WO1980001633A1 - Modified vestigial side band transmission system - Google Patents

Modified vestigial side band transmission system Download PDF

Info

Publication number
WO1980001633A1
WO1980001633A1 PCT/US1980/000067 US8000067W WO8001633A1 WO 1980001633 A1 WO1980001633 A1 WO 1980001633A1 US 8000067 W US8000067 W US 8000067W WO 8001633 A1 WO8001633 A1 WO 8001633A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
band
filter
frequency
frequencies
Prior art date
Application number
PCT/US1980/000067
Other languages
French (fr)
Inventor
G Campbell
P Thibodeau
S Bench
T Stump
Original Assignee
Anaconda Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anaconda Co filed Critical Anaconda Co
Priority to JP80500497A priority Critical patent/JPS56500198A/ja
Priority to BR8006228A priority patent/BR8006228A/en
Publication of WO1980001633A1 publication Critical patent/WO1980001633A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • H04J1/02Details
    • H04J1/08Arrangements for combining channels

Definitions

  • Frequency modulation for carrier multiplexed systems requires more complex and expensive equipment, and increases the signal-to-noise ratio only at the cost of wider occupied band width.
  • the present invention utilizes a modified vestigial receiver in a carrier multiplexed transmission system with standard double, side band AM transmitters. This does not result in a band width reduction for individual channels, but does permit channels to exist at frequencies within the pass band of the system which might otherwise be unusable. Thus, the system permits a greater number of channels to be transmitted, without increasing overall system band width, and without substantially increasing system cost or complexity.
  • the invention substantially reduces distortion inherent in double side band modulating systems which results from phase non-linearities in the transmission medium.
  • the invention reduces the susceptibility of the system to distortion caused by frequency drift from component aging or environmental factors.
  • This transmission technique provides double side band transmission of all modulating frequencies, and reception of low modulating frequencies in a double side band mode, while essentially single side band reception is utilized for high modulating frequencies. Because phase non-linearities in transmission media, including repeater filters, are more acute at higher carrier modulating frequencies, and a filter band edges, this system greatly reduces distortion caused by these factors.
  • Figure 4 provides a plot of attenuation characteristics of receiver filters within the system of Figure 1, as well as certain prior art receiver filter characteristics for comparison;
  • Each of the voice input channels on lines 15a-15h and. 17a-17h are combined in a modulator 19a-19h with a carrier signal provided by a carrier oscillator 21a-21h to provide a standard, double side band AM modulated signal at the output of the modulators 19a-19h on lines 23a-23h and 25a-25h.
  • the modulated carrier signals used for communication between the central office and subscriber channels are attenuated by the cable pair 27, 29 and thus, for long cable runs , plural repeaters , such as the repeaters 35a and 35b , may be utilized in the system to amplify signals on lines 27, 29 utilizing power supplied by the DC voltage sources 31 and 33 at various locations along the cable pair 27, 29.
  • each of the subscriber stations includes an incoming voice line pair 51a-h and 53a-h and outgoing voice line pair 55a-h and 57a-h.
  • the incoming voice signals are provided by filtering the incoming modulated carrier signals on the cable pair 27 , 29 utili zing a filter 59 a-h and, once a carrier and its side bands are thus selected, demodulating the voice signal , using a demodulator 61a-h.
  • the outgoing voice channels on line pairs 55a-h , 57a-h are combined in modulators 63a-h with carrier frequency signals provided by plural oscillators 65a-h, in a manner identical to that utilized at the central office stations .
  • Figure 2C provides a chart of the frequency spectrum utilized by the carrier system of Figure 1. It will be noted that 16 different carrier frequencies are utilized for two-way communication between the 8 central office channels CO1-CO8 and their corresponding 8 subscriber station channels SUB1-SUB8. Thus, voice signals transmitted from central office communication channel CO1 modulate a 76 kilohertz carrier wave to provide the carrier signal 67a of Figure 2C, upper side band 69a, and lower side band 71a. Incoming voice signals for this channel COl produced by subscriber station SUB1 are provided on carrier signal 73a, upper side band 75a, and lower side band 77a. It will be recognized, of course, that the diagram of Figure 2C does not show the actual characteristics of the signal, but is only schematically representative of the carrier signals and their side bands to show the frequency locations thereof. The actual frequency content of the modulated signals will be described in detail below.
  • each channel Utilizing the same alphabetic designation for each channel (a for CO1, SUB1; b for CO2, SUB2, etc), the location of the remaining carrier frequencies and side bands are shown in Figure 2C.
  • the outgoing carrier signal from the central office channel CO1-CO8 is designated 67a-h and the incoming carrier signal to the central office channel CO1-C08 is designated 73a-h, respectively.
  • each of the voice channels is provided with 3 KHz modulation band width, providing a 6 KHz bandwidth, forced by a side band pair
  • a low pass filter 87 is connected at the cable pair 27 ,29 on the subscriber station end of the repeater 35 to pass the carriers 73a-h and associated side bands 75a-h and 77a-h to an amplifier 89 , the output of which is connected to the cable pair 27 , 29 at the central office side of the repeater 35.
  • Figure 2B shows the pass band characteristics 81a of the high pass filter 81 of Figure 3 and the pass band characteristics 87a of the low-pass filter 87 of Figure 3. It will be seen from Figure 2B that the filters 81 and 87 are mutually exclusive in their pass band frequency ranges so that, for example , the output signals from the amplifier 83 of Figure 3 cannot be amplified in the amplifier 89.
  • the frequency arrangement of Figure 2 thus permits this bi-directional amplification in the repeaters 35 without interference between the channels in the two directions through the simple use of low and high pass filters 87 , 81 , respectively.
  • the repeater 35 must be constructed to pass DC power voltage from the sources 31 , 33. This may be accomplished by making the amplifier 89 DC coupled, and assuming that the low pass filter 87 will pass DC signals.
  • this solution is not entirely practical. Initially, this solution would require higher frequencies to be utilized. That is, the carrier 67h and its side bands would have to be increased in frequency, increasing the attenuation over long cable lengths and requiring additional repeaters 35, or more sensitive amplifiers with more complex filtering, within the system.
  • the standards which govern carrier multiplexed telephone communications require that the outgoing and incoming signals to be separated at approximately 70 KHz.
  • the problem described above can be alleviated by reducing the number of channels, but only at the expense of higher cost per channel transmitted.
  • this filter is utilized at central office station CO7 ( Figure 1), to receive only the upper side band 75g, for example, of the 8-kilohertz carrier 73g, and is used, in addition, at the central office station CO8 to pass only the lower side band 77h of the 64-kilohertz carrier frequency signal 73h; and, finally, at subscriber station SUB1, to pass only the upper side band 69a of the 76-kilohertz carrier frequency signal.
  • 67a phase cancellation problems within the system, described in reference to Figures 1 and 2, will be eliminated.
  • one side band of the signal is substantially entirely removed at the receiver filter. Phase cancellation, due to side band phase reversal, caused by the repeaters 35 and attenuation of the cable pair 27,29, cannot occur.
  • a true vestigial filter as shown by the plot 103, will attenuate the carrier frequency by 6 db, while passing virtually all of one side band and only a vestige of the remaining side band.
  • Those signals provided by the vestige side band, at the low modulation frequencies supplement the attenuated signals of the passed side band to provide virtually flat response.
  • This system suffers from problems similar to those described in reference to a single side band receiver, in that the slope of the filter curve 103 at the carrier frequency is still extremely steep.
  • the carrier frequency of the filter drifts slightly, due to aging or environmental causes, significant distortion, particularly at low modulation frequencies, will be introduced.
  • Figure 4 also includes a plot 105 of a novel modified vestigial side band filter which not only solves the phase cancellation problems, discussed above, but at the same time reduces the susceptibility of the system to environmental and aging drift.
  • carrier multiplexing systems employing a filter which provides plot 105 have significant advantages. This filter will be described in detail below.
  • the plot 105 does not produce a flat pass band response, a matter which will be dealt with in the description below, but does provide a relatively gentle slope at the point 107 where the curve passes through the carrier frequency. Because of this gentle slope characteristic at the carrier frequency , distortion caused by frequency drift of the filter, or of the carrier frequency itself , are minimized.
  • a larger portion of the signal information is carried by the reduced side band than with either true vestigial side band 103 or single side band reception 101.
  • the system of Figure 1 utilizing the modified vestigial side band characteristic 105 , provides double side band modulation from all modulators , but attenuates the incoming signal at the subscriber station SUB1 and central office stations CO7 and CO8 , uti lizing a filter having an attenuation characteristic 105.
  • the lower side band 77g, 71a is attenuated, so that the filter plot 105 is as shown in Figure 4.
  • the plot 105 is reversed, the lower side, ban d 77h providing the main received side band , and the upper side band 75h providing the attenuated side band for reception.
  • Plot 111 of Figure 4 shows the effective modulation signal pass band for a receiver filter having the attenuation characteristics of plot 105. It will be noted that the pass band does not provide a flat response, but rather is attenuated at the higher modulation frequencies , particularly between 2 kilohertz and 3 kilohertz. While thi s might appear to provide a disadvantage of the modified vestigial band pass filter utilized in the present invention, it actually can be utilized in an overall circuit to provide an advantage , as described in more detail below. A review of the plots 105 and 111 shows that this modified vestigial band pass receiver filter provides essentially AM double side band reception between approximately 0 and 1.5 kilohertz , and essentially single side band reception between approximately 1.
  • the present invention utilizes a post detector filter 113 at the output of the demodulator electronics 114 in each demodulator 43 , 61 , utilizing modified vestigial side band filtering at the filter 37 , 59.
  • Figure 7 provides a plot 115 of the theoretical pass band characteristic for the post detector filter 113.
  • This filter 113 has an essentially flat pass band from 0 to 3 kilohertz , and a very sharp roll-off 117 at 3 kilohertz.
  • Unfortunately such a theoretical filter is virtually impossible to build, and most such filters have an attenuation characteristic shown by the plot 119 , where the roll-off at 3 kilohertz is more gentle.
  • the carrier signal is input at lines 121 and 123 and amplified in transistor 125.
  • the filter includes shunt resistance elements 127 and 129, shunt variable inductance elements 131, 133. and 135, and shunt capacitors 137, 139, 141, 143, 145, 147, and 149.
  • series capacitors 151, 153, 155, and 157, along with series resistors 161 and 163, as well as series variable inductors 165 and 167 are provided.
  • Figure 5 shows an exemplary design for the filters in the various channels of the circuit of Figure 1, but that those skilled in the art can provide the modified vestigial filtering of the present invention for any selected carrier frequency if they are provided with the information from the plot 105 of Figure 4.
  • the elements described above provide a band pass filter 181 which is appropriately tuned for filters 37f, 37h, and 59a to provide the band pass response of plot 105 of Figure 4.
  • a notch filter 183 may be combined with the band pass filter 181 to provide the modified vestigial response of plot 105.
  • This filter 183 includes capacitors 185 and 187 and variable inductance 189. Additional amplification is provided in the circuit by transistors 189 and 191.
  • the following chart shows the values of the elements in the filters 181 and 183 for each of the filters 37a through 37h of Figure 1 in this exemplary embodiment. From this information, the values for the remaining filters 59a through 59h are current.
  • the filter characteristic 105 ( Figure 4) is provided at the low-frequency carrier 73g ( Figure 2C) by combining, in series, a band pass filter 181 and notch filter 183 the notch of the notch filter being placed at 5 KHz, 3 KHz below the carrier frequency 73g.
  • the carrier frequency is high enough that it is possible to implement the band pass characteristic 105 ( Figure 4) by detuning the poles of the band pass filter 181 on the modified vestigial side band side of the band pass filter characteristic.
  • This modification is provided by the circuit values in the table above, with the variable inductances being tuned for each of the modified vestigial channels to approximate, as closely as possible, the plot 105 of Figure 4.
  • the invention contemplated provides a multiple frequency modulated carrier system in which modified vestigial side band filters are utilized at the receiving stations for those channels which exhibit phase cancellation problems due to the filter characteristic of the repeater 35 or due to line attenuation of the cable pair 27,29.
  • all of the modulators 19 and 63 provide double side band AM modulated output signals so that the vestigial characteristics of the receiver filters 37,59 are utilized, not to closely space the carriers 67,73, but rather to avoid phase cancellation problems on certain channels.
  • the implementation of the modified vestigial reception characteristics 105 of Figure 4 is well within the skill of filter designers at any carrier frequency, the detuning of band pass filter poles and use of a notch filter in combination with a band pass filter provided as one possible implementation only.

Abstract

A communication transmission system includes one or more modulated carrier communication channels in which a receiver has a modified vestigial side band filter (37, 59) for eliminating phase cancellation. Accurate design of the modified vestigial side band filter at the receivers, further reduces susceptibility to frequency drift caused by component aging and component response to environmental changes. The system has particular utility in multiple channel carrier telephone communication systems which utilize limited available band width for providing a maximum number of communication channels over an extended length communication line.

Description

MODIFIED VESTIGIAL SIDE BAND TRANSMISSION SYSTEM Background of the Invention Multiple channel analog frequency division multiplexing for use in communicating multiple simultaneous information channels is well known in the art.
The two most common modes of carrier modulation used in such systems are amplitude modulation and frequency modulation. Normal amplitude modulation is double side band, which results in the creation of two identical side bands, frequency displaced on each side of the carrier frequency by an amount identical to the modulating frequency. The strength of the side bands, in such a system, is directly proportional to the amplitude of the modulating frequency. While double side band amplitude modulation is simple and inexpensive to implement, it also inherently generatescertain disadvantages. The transmission occupies twice the band width of the highest modulating frequency, has no particular signal to noise advantage, as is exhibited in more complex transmission systems, and is subject to phase errors between the two side bands. Such modulation presents particular problems if the communication medium exhibits non-uniform phase characteristics at varying frequencies within the channel band width.
Frequency modulation for carrier multiplexed systems requires more complex and expensive equipment, and increases the signal-to-noise ratio only at the cost of wider occupied band width.
Amplitude modulation is often modified to provide single side band transmission to reduce the required band width for transmission, and involves the suppression of the carrier and one side band at the transmission. point. The signal-to-noise ratio can be made correspondingly higher. However, the equipment is much more complex than with standard amplitude modulation, particularly because the carrier must be reinjected at the receiver. Some of the complexity of single side band reception can be eliminated by transmitting both a single side band and the carrier, while suppressing the remaining side band. Such transmission, however, suffers high distortion in an environment where the carrier frequency at the receiver is subject to drift. In addition, such transmission requires an extremely accurate and costly transmission filter.
True vestigial side band transmission systems slightly attenuate the carrier frequency in comparison with a main side band, and substantially attenuate the remaining (vestigial) side band. Such systems allow some band width economy in transmission, and are used, for example, to transmit picture information for television broadcast. True vestigial side band systems, however, suffer from high amplitude distortion if the receiver tuner drifts so that the carrier frequency is not accurately placed within the receiver pass band. Furthermore, the detected signal suffers from high harmonic distortion at high modulation indices. Single side band, single side band plus carrier, and true vestigial side band transmission have classically been utilized in transmission systems to reduce the amount of band width required for transmission, so that more communication channels may occupy the same transmission band width, while the disadvantages of these modulating techniques have been reduced or eliminated through the use of expensive, complex equipment.
However, in systems where equipment cost and complexity are of significant concern, it has been typical, in the prior art, to utilize double side band amplitude modulation and to limit overall system performance to a level consistent with this modulation. These limitations are a primary design consideration, for example, in multiple channel, carrier multiplexed telephone systems operating over extended wire pairs. Such transmission systems exhibit attenuation which increases with increasing frequency, such that higher frequency transmission necessitates either higher amplitude transmission or more complex repeaters placed at more frequent intervals. The use of frequent repeater amplifiers is costly, while the use of higher signal levels requires the transmission of greater power levels which, in turn, increases the cost and losses of the system. Thus, such communication systems are essentially bandwidth limited. In addition, these systems exhibit non-linear transmission medium phase characteristics at certain carrier channels as a consequency of the use of repeater amplifiers and extremely long cable runs, so that the effective usable band width and range of the systems must be compromised with one another to form a viable transmission network at reasonable cost.
Summary of the Invention The present invention utilizes a modified vestigial receiver in a carrier multiplexed transmission system with standard double, side band AM transmitters. This does not result in a band width reduction for individual channels, but does permit channels to exist at frequencies within the pass band of the system which might otherwise be unusable. Thus, the system permits a greater number of channels to be transmitted, without increasing overall system band width, and without substantially increasing system cost or complexity. At the same time, the invention substantially reduces distortion inherent in double side band modulating systems which results from phase non-linearities in the transmission medium. In addition, the invention reduces the susceptibility of the system to distortion caused by frequency drift from component aging or environmental factors.
The system transmitters produce double side band AM signals. On selected channels, a receiver is utilized which attenuates the received carrier frequency by a smaller degree than is common with true vestigial side band transmission, but which maintains a gentle receiver filter attenuation slope at the carrier frequency. This moderate slope reduces the susceptibility of the receiver to distortion caused by frequency drift of the receiver relative to the transmitted carrier signal. Although the resulting frequency response of the receiver within its pass band is not flat, as is common in true vestigial transmissions, a post detector filter flattens the response. In fact, the use of the post detector filter in this manner actually permits greater attenuation of harmonic distortion than would otherwise be possible. This transmission technique provides double side band transmission of all modulating frequencies, and reception of low modulating frequencies in a double side band mode, while essentially single side band reception is utilized for high modulating frequencies. Because phase non-linearities in transmission media, including repeater filters, are more acute at higher carrier modulating frequencies, and a filter band edges, this system greatly reduces distortion caused by these factors.
Thus, the present invention permits the utilization of modified vestigial reception to eliminate distortion caused by phase non-linearities, while at the same time reducing the susceptibility of true vestigial transmission systems to receiver frequency drift.
Because, in certain multiple channel transmission systems, range limiting phase non-linearities exist only on some of the multiple channels, the present invention contemplates the use of the receiver filtering technique, referred to above as modified vestigial side band reception, only on certain channels, with standard AM transmission on all channels and standard AM reception on the remaining channels. Description of the Drawings
These, and other advantages, of the present invention are best understood through the following detailed description, which references the drawings, in which: Figure 1 is a block diagram schematic of the multiple channel modulated carrier transmission system of the present invention;
Figure 2A is a plot of transmission line attenuation in the system of Figure 1; Figure 2B is a plot of the attenuation characteristics of the repeater filters of Figures 1 and 3;
Figure 2C is a frequency plot showing the location of the transmission channel of the system of Figure 1 within the system, pass band;
Figure 3 is a schematic block diagram of the repeater of Figure 1;
Figure 4 provides a plot of attenuation characteristics of receiver filters within the system of Figure 1, as well as certain prior art receiver filter characteristics for comparison;
Figure 5 is a schematic diagram of a filter which may be used in the system of Figure 1 to achieve the filter characteristics of Figure 4 at selected channels within the system of Figure 1;
Figure 6 shows a schematic block diagram of a post detector filter which may be utilized to reduce harmonic distortion and flatten system pass band response; and Figure 7 is a plot of the attenuation characteristics of the post detector filter of Figure 6 along with comparison attenuation plots. Detailed Description of the Preferred Embodiment The preferred embodiment of this invention is incorporated in a frequency division multiplexed, analog carrier system for use, for example, in multiplexing multiple subscriber telephone lines on one telephone cable pair, where the subscriber stations are located at a substantial distance from the central office. Systems of this type are used to expand service where existing cables have previously limited the number of available subscriber stations or where, because of the length of the transmission cables, economic considerations justify the use of modulating electronics in preference to the installation of additional cable pairs over long cable runs. As is well known, the attenuation of such a cable pair increases with increasing frequency, and it is therefore common to modulate relatively low frequencies with the voice signal in order to limit cost by limiting the number of repeaters and the transmission power level required in the system.
Figure 1 shows a station carrier system which, by AM carrier modulation, permits the multiplexing of eight subscriber channels, each permitting two-way communication, on one cable pair. In this instance, the cable pair carries 16 carrier frequencies, 8 of which are used for transmitting voice signals from the central office to subscribers, and 8 used for transmitting voice signals from the subscribers to the central office. In the figure, the eight communication channels at the central office are designated COl through COS, each including a voice output channel on lines 11a through 11h and 13a through 13h and a voice input channel on lines 15a through 15h and 17a through 17h. As is well known, the output channel, and input channel at each station are combined in a four, wire to two wire converter (not shown).
Each of the voice input channels on lines 15a-15h and. 17a-17h are combined in a modulator 19a-19h with a carrier signal provided by a carrier oscillator 21a-21h to provide a standard, double side band AM modulated signal at the output of the modulators 19a-19h on lines 23a-23h and 25a-25h.
These output lines 23a-23h,25a-25h are summed in a summing amplifier and connected to a tranmission cable pair 27,29. The summing amplifier is not shown, but is well known in the art. In addition, the cable pair 27,29 is connected to a pair of regulated DC voltage sources 31 and 33, respectively, supplied at the central office. The DC power from the sources 31,33 is coupled through plural repeaters 35a and 35b (to be described below), so that this power can be utilized at remote subscriber stations to power the filters, modulators, demodulators, and oscillators, described below. This DC coupling along the cable pair 27,29 permits the operation of remote subscriber stations without supplemental power at these stations. It will be understood by those skilled in the art that, if the length of the cables 27,29 is extreme, such DC power is substantially attenuated by line losses, supplementary DC power may be supplied.
Each of the central office stations COl through C08 additionally includes a filter 37a through 37h connected by a pair of lines 39a through 39h and 41a through 41h to the main cable pair 27,29 through a transformer. The use of such a transformer is well known, and is not shown. These filters 37a-h selectively filter incoming communication channels to provide a signal to plural demodulators 43a through 43h which provide the incoming voice signals on lines 11a-h and 13a-h.
The modulated carrier signals used for communication between the central office and subscriber channels are attenuated by the cable pair 27, 29 and thus, for long cable runs , plural repeaters , such as the repeaters 35a and 35b , may be utilized in the system to amplify signals on lines 27, 29 utilizing power supplied by the DC voltage sources 31 and 33 at various locations along the cable pair 27, 29.
The subscriber stations may be located wherever required along the cable pair 27 ,29 , typically at substantially remote distances from the central office. As an example, it is typical to utilize a repeater 35 , approximately every five miles along the cable pair 27 ,29 to amplify the signals and thus avoid loss of the signals altogether due to cable attenuation. This amplification is accomplished utilizing the plus and minus 135-volt DC power on the cable pair 27 ,29 from the sources 31 , 33.
In the example shown in Figure 1 , plural subscriber stations. SUB1 through SUB3 are connected in parallel to the line pair 27 ,29 at a location between the repeaters 35a and 35b. Additional subscriber stations SUB4 through SUB8 are located even more remote from the central office, beyond the repeater 35b.
In a configuration similar to that described for the central office communication channels CO1-C08 , each of the subscriber stations includes an incoming voice line pair 51a-h and 53a-h and outgoing voice line pair 55a-h and 57a-h. The incoming voice signals are provided by filtering the incoming modulated carrier signals on the cable pair 27 , 29 utili zing a filter 59 a-h and, once a carrier and its side bands are thus selected, demodulating the voice signal , using a demodulator 61a-h. The outgoing voice channels on line pairs 55a-h , 57a-h are combined in modulators 63a-h with carrier frequency signals provided by plural oscillators 65a-h, in a manner identical to that utilized at the central office stations . Figure 2C provides a chart of the frequency spectrum utilized by the carrier system of Figure 1. It will be noted that 16 different carrier frequencies are utilized for two-way communication between the 8 central office channels CO1-CO8 and their corresponding 8 subscriber station channels SUB1-SUB8. Thus, voice signals transmitted from central office communication channel CO1 modulate a 76 kilohertz carrier wave to provide the carrier signal 67a of Figure 2C, upper side band 69a, and lower side band 71a. Incoming voice signals for this channel COl produced by subscriber station SUB1 are provided on carrier signal 73a, upper side band 75a, and lower side band 77a. It will be recognized, of course, that the diagram of Figure 2C does not show the actual characteristics of the signal, but is only schematically representative of the carrier signals and their side bands to show the frequency locations thereof. The actual frequency content of the modulated signals will be described in detail below.
Utilizing the same alphabetic designation for each channel (a for CO1, SUB1; b for CO2, SUB2, etc), the location of the remaining carrier frequencies and side bands are shown in Figure 2C. In each case, the outgoing carrier signal from the central office channel CO1-CO8 is designated 67a-h and the incoming carrier signal to the central office channel CO1-C08 is designated 73a-h, respectively. It can be seen that each of the voice channels is provided with 3 KHz modulation band width, providing a 6 KHz bandwidth, forced by a side band pair
69a-h, 71a-h; 75a-h, 77a-h surrounding the carriers 67a-h, 73a-h, respectively. The upper side band 69a-h, 75a-h of each carrier (69c, for example) is separated from the lower side band 71a-h, 77a-h (71d, for example) of the next adjacent carrier by a 2 KHz guard band.
All of the subscriber station transmit channels are provided at frequencies below 70 KHz, while all of the central office transmit channels are located at frequencies above 70 KHz, in order to permit satisfactory operation of the repeater amplifiers 53a and 53b in a manner described below.
It will be recognized that the modulators 19a-h , 63a-h may include appropriate output filters in order to frequency limit the side bands 69 , 71, 75 , 77 to 3 KHz and thus permit the guard bands , shown in Figure 2C, to prohibit cross-talk between the communication channels. The filters 59a-h, 37a-h select "the appropriate carriers 67a-h, 73a-h and their related side bands for selective demodulation by the demodulators 61a-h , 43a-h, respectively. Thus , each of the communication channels is separately carried on a distinct carrier frequency to provide channel separation in the system.
It will be recognized from the preceding description that the repeaters 35a and 35b , and other repeaters which may be added to the system to extend the cable pair 27,29 , must be capable not only of communicating voice modulated carrier signals in both directions , but also of coupling the DC voltage from the sources 31 ,33 which is used to power all of the electronics outside of the central office location. An exemplary repeater 35 is shown in Figure 3.
This repeater 35 includes a high pass filter 81 connected to the line pair 27 , 29 at the central office end of the repeater 35. This high pass filter 81 will pass only the carriers 67a-h and side bands 69a-h, 71a-h in the upper half of the frequency spectrum of Figure 2C, that is , the central office transmit channels . These signals are amplified in an amplifier 83 and connected to the cable pair 27 ,29 at the subscriber station side of the repeater 35. Similarly , a low pass filter 87 is connected at the cable pair 27 ,29 on the subscriber station end of the repeater 35 to pass the carriers 73a-h and associated side bands 75a-h and 77a-h to an amplifier 89 , the output of which is connected to the cable pair 27 , 29 at the central office side of the repeater 35. Figure 2B shows the pass band characteristics 81a of the high pass filter 81 of Figure 3 and the pass band characteristics 87a of the low-pass filter 87 of Figure 3. It will be seen from Figure 2B that the filters 81 and 87 are mutually exclusive in their pass band frequency ranges so that, for example , the output signals from the amplifier 83 of Figure 3 cannot be amplified in the amplifier 89. The frequency arrangement of Figure 2 thus permits this bi-directional amplification in the repeaters 35 without interference between the channels in the two directions through the simple use of low and high pass filters 87 , 81 , respectively.
The repeater 35 must be constructed to pass DC power voltage from the sources 31 , 33. This may be accomplished by making the amplifier 89 DC coupled, and assuming that the low pass filter 87 will pass DC signals.
Alternatively , the repeaters 35 may include a parallel circuit filtered to carry DC signal levels but to reject AC signals at frequencies even well below the lowest frequencies within the lower side band 77g of Figure 2C. Figure 2A shows the attenuation characteristics 91 of the cable pair 27 , 29 with frequency. Although the attenuation increases gradually with increasing frequency . the curve 91 is fairly uniform above approximately 13 KHz. Below 13 KHz , in the range designated generally 93 in Figure 2A, relatively drastic slope changes occur in the characteristic curve 91. These slope changes in the region 93 , along with the effects of the pas s band characteristics 81a and 87a of the repeaters 35 , shown in Figure 2B , particularly in the regions 95 and 97 (the roll-off portion of the filters 81 , 87) generate certain problems in the transmission of modulated carrier signals in the system of Figure 1. While the use of more overall band width could alleviate these problems, permitting the lowest frequency carrier 73g to be placed at a higher frequency and increasing the guard band around 70 KHz to move the side bands 75h and
71a further away from the roll-off characteristics of the filters 81 and 87, this solution is not entirely practical. Initially, this solution would require higher frequencies to be utilized. That is, the carrier 67h and its side bands would have to be increased in frequency, increasing the attenuation over long cable lengths and requiring additional repeaters 35, or more sensitive amplifiers with more complex filtering, within the system. In addition, the standards which govern carrier multiplexed telephone communications require that the outgoing and incoming signals to be separated at approximately 70 KHz. In addition, the problem described above can be alleviated by reducing the number of channels, but only at the expense of higher cost per channel transmitted.
Thus, the present invention, utilizing modified vestigial band pass reception, is designed to permit high quality voice transmission in two directions on 8 channels within these constraints and without unnecessarily increasing the complexity of repeaters 35 utilized in the system. As a result, the cost, of the overall system is reduced to the greatest extent possible. In this regard, it should be recognized that, although single side band transmission permits a closer spacing of the carrier frequencies 67 and 73, such transmission substantially increases both the complexity and cost of the transmission and receiving electronics. In contrast, the present invention utilizes relatively inexpensive double side band AM modulated transmission equipment and provides a novel solution for alleviating distortion in channels a, g, and h caused by non-linear cable attenuation in the region 93 of Figure 2A and non-linear characteristics in the regions 95 and 97 of Figure 2B. The integrity of all system channels is therefore maintained while the cost of the system is kept at a moderate level.
The drastic slope changes in the region 93 of Figure 2A introduce, as is well known in the art, phase non-linearities in this same region. These phase non-linearities over extended lengths of the cable pair27,29 can result in a phase reversal between the lower side band 77g and upper side band 73g. At higher modulation frequencies, this phase reversal can cause cancellation of the upper and lower side band signal portions, and resulting distortion, attenuation, and possible loss of higher frequency modulation signals. In order to make the guard band around 70 KHz as narrow as possible in order to permit more modulated carrier channels to be utilized, the roll-off of the filters 81 and 87 of Figure 3 must be made extremely sharp. Thus, high order filters are used which produce, as an undesirable by-product, substantial phase non-linearities in the filtered signal at the band edges. Because the roll-off, as can be seen in Figure 2B, occurs primarily in the area of the side bands 71a and 75h, there can be a phase reversal, particularly at the higher modulation frequencies, leading to distortion and cancellation in channels, a and h. Thus, the lower side, band modulation at high modulation frequencies can be shifted so that it is 180 degrees out of phase with the upper side band at the same frequency, leading to cancellation of the modulation signal. As indicated previously, the equipment required to transmit single side band or true vestigial side band signals is complex and expensive. Thus, it is advantageous in this system to transmit double side band All signals. In order to alleviate the phase cancellation and distortion problems, which exist at the low frequency end of the transmission spectrum, and in the area close to the guard band between subscriber sation transmit channels and central office transmit channels due to the repeater band splitting filters, one solution would be to use single side band reception equipment to receive the double side band AM modulated signal. While this solution eliminates a possibility of side band cancellation with phase shift, and thus provides a satisfactory solution, it introduces problems of its own. Referring to Figure 4, there is shown a plot
101 of a theoretical single side band receiver filter response curve. Particular note should be taken of the fact that, in Figure 4, the frequencies offset from the carrier frequency are shown as +/- on the right side of the chart and -/+ on the left side of the chart.
Thus, the chart, as shown, provides, in the case of the single side band filter 101, reception of the upper side band alone and corresponds directly to the higher frequencies being on the right side of the chart. If the higher frequencies are on the left side of the chart, then the plot 101 is a representation of a single side band reception filter receiving only the lower side band. As mentioned previously, the theoretical single side band filter, having an attenuation curve as plotted at 101, will pass substantially all of one side band up to approximately carrier frequency plus 3 KHz. Such a filter is a compromise, since it is desired to attenuate the carrier frequency to the greatest extent possible, while at the same time, permitting the low frequency modulation signals to pass through the filter to the greatest extent possible. Thus, the plot 101 has a very steep roll-off through the carrier frequency. It will be appreciated that, if this filter is utilized at central office station CO7 (Figure 1), to receive only the upper side band 75g, for example, of the 8-kilohertz carrier 73g, and is used, in addition, at the central office station CO8 to pass only the lower side band 77h of the 64-kilohertz carrier frequency signal 73h; and, finally, at subscriber station SUB1, to pass only the upper side band 69a of the 76-kilohertz carrier frequency signal. 67a , phase cancellation problems within the system, described in reference to Figures 1 and 2, will be eliminated. Thus, at certain receiver stations, one side band of the signal is substantially entirely removed at the receiver filter. Phase cancellation, due to side band phase reversal, caused by the repeaters 35 and attenuation of the cable pair 27,29, cannot occur.
However, due to the extremely fast roll-off of the filter curve 101 at the carrier frequencies, frequency drift of the filters 59a, 37h, or 37g, in such an implementation, will introduce substantial signal distortion. Thus, referring to Figure 4, a shift in the center frequency of the filter of only 100 cycles will result in approximately 4 db signal level change at the carrier frequency and at low modulation frequencies. Center frequency drift, due to aging and environmental response of components within the filters, thus provides undesirable distortion due to drift in the filter frequency. Phase cancellation problems may also be cured with a true vestigial filter having a response curve shown at 103 in Figure 4, utilized in the same locations as suggested above for the single side band filter, that is, filters 59a, 37h, and 37g. A true vestigial filter, as shown by the plot 103, will attenuate the carrier frequency by 6 db, while passing virtually all of one side band and only a vestige of the remaining side band. Those signals provided by the vestige side band, at the low modulation frequencies, supplement the attenuated signals of the passed side band to provide virtually flat response. This system, however, suffers from problems similar to those described in reference to a single side band receiver, in that the slope of the filter curve 103 at the carrier frequency is still extremely steep. Thus, if the carrier frequency of the filter drifts slightly, due to aging or environmental causes, significant distortion, particularly at low modulation frequencies, will be introduced.
It should be understood that, in accordance with the present invention, either the single side band filter, shown as plot 101 of Figure 4, or true vestigial side band filter, as shown by the plot 103, may be used for filters 59a, 37h, and 37g in the system of Figure 1, the remaining filters of Figure 1 being double side band filters. This solution to the phase cancellation problem will, however, introduce the distortion problem described above, and is thus usable only in systems where temperature and aging drift of filter components can be kept to a minimum. It will be understood that the single side band filter plot 101 and vestigial side band filter plot 103 are provided by filters which are well known in the art and which may be used at thelocations within the circuit of Figure 1, described above, to eliminate phase cancellation problems, without other substantial modification to the AM carrier modulated system.
Figure 4 also includes a plot 105 of a novel modified vestigial side band filter which not only solves the phase cancellation problems, discussed above, but at the same time reduces the susceptibility of the system to environmental and aging drift. Thus, carrier multiplexing systems employing a filter which provides plot 105 have significant advantages. This filter will be described in detail below. The plot 105 does not produce a flat pass band response, a matter which will be dealt with in the description below, but does provide a relatively gentle slope at the point 107 where the curve passes through the carrier frequency. Because of this gentle slope characteristic at the carrier frequency , distortion caused by frequency drift of the filter, or of the carrier frequency itself , are minimized. A larger portion of the signal information is carried by the reduced side band than with either true vestigial side band 103 or single side band reception 101. As in the case of the description above , with reference to single side band and true vestigial filtering, it wi ll be understood that the system of Figure 1 utilizing the modified vestigial side band characteristic 105 , provides double side band modulation from all modulators , but attenuates the incoming signal at the subscriber station SUB1 and central office stations CO7 and CO8 , uti lizing a filter having an attenuation characteristic 105.
In the case of filters 37g and 59a, the lower side band 77g, 71a is attenuated, so that the filter plot 105 is as shown in Figure 4. In the case of filter 37h, however, the plot 105 is reversed, the lower side, ban d 77h providing the main received side band , and the upper side band 75h providing the attenuated side band for reception.
Plot 111 of Figure 4 shows the effective modulation signal pass band for a receiver filter having the attenuation characteristics of plot 105. It will be noted that the pass band does not provide a flat response, but rather is attenuated at the higher modulation frequencies , particularly between 2 kilohertz and 3 kilohertz. While thi s might appear to provide a disadvantage of the modified vestigial band pass filter utilized in the present invention, it actually can be utilized in an overall circuit to provide an advantage , as described in more detail below. A review of the plots 105 and 111 shows that this modified vestigial band pass receiver filter provides essentially AM double side band reception between approximately 0 and 1.5 kilohertz , and essentially single side band reception between approximately 1. 5 kilohertz and 3 kilohertz modulation frequencies . Since phase cancellation problems exist primarily at higher modulation frequencies , this filter thus eliminates such phase cancellation , while at the same time providing the gentle slope characteristic described above at the carrier frequency. Because single side band reception occurs only above approximately 1.5 KHz, and because distortion resulting from such single side band reception is likely to result in harmonic distortion, the lowest frequency distortion to be expected will be the first harmonic of approximately 2 KHz modulation signals , or at 4 KHz. Referring to Figure 6 , the present invention utilizes a post detector filter 113 at the output of the demodulator electronics 114 in each demodulator 43 , 61 , utilizing modified vestigial side band filtering at the filter 37 , 59. As described above , the circuit of Figure 6 is utilized in the system of Figure 1 for the demodulators 61a, 43h, and 43g. Figure 7 provides a plot 115 of the theoretical pass band characteristic for the post detector filter 113. This filter 113 has an essentially flat pass band from 0 to 3 kilohertz , and a very sharp roll-off 117 at 3 kilohertz. Unfortunately , such a theoretical filter is virtually impossible to build, and most such filters have an attenuation characteristic shown by the plot 119 , where the roll-off at 3 kilohertz is more gentle. As is well recognized in the filter design art, in order to make the post detector filter 113 more closely approximate the theoretical curve 117 , it is necessary to introduce non-linearities in the pass band, resulting in a filter which provides a pass band attenuation pattern , as shown in plot 121 , this pass band attenuating low modulation frequencies to a greater extent than those modulation frequencies between 1.5 and 3 kilohertz. This pass band characteristic 121, for the post detector filter 113, offsets the non-linearity in the pass band characteristic of the plot 111 of Figure 5 for the vestigial filter 37,59, resulting in a relatively flat output pass band, characteristic. Thus, what appears to be a disadvantage in the vestigial filter characteristic plotted in Figure 4 at 111, actually results in the ability to provide a more discriminating post detector filter 113.
The use of the sharper post detector filter 113 plotted at 121 permits virtual elimination of harmonic distortion from the received voice channels.
Figure 5 shows a circuit diagram of the filter used in Figure 1 for filters 37a through 37h and 59a through 59h. For channels 59b through 59h and 37a through 37f, the components of this filter are selected to provide band pass filtering of +/- 3 kilohertz around the received carrier, to generate double side band AM reception. For filters 59a and 37g and h, however, as described above, the filter elements are selected to provide modified vestigial band pass characteristics in accordance with plot 105 of Figure 5. It has also been found convenient to provide modified vestigial band pass characteristics, utilizing the lower side band 77f as the main side band and the upper side band 75f as the modified vestigial side band, for the filter 37f at central office channel CO6 for compatibility with prior systems.
In Figure 6, the carrier signal is input at lines 121 and 123 and amplified in transistor 125.
The filter includes shunt resistance elements 127 and 129, shunt variable inductance elements 131, 133. and 135, and shunt capacitors 137, 139, 141, 143, 145, 147, and 149. In addition, series capacitors 151, 153, 155, and 157, along with series resistors 161 and 163, as well as series variable inductors 165 and 167 are provided. It will be understood that Figure 5 shows an exemplary design for the filters in the various channels of the circuit of Figure 1, but that those skilled in the art can provide the modified vestigial filtering of the present invention for any selected carrier frequency if they are provided with the information from the plot 105 of Figure 4. The elements described above provide a band pass filter 181 which is appropriately tuned for filters 37f, 37h, and 59a to provide the band pass response of plot 105 of Figure 4. In addition, for the filter 37g, a notch filter 183 may be combined with the band pass filter 181 to provide the modified vestigial response of plot 105. This filter 183 includes capacitors 185 and 187 and variable inductance 189. Additional amplification is provided in the circuit by transistors 189 and 191. The following chart shows the values of the elements in the filters 181 and 183 for each of the filters 37a through 37h of Figure 1 in this exemplary embodiment. From this information, the values for the remaining filters 59a through 59h are current.
PART # Filter 37a Filter 37b Filter 37c Filter 37d
RESISTOR 127 4.53K 9.76K 5.23K 9.09K " 129 NOT USED 1 Meg 1 Meg 1 Meg
" 161 10 JUMPR JUMPR JUMPR
" 163 JUMPR JUMPR JUMPR JUMPR
INDUCTOR 131 15 15 4 4
" 133 15 15 4 4
" 135 15 15 4 4
" 165 15 15 4 4 " 167 15 15 4 4 " 189 NOT USED NOT USED NOT USED NOT USED
CAPACITOR 137 4101 2060 4657 3152 " 139 10,000 4840 10,637 7,013 " 141 10,770 5061 11,000 7310 " 143 2164 1501 3759 2698 " 145 10,770 5061 11,000 7310 " 147 10,000 4840 10,637 7013
" 149 4126 2060 4657 3187 " 151 4010 1177 1746 880
" 153 3137 860 1350 680 " 155 3137 880 1350 680
" 157 3981 1177 1746 880 " 185 NOT USED NOT USED NOT USED NOT USED
" 187 NOT USED NOT USED NOT USED NOT USED
Resistors in ohms
Capacitors in pico farads
Inductors in milli henries unless otherwise noted PART # Filter 37e Filter 37f Filter 37g Filter 37h
RESISTOR 127 10.7K 60.4K 11.3K 7.5K " 129 1 Meg 1 Meg NOT USED NOT USED
" 161 JUMPR JUMPR 115 JUMPR
" 163 JUMPR JUMPR JUMPR 56.2
INDUCTOR 131 4 1.277 122 1.277 " 133 4 1. 27 122 1.27 " 135 4 1.27 122 1.27 " 165 4 1.27 122 1.27 " 167 4 1.27 122 1.27 " 189 NOT USED NOT USED 122 NOT USED
CAPACITOR 137 2293 5350 1560 4320 " 139 4, 972 11, 300 3 ,421 9 ,100 " 141 5147 11,300 4101 9100 " 143 2024 4972 288 4101
" 145 5147 11 ,300 4101 9100
" 147 4972 16,900 3421 8760 " 149 2293 NOT USED 1560 4191 " 151 541 804 2799 541 " 153 400 600 2149 427 " 155 400 600 2164 389
" 157 541 JMPR 2756 680 " 185 NOT USED NOT USED 1942 NOT USED " 187 NOT USED NOT USED 3812 NOT USED
Resistors in ohms
Capacitors in pico farads
Inductors in milli henries, unless otherwise noted In this implementation, it will be seen that the filter characteristic 105 (Figure 4) is provided at the low-frequency carrier 73g (Figure 2C) by combining, in series, a band pass filter 181 and notch filter 183 the notch of the notch filter being placed at 5 KHz, 3 KHz below the carrier frequency 73g. In the remaining vestigial band pass filters 37f, 37h, and 59a (Figure 1), the carrier frequency is high enough that it is possible to implement the band pass characteristic 105 (Figure 4) by detuning the poles of the band pass filter 181 on the modified vestigial side band side of the band pass filter characteristic. This modification is provided by the circuit values in the table above, with the variable inductances being tuned for each of the modified vestigial channels to approximate, as closely as possible, the plot 105 of Figure 4.
While an exemplary embodiment has been shown for the filters, it should be recognized that the invention contemplated provides a multiple frequency modulated carrier system in which modified vestigial side band filters are utilized at the receiving stations for those channels which exhibit phase cancellation problems due to the filter characteristic of the repeater 35 or due to line attenuation of the cable pair 27,29. In this system, all of the modulators 19 and 63 provide double side band AM modulated output signals so that the vestigial characteristics of the receiver filters 37,59 are utilized, not to closely space the carriers 67,73, but rather to avoid phase cancellation problems on certain channels. The implementation of the modified vestigial reception characteristics 105 of Figure 4 is well within the skill of filter designers at any carrier frequency, the detuning of band pass filter poles and use of a notch filter in combination with a band pass filter provided as one possible implementation only.

Claims

1. A transmission system providing multiple modulated carrier communication channels on a single transmission medium, comprising: plural transmitters, each generating double side band AM modulated communication signals at different carrier frequencies; and plural receivers, each tuned to one of said different carrier frequencies, at least one of said plural receivers attenuating one of said double side bands more than the other of said side bands to eliminate side band phase cancellation.
2. A transmission system, as defined in Claim 1, wherein said transmission medium exhibits phase nonlinearities at certain frequencies, said one of said plural receivers tuned to a carrier frequency at which said medium exhibits said nonlinear phase characteristics.
3. A transmission system, as defined in Claim 2, wherein said transmission medium exhibits nonlinear phase characteristics at plural separated frequencies, and wherein plural of said receivers, which attenuate one of said double side bands more than the other of said double side bands, are utilized to receive different carrier frequencies at said plural separated frequencies.
4. A transmission system, as defined in Claim 1, wherein at least one of said plural receivers receives full double side band AM modulated communication signals..
5. A transmission system, as defined in Claim 1, wherein said one of said plural receivers provides substantially double side band reception at modulation frequencies below a first predetermined frequency, and substantially single side band reception at modulation frequencies above a second predetermined frequency.
6. A transmission system, as defined in Claim 1, wherein said one of said plural receivers attenuates the received carrier frequency by approximately 3.5 db.
7. A transmission system, as defined in Claim 1, wherein said one of said plural receivers provides an attenuation slope at the received carrier frequency which is selected to avoid distortion caused by frequency drift.
8. A transmission system, as defined in Claim 1, wherein said one of said plural receivers includes a band pass filter, the pass band of which extends on both sides of the received carrier frequency, the poles on one side of the pass band having a relatively lower Q than the poles on the other side of the pass band.
9. A transmission system, as defined in Claim 1, wherein said one of said plural receivers includes a band pass filter providing a pass band which extends above and below the received carrier frequency by a predetermined frequency amount, and a notch filter, the notch of which is frequency positioned adjacent one edge of said band pass filter.
10. A method of carrier multiplexing multiple communication channels on a single communication medium, comprising: transmitting said multiple channels as double side band AM modulated carrier signals having carriers at different frequencies; and avoiding communication medium induced distortion by receiving at least some modulation, frequencies of at least one of said multiple channels as a single side band AM modulation signal.
11. A method of carrier multiplexing, as defined in Claim 10, additionally comprising: receiving another one of said multiple channels as a double side band AM modulation signal.
12. A method of carrier multiplexing, as defined in Claim 11, wherein said one of said multiple channels is. selected to receive a carrier frequency at which said single communication medium exhibits nonlinear phase, characteristics.
13. A method of carrier multiplexing, as defined in Claim 10, wherein said avoiding step comprises receiving said modulation frequencies in a manner which provides a non-flat pass band response to modulation frequencies.
14. A method of carrier multiplexing, as defined in Claim 10, wherein said avoiding step avoids medium induced distortion, including that produced by repeaters, in said communication medium.
15. A method of carrier multiplexing, as defined in Claim 10, wherein said transmitting step comprises transmitting said multiple channels as double side band AM modulated carrier signals which do not overlap within the frequency spectrum.
16. A receiver filtering method for use with a carrier multiplexed, double side band transmission, comprising: attenuating a first side band to a greater extent than a second side band at frequencies displaced from the carrier by less than a first amount; essentially eliminating said first side band, in comparison with said second side band, at frequencies displaced from the carrier by more than a second amount; and maintaining the slope of said filter at said carrier sufficiently gentle to avoid frequency drift induced distortion.
17. A receiver filtering method, as defined in Claim 16, additionally comprising: attenuating said carrier by approximately 3.5 db.
18. A receiver filtering method, as defined in Claim 16, additionally comprising: generating a non-flat modulation frequency pass band.
19. A receiver filtering method, as defined in Claim 18, additionally comprising: demodulating said carrier multiplexed transmission; and post demodulation filtering said carrier multiplexed transmission to generate a flat modulation frequency pass band response.
20. A receiver filtering method, as defined in Claim 16, wherein said first amount is approximately 1.5 kilohertz and wherein said second amount is approximately 2 kilohertz.
21. A receiver filtering method, as defined in Claim 16, wherein said carrier multiplexed double side band transmission is carried by a nonlinear transmission medium and wherein said attenuating, eliminating, and maintaining steps are applied to frequency transmissions wherein said medium has nonlinear phase characteristics.
22. A method of designing a carrier multiplexed, multiple channel transmission system, for use with a transmission medium having nonlinear phase characteristics comprising: selecting carrier frequencies for double side band AM transmission of each of said multiple channels; determining the frequencies at which said transmission medium exhibits acute nonlinear phase characteristics; designing first double side band AM receivers for frequencies at which said transmission medium does not exhibit acute nonlinear phase characteristics; and designing second receivers which attenuate one side band more than the other side band for said frequencies at which said transmission medium exhibits acute nonlinear phase characteristics.
23. A method of designing a carrier multiplexed, multiple channel transmission system, as defined in Claim 22, additionally comprising: maintaining the attenuation slope of said receivers sufficiently gradual at the received carrier frequency to avoid frequency drift produced distortion.
24. A method of designing a carrier multiplexed, multiple channel transmission system, as defined in Claim 22, wherein said second designing step provides receiver attenuation which permits essentially double side band reception below a first modulation frequency and essentially single side band reception above a second modulation frequency.
25. A method of designing a carrier multiplexed, multiple channel transmission system, as defined in Claim 22, wherein said transmission medium includes a repeater having a repeater filter, said second receiver designing step being utilized for receivers operating at frequencies adjacent the cut-off point of said repeater filter.
26. A method of designing a carrier multiplexed, multiple channel transmission system, as defined in Claim 22, wherein said transmission medium includes cables having nonlinear phase characteristics at low transmission frequencies, said second receiver designing step being utilized at said low transmission frequencies.
27. A receiver filter for use with a double side band, AM modulated carrier signal in a carrier multiplexed transmission system, comprising: means for providing a pass band frequency displaced on both sides of said carrier signal; and means for attenuating said double side band, AM modulated carrier to a greater extent at frequencies within said pass band displaced in one direction from said carrier signal than at frequencies within said pass band displaced by an equal amount in the other direction from said carrier signal.
28. A receiver filter, as defined in Claim 27, wherein said means for providing a pass band frequency comprises a band pass filter and wherein said means for attenuating comprises a notch filter.
29. A receiver filter, as defined in Claim 28, wherein said receiver filter is used at low carrier frequencies within said carrier multiplexed transmission system.
30. A receiver filter, as defined in Claim 27, wherein said means for providing a pass band frequency comprises a band pass filter and wherein said means for attenuating comprises poles of said band pass filter designed to have reduced Q.
31. A receiver filter, as defined in Claim 30, wherein said carrier multiplexed transmission system includes repeaters having filter attenuation cut-off curves, said filters being used at frequencies adjacent said cut-off curves.
32. A receiver filter, as defined in Claim 27, wherein said means for attenuating attenuates the received carrier frequency by approximately 3.5 db.
33. A receiver filter, as defined in Claim 32, wherein said attenuating means maintains the attenuation slope at said received carrier frequency gradual enough to avoid frequency drift generated distortion.
34. A receiver filter, as defined in Claim 27, wherein said means for attenuating provides a non-flat modulation frequency pass band.
35. A receiver filter, as defined in Claim 34, additionally comprising: a post detection filter providing a non-flat modulation frequency pass band complementing the non-flat pass band of said attenuating means.
36. A carrier multiplexed telephone transmission system, comprising: a pair of transmission lines; plural central office channels, each comprising: a transmitter for generating on said pair, of transmission lines a double side band AM modulated carrier output signal carrying voice information; and a receiver for receiving AM modulated carrier signals from said pair of transmission lines to demodulate voice information; plural subscriber channels, each comprising: a transmitter for generating through said pair of transmission lines a double side band
AM modulated carrier output signal carrying voice information; and a receiver for receiving AM modulated carrier signals from said pair of transmission lines to demodulate voice information; at least one of said central office and subscriber channel receivers demodulating both the upper and lower side bands of said AM modulated carrier; and at least one other of said central office and subscriber channel receivers demodulating one side band to the substantial exclusion of the other side band of said AM modulated carrier at selected modulation frequencies.
37. A carrier multiplexed telephone transmission system, as defined in Claim 36, wherein said selected modulation frequencies are frequencies above a predetermined modulation frequency.
38. A carrier multiplexed telephone transmission system, as defined in Claim 36, additionally comprising: a repeater amplifier connected in series with said pair of transmission lines, said repeater amplifier including a filter having a filter attenuation curve at a selected transmission frequency.
39. A carrier multiplexed telephone transmission system, as defined in Claim 38, wherein said at least one other of said central office and subscriber channel receivers receives an AM modulated carrier signal adjacent said repeater filter curve.
40. A carrier multiplexed telephone transmission system, as defined in Claim 36, wherein said at least one other of said central office and subscriber channel receivers receives a modulated carrier signal at a frequency at which said pair of transmission lines exhibits nonlinear phase characteristics.
41. A. carrier multiplexed telephone transmission system, as defined in Claim 36, wherein said at leastone other of said central office and subscriber channel receivers includes a band pass and notch filter connected in series.
42. A carrier multiplexed telephone transmission system, as defined in Claim 36, wherein said at least one other of said central office and subscriber channel receivers includes a pass band filter with selected filter poles offset to provide non-flat pass band response.
PCT/US1980/000067 1979-01-29 1980-01-23 Modified vestigial side band transmission system WO1980001633A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP80500497A JPS56500198A (en) 1979-01-29 1980-01-23
BR8006228A BR8006228A (en) 1979-01-29 1980-01-23 TRANSMISSION SYSTEM, CARRIER MULTIPLEXATION PROCESS IN MULTIPLE CHANNELS OF COMMUNICATION ON A SINGLE COMMUNICATION MEDIA RECEIVER FILTRATION PROCESS, MULTIPLE TRANSPORT SYSTEMS, TRANSMISSION SYSTEMS, MULTIPLE TRANSPORT SYSTEMS, MULTIPLE TRANSPORT SYSTEMS MULTIPLEXED

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US766679A 1979-01-29 1979-01-29
US7666 1979-01-29

Publications (1)

Publication Number Publication Date
WO1980001633A1 true WO1980001633A1 (en) 1980-08-07

Family

ID=21727479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1980/000067 WO1980001633A1 (en) 1979-01-29 1980-01-23 Modified vestigial side band transmission system

Country Status (4)

Country Link
EP (1) EP0023223A4 (en)
JP (1) JPS56500198A (en)
BR (1) BR8006228A (en)
WO (1) WO1980001633A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6353735B1 (en) 1998-10-21 2002-03-05 Parkervision, Inc. MDG method for output signal generation
US6370371B1 (en) 1998-10-21 2002-04-09 Parkervision, Inc. Applications of universal frequency translation
US6421534B1 (en) 1998-10-21 2002-07-16 Parkervision, Inc. Integrated frequency translation and selectivity
US6542722B1 (en) 1998-10-21 2003-04-01 Parkervision, Inc. Method and system for frequency up-conversion with variety of transmitter configurations
US6560301B1 (en) 1998-10-21 2003-05-06 Parkervision, Inc. Integrated frequency translation and selectivity with a variety of filter embodiments
US6580902B1 (en) 1998-10-21 2003-06-17 Parkervision, Inc. Frequency translation using optimized switch structures
US6647250B1 (en) 1998-10-21 2003-11-11 Parkervision, Inc. Method and system for ensuring reception of a communications signal
US6694128B1 (en) 1998-08-18 2004-02-17 Parkervision, Inc. Frequency synthesizer using universal frequency translation technology
US6704549B1 (en) 1999-03-03 2004-03-09 Parkvision, Inc. Multi-mode, multi-band communication system
US6704558B1 (en) 1999-01-22 2004-03-09 Parkervision, Inc. Image-reject down-converter and embodiments thereof, such as the family radio service
US6813485B2 (en) 1998-10-21 2004-11-02 Parkervision, Inc. Method and system for down-converting and up-converting an electromagnetic signal, and transforms for same
US7653158B2 (en) 2001-11-09 2010-01-26 Parkervision, Inc. Gain control in a communication channel
US7653145B2 (en) 1999-08-04 2010-01-26 Parkervision, Inc. Wireless local area network (WLAN) using universal frequency translation technology including multi-phase embodiments and circuit implementations
US7693230B2 (en) 1999-04-16 2010-04-06 Parkervision, Inc. Apparatus and method of differential IQ frequency up-conversion
US7724845B2 (en) 1999-04-16 2010-05-25 Parkervision, Inc. Method and system for down-converting and electromagnetic signal, and transforms for same
US7773688B2 (en) 1999-04-16 2010-08-10 Parkervision, Inc. Method, system, and apparatus for balanced frequency up-conversion, including circuitry to directly couple the outputs of multiple transistors
US7822401B2 (en) 2000-04-14 2010-10-26 Parkervision, Inc. Apparatus and method for down-converting electromagnetic signals by controlled charging and discharging of a capacitor
US7865177B2 (en) 1998-10-21 2011-01-04 Parkervision, Inc. Method and system for down-converting an electromagnetic signal, and transforms for same, and aperture relationships
US7894789B2 (en) 1999-04-16 2011-02-22 Parkervision, Inc. Down-conversion of an electromagnetic signal with feedback control
US7991815B2 (en) 2000-11-14 2011-08-02 Parkervision, Inc. Methods, systems, and computer program products for parallel correlation and applications thereof
US8019291B2 (en) 1998-10-21 2011-09-13 Parkervision, Inc. Method and system for frequency down-conversion and frequency up-conversion
US8160196B2 (en) 2002-07-18 2012-04-17 Parkervision, Inc. Networking methods and systems
US8233855B2 (en) 1998-10-21 2012-07-31 Parkervision, Inc. Up-conversion based on gated information signal
US8295406B1 (en) 1999-08-04 2012-10-23 Parkervision, Inc. Universal platform module for a plurality of communication protocols
US8407061B2 (en) 2002-07-18 2013-03-26 Parkervision, Inc. Networking methods and systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005348174A (en) * 2004-06-03 2005-12-15 Cocomo Mb Communications Inc Radio communication system

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2181499A (en) * 1937-11-10 1939-11-28 Hazeltine Corp Band-pass filter
US2247898A (en) * 1939-09-29 1941-07-01 Hazeltine Corp Band-pass filter, including trap circuit
US2717956A (en) * 1952-11-29 1955-09-13 Bell Telephone Labor Inc Reduction of quadrature distortion
US3019335A (en) * 1959-09-14 1962-01-30 Nat Company Inc Large bandwidth low noise antenna circuit
US3266548A (en) * 1965-05-24 1966-08-16 Clark Equipment Co Method and means for demounting tires
US3742149A (en) * 1970-05-06 1973-06-26 Nippon Electric Co A frequency division multiplex microwave communication system using polarization division multiplex technique
US3794938A (en) * 1971-05-03 1974-02-26 Gen Aviat Electronics Inc Coupled bandstop/bandpass filter
US3865990A (en) * 1972-03-22 1975-02-11 Siemens Ag Radio relay systems
US3895190A (en) * 1972-03-24 1975-07-15 Siemens Ag Channel filter arrangement for a carrier frequency transmission system
DE2425674A1 (en) * 1974-05-28 1975-12-04 Standard Elektrik Lorenz Ag Single frequency elimination filter - consists of bridged T section with series resonant circuit in shunt arm
US4029902A (en) * 1975-10-22 1977-06-14 Hughes Aircraft Company Contiguous channel multiplexer
US4031327A (en) * 1975-04-11 1977-06-21 Thomson-Csf Telephone set and system utilizing frequency division multiplexing
US4159454A (en) * 1977-12-30 1979-06-26 The United States Of America As Represented By The Secretary Of The Air Force Plug-in filter network for separating a communication frequency into discrete frequency channels

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH271788A (en) * 1947-04-16 1950-11-15 Cie Ind Telephones Powerline transmission installation.

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2181499A (en) * 1937-11-10 1939-11-28 Hazeltine Corp Band-pass filter
US2247898A (en) * 1939-09-29 1941-07-01 Hazeltine Corp Band-pass filter, including trap circuit
US2717956A (en) * 1952-11-29 1955-09-13 Bell Telephone Labor Inc Reduction of quadrature distortion
US3019335A (en) * 1959-09-14 1962-01-30 Nat Company Inc Large bandwidth low noise antenna circuit
US3266548A (en) * 1965-05-24 1966-08-16 Clark Equipment Co Method and means for demounting tires
US3742149A (en) * 1970-05-06 1973-06-26 Nippon Electric Co A frequency division multiplex microwave communication system using polarization division multiplex technique
US3794938A (en) * 1971-05-03 1974-02-26 Gen Aviat Electronics Inc Coupled bandstop/bandpass filter
US3865990A (en) * 1972-03-22 1975-02-11 Siemens Ag Radio relay systems
US3895190A (en) * 1972-03-24 1975-07-15 Siemens Ag Channel filter arrangement for a carrier frequency transmission system
DE2425674A1 (en) * 1974-05-28 1975-12-04 Standard Elektrik Lorenz Ag Single frequency elimination filter - consists of bridged T section with series resonant circuit in shunt arm
US4031327A (en) * 1975-04-11 1977-06-21 Thomson-Csf Telephone set and system utilizing frequency division multiplexing
US4029902A (en) * 1975-10-22 1977-06-14 Hughes Aircraft Company Contiguous channel multiplexer
US4159454A (en) * 1977-12-30 1979-06-26 The United States Of America As Represented By The Secretary Of The Air Force Plug-in filter network for separating a communication frequency into discrete frequency channels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0023223A4 *

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6694128B1 (en) 1998-08-18 2004-02-17 Parkervision, Inc. Frequency synthesizer using universal frequency translation technology
US7826817B2 (en) 1998-10-21 2010-11-02 Parker Vision, Inc. Applications of universal frequency translation
US6560301B1 (en) 1998-10-21 2003-05-06 Parkervision, Inc. Integrated frequency translation and selectivity with a variety of filter embodiments
US6542722B1 (en) 1998-10-21 2003-04-01 Parkervision, Inc. Method and system for frequency up-conversion with variety of transmitter configurations
US6353735B1 (en) 1998-10-21 2002-03-05 Parkervision, Inc. MDG method for output signal generation
US6580902B1 (en) 1998-10-21 2003-06-17 Parkervision, Inc. Frequency translation using optimized switch structures
US6647250B1 (en) 1998-10-21 2003-11-11 Parkervision, Inc. Method and system for ensuring reception of a communications signal
US6687493B1 (en) 1998-10-21 2004-02-03 Parkervision, Inc. Method and circuit for down-converting a signal using a complementary FET structure for improved dynamic range
US6370371B1 (en) 1998-10-21 2002-04-09 Parkervision, Inc. Applications of universal frequency translation
US8340618B2 (en) 1998-10-21 2012-12-25 Parkervision, Inc. Method and system for down-converting an electromagnetic signal, and transforms for same, and aperture relationships
US8233855B2 (en) 1998-10-21 2012-07-31 Parkervision, Inc. Up-conversion based on gated information signal
US8190108B2 (en) 1998-10-21 2012-05-29 Parkervision, Inc. Method and system for frequency up-conversion
US6813485B2 (en) 1998-10-21 2004-11-02 Parkervision, Inc. Method and system for down-converting and up-converting an electromagnetic signal, and transforms for same
US7865177B2 (en) 1998-10-21 2011-01-04 Parkervision, Inc. Method and system for down-converting an electromagnetic signal, and transforms for same, and aperture relationships
US8190116B2 (en) 1998-10-21 2012-05-29 Parker Vision, Inc. Methods and systems for down-converting a signal using a complementary transistor structure
US8160534B2 (en) 1998-10-21 2012-04-17 Parkervision, Inc. Applications of universal frequency translation
US7693502B2 (en) 1998-10-21 2010-04-06 Parkervision, Inc. Method and system for down-converting an electromagnetic signal, transforms for same, and aperture relationships
US8019291B2 (en) 1998-10-21 2011-09-13 Parkervision, Inc. Method and system for frequency down-conversion and frequency up-conversion
US7697916B2 (en) 1998-10-21 2010-04-13 Parkervision, Inc. Applications of universal frequency translation
US7936022B2 (en) 1998-10-21 2011-05-03 Parkervision, Inc. Method and circuit for down-converting a signal
US7937059B2 (en) 1998-10-21 2011-05-03 Parkervision, Inc. Converting an electromagnetic signal via sub-sampling
US6798351B1 (en) 1998-10-21 2004-09-28 Parkervision, Inc. Automated meter reader applications of universal frequency translation
US6421534B1 (en) 1998-10-21 2002-07-16 Parkervision, Inc. Integrated frequency translation and selectivity
US6836650B2 (en) 1998-10-21 2004-12-28 Parkervision, Inc. Methods and systems for down-converting electromagnetic signals, and applications thereof
US6704558B1 (en) 1999-01-22 2004-03-09 Parkervision, Inc. Image-reject down-converter and embodiments thereof, such as the family radio service
US6704549B1 (en) 1999-03-03 2004-03-09 Parkvision, Inc. Multi-mode, multi-band communication system
US7693230B2 (en) 1999-04-16 2010-04-06 Parkervision, Inc. Apparatus and method of differential IQ frequency up-conversion
US7773688B2 (en) 1999-04-16 2010-08-10 Parkervision, Inc. Method, system, and apparatus for balanced frequency up-conversion, including circuitry to directly couple the outputs of multiple transistors
US7724845B2 (en) 1999-04-16 2010-05-25 Parkervision, Inc. Method and system for down-converting and electromagnetic signal, and transforms for same
US7894789B2 (en) 1999-04-16 2011-02-22 Parkervision, Inc. Down-conversion of an electromagnetic signal with feedback control
US8036304B2 (en) 1999-04-16 2011-10-11 Parkervision, Inc. Apparatus and method of differential IQ frequency up-conversion
US8229023B2 (en) 1999-04-16 2012-07-24 Parkervision, Inc. Wireless local area network (WLAN) using universal frequency translation technology including multi-phase embodiments
US8224281B2 (en) 1999-04-16 2012-07-17 Parkervision, Inc. Down-conversion of an electromagnetic signal with feedback control
US8223898B2 (en) 1999-04-16 2012-07-17 Parkervision, Inc. Method and system for down-converting an electromagnetic signal, and transforms for same
US7929638B2 (en) 1999-04-16 2011-04-19 Parkervision, Inc. Wireless local area network (WLAN) using universal frequency translation technology including multi-phase embodiments
US8077797B2 (en) 1999-04-16 2011-12-13 Parkervision, Inc. Method, system, and apparatus for balanced frequency up-conversion of a baseband signal
US8295406B1 (en) 1999-08-04 2012-10-23 Parkervision, Inc. Universal platform module for a plurality of communication protocols
US7653145B2 (en) 1999-08-04 2010-01-26 Parkervision, Inc. Wireless local area network (WLAN) using universal frequency translation technology including multi-phase embodiments and circuit implementations
US7822401B2 (en) 2000-04-14 2010-10-26 Parkervision, Inc. Apparatus and method for down-converting electromagnetic signals by controlled charging and discharging of a capacitor
US8295800B2 (en) 2000-04-14 2012-10-23 Parkervision, Inc. Apparatus and method for down-converting electromagnetic signals by controlled charging and discharging of a capacitor
US7991815B2 (en) 2000-11-14 2011-08-02 Parkervision, Inc. Methods, systems, and computer program products for parallel correlation and applications thereof
US8446994B2 (en) 2001-11-09 2013-05-21 Parkervision, Inc. Gain control in a communication channel
US7653158B2 (en) 2001-11-09 2010-01-26 Parkervision, Inc. Gain control in a communication channel
US8160196B2 (en) 2002-07-18 2012-04-17 Parkervision, Inc. Networking methods and systems
US8407061B2 (en) 2002-07-18 2013-03-26 Parkervision, Inc. Networking methods and systems

Also Published As

Publication number Publication date
BR8006228A (en) 1980-12-30
EP0023223A4 (en) 1981-06-30
JPS56500198A (en) 1981-02-19
EP0023223A1 (en) 1981-02-04

Similar Documents

Publication Publication Date Title
US4312064A (en) Modified vestigial side band transmission system
WO1980001633A1 (en) Modified vestigial side band transmission system
JP2594547B2 (en) Signal transmission method and transmitter
CN1080031C (en) Local oscillator phase noise cancelling modulation technique
US3294914A (en) Frequency multiplex repeater station having channel drop facilities
US5613210A (en) Telecommunication network for transmitting information to a plurality of stations over a single channel
GB2128455A (en) Signal distribution system
US4107471A (en) Frequency division multiplex communications system
CA2095316C (en) Reduction of interchannel harmonic distortions in an analog and digital signal multiplex
JPS5821466B2 (en) Digital signal reception method
US2020409A (en) Band separation system
US4622694A (en) Transmission system for TV signals on radio links
EP0983656B1 (en) Method and apparatus for implementing a transmission connection
US3742149A (en) A frequency division multiplex microwave communication system using polarization division multiplex technique
PL183448B1 (en) Method of jointly transmitting radio and/or television signal with digital and analog modulation
US6760383B1 (en) Long reach SDSL system spectrally compatible with ADSL systems
US5477366A (en) Optical transmission system
Taylor Characterization of cable TV networks as the transmission media for data
EP1061689B1 (en) Reduction of interference due to intermodulation products in multicarrier transceivers
EP0656705A2 (en) Orthogonally frequency multiplexing system
JPH0454034A (en) Subcarrier multiplex optical transmission method and subcarrier multiplex optical transmitter
US3334301A (en) Group delay slope and curvature equalizing system with control voltages obtained from second harmonics of pilot signals
US1522580A (en) Composited multiplex transmission system
US3559070A (en) Signal transmitter for limited band width transmission systems
GB2168223A (en) Transmitters and systems for tone-in-band transmission

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): BR JP

AL Designated countries for regional patents

Designated state(s): AT CH DE FR GB LU NL SE

WWP Wipo information: published in national office

Ref document number: 1980900372

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1980900372

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1980900372

Country of ref document: EP