WO1989008966A1 - Off-premises cable television channel interdiction method and apparatus - Google Patents

Off-premises cable television channel interdiction method and apparatus Download PDF

Info

Publication number
WO1989008966A1
WO1989008966A1 PCT/US1989/000907 US8900907W WO8908966A1 WO 1989008966 A1 WO1989008966 A1 WO 1989008966A1 US 8900907 W US8900907 W US 8900907W WO 8908966 A1 WO8908966 A1 WO 8908966A1
Authority
WO
WIPO (PCT)
Prior art keywords
jamming
frequency
cable television
microprocessor
data
Prior art date
Application number
PCT/US1989/000907
Other languages
French (fr)
Inventor
Lamar E. West, Jr.
Christopher B. Plonsky
James O. Farmer
David P. Durand
Original Assignee
Scientific Atlanta, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scientific Atlanta, Inc. filed Critical Scientific Atlanta, Inc.
Priority to EP89904932A priority Critical patent/EP0403570B1/en
Priority to DE68927674T priority patent/DE68927674T2/en
Publication of WO1989008966A1 publication Critical patent/WO1989008966A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/80Jamming or countermeasure characterized by its function
    • H04K3/82Jamming or countermeasure characterized by its function related to preventing surveillance, interception or detection
    • H04K3/825Jamming or countermeasure characterized by its function related to preventing surveillance, interception or detection by jamming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/20Countermeasures against jamming
    • H04K3/28Countermeasures against jamming with jamming and anti-jamming mechanisms both included in a same device or system, e.g. wherein anti-jamming includes prevention of undesired self-jamming resulting from jamming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/40Jamming having variable characteristics
    • H04K3/42Jamming having variable characteristics characterized by the control of the jamming frequency or wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/80Jamming or countermeasure characterized by its function
    • H04K3/86Jamming or countermeasure characterized by its function related to preventing deceptive jamming or unauthorized interrogation or access, e.g. WLAN access or RFID reading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/16Analogue secrecy systems; Analogue subscription systems
    • H04N7/166Passage/non-passage of the television signal, e.g. jamming, band suppression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K2203/00Jamming of communication; Countermeasures
    • H04K2203/10Jamming or countermeasure used for a particular application
    • H04K2203/14Jamming or countermeasure used for a particular application for the transfer of light or images, e.g. for video-surveillance, for television or from a computer screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/40Jamming having variable characteristics
    • H04K3/43Jamming having variable characteristics characterized by the control of the jamming power, signal-to-noise ratio or geographic coverage area

Definitions

  • This invention relates to cable television systems and, more particularly, to a method and apparatus for applying remotely con ⁇ trolled and remotely applied interdiction or jamming signals to pre ⁇ vent reception of unauthorized television channels.
  • a scrambler is nor ⁇ mally provided to encode premium television channels.
  • the applied scrambling precludes reception by an unauthorized converter/decoder at a connected premises.
  • Data representing channels or tiers of pro ⁇ gramming are addressably transmitted to a particular converter/ decoder and stored in an authorization memory.
  • a subsequently transmitted program is autho ⁇ rized in that the decoder portion of the converter/decoder will be selectively enabled to decode the scrambled premium channel or program.
  • scrambling techniques are applied today. Each manufacturer has its own scheme which may be incompatible with others. Nevertheless, most popular scrambling systems today are based on sync suppression, in which the sync information is hidden from the television receiver's sync separator, usually by moving it to a level occupied by picture information (moving the sync tip to an equivalent picture level of 40 IRE units is common). Some systems modulate the picture carrier with a sine wave phased to suppress the horizontal blanking interval. Most systems today switch to the suppressed level at the beginning of the blanking interval and switch out at the end. Most though not all suppress the vertical blanking interval. Some systems dynamically invert the video, either on a line- by-line or a field-by-field basis.
  • Synchronization is restored either by the provision of synchronous amplitude modulated -pulses on the sound carrier, by digital information placed in the verti ⁇ cal interval or by phase modulation on the picture carrier.
  • Negative trap technology is viewed by many manufacturers as a viable alternative to sync suppression scrambling methods.
  • a nega ⁇ tive trap is basically a narrow band reject filter. Traps are located at the drop to a subscriber's dwelling and attenuate a significant portion of a premium television channel rendering that channel unusable by the subscriber.
  • negative traps are made using L-C filter techniques.
  • the result is a notch with finite quality Q and finite shape factor.
  • the center of the notch is usually located at the picture carrier frequency of the channel to be removed.
  • This technique sometimes called a static negative trap, requires attenuation at the picture carrier of at least 60 dB to be effective.
  • Negative trap systems have several advantages that make them attractive for cable television applications.
  • One primary advantage is the ability to deliver a broadband cable television spectrum to the subscriber's converter/decoder.
  • Conventional sync suppression sys ⁇ tems utilize descrambling set-top converter/decoders which deliver inherently narrowband signals.
  • Negative traps are usually mounted outside the subscriber's home (typically at the tap) and thereby mini ⁇ mize the exposure associated with placing hardware inside the subscriber's dwelling.
  • some cable television operators view the negative trap as a more secure means of subscriber control than is sync suppression, as picture reconstruction is viewed as substantially more difficult.
  • L-C band reject filters have Q and shape factor limitations. Quality factors Q for L-C filters are typically limited to less than 30. This means that for a negative trap located at channel 8 (picture carrier at 181.25 MHz) the 3 dB bandwidth of a negative trap is typically 6 MHz (or the bandwidth of a baseband television channel). This trap would result in significant deterioration of the lower adjacent channel. Then the television receiver tuned to the lower adjacent channel, rather than having to contend with a 15 dB picture-to-sound ratio, may have to contend with a sound carrier reduced an additional 6 dB or so.
  • Frequency stability as a function of time and temperature is also a significant concern.
  • Many cable television system operators have instituted a regular negative trap change-out program based on the assumption that after a certain period of time and temperature cycling, frequency dri t will render negative traps useless.
  • Finite return loss and non-zero insertion loss limit the number of singie channel nega ⁇ tive traps which can be cascaded. As the number of services to be secured increases, the negative trap decreases in appeal. Moreover a change in channel line-up requires a significant investment in hard ⁇ ware and manpower in this scenario.
  • the dynamic negative trap consists of a notch filter that is designed to be modulated with respect to frequency.
  • the notch is centered about the picture carrier but is deviated slightly from side to side.
  • the television channel is rendered unusable by the introduction of unwanted amplitude and phase modulation on the picture carrier.
  • This technique requires a notch depth significantly less than that of static negative traps (typically 40 dB).
  • the intentionally introduced requency modulation reduces somewhat the requirement for requency stability.
  • the dynamic negative trap has several disadvan ⁇ tages.
  • a power source is required in order to accomplish the fre ⁇ quency modulation. More significant is the parasitic modulation that this technique produces on the adjacent television channels.
  • Positive trap systems also utilize a narrow band-rejector notch filter.
  • the notch filter is used to restore the premium television channel.
  • an interfering signal is - o -
  • this interfering signal is then removed at the subscriber's dwelling by use of the notch filter.
  • this notch filter removes only the interference without removing a significant amount of tele ⁇ vision information.
  • the positive trap technique is seen as having several advan ⁇ tages by the cable television system operator. It is considered advan ⁇ tageous to have the interference present in the secured channels on the cable television distribution plant (unlike the negative trap system in which the channels to be secured are "in the clear" on the distribu ⁇ tion plant). It is very attractive from a financial standpoint to require subscriber hardware only at those locations where a subscriber wishes to receive a secure service. Thus, any capital investment is associated with a point of revenue generation.
  • the conventional embodiment of the positive trap system uti ⁇ lizes L-C notch filters to remove the interfering signal.
  • L-C notch filters suffer from the same limitations as do L-C negative traps discussed above. Consequently, L-C based positive traps are limited to the lower end of the cable television spectrum. Quality Q and shape factors have also restricted the number of locations for the interfering signal within the television channel.
  • the location for the interfering signal in the conventional embodiment of the positive trap system is midway between the pic ⁇ ture carrier and sound carrier.
  • the energy density (and hence infor ⁇ mation density) in this area of the spectrum is relatively low.
  • One reason this location was chosen was that it minimized the impact of any television information removed along with the interfering signal by the notch filter, and thereby improved the quality of the recovered television signal.
  • the jamming carrier would normally have minimal effect on the adjacent channel televi ⁇ sion picture unless a television has unusually poor rejection 2.25 MHz above the picture carrier. The jammer does add another carrier which the tuner will have to contend with, which might cause some degradation in a marginally overloaded case.
  • a relatively recent technique for premium channel control is the interdiction system, so-called because of the introduction of an interfering signal at the subscriber's location.
  • con ⁇ sist of a pole-mounted enclosure designed to serve four or more sub ⁇ scribers.
  • This enclosure contains at least one microprocessor con ⁇ trolled oscillator and switch control electronics to secure several tel ⁇ evision channels. Control is accomplished by injecting an interfering or jamming signal into unauthorized channels from this pole-mounted enclosure.
  • U.S. 4,450,481 a single frequency agile oscillator provides a hopping gain-controlled jamming signal output to four high frequency electronic switches. Each switch is associated with one subscriber drop. Under microprocessor control and depending on which subscribers are authorized to receive trans ⁇ mitted premium programming, the microprocessor selectively gates the jamming signal output of the single oscillator via the switches into the path of the incoming broadband television signal to each sub ⁇ scriber. Consequently, an unauthorized subscriber upon tuning to a premium channel will receive the premium channel on which a jam ⁇ ming signal at approximately the same frequency has been superimposed.
  • sixteen channels may be jammed by a single voltage controlled frequency agile oscillator. With respect to one premium channel, this translates to a situation in which the jamming signal can only be present one sixteenth of the time or an approximately 6% jamming interval.
  • the rate of hopping is also indicated at 100 bursts per second of jamming signal at a par ⁇ ticular frequency or a 100 hertz hopping rate. Consequently, the effectiveness of the jamming signal is questionable.
  • Cable television channels and, of course, premium service may extend over a wide range of frequencies, for example, from 100 to 350 megahertz.
  • the single oscillator pro ⁇ vided must be frequency agile over a wide range. It is further recog ⁇ nized that the jamming signal output of the single oscillator must be within a range of 100-500 KHz above or below the video carrier fre ⁇ quency. Consequently, a synthesizer having an internal reference is provided to assure the reasonable accuracy of the jamming signal out ⁇ put of the oscillator to the tolerable 100-500 KHz band above or below the video carrier.
  • the jamming signal is at a high relative power and is gain controlled to exceed the amplitude of the video carrier by 5 to 20 dB. Because of the high output power relative to the premium channel video carrier power and the difficulty of pre ⁇ cisely jamming the premium channel frequency, such an interdiction system leaves considerable opportunity for improvement. Because the oscillator is frequency hopping, its spectrum tends to spread out around the picture carrier, generating a slightly different situation as far as the required adjacent channel rejection characteristics of the television are concerned.
  • the jamming frequency be con ⁇ trolled so as to place the interferences as close as possible . to the picture carrier.
  • adjacent channel artifacts are also created since the jamming signal is intentionally placed below the video carrier and consequently proximate to an adjacent channel.
  • the rate of frequency hop ⁇ ping is limited in the known embodiment as a result of its application of conventional frequency control techniques during the hopping process.
  • the known interdiction system has proven to be particularly susceptible to adjacent channel artifacts from the above-described amplitude and frequency selections which can dissatisfy subscribers. Furthermore, the subjective perception of the depth of jamming an unauthorized premium channel is relatively unsatisfactory resulting from the limited maximum six percent jamming interval when sixteen premium channels are jammed by a single oscillator and the relatively low rate of frequency hopping.
  • the jamming carrier may be precisely established at a frequency resolution of 50 KHz as a digitally step-wise selectable frequency within the 250 KHz range above the video carrier.
  • a ten bit voltage control word is applied by way of a digital to analog converter to a voltage controlled oscillator to control the frequency of the jamming signal within this frequency range or to provide a jamming signal outside the range, for example, if the audio carrier is to be intentionally jammed.
  • a plurality of oscillators are provided, each operating within a particular narrow band of the cable television spectrum.
  • each oscillator may be intentionally limited to jamming a maximum of four channels within its band resulting in approximately a factor of four improvement in jamming interval over the prior art.
  • each plurality of oscillators is provided on a per subscriber or per drop basis.
  • the jamming signal power is limited within the range of -2.5 dB and +6.5 dB or +2 dB nominal of the video carrier power level. Consequently, there is less chance of adjacent channel interference than in the known prior art system.
  • jamming depth the subjective perception of one viewing a scrambled television channel on a number of different television receivers
  • improv ⁇ ing the frequency hopping rate to approximately four kilohertz, a factor of twenty increase in rate over the known system, all other parameters being equal such as amplitude and frequency of the jam ⁇ ming signal.
  • the present embodiment is capable of achieving frequency hopping rates of this magnitude because it is not limited by conventional frequency locking techniques.
  • the microprocessor of the present apparatus further controls the provision of power to the plurality of oscillators. If the subscriber is authorized to receive all premium channels within the band secured by a given oscillator, that oscillator may be powered down for the duration. Furthermore, no residual jamming signal output power will pass through an intentionally open switch during a powered up condi ⁇ tion as might occur in the prior art interdiction system.
  • Common circuitry is shared by a plurality of subscribers, for example, up to four, and is housed in a pole-mounted, strand-mounted or pedestal housing.
  • the common circuitry comprises automatic gain control circuitry for regulating the level of video carrier.
  • the com ⁇ mon circuitry also comprises a data receiver, a data decoder and a microprocessor which may be individually addressed.
  • the common circuitry separately decodes for each addressed and in service sub ⁇ scriber module any commands and data transmitted from the headend.
  • the microprocessor of the common circuitry communicates with the microprocessor of the subscriber module any decoded data related to the particular subscriber served by that subscriber module.
  • the decoded data for example, indicates individually addressed channel or program authorization data or globally transmitted channel frequency and jamming depth data received from the headend for storage in microprocessor memory.
  • the microprocessor of the subscriber module actuates or powers up each required oscillator and transmits frequency data toward all required oscillators or jamming any and all unauthorized channels at a jam factor selected or a par ⁇ ticular premium channel.
  • a sixty-four position memory may be reserved for storing ten bit voltage control words.
  • An algo ⁇ rithm of the subscriber module microprocessor loads the voltage con ⁇ trol word memory depending on the level of service chosen by the subscriber.
  • the oscillators may be powered down and the remaining oscillator is capable of con ⁇ tinuously jamming the one unauthorized channel resulting in a 100% jamming interval. If a particular subscriber at a given point in time has sub- " scribed to none of the sixteen channels offered, all four oscillators are sequentially triggered and sixty-four voltage control words are pro ⁇ vided in a pseudo-random sequence toward the four oscillators. The application of such a pseudorandom sequence discourages pirating.
  • Jam factor as defined herein is a parameter selectable and globally transmitted by the headend to equate to the relative degree of jamming to be applied to different premium channels. For exam ⁇ ple, it may be appropriate to jam highly restricted programming at a higher jam factor.
  • a total of sixteen voltage control words may be allocated to one premium channel. Consequently, these sixteen control words are analogous to jamming time slot intervals which can be allocated by the headend to improve jamming depth.
  • these sixteen time slots or their responsive jam factors may be allocated at eight, four and four respectively (totalling sixteen) to effectuate, for the least jammed channel and allowing a five percent overlap, a minimum 20% jamming interval.
  • the microprocessor algorithm will power down or deactuate the oscillator entirely or increase the jamming interval proportionate to the degree of premium service subscribed to and the assigned jamming factors.
  • the present apparatus Periodically and at power up, the present apparatus enters a calibration mode of operation, for example, at approximately thirty minute intervals. From the front end, premium channel frequency data is globally transmitted for storage in memory of the micropro ⁇ cessor of the common circuitry.
  • the common circuitry microproces ⁇ sor calculates in turn calculates a divide by factor for a programma ⁇ ble prescaler of the subscriber module and an expected time between frequency counts and forwards these calculations to the microproces ⁇ sor of the subscriber module.
  • the programmable prescaler or frequency divider is provided in a feedback path from the plural oscillators to the microprocessor of the subscriber module.
  • the transmitted and stored frequency data is translated into a best guess voltage control word.
  • the jamming signal frequency of the only powered-up oscillator is fed back through the prescaler which divides down the high frequency output for counting by the microprocessor.
  • the microprocessor cal ⁇ culates a count in accordance with the known time interval between received outputs of the prescaler. The count is then compared with the expected count and the voltage control word adjusted accordingly.
  • the jamming carrier can be prac ⁇ tically positioned anywhere within the 250 kilohertz band above the video carrier or even elsewhere if desired, for example, for jamming the audio carrier.
  • the jamming signal frequencies may also be Intentionally varied by varying the voltage control words for jamming a given premium channel.
  • the application of a calibration mode of oper ⁇ ation permits the pre ⁇ sent apparatus to achieve much higher frequency hopping rates than the known system during the normal mode of operation. Because there is no requirement for the application of slow conventional fre ⁇ quency locking techniques during the normal mode of operation, a desirable four kilohertz hopping rate is achievable.
  • Figure 1 is an overall system block diagram showing the inher ⁇ ent compatibility of the present interdiction apparatus with existent cable television systems comprising premium channel scramblers, addressable data transmitters, and subscriber converter/decoders.
  • FIG. 2 is a block schematic diagram of an addressable com ⁇ mon control circuit for the plurality of provided subscriber modules in accordance with the present invention comprising a broadband signal tap, a microprocessor, a data receiver and decoder and an automatic gain control circuit.
  • Figure 3 is a block schematic diagram of one subscriber module comprising a microprocessor for selectively actuating and controlling the output frequency provided by each of four voltage controlled oscillators such that during a normal mode of operation sixteen pre ⁇ mium channels may be jammed at a minimum twenty percent jam ⁇ ming interval and, during a calibration mode, a feedback path is pro ⁇ vided to the microprocessor through a programmable prescaler to precisely establish jamming signal frequencies.
  • Figure 4 is a frequency plan for allocating the broadband cable television spectrum among four separate bands, each of which bands comprising a plurality of channels greater than or equal to four but, of which plurality, only four channels may be jammed at a 20% jam ⁇ ming interval.
  • Figure 5 is a detailed block schematic diagram of one embodi ⁇ ment of a feedback loop structure for implementing the calibration mode of operation of the present invention.
  • Figure 6 is a block diagram of the voltage control word memory in connection with the sequential provision of oscillator jamming fre ⁇ quency signal outputs during a normal mode of operation.
  • Figure 7 is a timing diagram for the embodiment of Figure 3 during a normal mode of operation in which each interdiction control signal is particularly depicted.
  • a cable television system employing the principles of the present invention.
  • cable television system is intended all sys ⁇ tems involving the transmission of television signals over cable toward remote locations.
  • a cable television system may comprise a community antenna television distribution system, a satel ⁇ lite signal distribution system, a broadcast television system, a private cable distribution network, either industrial or educational, or other forms of such systems.
  • Each remote location of a television receiver may comprise the location of a particular subscriber to a subscription television service, plural subscribers, single subscribers having plural television receivers or private locations in a private cable distribution network.
  • the term subscriber when used in this appli ⁇ cation and the claims, refers to either a private subscriber or a com ⁇ pitchal user of the cable television system.
  • Headend 100 as used in the present application and claims is defined as the connecting point to a serving cable 110 for distributing television channels to sub ⁇ scriber locations.
  • E.I.A. Electronic Industries Association
  • an Electronic Industries Association (E.I.A.) standard cable television frequency allocation scheme is employed and referred to herein; however, by means of the following disclosure of the present invention, one may apply the prin ⁇ ciples to other known standards or non-standard frequency alloca ⁇ tions.
  • N.T.S.C. National Television Subcommittee
  • Headend 100 comprises a source of television programming 101.
  • Television program source 101 may be a satellite television receiver output, a program produced by a television studio, program material received over a microwave or broadcast television link, a cable television link output, or any other source of television pro ⁇ gramming consistent with the present invention.
  • the program source material need not be limited to conventional television but may com ⁇ prise teletext, videotex, program audio, utility data, or other forms of communication to be delivered to a remote location over the serving cable 110.
  • Program material provided by source 101 may be premium or otherwise restricted or desirably secured from receipt at unauthorized receiver locations.
  • each channel or program to be secured is generally scrambled by scrambler 102 provided at headend 100.
  • scrambler 102 provided at headend 100.
  • a scrambler 102 will be provided so long as converter/decoders 150 are provided to subscribers for unscrambling scrambled program transmission.
  • converter/decoders 150 may be entirely replaced by interdiction apparatus 130 of the present invention.
  • an addressable data transmitter 103 for transmitting global commands and data to all sub ⁇ scribers or addressed communications for reception by a unique sub ⁇ scriber. Such data transmission may be conducted over a separate data carrier from the cable television spectrum, for example, at 108.2 megahertz. It may also be transmitted over an unused default channel from the television spectrum.
  • Global commands generally take the form of operation code and data while addressed communications fur ⁇ ther comprise the unique address of a particular subscriber.
  • such communications may take the form of in band signals sent with a television channel super ⁇ imposed upon an audio carrier during, for example, the vertical inter ⁇ val of the video signal.
  • Such data communications further complicate data reception at intervention apparatus 130 in accordance with the present invention and are desirably eliminated.
  • in band signaling is sometimes required for the operation of certain converter/decoders 150 known in the art.
  • headend 100, cable television distribution cable 110, and converter/decoders 150 and television receivers 170 at a typical subscriber premises 181 comprise a typical known cable tele ⁇ vision system.
  • Channel program or authorization data is transmitted via an addressable data transmitter 103 over a cable 110.
  • the serving signal is dropped via drop 115 to a subscriber location.
  • Drop 115 is connected to a conventional converter/decoder 150 which serves sev ⁇ eral functions.
  • channel or program authorization data is updated in an authorization memory if the address associated with the addressed communication matches a unique address of the subscriber decoder 150.
  • the subscriber address may comprise a plurality of bits over and above the actual number of subscribers in a system, additional bits insuring the security of the address.
  • the pre ⁇ mium channel or program is then stored in the authorization memory of the converter/decoder 150.
  • Television programming is normally converted to an otherwise unused channel -such as channel 3 or 4 of the television spectrum by a converter portion of converter/decoder 150. Its premium status is checked against the data stored in authori ⁇ zation memory. If the programming is authorized, the decoder por ⁇ tion of the converter/decoder is enabled to decode authorized scram ⁇ bled premium programming.
  • the provided television receiver may be a conventional televi ⁇ sion receiver 170 or may be a so-called cable ready television receiver 171. Because of the advent of cable ready television receivers 171, there is no longer a requirement at a subscriber premises 181 for the converter portion of the converter/decoder 150 as a converter is built into such television receivers.
  • a housing is mounted on a strand supporting cable 110, to a pole 120, or provided via a pedestal 140.
  • common control circuitry for tapping into the broadband television and data transmission spectrum. Referring to the first pole 120 from the left of Fig. 1, there is shown a strand-mounted apparatus serving two drops 115 to subscribers. Altogether, four subscribers and up to four drops 115 may be served by interdiction apparatus 130.
  • four plug-in subscriber modules may be provided for one housing.
  • additional services may be provided via other plug-in units of the housing such as impulse pay-per-view, subscriber polling involving two way data communication, meter reading, energy man ⁇ agement or other services.
  • all equipment 161 may be removed from the sub ⁇ scriber premises 182.
  • premises 182 will be assumed to include at least one non-cable ready conventional television receiver 170.
  • subscriber equipment 161 must at least comprise a tunable converter for converting a received cable television channel to an unused channel such as channel 3 or 4 for reception on conventional television receiver 170.
  • Power for interdiction apparatus 130 may be provided over the cable from the headend 100 or be provided via the subscriber drop 115 or by a combination of such means. Forseeably, power may be even provided by rechargeable means such as solar cells or other external or replaceable internal sources such as batteries. Consequently, sub ⁇ scriber equipment 161 may also comprise a source of power for inter ⁇ diction apparatus 130.
  • Interdiction apparatus 130 may be secured in a tamper-resist ⁇ ant housing or otherwise secured such as in a locked equipment closet of an apartment complex. If located in a place exposed to the ele ⁇ ments, the housing should be water-tight. Also, the housing should be designed to preclude radio frequency leakage.
  • subscriber unit 162 may be entirely eliminated or comprise simply a power feed to interdiction apparatus 130.
  • Premises 184 pictorially represents a subscriber location served by an underground cable 110 via a plurality of pedestals 140, in which cable distribution amplification and branching equipment and drops 115 are normally provided.
  • pedest.al 140 may comprise an off-premises housing for interdiction apparatus 130.
  • Subscriber equipment 162 may comprise a converter, an additional service device and a power unit as described in refer ⁇ ence to subscriber equipment 161 or nothing at all as described in reference to subscriber equipment 162.
  • Interdiction apparatus 130 is uniquely addressable by headend 100 just as is converter/decoder 150. If two bits of a plural bit unique subscriber address are associated with uniquely identi ying one plug-in slot for one of our subscriber modules, common control circuitry may be uniquely addressed with remaining address data not used to secure the data communication. Just as premium programming is transmit ⁇ ted in the clear and since no data communication is necessarily required with a subscriber premises, a subscriber address need not be transmitted in a secure form in accordance with the principles of the present invention. Nevertheless, address security may be desirable so long as converter/decoders 150 or other unique address requisite equipment is provided at a premises.
  • Interdiction apparatus 130 comprises addressable common con ⁇ trol circuitry and up to four plug-in subscriber modules. Upon receipt of subscriber specific premium program or channel authorization data, the data is stored at interdiction apparatus 130. Interdiction apparatus 130 further comprises automatic gain control circuitry of the common control circuitry. Channel interdiction circuitry associ ⁇ ated with each subscriber module jams unauthorized premium pro ⁇ gramming dropped via a particular drop 115 to a particular subscriber. Consequently, interdiction apparatus 130 is reasonably compatible with addressable authorization data transmission known in the art. No scrambling of premium channels (and no resulting artifacts) is necessary or desirable. Furthermore, no additional forms of service security are necessary such as channel encryption, in-band channel or tier verification or other security measures.
  • the would-be service pirate must attempt to remove a particular pseudo-randomly timed jamming signal placed at a varying frequency or seek to tamper with the off-premises apparatus 130 or derive a signal from shielded and bonded cable 110 which should likewise be maintained secure from radio frequency leakage.
  • interdiction apparatus 130 The common control circuitry of interdiction apparatus 130 will now be described by means of the block diagram Fig. 2 for serving four subscriber modules in accordance with the block diagram Fig. 3.
  • a feeder cable 110 is shown entering interdiction apparatus 130 at FEEDER IN and leaving at FEEDER OUT.
  • Power PWR may be provided via the feeder cable by means of a subscriber drop or locally by internal or external means. Depending on the source of power PWR, input power may be of alternating or direct current.
  • a directional coupler 210 which may be in the form of a plug- in module taps into the broadband serving cable 110.
  • a broadband of radio frequency signals is thus output to highpass filter 220.
  • Highpass filter 220 passes a band of frequencies comprising at least the data carrier frequency or frequencies (in a bi-directional application) and the cable television channel spectrum.
  • the cable television spectrum may comprise a frequency band from at least 120 MHz to 350 MHz.
  • An automatic gain control circuit comprises variable attenuator 230, RF amplifier 233, directional coupler 232, and AGC control ci cuit 231.
  • the automatic gain control circuit appropriately regulates the broadband RF signal power to fall within established limits.
  • a data receiver 240 for receiving data from the addressable data transmitter 103 located at headend 100.
  • Data receiver 240 receives data transmitted, for example, over a data carrier of 108.2 megahertz and provides unpro ⁇ Waitd data to data decoder 250.
  • data decoder 250 may be in the form of an operation code, a sub ⁇ scriber unique address and associated data.
  • Data decoder 250 pro ⁇ Decoder 250 Decoder 250 pro ⁇ Deactivates the data and provides the separately transmitted data to microprocessor 260 for further interpretation in accordance with a built-in algorithm.
  • Microprocessor 260 is most efficiently chosen to alleviate as many responsibilities from any microprocessor provided for an individual subscriber module and so is most conveniently an eight bit microprocessor having eight kilobytes of internal code such as a Motorola 68HCO5C8.
  • Received data may be stored in uninterrup table memory 270 by microprocessor 260. Data may be temporarily stored in memory 270 or more permanently stored and subsequently downloaded when needed to a subscriber module via a serial peripheral interface bus connecting microprocessor 260 with separate microprocessors associ ⁇ ated with each provided subscriber module.
  • Microprocessor 260 consequently interprets both global com ⁇ munications addressed to common control circuitry or communica ⁇ tions addressed to unique subscriber modules. If appropriate, micro ⁇ processor 260 ignores global or addressed communications to other interdiction apparatus 130 or to converter/decoders 150 (Fig. 1). Examples of global communications peculiar to interdiction apparatus 130 are premium channel frequency data and jamming factor data for each premium channel or channel over which premium program ⁇ ming at a particular point in time is provided via headend 100. Exam ⁇ ples of addressed communications include communications comprising premium channel or programming authorization information or com ⁇ munications instructing the common control circuitry to deny or pro ⁇ vide service to a particular subscriber.
  • Serial peripheral interface bus 290 may be a two way communications link by way of which link microprocessors 300 (Fig. 3) associated with subscriber modules may, at least, provide status reports to microprocessor 260 upon inquiry.
  • Radio frequency splitter 280 provides broadband radio fre ⁇ quency signals comprising at least the cable television service spec ⁇ trum of Fig. 4 separately to each subscriber module that is provided.
  • a signal combiner (not shown) of a plug-in special service module may be provided for receiving communications from each of the four sub ⁇ scriber modules in an opposite manner to splitter 280. Certain data may be transmitted back toward the headened via the special service plug-in module (also, not shown) associated with the additional special service.
  • FIG. 3 there is shown an overall block schematic diagram of a subscriber module in accordance with the present invention.
  • a microprocessor 300 is associated with a par ⁇ ticular subscriber module and communicates with microprocessor 260 of Fig. 2 over a serial peripheral interface bus.
  • Microprocessor 300 may comprise an eight bit microprocessor equipped with only two kilobytes of microcode, this microprocessor being relieved of overall control responsibilities by microprocessor 300. Consequently, micro ⁇ processor 300 may conveniently comprise a Motorola 68HC05C3 microprocessor or similar unit.
  • a reverse path may be provided via a lowpass filter 392 to a special service module (not shown in Fig. 2) of common control circuitry as described in Fig. 2 from a corresponding special service module on the subscriber premises. Such a reverse path is completed to the subscriber via terminal OS. Also power may be transmitted up the subscriber drop to the module of Fig. 3 and withdrawn at terminal OS.
  • the broadband radio frequency television spectrum signal from Fig. 2 is provided to terminal IS.
  • a service denying switch 389 is under control of microprocessor 300.
  • service denying switch 389 may be opened.
  • a high frequency amplifier 387 may be powered down under control of microprocessor 387 whenever service is to be denied. Otherwise, amplifier 387 may be set at discrete gain levels, under microprocessor control, to provide supplemental gain to the broadband television signal if a subscriber has a plurality of tele ⁇ vision receivers over and above a nominal amount.
  • Jamming signals are interdicted at directional combiner 385 under microprocessor control. Because of the directional characteris ⁇ tic of amplifier 387, jamming signals cannot inadvertently reach the common control circuitry of Fig. 2 or the serving cable 110. Jamming signals are interdicted at a level approximately within a range of -2.5 db to +6.5 db or +2dB nominal of the video carrier power level of the unauthorized premium channel frequency to be jammed. They are most conveniently interdicted for video carrier jamming approxi ⁇ mately within a range of frequencies extending from the video carrier to + 250 kilohertz above the video carrier toward the audio carrier of the channel to be jammed.
  • the frequency is selectable by the headend 100 and so may be chosen to jam the audio carrier at a frequency closer to that carrier if desired.
  • the power level of the jamming signal may be varied via global data transmissions if, for example, audio carrier jamming is desired. Such interdiction on a per channel basis between the video and audio carriers minimizes adjacent channel artifacts.
  • Highpass filter 391 prevents any return path signals from reaching combiner 385 and passes the broadband spectrum including any jamming signals toward terminal OS.
  • Reverse path signals for example in this embodiment, if present, may be radio frequency sig ⁇ nals below 100 megahertz.
  • the broadband television spectrum is pre ⁇ sumed to be in the 100-350 megahertz range consistent with Fig. 4. However, interdiction of premium channel viewing may be allocated anywhere desired within a broader or discontinuous cable television spectrum to be jammed. Consequently, filters 391 and 392 are designed in accordance with this or similarly selected design criteria to block or pass broadband television or reverse path signals as required.
  • Microprocessor 300 controls four voltage controlled oscillators 341-344, each of which oscillators jams premium channel frequencies within an allocated continuous range of frequencies. Since premium programming may be transmitted anywhere in the cable television spectrum, the sum of all such allocated portions comprises the entire television spectrum to be jammed. In accordance with the present invention, the television spectrum to be jammed may comprise dis ⁇ continuous portions or intentionally overlapping portions.
  • a harmonic of a relatively low frequency signal for example, 100 MHz can interfere with a channel at a harmonic of this frequency in the upper part of the cable television spectrum.
  • the allocated band should be limited for an oscillator to fall within one third of an octave, and, consequently all frequency harmonics may be blocked by filters 351, 352, 353 and 354 associated with each oscillator.
  • Oscillator 341 denoted OSC 1 is active in a band extending from 126 to 158 megahertz while filter 351 will block harmonics above the included channels 15-20 of the midband.
  • Cable headend service providers tend to select premium chan ⁇ nel allocations in the midband range covering channels 15-22. Conse ⁇ quently, the band of oscillator 342, for example, may be selected to overlap the band allocated to oscillator 341.
  • each oscillator may be restricted to jamming only four premium channels.
  • jamming depth may be automatically increased for a particular subscriber dependent upon the subscriber's level of service.
  • all eight channels of the midband may be jammed by means of the present interdiction apparatus leaving two channels of the highband which still may be jammed via oscillator 342.
  • oscillator OSC1 may jam four of the six allocated channel frequencies of the midband while oscillator OSC2 may jam an overlapping band comprising channels 19-22 of the midband and channels 7-10 of the highband.
  • the range of jamming signal frequencies for oscillator OSC2 is selected within the range of 150-194 megahertz consistent with the desirable elimination of har ⁇ monic interference.
  • Oscillator OSC3 provides jamming signals for jamming four premium channels selected from channels 11-13 of the highband and channels 23-29 of the superband. Eight premium channels may be jammed at a reduced jam ⁇ ming factor of these ten channels.
  • Oscillator OSC4 is provided for jamming from channel 30 in the superband to channel 41 extending into the hyperband. Four channels of these twelve may be jammed at a 20% jamming interval; however, eight may be jammed at a reduced jamming factor.
  • Microprocessor 300 is connected by a bus system to memory and buffer circuits comprising RAM's 311 and 312 and buffer 310. Microprocessor 300 operates at a clock frequency of, for example, four megahertz provided by clock 336. Counter 335 is shown as a separate element; however, counter 335 is provided essentially for counting the output frequencies of jamming oscillators 341-344 during a calibration mode of operation and so may comprise an element of microprocessor 300.
  • Microprocessor 300 is also connected to digital to analog con ⁇ verter 320.
  • digital to analog con ⁇ verter 320 converts a ten bit voltage control word to analog voltage outputs which are, in turn, provided to analog multiplexer 330.
  • the analog voltage outputs of the analog multiplexer 330 are stored and held at sample and hold circuits 337-340 for application to oscillators 341-344.
  • analog voltage signal out ⁇ puts are sequentially gated by analog multiplexer 330 over leads FREQ 1-4 toward the oscillators 341-344.
  • these signals may be provided in a pseudorandom sequence to thwart pirating attempts as will be described in reference to Fig. 6.
  • Microprocessor 300 is connected to each oscillator 341-344 via respective oscillator power lines OPWRl-4 for actuating the oscilla ⁇ tors.
  • Each oscillator may be powered down during a normal mode of operation if a subscriber is authorized to receive all channels within its allocated band at one point in time. Furthermore, during a cali ⁇ bration mode, one oscillator may be powered up for calibration while all other oscillators are powered down.
  • Microprocessor 300 is further connected to four high frequency PIN diode switches 361-364. During a normal mode of operation, these switches are selectively opened for a brief interval for, for example, sixteen microseconds while an associated oscillator changes or hops from one jamming signal frequency output to another. None ⁇ theless, assuming four channel jamming by a particular oscillator at a jam factor of four, a four thousand hertz frequency hopping rate is easily achievable via these PIN diode switches.
  • each oscillator Also connected to the outputs of each oscillator are associated low pass filters which serve to cut off all harmonics of jamming signal frequency output. These low pass filters may be connected either to the inputs or to the outputs of switches 361-364 although connection in series between its .associated oscillator and high requency switch is shown in Fig. 3.
  • the jamming signal outputs of all four oscillators are combined at signal combiner 365. From signal combiner 365, the combined out ⁇ put is direetionally coupled by coupler 370 to programmable prescaler 375 and to signal attenuator 380.
  • Programmable prescaler 375 is only powered via lead PREPWR when required during a calibration mode.
  • a divided down output frequency is pro ⁇ vided to microprocessor 300 for counting. When powered down, no output signal results.
  • the combined jamming signal outputs of attentuator 380 are combined at directional coupler 385 with the passed incoming broadband television signal from the common control circuit of Fig. 2.
  • switch 389 and amplifier 387 are assumed to be powered.
  • the subscriber will only receive in the clear premium or restricted programming which the subscriber is authorized to receive.
  • FIG. 5 there is shown a block schematic diagram of one embodiment of a feedback loop useful in describing the calibration mode of operation.
  • the calibration mode occupying a fraction of a second, assures relatively frequency stable operation during a normal mode of operation. Furthermore, because of the calibration mode, there is no requirement for the application of slow conventional frequency locking techniques and a high operation frequency hopping rate of four thousand hertz may be achieved during the normal mode of operation.
  • the embodiment shows the calibration of one particular oscillator OSC.
  • the depicted loop indicates an application specific integrated circuit ASIC connected to subscriber module microprocessor 300. This circuit ASIC may be clocked at twice the microprocessor rate and comprise the previously discussed voltage control word memory RAM as well as programmable prescaler 375.
  • a word adjust and select bus 501 is shown which may separately access and adjust all voltage control words in voltage control word memory RAM.
  • the voltage control word memory is connected via bus 511 to digital to analog converter 320.
  • Digital to analog converter 320 is connected via sample and hold circuit SH to oscillator OSC to which power is applied under microprocessor con ⁇ trol via lead OPWR.
  • Via directional coupler 370 the jamming signal output of oscillator OSC is fed back toward microprocessor 300.
  • the high frequency output is divided down by a fixed divide-by factor. The divided down jamming frequency output is then output to programmable prescaler 375.
  • Programmable prescaler 375 is under control of microprocessor 300.
  • microprocessor 260 Responsive to premium channel frequency data transmitted from the headend to micropro ⁇ cessor 260 of Fig. 2, microprocessor 260 in turn generates divide by factor and time between count data for transmittal to microprocessor 300 via the serial peripheral interface bus (Fig.'s 2 and 3).
  • Micropro ⁇ cessor 300 programs the divide by factor of programmable prescaler 375 via lead 502 and receives a countable frequency output of pro ⁇ grammable prescaler 375 via lead 503. Microprocessor 300 then counts the output at included counter 335.
  • the provision of application specific integrated circuit ASIC assists in miniaturizing the subscriber module of Fig. 3 and relieves the outboard memory requirements of microprocessor 300.
  • the provision of a limited voltage control word memory in circuit ASIC may restrict the opportunity of microprocessor 300 to reallocate addressable slots to other oscillators when one oscillator is powered down as will be described in greater detail in reference to Fig. 6.
  • the provision of a second or fixed prescaler in comparison with the single programmable prescaler shown in Fig. 3 is desirable if the frequency range of the television spectrum to be jammed extends into the hyperband.
  • a voltage control word memory having sixty-four memory locations with addresses 1-64. At every fourth memory location 1, 5, 9 and so on is located a voltage control word associated with a first oscillator.
  • f 10 . . . f IE will be assumed to refer to sixteen requency control words for a first oscillator OSC1 and are numbered in hexadecimal notation from O-E.
  • the sixteen memory slots may be permanently associ ⁇ ated with oscillator OSC1; however, such a design choice limits the freedom of reallocating voltage control words to other oscillators.
  • Voltage control words are entered into voltage control word memory for each oscillator in sequence provided the oscillator will be applied for jamming.
  • the oscillator will be applied for jamming.
  • all four oscillators will be applied, each for jamming four premium channels.
  • this is a simplified assumption which assumes a subscriber is authorized to receive no premium channels and, furthermore, it will be assumed that all premium channels are to be jammed at the same jam actor four.
  • sixteen voltage control words will be entered in memory for each oscillator, four of which control words may be the same, each four similar control words being related to one premium channel frequency to be jammed.
  • four groups of four similar control words are entered into sixteen memory locations 1, 5, 9, 13 . . .61 for oscillator OSC1. These are indicated as f 10 to IE.
  • sixteen voltage control words are entered into memory locations 2, 6, 10, 14 . . . 62 for oscillator OSC2. These are indicated as f2O . . ⁇ 2E.
  • sixteen voltage control words are entered into memory locations 3, 7, 11, 15. . . 63 for oscillator OSC3, indicated as f3O. . . f3E.
  • sixteen voltage control words are entered into memory locations 4, 8, 12, 16,. . . 64 for oscillator OSC , indicated as f 40. . . f 4E.
  • the calibration algorithm for loading a first ten bit voltage control word f 10 into a first memory location 1 for a first oscillator OSC 1 will now be described in some detail.
  • a first programmable divide-by factor is transmitted via lead 502 to set programmable prescaler 375. All other oscillators OSC2-4 are powered down via leads OPWR2-4, and oscillator OSC1 is powered up via lead OPWR1 (shown in Fig. 5 as oscillator OSC and lead OPWR respectively).
  • a first ten bit volt ⁇ age control word flO is stored in memory location 1 representing a first best estimate of jamming frequency by microprocessor 300 via bus 501.
  • the word is transmitted to digital to analog converter 320 where it is converted to an analog voltage.
  • the analog multiplexer (not shown in Fig. 5) selects a lead FREQl from the multiplexer to oscillator OSC1. Consequently, the analog voltage output of the dig ⁇ ital to analog converter is provided to sample and hold circuit SH or 337 for application to oscillator OSC1.
  • Signal combiner 365 (not shown in Fig.
  • the jamming signal output is provided to fixed prescaler 376.
  • Fixed prescaler 376 divides down the output frequency of the oscillator OSC1 to a first frequency. According to the divide by fac ⁇ tor loaded into programmable prescaler 375, the first frequency out ⁇ put of fixed prescaler 376 is further divided down to a frequency which may be counted by counter 335 of microprocessor 300.
  • the frequency provided via lead 503 should be sufficiently divided down to be counted with reasonable accuracy. Since the fixed time between counts is known to microprocessor 300 having been downloaded from microprocessor 260, counter 335 counts the fre ⁇ quency input on lead 503. The resulting count is compared with the expected count and the microprocessor adjusts the control word accordingly. As a result, microprocessor 300 repeatedly enters the algorithm until the voltage control word stored in memory as accu ⁇ rately as possible reflects the premium channel frequency to be jammed. Then, this process is repeated four times for four premium channel frequencies to be jammed by the oscillator OSC.
  • the four voltage control words for a single premium channel may be intentionally var ⁇ ied.
  • a first subordinate scheme via headend 100, four different frequencies may be intentionally selected with reference to one pre ⁇ mium channel. Given a resolution of 50 kilohertz provided by the least significant bit positions of a ten bit voltage control word, the four different frequencies may be selected by headend 100 anywhere within the 250 kilohertz range above the premium channel video car ⁇ rier or most effective premium channel jamming.
  • microprocessor 300 may be programmed to intention ⁇ ally vary the entered voltage control word to be at or about the expected downloaded frequency, for example, at fifty kilohertz above or below the expected frequency. Consequently, if the headend selects only one frequency for a first premium channel, for example, at 200 kilohertz above the video carrier, then voltage control words will be entered into memory equivalent to video carrier plus 150 kilohertz, 200 kilohertz and 250 kilohertz. Both subordinate schemes thwart pirates attempting to notch out the jamming signal frequency which is intentionally varied by these schemes.
  • Jamming factor is a term related to the loading of the sixteen voltage control words into voltage control word memory for a partic ⁇ ular oscillator.
  • a jamming factor is selected for each premium chan ⁇ nel and is globally transmitted from the headend. If four premium channels are to be jammed by each of four oscillators OSC 1-4 and all are to be jammed at the same jamming interval, each has a jamming factor of four, tf a subscriber subscribes to all four premium channels associated with oscillator OSC1, then oscillator OSC1 may be powered down and no voltage control words entered in memory during calibra ⁇ tion for this oscillator.
  • the microprocessor may allocate the sixteen control words for the first oscillator to the two unauthorized premium channel fre ⁇ quencies to be jammed. Consequently, the microprocessor may allo ⁇ cate eight control words each to jamming the two unauthorized pre ⁇ mium channels thus automatically increasing the jamming interval or depth of jamming based on the jamming factor and the given reduced level of premium program authorization.
  • Jamming factor may be intentionally selected, for example, at a high level, for example, eight for one especially sensitive program in relation to two other channels to be jammed by the same oscillator which may be allocated jam fac ⁇ tors of four each, the total of all such jam factors being equal to the maximum number of voltage control words, in this example, sixteen associated with the oscillator.
  • Voltage control words may be read from memory or written into memory so they may be read out in a particular pseudo random sequence so that a pirate would have to know the pseudorandom sequence in order to appropriately time any notch filtering.
  • f 11-f 14 be the four premium channel frequencies to be jammed by oscillator OSC1.
  • Addresses 1, 5, 9, and 13 may store volt ⁇ age control words for fll, fl2, fl3 and f l4, respectively.
  • the next four addresses 17, 21, 25, and 29 may store the voltage con ⁇ trol words in a different order, for example, f 14, f 13, f 12, fll respec ⁇ tively.
  • the order may be further varied in the remaining eight addresses so, when the voltage control words are applied to oscillator OSC 1 during a normal mode of operation, the output frequency of the jamming signal will vary according to the pseudorandom sequence of data entry.
  • the calibration mode is entered at initial turn-on to generate the sixty-four voltage control words for storage in voltage control word memory corresponding to the desired jamming signal frequen ⁇ cies.
  • the subscriber module reenters the calibration mode to update the control words for drift which may result from either the oscillator or the digital to analog converter operation.
  • drift if maintained within, for example, 50 kilohertz of the selected frequency is actually desirable in that it further complicates the efforts of a would-be pirate.
  • the peri ⁇ odically performed calibration mode permits a higher rate of fre ⁇ quency hopping, for example, four kilohertz during normal operation than would be possible with conventional frequency control methods such as phase locked loops. Calibration requires but a fraction of a second and, consequently, no intelligible television information may be obtained at a television receiver tuned to an unauthorized premium channel.
  • micropro ⁇ cessor 300 upon entering a normal mode of operation causes a first voltage control word stored in memory address 1 of the voltage con ⁇ trol word memory of Fig. 6 to be transmitted toward oscillator OSC1.
  • Digital to analog converter 320 converts the ten bit word 0010110101 to an analog voltage level.
  • ana ⁇ log multiplexer 330 selects lead FREQl for transmitting the analog voltage signal for storage and holding at sample and hold circuit 337.
  • powered-up oscillator OSCl provides a jamming signal fre ⁇ quency output FREQ 2 consistent with the analog voltage signal input provided via analogy multiplexer 330.
  • the normal mode of operation for the example under discussion is shown in the form of a timing diagram.
  • the digital to analog converter is shown at time to an analog voltage level representing frequency FREQ 1 for oscillator OSCl.
  • the analog multiplexer 330 is shown connecting the digital to anlaog converter 320 to oscillator OSCl. While the analog multiplexer is only connected to oscillator OSCl for the duration tO-tl, the applied analog voltage is stored and held for the duration t0-t4. Consequently, the output of oscillator OSCl is shown continuously applied from time t0-t4.
  • switch 361 Under control of " microprocessor 300 via lead OSSWl, switch 361 is briefly opened while frequency FREQ 1 is established at the output of oscillator OSCl and then immediately closed. Switch 361 stays closed for the duration until the output of oscillator OSCl hops from frequency FREQ 1 to FREQ 2. Just prior to time t4, switch 361 is again opened in accordance with signal OSSW1. Consequently at the output of switch 361, the jamming signal output of oscillator 341 is briefly interrupted.
  • the digital to analog converter 320 is signaled to change the output frequency of oscillator OSCl to frequency FREQ 2.
  • the analog multiplexer 330 gates an analog voltage level, this time representing frequency FREQ 2 to be held at sample and hold circuit 337.
  • oscillator OSC2 now provides a jamming signal frequency output consistent with frequency FREQ 2 until time t8.
  • switch 361 which was opened shortly before time t4 in accordance with switch control signal OSSWl is again closed at a point in time shortly after time t4.
  • switch control signal OSSWl is again closed at a point in time shortly after time t4.
  • a first frequency FREQ 1 is established for oscillator OSC2.
  • voltage control word 1010010110 which is pro ⁇ vided toward oscillator OSC2.
  • a first analog voltage level is output from digital to analog converter 320 representing this word.
  • switch 362 is opened in accordance with signal OSSW2.
  • frequency FREQ 1 is established at the output of oscillator OSC2 or at a time just after time tl, switch 362 is again closed in accordance with signal OSSW2 provided by microprocessor 300.
  • fre ⁇ quencies may be provided in yet a third dif erent sequence, or exam ⁇ ple, FREQ 2, FREQ 3, FREQ 4, FREQ 1.
  • the order of applied frequen ⁇ cies may be altered again, for example, FREQ 3, FREQ 4, FREQ l, FREQ.2.
  • the pseudorandom sequence may be defined and downloaded from the headend or developed internally by either microprocessor 260 of Fig. 2 or microprocessor 300 of Fig. 3.

Abstract

Off premises cable television interdiction apparatus comprises a microprocessor actuation and control means (300) for actuating and controlling a plurality of frequency agile voltage controlled oscillators (341). The voltage controlled oscillators selectively jam only unauthorized premium programming transmitted in the clear from a head end to a particular subscriber. Each voltage controlled oscillator is allocated a continuous band of frequencies consistent with the elimination of jamming signal frequency hamonics which may disturb authorized programming at a higher channel frequency. The microprocessor actuation and control means provides a calibration mode and a normal mode of operation. During the normal mode of operation, a frequency hopping rate on the order of four thousand hertz is achievable. The method of interdiction comprises the steps of generating and storing voltage control words for operating the oscillators consistent with a head end selected jamming factor for a particular channel to be jammed and addressably transmitting and storing premium programming authorization data.

Description

OFF-PREMISES CABLE TELEVISION CHANNEL INTERDICTION METHOD AND APPARATUS
BACKGROUND OF THE INVENTION
1. Technical Field
This invention relates to cable television systems and, more particularly, to a method and apparatus for applying remotely con¬ trolled and remotely applied interdiction or jamming signals to pre¬ vent reception of unauthorized television channels.
2. Description of the Prior Art
At a headend of a cable television system, a scrambler is nor¬ mally provided to encode premium television channels. The applied scrambling precludes reception by an unauthorized converter/decoder at a connected premises. Data representing channels or tiers of pro¬ gramming are addressably transmitted to a particular converter/ decoder and stored in an authorization memory. As a result of the addressed transmission, a subsequently transmitted program is autho¬ rized in that the decoder portion of the converter/decoder will be selectively enabled to decode the scrambled premium channel or program.
Several varieties of scrambling techniques are applied today. Each manufacturer has its own scheme which may be incompatible with others. Nevertheless, most popular scrambling systems today are based on sync suppression, in which the sync information is hidden from the television receiver's sync separator, usually by moving it to a level occupied by picture information (moving the sync tip to an equivalent picture level of 40 IRE units is common). Some systems modulate the picture carrier with a sine wave phased to suppress the horizontal blanking interval. Most systems today switch to the suppressed level at the beginning of the blanking interval and switch out at the end. Most though not all suppress the vertical blanking interval. Some systems dynamically invert the video, either on a line- by-line or a field-by-field basis. This must be done carefully to avoid artifacts caused by inverting and reinverting around different levels, and by differentia gain and phase of the system. Synchronization is restored either by the provision of synchronous amplitude modulated -pulses on the sound carrier, by digital information placed in the verti¬ cal interval or by phase modulation on the picture carrier.
The provision of one scrambler per premium channel at the headend and the inclusion of a descrambler in each converter/decoder at the premises of the television receiver is particularly expensive. Furthermore, by providing the converter/decoder on premises has turned out to be a great temptation to service pirates who imagina¬ tively seek ways to receive premium channels. As a result, cable tel¬ evision equipment manufacturers have entered into a veritable war with such pirates resulting in complicated service authorization pro¬ tocols in some instances involving multiple layers of encryption by both in-band and out-of-band data transmission further increasing the costs of the converter/decoder.
Furthermore, all scrambling systems leave artifacts in the hor¬ izontal blanking interval in the form of steps on the front and back porches. Normally these are not a problem, but if a television receiver does not have adequate overscan, then the steps can show up as light bars on one or both sides of the picture. Further, if a televi¬ sion receiver uses back porch sampling for automatic gain control and/or black level restoration,, and the sampling period extends into the time of the descrambling step, the television will show the wrong black level and may show flicker in the picture. In systems in which pulse trains are applied to the sound carrier, a buzz carried by har¬ monics of a 59.94 Hz signal can be noticed in some television receivers.
Consequently, the cable industry has resorted to look for new technology and to take a second look at technology developed in the early stages of development of cable television such as the application of negative and positive traps and more recent techniques such as interdiction.
Negative trap technology is viewed by many manufacturers as a viable alternative to sync suppression scrambling methods. A nega¬ tive trap is basically a narrow band reject filter. Traps are located at the drop to a subscriber's dwelling and attenuate a significant portion of a premium television channel rendering that channel unusable by the subscriber.
In the conventional embodiment, negative traps are made using L-C filter techniques. The result is a notch with finite quality Q and finite shape factor. In the case of a single channel negative trap, the center of the notch is usually located at the picture carrier frequency of the channel to be removed. This technique, sometimes called a static negative trap, requires attenuation at the picture carrier of at least 60 dB to be effective.
Negative trap systems have several advantages that make them attractive for cable television applications. One primary advantage is the ability to deliver a broadband cable television spectrum to the subscriber's converter/decoder. Conventional sync suppression sys¬ tems utilize descrambling set-top converter/decoders which deliver inherently narrowband signals. Negative traps are usually mounted outside the subscriber's home (typically at the tap) and thereby mini¬ mize the exposure associated with placing hardware inside the subscriber's dwelling. Finally, some cable television operators view the negative trap as a more secure means of subscriber control than is sync suppression, as picture reconstruction is viewed as substantially more difficult.
However, the negative trap system requires hardware in loca¬ tions where no revenue is generated for the cable television system. Moreover, negative traps have several severe practical limitations. L-C band reject filters have Q and shape factor limitations. Quality factors Q for L-C filters are typically limited to less than 30. This means that for a negative trap located at channel 8 (picture carrier at 181.25 MHz) the 3 dB bandwidth of a negative trap is typically 6 MHz (or the bandwidth of a baseband television channel). This trap would result in significant deterioration of the lower adjacent channel. Then the television receiver tuned to the lower adjacent channel, rather than having to contend with a 15 dB picture-to-sound ratio, may have to contend with a sound carrier reduced an additional 6 dB or so. Frequency stability as a function of time and temperature is also a significant concern. Many cable television system operators have instituted a regular negative trap change-out program based on the assumption that after a certain period of time and temperature cycling, frequency dri t will render negative traps useless.
Cascadability is another significant concern. Finite return loss and non-zero insertion loss limit the number of singie channel nega¬ tive traps which can be cascaded. As the number of services to be secured increases, the negative trap decreases in appeal. Moreover a change in channel line-up requires a significant investment in hard¬ ware and manpower in this scenario.
Recently, a new type of negative trap has been introduced. The dynamic negative trap consists of a notch filter that is designed to be modulated with respect to frequency. The notch is centered about the picture carrier but is deviated slightly from side to side. The television channel is rendered unusable by the introduction of unwanted amplitude and phase modulation on the picture carrier. This technique requires a notch depth significantly less than that of static negative traps (typically 40 dB). Additionally, the intentionally introduced requency modulation reduces somewhat the requirement for requency stability.
The dynamic negative trap, however, has several disadvan¬ tages. A power source is required in order to accomplish the fre¬ quency modulation. More significant is the parasitic modulation that this technique produces on the adjacent television channels.
Positive trap systems also utilize a narrow band-rejector notch filter. However, unlike negative trap systems which are used to attenuate or trap a premium channel transmission, the notch filter is used to restore the premium television channel. In this scenario, an interfering signal is - o -
placed inside the premium television channel at the cable television headend. This interfering signal is then removed at the subscriber's dwelling by use of the notch filter. Ideally this notch filter removes only the interference without removing a significant amount of tele¬ vision information.
The positive trap technique is seen as having several advan¬ tages by the cable television system operator. It is considered advan¬ tageous to have the interference present in the secured channels on the cable television distribution plant (unlike the negative trap system in which the channels to be secured are "in the clear" on the distribu¬ tion plant). It is very attractive from a financial standpoint to require subscriber hardware only at those locations where a subscriber wishes to receive a secure service. Thus, any capital investment is associated with a point of revenue generation.
The conventional embodiment of the positive trap system uti¬ lizes L-C notch filters to remove the interfering signal. These L-C notch filters suffer from the same limitations as do L-C negative traps discussed above. Consequently, L-C based positive traps are limited to the lower end of the cable television spectrum. Quality Q and shape factors have also restricted the number of locations for the interfering signal within the television channel.
The location for the interfering signal in the conventional embodiment of the positive trap system is midway between the pic¬ ture carrier and sound carrier. The energy density (and hence infor¬ mation density) in this area of the spectrum is relatively low. One reason this location was chosen was that it minimized the impact of any television information removed along with the interfering signal by the notch filter, and thereby improved the quality of the recovered television signal. It would be expected that the jamming carrier would normally have minimal effect on the adjacent channel televi¬ sion picture unless a television has unusually poor rejection 2.25 MHz above the picture carrier. The jammer does add another carrier which the tuner will have to contend with, which might cause some degradation in a marginally overloaded case. Despite this location, the quality Q and shape factor limita¬ tions of conventional L-C positive traps do remove a significant amount of useful television information. The result is a noticeable "softening" of the television picture as a result of attenuation of high frequency information. Predistortion at the headend can improve this performance but falls far short of being able to correct it completely. This location for the interfering signal also facilitates the job of the video pirate. This pirate can easily tolerate a degraded signal and hence can recover a useable picture using techniques easily available (such as the classic twin lead quarter wave stub with an aluminum foil slider for fine tuning). Also, positive trap systems require a higher per premium channel cost than a negative trap system.
A relatively recent technique for premium channel control is the interdiction system, so-called because of the introduction of an interfering signal at the subscriber's location. Most embodiments con¬ sist of a pole-mounted enclosure designed to serve four or more sub¬ scribers. This enclosure contains at least one microprocessor con¬ trolled oscillator and switch control electronics to secure several tel¬ evision channels. Control is accomplished by injecting an interfering or jamming signal into unauthorized channels from this pole-mounted enclosure.
For efficiency's sake, it is known to utilize one oscillator to jam several premium television channels. This technique not only reduces the amount of hardware required, but also maximizes the system flexibility. The oscillator output jamming signal frequency is sequentially moved from channel to channel. Consequently, the oscil¬ lator is frequency agile and hops from jamming one premium channel frequency to the next.
One such system is known from U.S. 4,450,481 in which a single frequency agile oscillator provides a hopping gain-controlled jamming signal output to four high frequency electronic switches. Each switch is associated with one subscriber drop. Under microprocessor control and depending on which subscribers are authorized to receive trans¬ mitted premium programming, the microprocessor selectively gates the jamming signal output of the single oscillator via the switches into the path of the incoming broadband television signal to each sub¬ scriber. Consequently, an unauthorized subscriber upon tuning to a premium channel will receive the premium channel on which a jam¬ ming signal at approximately the same frequency has been superimposed.
In the known system, it is indicated that sixteen channels may be jammed by a single voltage controlled frequency agile oscillator. With respect to one premium channel, this translates to a situation in which the jamming signal can only be present one sixteenth of the time or an approximately 6% jamming interval. The rate of hopping is also indicated at 100 bursts per second of jamming signal at a par¬ ticular frequency or a 100 hertz hopping rate. Consequently, the effectiveness of the jamming signal is questionable.
Cable television channels and, of course, premium service may extend over a wide range of frequencies, for example, from 100 to 350 megahertz. In the known embodiment, the single oscillator pro¬ vided must be frequency agile over a wide range. It is further recog¬ nized that the jamming signal output of the single oscillator must be within a range of 100-500 KHz above or below the video carrier fre¬ quency. Consequently, a synthesizer having an internal reference is provided to assure the reasonable accuracy of the jamming signal out¬ put of the oscillator to the tolerable 100-500 KHz band above or below the video carrier.
It is indicated that the jamming signal is at a high relative power and is gain controlled to exceed the amplitude of the video carrier by 5 to 20 dB. Because of the high output power relative to the premium channel video carrier power and the difficulty of pre¬ cisely jamming the premium channel frequency, such an interdiction system leaves considerable opportunity for improvement. Because the oscillator is frequency hopping, its spectrum tends to spread out around the picture carrier, generating a slightly different situation as far as the required adjacent channel rejection characteristics of the television are concerned.
Firstly, it is important that the jamming frequency be con¬ trolled so as to place the interferences as close as possible . to the picture carrier. Secondly, it is also important to limit the peak amplitude of the interfering signal so as not to significantly exceed the video peak envelope power in order to ensure that there are not residual arti acts on adjacent channels. However, in the known sys¬ tem, adjacent channel artifacts are also created since the jamming signal is intentionally placed below the video carrier and consequently proximate to an adjacent channel. Also, the rate of frequency hop¬ ping is limited in the known embodiment as a result of its application of conventional frequency control techniques during the hopping process.
The known interdiction system has proven to be particularly susceptible to adjacent channel artifacts from the above-described amplitude and frequency selections which can dissatisfy subscribers. Furthermore, the subjective perception of the depth of jamming an unauthorized premium channel is relatively unsatisfactory resulting from the limited maximum six percent jamming interval when sixteen premium channels are jammed by a single oscillator and the relatively low rate of frequency hopping. SUMMARY OF THE INVENTION
Many of the above-stated problems and related problems of the prior art have been solved with the principles behind the present invention, an off -premises television channel interdiction method and apparatus capable of remotely controlled jamming depth and fre¬ quency at reduced power. After considerable investigation into the known art and through experimentation, it has been determined that an optimum placement of a jamming signal is within the approximate range extending from the video carrier to 250 kilohertz above the video carrier, a jamming signal placement much below the video car¬ rier creating artifacts in the next lower adjacent channel. Such a placement is between the video carrier and the audio carrier for the same premium channel. Also, from the head end, the jamming carrier may be precisely established at a frequency resolution of 50 KHz as a digitally step-wise selectable frequency within the 250 KHz range above the video carrier. A ten bit voltage control word is applied by way of a digital to analog converter to a voltage controlled oscillator to control the frequency of the jamming signal within this frequency range or to provide a jamming signal outside the range, for example, if the audio carrier is to be intentionally jammed. Furthermore, to insure the accuracy of the frequency of the jamming signal and to limit jamming signal frequency harmonic interference, a plurality of oscillators are provided, each operating within a particular narrow band of the cable television spectrum. The sum of all such narrow bands shall be equivalent to the entire spectrum over which jamming is desired, recognizing that the cable television spectrum to be jammed may itself be discontinuous or that some overlap in bands may be desired. In particular, four separate oscillators are provided whose outputs are separately filtered to eliminate the appearance of har¬ monics of the jamming signal output which can interfere with televi¬ sion reception on other channels higher in the spectrum. Each oscil¬ lator may be intentionally limited to jamming a maximum of four channels within its band resulting in approximately a factor of four improvement in jamming interval over the prior art. Furthermore, each plurality of oscillators is provided on a per subscriber or per drop basis.
Also, in accordance with the principles behind the present invention, the jamming signal power is limited within the range of -2.5 dB and +6.5 dB or +2 dB nominal of the video carrier power level. Consequently, there is less chance of adjacent channel interference than in the known prior art system.
Furthermore, it has been determined that jamming depth, the subjective perception of one viewing a scrambled television channel on a number of different television receivers, is improved by improv¬ ing the frequency hopping rate to approximately four kilohertz, a factor of twenty increase in rate over the known system, all other parameters being equal such as amplitude and frequency of the jam¬ ming signal. As will be discussed herein, the present embodiment is capable of achieving frequency hopping rates of this magnitude because it is not limited by conventional frequency locking techniques. The microprocessor of the present apparatus further controls the provision of power to the plurality of oscillators. If the subscriber is authorized to receive all premium channels within the band secured by a given oscillator, that oscillator may be powered down for the duration. Furthermore, no residual jamming signal output power will pass through an intentionally open switch during a powered up condi¬ tion as might occur in the prior art interdiction system.
Common circuitry is shared by a plurality of subscribers, for example, up to four, and is housed in a pole-mounted, strand-mounted or pedestal housing. The common circuitry comprises automatic gain control circuitry for regulating the level of video carrier. The com¬ mon circuitry also comprises a data receiver, a data decoder and a microprocessor which may be individually addressed. The common circuitry separately decodes for each addressed and in service sub¬ scriber module any commands and data transmitted from the headend. The microprocessor of the common circuitry communicates with the microprocessor of the subscriber module any decoded data related to the particular subscriber served by that subscriber module. The decoded data, for example, indicates individually addressed channel or program authorization data or globally transmitted channel frequency and jamming depth data received from the headend for storage in microprocessor memory.
During a normal mode of operation, the microprocessor of the subscriber module actuates or powers up each required oscillator and transmits frequency data toward all required oscillators or jamming any and all unauthorized channels at a jam factor selected or a par¬ ticular premium channel. In particular, a sixty-four position memory may be reserved for storing ten bit voltage control words. An algo¬ rithm of the subscriber module microprocessor loads the voltage con¬ trol word memory depending on the level of service chosen by the subscriber. In one extreme where a particular subscriber is autho¬ rized to receive all premium channels but one, three of the oscillators may be powered down and the remaining oscillator is capable of con¬ tinuously jamming the one unauthorized channel resulting in a 100% jamming interval. If a particular subscriber at a given point in time has sub- " scribed to none of the sixteen channels offered, all four oscillators are sequentially triggered and sixty-four voltage control words are pro¬ vided in a pseudo-random sequence toward the four oscillators. The application of such a pseudorandom sequence discourages pirating.
Jam factor as defined herein is a parameter selectable and globally transmitted by the headend to equate to the relative degree of jamming to be applied to different premium channels. For exam¬ ple, it may be appropriate to jam highly restricted programming at a higher jam factor. In accordance with the present invention, a total of sixteen voltage control words may be allocated to one premium channel. Consequently, these sixteen control words are analogous to jamming time slot intervals which can be allocated by the headend to improve jamming depth. For example, if three premium programs are provided by the headend over channels within the allocated band of one oscillator at a particular point in time, these sixteen time slots or their responsive jam factors may be allocated at eight, four and four respectively (totalling sixteen) to effectuate, for the least jammed channel and allowing a five percent overlap, a minimum 20% jamming interval. As already indicated, if the subscriber subscribes to all of these three channels, the microprocessor algorithm will power down or deactuate the oscillator entirely or increase the jamming interval proportionate to the degree of premium service subscribed to and the assigned jamming factors.
Periodically and at power up, the present apparatus enters a calibration mode of operation, for example, at approximately thirty minute intervals. From the front end, premium channel frequency data is globally transmitted for storage in memory of the micropro¬ cessor of the common circuitry. The common circuitry microproces¬ sor calculates in turn calculates a divide by factor for a programma¬ ble prescaler of the subscriber module and an expected time between frequency counts and forwards these calculations to the microproces¬ sor of the subscriber module.
The programmable prescaler or frequency divider is provided in a feedback path from the plural oscillators to the microprocessor of the subscriber module. During the calibration mode, only one oscilla¬ tor is powered at a time. The transmitted and stored frequency data is translated into a best guess voltage control word. As a result, the jamming signal frequency of the only powered-up oscillator is fed back through the prescaler which divides down the high frequency output for counting by the microprocessor. The microprocessor cal¬ culates a count in accordance with the known time interval between received outputs of the prescaler. The count is then compared with the expected count and the voltage control word adjusted accordingly. After a maximum- of ten such calculations, starting with the most significant bit of the voltage control word, a particular control word is precisely established in voltage control word memory. In sequence, all sixteen control words for each provided oscillator or all sixty-four words are precisely established, the entire procedure requiring only a fraction of a second. Consequently, no meaningful intelligence can be obtained during the calibration mode if a subscriber coincidentally attempts to view an unauthorized premium channel. Thus, the cali¬ bration mode in combination with the provision of plural narrow band oscillators assures jamming signal frequency control.
As a consequence of the calibration mode of operation and the structure of the present apparatus, the jamming carrier can be prac¬ tically positioned anywhere within the 250 kilohertz band above the video carrier or even elsewhere if desired, for example, for jamming the audio carrier. During the thirty minute interval in times of tem¬ perature variations, there is an opportunity for frequency drift of a given jamming signal frequency. However, the drift if existent is actually desirable in the sense that such a drift will thwart any would- be pirates attempting to trap the jamming signal with a notch filter. As alluded to before, the jamming signal frequencies may also be Intentionally varied by varying the voltage control words for jamming a given premium channel. Furthermore, they may be applied in a pseudo-random sequence. Consequently, a would-be pirate would have to follow the same pseudo-random sequence and sequentially actuate a plurality of notch filters, all at the same frequencies as are represented by the associated voltage control words as well as anticipate the natural frequency dri t previously alluded to in order to pirate the premium television signal.
Importantly also, the application of a calibration mode of oper¬ ation, as distinct from a normal mode of operation, permits the pre¬ sent apparatus to achieve much higher frequency hopping rates than the known system during the normal mode of operation. Because there is no requirement for the application of slow conventional fre¬ quency locking techniques during the normal mode of operation, a desirable four kilohertz hopping rate is achievable.
These and other advantages of the present method and appara¬ tus for providing remotely and addressably controlled interdiction will now be explained with reference to the drawings and the following detailed description of one embodiment. BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is an overall system block diagram showing the inher¬ ent compatibility of the present interdiction apparatus with existent cable television systems comprising premium channel scramblers, addressable data transmitters, and subscriber converter/decoders.
Figure 2 is a block schematic diagram of an addressable com¬ mon control circuit for the plurality of provided subscriber modules in accordance with the present invention comprising a broadband signal tap, a microprocessor, a data receiver and decoder and an automatic gain control circuit.
Figure 3 is a block schematic diagram of one subscriber module comprising a microprocessor for selectively actuating and controlling the output frequency provided by each of four voltage controlled oscillators such that during a normal mode of operation sixteen pre¬ mium channels may be jammed at a minimum twenty percent jam¬ ming interval and, during a calibration mode, a feedback path is pro¬ vided to the microprocessor through a programmable prescaler to precisely establish jamming signal frequencies.
Figure 4 is a frequency plan for allocating the broadband cable television spectrum among four separate bands, each of which bands comprising a plurality of channels greater than or equal to four but, of which plurality, only four channels may be jammed at a 20% jam¬ ming interval.
Figure 5 is a detailed block schematic diagram of one embodi¬ ment of a feedback loop structure for implementing the calibration mode of operation of the present invention.
Figure 6 is a block diagram of the voltage control word memory in connection with the sequential provision of oscillator jamming fre¬ quency signal outputs during a normal mode of operation.
Figure 7 is a timing diagram for the embodiment of Figure 3 during a normal mode of operation in which each interdiction control signal is particularly depicted. DETAILED DESCRIPTION
Referring more particularly to Fig. 1, there is shown a general block diagram of a cable television system employing the principles of the present invention. By cable television system is intended all sys¬ tems involving the transmission of television signals over cable toward remote locations. For example, a cable television system may comprise a community antenna television distribution system, a satel¬ lite signal distribution system, a broadcast television system, a private cable distribution network, either industrial or educational, or other forms of such systems. Each remote location of a television receiver may comprise the location of a particular subscriber to a subscription television service, plural subscribers, single subscribers having plural television receivers or private locations in a private cable distribution network. Consequently, the term subscriber, when used in this appli¬ cation and the claims, refers to either a private subscriber or a com¬ mercial user of the cable television system. Headend 100 as used in the present application and claims is defined as the connecting point to a serving cable 110 for distributing television channels to sub¬ scriber locations. For reference purposes, an Electronic Industries Association (E.I.A.) standard cable television frequency allocation scheme is employed and referred to herein; however, by means of the following disclosure of the present invention, one may apply the prin¬ ciples to other known standards or non-standard frequency alloca¬ tions. Furthermore, a National Television Subcommittee (N.T.S.C.) standard composite television signal at baseband is generally consid¬ ered in the following description; however, the principles of the pre¬ sent invention apply equally to other standard and non-standard baseband television signal formats.
Headend 100 comprises a source of television programming 101. Television program source 101 may be a satellite television receiver output, a program produced by a television studio, program material received over a microwave or broadcast television link, a cable television link output, or any other source of television pro¬ gramming consistent with the present invention. The program source material need not be limited to conventional television but may com¬ prise teletext, videotex, program audio, utility data, or other forms of communication to be delivered to a remote location over the serving cable 110.
Program material provided by source 101 may be premium or otherwise restricted or desirably secured from receipt at unauthorized receiver locations. To this end, each channel or program to be secured is generally scrambled by scrambler 102 provided at headend 100. By the use of the term premium channel or premium program¬ ming in the present application and claims is intended a channel or program which is desired to be secured from unauthorized receipt either because of its premium or restricted status.
Normally, all premium programming in known cable television systems is scrambled. However, in accordance with the present invention, premium programming is transmitted in the clear, and interdiction is applied at off-premises interdiction apparatus 130 to jam reception of unauthorized premium programming.
Consequently, during a transition period in which headend 100 provides scrambled television programming as well as premium pro¬ gramming in the clear, a scrambler 102 will be provided so long as converter/decoders 150 are provided to subscribers for unscrambling scrambled program transmission. In certain instances, converter/decoders 150 may be entirely replaced by interdiction apparatus 130 of the present invention. Also, at the headend, there is normally an addressable data transmitter 103 for transmitting global commands and data to all sub¬ scribers or addressed communications for reception by a unique sub¬ scriber. Such data transmission may be conducted over a separate data carrier from the cable television spectrum, for example, at 108.2 megahertz. It may also be transmitted over an unused default channel from the television spectrum. Global commands generally take the form of operation code and data while addressed communications fur¬ ther comprise the unique address of a particular subscriber.
In another alternative embodiment, such communications may take the form of in band signals sent with a television channel super¬ imposed upon an audio carrier during, for example, the vertical inter¬ val of the video signal. Such data communications further complicate data reception at intervention apparatus 130 in accordance with the present invention and are desirably eliminated. However, in band signaling is sometimes required for the operation of certain converter/decoders 150 known in the art.
Consequently, headend 100, cable television distribution cable 110, and converter/decoders 150 and television receivers 170 at a typical subscriber premises 181 comprise a typical known cable tele¬ vision system. Channel program or authorization data is transmitted via an addressable data transmitter 103 over a cable 110. At a pole 120 or from a pedestal 140 at underground cable locations, the serving signal is dropped via drop 115 to a subscriber location. Drop 115 is connected to a conventional converter/decoder 150 which serves sev¬ eral functions. Responsive to an addressed communication from headend transmitter 103, channel or program authorization data is updated in an authorization memory if the address associated with the addressed communication matches a unique address of the subscriber decoder 150. For example, the subscriber address may comprise a plurality of bits over and above the actual number of subscribers in a system, additional bits insuring the security of the address. The pre¬ mium channel or program is then stored in the authorization memory of the converter/decoder 150. Television programming is normally converted to an otherwise unused channel -such as channel 3 or 4 of the television spectrum by a converter portion of converter/decoder 150. Its premium status is checked against the data stored in authori¬ zation memory. If the programming is authorized, the decoder por¬ tion of the converter/decoder is enabled to decode authorized scram¬ bled premium programming.
The provided television receiver may be a conventional televi¬ sion receiver 170 or may be a so-called cable ready television receiver 171. Because of the advent of cable ready television receivers 171, there is no longer a requirement at a subscriber premises 181 for the converter portion of the converter/decoder 150 as a converter is built into such television receivers.
In accordance with a cable television system provided with interdiction apparatus 130 of the present invention, a housing is mounted on a strand supporting cable 110, to a pole 120, or provided via a pedestal 140. Inside the housing is common control circuitry for tapping into the broadband television and data transmission spectrum. Referring to the first pole 120 from the left of Fig. 1, there is shown a strand-mounted apparatus serving two drops 115 to subscribers. Altogether, four subscribers and up to four drops 115 may be served by interdiction apparatus 130. Besides the common control circuitry, four plug-in subscriber modules may be provided for one housing. Also, if desired, additional services may be provided via other plug-in units of the housing such as impulse pay-per-view, subscriber polling involving two way data communication, meter reading, energy man¬ agement or other services.
Desirably, all equipment 161 may be removed from the sub¬ scriber premises 182. However, for the provision of additional serv¬ ices, some on-premises equipment may be unavoidable. For purposes of this description, premises 182 will be assumed to include at least one non-cable ready conventional television receiver 170. Conse¬ quently, subscriber equipment 161 must at least comprise a tunable converter for converting a received cable television channel to an unused channel such as channel 3 or 4 for reception on conventional television receiver 170. Power for interdiction apparatus 130 may be provided over the cable from the headend 100 or be provided via the subscriber drop 115 or by a combination of such means. Forseeably, power may be even provided by rechargeable means such as solar cells or other external or replaceable internal sources such as batteries. Consequently, sub¬ scriber equipment 161 may also comprise a source of power for inter¬ diction apparatus 130.
Interdiction apparatus 130 may be secured in a tamper-resist¬ ant housing or otherwise secured such as in a locked equipment closet of an apartment complex. If located in a place exposed to the ele¬ ments, the housing should be water-tight. Also, the housing should be designed to preclude radio frequency leakage.
At premises 183, the subscriber is presumed to have a cable- ready television receiver 171. Consequently, subscriber unit 162 may be entirely eliminated or comprise simply a power feed to interdiction apparatus 130.
Premises 184 pictorially represents a subscriber location served by an underground cable 110 via a plurality of pedestals 140, in which cable distribution amplification and branching equipment and drops 115 are normally provided. In accordance with the present invention, pedest.al 140 may comprise an off-premises housing for interdiction apparatus 130. Subscriber equipment 162 may comprise a converter, an additional service device and a power unit as described in refer¬ ence to subscriber equipment 161 or nothing at all as described in reference to subscriber equipment 162.
Interdiction apparatus 130 is uniquely addressable by headend 100 just as is converter/decoder 150. If two bits of a plural bit unique subscriber address are associated with uniquely identi ying one plug-in slot for one of our subscriber modules, common control circuitry may be uniquely addressed with remaining address data not used to secure the data communication. Just as premium programming is transmit¬ ted in the clear and since no data communication is necessarily required with a subscriber premises, a subscriber address need not be transmitted in a secure form in accordance with the principles of the present invention. Nevertheless, address security may be desirable so long as converter/decoders 150 or other unique address requisite equipment is provided at a premises.
Interdiction apparatus 130 comprises addressable common con¬ trol circuitry and up to four plug-in subscriber modules. Upon receipt of subscriber specific premium program or channel authorization data, the data is stored at interdiction apparatus 130. Interdiction apparatus 130 further comprises automatic gain control circuitry of the common control circuitry. Channel interdiction circuitry associ¬ ated with each subscriber module jams unauthorized premium pro¬ gramming dropped via a particular drop 115 to a particular subscriber. Consequently, interdiction apparatus 130 is reasonably compatible with addressable authorization data transmission known in the art. No scrambling of premium channels (and no resulting artifacts) is necessary or desirable. Furthermore, no additional forms of service security are necessary such as channel encryption, in-band channel or tier verification or other security measures. The would-be service pirate must attempt to remove a particular pseudo-randomly timed jamming signal placed at a varying frequency or seek to tamper with the off-premises apparatus 130 or derive a signal from shielded and bonded cable 110 which should likewise be maintained secure from radio frequency leakage.
The common control circuitry of interdiction apparatus 130 will now be described by means of the block diagram Fig. 2 for serving four subscriber modules in accordance with the block diagram Fig. 3. Referring particularly to Fig. 2, a feeder cable 110 is shown entering interdiction apparatus 130 at FEEDER IN and leaving at FEEDER OUT. Power PWR may be provided via the feeder cable by means of a subscriber drop or locally by internal or external means. Depending on the source of power PWR, input power may be of alternating or direct current.
A directional coupler 210 which may be in the form of a plug- in module taps into the broadband serving cable 110. A broadband of radio frequency signals is thus output to highpass filter 220. Highpass filter 220 passes a band of frequencies comprising at least the data carrier frequency or frequencies (in a bi-directional application) and the cable television channel spectrum. Referring briefly to Fig. 4, the cable television spectrum may comprise a frequency band from at least 120 MHz to 350 MHz.
An automatic gain control circuit comprises variable attenuator 230, RF amplifier 233, directional coupler 232, and AGC control ci cuit 231. The automatic gain control circuit appropriately regulates the broadband RF signal power to fall within established limits.
Also connected to directional coupler 232 is a data receiver 240 for receiving data from the addressable data transmitter 103 located at headend 100. Data receiver 240 receives data transmitted, for example, over a data carrier of 108.2 megahertz and provides unpro¬ cessed data to data decoder 250. In accordance with an established protocol, such data may be in the form of an operation code, a sub¬ scriber unique address and associated data. Data decoder 250 pro¬ cesses the data and provides the separately transmitted data to microprocessor 260 for further interpretation in accordance with a built-in algorithm. Microprocessor 260 is most efficiently chosen to alleviate as many responsibilities from any microprocessor provided for an individual subscriber module and so is most conveniently an eight bit microprocessor having eight kilobytes of internal code such as a Motorola 68HCO5C8.
Received data may be stored in uninterrup table memory 270 by microprocessor 260. Data may be temporarily stored in memory 270 or more permanently stored and subsequently downloaded when needed to a subscriber module via a serial peripheral interface bus connecting microprocessor 260 with separate microprocessors associ¬ ated with each provided subscriber module.
Microprocessor 260 consequently interprets both global com¬ munications addressed to common control circuitry or communica¬ tions addressed to unique subscriber modules. If appropriate, micro¬ processor 260 ignores global or addressed communications to other interdiction apparatus 130 or to converter/decoders 150 (Fig. 1). Examples of global communications peculiar to interdiction apparatus 130 are premium channel frequency data and jamming factor data for each premium channel or channel over which premium program¬ ming at a particular point in time is provided via headend 100. Exam¬ ples of addressed communications include communications comprising premium channel or programming authorization information or com¬ munications instructing the common control circuitry to deny or pro¬ vide service to a particular subscriber.
If two way services over the serving cable are anticipated, a data transmitter (not shown) must be provided in the common control circuitry of Fig. 2 or a separate telephone link from the subscriber location to the headend may be provided. Serial peripheral interface bus 290 may be a two way communications link by way of which link microprocessors 300 (Fig. 3) associated with subscriber modules may, at least, provide status reports to microprocessor 260 upon inquiry.
Radio frequency splitter 280 provides broadband radio fre¬ quency signals comprising at least the cable television service spec¬ trum of Fig. 4 separately to each subscriber module that is provided.
If a reverse path is required for special additional services, a signal combiner (not shown) of a plug-in special service module may be provided for receiving communications from each of the four sub¬ scriber modules in an opposite manner to splitter 280. Certain data may be transmitted back toward the headened via the special service plug-in module (also, not shown) associated with the additional special service.
Referring more particularly to Fig. 3, there is shown an overall block schematic diagram of a subscriber module in accordance with the present invention. A microprocessor 300 is associated with a par¬ ticular subscriber module and communicates with microprocessor 260 of Fig. 2 over a serial peripheral interface bus. Microprocessor 300 may comprise an eight bit microprocessor equipped with only two kilobytes of microcode, this microprocessor being relieved of overall control responsibilities by microprocessor 300. Consequently, micro¬ processor 300 may conveniently comprise a Motorola 68HC05C3 microprocessor or similar unit.
A reverse path may be provided via a lowpass filter 392 to a special service module (not shown in Fig. 2) of common control circuitry as described in Fig. 2 from a corresponding special service module on the subscriber premises. Such a reverse path is completed to the subscriber via terminal OS. Also power may be transmitted up the subscriber drop to the module of Fig. 3 and withdrawn at terminal OS.
The broadband radio frequency television spectrum signal from Fig. 2 is provided to terminal IS. Referring to the path connecting terminal IS to terminal OS, there are connected in series a service denying switch 389, an amplifier 387, a jamming signal combiner 384, and a high pass filter 391. Service denying switch 389 is under control of microprocessor 300. In the event of an addressed communication from headend 100 indicating, for example, that a subscriber is to be denied service for non-payment of a bill, service denying switch 389 may be opened. In addition, a high frequency amplifier 387 may be powered down under control of microprocessor 387 whenever service is to be denied. Otherwise, amplifier 387 may be set at discrete gain levels, under microprocessor control, to provide supplemental gain to the broadband television signal if a subscriber has a plurality of tele¬ vision receivers over and above a nominal amount.
Jamming signals are interdicted at directional combiner 385 under microprocessor control. Because of the directional characteris¬ tic of amplifier 387, jamming signals cannot inadvertently reach the common control circuitry of Fig. 2 or the serving cable 110. Jamming signals are interdicted at a level approximately within a range of -2.5 db to +6.5 db or +2dB nominal of the video carrier power level of the unauthorized premium channel frequency to be jammed. They are most conveniently interdicted for video carrier jamming approxi¬ mately within a range of frequencies extending from the video carrier to + 250 kilohertz above the video carrier toward the audio carrier of the channel to be jammed. In accordance with the present interdic¬ tion apparatus, the frequency is selectable by the headend 100 and so may be chosen to jam the audio carrier at a frequency closer to that carrier if desired. Also, the power level of the jamming signal may be varied via global data transmissions if, for example, audio carrier jamming is desired. Such interdiction on a per channel basis between the video and audio carriers minimizes adjacent channel artifacts.
Highpass filter 391 prevents any return path signals from reaching combiner 385 and passes the broadband spectrum including any jamming signals toward terminal OS. Reverse path signals, for example in this embodiment, if present, may be radio frequency sig¬ nals below 100 megahertz. The broadband television spectrum is pre¬ sumed to be in the 100-350 megahertz range consistent with Fig. 4. However, interdiction of premium channel viewing may be allocated anywhere desired within a broader or discontinuous cable television spectrum to be jammed. Consequently, filters 391 and 392 are designed in accordance with this or similarly selected design criteria to block or pass broadband television or reverse path signals as required.
Microprocessor 300 controls four voltage controlled oscillators 341-344, each of which oscillators jams premium channel frequencies within an allocated continuous range of frequencies. Since premium programming may be transmitted anywhere in the cable television spectrum, the sum of all such allocated portions comprises the entire television spectrum to be jammed. In accordance with the present invention, the television spectrum to be jammed may comprise dis¬ continuous portions or intentionally overlapping portions.
Referring briefly to Fig. 4, the spectrum allocation to the plu¬ rality of four voltage controlled oscillators in one embodiment will be discussed in view of certain principles. Firstly, it is desirable to elim¬ inate jamming signal harmonic interference to authorized channels within the allocated band. For example, a harmonic of a relatively low frequency signal, for example, 100 MHz can interfere with a channel at a harmonic of this frequency in the upper part of the cable television spectrum. In other words, the allocated band should be limited for an oscillator to fall within one third of an octave, and, consequently all frequency harmonics may be blocked by filters 351, 352, 353 and 354 associated with each oscillator. Oscillator 341 denoted OSC 1, for example, is active in a band extending from 126 to 158 megahertz while filter 351 will block harmonics above the included channels 15-20 of the midband.
Cable headend service providers tend to select premium chan¬ nel allocations in the midband range covering channels 15-22. Conse¬ quently, the band of oscillator 342, for example, may be selected to overlap the band allocated to oscillator 341.
In order to achieve a jamming interval of 20%, each oscillator may be restricted to jamming only four premium channels. As will be described in connection with a discussion of Figs. 5, 6 and 7, jamming depth may be automatically increased for a particular subscriber dependent upon the subscriber's level of service. Also, by allocating an overlap of bands as between first and second oscillators 341 and 342, for example, all eight channels of the midband may be jammed by means of the present interdiction apparatus leaving two channels of the highband which still may be jammed via oscillator 342. Conse¬ quently, according to Fig. 4, oscillator OSC1 may jam four of the six allocated channel frequencies of the midband while oscillator OSC2 may jam an overlapping band comprising channels 19-22 of the midband and channels 7-10 of the highband. The range of jamming signal frequencies for oscillator OSC2 is selected within the range of 150-194 megahertz consistent with the desirable elimination of har¬ monic interference.
Consistent with these design principles, no band overlap is shown for oscillator OSC3 or oscillator OSC4. Nevertheless, the respective frequency ranges of 198-254 megahertz and 258-326 mega¬ hertz of these oscillators eliminate any danger of harmonic interfer¬ ence. Low pass filters 353 and 354 cut off harmonic frequencies above the upper limits of these respective ranges. Oscillator OSC3 provides jamming signals for jamming four premium channels selected from channels 11-13 of the highband and channels 23-29 of the superband. Eight premium channels may be jammed at a reduced jam¬ ming factor of these ten channels. Oscillator OSC4 is provided for jamming from channel 30 in the superband to channel 41 extending into the hyperband. Four channels of these twelve may be jammed at a 20% jamming interval; however, eight may be jammed at a reduced jamming factor.
Microprocessor 300 is connected by a bus system to memory and buffer circuits comprising RAM's 311 and 312 and buffer 310. Microprocessor 300 operates at a clock frequency of, for example, four megahertz provided by clock 336. Counter 335 is shown as a separate element; however, counter 335 is provided essentially for counting the output frequencies of jamming oscillators 341-344 during a calibration mode of operation and so may comprise an element of microprocessor 300.
Microprocessor 300 is also connected to digital to analog con¬ verter 320. During a normal mode of operation, digital to analog con¬ verter 320 converts a ten bit voltage control word to analog voltage outputs which are, in turn, provided to analog multiplexer 330. The analog voltage outputs of the analog multiplexer 330 are stored and held at sample and hold circuits 337-340 for application to oscillators 341-344. Via a two bit parallel select bus, analog voltage signal out¬ puts are sequentially gated by analog multiplexer 330 over leads FREQ 1-4 toward the oscillators 341-344. In accordance with the principles of the present invention, these signals may be provided in a pseudorandom sequence to thwart pirating attempts as will be described in reference to Fig. 6.
Microprocessor 300 is connected to each oscillator 341-344 via respective oscillator power lines OPWRl-4 for actuating the oscilla¬ tors. Each oscillator may be powered down during a normal mode of operation if a subscriber is authorized to receive all channels within its allocated band at one point in time. Furthermore, during a cali¬ bration mode, one oscillator may be powered up for calibration while all other oscillators are powered down.
Microprocessor 300 is further connected to four high frequency PIN diode switches 361-364. During a normal mode of operation, these switches are selectively opened for a brief interval for, for example, sixteen microseconds while an associated oscillator changes or hops from one jamming signal frequency output to another. Never¬ theless, assuming four channel jamming by a particular oscillator at a jam factor of four, a four thousand hertz frequency hopping rate is easily achievable via these PIN diode switches.
Also connected to the outputs of each oscillator are associated low pass filters which serve to cut off all harmonics of jamming signal frequency output. These low pass filters may be connected either to the inputs or to the outputs of switches 361-364 although connection in series between its .associated oscillator and high requency switch is shown in Fig. 3.
The jamming signal outputs of all four oscillators are combined at signal combiner 365. From signal combiner 365, the combined out¬ put is direetionally coupled by coupler 370 to programmable prescaler 375 and to signal attenuator 380.
Programmable prescaler 375 is only powered via lead PREPWR when required during a calibration mode. In accordance with a pro¬ grammable divide-by factor, a divided down output frequency is pro¬ vided to microprocessor 300 for counting. When powered down, no output signal results.
During a normal mode of operation, the combined jamming signal outputs of attentuator 380 are combined at directional coupler 385 with the passed incoming broadband television signal from the common control circuit of Fig. 2. As the subscriber is presumed to have paid their bill, switch 389 and amplifier 387 are assumed to be powered. As a result of the combining of jamming signals with the broadband spectrum (thus far transmitted in the clear), the subscriber will only receive in the clear premium or restricted programming which the subscriber is authorized to receive.
Referring more particularly to Fig. 5, there is shown a block schematic diagram of one embodiment of a feedback loop useful in describing the calibration mode of operation. The calibration mode, occupying a fraction of a second, assures relatively frequency stable operation during a normal mode of operation. Furthermore, because of the calibration mode, there is no requirement for the application of slow conventional frequency locking techniques and a high operation frequency hopping rate of four thousand hertz may be achieved during the normal mode of operation. The embodiment shows the calibration of one particular oscillator OSC. The depicted loop indicates an application specific integrated circuit ASIC connected to subscriber module microprocessor 300. This circuit ASIC may be clocked at twice the microprocessor rate and comprise the previously discussed voltage control word memory RAM as well as programmable prescaler 375. A word adjust and select bus 501 is shown which may separately access and adjust all voltage control words in voltage control word memory RAM. When addressed, the voltage control word memory is connected via bus 511 to digital to analog converter 320. Digital to analog converter 320 is connected via sample and hold circuit SH to oscillator OSC to which power is applied under microprocessor con¬ trol via lead OPWR. Via directional coupler 370, the jamming signal output of oscillator OSC is fed back toward microprocessor 300. At fixed prescaler 376, the high frequency output is divided down by a fixed divide-by factor. The divided down jamming frequency output is then output to programmable prescaler 375. Programmable prescaler 375 is under control of microprocessor 300. Responsive to premium channel frequency data transmitted from the headend to micropro¬ cessor 260 of Fig. 2, microprocessor 260 in turn generates divide by factor and time between count data for transmittal to microprocessor 300 via the serial peripheral interface bus (Fig.'s 2 and 3). Micropro¬ cessor 300 programs the divide by factor of programmable prescaler 375 via lead 502 and receives a countable frequency output of pro¬ grammable prescaler 375 via lead 503. Microprocessor 300 then counts the output at included counter 335.
The provision of application specific integrated circuit ASIC assists in miniaturizing the subscriber module of Fig. 3 and relieves the outboard memory requirements of microprocessor 300. On the other hand, the provision of a limited voltage control word memory in circuit ASIC may restrict the opportunity of microprocessor 300 to reallocate addressable slots to other oscillators when one oscillator is powered down as will be described in greater detail in reference to Fig. 6. The provision of a second or fixed prescaler in comparison with the single programmable prescaler shown in Fig. 3 is desirable if the frequency range of the television spectrum to be jammed extends into the hyperband.
Referring now to Fig. 6, there is shown one embodiment of a voltage control word memory having sixty-four memory locations with addresses 1-64. At every fourth memory location 1, 5, 9 and so on is located a voltage control word associated with a first oscillator. For the convenience of establishing a convention for discussion, f 10 . . . f IE will be assumed to refer to sixteen requency control words for a first oscillator OSC1 and are numbered in hexadecimal notation from O-E. As indicated above in reference to circuit ASIC memory requirements, the sixteen memory slots may be permanently associ¬ ated with oscillator OSC1; however, such a design choice limits the freedom of reallocating voltage control words to other oscillators.
Voltage control words are entered into voltage control word memory for each oscillator in sequence provided the oscillator will be applied for jamming. First, it will be assumed that all four oscillators will be applied, each for jamming four premium channels. As will be seen, this is a simplified assumption which assumes a subscriber is authorized to receive no premium channels and, furthermore, it will be assumed that all premium channels are to be jammed at the same jam actor four.
In this example, sixteen voltage control words will be entered in memory for each oscillator, four of which control words may be the same, each four similar control words being related to one premium channel frequency to be jammed. Thus, four groups of four similar control words are entered into sixteen memory locations 1, 5, 9, 13 . . .61 for oscillator OSC1. These are indicated as f 10 to IE. In a simi¬ lar manner, sixteen voltage control words are entered into memory locations 2, 6, 10, 14 . . . 62 for oscillator OSC2. These are indicated as f2O . . Λ 2E. Then, sixteen voltage control words are entered into memory locations 3, 7, 11, 15. . . 63 for oscillator OSC3, indicated as f3O. . . f3E. Lastly, sixteen voltage control words are entered into memory locations 4, 8, 12, 16,. . . 64 for oscillator OSC , indicated as f 40. . . f 4E. The calibration algorithm for loading a first ten bit voltage control word f 10 into a first memory location 1 for a first oscillator OSC 1 will now be described in some detail. From the down-loaded frequency data from microprocessor 260, a first programmable divide-by factor is transmitted via lead 502 to set programmable prescaler 375. All other oscillators OSC2-4 are powered down via leads OPWR2-4, and oscillator OSC1 is powered up via lead OPWR1 (shown in Fig. 5 as oscillator OSC and lead OPWR respectively).
From the premium channel frequency data, a first ten bit volt¬ age control word flO is stored in memory location 1 representing a first best estimate of jamming frequency by microprocessor 300 via bus 501. The word is transmitted to digital to analog converter 320 where it is converted to an analog voltage. The analog multiplexer (not shown in Fig. 5) selects a lead FREQl from the multiplexer to oscillator OSC1. Consequently, the analog voltage output of the dig¬ ital to analog converter is provided to sample and hold circuit SH or 337 for application to oscillator OSC1. Signal combiner 365 (not shown in Fig. 5 for simplicity) only passes the jamming signal output from oscillator OSC1 to directional coupler 370 because all other oscillators OSC2-4 are powered down at this time. Via directional coupler 370, the jamming signal output is provided to fixed prescaler 376. Fixed prescaler 376 divides down the output frequency of the oscillator OSC1 to a first frequency. According to the divide by fac¬ tor loaded into programmable prescaler 375, the first frequency out¬ put of fixed prescaler 376 is further divided down to a frequency which may be counted by counter 335 of microprocessor 300. Recog¬ nizing that the oscillator output- frequency may be hundreds of mega¬ hertz and the clock for microprocessor 300 runs at only four mega¬ hertz, the frequency provided via lead 503 should be sufficiently divided down to be counted with reasonable accuracy. Since the fixed time between counts is known to microprocessor 300 having been downloaded from microprocessor 260, counter 335 counts the fre¬ quency input on lead 503. The resulting count is compared with the expected count and the microprocessor adjusts the control word accordingly. As a result, microprocessor 300 repeatedly enters the algorithm until the voltage control word stored in memory as accu¬ rately as possible reflects the premium channel frequency to be jammed. Then, this process is repeated four times for four premium channel frequencies to be jammed by the oscillator OSC.
During the process of loading the four premium channel fre¬ quencies for a particular oscillator into the voltage control word memory, there are two subordinate schemes by which the four voltage control words for a single premium channel may be intentionally var¬ ied. In a first subordinate scheme, via headend 100, four different frequencies may be intentionally selected with reference to one pre¬ mium channel. Given a resolution of 50 kilohertz provided by the least significant bit positions of a ten bit voltage control word, the four different frequencies may be selected by headend 100 anywhere within the 250 kilohertz range above the premium channel video car¬ rier or most effective premium channel jamming. In a second subor¬ dinate scheme microprocessor 300 may be programmed to intention¬ ally vary the entered voltage control word to be at or about the expected downloaded frequency, for example, at fifty kilohertz above or below the expected frequency. Consequently, if the headend selects only one frequency for a first premium channel, for example, at 200 kilohertz above the video carrier, then voltage control words will be entered into memory equivalent to video carrier plus 150 kilohertz, 200 kilohertz and 250 kilohertz. Both subordinate schemes thwart pirates attempting to notch out the jamming signal frequency which is intentionally varied by these schemes.
Jamming factor is a term related to the loading of the sixteen voltage control words into voltage control word memory for a partic¬ ular oscillator. A jamming factor is selected for each premium chan¬ nel and is globally transmitted from the headend. If four premium channels are to be jammed by each of four oscillators OSC 1-4 and all are to be jammed at the same jamming interval, each has a jamming factor of four, tf a subscriber subscribes to all four premium channels associated with oscillator OSC1, then oscillator OSC1 may be powered down and no voltage control words entered in memory during calibra¬ tion for this oscillator. If a subscriber subscribes to two of the four channels, the microprocessor may allocate the sixteen control words for the first oscillator to the two unauthorized premium channel fre¬ quencies to be jammed. Consequently, the microprocessor may allo¬ cate eight control words each to jamming the two unauthorized pre¬ mium channels thus automatically increasing the jamming interval or depth of jamming based on the jamming factor and the given reduced level of premium program authorization. Jamming factor may be intentionally selected, for example, at a high level, for example, eight for one especially sensitive program in relation to two other channels to be jammed by the same oscillator which may be allocated jam fac¬ tors of four each, the total of all such jam factors being equal to the maximum number of voltage control words, in this example, sixteen associated with the oscillator.
Voltage control words may be read from memory or written into memory so they may be read out in a particular pseudo random sequence so that a pirate would have to know the pseudorandom sequence in order to appropriately time any notch filtering. For example, let f 11-f 14 be the four premium channel frequencies to be jammed by oscillator OSC1. Addresses 1, 5, 9, and 13 may store volt¬ age control words for fll, fl2, fl3 and f l4, respectively. However, the next four addresses 17, 21, 25, and 29 may store the voltage con¬ trol words in a different order, for example, f 14, f 13, f 12, fll respec¬ tively. The order may be further varied in the remaining eight addresses so, when the voltage control words are applied to oscillator OSC 1 during a normal mode of operation, the output frequency of the jamming signal will vary according to the pseudorandom sequence of data entry.
The calibration mode is entered at initial turn-on to generate the sixty-four voltage control words for storage in voltage control word memory corresponding to the desired jamming signal frequen¬ cies. Periodically, the subscriber module reenters the calibration mode to update the control words for drift which may result from either the oscillator or the digital to analog converter operation. Such drift if maintained within, for example, 50 kilohertz of the selected frequency is actually desirable in that it further complicates the efforts of a would-be pirate. Also, as already indicated the peri¬ odically performed calibration mode permits a higher rate of fre¬ quency hopping, for example, four kilohertz during normal operation than would be possible with conventional frequency control methods such as phase locked loops. Calibration requires but a fraction of a second and, consequently, no intelligible television information may be obtained at a television receiver tuned to an unauthorized premium channel.
Referring now more particularly to Figs. 6 and 7 with refer¬ ence to the schematic block diagram of Fig. 3, the normal mode of operation will now be explained. Referring first to Fig. 3, micropro¬ cessor 300 upon entering a normal mode of operation causes a first voltage control word stored in memory address 1 of the voltage con¬ trol word memory of Fig. 6 to be transmitted toward oscillator OSC1. Digital to analog converter 320 converts the ten bit word 0010110101 to an analog voltage level. Under control of a two bit select bus, ana¬ log multiplexer 330 selects lead FREQl for transmitting the analog voltage signal for storage and holding at sample and hold circuit 337. All four oscillators are presumed to be powered for this example under control of microprocessor 300 via leads OPWR1-4. Conse¬ quently, powered-up oscillator OSCl provides a jamming signal fre¬ quency output FREQ 2 consistent with the analog voltage signal input provided via analogy multiplexer 330.
Referring to Fig. 7, the normal mode of operation for the example under discussion is shown in the form of a timing diagram. At the output of the digital to analog converter is shown at time to an analog voltage level representing frequency FREQ 1 for oscillator OSCl. Also, during time interal to - tl, the analog multiplexer 330 is shown connecting the digital to anlaog converter 320 to oscillator OSCl. While the analog multiplexer is only connected to oscillator OSCl for the duration tO-tl, the applied analog voltage is stored and held for the duration t0-t4. Consequently, the output of oscillator OSCl is shown continuously applied from time t0-t4.
Under control of" microprocessor 300 via lead OSSWl, switch 361 is briefly opened while frequency FREQ 1 is established at the output of oscillator OSCl and then immediately closed. Switch 361 stays closed for the duration until the output of oscillator OSCl hops from frequency FREQ 1 to FREQ 2. Just prior to time t4, switch 361 is again opened in accordance with signal OSSW1. Consequently at the output of switch 361, the jamming signal output of oscillator 341 is briefly interrupted.
At time t4, the digital to analog converter 320 is signaled to change the output frequency of oscillator OSCl to frequency FREQ 2. As before, the analog multiplexer 330 gates an analog voltage level, this time representing frequency FREQ 2 to be held at sample and hold circuit 337. As a result, oscillator OSC2 now provides a jamming signal frequency output consistent with frequency FREQ 2 until time t8.
Meanwhile, switch 361 which was opened shortly before time t4 in accordance with switch control signal OSSWl is again closed at a point in time shortly after time t4. At any point in time during a normal mode of operation when one of the high frequency switches 361-364 is opened, there will result a loss of a portion of the overall jamming interval during which a jamming signal would be applied. Nevertheless, the resulting danger of the presence of no switches 361-364 is that during a hopping from one frequency to the next, an undesirable transition signal may result at a frequency and level which may distort authorized premium programing. If four premium program channel frequencies are to be jammed by a particular oscilla¬ tor, each such period of an open state of a normally closed high fre¬ quency switch 361-364 amounts to no more than 5% of the overall interval t0-t64 (not shown).
In a similar manner, a first frequency FREQ 1 is established for oscillator OSC2. Referring again to Fig. 6, it will be seen that at memory address 2 is voltage control word 1010010110 which is pro¬ vided toward oscillator OSC2. In accordance with Fig. 7, at time tl an analog voltage level is output from digital to analog converter 320 representing this word. At a time just prior to time tl, switch 362 is opened in accordance with signal OSSW2. Once frequency FREQ 1 is established at the output of oscillator OSC2 or at a time just after time tl, switch 362 is again closed in accordance with signal OSSW2 provided by microprocessor 300.
As the normal mode of operation continues, all sixty-four memory locations shown in Fig. 6 are sequentially addressed and pro¬ vided for operating oscillators OSC 1-4. In accordance with Fig. 7, only the first seven words are represented as having been provided for selecting the first three frequencies for oscillator OSCl and two fre¬ quencies each for oscillators OSC2-4; however, the process for con¬ trolling all sixteen frequencies for each oscillator may follow in the sequence shown or intentionally vary.
In order to thwart pirates and referring to Fig. 7 for oscillator OSCl, it may be seen how frequencies may be output in a pseudorandom sequence. Output frequencies FREQ 1, FREQ 2, FREQ 3, FREQ 4 are shown output in intervals t0-t4, t4-t8, t8-tl2, and inferentially, tl2-tl6 respectively. In the next intervals, the fre¬ quencies may be provided, in stead, in the sequence FREQ 4, FREQ 3, FREQ 2, and FREQ 1. Then, in the next successive intervals the fre¬ quencies may be provided in yet a third dif erent sequence, or exam¬ ple, FREQ 2, FREQ 3, FREQ 4, FREQ 1. During the last four succes¬ sive intervals extending from t48 to t64, the order of applied frequen¬ cies may be altered again, for example, FREQ 3, FREQ 4, FREQ l, FREQ.2. The pseudorandom sequence may be defined and downloaded from the headend or developed internally by either microprocessor 260 of Fig. 2 or microprocessor 300 of Fig. 3.

Claims

1. Cable television premium channel interdiction apparatus for selectively jamming unauthorized premium programming trans¬ mitted to a subscriber comprising: a plurality of m controlled oscillators for separately interdicting within an allocated continuous portion of a broadband cable television spectrum, the sum of all such allocated portions com¬ prising the total spectrum to be jammed, the allocated continuous portion of the spectrum selected such that jamming signal frequency harmonic interference may be alleviated by a filter means, and microprocessor actuation and control means, responsive to an addressed communication from a headend, for selectively actu¬ ating and controlling a plurality of n jamming frequencies provided by the plurality of m controlled oscillators, m being less than or equal to n.
2. The cable television interdiction apparatus of claim 1 wherein the number m of controlled oscillators is four.
3. The cable television interdiction apparatus of claim 1 wherein the number n of jamming frequencies is sixty-four.
4. The cable television interdiction apparatus of claim 2 wherein a first allocated portion of the broadband cable television spectrum comprises Electronic Industries Association standard midband channels fifteen through nineteen, a second portion com¬ prises channels nineteen through twenty-two and highband channels seven through ten, a third portion comprises highband channels eleven through thirteen and superband channels twenty-three through twenty-nine and a fourth portion- comprises superband channels thirty into the hyperband through channel forty-one.
5. The cable television interdiction apparatus of claim l wherein the microprocessor actuation and control means particularly comprises memory means for storing in a first portion channel or program authorization data, in a second portion premium channel frequency data, in a third portion, jamming factor data, the memory means further comprising a tourth memory portion for storing control words representa tive of rhe n jamming frequencies, the
SUBSTITUTE SHEέT microprocessor means, during a normal mode of operation, sequen¬ tially controlling an outputting of the control words from the fourth memory portion and deactuating at least one of the m controlled oscillators dependent upon the status of the first channel or program authorization memory portion.
6. The cable television interdiction apparatus of claim 5 wherein the microprocessor actuation and control means further comprises a programmable prescaler means coupled to a combined output of the plurality of m controlled oscillators, a frequency coun¬ ter, and a means of adjusting the control words in the fourth memory portion of the memory means, the microprocessor means, during a calibration mode of operation, precisely establishing the control words in accordance with premium channel frequency data in the third memory portion of the memory means.
7. The cable television interdiction apparatus of claim 5 wherein the control words each comprise ten bits of data.
8. The cable television interdiction apparatus of claim 1 wherein the microprocessor actuation and control means particularly comprises a common control circuit comprising a microprocessor, a data receiver and a data decoder, the data receiver, responsive to communication from the headend, providing data to the data decoder, the data decoder, responsive to the data provided by the data receiver, for decoding the data and transmitting the decoded data to the microprocessor and an actuation and control microprocessor for each sub¬ scriber, the actuation and control microprocessor being coupled to the microprocessor of the common control circuit, each actuation and control microprocessor being further coupled to the m controlled oscillators, m controlled oscillators being provided for each subscriber.
9. The cable television interdiction apparatus of claim 8 wherein the number m of controlled oscillators is four.
10. The cable television interdiction apparatus of claim 8 further comprising a watertight and radio frequency leakage resistant housing including means for connecting electronically to a broadband television cable coupled to the headend, the housing for housing the common control circuit, at least one actuation and control micropro¬ cessor and at least -m controlled oscillators associated therewith, one actuation and control microprocessor and its associated m controlled oscillators comprising elements of a plug-in subscriber module.
11. The cable television interdiction apparatus of claim 10 wherein the watertight housing houses a maximum of four plug-in subscriber modules.
12. The cable television interdiction apparatus of claim l wherein the microprocessor actuation and control means particularly comprises means for selectively actuating and deactuating each of the plurality of m controlled oscillators.
13. The cable television interdiction apparatus of claim 1 wherein the microprocessor actuation and control means particularly comprises service control means, responsive to an addressed com¬ munication from the headend, for denying reception of cable televi¬ sion channel programming by the subscriber.
14. The cable television interdiction apparatus of claim 1 wherein filter means is provided for filtering jamming signal outputs of each of the m controlled oscillators, each filter means for passing jamming signal frequencies and blocking harmonics associated with the respective continuous portion of the broadband cable television spectrum allocated to an associated controlled oscillator.
15. The cable television interdiction apparatus of claim 1 wherein a jamming signal output of a controlled oscillator for jam¬ ming a particular premium channel is within the approximate range extending from the video carrier frequency of the premium channel to be jammed to 250 kilohertz above the video carrier channel frequency.
16. The cable television interdiction apparatus of claim 1 wherein a jamming signal output of a voltage controlled oscillator is within the approximate range of -2.5 dB to + 6.5 dB or nominally at +2.0 dB relative to the power level of the video carrier power level of the premium channel to be jammed.
17. The cable television interdiction apparatus of claim l, the plurality of m voltage controlled oscillators and the microproces¬ sor actuation and control means comprising a subscriber unit.
18. The cable television interdiction apparatus of claim 5 wherein a jamming signal output frequency of a controlled oscillator for jamming a particular premium channel is selectable anywhere between the video and audio carrier frequencies of the premium channel to be jammed with a predetermined resolution provided by the control word associated with the jamming signal frequency.
19. Cable television premium channel interdiction apparatus for selectively jamming unauthorized premium programming trans¬ mitted to a subscriber comprising microprocessor actuation and control means for selec¬ tively actuating and controlling a plurality of n jamming frequencies provided by a plurality of m controlled oscillators, m being less than or equal to n, a maximum of m jamming requencies being applied for jamming unauthorized premium programming transmitted to a partic¬ ular subscriber at one point in time, the microprocessor actuation and control means having a calibration mode of operation and a normal mode of operation, and, during a normal mode of operation, a fre¬ quency hopping rate on the order of four thousand hertz is providable.
20. A cable television premium channel interdiction method for selectively jamming unauthorized premium programming trans¬ mitted to a subscriber comprising the steps of receiving globally transmitted frequency and jamming actor data for each premium channel, receiving addressably transmitted channel or premium programming authorization data, generating and storing control word data responsive to the frequency, jamming factor and authorization data and sequentially applying jamming signals to unauthorized premium programming responsive to the stored control word data.
21. The cable television premium channel interdiction method of claim 20 further comprising the steps of periodically counting the frequency of each jamming signal, comparing the frequency count with an expected frequency count and regenerating control word data responsive to the fre¬ quency count comparison.
22. The cable television premium channel interdiction method of claim 20 further comprising the step of powering down a voltage controlled oscillator for applying jamming signals, the power¬ ing down being responsive to the status of the authorization data.
23. The cable television premium channel interdiction method of claim 21 further comprising the steps of powering down m-l of a plurality of m controlled oscillators for applying jamming signals and powering up each remaining controlled oscillator in succession.
24. The cable television premium channel interdiction method of claim 23 wherein the number m of controlled oscillators is four.
25. The cable television premium channel interdiction method of claim 20 wherein each control word comprises ten bits.
26. The cable television premium channel interdiction method of claim 20 wherein a control word for a particular premium channel is intentionally varied upon storage in plural memory locations.
27. The cable television premium channel interdiction method of claim 20 wherein control word data for a plurality of f reqeuncies is stored in a pseudorandom sequence in memory.
28. The cable television premium channel interdiction method of claim 20 wherein the frequency data particularly comprises jamming signal frequency and amplitude data.
29. The cable television premium channel interdiction method of claim 20 in which the jamming signals may be applied anywhere within a range 250 kilohertz above the video carrier of a particular premium channel to be jammed.
30. Apparatus for use in cable television premium channel interdiction apparatus, the apparatus for calibrating a particular jam¬ ming frequency of a jamming signal output of a jamming oscillator of the interdiction apparatus and comprising: a processor unit, responsive to a count of the output frequency of the jamming oscillator, for adjusting a voltage control word in a voltage control word memory, the voltage control word being related to the jamming signal output frequency of the jamming oscillator.
31. Calibrating apparatus according to claim 30 further comprising: a digital to analog converter for coupling the voltage control word to the jamming oscillator.
32. Calibrating apparatus according to claim 30 further comprising: a programmable prescaler, responsive to the processor unit, for dividing down the jamming signal output frequency of the jamming oscillator by a divide-by factor or counting.
33. Calibrating apparatus according to claim 30, the proces¬ sor unit comprising a counter for counting the output frequency of the jamming oscillator.
34. A method for use in a cable television premium channel interdiction apparatus, the method for calibrating a particular jam¬ ming requency of a jamming signal output of a jamming oscillator of the interdiction apparatus, the method comprising the steps of loading a voltage control word memory with a voltage control word related to the jamming signal output frequency of the jamming oscillator, counting the jamming signal output frequency of the jamming oscillator, and adjusting the voltage control word responsive to the frequency count.
35. The frequency calibration method of claim 34 wherein the frequency counting step comprises the steps of establishing a divide-by factor for dividing down the jamming signal output frequency and counting the divided down signal frequency.
36. The frequency calibration method of claim 34 for cali¬ brating plural jamming oscillators comprising the additional step of sequentially selecting a jamming oscillator for calibration.
PCT/US1989/000907 1988-03-10 1989-03-10 Off-premises cable television channel interdiction method and apparatus WO1989008966A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP89904932A EP0403570B1 (en) 1988-03-10 1989-03-10 Off-premises cable television channel interdiction method and apparatus
DE68927674T DE68927674T2 (en) 1988-03-10 1989-03-10 OUTDOOR TELEVISION CHANNEL PROHIBITION AND ARRANGEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/166,302 US4912760A (en) 1988-03-10 1988-03-10 Off-premises cable television channel interdiction method and apparatus
US166,302 1988-03-10

Publications (1)

Publication Number Publication Date
WO1989008966A1 true WO1989008966A1 (en) 1989-09-21

Family

ID=22602679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1989/000907 WO1989008966A1 (en) 1988-03-10 1989-03-10 Off-premises cable television channel interdiction method and apparatus

Country Status (10)

Country Link
US (1) US4912760A (en)
EP (1) EP0403570B1 (en)
JP (1) JPH03504432A (en)
CN (1) CN1037626A (en)
AT (1) ATE147916T1 (en)
AU (1) AU3446089A (en)
CA (1) CA1334444C (en)
DE (1) DE68927674T2 (en)
MX (1) MX167007B (en)
WO (1) WO1989008966A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2243275A (en) * 1990-02-21 1991-10-23 Scientific Atlanta Cable tv system selectively jams programs to subscribers
EP0504991A2 (en) * 1991-03-22 1992-09-23 Koninklijke Philips Electronics N.V. Cable subscriber control device using shared jamming modules
EP0559802A1 (en) * 1990-11-27 1993-09-15 Scientific-Atlanta, Inc. Catv pay per view interdiction system method and apparatus

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208854A (en) * 1988-03-10 1993-05-04 Scientific-Atlanta, Inc. Picture carrier controlled automatic gain control circuit for cable television interdiction or jamming apparatus
US5467397A (en) * 1988-03-10 1995-11-14 Scientific-Atlanta, Inc. Interdiction method and apparatus with variable dwell time
US5303295A (en) * 1988-03-10 1994-04-12 Scientific-Atlanta, Inc. Enhanced versatility of a program control by a combination of technologies
US5231660A (en) * 1988-03-10 1993-07-27 Scientific-Atlanta, Inc. Compensation control for off-premises CATV system
US5109286A (en) * 1988-03-10 1992-04-28 Scientific-Atlanta, Inc. CATV reverse path manifold system
US5319454A (en) * 1990-11-13 1994-06-07 Scientific-Atlanta, Inc. CATV system enabling access to premium (pay per view) program events by bar code data entry
US5345504A (en) * 1988-03-10 1994-09-06 Scientific-Atlanta, Inc. Differential compensation control for off-premises CATV system
US5505901A (en) * 1988-03-10 1996-04-09 Scientific-Atlanta, Inc. CATV pay per view interdiction system method and apparatus
US5289541A (en) * 1988-03-10 1994-02-22 Scientific-Atlanta, Inc. Interdiction method and apparatus with constant blanking and variable dwell times
US5142574A (en) * 1988-03-10 1992-08-25 West Jr Lamar Optimum amplitude and frequency of jamming carrier in interdiction program denial system
US5463689A (en) * 1988-03-10 1995-10-31 Scientific-Atlanta Interdiction method and apparatus with random mode jamming
US5144267A (en) * 1989-12-06 1992-09-01 Scientific-Atlanta, Inc. Variable slope network for off-premises CATV system
KR100231088B1 (en) * 1990-02-06 1999-11-15 프레드릭 더불유.파워스 Interdiction method and apparatus with variable dwell time
US5052047A (en) * 1990-04-10 1991-09-24 Zenith Electronics Corporation Modulator-remodulator with common local oscilator
US5557316A (en) * 1990-09-28 1996-09-17 Ictv, Inc. System for distributing broadcast television services identically on a first bandwidth portion of a plurality of express trunks and interactive services over a second bandwidth portion of each express trunk on a subscriber demand basis
US5587734A (en) * 1990-09-28 1996-12-24 Ictv, Inc. User interface for selecting television information services through pseudo-channel access
US5412720A (en) * 1990-09-28 1995-05-02 Ictv, Inc. Interactive home information system
US5526034A (en) * 1990-09-28 1996-06-11 Ictv, Inc. Interactive home information system with signal assignment
US5883661A (en) * 1990-09-28 1999-03-16 Ictv, Inc. Output switching for load levelling across multiple service areas
US5220420A (en) * 1990-09-28 1993-06-15 Inteletext Systems, Inc. Interactive home information system for distributing compressed television programming
US5594507A (en) * 1990-09-28 1997-01-14 Ictv, Inc. Compressed digital overlay controller and method for MPEG type video signal
JPH0537936A (en) * 1990-11-08 1993-02-12 Pioneer Electron Corp Signal oscillator
US5245420A (en) * 1990-11-27 1993-09-14 Scientific-Atlanta, Inc. CATV pay per view interdiction system
US5331412A (en) * 1990-11-27 1994-07-19 Scientific-Atlanta, Inc. Tamper resistant apparatus for a CATV system
US5233652A (en) * 1991-02-19 1993-08-03 At&T Bell Laboratories Selective off-premises jamming for premium CATV service
US5255318A (en) * 1991-03-22 1993-10-19 North American Philips Corporation Expandable cable television subscriber control system
JPH0575349A (en) * 1991-09-11 1993-03-26 Pioneer Electron Corp Oscillator
US5311325A (en) * 1992-06-10 1994-05-10 Scientific Atlanta, Inc. Method and apparatus for providing periodic subscription television services
US5265160A (en) * 1992-06-10 1993-11-23 Scientific-Atlanta, Inc. Interdiction method and apparatus with pulsed mode jamming
WO1993026127A1 (en) * 1992-06-10 1993-12-23 Scientific-Atlanta, Inc. Interdiction method and apparatus with direct memory control of variable frequency elements
US5243651A (en) * 1992-06-10 1993-09-07 Scientific-Atlanta, Inc. Diagnostic method and apparatus for a cable television interdiction system
US5317635A (en) * 1992-06-10 1994-05-31 Scientific-Atlanta, Inc. Interdiction method and apparatus with mode control for variable frequency elements
US5243647A (en) * 1992-06-10 1993-09-07 Scientific-Atlanta, Inc. Method and apparatus for broadband signal distribution
WO1993026126A1 (en) * 1992-06-10 1993-12-23 Scientific-Atlanta, Inc. Interdiction method and apparatus with frequency change inhibit function
WO1993026125A1 (en) * 1992-06-10 1993-12-23 Scientific-Atlanta, Inc. Interdiction method and apparatus with random mode jamming
US5604528A (en) * 1992-06-10 1997-02-18 Scientific-Atlanta, Inc. Method and apparatus for providing periodic subscription television services
US5278908A (en) * 1992-06-10 1994-01-11 Scientific-Atlanta, Inc. Interdiction method and apparatus with programmable jamming effectiveness
US5436822A (en) * 1992-07-31 1995-07-25 Scientific-Atlanta, Inc. Polarity reversing DC power supply for remotely located equipment
US5396642A (en) * 1992-08-14 1995-03-07 Electroline Equipment Inc. Variable frequency CATV jamming method and apparatus
US5367571A (en) * 1992-12-02 1994-11-22 Scientific-Atlanta, Inc. Subscriber terminal with plug in expansion card
US6166728A (en) * 1992-12-02 2000-12-26 Scientific-Atlanta, Inc. Display system with programmable display parameters
US5440632A (en) * 1992-12-02 1995-08-08 Scientific-Atlanta, Inc. Reprogrammable subscriber terminal
US20050114906A1 (en) * 1993-05-03 2005-05-26 Ictv, Inc. System for interactive television
FR2708167B1 (en) * 1993-07-20 1995-09-01 Telediffusion Fse Method and system for controlling mode of access to signals, especially image signals.
US5640452A (en) * 1995-04-28 1997-06-17 Trimble Navigation Limited Location-sensitive decryption of an encrypted message
SE507718C2 (en) * 1996-09-13 1998-07-06 Ericsson Telefon Ab L M Method and apparatus for coding cable television
US5905942A (en) * 1997-02-18 1999-05-18 Lodgenet Entertainment Corporation Multiple dwelling unit interactive audio/video distribution system
US6205582B1 (en) 1997-12-09 2001-03-20 Ictv, Inc. Interactive cable television system with frame server
WO1999030496A1 (en) * 1997-12-09 1999-06-17 Ictv, Inc. Distributed scrambling method and system
US6694517B1 (en) 1999-08-27 2004-02-17 Diversified Control, Inc. Broadband communication network with low power addressable tap system for controlling subscriber access
US7069578B1 (en) 2000-02-04 2006-06-27 Scientific-Atlanta, Inc. Settop cable television control device and method including bootloader software and code version table for maintaining and updating settop receiver operating system software
US6519773B1 (en) * 2000-02-08 2003-02-11 Sherjil Ahmed Method and apparatus for a digitized CATV network for bundled services
US20040125239A1 (en) * 2002-12-26 2004-07-01 David Rahn Television tuner supporting channel hopping
US8074248B2 (en) 2005-07-26 2011-12-06 Activevideo Networks, Inc. System and method for providing video content associated with a source image to a television in a communication network
US9826197B2 (en) 2007-01-12 2017-11-21 Activevideo Networks, Inc. Providing television broadcasts over a managed network and interactive content over an unmanaged network to a client device
EP3145200A1 (en) * 2007-01-12 2017-03-22 ActiveVideo Networks, Inc. Mpeg objects and systems and methods for using mpeg objects
JP5345872B2 (en) * 2009-02-26 2013-11-20 中国電力株式会社 High speed communication system
KR20130138263A (en) 2010-10-14 2013-12-18 액티브비디오 네트웍스, 인코포레이티드 Streaming digital video between video devices using a cable television system
WO2012079782A1 (en) * 2010-12-17 2012-06-21 Telefonica, S.A. Method and device for distribution of multimedia communication channels in a passive optical network
EP2695388B1 (en) 2011-04-07 2017-06-07 ActiveVideo Networks, Inc. Reduction of latency in video distribution networks using adaptive bit rates
US10409445B2 (en) 2012-01-09 2019-09-10 Activevideo Networks, Inc. Rendering of an interactive lean-backward user interface on a television
US9800945B2 (en) 2012-04-03 2017-10-24 Activevideo Networks, Inc. Class-based intelligent multiplexing over unmanaged networks
US9123084B2 (en) 2012-04-12 2015-09-01 Activevideo Networks, Inc. Graphical application integration with MPEG objects
WO2014145921A1 (en) 2013-03-15 2014-09-18 Activevideo Networks, Inc. A multiple-mode system and method for providing user selectable video content
US9326047B2 (en) 2013-06-06 2016-04-26 Activevideo Networks, Inc. Overlay rendering of user interface onto source video
US9219922B2 (en) 2013-06-06 2015-12-22 Activevideo Networks, Inc. System and method for exploiting scene graph information in construction of an encoded video sequence
US9294785B2 (en) 2013-06-06 2016-03-22 Activevideo Networks, Inc. System and method for exploiting scene graph information in construction of an encoded video sequence
US9788029B2 (en) 2014-04-25 2017-10-10 Activevideo Networks, Inc. Intelligent multiplexing using class-based, multi-dimensioned decision logic for managed networks

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039954A (en) * 1975-05-27 1977-08-02 Oak Holland B.V. Signal distribution device for a cable television
US4367557A (en) * 1975-08-09 1983-01-04 Stern Joseph L Wired broadcasting systems
US4450481A (en) * 1981-08-25 1984-05-22 E-Com Corporation Tamper-resistant, expandable communications system
US4769838A (en) * 1984-12-10 1988-09-06 Pioneer Electronic Corporation Community antenna television reception controlling apparatus
US4792971A (en) * 1984-05-18 1988-12-20 Pioneer Electronic Corporation Selective viewing control system for CATV

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US29997A (en) * 1860-09-11 Machine foe
US3202758A (en) * 1961-11-09 1965-08-24 Paramount Pictures Corp Subscription-television programscrambling system
US3899633A (en) * 1972-05-12 1975-08-12 Columbia Pictures Ind Inc Subscription television system
US3760097A (en) * 1972-06-26 1973-09-18 Hughes Aircraft Co Adjacent catv channel jamming
US3896262A (en) * 1974-03-21 1975-07-22 Hughes Aircraft Co Subscription television jamming system
US3989887A (en) * 1975-08-28 1976-11-02 Gte Laboratories Incorporated Swept frequency trap jammer for secure television system
US4148064A (en) * 1978-01-09 1979-04-03 Gte Sylvania Incorporated Jamming circuit for television signals
US4343042A (en) * 1979-07-10 1982-08-03 Cablebus Systems Corporation Bi-directional data transmission and control system
US4334322A (en) * 1979-10-26 1982-06-08 E-Systems, Inc. Communication management system for providing antijam/privacy capabilities for voice radio communications
US4326289A (en) * 1980-02-28 1982-04-20 Dickinson Robert V C Expandable communication system
US4342119A (en) * 1980-08-27 1982-07-27 The United States Of America As Represented By The Secretary Of The Air Force Multi-tone jammer
US4434436A (en) * 1981-07-13 1984-02-28 Bruce Merrill Addressable premium channel obfuscation device for cable television systems
NL8301943A (en) * 1982-07-01 1984-02-01 Plessey Overseas TRANSMITTER.
JPS5961384A (en) * 1982-09-30 1984-04-07 Nec Home Electronics Ltd Jamming signal generator for catv system
US4521809A (en) * 1982-12-29 1985-06-04 North American Philips Corporation Method and apparatus for controlling access to selected television programs
JPS6194480A (en) * 1984-10-15 1986-05-13 Pioneer Electronic Corp Generating circuit for jamming signal
US4682359A (en) * 1984-10-15 1987-07-21 Blonder-Tongue Laboratories, Inc. Television picture and sound scrambler and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039954A (en) * 1975-05-27 1977-08-02 Oak Holland B.V. Signal distribution device for a cable television
US4367557A (en) * 1975-08-09 1983-01-04 Stern Joseph L Wired broadcasting systems
US4450481A (en) * 1981-08-25 1984-05-22 E-Com Corporation Tamper-resistant, expandable communications system
US4792971A (en) * 1984-05-18 1988-12-20 Pioneer Electronic Corporation Selective viewing control system for CATV
US4769838A (en) * 1984-12-10 1988-09-06 Pioneer Electronic Corporation Community antenna television reception controlling apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2243275A (en) * 1990-02-21 1991-10-23 Scientific Atlanta Cable tv system selectively jams programs to subscribers
GB2243275B (en) * 1990-02-21 1994-06-15 Scientific Atlanta Interdiction program denial system for jamming audio and video signals
EP0559802A1 (en) * 1990-11-27 1993-09-15 Scientific-Atlanta, Inc. Catv pay per view interdiction system method and apparatus
EP0559802A4 (en) * 1990-11-27 1993-11-03 Scientific-Atlanta, Inc. Catv pay per view interdiction system method and apparatus
EP0504991A2 (en) * 1991-03-22 1992-09-23 Koninklijke Philips Electronics N.V. Cable subscriber control device using shared jamming modules
EP0504991A3 (en) * 1991-03-22 1993-02-24 Koninkl Philips Electronics Nv Cable subscriber control device using shared jamming modules

Also Published As

Publication number Publication date
AU3446089A (en) 1989-10-05
ATE147916T1 (en) 1997-02-15
EP0403570B1 (en) 1997-01-15
JPH03504432A (en) 1991-09-26
CN1037626A (en) 1989-11-29
EP0403570A4 (en) 1992-07-08
EP0403570A1 (en) 1990-12-27
MX167007B (en) 1993-02-22
DE68927674D1 (en) 1997-02-27
US4912760A (en) 1990-03-27
CA1334444C (en) 1995-02-14
DE68927674T2 (en) 1997-05-15

Similar Documents

Publication Publication Date Title
US4912760A (en) Off-premises cable television channel interdiction method and apparatus
CA2071500C (en) Optimum amplitude and frequency of jamming carrier in interdiction program denial system
EP0446280B1 (en) Off-premises cable television channel interdiction method and apparatus
US5303295A (en) Enhanced versatility of a program control by a combination of technologies
US5287539A (en) Interdiction program denial system for jamming audio and video signals
AU655760B2 (en) Picture carrier controlled automatic gain control circuit for cable television interdiction or jamming apparatus
US5278908A (en) Interdiction method and apparatus with programmable jamming effectiveness
US5323462A (en) CATV subscriber disconnect switch
US5467397A (en) Interdiction method and apparatus with variable dwell time
US5463689A (en) Interdiction method and apparatus with random mode jamming
US5317635A (en) Interdiction method and apparatus with mode control for variable frequency elements
AU636021B2 (en) Interdiction method and apparatus with variable dwell time
US5265160A (en) Interdiction method and apparatus with pulsed mode jamming
CA2031603C (en) Catv subscriber disconnect switch
WO1993026125A1 (en) Interdiction method and apparatus with random mode jamming

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CH DE DK FI GB HU JP KP KR LK LU MC MG MW NL NO RO SD SE SU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989904932

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1989904932

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1989904932

Country of ref document: EP