WO1985001856A1 - Procede de transfert de genes exogenes dans des plantes en utilisant le pollen comme vecteur - Google Patents

Procede de transfert de genes exogenes dans des plantes en utilisant le pollen comme vecteur Download PDF

Info

Publication number
WO1985001856A1
WO1985001856A1 PCT/US1984/001774 US8401774W WO8501856A1 WO 1985001856 A1 WO1985001856 A1 WO 1985001856A1 US 8401774 W US8401774 W US 8401774W WO 8501856 A1 WO8501856 A1 WO 8501856A1
Authority
WO
WIPO (PCT)
Prior art keywords
pollen
dna
plant
donor
plants
Prior art date
Application number
PCT/US1984/001774
Other languages
English (en)
Inventor
Johannes Martenis Jacob De Wet
Original Assignee
Johannes Martenis Jacob De Wet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johannes Martenis Jacob De Wet filed Critical Johannes Martenis Jacob De Wet
Publication of WO1985001856A1 publication Critical patent/WO1985001856A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector

Definitions

  • the invention herein described relates to a method for the transfer of exogenous genes in Angiosperms from a selected donor plant to a host plant.
  • the method involves incubation of pollen from the parent plant with foreign DNA from the donor.
  • the host plant is then pollinated with treated pollen and normal fertilization and development of seed occur.
  • a self-pollination system is preferred.
  • Transformed offspring generated from seed express genetic traits characteristic of the foreign DNA donor.
  • Agrobacterium tumefaciens and the Ti plasmid holds promise, but this system is limited to dicotyledonous plants.
  • A. tumefaciens does not infect monocotyledonous plants. This plant group includes grasses and cereals, and indeed most of the world's important food crops [Sci. Amer., 248(6) ;59, 1983].
  • Tissue culture techniques are also being investigated. Many dicotyledonous plants can be quite easily regen- erated into intact plants from undifferentiated tis ⁇ sue-culture cells.
  • the male gametophyte is a complex structure.
  • the male gametophyte (pollen grain) of maize consists of a tube nucleus and a generative cell. Soon after germination the pollen tube protrudes from the pore of the pollen grain and the generative cell divides to produce two sperm.
  • the pollen tube then enters the stigma, grows down the style, and enters the female gametophyte where it disposes of its contents into the cytoplasm of the embryosac [Pfahler, P.L. 1978. Biology of the male gametophyte. Iri D.B. Walden (ed.). Maize breeding and genetics. John Wiley and Sons, New York, pp. 517-530; Earle, E. 1982. Gametogenesis, fertilization and embryo development. I I H. Smith and D. Grierson (eds.). Molecular biology of plant development. Bot. Monogs. 1 : 285-305. Univ. Calif. Press, Berkeley; and Linskens, H.F. 1983.
  • Mutations and transformations achieved through sexual transfer of exogenous DNA are phenotypically similar to expressions of known mutant loci. If actual gene transfer does take place, it is assumed that incorporation into the genome of the zygote will be at specific sites on one or more chromosomes (Rubin, G.M. , and A,C, Spradling. 1982. Genetic transformation with transposable vectors. Sci. 218: 348-353; Spradling, A.C., and G.M. Rubin. 1982. Transposition of cloned P elements into
  • Transformed plants either segregate in a
  • OMPI phenotypes and whether loci coding for these genet ⁇ ically mutated phenotypes are located on the expected chromosomes and expected positions on chromosomes arms.
  • cultivated maize Zea mays
  • arose through natural crossing perhaps first with gamagrass (Tripsacum dactyloides) .
  • Hybrids with 36 Tripsacum (Tr) + 10 Zea (Zm) chromosomes are characterized mostly by 18 Tr bivalents and 10 Zm univalents during meiotic prophase [de Wet, J.M.J. and J.R. Harlan. 1974. Tripsacum - maize interaction: A novel cytogenetic system. Genetics 7_8. 493-502; de Wet, J.M.J. et al. 1982. Systematics of . Tripsacum dactyloides (Gramineae) . Amer. J. Bot. 69.* 1251-1257] .
  • Tripsacoid maize genotypes so produced carry several traits new to the genome of maize, and are highly desirable in maize improvement (Bergquist, R.L. 1981.
  • Diploid Tripsacum taxa produce functional female gametes that are haploid (18 chromosomes) or diploid (36 chromosomes) .
  • the ⁇ ytologically non-reduced female gamete may function sexually or develop parthenogenetically to produce a functional embryo.
  • Offspring from such crosses were therefore expected to have 18 Tr + 10 Zm, 36 Tr + 10 Zm, or 36 Tr + 0 Zm chromosomes, the last cytotype being maternal. These cytotypes were indeed produced, but some offspring with 36 Tr + 0 Zm chromosomes resembled true hybrids with 36 Tr + 10 Zm in phenotype.
  • OMPI _ litter mates that were not genetically altered. Plant embryos were similarly transformed by Sayfer (1980, supra) and by Zhou et a].. (1983, supra) . Pollen may serve as a transfer vector of exogenous DNA (Hess, D. 1980. Investigations on the intra- and interspecific transfer of anthocyanin genes using pollen as vectors. Zeitschr. Dephysiol. Bd. 9J3: 321-337) .
  • an object of this invention is to -provide a new and useful method for the transfer of foreign genes among flowering plants using the devel ⁇ oping male gametophyte as a transfer vector.
  • a further object is to provide a male gametophyte system for the transfer of genes between maize cultivars.
  • Yet another object is to provide a method for the inter-species transfer of genes between gamagr ss and maize using pollen as a vector.
  • the male gametophyte of Angiosperms can effectively act as a transfer vector of exogenous genes.
  • One of species selected as experimental material for gene transfer is maize (Zea mays) .
  • Another experimental species is gamagrass (Tripsacum dactyloides) .
  • the genetics of maize is fairly well understood; stocks of marker genes are available; and two genes have been cloned and are available for experimentation.
  • pollen can be used as a transfer vector of foreign genes.
  • the technique of the invention can be used with flowering plants (Angiosperms) for dicot-dicot or monocot-monocot genetic transfer. This genetic engineering techniques is so simple that it can be used in plant breeding with little refinement.
  • the male gametophyte has two major advan ⁇ tages over the use of plasmids as transfer vectors.
  • the most important advantage is efficiency. Germinating and incubating of pollen are readily achieved in the field, and self-pollination followed by selection are standard breeding tools for plant im ⁇ provement.
  • the usefulness of this technique is further enhanced by the ability to transform zygotes, bypassing problems associated with generating func ⁇ tional plants from protoplasts. Data indicate that germinating pollen grains incubated with alien DNA affect fertilization, and induce directional mutations in the genome of the zygote which are expressed in the resulting offspring and their descendents.
  • the technique of the invention can be used to consistently transfer selected marker or other desirable genes from a DNA donor plant to a recipient mother cultivar. However, the mechanisms involved in DNA uptake by the
  • OMPI pollen tube transportation of alien DNA to the embryosac by the male gametophyte, and exogenous nucleotide incorporation into the genome of the zygote, as well as the genetics of transferred or mutated genes in the offspring of the recipient mother, are not yet well known.
  • the method of the invention comprises the isolation of exogenous DNA from a selected donor plant, removal of mature pollen from the chosen donor plant, germination of this pollen in pollen- germinating liquid medium, incubation of germinating pollen with the foreign DNA, pollination of the mother plant with treated pollen, fertilization of the eggs within mature embryosacs of the mother plant, matura- tion of the ovary, obtain ent of seeds from mother plant and germination of same, and selection of transformed plants from the population obtained from said seeds.
  • pollen from a compatible cultivar related to the mother plant- can be treated with exogenous genes and used to pollinate the respec ⁇ tive mother plant.
  • OMPI OMPI :4321-4325
  • PGM aqueous pollen-germi- nating medium
  • PGM comprising carbohydrate, calcium, and boron
  • Mature pollen is sprinkled onto a thin layer of PGM. Most of the pollen will begin to germinate within approximately 15 minutes.
  • the previously-prepared donor DNA is added to the germinating pollen grains after approximately 10% of the pollen grains have begun germination.
  • PGM is poured over germinating pollen and SSC buffer with DNA is added to give a final DNA concentration of approxi ⁇ mately 4-5 g/ml. Pollination is then initiated immediately. The PGM/DNA mixture is then transferred to the stigmatic surface of a receptive female inflorescence. Pollinated flowers are protected from foreign pollen by shoot bags until the PGM evaporates and then are covered with brown paper bags. Fer ⁇ tilization eventually occurs, but embryo and endosperm development is reduced. This effect is due to a reduction of functional pollen and sperm. It is known that several pollen grains are essential for the development of a seed (Klyucharena, M.V. 1962.
  • IPO polar cells may come from the same or different male gametophyte as the sperm that fertilizes the egg.
  • Pollen grains typically contain a tube nucleus and a generative cell.
  • the haploid generative cell divides to form two sperm, the sperm travel down the pollen tube of a germinating pollen grain, traverses the stigmatic surface and the style of a mature female inflorescence, and eventually enters the ovary where one sperm combines in the fertilization process with the haploid egg cell.
  • Gametic delivery results in deposition near the egg of two sperm, the vegetative nucleus and cytoplasm by each of several male gametophytes. This is accom ⁇ panied by loss of sperm and egg cell wall components.
  • Gametic fusion results in the transmission of nearly the total sperm cytoplasm and organelle complement to the egg. The one sperm plays a role in the develop- ment of endosperm.
  • OMPI normal stigma penetration and fertilization occurs, but embryo and endosperm development is greatly reduced. It is also suggested that a critical number of male gametophytes need to deposit their contents into the cytoplasm of the female gametophyte for successful seed development. Increase in quantity of treated pollen used in pollination increases the number of seeds produced.
  • Results obtained using the method of the in- vention and maize demonstrate that exogenous genes are incorporated into the genome of the zygote. When and exactly how this occurs is unknown. If the DNA is carried to the female gametophyte by the sperm, incorporation may either be directly from the sperm -genome or indirectly from the sperm cytoplasm. It is also possible that DNA is transported as free frag ⁇ ments in the cytoplasm of the male gametophyte or sperm. Incorporation may then take place during division of the zygote to produce an embryo.
  • the Zea mays cultivar B73 was selected for various experiments using the method of the invention.
  • the female inflorescence of the standard maize inbred B73 consists of some 500 individual ovules arranged in 8 rows of paired spikelets around a central rachis. Each ovule has its own style with a feathery stigma, and contains a single female gametophyte. Sytles grow to over 15 cm long. Pollen grains are large, and it is possible to pick up individual grains with a fine, moist human hair for transportation to the stigma. Pollen germination and pollen tube growth down the stigma can be followed using fluorescence microscopy. Pollen germination is not severely affected by PGM or DNA incubation but pollen tube growth is retarded and few sperm reach the female gametophyte.
  • Maize B73 is self-pollinated with pollen incubat ⁇ ed with DNA obtained from Tripsacum dactyloides or DNA from other maize genotypes carrying specific marker genes using the method of the invention.
  • tripsacoid traits, as well as specific genes of the maize DNA donor transferable to maize through sexual transfer of exogenous DNA are similar to those incorporated into the maize genome through introgression (de Wet, J.M.J. et al. 1978.
  • Nuclear DNA is extracted from seedling or mature leaves of the donor genotype using a combination of published techniques [J. Mol. Biol. 3:208-219 (1961); Plant Physiol. 6_6_: 1140-1143 (1980) ; Nucl. Acids Res. 8_: 4321-4325 (1980)], using a Trisbase buffer [0.2 M Trisbase (24.22g) , 0.2 M Disodium di-H 2 0 EDTA (74.45g), 4% SDS (40g) in one liter H_0] . Extracted DNA is purified as described in procedures cited above.
  • Pollen germination and pollination after incu ⁇ bation with exogenous DNA are the most difficult aspects of the method of the invention using the male gametophyte as a carrier of foreign DNA.
  • Pollen germinating medium PGM. comprises a ' solution of approximately 15% sucrose, 0.03% calcium nitrate and 0.01% boric acid in water. Maize, as well as the pollen of other plants, germinates well in the PGM. The base of a large petri dish is covered with a thin layer of pollen germinating medium and sprinkled with mature pollen of the recipient mother. In experiments with maize approximately 27mm of pollen is used for each set of pollinations.
  • pollen from a single anther is sufficient to insure seed set.
  • pollen starts to germinate within 3 to 10 minutes.
  • Approximately 60 to 90% of the pollen is germinated after 15 minutes.
  • DNA is obtained from donor plants according to the method of Example 1. Incubation of pollen with exogenous DNA begins after approximately 10% of pollen grains show visible signs of germination. Pollen tubes longer than the diameter of the grains break . during pollination.
  • Nine ml of PGM is poured over the germinated pollen and 1 ml of buffer with DNA is added, to obtain a DNA concentration of 4-5 g/ml. Pollination is initiated immediately.
  • the 11 ml of solution thus prepared is suffi ⁇ cient, for example, to pollinate three female inflorescences of corn each with approximately 300 to 500 ovules. Pollinating an ear of corn requires approximately one minute. Stigmas are cut to the tip of the cob twelve hours before pollination. The PGM with DNA and pollen is transferred to stigmas with a pasteur pipet. Pollinated ears are protected from foreign pollen by shoot bags until PGM evaporates, and they are then covered by standard brown paper bags. , PGM takes approximately 15 minutes to evaporate. Incubation continues until the developing pollen tube enters the stigma, or until the DNA is destroyed on the stigmas. Pollen tube growth continues during incubation with DNA, and penetration of stigmas proceeds normally. Fertilization takes place, but embryo and endosperm development is greatly reduced. This is believed due to a reduction of functional pollen and sperm. Resultant seeds are then screened for transposed genetic characteristics. Similar procedures are adapted for other experimental plants.
  • Maize inbreds B73, DP194 and Zm 1974 produce an average of 425, 368 and 572 caryopses respectively per female inflorescence when they are self-pollinated.
  • Various treatments of mature pollen of B73 are per ⁇ formed using the methods described in Example 1 and 2. Results of these experiments are presented in Table I below:
  • Zm Zea mays (domesticated maize) ; Z ⁇ mays subsp. parviglumis
  • Percentage seedset is negatively correlated with successful germination. Ears were classified into those with 1 to 10, 11 to 20, 21 to 30 and 31 to 40 caryopses. Seedset classes were planted separately and percentage germination recorded. Results of this experiment are presented in Table III below.
  • Seedset of 31-40 caryopses per ear resulted in 3.5% germination, of 21-30 caryopses in 31-34% germination, of 11-20 caryopses in 32-43% germination and 1-10 caryopses in 39-63% germination.
  • Poor germination from ears with relatively high seedset is due to reduced amounts of endosperm in the small caryopses in relation to caryopses from ears with low seedset.
  • Germination is essentially perfect when caryopses are planted in sterile vermiculite and kept in a growth chamber at 75 F.
  • Inbred Zea mays DP194 is highly susceptible to common leaf-rust caused by Puccinia sorghi.
  • the DNA donor, Zea mays B14-A is resistant to rust. Resistance is dominant over susceptibility, and the genotype of B14-A used as DNA donor was homozygous resistant (Rpl /Rpl) .
  • Rpl /Rpl homozygous resistant
  • Seedlings are transplanted when the second leaf appears, inoculated with rust starting at the 4-leaf stage. Field germination of the same treatment was 73%. DP194 control planted in vermiculite produced 90% germination within six days, and 100% germination by the eleventh day. These data show that three out of 103 seedlings (No. 74, 102, 103) showed complete resis ⁇ tance after repeated inoculations with rust spores at the four-leaf and later stages. All other seedlings showed disease symptoms within five days after inocu ⁇ lation. Five out of 103 seedlings (No.
  • each inflorescence branch is composed of solitary female spikelets, alternately arranged in cavities of an indurated rachis, with the paired male spikelets arranged on the same rachis above the female section.
  • Sixteen plants were characterized by soli ⁇ tary female spikelets on tassel branches below the male spikelets.
  • Female spikelets in the tassel do " occur in maize as a rare mutation, but they are paired as is typical in the female inflorescence of maize. Five of these robust plants tillered to produce 3 to 6 fertile culms.
  • Peduncles of female inflorescences in Zml974 vary from 13 to 57 cm in length.
  • trans- formed offspring were three plants with peduncle lengths of 87 cm, 102 cm and 110 cm. Two of these plants tillered while the other was characterized by a single culm.

Abstract

Procédé de transfert de gènes exogènes dans des plantes à fleurs. L'ADN du donneur est isolé et incubé avec le pollen dans un milieu de germination de pollen. Ce pollen est ensuite utilisé pour polliniser une plante compatible, et les graines sont recueillies. Les rejetons présentent des traits définis par l'ADN exogène.
PCT/US1984/001774 1983-11-03 1984-10-31 Procede de transfert de genes exogenes dans des plantes en utilisant le pollen comme vecteur WO1985001856A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US54826083A 1983-11-03 1983-11-03
US548,260 1983-11-03

Publications (1)

Publication Number Publication Date
WO1985001856A1 true WO1985001856A1 (fr) 1985-05-09

Family

ID=24188063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1984/001774 WO1985001856A1 (fr) 1983-11-03 1984-10-31 Procede de transfert de genes exogenes dans des plantes en utilisant le pollen comme vecteur

Country Status (2)

Country Link
EP (1) EP0160692A1 (fr)
WO (1) WO1985001856A1 (fr)

Cited By (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987005325A1 (fr) * 1986-03-03 1987-09-11 Transgene Gmbh Procede pour transferer des substances organiques et/ou inorganiques a des cellules-oeufs et/ou a des cellules somatiques d'animaux, et compositions utilisees a cet effet
EP0241963A1 (fr) * 1986-03-26 1987-10-21 "Centre d'Etude de l'Energie Nucléaire", "C.E.N." Procédé de traitement de matériel végétal afin d'obtenir l'expression d'au moins un gène, et matériel végétal dans lequel ce gène s'exprime
EP0270356A2 (fr) * 1986-12-05 1988-06-08 Agracetus, Inc. Transformation de cellules de plantes au moyen de particules accélérées couvries avec ADN et l'appareil pour effectuer cette transformation.
EP0275069A2 (fr) * 1987-01-13 1988-07-20 DNA PLANT TECHNOLOGY CORPORATION (under the laws of the state of Delaware) Transformation génique dans les plantes utilisant le pollen
EP0286429A1 (fr) * 1987-04-09 1988-10-12 Yissum Research Development Company Of The Hebrew University Of Jerusalem Procédé pour l'introduction de gènes dans des plantes
EP0290395A2 (fr) * 1987-05-05 1988-11-09 Sandoz Ag Transformation de tissus de plantes
WO1989000602A1 (fr) * 1987-07-21 1989-01-26 Chemie Holding Aktiengesellschaft Procede de transfert genetique entre des vegetaux
EP0429093A2 (fr) * 1984-05-11 1991-05-29 Ciba-Geigy Ag Transformation du génotype de plantes
US5049500A (en) * 1987-01-13 1991-09-17 E. I. Du Pont De Nemours Pollen-mediated gene transformation in plants
EP0487711A1 (fr) * 1990-06-21 1992-06-03 Agracetus Appareil de transformation genetique.
US5120657A (en) * 1986-12-05 1992-06-09 Agracetus, Inc. Apparatus for genetic transformation
EP0513849A2 (fr) * 1987-05-20 1992-11-19 Ciba-Geigy Ag Plantes de Zea mays et plantes transgéniques de Zea mays régénérées de protoplastes ou de cellules dérivées de protoplastes
US5350689A (en) * 1987-05-20 1994-09-27 Ciba-Geigy Corporation Zea mays plants and transgenic Zea mays plants regenerated from protoplasts or protoplast-derived cells
US5371003A (en) * 1987-05-05 1994-12-06 Sandoz Ltd. Electrotransformation process
US5484956A (en) * 1990-01-22 1996-01-16 Dekalb Genetics Corporation Fertile transgenic Zea mays plant comprising heterologous DNA encoding Bacillus thuringiensis endotoxin
US5508468A (en) * 1990-01-22 1996-04-16 Dekalb Genetics Corporation Fertile transgenic corn plants
US5550318A (en) * 1990-04-17 1996-08-27 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
US5567599A (en) * 1990-08-21 1996-10-22 Florigene Europe B.V. Method for producing transformed chrysanthemum plants
EP0757102A1 (fr) 1995-08-04 1997-02-05 Plant Genetic Systems N.V. Transformation génétique utilisant un inhibiteur de PARP
US5629183A (en) * 1989-05-08 1997-05-13 The United States Of America As Represented By The Secretary Of Agriculture Plant transformation by gene transfer into pollen
US5689051A (en) * 1994-12-08 1997-11-18 Pioneer Hi-Bred International, Inc. Transgenic plants and DNA comprising anther specific promoter 5126 and gene to achieve male sterility
US5763243A (en) * 1994-12-08 1998-06-09 Pioneer Hi-Bred International, Inc. Reversible nuclear genetic system for male sterility in transgenic plants
US5780709A (en) * 1993-08-25 1998-07-14 Dekalb Genetics Corporation Transgenic maize with increased mannitol content
WO1999003326A1 (fr) * 1997-07-15 1999-01-28 United States Of America, As Represented By The Secretary Of Agriculture Systeme de transformation par le pollen, a l'aide de milieux solides
US6084164A (en) * 1996-03-25 2000-07-04 Pioneer Hi-Bred International, Inc. Sunflower seeds with enhanced saturated fatty acid contents
WO2003078629A1 (fr) 2002-03-20 2003-09-25 Basf Plant Science Gmbh Produit de synthese et procede de regulation de l'expression genique
WO2004076638A2 (fr) 2003-02-25 2004-09-10 Mendel Biotechnology, Inc. Polynucleotides et polypeptides dans des plantes
WO2006111512A1 (fr) 2005-04-19 2006-10-26 Basf Plant Science Gmbh Methodes ameliorees controlant une expression genique
WO2007007147A2 (fr) 2005-07-08 2007-01-18 Universidad Nacional Autonoma De Mexico Instituto De Biotecnologia Nouvelles proteines bacteriennes avec activite pesticide
US7265269B2 (en) 2001-01-09 2007-09-04 Bayer Bioscience N.V. Nucleic acids encoding a novel Cry2Ae bacillus thuringiensis insecticidal protein
WO2008005988A2 (fr) 2006-07-05 2008-01-10 Arkansas State University Research And Development Institute Production de stilbènes et de leurs dérivés dans des cultures de racines végétales chevelues
EP1950306A1 (fr) 1999-11-17 2008-07-30 Mendel Biotechnology, Inc. Gènes de tolérance au stress environnemental
WO2008095970A1 (fr) 2007-02-09 2008-08-14 Basf Plant Science Gmbh Compositions et procédés faisant appel à l'interférence de l'arn de type cdpk dans la lutte contre les nématodes
WO2008095910A1 (fr) 2007-02-08 2008-08-14 Basf Plant Science Gmbh Compositions et méthodes utilisant l'arn interférence d'un gène du type opr3 pour la lutte contre les nématodes
WO2008095889A1 (fr) 2007-02-06 2008-08-14 Basf Plant Science Gmbh Utilisation de gènes de l'alanine racemase en vue de conférer aux plantes une résistance aux nématodes
WO2008095886A1 (fr) 2007-02-06 2008-08-14 Basf Plant Science Gmbh Compositions et de procédés faisant appel à une interférence arn pour contrôler des nématodes
WO2008110522A1 (fr) 2007-03-15 2008-09-18 Basf Plant Science Gmbh Utilisation de gènes de chitinase de nématode pour lutter contre les nématodes parasites des plantes
EP2036984A2 (fr) 2002-07-26 2009-03-18 BASF Plant Science GmbH Reversion de l'effet sélectif négatif d'un protéin de marquage comme procédure de sélection
EP2045262A1 (fr) 1999-12-28 2009-04-08 Bayer BioScience N.V. Protéines insecticides provenant de Bacillus thuringiensis
WO2009088756A1 (fr) 2007-12-31 2009-07-16 E. I. Du Pont De Nemours And Company Maïs résistant à la maladie de la tache grise et ses procédés de production
WO2009140839A1 (fr) 2008-05-20 2009-11-26 Oil Crops Research Institute, Chinese Academy Of Agricultural Sciences Utilisation d’un gène chimérique 4-cl codant pour la 4-coumarate coa ligase dans les brassicacées
EP2133360A2 (fr) 1999-11-17 2009-12-16 Mendel Biotechnology, Inc. Gènes de tolérance au stress environnemental
WO2010039613A2 (fr) 2008-09-30 2010-04-08 The United States Of America, As Represented By The Secretary Of Agriculture Lignée de lolium multiflorum induisant une perte génomique
EP2213681A1 (fr) 2002-03-22 2010-08-04 Bayer BioScience N.V. Nouvelles protéines insecticides à base de Bacillus thuringiensis
WO2010106163A1 (fr) 2009-03-20 2010-09-23 Basf Plant Science Company Gmbh Plantes transgéniques résistantes aux nématodes
EP2261373A2 (fr) 1997-01-17 2010-12-15 Maxygen Inc. Evolution de cellules procaryotes entières par recombinaison recursive de séquences
WO2010142465A1 (fr) 2009-06-08 2010-12-16 Nunhems B.V. Plantes tolérant la sécheresse
EP2267139A2 (fr) 1998-04-08 2010-12-29 Commonwealth Scientific and Industrial Research Organization Procédés ét moyens d'obtention de phénotypes modifies
EP2270166A2 (fr) 2002-09-18 2011-01-05 Mendel Biotechnology, Inc. Polynucléotides et polypeptides dans les plantes
WO2011000498A1 (fr) 2009-07-01 2011-01-06 Bayer Bioscience N.V. Procédés et moyens permettant d'obtenir des plantes présentant une tolérance accrue au glyphosate
EP2278019A1 (fr) 2005-06-24 2011-01-26 Pioneer Hi-Bred International, Inc. Séquences de nucléotides facilitant la fertilité mâle des plantes et son procédé d'utilisation
WO2011023571A1 (fr) 2009-08-25 2011-03-03 Basf Plant Science Company Gmbh Plantes transgéniques résistantes aux nématodes
EP2298918A2 (fr) 2003-09-23 2011-03-23 Mendel Biotechnology, Inc. Regulation de la biomasse et de la tolerance au stress de plantes
WO2011069953A1 (fr) 2009-12-09 2011-06-16 Basf Plant Science Company Gmbh Méthode d'augmentation de la résistance aux champignons de végétaux par silençage du gène smt1 des champignons
DE112009002061T5 (de) 2008-08-27 2011-07-14 BASF Plant Science GmbH, 67063 Nematodenresistente transgene Pflanzen
WO2011090690A1 (fr) 2009-12-28 2011-07-28 Pioneer Hi-Bred International, Inc. Génotypes restaurateurs de fertilité du sorgo, et procédés de sélection assistée par marqueur
WO2011094199A1 (fr) 2010-01-26 2011-08-04 Pioneer Hi-Bred International, Inc. Séquences polynucléotidiques et polypeptidiques associées à une tolérance aux herbicides
WO2011104153A1 (fr) 2010-02-23 2011-09-01 Basf Plant Science Company Gmbh Plantes transgéniques résistantes aux nématodes
WO2011147968A1 (fr) 2010-05-28 2011-12-01 Nunhems B.V. Plantes dotées d'une taille de fruit accrue
WO2012004013A2 (fr) 2010-07-08 2012-01-12 Bayer Bioscience N.V. Protéine transportrice de glucosinolate et ses utilisations
EP2410060A1 (fr) 2000-08-22 2012-01-25 Mendel Biotechnology, Inc. Gènes servant à modifier des caractéristiques de plantes IV
WO2012074868A2 (fr) 2010-12-03 2012-06-07 Ms Technologies, Llc Expression optimisée de molécules d'acide nucléique codant pour la résistance au glyphosate dans cellules végétales
WO2012084756A1 (fr) 2010-12-20 2012-06-28 Basf Plant Science Company Gmbh Plantes transgéniques résistantes aux nématodes
WO2012088289A2 (fr) 2010-12-22 2012-06-28 E. I. Du Pont De Nemours And Company Locus à caractère quantitatif associés à la résistance de champ entier au sclerotinia et procédés d'identification de cette résistance
DE112009003576T5 (de) 2008-12-11 2012-09-06 Basf Plant Science Gmbh Pflanzenwurzel-spezifische Nematodenresistenz
WO2012128946A1 (fr) 2011-03-18 2012-09-27 Ms Technologies Llc Régions de régulation s'exprimant préférentiellement dans des tissus végétaux non polliniques
WO2012165961A1 (fr) 2011-05-31 2012-12-06 Keygene N.V. Plantes résistantes aux nuisibles
EP2535416A1 (fr) 2011-05-24 2012-12-19 BASF Plant Science Company GmbH Développement d'une pomme de terre résistante au phytophthora avec rendement amélioré
EP2554674A1 (fr) 2007-12-21 2013-02-06 Keygene N.V. Promoteurs spécifiques trichomes
WO2013058654A2 (fr) 2011-10-19 2013-04-25 Keygene N.V. Procédés d'obtention de cinnamolide et/ou de drimendiol
US8507758B2 (en) 2003-03-07 2013-08-13 Seminis Vegetable Seeds, Inc. Markerless transformation
EP2631243A2 (fr) 2007-08-03 2013-08-28 Pioneer Hi-Bred International Inc. Séquences de nucléotides Msca1 influençant la fertilité mâle des plantes et procédé d'utilisation
WO2013134651A1 (fr) 2012-03-09 2013-09-12 Board Of Trustees Of Michigan State University Procédé d'amélioration de la tolérance à la sécheresse des plantes par l'expression de ndr1
WO2013142348A1 (fr) 2012-03-20 2013-09-26 Dow Agrosciences Llc Marqueurs moléculaires de basse teneur d'acide palmitique chez le tournesol (helianthus annus), et leurs procédés d'utilisation
US8581035B2 (en) 2006-08-31 2013-11-12 Monsanto Technology Llc Plant transformation without selection
WO2013173535A2 (fr) 2012-05-18 2013-11-21 E. I. Du Pont De Nemours And Company Séquences de promoteur inductible pour expression régulée et procédés d'utilisation
EP2684958A1 (fr) 2006-07-19 2014-01-15 The Regents of The University of California Expression de la superoxyde dismutase végétale résistante à une régulation du micro ARN
US8716554B2 (en) 2003-08-21 2014-05-06 Rahan Meristem (1998) Ltd. Plant Propagation & Biotechnology Plants resistant to cytoplasm-feeding parasites
EP2735609A2 (fr) 2012-11-26 2014-05-28 Arkansas State University Procédé pour augmenter le rendement de produits dans un matériau végétal
WO2014117990A1 (fr) 2013-01-29 2014-08-07 Basf Plant Science Company Gmbh Plantes résistantes aux champignons exprimant hcp6
WO2014117988A1 (fr) 2013-01-29 2014-08-07 Basf Plant Science Company Gmbh Plantes résistantes aux champignons exprimant hcp7
WO2014118018A1 (fr) 2013-01-29 2014-08-07 Basf Plant Science Company Gmbh Plantes résistantes aux champignons exprimant ein2
WO2014135682A1 (fr) 2013-03-08 2014-09-12 Basf Plant Science Company Gmbh Végétaux résistants aux pathogènes fongiques exprimant mybtf
WO2014142647A1 (fr) 2013-03-14 2014-09-18 Wageningen Universiteit Souches fongiques ayant une production améliorée d'acide citrique et d'acide itaconique
WO2015193653A1 (fr) 2014-06-16 2015-12-23 Consejo Nacional De Investigaciones Cientificas Y Tecnicas Gènes et protéines chimériques de résistance à l'oxydation et plantes transgéniques les comprenant
EP2980220A1 (fr) 2005-09-20 2016-02-03 BASF Plant Science GmbH Procédés améliorés de contrôle de l'expression de gènes
EP3054014A2 (fr) 2016-05-10 2016-08-10 BASF Plant Science Company GmbH Utilisation d'un fongicide sur des plantes transgéniques
WO2016124515A1 (fr) 2015-02-04 2016-08-11 Basf Plant Science Company Gmbh Procédé d'augmentation de la résistance de plantes transgéniques contre la rouille du soja par augmentation de leur teneur en scopolétine
WO2017039452A1 (fr) 2015-09-04 2017-03-09 Keygene N.V. Gène de diplosporie
US9714429B2 (en) 2014-01-28 2017-07-25 Arkansas State University Regulatory sequence of cupin family gene
WO2017139544A1 (fr) 2016-02-11 2017-08-17 Pioneer Hi-Bred International, Inc. Qtl associés à l'identification de la résistance à la verse dans le soja et procédés permettant l'identification
US9783817B2 (en) 2013-03-04 2017-10-10 Arkansas State University Methods of expressing and detecting activity of expansin in plant cells
WO2017184500A1 (fr) 2016-04-18 2017-10-26 Bloomsburg University of Pennsylvania Compositions et procédés d'administration de molécules à des plantes
US9994621B2 (en) 2007-06-01 2018-06-12 Bayer Cropscience N.V. Genes encoding insecticidal proteins
WO2020035488A1 (fr) 2018-08-13 2020-02-20 Aarhus Universitet Récepteurs lysm génétiquement modifiés ayant une spécificité et une affinité d'agoniste modifiées
WO2020035486A1 (fr) 2018-08-13 2020-02-20 Aarhus Universitet Plantes génétiquement modifiées exprimant des récepteurs hétérologues qui reconnaissent les lipo-chitooligosaccharides
WO2020115181A1 (fr) 2018-12-06 2020-06-11 Wageningen Universiteit Procédés de modification génétique d'un gène nin de plante la rendant sensible à la cytokinine
WO2020187995A1 (fr) 2019-03-21 2020-09-24 University Of Essex Enterprises Limited Procédés d'amélioration de la biomasse dans une plante par stimulation de la régénération de rubp et le transport d'électrons
WO2020239984A1 (fr) 2019-05-29 2020-12-03 Keygene N.V. Gène pour parthénogenèse
WO2021007284A2 (fr) 2019-07-11 2021-01-14 The Regents Of The University Of California Méthodes de régénération améliorée de plantes transgéniques à l'aide d'un facteur de régulation de croissance (grf), d'un facteur d'interaction avec le grf (gif), ou de gènes et de protéines chimériques de gif-grf
WO2021023982A1 (fr) 2019-08-02 2021-02-11 The University Court Of The University Of Edinburgh Structures de type pyrénoïde
WO2021025962A1 (fr) 2019-08-02 2021-02-11 Princeton University Motifs protéiques de liaison à rubisco et leurs utilisations
WO2021032769A1 (fr) 2019-08-19 2021-02-25 Aarhus Universitet Récepteurs d'exopolysaccharides modifiés pour la reconnaissance et la structuration de microbiote
US11060103B2 (en) 2006-03-21 2021-07-13 Basf Agricultural Solutions Seed, Us Llc Genes encoding insecticidal proteins
WO2021170794A1 (fr) 2020-02-28 2021-09-02 Cambridge Enterprise Limited Méthodes, plantes et compositions pour surmonter la suppression des nutriments de la symbiose mycorhizienne
WO2021233904A1 (fr) 2020-05-19 2021-11-25 Aarhus Universitet Motifs de récepteur lysm
WO2022079087A1 (fr) 2020-10-13 2022-04-21 Keygene N.V. Promoteur modifié d'un gène de parthénogenèse
WO2022251428A2 (fr) 2021-05-26 2022-12-01 The Board Of Trustees Of The University Of Illinois Plantes en c4 à efficacité photosynthétique accrue
WO2022256695A1 (fr) 2021-06-03 2022-12-08 Mazen Animal Health Inc. Administration orale d'une protéine de spicule de coronavirus pour modifier les taux de cytokine et fournir une immunité passive à des porcs nouveau-nés
US11667681B2 (en) 2016-06-20 2023-06-06 Board Of Supervisors Of Louisiana State University Green alga bicarbonate transporter and uses thereof
WO2023201230A1 (fr) 2022-04-11 2023-10-19 The Regents Of The University Of California Procédés de criblage de gain de plante de mutations de fonction et compositions associées

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HARLAN et al 1977 "Pathways of Genetic Transfer from Tripsacum to Zea Mays Proc. Natl Acad Sci (USA) Vol 74 No. 8 pp 3494-3497 *
HESS 1980 CHEMICAL ABSTRACTS Vol 93 Abstract No. 164546d "Investigations on the Intra-and Interspecific Transfer of Anthocyanin Genes Using Pollen as Vectors" *
HESS 1981 "Attempts to Transfer Kanamycin Resistance of Bacterial Plasmid Origin in Petunia Hybrida Using Pollen as Vectors" Biochem. Physiol. Pflanzen Vol 176 pp 322-328 *
HESS et al 1976 CHEMICAL ABSTRACTS Vol. 84 Abstract No. 102447c. "Investigations on the Tumor Induction in Nicotiana Glauca by Pollen Transfer of DNA Isolated from Nicotiana Langsdorff *
HOLL et al. "Genetic Transformation in Plants in Tissue Culture and Plant Science 1974 H.E. STREET, Editor, Academic Press, NY pp. 301-327 *
PANDEY 1983 CHEMICAL ABSTRACTS Vol 99 Abstract No. 173046s "Evidence for Gene Transfer by the Use of Sublethally Irradiated Pollen in Zea Mays and Theory of Occurrence by Chromosome Repair Through Somatic Recombination and Gene Conversion" *

Cited By (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0429093A2 (fr) * 1984-05-11 1991-05-29 Ciba-Geigy Ag Transformation du génotype de plantes
EP0429093A3 (en) * 1984-05-11 1991-08-28 Ciba-Geigy Ag Transformation of plant genotype
WO1987005325A1 (fr) * 1986-03-03 1987-09-11 Transgene Gmbh Procede pour transferer des substances organiques et/ou inorganiques a des cellules-oeufs et/ou a des cellules somatiques d'animaux, et compositions utilisees a cet effet
EP0241963A1 (fr) * 1986-03-26 1987-10-21 "Centre d'Etude de l'Energie Nucléaire", "C.E.N." Procédé de traitement de matériel végétal afin d'obtenir l'expression d'au moins un gène, et matériel végétal dans lequel ce gène s'exprime
US5120657A (en) * 1986-12-05 1992-06-09 Agracetus, Inc. Apparatus for genetic transformation
US6084154A (en) * 1986-12-05 2000-07-04 Powederject Vaccines, Inc. Method for genetic transformation
AU610534B2 (en) * 1986-12-05 1991-05-23 Cetus Oncology Corporation Pollen-mediated plant transformation
EP0270356A3 (en) * 1986-12-05 1990-03-07 Agracetus Pollen-mediated plant transformation
EP0270356A2 (fr) * 1986-12-05 1988-06-08 Agracetus, Inc. Transformation de cellules de plantes au moyen de particules accélérées couvries avec ADN et l'appareil pour effectuer cette transformation.
US5049500A (en) * 1987-01-13 1991-09-17 E. I. Du Pont De Nemours Pollen-mediated gene transformation in plants
EP0275069A2 (fr) * 1987-01-13 1988-07-20 DNA PLANT TECHNOLOGY CORPORATION (under the laws of the state of Delaware) Transformation génique dans les plantes utilisant le pollen
EP0275069A3 (fr) * 1987-01-13 1990-04-25 DNA PLANT TECHNOLOGY CORPORATION (under the laws of the state of Delaware) Transformation génique dans les plantes utilisant le pollen
EP0286429A1 (fr) * 1987-04-09 1988-10-12 Yissum Research Development Company Of The Hebrew University Of Jerusalem Procédé pour l'introduction de gènes dans des plantes
EP0574356A1 (fr) * 1987-05-05 1993-12-15 Sandoz Ag Transformation de tissues de plantes
JPS63301792A (ja) * 1987-05-05 1988-12-08 ノバルティス・アクチエンゲゼルシャフト 植物組織形質転換
US5371003A (en) * 1987-05-05 1994-12-06 Sandoz Ltd. Electrotransformation process
EP0290395A3 (en) * 1987-05-05 1990-11-28 Sandoz Ag Plant tissue transformation
EP0290395A2 (fr) * 1987-05-05 1988-11-09 Sandoz Ag Transformation de tissus de plantes
US5350689A (en) * 1987-05-20 1994-09-27 Ciba-Geigy Corporation Zea mays plants and transgenic Zea mays plants regenerated from protoplasts or protoplast-derived cells
EP0513849A2 (fr) * 1987-05-20 1992-11-19 Ciba-Geigy Ag Plantes de Zea mays et plantes transgéniques de Zea mays régénérées de protoplastes ou de cellules dérivées de protoplastes
US5595733A (en) * 1987-05-20 1997-01-21 Ciba-Geigy Corporation Methods for protecting ZEA mays plants against pest damage
US5824302A (en) * 1987-05-20 1998-10-20 Novartis Finance Corporation Method of controlling insect larvae comprising feeding an insecticidal amount of a transgenic maize plant expressing a polypeptide having Bt-crystal protein toxic properties
EP0513849B1 (fr) * 1987-05-20 1998-08-19 Novartis AG Procédé de production de plantes transgéniques de Zea mays régénérées de protoplastes ou de cellules dérivées de protoplastes
US5770450A (en) * 1987-05-20 1998-06-23 Novartis Finance Corporation Zea mays plants regenerated from protoplasts or protoplast-derived cells
US5766900A (en) * 1987-05-20 1998-06-16 Novartis Corporation Method of regenerating fertile transgenic Zea mays plants from protoplasts
EP0846771A1 (fr) * 1987-05-20 1998-06-10 Novartis AG Plantes de zea mays et plantes transgéniques de zea mays régénérées de protoplastes ou de cellules dérivées de protoplastes
WO1989000602A1 (fr) * 1987-07-21 1989-01-26 Chemie Holding Aktiengesellschaft Procede de transfert genetique entre des vegetaux
EP0301316A2 (fr) 1987-07-21 1989-02-01 Agrolinz Agrarchemikalien Gesellschaft M.B.H. Méthode de transfert de gènes dans des plantes
EP0301316A3 (en) * 1987-07-21 1989-03-22 Chemie Holding Aktiengesellschaft Method of gene transfer in plants
US5629183A (en) * 1989-05-08 1997-05-13 The United States Of America As Represented By The Secretary Of Agriculture Plant transformation by gene transfer into pollen
US5554798A (en) * 1990-01-22 1996-09-10 Dekalb Genetics Corporation Fertile glyphosate-resistant transgenic corn plants
US5484956A (en) * 1990-01-22 1996-01-16 Dekalb Genetics Corporation Fertile transgenic Zea mays plant comprising heterologous DNA encoding Bacillus thuringiensis endotoxin
US5508468A (en) * 1990-01-22 1996-04-16 Dekalb Genetics Corporation Fertile transgenic corn plants
US5780708A (en) * 1990-01-22 1998-07-14 Dekalb Genetics Corporation Fertile transgenic corn plants
US5538877A (en) * 1990-01-22 1996-07-23 Dekalb Genetics Corporation Method for preparing fertile transgenic corn plants
US5538880A (en) * 1990-01-22 1996-07-23 Dekalb Genetics Corporation Method for preparing fertile transgenic corn plants
US5550318A (en) * 1990-04-17 1996-08-27 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
EP0487711A1 (fr) * 1990-06-21 1992-06-03 Agracetus Appareil de transformation genetique.
US5149655A (en) * 1990-06-21 1992-09-22 Agracetus, Inc. Apparatus for genetic transformation
EP0487711B1 (fr) * 1990-06-21 1997-09-10 Auragen, Inc. Appareil de transformation genetique
US5567599A (en) * 1990-08-21 1996-10-22 Florigene Europe B.V. Method for producing transformed chrysanthemum plants
US5780709A (en) * 1993-08-25 1998-07-14 Dekalb Genetics Corporation Transgenic maize with increased mannitol content
US5763243A (en) * 1994-12-08 1998-06-09 Pioneer Hi-Bred International, Inc. Reversible nuclear genetic system for male sterility in transgenic plants
US6281348B1 (en) 1994-12-08 2001-08-28 Pioneer Hi-Bred International, Inc. Reversible nuclear genetic system for male sterility in transgenic plants
US5792853A (en) * 1994-12-08 1998-08-11 Pioneer Hi-Bred International, Inc. Reversible nuclear genetic system for male sterility in transgenic plants
US5795753A (en) * 1994-12-08 1998-08-18 Pioneer Hi-Bred International Inc. Reversible nuclear genetic system for male sterility in transgenic plants
US5689049A (en) * 1994-12-08 1997-11-18 Pioneer Hi-Bred International, Inc. Transgenic plant and method for producing male sterility using anther specific promoter 5126
US5689051A (en) * 1994-12-08 1997-11-18 Pioneer Hi-Bred International, Inc. Transgenic plants and DNA comprising anther specific promoter 5126 and gene to achieve male sterility
US5837851A (en) * 1994-12-08 1998-11-17 Pioneer Hi-Bred International, Inc. DNA promoter 5126 and constructs useful in a reversible nuclear genetic system for male sterility in transgenic plants
US6072102A (en) * 1994-12-08 2000-06-06 Pioneer Hi-Bred International, Inc. Reversible nuclear genetic system for male sterility in transgenic plants
US5750868A (en) * 1994-12-08 1998-05-12 Pioneer Hi-Bred International, Inc. Reversible nuclear genetic system for male sterility in transgenic plants
US6399856B1 (en) 1994-12-08 2002-06-04 Pioneer Hi-Bred International, Inc. Reversible nuclear genetic system for male sterility in transgenic plants
US6248935B1 (en) 1994-12-08 2001-06-19 Pioneer Hi-Bred International, Inc. Reversible nuclear genetic system for male sterility in transgenic plants
EP0757102A1 (fr) 1995-08-04 1997-02-05 Plant Genetic Systems N.V. Transformation génétique utilisant un inhibiteur de PARP
US6084164A (en) * 1996-03-25 2000-07-04 Pioneer Hi-Bred International, Inc. Sunflower seeds with enhanced saturated fatty acid contents
US6337100B1 (en) 1996-03-25 2002-01-08 Pioneer Hi-Bred International, Inc. Sunflower seeds with enhanced saturated fatty acid contents
EP2261373A2 (fr) 1997-01-17 2010-12-15 Maxygen Inc. Evolution de cellules procaryotes entières par recombinaison recursive de séquences
CN1098029C (zh) * 1997-07-15 2003-01-08 由农业部长代表的美利坚合众国 使用固体培养基的基于花粉的转化系统
WO1999003326A1 (fr) * 1997-07-15 1999-01-28 United States Of America, As Represented By The Secretary Of Agriculture Systeme de transformation par le pollen, a l'aide de milieux solides
EP2267139A2 (fr) 1998-04-08 2010-12-29 Commonwealth Scientific and Industrial Research Organization Procédés ét moyens d'obtention de phénotypes modifies
EP3214177A2 (fr) 1998-04-08 2017-09-06 Commonwealth Scientific and Industrial Research Organisation Procédés et moyens pour obtenir des phénotypes modifiés
EP2267138A2 (fr) 1998-04-08 2010-12-29 Commonwealth Scientific and Industrial Research Organization Procédés et moyens d'obtention de phénotypes modifiés
EP1950306A1 (fr) 1999-11-17 2008-07-30 Mendel Biotechnology, Inc. Gènes de tolérance au stress environnemental
EP2133360A2 (fr) 1999-11-17 2009-12-16 Mendel Biotechnology, Inc. Gènes de tolérance au stress environnemental
EP2045262A1 (fr) 1999-12-28 2009-04-08 Bayer BioScience N.V. Protéines insecticides provenant de Bacillus thuringiensis
EP2410060A1 (fr) 2000-08-22 2012-01-25 Mendel Biotechnology, Inc. Gènes servant à modifier des caractéristiques de plantes IV
US7265269B2 (en) 2001-01-09 2007-09-04 Bayer Bioscience N.V. Nucleic acids encoding a novel Cry2Ae bacillus thuringiensis insecticidal protein
EP1988099A2 (fr) 2001-01-09 2008-11-05 Bayer BioScience N.V. Protéines insecticides de Bacillus thuringiensis
WO2003078629A1 (fr) 2002-03-20 2003-09-25 Basf Plant Science Gmbh Produit de synthese et procede de regulation de l'expression genique
EP2360179A1 (fr) 2002-03-22 2011-08-24 Bayer BioScience N.V. Nouvelles protéines insecticides à base de Bacillus thuringiensis
EP2213681A1 (fr) 2002-03-22 2010-08-04 Bayer BioScience N.V. Nouvelles protéines insecticides à base de Bacillus thuringiensis
EP2036984A2 (fr) 2002-07-26 2009-03-18 BASF Plant Science GmbH Reversion de l'effet sélectif négatif d'un protéin de marquage comme procédure de sélection
EP2270167A2 (fr) 2002-09-18 2011-01-05 Mendel Biotechnology, Inc. Polynucléotides et polypeptides dans les plantes
EP3249046A1 (fr) 2002-09-18 2017-11-29 Mendel Biotechnology, Inc. Polynucléotides et polypeptides dans les plantes
EP2272962A2 (fr) 2002-09-18 2011-01-12 Mendel Biotechnology, Inc. Polynucléotides et polypeptides dans les plantes
EP2270166A2 (fr) 2002-09-18 2011-01-05 Mendel Biotechnology, Inc. Polynucléotides et polypeptides dans les plantes
WO2004076638A2 (fr) 2003-02-25 2004-09-10 Mendel Biotechnology, Inc. Polynucleotides et polypeptides dans des plantes
US8507758B2 (en) 2003-03-07 2013-08-13 Seminis Vegetable Seeds, Inc. Markerless transformation
US8716554B2 (en) 2003-08-21 2014-05-06 Rahan Meristem (1998) Ltd. Plant Propagation & Biotechnology Plants resistant to cytoplasm-feeding parasites
EP2298918A2 (fr) 2003-09-23 2011-03-23 Mendel Biotechnology, Inc. Regulation de la biomasse et de la tolerance au stress de plantes
WO2006111512A1 (fr) 2005-04-19 2006-10-26 Basf Plant Science Gmbh Methodes ameliorees controlant une expression genique
EP2278019A1 (fr) 2005-06-24 2011-01-26 Pioneer Hi-Bred International, Inc. Séquences de nucléotides facilitant la fertilité mâle des plantes et son procédé d'utilisation
EP2295585A1 (fr) 2005-06-24 2011-03-16 Pioneer Hi-Bred International Inc. Séquences nucléotidiques médiatrices de la fertilité mâle et son procédé d'utilisation
WO2007007147A2 (fr) 2005-07-08 2007-01-18 Universidad Nacional Autonoma De Mexico Instituto De Biotecnologia Nouvelles proteines bacteriennes avec activite pesticide
EP2980220A1 (fr) 2005-09-20 2016-02-03 BASF Plant Science GmbH Procédés améliorés de contrôle de l'expression de gènes
US11060103B2 (en) 2006-03-21 2021-07-13 Basf Agricultural Solutions Seed, Us Llc Genes encoding insecticidal proteins
WO2008005988A2 (fr) 2006-07-05 2008-01-10 Arkansas State University Research And Development Institute Production de stilbènes et de leurs dérivés dans des cultures de racines végétales chevelues
EP2684958A1 (fr) 2006-07-19 2014-01-15 The Regents of The University of California Expression de la superoxyde dismutase végétale résistante à une régulation du micro ARN
US10941407B2 (en) 2006-08-31 2021-03-09 Monsanto Technology Llc Plant transformation without selection
US8847009B2 (en) 2006-08-31 2014-09-30 Monsanto Technology Llc Plant transformation without selection
US10233455B2 (en) 2006-08-31 2019-03-19 Monsanto Technology Llc Plant transformation without selection
US9617552B2 (en) 2006-08-31 2017-04-11 Monsanto Technology Llc Plant transformation without selection
US8581035B2 (en) 2006-08-31 2013-11-12 Monsanto Technology Llc Plant transformation without selection
WO2008095886A1 (fr) 2007-02-06 2008-08-14 Basf Plant Science Gmbh Compositions et de procédés faisant appel à une interférence arn pour contrôler des nématodes
WO2008095889A1 (fr) 2007-02-06 2008-08-14 Basf Plant Science Gmbh Utilisation de gènes de l'alanine racemase en vue de conférer aux plantes une résistance aux nématodes
WO2008095910A1 (fr) 2007-02-08 2008-08-14 Basf Plant Science Gmbh Compositions et méthodes utilisant l'arn interférence d'un gène du type opr3 pour la lutte contre les nématodes
WO2008095970A1 (fr) 2007-02-09 2008-08-14 Basf Plant Science Gmbh Compositions et procédés faisant appel à l'interférence de l'arn de type cdpk dans la lutte contre les nématodes
WO2008110522A1 (fr) 2007-03-15 2008-09-18 Basf Plant Science Gmbh Utilisation de gènes de chitinase de nématode pour lutter contre les nématodes parasites des plantes
US9994621B2 (en) 2007-06-01 2018-06-12 Bayer Cropscience N.V. Genes encoding insecticidal proteins
EP2631243A2 (fr) 2007-08-03 2013-08-28 Pioneer Hi-Bred International Inc. Séquences de nucléotides Msca1 influençant la fertilité mâle des plantes et procédé d'utilisation
EP2554674A1 (fr) 2007-12-21 2013-02-06 Keygene N.V. Promoteurs spécifiques trichomes
WO2009088756A1 (fr) 2007-12-31 2009-07-16 E. I. Du Pont De Nemours And Company Maïs résistant à la maladie de la tache grise et ses procédés de production
EP2653549A1 (fr) 2007-12-31 2013-10-23 E. I. du Pont de Nemours and Company Maïs tolérant la tache grise et procédés de production
WO2009140839A1 (fr) 2008-05-20 2009-11-26 Oil Crops Research Institute, Chinese Academy Of Agricultural Sciences Utilisation d’un gène chimérique 4-cl codant pour la 4-coumarate coa ligase dans les brassicacées
DE112009002061T5 (de) 2008-08-27 2011-07-14 BASF Plant Science GmbH, 67063 Nematodenresistente transgene Pflanzen
WO2010039613A2 (fr) 2008-09-30 2010-04-08 The United States Of America, As Represented By The Secretary Of Agriculture Lignée de lolium multiflorum induisant une perte génomique
DE112009003576T5 (de) 2008-12-11 2012-09-06 Basf Plant Science Gmbh Pflanzenwurzel-spezifische Nematodenresistenz
EP2527450A1 (fr) 2008-12-11 2012-11-28 BASF Plant Science GmbH Résistance de nématode spécifique aux racines de plante
DE112010001772T5 (de) 2009-03-20 2012-10-18 Basf Plant Science Company Gmbh Nematodenresistente transgene pflanzen
WO2010106163A1 (fr) 2009-03-20 2010-09-23 Basf Plant Science Company Gmbh Plantes transgéniques résistantes aux nématodes
US9532520B2 (en) 2009-06-08 2017-01-03 Nunhems B.V. Drought tolerant plants
WO2010142465A1 (fr) 2009-06-08 2010-12-16 Nunhems B.V. Plantes tolérant la sécheresse
WO2011000498A1 (fr) 2009-07-01 2011-01-06 Bayer Bioscience N.V. Procédés et moyens permettant d'obtenir des plantes présentant une tolérance accrue au glyphosate
WO2011023571A1 (fr) 2009-08-25 2011-03-03 Basf Plant Science Company Gmbh Plantes transgéniques résistantes aux nématodes
DE112010003389T5 (de) 2009-08-25 2012-06-14 Basf Plant Science Company Gmbh Nematodenresistente transgene Pflanzen
WO2011069953A1 (fr) 2009-12-09 2011-06-16 Basf Plant Science Company Gmbh Méthode d'augmentation de la résistance aux champignons de végétaux par silençage du gène smt1 des champignons
WO2011090690A1 (fr) 2009-12-28 2011-07-28 Pioneer Hi-Bred International, Inc. Génotypes restaurateurs de fertilité du sorgo, et procédés de sélection assistée par marqueur
WO2011094205A1 (fr) 2010-01-26 2011-08-04 Pioneer Hi-Bred International, Inc. Tolérance aux herbicides inhibiteurs du hppd
WO2011094199A1 (fr) 2010-01-26 2011-08-04 Pioneer Hi-Bred International, Inc. Séquences polynucléotidiques et polypeptidiques associées à une tolérance aux herbicides
WO2011104153A1 (fr) 2010-02-23 2011-09-01 Basf Plant Science Company Gmbh Plantes transgéniques résistantes aux nématodes
WO2011147968A1 (fr) 2010-05-28 2011-12-01 Nunhems B.V. Plantes dotées d'une taille de fruit accrue
WO2012004013A2 (fr) 2010-07-08 2012-01-12 Bayer Bioscience N.V. Protéine transportrice de glucosinolate et ses utilisations
WO2012074868A2 (fr) 2010-12-03 2012-06-07 Ms Technologies, Llc Expression optimisée de molécules d'acide nucléique codant pour la résistance au glyphosate dans cellules végétales
WO2012084756A1 (fr) 2010-12-20 2012-06-28 Basf Plant Science Company Gmbh Plantes transgéniques résistantes aux nématodes
DE112011104462T5 (de) 2010-12-20 2013-09-12 Basf Plant Science Company Gmbh Nematodenresistente transgene Pflanzen
WO2012088289A2 (fr) 2010-12-22 2012-06-28 E. I. Du Pont De Nemours And Company Locus à caractère quantitatif associés à la résistance de champ entier au sclerotinia et procédés d'identification de cette résistance
WO2012128946A1 (fr) 2011-03-18 2012-09-27 Ms Technologies Llc Régions de régulation s'exprimant préférentiellement dans des tissus végétaux non polliniques
EP2535416A1 (fr) 2011-05-24 2012-12-19 BASF Plant Science Company GmbH Développement d'une pomme de terre résistante au phytophthora avec rendement amélioré
WO2012165961A1 (fr) 2011-05-31 2012-12-06 Keygene N.V. Plantes résistantes aux nuisibles
WO2013058654A2 (fr) 2011-10-19 2013-04-25 Keygene N.V. Procédés d'obtention de cinnamolide et/ou de drimendiol
WO2013134651A1 (fr) 2012-03-09 2013-09-12 Board Of Trustees Of Michigan State University Procédé d'amélioration de la tolérance à la sécheresse des plantes par l'expression de ndr1
WO2013142348A1 (fr) 2012-03-20 2013-09-26 Dow Agrosciences Llc Marqueurs moléculaires de basse teneur d'acide palmitique chez le tournesol (helianthus annus), et leurs procédés d'utilisation
WO2013173535A2 (fr) 2012-05-18 2013-11-21 E. I. Du Pont De Nemours And Company Séquences de promoteur inductible pour expression régulée et procédés d'utilisation
EP2735609A2 (fr) 2012-11-26 2014-05-28 Arkansas State University Procédé pour augmenter le rendement de produits dans un matériau végétal
WO2014118018A1 (fr) 2013-01-29 2014-08-07 Basf Plant Science Company Gmbh Plantes résistantes aux champignons exprimant ein2
WO2014117990A1 (fr) 2013-01-29 2014-08-07 Basf Plant Science Company Gmbh Plantes résistantes aux champignons exprimant hcp6
WO2014117988A1 (fr) 2013-01-29 2014-08-07 Basf Plant Science Company Gmbh Plantes résistantes aux champignons exprimant hcp7
US9783817B2 (en) 2013-03-04 2017-10-10 Arkansas State University Methods of expressing and detecting activity of expansin in plant cells
WO2014135682A1 (fr) 2013-03-08 2014-09-12 Basf Plant Science Company Gmbh Végétaux résistants aux pathogènes fongiques exprimant mybtf
WO2014142647A1 (fr) 2013-03-14 2014-09-18 Wageningen Universiteit Souches fongiques ayant une production améliorée d'acide citrique et d'acide itaconique
US9714429B2 (en) 2014-01-28 2017-07-25 Arkansas State University Regulatory sequence of cupin family gene
WO2015193653A1 (fr) 2014-06-16 2015-12-23 Consejo Nacional De Investigaciones Cientificas Y Tecnicas Gènes et protéines chimériques de résistance à l'oxydation et plantes transgéniques les comprenant
WO2016124515A1 (fr) 2015-02-04 2016-08-11 Basf Plant Science Company Gmbh Procédé d'augmentation de la résistance de plantes transgéniques contre la rouille du soja par augmentation de leur teneur en scopolétine
WO2017039452A1 (fr) 2015-09-04 2017-03-09 Keygene N.V. Gène de diplosporie
WO2017139544A1 (fr) 2016-02-11 2017-08-17 Pioneer Hi-Bred International, Inc. Qtl associés à l'identification de la résistance à la verse dans le soja et procédés permettant l'identification
WO2017184500A1 (fr) 2016-04-18 2017-10-26 Bloomsburg University of Pennsylvania Compositions et procédés d'administration de molécules à des plantes
EP3054014A2 (fr) 2016-05-10 2016-08-10 BASF Plant Science Company GmbH Utilisation d'un fongicide sur des plantes transgéniques
US11667681B2 (en) 2016-06-20 2023-06-06 Board Of Supervisors Of Louisiana State University Green alga bicarbonate transporter and uses thereof
WO2020035488A1 (fr) 2018-08-13 2020-02-20 Aarhus Universitet Récepteurs lysm génétiquement modifiés ayant une spécificité et une affinité d'agoniste modifiées
WO2020035486A1 (fr) 2018-08-13 2020-02-20 Aarhus Universitet Plantes génétiquement modifiées exprimant des récepteurs hétérologues qui reconnaissent les lipo-chitooligosaccharides
WO2020115181A1 (fr) 2018-12-06 2020-06-11 Wageningen Universiteit Procédés de modification génétique d'un gène nin de plante la rendant sensible à la cytokinine
WO2020187995A1 (fr) 2019-03-21 2020-09-24 University Of Essex Enterprises Limited Procédés d'amélioration de la biomasse dans une plante par stimulation de la régénération de rubp et le transport d'électrons
WO2020239984A1 (fr) 2019-05-29 2020-12-03 Keygene N.V. Gène pour parthénogenèse
WO2021007284A2 (fr) 2019-07-11 2021-01-14 The Regents Of The University Of California Méthodes de régénération améliorée de plantes transgéniques à l'aide d'un facteur de régulation de croissance (grf), d'un facteur d'interaction avec le grf (gif), ou de gènes et de protéines chimériques de gif-grf
WO2021023982A1 (fr) 2019-08-02 2021-02-11 The University Court Of The University Of Edinburgh Structures de type pyrénoïde
WO2021025962A1 (fr) 2019-08-02 2021-02-11 Princeton University Motifs protéiques de liaison à rubisco et leurs utilisations
WO2021032769A1 (fr) 2019-08-19 2021-02-25 Aarhus Universitet Récepteurs d'exopolysaccharides modifiés pour la reconnaissance et la structuration de microbiote
WO2021170794A1 (fr) 2020-02-28 2021-09-02 Cambridge Enterprise Limited Méthodes, plantes et compositions pour surmonter la suppression des nutriments de la symbiose mycorhizienne
WO2021233904A1 (fr) 2020-05-19 2021-11-25 Aarhus Universitet Motifs de récepteur lysm
WO2022079087A1 (fr) 2020-10-13 2022-04-21 Keygene N.V. Promoteur modifié d'un gène de parthénogenèse
WO2022251428A2 (fr) 2021-05-26 2022-12-01 The Board Of Trustees Of The University Of Illinois Plantes en c4 à efficacité photosynthétique accrue
WO2022256695A1 (fr) 2021-06-03 2022-12-08 Mazen Animal Health Inc. Administration orale d'une protéine de spicule de coronavirus pour modifier les taux de cytokine et fournir une immunité passive à des porcs nouveau-nés
WO2023201230A1 (fr) 2022-04-11 2023-10-19 The Regents Of The University Of California Procédés de criblage de gain de plante de mutations de fonction et compositions associées

Also Published As

Publication number Publication date
EP0160692A1 (fr) 1985-11-13

Similar Documents

Publication Publication Date Title
WO1985001856A1 (fr) Procede de transfert de genes exogenes dans des plantes en utilisant le pollen comme vecteur
Rizal et al. Shortening the breeding cycle of sorghum, a model crop for research
CN110213961A (zh) 基于基因组编辑的作物工程化和生产矮秆植物
WO2014187312A1 (fr) Établissement d'une lignée végétale mainteneuse et d'une lignée stérile et leur utilisation
CN102839191A (zh) 通过在早期胚胎发育期间生长和/或发育相关基因的转基因过量表达来增加种子大小和种子数目
WO2020248969A1 (fr) Plante de lignée de maintien de stérilité mâle et son utilisation
JP2021520223A (ja) 植物ヘテロシスの利用方法
WO2016054236A1 (fr) Sauvetage d'embryons in situ et récupération d'hybrides non génétiquement modifiés à partir de croisements intergénétiques
AU2017336342B2 (en) Parthenocarpic watermelon plants
JPH0646697A (ja) 外部から誘導し得るプロモーター配列を用いた小胞子形成の制御
CN115843674A (zh) 玉米单倍体诱导系的选育方法及其应用
WO2020213728A1 (fr) Plante de brassica rapa à stérilité mâle cytoplasmique dont la croissance est améliorée
Rose et al. The transfer of cytoplasmic and nuclear genomes by somatic hybridisation
CN110938122B (zh) 雄性不育基因OsNIN5及其应用和育性恢复的方法
Wenzel et al. New strategy to tackle breeding problems of potato
Kiyoharu Tissue culture and genetic engineering in rice
Mujeeb-Kazi et al. A simplified and effective protocol for production of bread wheat haploids (n= 3x= 21, ABD) with some application areas in wheat improvement
Li et al. Construction of a novel female sterility system for hybrid rice
Brar et al. Application of biotechnology in hybrid rice
JPH04505553A (ja) 雄性発生を受けるトウモロコシの能力を高めるための方法及びそれから生成される生成物
CN117296710B (zh) 一种快速创制细胞质雄性不育系的方法
US11672216B2 (en) Methods for promoting production of viable seeds from apomictic guayule plants
Al-Ahmad et al. Infertile interspecific hybrids between transgenically mitigated Nicotiana tabacum and Nicotiana sylvestris did not backcross to N. sylvestris
JP2002534102A (ja) タバコ属種間雑種およびその後代
Davey et al. Gametosomatic hybridization

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): JP

AL Designated countries for regional patents

Designated state(s): AT BE CH DE FR GB LU NL SE