WO1982001647A1 - Vascular graft - Google Patents

Vascular graft Download PDF

Info

Publication number
WO1982001647A1
WO1982001647A1 PCT/US1981/001467 US8101467W WO8201647A1 WO 1982001647 A1 WO1982001647 A1 WO 1982001647A1 US 8101467 W US8101467 W US 8101467W WO 8201647 A1 WO8201647 A1 WO 8201647A1
Authority
WO
WIPO (PCT)
Prior art keywords
vascular graft
filaments
graft
tubular member
outer covering
Prior art date
Application number
PCT/US1981/001467
Other languages
French (fr)
Inventor
Robert L Kaster
Original Assignee
Robert L Kaster
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert L Kaster filed Critical Robert L Kaster
Priority to AU78909/81A priority Critical patent/AU7890981A/en
Publication of WO1982001647A1 publication Critical patent/WO1982001647A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/064Blood vessels with special features to facilitate anastomotic coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials

Definitions

  • the present invention pertains to a surgical prosthesis, and, more particularly, pertains to a synthetic vascular graft implantable prothesis.
  • Cardiovascular disease Diseases affecting the cardiovascular system are either congenital or acquired.
  • An acquired cardiovascular disease can result from living habits, infections or injuries during embryonic life, or at any time following birth.
  • Some diseases primarily affect the blood vessels; others only the heart itself.
  • Atherosclerosis is the major disease that affects the blood vessels. This disease may have its beginnings early in life and is first noted as a thickening of the arterial walls. This thickening is an accumulation of fat, fibrin, cellular debris and calcium. The resultant narrowing of the internal lumen of the vessel is called stenosis. Vessel stenosis impedes and reduces blood flow. Hypertension and dysfunction of the organ or area of the body that suffered the impaired blood flow can result.
  • aneurysm As the buildup on the inner wall of a vessel thickens, the vessel wall loses the ability to expand and contract. Also, the vessel loses its viability and becomes weakened and susceptible to bulging, also known as aneurysm. In the presence of hypertension or elevated blood pressure, aneurysms will frequently dissect and ultimately rupture.
  • Small vessels such as the arteries that supply blood to the heart, legs, intestines and other areas of the body, are particularly susceptible to atherosclerotic narrowing.
  • the loss of blood supply to the leg or segment of the intestine may result in gangrene.
  • Atherosclerotic narrowing of the coronary arteries impedes, limits and in some instances prevents blood flow to regional areas of the heart. Depending upon its severity and location within the coronary circulation, pain, cardiac dysfunction or death may result.
  • Atherosclerosis vascular complications produced by atherosclerosis, such as, stenosis, aneurysm, rupture and occlusion are, in the majority of cases, managed either medically or surgically. Control and elimination of hypertension is the more effective form of medical management. In cases in which atherosclerotic disease is advanced and the attendant complications jeopardize the health of the patient, surgical intervention is usually instituted.
  • Aneurysms and stenosis of major arteries are best corrected by a plastic reconstruction that does not require any synthetic graft or patch materials.
  • a plastic reconstruction that does not require any synthetic graft or patch materials.
  • the involved vessel section is transected and removed and a synthetic patch, conduit or graft is sewn into place.
  • a non-critical artery or vein of small diameter is harvested from elsewhere in the body and sewn into place in a manner that reestablishes flow to the area of the heart that earlier lost its blood supply because of atherosclerotic blockage and is referred to as an autograft.
  • an allograft or xenograft vessel may be employed.
  • experience with these latter two graft types is limited because of unsatisfactory results.
  • a synthetic graft is an alternative to an allograft or a xenograft. But, like the allograft and xenograft, the synthetic counterpart does not produce acceptable results.
  • the autograft because it is harvested from the patient; who in all probability is being operated on for atherosclerotic artery disease, is highly susceptible to atherosclerosis following surgery. Most harvested veins used in coronary artery bypass surgery exhibit some degree of atherosclerosis.
  • the long vein in the leg called the saphenous vein is the most commonly harvested vein for use as a vein bypass graft, (autograft), in coronary artery surgery.
  • Most saphenous vein bypass grafts in time, exhibit a narrowing of the lumen unlike that of atherosclerosis. It is believed this is a pathologic response of the vein because it is of different cellular construction and composition than an artery-a condition for which it is not best suited.
  • Harvesting a saphenous vein autograft is a tedious surgical task and not always rewarded with the best quality graft.
  • the coronary artery circulation begins with the right and left coronary arteries. These two arteries in turn give rise to an extensive coronary circulation. Generally, atherosclerosis affects the larger coronary arteries. Therefore, a patient being operated upon for coronary artery disease will receive two or more vein grafts of various length and diameter depending upon the location of the blockage and the usable harvested saphenous vein.
  • anastomosis Sewing the graft to the host vessel, known as an anastomosis, requires delicate surgical techniques to accomplish the best possible result. There are several complications to be avoided when anastomosing a vessel and graft together. It is important that the junction between the host tissue and graft be a uniform transition without narrowing and regional irregularities such as protuberances that bulge into the lumen or sinuses that extend outward of the lumen. A narrowing at the site of anastomosis reduces blood flow. Protuberances into the lumen obstruct blood flow and may produce turbulence. Lastly, blood that stagnates in a sinus or cavity tends to clot and obstruct the vessel lumen and subsequently the blood flow. All these characteristics diminish the effectiveness and patency of the graft.
  • the limitations associated with the autograft as applied in coronary artery bypass surgery are: tedious surgical task to harvest, physically imperfect and irregular lumen, tedious surgical task to anastomose to host vessel, physically imperfect anastomosis of irregular and unsmooth transition between graft and vessel, functional narrowing of vein graft lumen during early postoperative period, and occlusion of the autograft due to thrombosis and/or continuance of the preexisting atherosclerotic process.
  • the synthetic vascular graft of the present invention overcomes the deficiencies of the prior art and provides a synthetic vascular graft that significantly improves the results of coronary artery bypass surgery.
  • This synthetic vascular graft eliminates the time of the tedious surgical task of harvesting a saphenous vein.
  • the lumen of the synthetic vascular graft is not comprised of natural anatomical irregularities as those that are common to the prior art vein grafts.
  • the synthetic vascular graft minimizes the task of forming anastomotic connections to the ascending aorta at the proximal end and the coronary artery distally.
  • the synthetic vascular graft also does not exhibit narrowing associated with implants of the saphenous vein grafts and will not exhibit occlusion and blockage due to atherosclerosis.
  • the general purpose of the present invention is a synthetic vascular graft for implantation in the human body, and particularly for use in coronary artery bypass surgery.
  • the synthetic vascular graft includes a multi-filament braided conduit overlaid with a complaint flexible covering in a single surgical prosthesis.
  • a vascular graft including a tubular member having a braided inner layer, the braided inner layer including a plurality of interwoven groups of filaments where each filament can be of metal or plastic composition, proximal and distal orifices at respective ends of the tubular member, and a compliant outer covering which can be either a sleeve of processed biologic material such as collagen, processed plastic or liquid deposition of biologic material or plastic, or a combination of biologic and plastic materials.
  • the proximal and distal orifices can be at an angle with respect to the longitudinal axis of the tubular member as warranted by widely variant vascular anatomy.
  • a significant aspect and feature of the present invention is a cost effective synthetic vascular graft providing for safety of surgical implantation and efficacy in vivo. While the proximal and distal anastomosis of the graft are hand stitched at predetermined locations, minimal time is required as the inflow and outflow orifices are defined providing for accurate placement of the stitches about the orifices.
  • Another significant aspect and feature of the present invention is a synthetic vascular graft which requires a least amount of surgical handling and which can be chosen to conform to the contour of the heart.
  • the orifices of the synthetic vascular graft are readily discernible throughout the anastomotic stitching process and the lay of the interwoven braid prohibits inadvertent twistng during or after implant.
  • a further significant aspect and feature of the present invention is a synthetic vascular graft that is available in a range of lumen sizes and lengths. This is particularly beneficial because the surgeon can request the correct size graft in each instance from an inventory of sizes stocked in sterile surgical supplies. The patient is the ultimate beneficiary, having received the correct size graft to suit his particular coronary circulatory requirements.
  • An object hereof is a synthetic vascular graft that provides lumen patency at surgical implantation.
  • the interwoven braid of the synthetic vascular graft forms an interwoven spiral that prohibits crushing of the lumen by external pressure, localized projections or short radius turns.
  • the synthetic vascular graft does not undergo chemical or physical change, especially with respect to the lumen.
  • the braided interwoven groups are of a filament size withstanding normal compression. Also, the synthetic vascular graft functions free of complications attendant to atherosclerosis.
  • Another object of the present invention is a synthetic vascular graft that can be stocked as surgical supplies in different sizes and configurations with regard to lengths, diameters, and orifice angles.
  • a further object of the present invention is that the synthetic vascular graft can include an outer covering of a biologic compatible material or materials including a processed biologic material.
  • An additional object of the present invention is a compliant outer covering that insures blood flow through the graft with no passthrough of blood through the porosity of the outer covering and that provides biocompatibility. .
  • Figure 1 illustrates a plan view of a synthetic vascular graft, the present invention
  • Figure 1A illustrates a partial section of an inflow orifice
  • Figure 1B illustrates an enlarged partial section of Figure 1A
  • Figure 2 illustrates a section of the surface of the synthetic vascular graft
  • Figure 3 illustrates a partial cross-section of the synthetic vascular graft with a chemical processed compliant covering
  • Figure 4 illustrates a partial cross-section of the synthetic vascular graft with a compliant covering
  • Figure 5 illustrates a plan view of the synthetic vascular graft implanted between the wall of the ascending aorta and a coronary artery of the heart;
  • Figure 6 illustrates a sectional view taken along line 6-6 of Figure 5;
  • Figure 7 illustrates another embodiment of a synthetic vascular graft
  • Figure 8 illustrates an additional embodiment of a synthetic vascular graft.
  • Figure 1 which illustrates a synthetic vascular graft 10 of the present invention, shows a braided layer 12 of sixteen interwoven groups 14a-14p, 14a-14h illustrated including filaments 16a-16g for each one of the groups.
  • the groups 14i-14p are on the opposing side not visible in the figure.
  • the braided layer 12 can include sixteen interwoven groups of filaments with seven filaments for each group.
  • a filament by way of example and for purposes of illustration only, is in the range of 0.1 mm in diameter and lies in a side-by-side relationship with each of the other filaments.
  • the sixteen groups are interwoven thereby forming a tubular member 18 of the synthetic vascular graft 10.
  • the tubular member 18 is both pliable and flexible.
  • Inflow orifice 20a at the proximal end and outflow orifice 20b at the distal end are disposed in the ends of the tubular member 18 of the synthetic vascular graft 10, and can be reinforced for sustaining the forces of stitching during surgery, as later described.
  • the inflow orifice 20a at the proximal end includes a circumferential rim which forms an angle in the range of 15°-90° with the central longitudinal axis of the vascular graft 10, and in this illustration 60° . The particular angle is dependent on the physical and surgical requirements of the vascular graft 10.
  • the circumferential rim of the inflow orifice 20a is substantially circular for facilitating anastomotic suturing to the ascending aorta, but can also assume an oval or elliptical shape.
  • the cross-section of the vascular graft is illustrated as being circular, but can also be elliptical, and is not to be construed as limiting of the present invention.
  • the outflow orifice 20b at the distal end includes a circumferential rim which assumes substantially the same shape and configuration as the inflow orifice 20a, and which forms an angle in the range of 20°-90° with the central longitudinal axis of the vascular graft 10, and in this illustration 35° , and which can assume a circular or oval or elliptical shape.
  • One form of reinforcing the orifices 20a and 20b is tack welding the filament ends to adjacent filament ends or to the outer filament which passes through parallel to the plane of the orifice.
  • the terminated filament strands at the orifice can appear as either circular dots 22 or elliptical dots 24, or as a filament strand 26 which passes substantially parallel and adjacent to theplane of the orifice.
  • a plurality of groups 28 of filaments either parallel or offset with respect to each position about the orifices, as illustrated at orifices 20a and 20b, and as also illustrated in FIGS. 1A and IB.
  • the terminated filament ends are tack welded to each other and filament ends are welded to filament strands parallel to the orifice plane thereby forming a substantially pliable and reinforced rim suitable for suturing during implantation.
  • the tack welds can also follow a sinusoidal, sawtooth or squarewave pattern substantially 3mm to 6mm peak substantially adjacent to the rim thereby yielding a pliable, resilient and reinforced rim.
  • some of the tacks of strands to adjacent strands can be omitted as predetermined.
  • the length of the vascular graft 10 will be in the range of 7cm25cm and have a diameter in the range of 3mm-7mm.
  • the specific synthetic vascular graft 10 selected during surgery is dependent on the length, diameter of the lumen, and angles of the proximal and distal orifices. During surgery, surgeons will have a readily available quantity of different vascular grafts from which to select.
  • Compliant flexible covering engages over the external surface of the synthetic vascular graft 10 for prohibiting passage of blood through the graft.
  • the covering can be either processed biologic material or a chemical curing synthetic material 30 that adheres to the braided member 12 as illustrated in FIG.
  • the individual filaments utilized in the braided tubular member 18 of interwoven groups of the synthetic vascular graft 10 can be metal such as titanium, tantalum, nickel, or stainless steel such as Haynes-25, Stellite21, 304 or 316; or, the individual filaments can be of mono filament polypropylene or polyethylene such as Dacron, Prolene or Teflon.
  • the filaments can also be a processed biologic material, such as collagen.
  • the filaments can also be coated with Biolite which is a processed carbon material or other suitable material.
  • FIG. 1A which illustrates a partial section of the inflow orifice 20a, shows the offset terminated filament ends where the filaments are substantially parallel to each other in two substantially parallel and offset interwoven groups of filaments.
  • the offset filament ends include terminated ends assuming the geometrical configuration of either circular dots 22 or elliptical dots 24 as previously described in FIG. 1. The particular geometrical shape is dependent upon the existing angle of each of the filament ends and the inclination of the plane of the orifice to the central axis of the lumen.
  • FIG. 1A is one of the cases of terminated filament ends where the other cases include single terminated filament ends or filament strands passing parallel to the orifices.
  • FIG. 1B which illustrates an enlarged section of FIG. 1A, again shows the circular dots 22 and elliptical dots 24 which are adjacent to each other at the inflow orifice 20a as previusly described above.
  • FIG. 1 which illustrates an enlarged section of the plan view of the synthetic vascular graft 10 of FIG. 1 shows the pluralities of groups 14 of filaments 16a-16g where each group includes seven filaments by way of example and for purposes of illustration only. Each group 14 of filaments is interwoven at an angle with respect to each of the other groups 14.
  • FIG. 3 which illustrates a partial cross-section of the synthetic vascular graft 10, shows a plastic type material such as latexrubber, silieone-rubber, Avcothane, Biomer, polyurethane, or other similar chemical curing plastic material 30 and including processed biologic material such as bovine collagen.
  • the orifices 20a and 20b can be further reinforced by an additional deposition of the plastic or biologic material.
  • the figure also illustrates a configuration where the terminated ends of the filaments assume the geometrical shape of dots across the cross-section.
  • the figure further illustrates the tacking of each of the terminated filaments together, and material which partially fills in between each of the filaments.
  • FIG. 4 which illustrates a partial cross-section portion of the synthetic vascular graft, shows an outer covering of a fabric sleeve which can be constructed of a woven, knitted or expanded Teflon, woven or velour Dacron, or other woven plastic or derivative material.
  • the inner diameter of the sleeve 32 lies across each of the filaments.
  • tack welded material preferably the filament material, fills in between each of the filaments. Any other suitable securing processes can be utilized in lieu of the tack welding.
  • the outer coverings of FIGS. 3 and 4 can include a single compliant material as previously set forth or a combination of materials such as a first material overlying a second material.
  • a first outer covering of compliant material such as plastic and then a second outer covering of compliant material such as processed biologic material such as bovine collagen. It is also understood that there can be any number of outer coverings over the braided interwoven groups.
  • Synthetic vascular graft or grafts which are to be implanted are predetermined by the location of the coronary artery blockage and the surgical accessiblity.
  • the description for the mode of operation is limited and directed to an implant of one synthetic vascular graft, and is not to be construed as limiting of the present invention, as the description can be extended to more than one bypass synthetic vascular graft implant as required.
  • FIGS. S and 6 illustrate a plan and sectional view respectively of an implanted synthetic vascular graft, and are applicable to the description following for a suggested procedure for the implantation of the synthetic vascular graft 1Q.
  • the coronary artery downstream from the blockage is exposed and found to be of sufficient size that is anatomically compatible with a synthetic vascular graft having a 4mm internal diameter, by way of example and for purposes of illustration.
  • the distance is measured between the proximal anastomotic site on the wall of the ascending aorta and the distal anastomotic site of the surgically exposed coronary artery.
  • An accurate measurement of this distance also takes into account both the curvature of the heart and the range of motion of the heart that results from the heart beat after the chest is closed.
  • the patient is placed on total cardiopulmonary bypass, the heart is arrested, and the distal coronary artery opened and prepared for the anastomotic connection.
  • the 4mm size graft is confirmed and a graft of a predetermined length is selected with predetermined orifice angles corresponding to that of the aorta and artery of the heart.
  • a graft of a predetermined length is selected with predetermined orifice angles corresponding to that of the aorta and artery of the heart.
  • To anastomose the synthetic vascular graft to the aorta proximally and the coronary artery distally requires modification of previously known surgical techniques used for a saphenous vein graft.
  • the differences between these two grafts is appreciated to avoid surgical difficulties in that the prior art saphenous vein graft is markedly flexible and easily tailored to the correct length while the synthetic vascular graft 10 of the present invention is less flexible and not readily elongated or tailored to a shorter length. Therefore, it is important to size the vessels and graft correctly, measure the required length accurately, and select the predetermined correct sized synthetic vascular graft 10 from surgical supply as
  • the distal anastomosis is preformed but only partially sewn to allow for venting of air from the graft.
  • the graft is positioned on the surface of the heart as illustrated in FIGS. 5 and 6.
  • the inflow orifice of the synthetic vascular graft 10 is orientated relative to the ascending aorta for verifying the preselected site of the proximal anastomosis. Any adjustments in location are easily implemented because the hole in the ascending aorta has not yet been made.
  • a 4mm - 5mm round hole is made at the selected site in the wall of the ascending aorta using an instrument especially designed for the procedure.
  • the proximal end of the graft is stitched to the wall of the aorta taking care to super-impose the inflow orifice directly over the hole in the aorta.
  • the stitching technique should not vary significantly from the techniques usually utilized for the proximal anastomosis of a saphenous vein graft.
  • FIG. 5 illustrates a completed anastomosis of the synthetic vascular graft 10 between the aorta 36 and coronary artery 34.
  • FIG. 6 illustrates the angular relationship of the orifices of the synthetic vascular graft 10 to the aorta and coronary artery 34.
  • FIG. 7 which illustrates a plan view of an alternative embodiment of a synthetic vascular graft 50 including a sice positioned distal orifice 52, shows the interwoven groups of filaments as previously described, the inflow orifice 54 at the proximal end, and the outflow orifice 52 which is positioned at the distal end of the graft and which assumes a predetermined geometrical shape.
  • the outflow orifice 52 is illustrated as elliptical, but can also assume a circular, oval or other geometrical form.
  • the outflow orifice 52 is woven into the side of the tubular member 56.
  • the outflow orifice can be further reinforced with compliant outer covering material or by a reinforcing rim about the hole as previously described for FIG. 1.
  • the inflow orifice 54 illustrates a rim 54a of filament material reinforcing the orifice and to which all terminated filament strands are tacked either through welding or suitable processes, and terminated filament ends are tacked to adjacent strands passing parallel to the rim as also previously described in FIG. 1.
  • FIG. 8 which illustrates a plan view of an alternative embodiment of a synthetic vascular graft 60, shows interwoven groups of filaments increasing in numbers of filaments and groups proportionately from an outflow orifice 62 at a distal end to an inflow orifice 64 at a proximal end.
  • the lumen of the graft 60 tapers uniformly over the longitudinal length, and the change in cross-sectional area is two-thirds from the inflow orifice to the outflow orifice.
  • the graft 60 can also be made with a taper from one end to the other end without varying the number of filaments in each group or adding groups of filaments depending on the taper of the graft 60.
  • the synthetic vascular graft of the present invention can be selected from the material previously delineated or any other suitable material can be substituted. While the terms braided and interwoven are utilized in describing the braided layer of interwoven groups of filaments, any other type of braiding of interwoven groups can be utilized, especially different configurations of overlaying the filaments which is construed as being within the claims of this disclosure.

Abstract

Vascular graft (10) of synthetic material including a tubular member (18) having a braided inner layer and a compliant outer covering layer (30) where the braided layer (12) includes a plurality of interwoven groups (14a-14h) of filaments (16a-16g). The filaments can be constructed either of metal or of plastic. The compliant outer covering can be either a sleeve of processed biologic material such as collagen, processed plastic, liquid deposition of biologic material or plastic, or a combination of biologic and plastic materials. The inflow (20a) and outflow (20b) orifices of the tubular member (18) are at an angle with respect to the longitudinal axis of the graft and are reinforced either by tacking of the filaments to adjoining filaments or by tacking an endless single-strand filament rim to the orifice in addition to reinforcement by the outer covering material. Also, the synthetic vascular graft can have an orifice braided and woven into the tubular member parallel to the longitudinal axis. Additionally, the synthetic vascular graft can have an increasing or decreasing taper.

Description

VASCULAR GRAFT
Technical Field
The present invention pertains to a surgical prosthesis, and, more particularly, pertains to a synthetic vascular graft implantable prothesis.
Background Art
Diseases affecting the cardiovascular system are either congenital or acquired. An acquired cardiovascular disease can result from living habits, infections or injuries during embryonic life, or at any time following birth. Some diseases primarily affect the blood vessels; others only the heart itself.
Atherosclerosis is the major disease that affects the blood vessels. This disease may have its beginnings early in life and is first noted as a thickening of the arterial walls. This thickening is an accumulation of fat, fibrin, cellular debris and calcium. The resultant narrowing of the internal lumen of the vessel is called stenosis. Vessel stenosis impedes and reduces blood flow. Hypertension and dysfunction of the organ or area of the body that suffered the impaired blood flow can result.
As the buildup on the inner wall of a vessel thickens, the vessel wall loses the ability to expand and contract. Also, the vessel loses its viability and becomes weakened and susceptible to bulging, also known as aneurysm. In the presence of hypertension or elevated blood pressure, aneurysms will frequently dissect and ultimately rupture.
Small vessels, such as the arteries that supply blood to the heart, legs, intestines and other areas of the body, are particularly susceptible to atherosclerotic narrowing. The loss of blood supply to the leg or segment of the intestine may result in gangrene. Atherosclerotic narrowing of the coronary arteries impedes, limits and in some instances prevents blood flow to regional areas of the heart. Depending upon its severity and location within the coronary circulation, pain, cardiac dysfunction or death may result.
Vascular complications produced by atherosclerosis, such as, stenosis, aneurysm, rupture and occlusion are, in the majority of cases, managed either medically or surgically. Control and elimination of hypertension is the more effective form of medical management. In cases in which atherosclerotic disease is advanced and the attendant complications jeopardize the health of the patient, surgical intervention is usually instituted.
Aneurysms and stenosis of major arteries are best corrected by a plastic reconstruction that does not require any synthetic graft or patch materials. However, if the disease is extensive and the vessel is no longer reliable, it is usually replaced by a graft. In such case, the involved vessel section is transected and removed and a synthetic patch, conduit or graft is sewn into place.
Medium sized arteries are operated on much the same as for large diameter vessels. But in some types of surgery where the replacement graft is of small diameter, handling and surgical placement of the graft is difficult. The internal diameter may be compromised due either to surgical technique or biological response. In some cases, the graft may become entirely occluded shortly after surgery.
Patients with coronary artery disease in which blood flow to part of the heart muscle has been compromised receive significant benefit from coronary artery bypass surgery. This type of surgery requires the use of grafts of small diameter. These grafts, the majority of which are biologic, have certain inherent problems. Synthetic grafts are only used on infrequent occasions because they are more problematical than biologic grafts. It is the purpose of this invention to obviate and eliminate certain of the more significant problems associated with the surgical procedure of coronary artery bypass and the implanted grafts following surgery.
In a patient who undergoes coronary artery bypass surgery, a non-critical artery or vein of small diameter is harvested from elsewhere in the body and sewn into place in a manner that reestablishes flow to the area of the heart that earlier lost its blood supply because of atherosclerotic blockage and is referred to as an autograft. When no suitable artery or vein can be harvested, an allograft or xenograft vessel may be employed. However, experience with these latter two graft types is limited because of unsatisfactory results. A synthetic graft is an alternative to an allograft or a xenograft. But, like the allograft and xenograft, the synthetic counterpart does not produce acceptable results.
Although the heart benefits immediately from the reestablished blood supply of the bypass, there is no assurance the graft will function trouble free indefinitely. The autograft, because it is harvested from the patient; who in all probability is being operated on for atherosclerotic artery disease, is highly susceptible to atherosclerosis following surgery. Most harvested veins used in coronary artery bypass surgery exhibit some degree of atherosclerosis.
The long vein in the leg called the saphenous vein is the most commonly harvested vein for use as a vein bypass graft, (autograft), in coronary artery surgery. Most saphenous vein bypass grafts, in time, exhibit a narrowing of the lumen unlike that of atherosclerosis. It is believed this is a pathologic response of the vein because it is of different cellular construction and composition than an artery-a condition for which it is not best suited. Harvesting a saphenous vein autograft is a tedious surgical task and not always rewarded with the best quality graft. Also, removal of the saphenous vein disrupts the natural venous blood return from the leg and is not therapeutically recommended except for medical reasons such as in a patient with advanced venous disease such as varicose veins. Finally, harvestng an autograft in the operating room requires additional surgical time and expense.
These noted limitations of the saphenous vein autograft have generated interest in a synthetic graft for coronary artery bypass. Clinical experience with small diameter synthetic grafts for coronary artery bypass dates back to the mid 1970's. Teflon and Dacron fibers are the most commonly employed materials for synthetic grafts. However, despite the different methods and techniques of graft construction such as woven or knit, velour, texturized or non-texturized, tight or loose, fine or coarse, expanded or non-expanded, variations in fiber diameter and wall thickness, etc., no graft of small lumen diameter has shown a resistance to blockage by thrombus. However, synthetic grafts of large diameter consistently remain patent and trouble-free for extended periods of many years. This finding is consistently repeated where a small-diameter synthetic graft is used to bypass a blocked coronary artery. Therefore, despite their inherent limitations, autografts employing the saphenous vein remain the graft of choice for coronary artery bypass surgery.
The coronary artery circulation begins with the right and left coronary arteries. These two arteries in turn give rise to an extensive coronary circulation. Generally, atherosclerosis affects the larger coronary arteries. Therefore, a patient being operated upon for coronary artery disease will receive two or more vein grafts of various length and diameter depending upon the location of the blockage and the usable harvested saphenous vein.
Even though coronary artery bypass surgery is widely practiced and has become a routine procedure in hospitals throughout the world, it is not without certain operative limitations that would best be avoided. Sewing the graft to the host vessel, known as an anastomosis, requires delicate surgical techniques to accomplish the best possible result. There are several complications to be avoided when anastomosing a vessel and graft together. It is important that the junction between the host tissue and graft be a uniform transition without narrowing and regional irregularities such as protuberances that bulge into the lumen or sinuses that extend outward of the lumen. A narrowing at the site of anastomosis reduces blood flow. Protuberances into the lumen obstruct blood flow and may produce turbulence. Lastly, blood that stagnates in a sinus or cavity tends to clot and obstruct the vessel lumen and subsequently the blood flow. All these characteristics diminish the effectiveness and patency of the graft.
Summarizing, the limitations associated with the autograft as applied in coronary artery bypass surgery are: tedious surgical task to harvest, physically imperfect and irregular lumen, tedious surgical task to anastomose to host vessel, physically imperfect anastomosis of irregular and unsmooth transition between graft and vessel, functional narrowing of vein graft lumen during early postoperative period, and occlusion of the autograft due to thrombosis and/or continuance of the preexisting atherosclerotic process.
Summary Disclosure of the Invention
The synthetic vascular graft of the present invention overcomes the deficiencies of the prior art and provides a synthetic vascular graft that significantly improves the results of coronary artery bypass surgery. This synthetic vascular graft eliminates the time of the tedious surgical task of harvesting a saphenous vein. The lumen of the synthetic vascular graft is not comprised of natural anatomical irregularities as those that are common to the prior art vein grafts. The synthetic vascular graft minimizes the task of forming anastomotic connections to the ascending aorta at the proximal end and the coronary artery distally. The synthetic vascular graft also does not exhibit narrowing associated with implants of the saphenous vein grafts and will not exhibit occlusion and blockage due to atherosclerosis. The general purpose of the present invention is a synthetic vascular graft for implantation in the human body, and particularly for use in coronary artery bypass surgery. The synthetic vascular graft includes a multi-filament braided conduit overlaid with a complaint flexible covering in a single surgical prosthesis.
According to one embodiment of the present invention, there is provided a vascular graft including a tubular member having a braided inner layer, the braided inner layer including a plurality of interwoven groups of filaments where each filament can be of metal or plastic composition, proximal and distal orifices at respective ends of the tubular member, and a compliant outer covering which can be either a sleeve of processed biologic material such as collagen, processed plastic or liquid deposition of biologic material or plastic, or a combination of biologic and plastic materials. The proximal and distal orifices can be at an angle with respect to the longitudinal axis of the tubular member as warranted by widely variant vascular anatomy.
A significant aspect and feature of the present invention is a cost effective synthetic vascular graft providing for safety of surgical implantation and efficacy in vivo. While the proximal and distal anastomosis of the graft are hand stitched at predetermined locations, minimal time is required as the inflow and outflow orifices are defined providing for accurate placement of the stitches about the orifices.
Another significant aspect and feature of the present invention is a synthetic vascular graft which requires a least amount of surgical handling and which can be chosen to conform to the contour of the heart. The orifices of the synthetic vascular graft are readily discernible throughout the anastomotic stitching process and the lay of the interwoven braid prohibits inadvertent twistng during or after implant.
A further significant aspect and feature of the present invention is a synthetic vascular graft that is available in a range of lumen sizes and lengths. This is particularly beneficial because the surgeon can request the correct size graft in each instance from an inventory of sizes stocked in sterile surgical supplies. The patient is the ultimate beneficiary, having received the correct size graft to suit his particular coronary circulatory requirements.
Having thus described one embodiment of the present invention, it is a principal object hereof to provide a synthetic vascular graft as an implantable prosthesis. An object of the present invention is a synthetic vascular graft that provides lumen patency at surgical implantation. The interwoven braid of the synthetic vascular graft forms an interwoven spiral that prohibits crushing of the lumen by external pressure, localized projections or short radius turns. The synthetic vascular graft does not undergo chemical or physical change, especially with respect to the lumen. The braided interwoven groups are of a filament size withstanding normal compression. Also, the synthetic vascular graft functions free of complications attendant to atherosclerosis.
Another object of the present invention is a synthetic vascular graft that can be stocked as surgical supplies in different sizes and configurations with regard to lengths, diameters, and orifice angles.
A further object of the present invention is that the synthetic vascular graft can include an outer covering of a biologic compatible material or materials including a processed biologic material.
An additional object of the present invention is a compliant outer covering that insures blood flow through the graft with no passthrough of blood through the porosity of the outer covering and that provides biocompatibility. .
Brief Description of the Drawings
Other objects and many of the attendant advantages of this invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, in which like reference numerals designate like parts throughout the figures thereof and wherein:
Figure 1 illustrates a plan view of a synthetic vascular graft, the present invention;
Figure 1A illustrates a partial section of an inflow orifice;
Figure 1B illustrates an enlarged partial section of Figure 1A;
Figure 2 illustrates a section of the surface of the synthetic vascular graft;
Figure 3 illustrates a partial cross-section of the synthetic vascular graft with a chemical processed compliant covering;
Figure 4 illustrates a partial cross-section of the synthetic vascular graft with a compliant covering;
Figure 5 illustrates a plan view of the synthetic vascular graft implanted between the wall of the ascending aorta and a coronary artery of the heart; Figure 6 illustrates a sectional view taken along line 6-6 of Figure 5;
Figure 7 illustrates another embodiment of a synthetic vascular graft; and,
Figure 8 illustrates an additional embodiment of a synthetic vascular graft.
Preferred Mode For Carrying Out the Invention
Figure 1, which illustrates a synthetic vascular graft 10 of the present invention, shows a braided layer 12 of sixteen interwoven groups 14a-14p, 14a-14h illustrated including filaments 16a-16g for each one of the groups. The groups 14i-14p are on the opposing side not visible in the figure. The braided layer 12, by way of example and for purposes of illustration only and not to be construed as limiting of the present invention, can include sixteen interwoven groups of filaments with seven filaments for each group. A filament, by way of example and for purposes of illustration only, is in the range of 0.1 mm in diameter and lies in a side-by-side relationship with each of the other filaments. The sixteen groups are interwoven thereby forming a tubular member 18 of the synthetic vascular graft 10. The tubular member 18 is both pliable and flexible. Inflow orifice 20a at the proximal end and outflow orifice 20b at the distal end are disposed in the ends of the tubular member 18 of the synthetic vascular graft 10, and can be reinforced for sustaining the forces of stitching during surgery, as later described. The inflow orifice 20a at the proximal end includes a circumferential rim which forms an angle in the range of 15°-90° with the central longitudinal axis of the vascular graft 10, and in this illustration 60° . The particular angle is dependent on the physical and surgical requirements of the vascular graft 10. The circumferential rim of the inflow orifice 20a is substantially circular for facilitating anastomotic suturing to the ascending aorta, but can also assume an oval or elliptical shape. The cross-section of the vascular graft is illustrated as being circular, but can also be elliptical, and is not to be construed as limiting of the present invention.
The outflow orifice 20b at the distal end includes a circumferential rim which assumes substantially the same shape and configuration as the inflow orifice 20a, and which forms an angle in the range of 20°-90° with the central longitudinal axis of the vascular graft 10, and in this illustration 35° , and which can assume a circular or oval or elliptical shape. One form of reinforcing the orifices 20a and 20b is tack welding the filament ends to adjacent filament ends or to the outer filament which passes through parallel to the plane of the orifice. Depending upon the particular angle of the orifice, the terminated filament strands at the orifice can appear as either circular dots 22 or elliptical dots 24, or as a filament strand 26 which passes substantially parallel and adjacent to theplane of the orifice. Depending upon the particular angle of the orifice, a plurality of groups 28 of filaments either parallel or offset with respect to each position about the orifices, as illustrated at orifices 20a and 20b, and as also illustrated in FIGS. 1A and IB. The terminated filament ends are tack welded to each other and filament ends are welded to filament strands parallel to the orifice plane thereby forming a substantially pliable and reinforced rim suitable for suturing during implantation. The tack welds can also follow a sinusoidal, sawtooth or squarewave pattern substantially 3mm to 6mm peak substantially adjacent to the rim thereby yielding a pliable, resilient and reinforced rim. During the tack welding or other suitable fastening process, some of the tacks of strands to adjacent strands can be omitted as predetermined.
The length of the vascular graft 10 will be in the range of 7cm25cm and have a diameter in the range of 3mm-7mm. The specific synthetic vascular graft 10 selected during surgery is dependent on the length, diameter of the lumen, and angles of the proximal and distal orifices. During surgery, surgeons will have a readily available quantity of different vascular grafts from which to select. Compliant flexible covering engages over the external surface of the synthetic vascular graft 10 for prohibiting passage of blood through the graft. The covering can be either processed biologic material or a chemical curing synthetic material 30 that adheres to the braided member 12 as illustrated in FIG. 3, or tight-fitting knitted, woven, or expanded fabric sleeve 32 over the braided member 12 as illustrated in FIG. 4, both as later discussed in detail; or a combination of materials such as a fabric sleeve, a plastic sleeve covering the fabric sleeve, and a covering of processed biologic material over the plastic sleeve.
The individual filaments utilized in the braided tubular member 18 of interwoven groups of the synthetic vascular graft 10 can be metal such as titanium, tantalum, nickel, or stainless steel such as Haynes-25, Stellite21, 304 or 316; or, the individual filaments can be of mono filament polypropylene or polyethylene such as Dacron, Prolene or Teflon. The filaments can also be a processed biologic material, such as collagen. The filaments can also be coated with Biolite which is a processed carbon material or other suitable material.
FIG. 1A, which illustrates a partial section of the inflow orifice 20a, shows the offset terminated filament ends where the filaments are substantially parallel to each other in two substantially parallel and offset interwoven groups of filaments. The offset filament ends include terminated ends assuming the geometrical configuration of either circular dots 22 or elliptical dots 24 as previously described in FIG. 1. The particular geometrical shape is dependent upon the existing angle of each of the filament ends and the inclination of the plane of the orifice to the central axis of the lumen. FIG. 1A is one of the cases of terminated filament ends where the other cases include single terminated filament ends or filament strands passing parallel to the orifices.
FIG. 1B, which illustrates an enlarged section of FIG. 1A, again shows the circular dots 22 and elliptical dots 24 which are adjacent to each other at the inflow orifice 20a as previusly described above.
FIG. 1, which illustrates an enlarged section of the plan view of the synthetic vascular graft 10 of FIG. 1 shows the pluralities of groups 14 of filaments 16a-16g where each group includes seven filaments by way of example and for purposes of illustration only. Each group 14 of filaments is interwoven at an angle with respect to each of the other groups 14.
FIG. 3, which illustrates a partial cross-section of the synthetic vascular graft 10, shows a plastic type material such as latexrubber, silieone-rubber, Avcothane, Biomer, polyurethane, or other similar chemical curing plastic material 30 and including processed biologic material such as bovine collagen. The orifices 20a and 20b can be further reinforced by an additional deposition of the plastic or biologic material. The figure also illustrates a configuration where the terminated ends of the filaments assume the geometrical shape of dots across the cross-section. The figure further illustrates the tacking of each of the terminated filaments together, and material which partially fills in between each of the filaments.
FIG. 4, which illustrates a partial cross-section portion of the synthetic vascular graft, shows an outer covering of a fabric sleeve which can be constructed of a woven, knitted or expanded Teflon, woven or velour Dacron, or other woven plastic or derivative material. The inner diameter of the sleeve 32 lies across each of the filaments. Again, tack welded material, preferably the filament material, fills in between each of the filaments. Any other suitable securing processes can be utilized in lieu of the tack welding.
The outer coverings of FIGS. 3 and 4 can include a single compliant material as previously set forth or a combination of materials such as a first material overlying a second material. Such an example would be a first outer covering of compliant material such as plastic and then a second outer covering of compliant material such as processed biologic material such as bovine collagen. It is also understood that there can be any number of outer coverings over the braided interwoven groups.
Mode of Operation
Synthetic vascular graft or grafts which are to be implanted are predetermined by the location of the coronary artery blockage and the surgical accessiblity. The size of patent downstream coronary arteries that a graft can be anastomosed to determines the number and size of bypass synthetic vascular grafts that need to be implanted for the best surgical result. In most cases, the surgeon will implant three or more bypass grafts in each patient who undergoes coronary artery bypass surgery. For purposes of illustration and example only, the description for the mode of operation is limited and directed to an implant of one synthetic vascular graft, and is not to be construed as limiting of the present invention, as the description can be extended to more than one bypass synthetic vascular graft implant as required.
FIGS. S and 6 illustrate a plan and sectional view respectively of an implanted synthetic vascular graft, and are applicable to the description following for a suggested procedure for the implantation of the synthetic vascular graft 1Q.
The coronary artery downstream from the blockage is exposed and found to be of sufficient size that is anatomically compatible with a synthetic vascular graft having a 4mm internal diameter, by way of example and for purposes of illustration. The distance is measured between the proximal anastomotic site on the wall of the ascending aorta and the distal anastomotic site of the surgically exposed coronary artery. An accurate measurement of this distance also takes into account both the curvature of the heart and the range of motion of the heart that results from the heart beat after the chest is closed. The patient is placed on total cardiopulmonary bypass, the heart is arrested, and the distal coronary artery opened and prepared for the anastomotic connection. The 4mm size graft is confirmed and a graft of a predetermined length is selected with predetermined orifice angles corresponding to that of the aorta and artery of the heart. To anastomose the synthetic vascular graft to the aorta proximally and the coronary artery distally requires modification of previously known surgical techniques used for a saphenous vein graft. The differences between these two grafts is appreciated to avoid surgical difficulties in that the prior art saphenous vein graft is markedly flexible and easily tailored to the correct length while the synthetic vascular graft 10 of the present invention is less flexible and not readily elongated or tailored to a shorter length. Therefore, it is important to size the vessels and graft correctly, measure the required length accurately, and select the predetermined correct sized synthetic vascular graft 10 from surgical supply as required.
First, the distal anastomosis is preformed but only partially sewn to allow for venting of air from the graft. Next, the graft is positioned on the surface of the heart as illustrated in FIGS. 5 and 6. The inflow orifice of the synthetic vascular graft 10 is orientated relative to the ascending aorta for verifying the preselected site of the proximal anastomosis. Any adjustments in location are easily implemented because the hole in the ascending aorta has not yet been made.
Second, depending upon the individual surgeon's technique and personal preference, a 4mm - 5mm round hole, for purposes of this example, is made at the selected site in the wall of the ascending aorta using an instrument especially designed for the procedure. The proximal end of the graft is stitched to the wall of the aorta taking care to super-impose the inflow orifice directly over the hole in the aorta. The stitching technique should not vary significantly from the techniques usually utilized for the proximal anastomosis of a saphenous vein graft.
Blood from the aorta is then allowed to fill the synthetic vascular graft 10 for flushing of air through the functionally incompetent distal anastomosis. After sufficient flushing, the distal anastomosis is finally made competent. The flared circumferential rims at both orifices act to conform with surrounding tissue, therefore providing for a competent and leak-proof anastomotic junction. FIG. 5 illustrates a completed anastomosis of the synthetic vascular graft 10 between the aorta 36 and coronary artery 34.
FIG. 6 illustrates the angular relationship of the orifices of the synthetic vascular graft 10 to the aorta and coronary artery 34.
Alternative Embodiment-Synthetic Vascular
Graft With Side Positioned Orifice
FIG. 7, which illustrates a plan view of an alternative embodiment of a synthetic vascular graft 50 including a sice positioned distal orifice 52, shows the interwoven groups of filaments as previously described, the inflow orifice 54 at the proximal end, and the outflow orifice 52 which is positioned at the distal end of the graft and which assumes a predetermined geometrical shape. In this particular embodiment, the outflow orifice 52 is illustrated as elliptical, but can also assume a circular, oval or other geometrical form. During the weaving process of the groups of filaments, the outflow orifice 52 is woven into the side of the tubular member 56. The outflow orifice can be further reinforced with compliant outer covering material or by a reinforcing rim about the hole as previously described for FIG. 1. The inflow orifice 54 illustrates a rim 54a of filament material reinforcing the orifice and to which all terminated filament strands are tacked either through welding or suitable processes, and terminated filament ends are tacked to adjacent strands passing parallel to the rim as also previously described in FIG. 1.
Alternative Embodiment-Synthetic Vascular
Graft With Tapered Lumen
FIG. 8, which illustrates a plan view of an alternative embodiment of a synthetic vascular graft 60, shows interwoven groups of filaments increasing in numbers of filaments and groups proportionately from an outflow orifice 62 at a distal end to an inflow orifice 64 at a proximal end. The lumen of the graft 60 tapers uniformly over the longitudinal length, and the change in cross-sectional area is two-thirds from the inflow orifice to the outflow orifice. The graft 60 can also be made with a taper from one end to the other end without varying the number of filaments in each group or adding groups of filaments depending on the taper of the graft 60.
Various modifications can be made to the synthetic vascular graft of the present invention without departing from the apparent scope thereof. The materials of the synthetic vascular graft can be selected from the material previously delineated or any other suitable material can be substituted. While the terms braided and interwoven are utilized in describing the braided layer of interwoven groups of filaments, any other type of braiding of interwoven groups can be utilized, especially different configurations of overlaying the filaments which is construed as being within the claims of this disclosure.

Claims

WHAT IS CLAIMED IS:
1. Vascular graft implantable prothesis comprising: a. tubular member including an inner braided layer of interwoven groups of filaments and a compliant outer covering of material; and b. inflow and outflow orifices at each end of said tubular member.
2. Vascular graft of claim 1 wherein each of said filaments at said orifices are tack welded to adjacent filament ends.
3. Vascular graft of claim 1 wherein filaments passing parallel to said orifices are tack welded to adjacent filaments and filament ends.
4. Vascular graft of claim 1 wherein said inflow orifice forms an angle with a longitudinal axis of said tubular member in the range of 15°-90°.
5. Vascular graft of claim 4 wherein said angle is substantially 60° .
6. Vascular graft of claim 1 wherein said outflow orifice forms an angle with a longitudinal axis of said tubular member in the range of 20°-90° .
7. Vascular graft of claim 6 wherein said angle is substantially 35°.
8. Vascular graft of claim 1 wherein said compliant outer covering is a plastic material.
9. Vascular graft of claim 1 wherein said compliant outer covering is processed biologic material.
10. Vascular graft of claim 1 wherein said compliant outer covering is a chemical curing composition.
11. Vascular graft of claim 1 wherein diameter of said filament is substantially 0.1mm in diameter.
12. Vascular graft of claim 1 wherein said length is in the range of 7mm-25mm.
13. Vascular graft of claim 1 wherein diameter of said tubular member is 3mm-7mm.
14. Vascular graft of claim 1 wherein each of said filaments is titanium.
15. Vascular graft of claim 1 wherein each of said filaments is tantalum.
16. Vascular graft of claim 1 wherein each of said filaments is nickel.
17. Vascular graft of claim 1 wherein each of said filaments is stainless steel.
18. Vascular graft of claim 1 wherein each of said filaments is Dacron.
19. Vascular graft of claim 1 wherein each of said filaments is polypropylene.
20. Vascular graft of claim 1 wherein each of said filaments is Teflon.
21. Vascular graft of claims 11-20 wherein each of said filaments is coated with Biolite.
22. Vascular graft of claim 1 wherein said compliant outer covering is processed plastic material.
23. Vascular graft of claim 22 wherein said material is Teflon.
24. Vascular graft of claim 22 wherein said material is Dacron.
25. Vascular graft of claim 22 wherein said material is a woven plastic.
26. Vascular graft of claim 22 wherein said material is a knitted plastic.
27. Vascular graft of claim 22 wherein said material is an expanded plastic.
28. Vascular graft of claim 22 wherein said material is Dacron velour.
29. Vascular graft of claim 22 wherein said material is velour.
30. Vascular graft of claim 1 wherein said compliant outer covering is liquid depositon of chemical curing plastic material.
31. Vascular graft of claim 30 wherein said material is polyurethane.
32. Vascular graft of clam 30 wherein said material is latexrubber.
33. Vascular graft of claim 30 wherein said material is silicone-rubber.
34. Vascular graft of claim 30 wherein said material is Avcothane.
35. Vascular graft of claim 30 wherein said material is Biomer.
36. Vascular graft of claim 30 wherein at least one of said orifices is reinforced by additional deposition of said chemical curing plastic material and processed biologic material.
37. Vascular graft of claim 1 wherein said outflow orifice is substantially parallel to said longitudinal axis and adjacent to a distal end of said tubular member.
38. Vascular graft of claim 37 wherein said outflow orifice is braided and woven into said tubular member and substantially parallel to said longitudinal axis.
39. Vascular graft of claim 1 wherein said tubular member is flared from one of said orifices to said other orifice.
40. Vascular graft of claim 1 wherein said flare increases from said outflow to said inflow orifice.
41. Vascular graft of claim 40 wherein cross-sectional area of said flare increases by substantially one-third.
42. Vascular graft of claim 1 comprising one or more filaments interwovenly encircling at least one of said orifices.
43. Vascular graft of claim 42 wherein terminated filaments and parallel filaments are affixed to said interwoven filaments.
44. Vascular graft of claim 42 wherein said cornpliant outer coverng is processed biologic material.
45. Vascular graft of claim 1 wherein said material is collagen.
46. Vascular graft of claim 1 wherein said material is allograft tissue.
47. Vascular graft of claim 1 wherein said material is autograft tissue.
48. Vascular graft of claim 1 wherein said material is xenograft tissue.
49. Vascular graft of claim 41 wherein at least one of said orifices is reinforced bv additional deposition of said material.
50. Vascular graft of claim 1 comprising a second outer covering over said compliant outer covering.
51. Vascular graft of claim 50 wherein said second outer covering is processed biologic material.
52. Vascular graft implantable prothesis comprising: a. tubular member including an inner layer of braided filaments including a coating of material and a compliant outer covering of at least one material; and, b. inflow and outflow orifice at an angle with respect to a longitudinal axis of said tubular member.
53. Vascular graft implantable prothesis comprising: a. tubular member including an inner layer of braided filaments including a coating of material and a compliant outer covering of at least two materials; and, b. inflow and outflow orifice at an angle with respect to a longitudinal axis of said tubular member.
PCT/US1981/001467 1980-11-17 1981-10-30 Vascular graft WO1982001647A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU78909/81A AU7890981A (en) 1980-11-17 1981-10-30 Vascular graft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US20767880A 1980-11-17 1980-11-17
US207678801117 1980-11-17

Publications (1)

Publication Number Publication Date
WO1982001647A1 true WO1982001647A1 (en) 1982-05-27

Family

ID=22771551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1981/001467 WO1982001647A1 (en) 1980-11-17 1981-10-30 Vascular graft

Country Status (2)

Country Link
EP (1) EP0064534A1 (en)
WO (1) WO1982001647A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983000997A1 (en) * 1981-09-16 1983-03-31 WALLSTÉN, Hans, Ivar Device for application in blood vessels or other difficultly accessible locations
WO1983003752A1 (en) * 1982-04-30 1983-11-10 Wallsten Hans Ivar A prosthesis comprising an expansible or contractile tubular body
EP0117072A1 (en) * 1983-01-25 1984-08-29 J. & P. Coats, Limited Vascular prosthesis
US4610688A (en) * 1983-04-04 1986-09-09 Pfizer Hospital Products Group, Inc. Triaxially-braided fabric prosthesis
FR2590175A1 (en) * 1985-08-13 1987-05-22 Univ Ramot COLLAGEN IMPLANTS
EP0238263A1 (en) * 1986-03-14 1987-09-23 SMITH & NEPHEW RICHARDS, INC. Prosthetic ligament
GB2203342A (en) * 1987-04-07 1988-10-19 Julian Garth Ellis Radio-opaque tracer for surgical implants
US4857069A (en) * 1984-03-01 1989-08-15 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Artificial vessel and process for preparing the same
EP0385925A1 (en) * 1989-02-28 1990-09-05 GebràœDer Sulzer Aktiengesellschaft Plaited vascular prosthesis
EP0473727A1 (en) * 1989-05-26 1992-03-11 Impra Inc Longitudinally compliant vascular graft.
EP0473694A1 (en) * 1989-05-26 1992-03-11 Impra Inc Non-porous coated ptfe graft.
WO1994012136A1 (en) * 1992-10-13 1994-06-09 Boston Scientific Corporation Stents for body lumens exhibiting peristaltic
WO1995029647A2 (en) * 1994-04-29 1995-11-09 Scimed Life Systems, Inc. Stent with collagen
EP0698379A1 (en) * 1994-08-27 1996-02-28 B. BRAUN SURGICAL GmbH Textile vascular prothesis, process and device for producing it
US5662713A (en) * 1991-10-09 1997-09-02 Boston Scientific Corporation Medical stents for body lumens exhibiting peristaltic motion
US5676696A (en) * 1995-02-24 1997-10-14 Intervascular, Inc. Modular bifurcated intraluminal grafts and methods for delivering and assembling same
WO1997043983A1 (en) * 1996-05-24 1997-11-27 Meadox Medicals, Inc. Shaped woven tubular soft-tissue prostheses and methods of manufacturing
US5695879A (en) * 1994-11-10 1997-12-09 B. Braun Surgical Gmbh Surgical suture material and method of making and using same
US5700287A (en) * 1992-12-11 1997-12-23 W. L. Gore & Associates, Inc. Prosthetic vascular graft with deflectably secured fibers
US5716395A (en) * 1992-12-11 1998-02-10 W.L. Gore & Associates, Inc. Prosthetic vascular graft
US5810708A (en) * 1994-02-07 1998-09-22 Baxter International Inc. Ventricular assist conduit with externally supported tissue valve
US5876445A (en) * 1991-10-09 1999-03-02 Boston Scientific Corporation Medical stents for body lumens exhibiting peristaltic motion
WO1999011198A1 (en) * 1997-09-04 1999-03-11 Boston Scientific Limited Aortic arch prosthetic graft
US5931865A (en) * 1997-11-24 1999-08-03 Gore Enterprise Holdings, Inc. Multiple-layered leak resistant tube
US6001056A (en) * 1998-11-13 1999-12-14 Baxter International Inc. Smooth ventricular assist device conduit
WO2010042205A3 (en) * 2008-10-09 2010-07-22 Mimedx, Inc. Methods of making biocomposite medical constructs and related constructs including artificial tissues, vessels and patches
US9173736B2 (en) 2011-04-28 2015-11-03 Medtronic Vascular, Inc. Method of making an endoluminal vascular prosthesis
GB2570544A (en) * 2017-10-31 2019-07-31 Hothouse Medical Ltd Textile products having a sealant or coating and method of manufacture
US11577003B2 (en) 2017-10-31 2023-02-14 Hothouse Medical Limited Textile products having selectively applied sealant or coating with visual indicator and method of detecting the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1156026A1 (en) 2000-05-19 2001-11-21 Shell Internationale Researchmaatschappij B.V. Process for the production of liquid hydrocarbons

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3095017A (en) * 1959-07-14 1963-06-25 Us Catheter & Instr Corp Woven articles
US3105492A (en) * 1958-10-01 1963-10-01 Us Catheter & Instr Corp Synthetic blood vessel grafts
US3272204A (en) * 1965-09-22 1966-09-13 Ethicon Inc Absorbable collagen prosthetic implant with non-absorbable reinforcing strands
US3304557A (en) * 1965-09-28 1967-02-21 Ethicon Inc Surgical prosthesis
US3317924A (en) * 1963-05-27 1967-05-09 Veen Harry H Le Vascular prostheses
US3463158A (en) * 1963-10-31 1969-08-26 American Cyanamid Co Polyglycolic acid prosthetic devices
US3479670A (en) * 1966-10-19 1969-11-25 Ethicon Inc Tubular prosthetic implant having helical thermoplastic wrapping therearound
US3526906A (en) * 1965-11-05 1970-09-08 Lorraine Carbone Prosthetic implants made from carbonaceous materials
US3626947A (en) * 1970-02-19 1971-12-14 Charles Howard Sparks Method and apparatus for vein and artery reenforcement
US3710777A (en) * 1970-12-23 1973-01-16 C Sparks Method and apparatus for growing graft tubes in place
US3730835A (en) * 1971-04-15 1973-05-01 Alza Corp Novel device coated with a prosta-glandin and preparation thereof
DE2255743A1 (en) * 1971-11-15 1973-05-24 Vyzk Ustav Pletarzsky VESSEL PROSTHESIS
US3878565A (en) * 1971-07-14 1975-04-22 Providence Hospital Vascular prosthesis with external pile surface
US4164045A (en) * 1977-08-03 1979-08-14 Carbomedics, Inc. Artificial vascular and patch grafts
DE2913510A1 (en) * 1978-04-06 1979-10-18 Intermedicat Gmbh PROCESS FOR THE MANUFACTURE OF KINK-FREE, ELASTIC AND PIT-RESISTANT VESSEL DENTURES
US4193138A (en) * 1976-08-20 1980-03-18 Sumitomo Electric Industries, Ltd. Composite structure vascular prostheses

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3105492A (en) * 1958-10-01 1963-10-01 Us Catheter & Instr Corp Synthetic blood vessel grafts
US3095017A (en) * 1959-07-14 1963-06-25 Us Catheter & Instr Corp Woven articles
US3317924A (en) * 1963-05-27 1967-05-09 Veen Harry H Le Vascular prostheses
US3463158A (en) * 1963-10-31 1969-08-26 American Cyanamid Co Polyglycolic acid prosthetic devices
US3272204A (en) * 1965-09-22 1966-09-13 Ethicon Inc Absorbable collagen prosthetic implant with non-absorbable reinforcing strands
US3304557A (en) * 1965-09-28 1967-02-21 Ethicon Inc Surgical prosthesis
US3526906A (en) * 1965-11-05 1970-09-08 Lorraine Carbone Prosthetic implants made from carbonaceous materials
US3479670A (en) * 1966-10-19 1969-11-25 Ethicon Inc Tubular prosthetic implant having helical thermoplastic wrapping therearound
US3626947A (en) * 1970-02-19 1971-12-14 Charles Howard Sparks Method and apparatus for vein and artery reenforcement
US3710777A (en) * 1970-12-23 1973-01-16 C Sparks Method and apparatus for growing graft tubes in place
US3730835A (en) * 1971-04-15 1973-05-01 Alza Corp Novel device coated with a prosta-glandin and preparation thereof
US3878565A (en) * 1971-07-14 1975-04-22 Providence Hospital Vascular prosthesis with external pile surface
DE2255743A1 (en) * 1971-11-15 1973-05-24 Vyzk Ustav Pletarzsky VESSEL PROSTHESIS
US4193138A (en) * 1976-08-20 1980-03-18 Sumitomo Electric Industries, Ltd. Composite structure vascular prostheses
US4164045A (en) * 1977-08-03 1979-08-14 Carbomedics, Inc. Artificial vascular and patch grafts
DE2913510A1 (en) * 1978-04-06 1979-10-18 Intermedicat Gmbh PROCESS FOR THE MANUFACTURE OF KINK-FREE, ELASTIC AND PIT-RESISTANT VESSEL DENTURES

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983000997A1 (en) * 1981-09-16 1983-03-31 WALLSTÉN, Hans, Ivar Device for application in blood vessels or other difficultly accessible locations
WO1983003752A1 (en) * 1982-04-30 1983-11-10 Wallsten Hans Ivar A prosthesis comprising an expansible or contractile tubular body
EP0117072A1 (en) * 1983-01-25 1984-08-29 J. & P. Coats, Limited Vascular prosthesis
US4610688A (en) * 1983-04-04 1986-09-09 Pfizer Hospital Products Group, Inc. Triaxially-braided fabric prosthesis
US4857069A (en) * 1984-03-01 1989-08-15 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Artificial vessel and process for preparing the same
FR2590175A1 (en) * 1985-08-13 1987-05-22 Univ Ramot COLLAGEN IMPLANTS
EP0238263A1 (en) * 1986-03-14 1987-09-23 SMITH & NEPHEW RICHARDS, INC. Prosthetic ligament
GB2203342A (en) * 1987-04-07 1988-10-19 Julian Garth Ellis Radio-opaque tracer for surgical implants
GB2203342B (en) * 1987-04-07 1991-12-11 Julian Garth Ellis Radio-opaque tracer for surgical implants
EP0385925A1 (en) * 1989-02-28 1990-09-05 GebràœDer Sulzer Aktiengesellschaft Plaited vascular prosthesis
CH677186A5 (en) * 1989-02-28 1991-04-30 Sulzer Ag
EP0473694A1 (en) * 1989-05-26 1992-03-11 Impra Inc Non-porous coated ptfe graft.
EP0473727A1 (en) * 1989-05-26 1992-03-11 Impra Inc Longitudinally compliant vascular graft.
EP0473727A4 (en) * 1989-05-26 1992-05-20 Impra, Inc. Longitudinally compliant vascular graft
EP0473694A4 (en) * 1989-05-26 1992-05-27 Impra, Inc. Non-porous coated ptfe graft
US5876445A (en) * 1991-10-09 1999-03-02 Boston Scientific Corporation Medical stents for body lumens exhibiting peristaltic motion
US6146416A (en) * 1991-10-09 2000-11-14 Boston Scientific Corporation Medical stents for body lumens exhibiting peristaltic motion
US6305436B1 (en) 1991-10-09 2001-10-23 Scimed Life Systems, Inc. Medical stents for body lumens exhibiting peristaltic motion
US6355070B1 (en) 1991-10-09 2002-03-12 Scimed Life Systems, Inc. Medical stents for body lumens exhibiting peristaltic motion
US5662713A (en) * 1991-10-09 1997-09-02 Boston Scientific Corporation Medical stents for body lumens exhibiting peristaltic motion
US6505654B1 (en) 1991-10-09 2003-01-14 Scimed Life Systems, Inc. Medical stents for body lumens exhibiting peristaltic motion
WO1994012136A1 (en) * 1992-10-13 1994-06-09 Boston Scientific Corporation Stents for body lumens exhibiting peristaltic
US5700287A (en) * 1992-12-11 1997-12-23 W. L. Gore & Associates, Inc. Prosthetic vascular graft with deflectably secured fibers
US5716395A (en) * 1992-12-11 1998-02-10 W.L. Gore & Associates, Inc. Prosthetic vascular graft
US5810708A (en) * 1994-02-07 1998-09-22 Baxter International Inc. Ventricular assist conduit with externally supported tissue valve
WO1995029647A2 (en) * 1994-04-29 1995-11-09 Scimed Life Systems, Inc. Stent with collagen
US5693085A (en) * 1994-04-29 1997-12-02 Scimed Life Systems, Inc. Stent with collagen
WO1995029647A3 (en) * 1994-04-29 1996-02-15 Scimed Life Systems Inc Stent with collagen
EP0698379A1 (en) * 1994-08-27 1996-02-28 B. BRAUN SURGICAL GmbH Textile vascular prothesis, process and device for producing it
US6053938A (en) * 1994-08-27 2000-04-25 Aesculap Ag & Co. Kg Textile vessel prosthesis, process for its production and apparatus for its production
US5695879A (en) * 1994-11-10 1997-12-09 B. Braun Surgical Gmbh Surgical suture material and method of making and using same
US6011121A (en) * 1994-11-10 2000-01-04 B. Braun Surgical Gmbh Surgical suture material, its use in surgery and process for its production
US5683449A (en) * 1995-02-24 1997-11-04 Marcade; Jean Paul Modular bifurcated intraluminal grafts and methods for delivering and assembling same
US5676696A (en) * 1995-02-24 1997-10-14 Intervascular, Inc. Modular bifurcated intraluminal grafts and methods for delivering and assembling same
US6840958B2 (en) 1996-05-24 2005-01-11 Scimed Life Systems, Inc. Shaped woven tubular soft-tissue prostheses and method of manufacturing the same
US6596023B1 (en) 1996-05-24 2003-07-22 Meadox Medicals, Inc. Shaped woven tubular soft-tissue prostheses and method of manufacturing the same
US6136022A (en) * 1996-05-24 2000-10-24 Meadox Medicals, Inc. Shaped woven tubular soft-tissue prostheses and methods of manufacturing the same
US7550006B2 (en) 1996-05-24 2009-06-23 Boston Scientific Scimed, Inc. Shaped woven tubular soft-tissue prostheses and method of manufacturing the same
WO1997043983A1 (en) * 1996-05-24 1997-11-27 Meadox Medicals, Inc. Shaped woven tubular soft-tissue prostheses and methods of manufacturing
US6821294B2 (en) 1996-05-24 2004-11-23 Scimed Life Systems, Inc. Shaped woven tubular soft-tissue prostheses and method of manufacturing the same
US5904714A (en) * 1996-05-24 1999-05-18 Meadox Medicals, Inc. Shaped woven tubular soft-tissue prostheses and methods of manufacturing
WO1999011198A1 (en) * 1997-09-04 1999-03-11 Boston Scientific Limited Aortic arch prosthetic graft
US6733522B2 (en) 1997-09-04 2004-05-11 Scimed Life Systems, Inc. Aortic arch prosthetic graft
US7189257B2 (en) 1997-09-04 2007-03-13 Scimed Life Systems, Inc. Aortic arch prosthetic graft
US5931865A (en) * 1997-11-24 1999-08-03 Gore Enterprise Holdings, Inc. Multiple-layered leak resistant tube
WO2000028924A3 (en) * 1998-11-13 2000-12-14 Baxter Int Smooth ventricular assist device conduit
US6001056A (en) * 1998-11-13 1999-12-14 Baxter International Inc. Smooth ventricular assist device conduit
WO2000028924A2 (en) * 1998-11-13 2000-05-25 World Heart Corporation Smooth ventricular assist device conduit
US9801978B2 (en) 2008-10-09 2017-10-31 Mimedx Group, Inc. Medical constructs including tubes and collagen fibers
WO2010042205A3 (en) * 2008-10-09 2010-07-22 Mimedx, Inc. Methods of making biocomposite medical constructs and related constructs including artificial tissues, vessels and patches
US8367148B2 (en) 2008-10-09 2013-02-05 Mimedx Group, Inc. Methods of making biocomposite medical constructs and related constructs including artificial tissues, vessels and patches
US9078775B2 (en) 2008-10-09 2015-07-14 Mimedx Group, Inc. Methods of making collagen fiber medical constructs and related medical constructs, including nerve guides and patches
US9125759B2 (en) 2008-10-09 2015-09-08 Mimedx Group, Inc. Biocomposite medical constructs including artificial tissues, vessels and patches
US9179976B2 (en) 2008-10-09 2015-11-10 Mimedx Group, Inc. Methods of making collagen fiber medical constructs and related medical constructs, including tubes
US9173736B2 (en) 2011-04-28 2015-11-03 Medtronic Vascular, Inc. Method of making an endoluminal vascular prosthesis
GB2570544A (en) * 2017-10-31 2019-07-31 Hothouse Medical Ltd Textile products having a sealant or coating and method of manufacture
US10926003B2 (en) 2017-10-31 2021-02-23 Hothouse Medical Limited Textile products having a sealant or coating and method of manufacture
US11045586B2 (en) 2017-10-31 2021-06-29 Hothouse Medical Limited Textile products having a sealant or coating and method of manufacture
GB2570544B (en) * 2017-10-31 2022-07-27 Hothouse Medical Ltd Textile products having a sealant or coating and method of manufacture
US11577003B2 (en) 2017-10-31 2023-02-14 Hothouse Medical Limited Textile products having selectively applied sealant or coating with visual indicator and method of detecting the same
US11666683B2 (en) 2017-10-31 2023-06-06 Hothouse Medical Limited Textile products having a sealant or coating and method of manufacture
US11857699B2 (en) 2017-10-31 2024-01-02 Hothouse Medical Limited Textile products having a sealant or coating and method of manufacture

Also Published As

Publication number Publication date
EP0064534A1 (en) 1982-11-17

Similar Documents

Publication Publication Date Title
US4441215A (en) Vascular graft
WO1982001647A1 (en) Vascular graft
JP6986522B2 (en) Stent graft
US5314468A (en) Aortic valved tubes for human implants
US5156619A (en) Flanged end-to-side vascular graft
JP4540912B2 (en) Endovascular graft system
US4368736A (en) Anastomotic fitting
US5192311A (en) Medical implant and method of making
US6878164B2 (en) Short body endoprosthesis
AU2005231149B2 (en) Encapsulated stent-graft with graft to graft attachment
US4366819A (en) Anastomotic fitting
US10299946B2 (en) Frame structures, stent grafts incorporating the same, and methods for extended aortic repair
US8932344B2 (en) Aortic conduit configured with terminal ends having neosinuses of valsalva
US20040073282A1 (en) Distally-narrowed vascular grafts and methods of using same for making artery-to-vein and artery-to-artery connections
US20020082684A1 (en) Intravascular prosthetic and method
JP6290097B2 (en) Intracavity artificial blood vessel
JP2007532250A (en) Stent graft repair device
JP2009509604A (en) Ascending aortic segment prosthesis and surgical treatment of aortic valve leak
US20030097170A1 (en) Implantation device for an aorta in an aortic arch
US5776185A (en) Cardiovascular graft
JP2022516603A (en) Stent graft and how to use it
JP2020533080A (en) Intraluminal artificial vascular system
WO2019097328A1 (en) Vascular prosthesis for use in the treatment of arterial diseases
AU2001283136A1 (en) Distally narrowed vascular grafts
RU187447U1 (en) Biological prosthesis of arteries with an external mesh tubular coating of the external wall

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): AU NO

AL Designated countries for regional patents

Designated state(s): CH DE FR GB NL SE

WWE Wipo information: entry into national phase

Ref document number: 1981903154

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1981903154

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1981903154

Country of ref document: EP