WO1989009477A1 - Micromechanical device - Google Patents

Micromechanical device Download PDF

Info

Publication number
WO1989009477A1
WO1989009477A1 PCT/DE1989/000156 DE8900156W WO8909477A1 WO 1989009477 A1 WO1989009477 A1 WO 1989009477A1 DE 8900156 W DE8900156 W DE 8900156W WO 8909477 A1 WO8909477 A1 WO 8909477A1
Authority
WO
WIPO (PCT)
Prior art keywords
micromechanical device
substrate
layer
changing element
sensor elements
Prior art date
Application number
PCT/DE1989/000156
Other languages
German (de)
French (fr)
Inventor
Wolfgang Benecke
Werner RIETHMÜLLER
Original Assignee
Fraunhofer-Gesellschaft Zur Förderung Der Angewand
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft Zur Förderung Der Angewand filed Critical Fraunhofer-Gesellschaft Zur Förderung Der Angewand
Publication of WO1989009477A1 publication Critical patent/WO1989009477A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • B23Q1/36Springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15CFLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
    • F15C5/00Manufacture of fluid circuit elements; Manufacture of assemblages of such elements integrated circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0005Lift valves
    • F16K99/0007Lift valves of cantilever type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0034Operating means specially adapted for microvalves
    • F16K99/0042Electric operating means therefor
    • F16K99/0044Electric operating means therefor using thermo-electric means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0073Fabrication methods specifically adapted for microvalves
    • F16K2099/0074Fabrication methods specifically adapted for microvalves using photolithography, e.g. etching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0073Fabrication methods specifically adapted for microvalves
    • F16K2099/008Multi-layer fabrications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H2061/006Micromechanical thermal relay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H61/02Electrothermal relays wherein the thermally-sensitive member is heated indirectly, e.g. resistively, inductively

Definitions

  • the invention relates to a micromechanical device with a position-variable element, which has a fixed and a loose end and consists of layers of different materials with different thermal expansion arranged one above the other.
  • the position of the element is changed by changing the temperature, as a result of which the layers expand to different extents.
  • the position change can be used for different purposes, e.g. B. for switching contacts.
  • an additional electrode is attached to the switching element, which forms a capacitor with the movable switching tongue and whose position is changed with the aid of electrostatic forces.
  • electrostatically operated elements lie in the fact that the electrostatic force decreases rapidly with increasing distance, which is why the position of the position-changing element may only change minimally during the switching process.
  • the position of the bimaterial element can be changed by a defined amount by a predeterminable heating power.
  • the current position of the position-changing element cannot be determined exactly since it depends not only on the heating power but also on the ambient temperature. An exact positioning of the position-changing element is therefore not guaranteed.
  • the invention is based on the object of specifying a micromechanical device with a position-changeable element which can be positioned and regulated.
  • This object is achieved according to the invention in that sensor elements (6, 7) for position detection are mounted on a micromechanical device with a position-variable element and the output signals of the sensor elements (6, 7) are used by means of a control circuit for position control of the element become.
  • the sensor elements record the current position of the position-variable element and, starting from the known position, allow any desired change in position.
  • the new position can be maintained unaffected by fluctuations in the ambient temperature.
  • the device is built on a silicon wafer in (100) orientation. This means that a commercially available chip is used as the starting material.
  • the position-changing element according to this claim consists of a combination of materials with different thermal expansion coefficients. The layer sequence is chosen so that the position-changing element is bent toward the substrate side when the temperature is increased.
  • the heater is arranged as an electrical resistance between or on the layers so that uniform heating is ensured. Because of the low heat capacity of the position-variable element, a strong temperature increase per electrical output is achieved.
  • Piezo resistors are used as sensors that take advantage of the piezoresistive effect. This static effect is with semiconductors Particularly well developed for silicon and is suitable for measuring tensile or compressive loads. Another advantage is that piezoresistors can be easily manufactured using the technology of integrated circuits.
  • the sensors are formed as strips of piezoelectric or ferroelectric material. Depending on the application, the piezoelectric effect or the ferroelectric effect are then used to measure the deflection. If, for example, the change in position of the position-changing element is to be detected, the dynamic piezoelectric effect is suitable.
  • the sensor elements are formed as films made of electrically conductive material. Two films each are applied in such a way that they form a capacitor, with a capacitor plate on the position-changing element and the other plate on the stationary substrate.
  • the change in the position of the position-changing element can then be determined by changing the capacitance of the capacitor. This method is characterized by a particularly high sensitivity. The change in position can also be detected with the aid of magnetic effects.
  • the sensors and the heater are thermally decoupled.
  • sensor and heater signals are linked to one another in a control loop.
  • the position-changing element is held in a predeterminable position, for example by regulating the heating power.
  • the control loop and the micromechanical device are integrated on the same semiconductor chip. As a result, several identical, controllable micromechanical devices can be produced simultaneously on a semiconductor wafer.
  • a further development of the device into a light modulator is characterized in claim 8, in which the position-variable element is coated with a reflective metal layer.
  • the advantage of this device is that it can both be adjusted in a predeterminable direction and - when an oscillating voltage is applied - is suitable for modulating a light beam.
  • the device is designed as an electrical switch or electrically driven relay. All of the marked developments of the invention are advantageously produced using the methods known in micromechanics and in microelectronics and are compatible with standard IC processes. The individual components are structured using planar lithography processes. The voltage levels customary in microelectronics are sufficient for the operation of a device according to the invention.
  • micromechanical device and its further training are characterized by a high degree of miniaturization, high accuracy, great reliability and low costs.
  • FIG. 1 shows a micromechanical device with a position-changing element in top view (a) and sections along the section lines AA '(b) BB « (C) CC (d),
  • FIG. 2 shows a development of the device into an electrically adjustable mirror in cross section (a) and in top view (b),
  • 3 shows a development of the device to an electrically driven microvalve in cross section (a) and in top view (b)
  • 4 shows a development of the device into an electrically controlled relay in cross section (a) and in supervision (b)
  • FIG. 5 shows the method steps for producing a micromechanical device according to the invention.
  • the position-changing element (1) of the device in Fig. 1 consists of a layer of silicon or a silicon compound (e.g. 4 ⁇ m thick) with a low coefficient of thermal expansion. To form a bimaterial, it is partially covered with a metal layer (2) with a significantly higher coefficient of expansion (e.g. a 2 ⁇ m thick gold layer). An electrically operated heating resistor (3) (e.g. made of polycrystalline silicon) is arranged between these layers or on the metal layer. Because of the greater coefficient of thermal expansion of the metal, the movable position-changing element is pressed in the direction of an etching pit (4) which is etched into the substrate (5) with the aid of anisotropic etching methods. The dashed line indicates a possible position of the deflected element.
  • the absolute temperature of the two layers (1, 2) determines the current position of the element, this is influenced both by changes in the ambient temperature and by the conditions of heat dissipation.
  • sensors (6, 7) attached eg piezo resistors made of silicon), the resistance of which depends on the deflection of the element.
  • the sensors (6, 7) and the heating resistor (3) are linked in a common electrical control circuit so that the position-changing element can be held in any desired position.
  • the element is composed of three webs which open into a common surface.
  • the sensors (6, 7) are attached to the side webs, and the heating resistor (3) is attached to the center web.
  • the position-changing element (1) is designed as a web with a widened loose end, which is covered with a highly reflective metal layer.
  • the metal layer (2), the heating resistor (3) and the sensors (6, 7) are attached to the narrow area of the web.
  • This development represents an electrically controllable light modulator.
  • an incident light beam (8) is reflected in itself; in the position indicated by the broken line, the light beam (9) leaves the modulator at an adjustable angle of reflection.
  • many modulators can be operated on a chip in common mode. In order to reflect different parts of a light beam in different directions, the modulators are controlled individually.
  • the position-changing element (1) is a web a widened loose end that serves as a valve plate.
  • the metal layer (2), the heating resistor (3) and the sensors (6y 7) are attached to the narrow area of the web.
  • the position-changeable element (1) is held at a predeterminable distance from the substrate (5) by a spacer layer (10) (for example an epitaxially deposited silicon layer).
  • the etching pit (4) is designed in the form of a valve opening.
  • a switch contact (11) made of metal is attached to the loose end of the position-changing element (1), while the element in the area of the fixed end is formed with a metal layer (2) to form a bimaterial and has a heating resistor (3).
  • two electrodes (12, 13) are arranged on the substrate, which are electrically short-circuited by the contact (11) after activation of the element (1).
  • FIGS. 2, 3 and 4 are advantageously further developed in that the sensor elements are accommodated on separate webs and are thus decoupled from the heating resistors.
  • the process steps for producing a device according to the invention are shown schematically in FIG. 5.
  • a highly bordoded silicon layer (14) is epitaxially deposited on a silicon wafer in (100) orientation, which serves as substrate (5). It supplies the material for the position-changing element (1).
  • a passivation layer -C15) e.g. - silicon nitrite
  • - as material for both the heating resistor (3) and the sensors (6, 7) - a polycrystalline silicon layer (16) are deposited in succession, which is then doped.
  • the heating resistor (3) and the sensors (6, 7) are produced with the aid of lithographic processes and by etching the polycrystalline silicon layer (16). After a passivation layer (17) has been applied, further lithography steps follow.
  • a metal layer is deposited and formed into the second layer (2) of the bimaterial by lithographic steps and an etching process.
  • the position-changing element (1) is formed by isotropic etching of the epitaxial layer (14) and the etching pit (4) is formed by anisotropic etching of the substrate (5).
  • a low-doped layer can also be used as the material for the position-changing element.
  • the etching process is then ended by an electrochemical etching stop on the layer surface.

Abstract

A micromechanical device comprises an element whose position can be varied consisting of a bimaterial system and which can be placed and maintained in a predetermined position. The instantaneous position of the element is determined by means of incorporated sensors and the measurement signal is combined with the heater current in a common control circuit for the purpose of adjusting the position. The embodiments described include a light modulator, an electrically operated switch and an electrically controlled microvalve.

Description

Mikromechanische Einrichtung Micromechanical device
Beschreibungdescription
Technisches GebietTechnical field
Die Erfindung betrifft eine mikromechanische Einrich¬ tung mit einem positionsveränderlichen Element, das ein festes und ein loses Ende aufweist und aus übereinander angeordneten Schichten verschiedener Materialien mit unterschiedlicher thermischer Ausdehnung besteht. Die Positionsveränderung des Elementes erfolgt durch Tem¬ peraturveränderung, wodurch sich die Schichten ver¬ schieden stark ausdehnen. Die Positionsveränderung kann für unterschiedliche Zwecke, z. B. zum Schalten von Kontakten, eingesetzt werden.The invention relates to a micromechanical device with a position-variable element, which has a fixed and a loose end and consists of layers of different materials with different thermal expansion arranged one above the other. The position of the element is changed by changing the temperature, as a result of which the layers expand to different extents. The position change can be used for different purposes, e.g. B. for switching contacts.
Stand der TechnikState of the art
In der Schrift "Micromechanical Membrane Switches on Silicon" (IBM Journal Research Development, Vol. 23, 1979, S. 376 - 385) gibt K. E. Peters ein mikromecha¬ nisches Schaltelement an, das den Bimaterial-Effekt ausnützt. Bei einer bestimmten Umgebungstemperatur wechselt das Element seinen Schaltzustand.In the publication "Micromechanical Membrane Switches on Silicon" (IBM Journal Research Development, Vol. 23, 1979, pp. 376 - 385), K. E. Peters specifies a micromechanical switching element that uses the bimaterial effect. The element changes its switching state at a certain ambient temperature.
Um die Höhe der Umschalttemperatur beeinflussen zu können, ist an dem Schaltelement eine zusätzliche Elektrode angebracht, die mit der beweglichen Schalt¬ zunge einen Kondensator bildet und deren Lage mit Hilfe elektrostatischer Kräfte verändert wird. Ein Nachteil solcher elektrostatisch betriebener Elemente liegt darin, daß die elektrostatische Kraft rasch mit zuneh¬ mender Entfernung abnimmt, weshalb sich die Lage der positionsveränderliche Element beim Schaltvorgang nur minimal verändern darf.In order to be able to influence the level of the changeover temperature, an additional electrode is attached to the switching element, which forms a capacitor with the movable switching tongue and whose position is changed with the aid of electrostatic forces. A disadvantage Such electrostatically operated elements lie in the fact that the electrostatic force decreases rapidly with increasing distance, which is why the position of the position-changing element may only change minimally during the switching process.
In der Veröffentlichung "Micromechanical Silicon Actuators based on thermal expansion effects" (Trans- ducers 1987) beschreiben . Riethmüller, W. Benecke, U. Schnakenberg und A. Heuberger eine mikromechanische Einrichtung mit einem positionsveränderlichen Element, das als bewegliche Zunge aus einer Silizium-Metall- Schichtstruktur hergestellt ist und das mit Hilfe eines elektrischen Widerstandes geheizt werden kann.Describe in the publication "Micromechanical Silicon Actuators based on thermal expansion effects" (Transducers 1987). Riethmüller, W. Benecke, U. Schnakenberg and A. Heuberger a micromechanical device with a position-changing element, which is produced as a movable tongue from a silicon-metal layer structure and which can be heated with the aid of an electrical resistor.
Durch eine vorgebbare- Heizleistung läßt sich die Lage des Bimaterial-Elementes um einen definierten Betrag verändern. Allerdings ist die jeweils aktuelle Stellung des positionsveränderlichen Elementes nicht genau be¬ stimmbar, da diese nicht nur von der Heizleistung son¬ dern auch von der Umgebungstemperatur abhängt. Eine exakte Positionierung des positionsveränderlichen Ele¬ mentes ist damit nicht gewährleistet.The position of the bimaterial element can be changed by a defined amount by a predeterminable heating power. However, the current position of the position-changing element cannot be determined exactly since it depends not only on the heating power but also on the ambient temperature. An exact positioning of the position-changing element is therefore not guaranteed.
Darstellung der ErfindungPresentation of the invention
Der Erfindung liegt die Aufgabe zugrunde, eine mikro¬ mechanische Einrichtung mit einem positionsveränder¬ lichen Element anzugeben, das positionierbar und regel¬ bar ist. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß auf einer mikromechanischen Einrichtung mit einem posi¬ tionsveränderlichen Element Sensorelemente (6,7) zur Positionserfassung angebracht sind und die Ausgangssig¬ nale der Sensorelemente (6,7) mittels eines Regelkrei¬ ses zur Positionsregelung des Elementes eingesetzt wer¬ den.The invention is based on the object of specifying a micromechanical device with a position-changeable element which can be positioned and regulated. This object is achieved according to the invention in that sensor elements (6, 7) for position detection are mounted on a micromechanical device with a position-variable element and the output signals of the sensor elements (6, 7) are used by means of a control circuit for position control of the element become.
Die Sensorelemente erfassen die momentane Stellung des positionsveränderlichen Elementes und erlauben von der bekannten Stellung ausgehend, jede gewünschte Lageän¬ derung. Die neue Lage kann unbeeinflußt durch Schwan¬ kungen der Umgebungstemperatur beibehalten werden.The sensor elements record the current position of the position-variable element and, starting from the known position, allow any desired change in position. The new position can be maintained unaffected by fluctuations in the ambient temperature.
Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet. Nach Anspruch 2 ist die Einrichtung auf einem Silizium-Wafer in (100)-Orien¬ tierung aufgebaut. Damit findet als Ausgangsmaterial ein handelsüblicher Chip Verwendung. Um mit geringen Heizleistungen möglichst große Lageveränderungen herbei¬ zuführen, besteht das positionsveränderliche Element nach diesem Anspruch aus einer Kombination von Materia¬ lien mit möglichst unterschiedlichen thermischen Ausdeh¬ nungskoeffizienten. Die Schichtfolge ist so gewählt, daß das positionsveränderliche Element bei Erhöhung der Temperatur zur Substratseite hin gebogen wird. Nach Anspruch 3 ist der Heizer als elektrischer Widerstand zwischen oder auf den Schichten so angeordnet, daß eine gleichmäßige Erwärmung gewährleistet ist. Aufgrund der niedrigen Wärmekapazität des positionsveränderlichen Elementes wird eine starke Temperaturerhöhung pro elek¬ trischer Leistung erreicht. Als Sensoren werden Piezo- widerstände verwendet, die den piezoresistiven Effekt ausnützen. Dieser statische Effekt ist bei Halbleitern insbesondere bei Silizium gut ausgeprägt und eignet sich zur Messung von Zug- oder Druckbelastungen. Ein weiterer Vorzug ist, daß Piezowiderstände einfach mit der Technik integrierter Schaltungen herstellbar sind.Advantageous embodiments of the invention are characterized in the subclaims. According to claim 2, the device is built on a silicon wafer in (100) orientation. This means that a commercially available chip is used as the starting material. In order to bring about the greatest possible changes in position with low heating outputs, the position-changing element according to this claim consists of a combination of materials with different thermal expansion coefficients. The layer sequence is chosen so that the position-changing element is bent toward the substrate side when the temperature is increased. According to claim 3, the heater is arranged as an electrical resistance between or on the layers so that uniform heating is ensured. Because of the low heat capacity of the position-variable element, a strong temperature increase per electrical output is achieved. Piezo resistors are used as sensors that take advantage of the piezoresistive effect. This static effect is with semiconductors Particularly well developed for silicon and is suitable for measuring tensile or compressive loads. Another advantage is that piezoresistors can be easily manufactured using the technology of integrated circuits.
Nach Anspruch 4 werden die Sensoren als Streifen aus piezoelektrischem oder ferroelektrischem Material aus¬ gebildet. Je nach Anwendungsfall werden dann zur Mes¬ sung der Auslenkung der piezoelektrische Effekt oder der ferroelektrische Effekt herangezogen. Wenn beispiels¬ weise die Lageveränderung des positionsveränderlichen Elementes detektiert werden soll, eignet sich der dynami¬ sche piezoelektrische Effekt.According to claim 4, the sensors are formed as strips of piezoelectric or ferroelectric material. Depending on the application, the piezoelectric effect or the ferroelectric effect are then used to measure the deflection. If, for example, the change in position of the position-changing element is to be detected, the dynamic piezoelectric effect is suitable.
Die Sensorelemente werden bei einer Ausgestaltung nach Anspruch 5 als Filme aus elektrisch leitendem Material ausgebildet. Je zwei Filme werden so aufgebracht, daß sie einen Kondensator bilden, mit einer Kondensator¬ platte auf dem positionsveränderlichen Element und der anderen Platte auf dem ortsfesten Substrat. Die Änderung der Lage des positionsveränderlichen Elementes kann dann durch die Veränderung der Kapazität des Kondensators bestimmt werden. Diese Methode zeichnet sich durch beson¬ ders hohe Meßempfindlichkeit aus. Die Lageveränderung kann auch mit Hilfe magnetischer Effekte erfaßt werden.In one embodiment according to claim 5, the sensor elements are formed as films made of electrically conductive material. Two films each are applied in such a way that they form a capacitor, with a capacitor plate on the position-changing element and the other plate on the stationary substrate. The change in the position of the position-changing element can then be determined by changing the capacitance of the capacitor. This method is characterized by a particularly high sensitivity. The change in position can also be detected with the aid of magnetic effects.
Um zu vermeiden, daß die Positionsbestimmung des posi¬ tionsveränderlichen Elementes durch die Betriebstempera¬ tur beeinflußt wird, sind die Sensoren und der Heizer nach Anspruch 6 thermisch entkoppelt.In order to avoid that the position determination of the position-variable element is influenced by the operating temperature, the sensors and the heater are thermally decoupled.
Bei einer besonders vorteilhaften Ausgestaltung der Einrichtung nach Anspruch 7 werden Sensor- und Heizer¬ signale in einem Regelkreis miteinander verknüpft. Dadurch wird das positionsveränderliche Element bei¬ spielsweise durch Regelung der Heizleistung in einer vorgebbaren Stellung gehalten. Um einen hohen Grad an Miniaturisierung zu erreichen, sind der Regelkreis und die mikromechanische Einrichtung auf demselben Halb¬ leiterchip integriert. Dadurch können gleichzeitig mehrere identische, regelbare mikromechanische Ein¬ richtungen auf einem Halbleiterwafer hergestellt werden.In a particularly advantageous embodiment of the device according to claim 7, sensor and heater signals are linked to one another in a control loop. As a result, the position-changing element is held in a predeterminable position, for example by regulating the heating power. In order to achieve a high degree of miniaturization, the control loop and the micromechanical device are integrated on the same semiconductor chip. As a result, several identical, controllable micromechanical devices can be produced simultaneously on a semiconductor wafer.
In der zitierten Schrift von Riethmüller, Benecke, Schnakenberg und Heuberger wird die Weiterbildung einer mikromechanischen Einrichtung zu einem Lichtmodulator, einem Schalter und zu einem Mikroventil erwähnt. Aller¬ dings ist dort kein Weg aufgezeigt, wie die Weiterbil¬ dung erfolgen soll.The citation by Riethmüller, Benecke, Schnakenberg and Heuberger mentions the further development of a micromechanical device into a light modulator, a switch and a microvalve. However, there is no way out of how the further training should take place.
In Anspruch 8 ist eine Weiterbildung der Einrichtung zu einem Lichtmodulator gekennzeichnet, bei dem das posi¬ tionsveränderliche Element mit einer spiegelnden Metall¬ schicht überzogen ist. Der Vorteil dieser Einrichtung liegt darin, daß sie sowohl in eine vorgebbare Richtung justiert werden kann als auch - bei Anlegen einer oszil¬ lierenden Spannung - zur Modulation eines Lichtstrahles geeignet ist.A further development of the device into a light modulator is characterized in claim 8, in which the position-variable element is coated with a reflective metal layer. The advantage of this device is that it can both be adjusted in a predeterminable direction and - when an oscillating voltage is applied - is suitable for modulating a light beam.
In Anspruch 9 ist eine Weiterbildung der Einrichtung zu einem elektrisch angetriebenen Mikroventil gekennzeich¬ net. Es vereint die Vorteile bekannter Mikroventile, wie kleine Abmessungen und geringes Gewicht, mit einer besonders einfachen Funktionsweise und Herstellung. Nach Anspruch 10 ist die Einrichtung als elektrischer Schalter oder elektrisch angetriebenes Relais aus¬ gestaltet. Alle gekennzeichneten Weiterbildungen der Erfindung werden vorteilhaft mit den in der Mikromechanik und in der Mikroelektronik bekannten Verfahren hergestellt und sind mit Standard-IC-Prozessen kompatibel. Die einzel¬ nen Bestandteile werden dabei mit Hilfe planarer Litho- graphieprozesse strukturiert. Für den Betrieb einer erfindungsgemäßen Einrichtung reichen die in der Mikro¬ elektronik üblichen Spannungspegel aus.A further development of the device to an electrically driven microvalve is characterized in claim 9. It combines the advantages of known microvalves, such as small dimensions and light weight, with a particularly simple mode of operation and manufacture. According to claim 10, the device is designed as an electrical switch or electrically driven relay. All of the marked developments of the invention are advantageously produced using the methods known in micromechanics and in microelectronics and are compatible with standard IC processes. The individual components are structured using planar lithography processes. The voltage levels customary in microelectronics are sufficient for the operation of a device according to the invention.
Die mikromechanische Einrichtung und ihre Weiterbildun¬ gen zeichnen sich durch einen hohen Grad an Miniaturi¬ sierung, hohe Genauigkeit, große Zuverlässigkeit und niedrige Kosten aus.The micromechanical device and its further training are characterized by a high degree of miniaturization, high accuracy, great reliability and low costs.
Kurze Beschreibung der ZeichnungenBrief description of the drawings
Nachfolgend werden an Hand von Zeichnungen vier Aus¬ führungsbeispiele -dargestellt. Es zeigen:Four exemplary embodiments are illustrated below with the aid of drawings. Show it:
Fig. 1 eine mikromechanische Einrichtung mit positionsveränderlichem Element in Aufsicht (a) und Schnitte entlang der Schnittlinien A A' (b) B B« (C) C C (d),1 shows a micromechanical device with a position-changing element in top view (a) and sections along the section lines AA '(b) BB « (C) CC (d),
Fig. 2 eine Weiterbildung der Einrichtung zu einem elektrisch verstellbaren Spiegel im Querschnitt (a) und in Aufsicht (b) ,2 shows a development of the device into an electrically adjustable mirror in cross section (a) and in top view (b),
Fig. 3 eine Weiterbildung der Einrichtung zu einem elektrisch angetriebenen Mikroventil im Quer¬ schnitt (a) und in Aufsicht (b) , Fig. 4 eine Weiterbildung der Einrichtung zu einem elektrisch gesteuerten Relais im Querschnitt (a) und in Aufsicht (b) ,3 shows a development of the device to an electrically driven microvalve in cross section (a) and in top view (b), 4 shows a development of the device into an electrically controlled relay in cross section (a) and in supervision (b),
Fig. 5 die Verfahrensschritte zur Herstellung einer erfindungsgemäßen mikromechanischen Einrich¬ tung.5 shows the method steps for producing a micromechanical device according to the invention.
Wege zur Ausführung der ErfindungWays of Carrying Out the Invention
Das positionsveränderliche Element (1) der Einrichtung in Fig. 1 besteht aus einer Schicht aus Silizium oder einer Siliziumverbindung (z.B. 4 μm dick) mit einem niedrigen thermischen Ausdehnungskoeffizienten. Es ist zur Bildung eines Bimaterials partiell mit einer Metallschicht (2) mit einem wesentlich höheren Ausdeh¬ nungskoeffizienten (z.B. eine 2 μm dicke Goldschicht) bedeckt. Zwischen diesen Schichten oder auf der Me¬ tallschicht ist ein elektrisch betriebener Heizwider¬ stand (3) angeordnet (z.B. aus polykristallinem Sili¬ zium) . Wegen des größeren thermischen Ausdehnungskoef¬ fizienten des Metalls wird das bewegliche positions¬ veränderliche Element in Richtung einer Ätzgrube (4) gedrückt, die mit Hilfe anisotroper Ätzmethoden in das Substrat (5) geätzt ist. Die gestrichelte Linie gibt eine mögliche Position des ausgelenkten Elementes an.The position-changing element (1) of the device in Fig. 1 consists of a layer of silicon or a silicon compound (e.g. 4 μm thick) with a low coefficient of thermal expansion. To form a bimaterial, it is partially covered with a metal layer (2) with a significantly higher coefficient of expansion (e.g. a 2 μm thick gold layer). An electrically operated heating resistor (3) (e.g. made of polycrystalline silicon) is arranged between these layers or on the metal layer. Because of the greater coefficient of thermal expansion of the metal, the movable position-changing element is pressed in the direction of an etching pit (4) which is etched into the substrate (5) with the aid of anisotropic etching methods. The dashed line indicates a possible position of the deflected element.
Da die absolute Temperatur der beiden Schichten (1, 2) die augenblickliche Position des Elementes bestimmt, wird diese sowohl durch Änderungen der Umgebungstempe¬ ratur als durch die Bedingungen der Wärmeableitung beeinflußt. Zur Messung der momentanen Position des Elementes sind deshalb auf der Einrichtung Sensoren (6, 7) angebracht (z.B. Piezowiderstände aus Silizium) , deren Widerstand von der Auslenkung des Elementes abhängt. Die Sensoren (6, 7) und der Heizwiderstand (3) werden in einem gemeinsamen elektrischen Regelkreis so verknüpft, daß das positionsveränderliche Element in jeder gewünschten Position gehalten werden kann. Zur thermischen Entkopplung der Sensoren von dem Heizwi¬ derstand ist das Element aus drei Stegen zusammenge¬ setzt, die in eine gemeinsame Fläche einmünden. Auf den seitlichen Stegen sind die Sensoren (6, 7) , auf dem Mittelsteg ist der Heizwiderstand (3) , angebracht.Since the absolute temperature of the two layers (1, 2) determines the current position of the element, this is influenced both by changes in the ambient temperature and by the conditions of heat dissipation. To measure the current position of the element, sensors (6, 7) attached (eg piezo resistors made of silicon), the resistance of which depends on the deflection of the element. The sensors (6, 7) and the heating resistor (3) are linked in a common electrical control circuit so that the position-changing element can be held in any desired position. For the thermal decoupling of the sensors from the heating resistor, the element is composed of three webs which open into a common surface. The sensors (6, 7) are attached to the side webs, and the heating resistor (3) is attached to the center web.
Bei der Weiterbildung der Einrichtung in Fig. 2 ist das positionsveränderliche Element (1) als Steg mit einem verbreiterten losen Ende ausgebildet, das mit einer hochreflektierenden Metallschicht überzogen ist. Auf dem schmalen Bereich des Steges sind die Metallschicht (2) , der Heizwiderstand (3) und die Sensoren (6, 7) angebracht. Diese Weiterbildung stellt einen elektrisch steuerbaren Lichtmodulator dar. In der Ausgangsstellung wird ein einfallender Lichtstrahl (8) in sich selbst reflektiert; in der durch die gestrichelte Linie angedeuteten Stellung verläßt der Lichtstrahl (9) den Modulator unter einem einstellbaren Reflexionswinkel. Zur Vergrößerung der spiegelnden Fläche können viele Modulatoren auf einem Chip im Gleichtakt betrieben werden. Um verschiedene Teile eines Lichtstrahles in unterschiedliche Richtungen zu reflektieren, werden die Modulatoren einzeln angesteuert.In the development of the device in Fig. 2, the position-changing element (1) is designed as a web with a widened loose end, which is covered with a highly reflective metal layer. The metal layer (2), the heating resistor (3) and the sensors (6, 7) are attached to the narrow area of the web. This development represents an electrically controllable light modulator. In the starting position, an incident light beam (8) is reflected in itself; in the position indicated by the broken line, the light beam (9) leaves the modulator at an adjustable angle of reflection. To increase the reflecting area, many modulators can be operated on a chip in common mode. In order to reflect different parts of a light beam in different directions, the modulators are controlled individually.
Die in Fig. 3 dargestellte Weiterbildung der Einrich¬ tung stellt ein mikromechanisches Ventil dar. Das positionsveränderliche Element (1) ist als Steg mit einem verbreiterten losen Ende ausgebildet, das als Ventilplatte dient. Auf dem schmalen Bereich des Steges sind die Metallschicht (2) , der Heizwiderstand (3) und die Sensoren (6y 7) angebracht. Das positionsveränder¬ liche Element (1) wird durch eine Distanzschicht (10) (z.B. eine epitaktisch abgeschiedene Siliziumschicht) in einem vorgebbaren Abstand vom Substrat (5) gehalten. Die Ätzgrube (4) ist in Form einer Ventilöffnung aus¬ gebildet. Durch Einschalten des Heizwiderstandes (3) wird das als Ventilplatte ausgebildete Element (1) gegen die Ventilöffnung gepreßt. Da das Element im Bereich des schmalen Steges nachgiebiger ist als im Bereich des breiten losen Endes, nimmt es die durch die gestrichelte Linie angedeutete Form an.The further development of the device shown in FIG. 3 represents a micromechanical valve. The position-changing element (1) is a web a widened loose end that serves as a valve plate. The metal layer (2), the heating resistor (3) and the sensors (6y 7) are attached to the narrow area of the web. The position-changeable element (1) is held at a predeterminable distance from the substrate (5) by a spacer layer (10) (for example an epitaxially deposited silicon layer). The etching pit (4) is designed in the form of a valve opening. By switching on the heating resistor (3), the element (1) designed as a valve plate is pressed against the valve opening. Since the element is more flexible in the area of the narrow web than in the area of the wide loose end, it takes on the shape indicated by the dashed line.
Die in Fig. 4 dargestellte Weiterbildung der Einrich¬ tung dient zum Schalten eines elektrischen Kontaktes. Auf dem losen Ende des positionsveränderlichen Ele¬ mentes (1) ist ein Schaltkontakt (11) aus Metall angebracht, während das Element im Bereich des festen Endes mit einer Metallschicht (2) zu einem Bimaterial ausgebildet ist und einen Heizwiderstand (3) aufweist. Gegenüber dem Schaltkontakt (11) sind auf dem Substrat zwei Elektroden (12, 13) angeordnet, die nach Aktivie¬ rung des Elementes (1) durch den Kontakt (11) elek¬ trisch kurzgeschlossen werden.The further development of the device shown in FIG. 4 serves to switch an electrical contact. A switch contact (11) made of metal is attached to the loose end of the position-changing element (1), while the element in the area of the fixed end is formed with a metal layer (2) to form a bimaterial and has a heating resistor (3). Opposite the switching contact (11), two electrodes (12, 13) are arranged on the substrate, which are electrically short-circuited by the contact (11) after activation of the element (1).
Die in den Fig. 2, 3 und 4 dargestellten Ausführungs¬ beispiele werden dadurch vorteilhaft weitergebildet, daß die Sensorelemente auf separaten Stegen unterge¬ bracht und damit von den Heizwiderständen entkoppelt sind. Die Verfahrensschritte zur Herstellung einer erfin¬ dungsgemäßen Einrichtung sind in Fig. 5 schematisch dargestellt.The exemplary embodiments shown in FIGS. 2, 3 and 4 are advantageously further developed in that the sensor elements are accommodated on separate webs and are thus decoupled from the heating resistors. The process steps for producing a device according to the invention are shown schematically in FIG. 5.
a) Auf eine Siliziumscheibe in (100) -Orientierung, die als Substrat (5) dient, wird eine hoch-bordodierte Siliziumschicht (14) epitaktisch abgeschieden. Sie liefert das Material für das positionsveränderliche Element (1) . Nacheinander werden eine Passivie- rungsschicht -C15) (z.B. - Siliziumnitrit) und - als Material sowohl für den Heizwiderstand (3) als auch die Sensoren (6, 7) - eine polykristalline Silizi¬ umschicht (16) abgeschieden, die anschließend dotiert wird. b) Mit Hilfe lithographischer Prozesse und durch Ätzen der polykristallinen Siliziumschicht (16) werden der Heizwiderstand (3) und die Sensoren (6, 7) hergestellt. Nach Aufbringen einer Passivierungs- schicht (17) folgen weitere Lithographieschritte. c) Eine Metallschicht wird abgeschieden und durch lithographische Schritte und einem Ätzprozeß zur zweiten Schicht (2) des Bimaterials geformt. d) Durch isotropes Ätzen der Epitaxieschicht (14) wird das positionsveranderliche Element (1) und durch anisotropes Ätzen des Substrats (5) die Ätzgrube (4) herausgebildet.a) A highly bordoded silicon layer (14) is epitaxially deposited on a silicon wafer in (100) orientation, which serves as substrate (5). It supplies the material for the position-changing element (1). A passivation layer -C15) (e.g. - silicon nitrite) and - as material for both the heating resistor (3) and the sensors (6, 7) - a polycrystalline silicon layer (16) are deposited in succession, which is then doped. b) The heating resistor (3) and the sensors (6, 7) are produced with the aid of lithographic processes and by etching the polycrystalline silicon layer (16). After a passivation layer (17) has been applied, further lithography steps follow. c) A metal layer is deposited and formed into the second layer (2) of the bimaterial by lithographic steps and an etching process. d) The position-changing element (1) is formed by isotropic etching of the epitaxial layer (14) and the etching pit (4) is formed by anisotropic etching of the substrate (5).
Anstelle der hoch-bordotierten Siliziumschicht kann als Material für das positionsveränderliche Element auch eine niedrigdotierte Schicht Verwendung finden.. Der Ätzprozeß wird dann durch einen elektrochemischen Ätzstop an der Schichtoberfläche beendet. Instead of the highly boron-doped silicon layer, a low-doped layer can also be used as the material for the position-changing element. The etching process is then ended by an electrochemical etching stop on the layer surface.

Claims

PATENTANSPRÜCHE PATENT CLAIMS
Mikromechanische Einrichtung, die ein Substrat und wenigstens eine darauf aufgebrachte Schicht enthält, mit einem aus dem Substrat und der Schicht freigeätz¬ ten positionsveränderlichen Element, das ein festes und ein loses Ende aufweist, wobei die übereinander angeordneten Schichten aus verschiedenen Materialien mit unterschiedlicher thermischer Ausdehnung beste¬ hen, und mit einem Heizer zur Erhöhung der Tempera¬ tur des positionsveränderlichen Elementes, dadurch gekennzeichnet, daß auf der Einrichtung Sensorele¬ mente (6,7) zur Positionserfassung des positions¬ veränderlichen Elementes (1) angebracht sind und die Ausgangssignale der Sensorelemente (6,7) mittels eines Regelkreises zur Positionsregelung des'Elemen¬ tes eingesetzt werden.Micromechanical device which contains a substrate and at least one layer applied thereon, with a position-changeable element which has a fixed and a loose end and is etched free from the substrate and the layer, the layers arranged one above the other being made of different materials with different thermal expansion ¬ hen, and with a heater to increase the temperature of the position-changing element, characterized in that sensor elements (6, 7) for detecting the position of the position-changing element (1) are attached to the device and the output signals of the sensor elements ( are used 6,7) by means of a control loop for position control of the 'Elemen¬ tes.
Mikromechanische Einrichtung nach Anspruch 1, da¬ durch gekennzeichnet, daß das Substrat (5) aus einem Silizium-Wafer mit einer (100)-orientierten Ober¬ fläche besteht und daß das positionsveränderliche Element aus zwei Schichten zusammengesetzt ist, wo¬ bei die substratnähere Schicht aus einer epitaktisch abgeschiedenen Schicht aus Silizium, einer Silizium¬ verbindung oder aus polykristallinem Silizium und die darüberliegende Schicht aus einer Metallschicht besteht.Micromechanical device according to claim 1, characterized in that the substrate (5) consists of a silicon wafer with a (100) -oriented surface and that the position-variable element is composed of two layers, the layer closer to the substrate from an epitaxial deposited layer of silicon, a silicon compound or polycrystalline silicon and the overlying layer consists of a metal layer.
3. Mikromechanische Einrichtung nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß der Heizer (3) als Widerstand ausgebildet und zwischen den Schich¬ ten angeordnet ist, und aus einer Silizium- oder Metallschicht besteht und daß die Sensorelemente3. Micromechanical device according to claims 1 and 2, characterized in that the heater (3) is designed as a resistor and is arranged between the layers, and consists of a silicon or metal layer and that the sensor elements
(6,7) als Piezowiderstände ausgebildet sind.(6,7) are designed as piezoresistors.
4. Mikromechanische Einrichtung nach einem der Ansprü¬ che 1 bis 3, dadurch gekennzeichnet, daß die Sen¬ sorelemente (6,7) als Streifen aus piezoelektrischem Material oder ferroelektrischem Material ausgebildet sind und daß zur Bestimmung der Auslenkung- des posi¬ tionsveränderlichen Elementes der piezoelektrische Effekt oder der ferroelektrische Effekt herangezogen werden.4. Micromechanical device according to one of claims 1 to 3, characterized in that the sensor elements (6, 7) are designed as strips of piezoelectric material or ferroelectric material and that for determining the deflection of the position-variable element of the piezoelectric effect or the ferroelectric effect can be used.
5. Mikromechanische Einrichtung nach einem der Ansprü¬ che 1 bis 3, dadurch gekennzeichnet, daß die Sen¬ sorelemente (6,7) als Filme aus leitfähigem Material ausgebildet sind, die sich paarweise gegenüberliegen und von denen jeweils eines auf dem positionsver¬ änderlichen Element und eines auf dem ortsfesten Substrat angebracht ist, und daß zur Bestimmung der Auslenkung des positionsveränderlichen Elementes magnetische oder kapazitive Effekte herangezogen werden. 5. Micromechanical device according to one of claims 1 to 3, characterized in that the sensor elements (6, 7) are constructed as films made of conductive material, which lie opposite one another in pairs and each of which one on the position-changing element and one is attached to the stationary substrate, and that magnetic or capacitive effects are used to determine the deflection of the position-changing element.
6. Mikromechanische Einrichtung nach einem der Ansprü¬ che 1 bis 5, dadurch gekennzeichnet, daß die Sen¬ sorelemente (6,7) von dem Heizelement (3) thermisch entkoppelt sind.6. Micromechanical device according to one of claims 1 to 5, characterized in that the sensor elements (6, 7) are thermally decoupled from the heating element (3).
7. Mikromechanische Einrichtung nach einem der Ansprü¬ che 1 bis 6, dadurch gekennzeichnet, daß der Regel¬ kreis auf demselben Halbleiterchip integriert ist, wie die mikromechanische Einrichtung.7. Micromechanical device according to one of claims 1 to 6, characterized in that the control circuit is integrated on the same semiconductor chip as the micromechanical device.
8. Mikromechanische Einrichtung nach einem der Ansprü¬ che 1 bis 7, dadurch gekennzeichnet, daß das posi¬ tionsveränderliche Element der Einrichtung wenigs¬ tens teilweise als Spiegel ausgebildet ist.8. Micromechanical device according to one of claims 1 to 7, characterized in that the position-changing element of the device is at least partially designed as a mirror.
9. Mikromechanische Einrichtung nach einem der Ansprü¬ che 1 bis 7, dadurch gekennzeichnet, daß das Sub¬ strat eine Ventilöffnung aufweist und das feste Ende des positionsveränderlichen Elementes durch eine Distanzschicht (10) in einem vorgebbaren Abstand vom Substrat gehalten wird.9. Micromechanical device according to one of claims 1 to 7, characterized in that the substrate has a valve opening and the fixed end of the position-changing element is held by a spacer layer (10) at a predeterminable distance from the substrate.
10.Mikromechanische Einrichtung nach einem der Ansprü¬ che 1 bis 9, dadurch gekennzeichnet, daß das Sub¬ strat und das positionsveränderliche Element mit jeweils wenigstens einer elektrischen Kontaktplatte (11 bzw. 12,13) versehen sind, und daß korrespon¬ dierende Kontaktplatten elektrische Schalter bilden. 10.Micromechanical device according to one of claims 1 to 9, characterized in that the substrate and the position-changing element are each provided with at least one electrical contact plate (11 or 12, 13), and that corresponding contact plates are electrical Form switches.
PCT/DE1989/000156 1988-03-22 1989-03-10 Micromechanical device WO1989009477A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3809597A DE3809597A1 (en) 1988-03-22 1988-03-22 MICROMECHANICAL ACTUATOR
DEP3809597.1 1988-03-22

Publications (1)

Publication Number Publication Date
WO1989009477A1 true WO1989009477A1 (en) 1989-10-05

Family

ID=6350368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1989/000156 WO1989009477A1 (en) 1988-03-22 1989-03-10 Micromechanical device

Country Status (2)

Country Link
DE (1) DE3809597A1 (en)
WO (1) WO1989009477A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0469749A1 (en) * 1990-07-31 1992-02-05 Hewlett-Packard Company Control valve utilizing mechanical beam buckling
WO1992014199A1 (en) * 1991-01-30 1992-08-20 Infusaid, Inc. Flow regulator
WO1995002180A1 (en) * 1993-07-06 1995-01-19 International Business Machines Corporation Calorimetric sensor
EP0874379A1 (en) * 1997-04-23 1998-10-28 Asulab S.A. Magnetic microswitch and method of making
WO1999024783A1 (en) * 1997-11-06 1999-05-20 Mcnc Microelectromechanical positioning apparatus
US5955817A (en) * 1996-12-16 1999-09-21 Mcnc Thermal arched beam microelectromechanical switching array
US6040748A (en) * 1997-04-21 2000-03-21 Asulab S.A. Magnetic microswitch
US6438954B1 (en) 2001-04-27 2002-08-27 3M Innovative Properties Company Multi-directional thermal actuator
US6483419B1 (en) 2000-09-12 2002-11-19 3M Innovative Properties Company Combination horizontal and vertical thermal actuator
US6531947B1 (en) 2000-09-12 2003-03-11 3M Innovative Properties Company Direct acting vertical thermal actuator with controlled bending
US6708491B1 (en) 2000-09-12 2004-03-23 3M Innovative Properties Company Direct acting vertical thermal actuator
EP3217020A1 (en) * 2016-03-10 2017-09-13 Hamilton Sundstrand Corporation Flapper and armature/flapper assembly for use in a servovalve

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3814617A1 (en) * 1988-04-29 1989-11-09 Fraunhofer Ges Forschung GRIP DEVICE
DE4031248A1 (en) * 1990-10-04 1992-04-09 Kernforschungsz Karlsruhe MICROMECHANICAL ELEMENT
DE4117892C1 (en) * 1991-05-31 1992-11-26 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe, De
DE4234237C2 (en) * 1992-10-10 2000-11-30 Bosch Gmbh Robert Temperature compensated micro actuator
DE19504689A1 (en) * 1995-02-13 1996-08-14 Thomas Dr Grauer Micro-mechanical seat valve with outlet plate
DE29804124U1 (en) * 1998-03-09 1999-07-08 Honeywell Bv Small valve that can be operated electrothermally
DE19849700C2 (en) * 1998-10-28 2001-06-28 Festo Ag & Co Micro valve arrangement
US6590313B2 (en) 1999-02-26 2003-07-08 Memscap S.A. MEMS microactuators located in interior regions of frames having openings therein and methods of operating same
US6236139B1 (en) 1999-02-26 2001-05-22 Jds Uniphase Inc. Temperature compensated microelectromechanical structures and related methods
US6137206A (en) * 1999-03-23 2000-10-24 Cronos Integrated Microsystems, Inc. Microelectromechanical rotary structures
US6218762B1 (en) 1999-05-03 2001-04-17 Mcnc Multi-dimensional scalable displacement enabled microelectromechanical actuator structures and arrays
US6291922B1 (en) 1999-08-25 2001-09-18 Jds Uniphase, Inc. Microelectromechanical device having single crystalline components and metallic components
US6255757B1 (en) 1999-09-01 2001-07-03 Jds Uniphase Inc. Microactuators including a metal layer on distal portions of an arched beam
US6211598B1 (en) 1999-09-13 2001-04-03 Jds Uniphase Inc. In-plane MEMS thermal actuator and associated fabrication methods
FR2818795B1 (en) 2000-12-27 2003-12-05 Commissariat Energie Atomique MICRO-DEVICE WITH THERMAL ACTUATOR
US6731492B2 (en) 2001-09-07 2004-05-04 Mcnc Research And Development Institute Overdrive structures for flexible electrostatic switch
DE10310072B4 (en) * 2002-03-08 2005-07-14 Erhard Prof. Dr.-Ing. Kohn Micromechanical actuator
DE10243997B4 (en) * 2002-09-21 2005-05-25 Festo Ag & Co. Micro valve in multi-layer construction
US20050092079A1 (en) * 2003-10-03 2005-05-05 Ales Richard A. Diaphragm monitoring for flow control devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1584914A (en) * 1978-03-02 1981-02-18 Standard Telephones Cables Ltd Semiconductor actuated switching devices
US4423401A (en) * 1982-07-21 1983-12-27 Tektronix, Inc. Thin-film electrothermal device
US4585209A (en) * 1983-10-27 1986-04-29 Harry E. Aine Miniature valve and method of making same
WO1987002472A1 (en) * 1985-10-16 1987-04-23 British Telecommunications Public Limited Company Movable member-mounting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1584914A (en) * 1978-03-02 1981-02-18 Standard Telephones Cables Ltd Semiconductor actuated switching devices
US4423401A (en) * 1982-07-21 1983-12-27 Tektronix, Inc. Thin-film electrothermal device
US4585209A (en) * 1983-10-27 1986-04-29 Harry E. Aine Miniature valve and method of making same
WO1987002472A1 (en) * 1985-10-16 1987-04-23 British Telecommunications Public Limited Company Movable member-mounting

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IBM JOURNAL OF RESEARCH AND DEVELOPMENT. Januar 1968, NEW YORK US Seite 113 - 118; R.J.WILFINGER: "The Resonistor:A Frequency Selective Device Utilising the Mechanical Resonance of a Silicon Substrate" siehe Seite 114, rechte Spalte, letzter Absatz Seite 117, linke Spalte, letzter Absatz; Figuren 8, 10, 11 *
TRANSDUCERS'87 1987, Seite 834 - 837; W.RIETHMULLER: "Micromechanical silicon actuators based on thermal expansion effects." siehe das ganze Dokument (in der Anmeldung erw{hnt) *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0469749A1 (en) * 1990-07-31 1992-02-05 Hewlett-Packard Company Control valve utilizing mechanical beam buckling
WO1992014199A1 (en) * 1991-01-30 1992-08-20 Infusaid, Inc. Flow regulator
WO1995002180A1 (en) * 1993-07-06 1995-01-19 International Business Machines Corporation Calorimetric sensor
US6324748B1 (en) 1996-12-16 2001-12-04 Jds Uniphase Corporation Method of fabricating a microelectro mechanical structure having an arched beam
US5955817A (en) * 1996-12-16 1999-09-21 Mcnc Thermal arched beam microelectromechanical switching array
US6023121A (en) * 1996-12-16 2000-02-08 Mcnc Thermal arched beam microelectromechanical structure
US6114794A (en) * 1996-12-16 2000-09-05 Cronos Integrated Microsystems, Inc. Thermal arched beam microelectromechanical valve
US6040748A (en) * 1997-04-21 2000-03-21 Asulab S.A. Magnetic microswitch
EP0874379A1 (en) * 1997-04-23 1998-10-28 Asulab S.A. Magnetic microswitch and method of making
WO1999024783A1 (en) * 1997-11-06 1999-05-20 Mcnc Microelectromechanical positioning apparatus
US6483419B1 (en) 2000-09-12 2002-11-19 3M Innovative Properties Company Combination horizontal and vertical thermal actuator
US6531947B1 (en) 2000-09-12 2003-03-11 3M Innovative Properties Company Direct acting vertical thermal actuator with controlled bending
US6708491B1 (en) 2000-09-12 2004-03-23 3M Innovative Properties Company Direct acting vertical thermal actuator
US6438954B1 (en) 2001-04-27 2002-08-27 3M Innovative Properties Company Multi-directional thermal actuator
EP3217020A1 (en) * 2016-03-10 2017-09-13 Hamilton Sundstrand Corporation Flapper and armature/flapper assembly for use in a servovalve
US10458440B2 (en) 2016-03-10 2019-10-29 Hamilton Sundstrand Corporation Flapper and armature/flapper assembly for use in a servovalve
US10954972B2 (en) 2016-03-10 2021-03-23 Hamilton Sunstrand Corporation Flapper and armature/flapper assembly for use in a servovalve

Also Published As

Publication number Publication date
DE3809597C2 (en) 1990-03-22
DE3809597A1 (en) 1989-10-05

Similar Documents

Publication Publication Date Title
WO1989009477A1 (en) Micromechanical device
US5536963A (en) Microdevice with ferroelectric for sensing or applying a force
DE4402085C2 (en) Process for the micro-technical production of a capacitive differential pressure sensor and micro-technical differential pressure sensor
EP0129736B1 (en) Sensor having polycrystalline silicon resistors
DE2919418C2 (en)
EP1410047B1 (en) Micromechanical component
DE102014217799B4 (en) Piezoelectric position sensor for piezoelectrically driven resonant micromirrors
DE3638390A1 (en) VIBRATION ACCELERATOR
EP0880671A2 (en) Microfabricated torsional cantilevers for sensitive force detection
EP0494143B1 (en) Device for measuring mechanical forces and dynamic effects
WO2002055967A1 (en) Micromechanical flow sensor with a tensile coating
WO2007087767A1 (en) Deflectable micromechanical system and use thereof
WO1996016319A1 (en) Pressure sensor
WO1997013130A2 (en) Static and dynamic pressure sensing electronic component
DE4228795C2 (en) Yaw rate sensor and manufacturing method
Fan Integrated micromachinery: moving structures on silicon chips
EP2138450B1 (en) Structure of electrodes for a micromechanical device
DE102005006958A1 (en) Measuring method for determination of piezo-coefficient involves sample comprises piezoelectric material on which bending load is set out causes its bending which is measured and determines the charge quantity present on it
US5189918A (en) "null" flow sensor
EP1332374A1 (en) Method and device for electrical zero balancing for a micromechanical component
DE4017265A1 (en) MICROMECHANICAL COMPONENT AND METHOD FOR PRODUCING THE SAME
EP1834162B1 (en) Microsystem component with a device deformable under the influence of temperature changes
EP2072456A2 (en) Micromechanical element with reduced stress in the membrane structure
WO1990003560A2 (en) Fabrication of oxynitride frontside microstructures
WO2023194385A1 (en) Micromechanical component comprising a movable deflection element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE