000.
170Johnson et al., "Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy" Sales/Product Literature, Jan. 2004.
171Johnson et al., "New Low-Profile Applicators for Local Heating of Tissues", IEEE Transactions on Biomedical Engineering, VOL., BME-31, No. 1, Jan. 1984, pp. 28-37.
172Johnson, "Evaluation of the LigaSureTM Vessel Sealing System in Hemorrhoidectormy" American College of Surgeons (ACS) Clinic La Congress Poster (2000).
173Johnson, "Use of the LigaSureTM Vessel Sealing System in Bloodless Hemorrhoidectomy" Innovations That Work, Mar. 2000.
174Joseph G. Andriole M.D. et al., "Biopsy Needle Characteristics Assessed in the Laboratory", Radiology 148: 659-662, Sep. 1983.
175Joseph Ortenberg, "LigaSureTM System Used in Laparoscopic 1st and 2nd Stage Orchiopexy" Innovations That Work, Nov. 2002.
176Joseph Ortenberg, "LigaSure™ System Used in Laparoscopic 1st and 2nd Stage Orchiopexy" Innovations That Work, Nov. 2002.
177Kennedy et al., "High-burst-strength, feedback-controlled bipolar vessel sealing" Surgical Endoscopy (1998) 12: 876-878.
178Kopans, D.B. et al., (Nov. 1985) "Spring Hookwire Breast Lesion Localizer: Use With Rigid-Compression. Mammographic Systems," Radiology 157(2):537-538.
179Koyle et al., "Laparoscopic Palomo Varicocele Ligation in Children and Adolescents" Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002.
180LigaSureTM Vessel Sealing System, the Seal of Confidence in General , Gynecologic, Urologic, and Laparaoscopic Surgery, Sales/Product Literature, Jan. 2004.
181Livraghi et al., (1995) "Saline-enhanced RF Tissue Ablation in the Treatment of Liver Metastases", Radiology, p. 140 (Abstr).
182Livraghi et al., (1995) "Saline-enhanced RF Tissue Ablation in the Treatment of Liver Metastases", Radiology, pp. 205-210.
183Lyndon B. Johnson Space Center, Houston, Texas, "Compact Directional Microwave Antenna for Localized Heating," NASA Tech Briefs, Mar. 2008.
184M. A. Astrahan, "A Localized Current Field Hyperthermia System for Use with 192-Iridium Interstitial Implants" Medical Physics. 9(3), May/Jun. 1982.
185Magdy F. Iskander et al., "Design Optimization of Interstitial Antennas", IEEE Transactions on Biomedical Engineering, vol. 36, No. 2, Feb. 1989, pp. 238-246.
186McGahan et al., (1995) "Percutaneous Ultrasound-guided Radiofrequency Electrocautery Ablation of Prostate Tissue in Dogs", Acad Radiol, vol. 2, No. 1: pp. 61-65.
187McLellan et al., "Vessel Sealing for Hemostasis During Pelvic Surgery" Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, DC.
188MDTECH product literature (Dec. 1999) "FlexStrand": product description, 1 page.
189MDTECH product literature (Mar. 2000) I'D Wire: product description, 1 page.
190MEDTREX Brochure "The O.R. Pro 300" 1 page, Sep. 1998.
191Michael Choti, "Abdominoperineal Resection with the LigaSureTM Vessel Sealing System and LigaSureTM Atlas 20 cm Open Instrument" Innovations That Work, Jun. 2003.
192Muller et al., "Extended Left Hemicolectomy Using the LigaSureTM Vessel Sealing System" Innovations That Work. LJ, Sep. 1999.
193Murakami, R. et al., (1995). "Treatment of Hepatocellular Carcinoma: Value of Percutaneous Microwave Coagulation," American Journal of Radiology (AJR) 164:1159-1164.
194Ni Wei et al., "A Signal Processing Method for the Coriolis Mass Flowmeter Based on a Normalized . . . " Journal of Applied Sciences-Yingyong Kexue Xuebao, Shangha CN, vol. 23, No. 2:(2005-03); pp. 160-184.
195Ni Wei et al., "A Signal Processing Method for the Coriolis Mass Flowmeter Based on a Normalized . . . " Journal of Applied Sciences—Yingyong Kexue Xuebao, Shangha CN, vol. 23, No. 2:(2005-03); pp. 160-184.
196Ogden, "Goertzel Alternative to the Fourier Transform" Jun. 1993 pp. 485-487 Electronics World; Reed Business Publishing, Sutton, Surrey, BG, vol. 99, No. 9, 1687.
197Olsson M.D. et al., "Radical Cystectomy in Females" Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001.
198Organ, L W., "Electrophysiologic Principles of Radiofrequency Lesion Making" Appl. Neurophysiol, vol. 39: pp. 69-76 (1976/1977).
199P.R. Stauffer et al., "Interstitial Heating Technologies", Thermoradiotheray and Thermochemotherapy (1995) vol. I, Biology, Physiology, Physics, pp. 279-320.
200Palazzo et al., "Randomized clinical trial of LigaSureTM versus open haemorrhoidectomy" British Journal of Surgery 2002,89,154-157 "Innovations in Electrosurgery" Sales/Product Literature; Dec. 31, 2000.
201Paul G. Horgan, "A Novel Technique for Parenchymal Division During Hepatectomy" The American Journal of Surgery, vol. 181, No. 3, Apr. 2001, pp. 236-237.
202Peterson et al., "Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing" Surgical Technology International (2001).
203R. Gennari et al., (Jun. 2000) "Use of Technetium-99m-Labeled Colloid Albumin for Preoperative and Intraoperative Localization of Non palpable Breast Lesions," American College of Surgeons. 190(6):692-699.
204Reidenbach, (1995) "First Experimental Results with Special Applicators for High-Frequency Interstitial Thermotherapy", Society Minimally Invasive Therapy, 4(Suppl 1):40 (Abstr).
205Richard Wolf Medical Instruments Corp. Brochure, "Kleppinger Bipolar Forceps & Bipolar Generator" 3 pages, Jan. 1989.
206Rothenberg et al., "Use of the LigaSureTM Vessel Sealing System in Minimally Invasive Surgery in Children" Int'l Pediatric Endosurgery Group (I PEG) 2000.
207Sayfan et al., "Sutureless Closed Hemorrhoidectomy: A New Technique" Annals of Surgery, vol. 234, No. 1, Jul. 2001, pp. 21-24.
208Sengupta et al., "Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery" ANZ Journal of Surgery (2001) 71.9 pp. 538-540.
209Sigel et al., "The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation" Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831.
210Solbiati et al. (1995) "Percutaneous US-guided RF Tissue Ablation of Liver Metastases: Long-term Follow-up", Radiology, pp. 195-203.
211Solbiati et al., (2001) "Percutaneous Radio-frequency Ablation of Hepatic Metastases from Colorectal Cancer: Long-term Results in 117 Patients", Radiology, vol. 221, pp. 159-166.
212Strasberg et al., "Use of a Bipolar Vassel-Sealing Device for Parenchymal Transection During Liver Surgery" Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574.
213Sugita et al., "Bipolar Coagulator with Automatic Thermocontrol" J. Neurosurg., vol. 41, Dec. 1944, pp. 777-779.
214Sylvain Labonte et al., "Monopole Antennas for Microwave Catheter Ablation", IEEE Trans. on Microwave Theory and Techniques, vol. 44, No. 10, pp. 1832-1840, Oct. 1995.
215T. Matsukawa et al., "Percutaneous Microwave Coagulation Therapy in Liver Tumors", Acta Radiologica, vol. 38, pp. 410-415, 1997.
216T. Seki et al., (1994) "Ultrasonically Guided Percutaneous Microwave Coagulation Therapy for Small Hepatocellular Carcinoma," Cancer 74(3):817-825.
217U.S. Appl. No. 08/136,098, filed Oct. 14, 1993; Roger A. Stern.
218U.S. Appl. No. 08/483,742, filed Jun. 7, 1995; Roger A. Stern.
219U.S. Appl. No. 12/129,482, filed May 29, 2008.
220U.S. Appl. No. 12/135,425, filed Jun. 9, 2008.
221U.S. Appl. No. 12/135,690, filed Jun. 9, 2008.
222U.S. Appl. No. 12/147,093, filed Jun. 26, 2008.
223U.S. Appl. No. 12/181,504, filed Jul. 29, 2008.
224U.S. Appl. No. 12/184,556, filed Aug. 1, 2008.
225U.S. Appl. No. 12/194,254, filed Aug. 19, 2008.
226U.S. Appl. No. 12/197,405, filed Aug. 25, 2008.
227U.S. Appl. No. 12/197,473, filed Aug. 25, 2008.
228U.S. Appl. No. 12/197,601, filed Aug. 25, 2008.
229U.S. Appl. No. 12/199,935, filed Aug. 28, 2008.
230U.S. Appl. No. 12/203,474, filed Sep. 3, 2008.
231U.S. Appl. No. 12/236,686, filed Sep. 24, 2008.
232U.S. Appl. No. 12/244,850, filed Oct. 3, 2008.
233U.S. Appl. No. 12/250,110, filed Oct. 13, 2008.
234U.S. Appl. No. 12/250,171, filed Oct. 13, 2008.
235U.S. Appl. No. 12/251,857, filed Oct. 15, 2008.
236U.S. Appl. No. 12/253,457, filed Oct. 17, 2008.
237U.S. Appl. No. 12/366,298, filed Feb. 5, 2009.
238U.S. Appl. No. 12/389,906, filed Feb. 20, 2009.
239U.S. Appl. No. 12/389,915, filed Feb. 20, 2009.
240U.S. Appl. No. 12/401,268, filed Mar. 10, 2009.
241U.S. Appl. No. 12/416,583, filed Apr. 1, 2009.
242U.S. Appl. No. 12/419,395, filed Apr. 7, 2009.
243U.S. Appl. No. 12/423,609, filed Apr. 14, 2009.
244U.S. Appl. No. 12/434,903, filed May 4, 2009.
245U.S. Appl. No. 12/436,231, filed May 6, 2009.
246U.S. Appl. No. 12/436,237, filed May 6, 2009.
247U.S. Appl. No. 12/436,239, filed May 6, 2009.
248U.S. Appl. No. 12/472,831, filed May 27, 2009.
249U.S. Appl. No. 12/475,082, filed May 29, 2009.
250U.S. Appl. No. 12/476,960, filed Jun. 2, 2009.
251U.S. Appl. No. 12/487,917, filed Jun. 19, 2009.
252U.S. Appl. No. 12/493,302, filed Jun. 29, 2009.
253U.S. Appl. No. 12/504,738, filed Jul. 17, 2009.
254U.S. Appl. No. 12/508,700, filed Jul. 24, 2009.
255U.S. Appl. No. 12/535,851, filed Aug. 5, 2009.
256U.S. Appl. No. 12/535,856, filed Aug. 5, 2009.
257U.S. Appl. No. 12/536,616, filed Aug. 6, 2009.
258U.S. Appl. No. 12/542,348, filed Aug. 17, 2009.
259U.S. Appl. No. 12/542,785, filed Aug. 18, 2009.
260U.S. Appl. No. 12/547,155, filed Aug. 25, 2009.
261U.S. Appl. No. 12/548,644, filed Aug. 27, 2009.
262U.S. Appl. No. 12/555,576, filed Sep. 8, 2009.
263U.S. Appl. No. 12/556,010, filed Sep. 9, 2009.
264U.S. Appl. No. 12/561,096, filed Sep. 16, 2009.
265U.S. Appl. No. 12/562,575, filed Sep. 18, 2009.
266U.S. Appl. No. 12/562,842, filed Sep. 18, 2009.
267U.S. Appl. No. 12/566,299, filed Sep. 24, 2009.
268U.S. Appl. No. 12/568,067, filed Sep. 28, 2009.
269U.S. Appl. No. 12/568,524, filed Sep. 28, 2009.
270U.S. Appl. No. 12/568,551, filed Sep. 28, 2009.
271U.S. Appl. No. 12/568,777, filed Sep. 29, 2009.
272U.S. Appl. No. 12/568,838, filed Sep. 29, 2009.
273U.S. Appl. No. 12/568,883, filed Sep. 29, 2009.
274U.S. Appl. No. 12/568,972, filed Sep. 29, 2009.
275U.S. Appl. No. 12/569,171, filed Sep. 29, 2009.
276U.S. Appl. No. 12/569,685, filed Sep. 29, 2009.
277U.S. Appl. No. 12/582,857, filed Oct. 21, 2009.
278U.S. Appl. No. 12/606,769, filed Oct. 27, 2009.
279U.S. Appl. No. 12/607,221, filed Oct. 28, 2009.
280U.S. Appl. No. 12/607,268, filed Oct. 28, 2009.
281U.S. Appl. No. 12/619,462, filed Nov. 16, 2009.
282U.S. Appl. No. 12/620,289, filed Nov. 17, 2009.
283Urologix, Inc.-Medical Professionals: TargisTM Technology (Date Unknown). "Overcoming the Challenge" located at: <http://www.urologix.com!medicaUtechnology.html > Nov. 18, 1999; 3 pages.
284Urologix, Inc.—Medical Professionals: TargisTM Technology (Date Unknown). "Overcoming the Challenge" located at: <http://www.urologix.com!medicaUtechnology.html > Nov. 18, 1999; 3 pages.
285Urologix, Inc.-Medical Professionals: Targis™ Technology (Date Unknown). "Overcoming the Challenge" located at: <http://www.urologix.com!medicaUtechnology.html > last visited on Apr. 27, 2001, 3 pages.
286Urologix, Inc.—Medical Professionals: Targis™ Technology (Date Unknown). "Overcoming the Challenge" located at: <http://www.urologix.com!medicaUtechnology.html > last visited on Apr. 27, 2001, 3 pages.
287Urrutia et al., (1988). "Retractable-Barb Needle for Breast Lesion Localization: Use in 60 Cases," Radiology 169 (3):845-847.
288ValleyLab Brochure, "Electosurgery: A Historical Overview", Innovations in Electrosurgery, 1999.
289Valleylab Brochure, "Reducing Needlestick Injuries in the Operating Room" 1 page, Mar. 2001.
290Valleylab Brochure, "Valleylab Electroshield Monitoring System" 2 pages, Nov. 1995.
291Vallfors et al., "Automatically Controlled Bipolar Electrocoagulation-'COA-COMP'" Neurosurgical Review 7:2-3 (1984) pp. 187-190.
292Vallfors et al., "Automatically Controlled Bipolar Electrocoagulation-‘COA-COMP’" Neurosurgical Review 7:2-3 (1984) pp. 187-190.
293W. Scott Helton, "LigaSureTM Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery" Sales/Product Literature 1999.
294Wald et al., "Accidental Burns", JAMA, Aug. 16, 1971, vol. 217, No. 7, pp. 916-921.
295Walt Boyles, "Instrumentation Reference Book", 2002, Butterworth-Heinemann, pp. 262-264.
296Wonnell et al., "Evaluation of Microwave and Radio Frequency Catheter Ablation in a Myocardium-Equivalent Phantom Model", IEEE Transactions on Biomedical Engineering, vol. 39, No. 10, Oct. 1992; pp. 1086-1095.
Classifications
Classification internationaleA61B18/18, A61B18/00
Classification coopérativeA61B18/1815, Y10T29/49826, A61B2018/00023, A61B18/00, A61B18/18
Événements juridiques
DateCodeÉvénementDescription
16 févr. 2017ASAssignment
Owner name: VIVANT MEDICAL LLC, COLORADO
Free format text: CHANGE OF NAME;ASSIGNOR:VIVANT MEDICAL, INC.;REEL/FRAME:041735/0577
Effective date: 20121226
Owner name: COVIDIEN LP, MASSACHUSETTS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VIVANT MEDICAL LLC;REEL/FRAME:041735/0802
Effective date: 20121228
Owner name: VIVANT MEDICAL, INC., COLORADO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DECARLO, ARNOLD V.;REEL/FRAME:041272/0018
Effective date: 20091111
Owner name: COVIDIEN LP, MASSACHUSETTS
Free format text: MERGER;ASSIGNOR:VIVANT MEDICAL LLC;REEL/FRAME:041273/0172
Effective date: 20121228