WO1990001347A1 - Chronic ventricular assist system - Google Patents

Chronic ventricular assist system Download PDF

Info

Publication number
WO1990001347A1
WO1990001347A1 PCT/US1989/003385 US8903385W WO9001347A1 WO 1990001347 A1 WO1990001347 A1 WO 1990001347A1 US 8903385 W US8903385 W US 8903385W WO 9001347 A1 WO9001347 A1 WO 9001347A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
blood
stator
rotor
motor
Prior art date
Application number
PCT/US1989/003385
Other languages
French (fr)
Inventor
John C. Moise
Richard C. Wampler
Kenneth C. Butler
Original Assignee
Nimbus Medical, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nimbus Medical, Inc. filed Critical Nimbus Medical, Inc.
Publication of WO1990001347A1 publication Critical patent/WO1990001347A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/824Hydrodynamic or fluid film bearings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • A61M60/178Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/237Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly axial components, e.g. axial flow pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/422Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/827Sealings between moving parts
    • A61M60/829Sealings between moving parts having a purge fluid supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • Y10S415/90Rotary blood pump

Definitions

  • This invention relates to an implantable continuous delivery ventricular assist system for patients with chronic cardiac disease, and more particularly to a system which does not require a discontinuity in the blood path wall for power transmission into the pump.
  • Background of the invention Currently available ventricular assist systems using a continuous delivery blood pump, whether intravascular or implanted, have a common problem: somewhere in the system, the drive for the pump blades has to traverse the wall of the blood path. This is equally true of the shaft which drives the impeller of a centrifugal pump such as disclosed in
  • the present invention provides an implantable axial flow blood pumping system suitable for chronic ventricular assist which overcomes the above-described problems, yet whose construction and operation uses existing technology to advantage, and which can function with only a small percutaneous access for purge fluid and electrical power.
  • the pump of this invention avoids the need for a purge fluid supply to traverse the wall of the blood path by introducing the purge fluid into the pump stator through the interior of a stator blade.
  • the need for torque transmission through the blood path wall is avoided by placing a permanent magnet rotor on the pump rotor (i.e. integrating the motor rotor with the rotatable pump element), and placing all motor windings outside the blood path.
  • the inventive pump is an order of magnitude lighter and smaller, and less subject to motion or vibration, than previously known implantable blood pumps of the same capacity. Also, the small diameter (on the order of 3mm) of the percutaneous access tube required minimizes the physiological stresses from that source.
  • the pump of this invention consists of a cylindrical blood tube in which a pump stator is coaxially suspended by a set of stator blades, one of which also serve as a conduit to convey purge fluid from the outside of the blood tube through the pump stator to the pump bearings.
  • a hermetically sealed motor stator provides power to the pump rotor which is supported in the pump stator for rotation coaxially therewith.
  • the relative positions of the motor stator and rotor provide a very good heat conduction path from the motor stator iron into the blood. This is important for thermal management: tolerance of the implant is considerably improved by driving the heat generated by the motor into the blood rather than into the surrounding tissues.
  • the use of the short, straight blood tube and the use of an axial flow pump with common pump and motor bearings gives the inventive device a compactness, even at flow rates of 6 L/min or more, which greatly enhances its anatomic compatibility and allows it to be placed adjacent to the heart. Also, the absence of any eddy-causing obstructions or changes in flow direction throughout the device greatly reduces the likelihood of thrombus formation. It is therefore the object of the invention to provide a very compact, high-flow implantable axial flow blood pump which is well tolerated by the body.
  • Fig. 1 is an axial section of one embodiment of the pump of this invention
  • Fig. 2 is a transverse section along line 2-2 of Fig. 1;
  • Fig. 3 is an axial section of another embodiment of the pump of this invention.
  • Fig. 4 is a schematic illustration showing the percutaneous purge fluid and power supplies of the preferred embodiment of the invention.
  • the pump 10 depicted in Figs. 1 and 2 essentially consists of a blood tube 12 surrounded by a hermetically sealed motor stator 14.
  • An axial flow blood pump 16 is disposed coaxially within the blood tube 12 and forms therewith an annular blood duct which is a part of the blood path of the inventive system.
  • the pump 16 is composed of a pump rotor 18 which includes the motor rotor 19 and blades 24, 26, and a pump stator 20 including a stator housing 21 which is fixedly mounted in the tube 12 by stator blades 22.
  • the pump rotor 18 has a hub 23 which carries one or more sets of rotor blades 24, 26,.
  • journal bearing 28 is slidably mounted in the cavity 35 formed by sleeve 36 within stator housing 21.
  • the sleeve 36 is preferably made of a compatible bearing material because it can touch bearings 28 and 30 under startup or severe loading conditions.
  • Spring 38 has a dual function: it biases bearing 30 into engagement with the inwardly directed end of sleeve 36, and the surfaces of face seal 34 against each other; and its torque also causes bearing 28 to rotate with shaft 27 even though it is not attached to the shaft 27.
  • a blood-compatible purge fluid e.g. saline solution
  • a blood-compatible purge fluid for the hydrodynamic surfaces 28, 30 and 34 is supplied to the pump 10 from outside the patient's body through a lumen of the percutaneous conduit 40 which is connected to a passage 41 extending through one of the stator blades 22 and through housing 21 and sleeve 36 into the cavity 35.
  • the purge fluid is discharged into the blood at face seal 34.
  • the motor stator 14 is enclosed in a hermetically sealed motor housing 42.
  • the motor formed by motor stator 14 and motor rotor 19 is preferably a 3 -phase brushless DC motor.
  • Power is preferably supplied to the windings 44, 46 of the motor stator 14 from an extracorporeal power source, e.g. a power supply package carried by the patient, through appropriate wiring 48 extending through a second lumen of the percutaneous tube 40, and into the motor housing 42 through a fluid-tight seal 49.
  • the purge fluid supply connection 50 is preferably located outside the housing 42 to prevent accidental leakage of saline fluid into the motor housing 42.
  • the motor Inasmuch as most of the heat developed in the operation of the motor is generated in the motor and conveyed by the stator iron, the motor is effectively cooled by the blood and therefore imposes little thermal load on the tissues in which it is implanted. For that reason, and also because of the relatively vibration-free operation of an axial flow pump, the pump 10 is physiologically much more tolerable than prior art devices.
  • Fig. 2 illustrates the disposition of the stator blades 22. It will be understood that although four stator blades are shown, the number of stator blades used will depend upon the circumstances of a particular design and is not part of this invention.
  • Fig. 3 shows an alternative embodiment of the device of this invention.
  • the motor rotor is axially positioned within the pump stator housing 21, and the pump rotor portion axially outside the stator housing 21 merely carries the rotor blades.
  • the rotational torque is transferred directly from the motor rotor to the rotor blades, and the bearings in the stator need only support the overhang load.
  • the overhang bending moment is greater in the Fig. 1 embodiment because of the weight of the motor rotor and its distance from the bearings .
  • the embodiment of Fig. 3 features a reduced overhang bending moment, and therefore imposes less load on the bearings.
  • a significant clearance must be maintained in the configuration of Fig. 3 between the motor rotor 19 and the stator housing 21 to minimize fluid losses. This increases the magnetic gap between the motor stator and rotor, and the electromagnetic losses associated therewith.
  • the structure of the pump 10 is the same as that described above in connection with Fig. 1, except that the motor rotor 20 is positioned at the left end of shaft 27 within the stator housing 21. This allows the overhanging rotor hub 23 to be made shorter, thus providing a better balance and imposing less of a bending moment on shaft 27.
  • the sources of purge fluid and electrical power for the motor may, as shown in Fig. 4, be a constant-volume fluid supply and delivery device 60 and a motor power supply 62 including a power source and the necessary electronics for controlling the motor.
  • the devices 60 and 62 may be carried by the patient on an appropriate belt 64.

Abstract

An implantable ventricular assist system uses a small high-speed axial flow blood pump (16) which may be grafted into the patient's circulatory system. The pump includes a blood tube (12) in which the pump rotor (18) and stator (20) are coaxially contained, and a motor stator (14) surrounding the blood duct. A permanent magnet motor rotor (19) is integral with the pump rotor (18). Purge fluid for the hydrodynamic bearings (28, 30) of the device and power for the motor are preferably percutaneously introduced from extracorporeal sources worn by the patient. The purge fluid is introduced into the pump stator blades (22). This construction avoids the creation of discontinuities in the blood path wall due to the routing of drive power and/or fluid supply elements through the blood path wall. The described construction greatly reduces the size of the implant needed for a given blood flow rate and enhances its physiological compatibility with the body.

Description

CHRONIC VENTRICULAR ASSIST SYSTEM
Field of the invention
This invention relates to an implantable continuous delivery ventricular assist system for patients with chronic cardiac disease, and more particularly to a system which does not require a discontinuity in the blood path wall for power transmission into the pump. Background of the invention Currently available ventricular assist systems using a continuous delivery blood pump, whether intravascular or implanted, have a common problem: somewhere in the system, the drive for the pump blades has to traverse the wall of the blood path. This is equally true of the shaft which drives the impeller of a centrifugal pump such as disclosed in
U.S. Patent No. 4,704,121 and of the drive cable of U.S. Patent No. 4,625,712 which must traverse the wall of the femoral artery.
Wherever the drive traverses the wall of the blood path, a discontinuity exists which involves a danger of thrombus formation. Although this danger is substantially alleviated in centrifugal pumps by the invention disclosed in U.S. Patent No. 4,704,121, it still exists in the physiologically much more desirable axial flow pumps. Ideally, this problem can be solved by an axial flow pump with a magnetically suspended rotor, such as that proposed in copending application Serial No. 07/036,304, which requires no bearing purge fluid supply and no penetration of the blood path wall; nor, for that matter, any percutaneous device. However, magnetically suspended blood pumps belong to a developing technology, and their commercial viability is still in the future.
A major problem with implanted cardiac assist devices is the almost universal emergence of infection when a device has been implanted for several months. It is believed that infection is related not only to sepsis of the percutaneous access, but also to the weight, relative motion and surface area of the device itself. Summary of the invention
The present invention provides an implantable axial flow blood pumping system suitable for chronic ventricular assist which overcomes the above-described problems, yet whose construction and operation uses existing technology to advantage, and which can function with only a small percutaneous access for purge fluid and electrical power. The pump of this invention avoids the need for a purge fluid supply to traverse the wall of the blood path by introducing the purge fluid into the pump stator through the interior of a stator blade. The need for torque transmission through the blood path wall is avoided by placing a permanent magnet rotor on the pump rotor (i.e. integrating the motor rotor with the rotatable pump element), and placing all motor windings outside the blood path. The incidence of infection is reduced because the inventive pump is an order of magnitude lighter and smaller, and less subject to motion or vibration, than previously known implantable blood pumps of the same capacity. Also, the small diameter (on the order of 3mm) of the percutaneous access tube required minimizes the physiological stresses from that source.
The pump of this invention consists of a cylindrical blood tube in which a pump stator is coaxially suspended by a set of stator blades, one of which also serve as a conduit to convey purge fluid from the outside of the blood tube through the pump stator to the pump bearings. A hermetically sealed motor stator provides power to the pump rotor which is supported in the pump stator for rotation coaxially therewith.
The relative positions of the motor stator and rotor provide a very good heat conduction path from the motor stator iron into the blood. This is important for thermal management: tolerance of the implant is considerably improved by driving the heat generated by the motor into the blood rather than into the surrounding tissues. The use of the short, straight blood tube and the use of an axial flow pump with common pump and motor bearings gives the inventive device a compactness, even at flow rates of 6 L/min or more, which greatly enhances its anatomic compatibility and allows it to be placed adjacent to the heart. Also, the absence of any eddy-causing obstructions or changes in flow direction throughout the device greatly reduces the likelihood of thrombus formation. It is therefore the object of the invention to provide a very compact, high-flow implantable axial flow blood pump which is well tolerated by the body.
It is another object of the invention to provide an implantable ventricular assist system which has no drive or fluid supply elements traversing the wall of the blood path, and in which the heat generated by the motor is largely absorbed by the pumped blood.
It is a further object of the invention to provide an implantable blood pump system with percutaneous access in which the diameter of the required percutaneous access is minimized.
Brief description of the drawing
Fig. 1 is an axial section of one embodiment of the pump of this invention; Fig. 2 is a transverse section along line 2-2 of Fig. 1;
Fig. 3 is an axial section of another embodiment of the pump of this invention; and
Fig. 4 is a schematic illustration showing the percutaneous purge fluid and power supplies of the preferred embodiment of the invention.
Description of the preferred embodiment
The pump 10 depicted in Figs. 1 and 2 essentially consists of a blood tube 12 surrounded by a hermetically sealed motor stator 14. An axial flow blood pump 16 is disposed coaxially within the blood tube 12 and forms therewith an annular blood duct which is a part of the blood path of the inventive system. The pump 16 is composed of a pump rotor 18 which includes the motor rotor 19 and blades 24, 26, and a pump stator 20 including a stator housing 21 which is fixedly mounted in the tube 12 by stator blades 22. The pump rotor 18 has a hub 23 which carries one or more sets of rotor blades 24, 26,. and which is mounted on a shaft 27 supported for rotation in pump stator 20 by a hydrodynamic journal bearing 28, and by a combined hydrodynamic journal and thrust bearing 30 fixed to the shaft 27. The outer surfaces of bearings 28 and 30 are preferably grooved for hydrodynamic reasons. Journal bearing 28 is slidably mounted in the cavity 35 formed by sleeve 36 within stator housing 21. The sleeve 36 is preferably made of a compatible bearing material because it can touch bearings 28 and 30 under startup or severe loading conditions. Spring 38 has a dual function: it biases bearing 30 into engagement with the inwardly directed end of sleeve 36, and the surfaces of face seal 34 against each other; and its torque also causes bearing 28 to rotate with shaft 27 even though it is not attached to the shaft 27.
A blood-compatible purge fluid (e.g. saline solution) for the hydrodynamic surfaces 28, 30 and 34 is supplied to the pump 10 from outside the patient's body through a lumen of the percutaneous conduit 40 which is connected to a passage 41 extending through one of the stator blades 22 and through housing 21 and sleeve 36 into the cavity 35. The purge fluid is discharged into the blood at face seal 34.
The motor stator 14 is enclosed in a hermetically sealed motor housing 42. the motor formed by motor stator 14 and motor rotor 19 is preferably a 3 -phase brushless DC motor.
Power is preferably supplied to the windings 44, 46 of the motor stator 14 from an extracorporeal power source, e.g. a power supply package carried by the patient, through appropriate wiring 48 extending through a second lumen of the percutaneous tube 40, and into the motor housing 42 through a fluid-tight seal 49. The purge fluid supply connection 50 is preferably located outside the housing 42 to prevent accidental leakage of saline fluid into the motor housing 42.
Inasmuch as most of the heat developed in the operation of the motor is generated in the motor and conveyed by the stator iron, the motor is effectively cooled by the blood and therefore imposes little thermal load on the tissues in which it is implanted. For that reason, and also because of the relatively vibration-free operation of an axial flow pump, the pump 10 is physiologically much more tolerable than prior art devices.
Fig. 2 illustrates the disposition of the stator blades 22. It will be understood that although four stator blades are shown, the number of stator blades used will depend upon the circumstances of a particular design and is not part of this invention.
Fig. 3 shows an alternative embodiment of the device of this invention. In the embodiment of Fig. 3, the motor rotor is axially positioned within the pump stator housing 21, and the pump rotor portion axially outside the stator housing 21 merely carries the rotor blades.
In comparing the structures of Figs. 1 and 3, it should be noted that in the embodiment of Fig. 1 , where the motor rotor 19 is on the part of the pump rotor 18 which is cantilevered in the front of pump stator 20 (blood flows from right to left in
Figs. 1 and 3) and which is in direct contact with the blood, the rotational torque is transferred directly from the motor rotor to the rotor blades, and the bearings in the stator need only support the overhang load. On the other hand, the overhang bending moment is greater in the Fig. 1 embodiment because of the weight of the motor rotor and its distance from the bearings .
By contrast, the embodiment of Fig. 3 features a reduced overhang bending moment, and therefore imposes less load on the bearings. On the other hand, a significant clearance must be maintained in the configuration of Fig. 3 between the motor rotor 19 and the stator housing 21 to minimize fluid losses. This increases the magnetic gap between the motor stator and rotor, and the electromagnetic losses associated therewith. In the embodiment of Fig. 3, the structure of the pump 10 is the same as that described above in connection with Fig. 1, except that the motor rotor 20 is positioned at the left end of shaft 27 within the stator housing 21. This allows the overhanging rotor hub 23 to be made shorter, thus providing a better balance and imposing less of a bending moment on shaft 27.
The pump of this invention can be used in several different ways. In its preferred embodiment, the sources of purge fluid and electrical power for the motor may, as shown in Fig. 4, be a constant-volume fluid supply and delivery device 60 and a motor power supply 62 including a power source and the necessary electronics for controlling the motor. The devices 60 and 62 may be carried by the patient on an appropriate belt 64.

Claims

1. An implantable ventricular assist system for patients with chronic cardiac disease, comprising: a) a blood pump including a blood tube which forms post of a blood path within said patient; b) a pump stator mounted coaxially within said blood tube to form an annular blood duct within said tube, said pump stator being mounted within said blood tube by a plurality of stator blades; c) a pump rotor supported for rotation in said pump stator on hydrodynamic bearings; d) a permanent magnet motor rotor integral with said pump rotor; and e) a motor stator positioned on the outside of said blood tube; and f) whereby power transmission component creates any discontinuity in the wall of said blood path.
2. The system of Claim 1, farther comprising: g) means for supplying purge fluid to said bearings from the outside of said blood tube through one of said stator blades; h) whereby no purge fluid supply component creates any discontinuity in the wall of said blood path.
3. The system of Claim 1, in which the iron of said motor stator has a major surface in thermally conductive relation with the blood in said blood tube, whereby said motor stator is cooled by said blood.
4. An implantable chronic ventricular assist system, comprising: a) an axial flow pump including: i) a substantially cylindrical blood duct; ii) a substantially cylindrical pump stator, said pump stator including a plurality of stator blades, said stator blades being fixed to said blood tube and said pump stator so as to support said pump stator coaxially within said blood duct; iii) a pump rotor including a shaft journalled in said pump stator on hydrodynamic bearings so as to support said pump rotor coaxially within said blood tube, said pump rotor carrying a motor rotor and a plurality of rotor blades within said blood tube; iv) a sealed motor housing surrounding a portion of said blood tube, and v) a motor stator disposed within said housing; and b) means for supplying purge fluid to said bearings, and electrical power to said motor stator, said purge fluid supplying means including a purge fluid supply passage from the outside of said blood duct to the interior of said pump stator through one of said stator blades.
5. The system of Claim 4, in which said purge fluid is discharged into said blood tube at an interface between said pump stator and said pump rotor.
6. The system of Claim 5, in which the outside entrance to said supply passage is located outside said motor housing.
7. The system of Claim 4, in which said purge fluid supply means include i) an extracorporeal purge fluid source; ii) percutaneous fluid connection means connectable to said purge fluid source to convey purge fluid from said source into the patient's body; and iii) implanted purge fluid conduit means connected to said percutaneous fluid connection means and said supply passage for conveying purge fluid from said source to said pump stator.
8. The system of Claim 4, in which said electrical power supply means include implanted cabling means extending from an extracorporeal location to said pump, said cabling means entering said motor housing through a fluid-tight seal for connection to said motor stator.
9. The system of Claim 4, in which said purge fluid and power supply means include a single percutaneous conduit for percutaneously conveying both power and purge fluid.
10. The system of Claim 1, in which said motor rotor is positioned on a portion of said pump rotor which is in direct contact with the blood in said annular blood duct.
1 1 . The system of Claim 10, in which said pump rotor portion is cantilevered in front of said pump stator.
12. The system of Claim 1, in which said motor rotor is positioned on a portion of said pump rotor located inside said stator.
PCT/US1989/003385 1988-08-08 1989-08-07 Chronic ventricular assist system WO1990001347A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US229,624 1988-08-08
US07/229,624 US4908012A (en) 1988-08-08 1988-08-08 Chronic ventricular assist system

Publications (1)

Publication Number Publication Date
WO1990001347A1 true WO1990001347A1 (en) 1990-02-22

Family

ID=22862027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1989/003385 WO1990001347A1 (en) 1988-08-08 1989-08-07 Chronic ventricular assist system

Country Status (4)

Country Link
US (1) US4908012A (en)
AU (1) AU4062789A (en)
CA (1) CA1327677C (en)
WO (1) WO1990001347A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368438A (en) * 1993-06-28 1994-11-29 Baxter International Inc. Blood pump
EP0764448A2 (en) * 1995-09-22 1997-03-26 United States Surgical Corporation Cardiac support device
WO1999049912A1 (en) * 1998-03-30 1999-10-07 Nimbus, Inc. Sealed motor stator assembly for implantable blood pump
CN104379185A (en) * 2012-05-11 2015-02-25 海德威公司 Silver motor stator for implantable blood pump

Families Citing this family (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927407A (en) * 1989-06-19 1990-05-22 Regents Of The University Of Minnesota Cardiac assist pump with steady rate supply of fluid lubricant
US5211546A (en) * 1990-05-29 1993-05-18 Nu-Tech Industries, Inc. Axial flow blood pump with hydrodynamically suspended rotor
US5112200A (en) * 1990-05-29 1992-05-12 Nu-Tech Industries, Inc. Hydrodynamically suspended rotor axial flow blood pump
IT1243345B (en) * 1990-07-16 1994-06-10 Dideco Spa CENTRIFUGAL PUMP FOR LIQUID, IN PARTICULAR BLOOD IN EXTRA-BODY CIRCULATION
US5205721A (en) * 1991-02-13 1993-04-27 Nu-Tech Industries, Inc. Split stator for motor/blood pump
US5344385A (en) * 1991-09-30 1994-09-06 Thoratec Laboratories Corporation Step-down skeletal muscle energy conversion system
US5300112A (en) * 1992-07-14 1994-04-05 Aai Corporation Articulated heart pump
US5290227A (en) * 1992-08-06 1994-03-01 Pasque Michael K Method of implanting blood pump in ascending aorta or main pulmonary artery
US5730722A (en) * 1992-08-19 1998-03-24 Wilk; Peter J. Method and apparatus for supplying a medical treatment composition to a patient
US5344443A (en) * 1992-09-17 1994-09-06 Rem Technologies, Inc. Heart pump
US5376114A (en) * 1992-10-30 1994-12-27 Jarvik; Robert Cannula pumps for temporary cardiac support and methods of their application and use
JPH06346917A (en) * 1993-06-03 1994-12-20 Shicoh Eng Co Ltd Pressure-proof water-proof sealing system using unidirectional dynamic pressure bearing
US5527159A (en) * 1993-11-10 1996-06-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Rotary blood pump
US5957672A (en) * 1993-11-10 1999-09-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Blood pump bearing system
US5947892A (en) * 1993-11-10 1999-09-07 Micromed Technology, Inc. Rotary blood pump
US5762599A (en) * 1994-05-02 1998-06-09 Influence Medical Technologies, Ltd. Magnetically-coupled implantable medical devices
US5643215A (en) * 1995-02-24 1997-07-01 The Research Foundation Of State University Of New York Gas exchange apparatus and method
US5601894A (en) * 1995-07-06 1997-02-11 Johns Hopkins Hospital Insulated intravenous administration tubing and drip chambers
DE59603933D1 (en) * 1995-08-24 2000-01-20 Sulzer Electronics Ag Winterth ELECTRIC MOTOR
US5924975A (en) * 1995-08-30 1999-07-20 International Business Machines Corporation Linear pump
DE19535781C2 (en) * 1995-09-26 1999-11-11 Fraunhofer Ges Forschung Device for active flow support of body fluids
US5840070A (en) 1996-02-20 1998-11-24 Kriton Medical, Inc. Sealless rotary blood pump
US5695471A (en) * 1996-02-20 1997-12-09 Kriton Medical, Inc. Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings
DE19613564C1 (en) 1996-04-04 1998-01-08 Guenter Prof Dr Rau Intravascular blood pump
US5911685A (en) * 1996-04-03 1999-06-15 Guidant Corporation Method and apparatus for cardiac blood flow assistance
US5814011A (en) * 1996-04-25 1998-09-29 Medtronic, Inc. Active intravascular lung
US5746709A (en) * 1996-04-25 1998-05-05 Medtronic, Inc. Intravascular pump and bypass assembly and method for using the same
US6254359B1 (en) * 1996-05-10 2001-07-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for providing a jewel bearing for supporting a pump rotor shaft
US6015272A (en) 1996-06-26 2000-01-18 University Of Pittsburgh Magnetically suspended miniature fluid pump and method of designing the same
US6244835B1 (en) * 1996-06-26 2001-06-12 James F. Antaki Blood pump having a magnetically suspended rotor
US5851174A (en) * 1996-09-17 1998-12-22 Robert Jarvik Cardiac support device
ES2227718T3 (en) * 1996-10-04 2005-04-01 United States Surgical Corporation CIRCULATORY SUPPORT SYSTEM.
US5964694A (en) * 1997-04-02 1999-10-12 Guidant Corporation Method and apparatus for cardiac blood flow assistance
US7425212B1 (en) * 1998-06-10 2008-09-16 Asthmatx, Inc. Devices for modification of airways by transfer of energy
US6283988B1 (en) 1997-04-07 2001-09-04 Broncus Technologies, Inc. Bronchial stenter having expandable electrodes
US6634363B1 (en) 1997-04-07 2003-10-21 Broncus Technologies, Inc. Methods of treating lungs having reversible obstructive pulmonary disease
US6488673B1 (en) * 1997-04-07 2002-12-03 Broncus Technologies, Inc. Method of increasing gas exchange of a lung
US7027869B2 (en) 1998-01-07 2006-04-11 Asthmatx, Inc. Method for treating an asthma attack
US7992572B2 (en) 1998-06-10 2011-08-09 Asthmatx, Inc. Methods of evaluating individuals having reversible obstructive pulmonary disease
AUPO902797A0 (en) * 1997-09-05 1997-10-02 Cortronix Pty Ltd A rotary blood pump with hydrodynamically suspended impeller
US6048363A (en) 1997-05-13 2000-04-11 Nagyszalanczy; Lorant Centrifugal blood pump apparatus
US7182727B2 (en) * 1997-07-11 2007-02-27 A—Med Systems Inc. Single port cardiac support apparatus
US6123725A (en) * 1997-07-11 2000-09-26 A-Med Systems, Inc. Single port cardiac support apparatus
US6395026B1 (en) 1998-05-15 2002-05-28 A-Med Systems, Inc. Apparatus and methods for beating heart bypass surgery
US6250880B1 (en) * 1997-09-05 2001-06-26 Ventrassist Pty. Ltd Rotary pump with exclusively hydrodynamically suspended impeller
US6610004B2 (en) 1997-10-09 2003-08-26 Orqis Medical Corporation Implantable heart assist system and method of applying same
UA56262C2 (en) 1997-10-09 2003-05-15 Орквіс Медікел Корпорейшн Extracardiac pumping system for supplementing blood circulation
US6889082B2 (en) 1997-10-09 2005-05-03 Orqis Medical Corporation Implantable heart assist system and method of applying same
US6387037B1 (en) 1997-10-09 2002-05-14 Orqis Medical Corporation Implantable heart assist system and method of applying same
US6390969B1 (en) 1997-10-09 2002-05-21 Orqis Medical Corporation Implantable heart assist system and method of applying same
US6120537A (en) * 1997-12-23 2000-09-19 Kriton Medical, Inc. Sealless blood pump with means for avoiding thrombus formation
US7921855B2 (en) * 1998-01-07 2011-04-12 Asthmatx, Inc. Method for treating an asthma attack
US6176822B1 (en) 1998-03-31 2001-01-23 Impella Cardiotechnik Gmbh Intracardiac blood pump
US8181656B2 (en) * 1998-06-10 2012-05-22 Asthmatx, Inc. Methods for treating airways
US20070123958A1 (en) * 1998-06-10 2007-05-31 Asthmatx, Inc. Apparatus for treating airways in the lung
US7198635B2 (en) 2000-10-17 2007-04-03 Asthmatx, Inc. Modification of airways by application of energy
US6042347A (en) * 1998-07-27 2000-03-28 Scholl; Frank G. Pedia-cadio pump
US6251061B1 (en) 1998-09-09 2001-06-26 Scimed Life Systems, Inc. Cardiac assist device using field controlled fluid
US6050987A (en) * 1998-09-21 2000-04-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Tubular coupling
US6245007B1 (en) 1999-01-28 2001-06-12 Terumo Cardiovascular Systems Corporation Blood pump
AU4553300A (en) * 1999-04-20 2000-11-02 Berlin Heart Ag Device for the axial transport of fluid media
AUPP995999A0 (en) * 1999-04-23 1999-05-20 University Of Technology, Sydney Non-contact estimation and control system
US6234772B1 (en) 1999-04-28 2001-05-22 Kriton Medical, Inc. Rotary blood pump
US6342071B1 (en) 1999-07-08 2002-01-29 Benjamin David Pless Ambulatory blood pump
US6247892B1 (en) 1999-07-26 2001-06-19 Impsa International Inc. Continuous flow rotary pump
US6595743B1 (en) 1999-07-26 2003-07-22 Impsa International Inc. Hydraulic seal for rotary pumps
US7022100B1 (en) 1999-09-03 2006-04-04 A-Med Systems, Inc. Guidable intravascular blood pump and related methods
US8251070B2 (en) 2000-03-27 2012-08-28 Asthmatx, Inc. Methods for treating airways
US7104987B2 (en) 2000-10-17 2006-09-12 Asthmatx, Inc. Control system and process for application of energy to airway walls and other mediums
CA2374989A1 (en) * 2002-03-08 2003-09-08 Andre Garon Ventricular assist device comprising a dual inlet hybrid flow blood pump
US6936222B2 (en) * 2002-09-13 2005-08-30 Kenneth L. Franco Methods, apparatuses, and applications for compliant membrane blood gas exchangers
CA2428741A1 (en) * 2003-05-13 2004-11-13 Cardianove Inc. Dual inlet mixed-flow blood pump
US20040226556A1 (en) 2003-05-13 2004-11-18 Deem Mark E. Apparatus for treating asthma using neurotoxin
US7682301B2 (en) * 2003-09-18 2010-03-23 Thoratec Corporation Rotary blood pump
US7229258B2 (en) * 2003-09-25 2007-06-12 Medforte Research Foundation Streamlined unobstructed one-pass axial-flow pump
US7070398B2 (en) * 2003-09-25 2006-07-04 Medforte Research Foundation Axial-flow blood pump with magnetically suspended, radially and axially stabilized impeller
US20050085683A1 (en) * 2003-10-15 2005-04-21 Bolling Steven F. Implantable heart assist system and method of applying same
US20050131385A1 (en) * 2003-12-12 2005-06-16 Bolling Steven F. Cannulae for selectively enhancing blood flow
US20050277870A1 (en) * 2004-06-10 2005-12-15 Robert Pecor Cannula having reduced flow resistance
US7445592B2 (en) * 2004-06-10 2008-11-04 Orqis Medical Corporation Cannulae having reduced flow resistance
US7393181B2 (en) 2004-09-17 2008-07-01 The Penn State Research Foundation Expandable impeller pump
US7972122B2 (en) * 2005-04-29 2011-07-05 Heartware, Inc. Multiple rotor, wide blade, axial flow pump
US7699586B2 (en) * 2004-12-03 2010-04-20 Heartware, Inc. Wide blade, axial flow pump
US8419609B2 (en) 2005-10-05 2013-04-16 Heartware Inc. Impeller for a rotary ventricular assist device
US7226277B2 (en) * 2004-12-22 2007-06-05 Pratt & Whitney Canada Corp. Pump and method
US7878966B2 (en) * 2005-02-04 2011-02-01 Boston Scientific Scimed, Inc. Ventricular assist and support device
US20060184199A1 (en) * 2005-02-14 2006-08-17 O'leary Shawn Apparatus and methods for reducing bleeding from a cannulation site
US20060224110A1 (en) * 2005-03-17 2006-10-05 Scott Michael J Methods for minimally invasive vascular access
EP1898971B1 (en) 2005-06-06 2015-03-11 The Cleveland Clinic Foundation Blood pump
US8672611B2 (en) 2006-01-13 2014-03-18 Heartware, Inc. Stabilizing drive for contactless rotary blood pump impeller
EP3477103B1 (en) 2006-01-13 2022-03-02 HeartWare, Inc. Rotary blood pump
EP3115070B8 (en) 2006-03-23 2019-05-08 The Penn State Research Foundation Heart assist device with expandable impeller pump
US20070231135A1 (en) 2006-03-31 2007-10-04 Orqis Medical Corporation Rotary Blood Pump
US20090112312A1 (en) 2007-02-26 2009-04-30 Larose Jeffrey A Intravascular ventricular assist device
US20090104058A1 (en) * 2007-10-18 2009-04-23 Jack Chen Sealed pump
WO2009099644A1 (en) 2008-02-08 2009-08-13 Heartware, Inc. Ventricular assist device for intraventricular placement
US8483831B1 (en) 2008-02-15 2013-07-09 Holaira, Inc. System and method for bronchial dilation
JP2011519699A (en) 2008-05-09 2011-07-14 インノブアトイブエ プルモナルイ ソルウトイオンス,インコーポレイティッド Systems, assemblies and methods for treatment of bronchial trees
WO2009157408A1 (en) 2008-06-23 2009-12-30 テルモ株式会社 Blood pump apparatus
US9067005B2 (en) 2008-12-08 2015-06-30 Thoratec Corporation Centrifugal pump apparatus
JP5378010B2 (en) 2009-03-05 2013-12-25 ソラテック コーポレーション Centrifugal pump device
US8770945B2 (en) 2009-03-06 2014-07-08 Thoratec Corporation Centrifugal pump apparatus
JP5815516B2 (en) 2009-07-01 2015-11-17 ザ・ペン・ステイト・リサーチ・ファウンデイションThe Penn State Research Foundation Blood pump with expandable cannula
WO2011013483A1 (en) 2009-07-29 2011-02-03 Ntn株式会社 Rotation drive device and centrifugal pump device
KR101722290B1 (en) 2009-10-27 2017-03-31 호라이라 인코포레이티드 Delivery devices with coolable energy emitting assemblies
US8690749B1 (en) 2009-11-02 2014-04-08 Anthony Nunez Wireless compressible heart pump
CN102711645B (en) 2009-11-11 2016-12-28 赫莱拉公司 For processing tissue and controlling narrow system and device
US8911439B2 (en) 2009-11-11 2014-12-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
JP5443197B2 (en) 2010-02-16 2014-03-19 ソラテック コーポレーション Centrifugal pump device
EP2554191B1 (en) 2010-03-26 2019-05-08 Thoratec Corporation Centrifugal blood pump device
JP5681403B2 (en) 2010-07-12 2015-03-11 ソーラテック コーポレイション Centrifugal pump device
JP5577506B2 (en) 2010-09-14 2014-08-27 ソーラテック コーポレイション Centrifugal pump device
US9265870B2 (en) 2010-10-13 2016-02-23 Thoratec Corporation Pumping blood
US8597170B2 (en) 2011-01-05 2013-12-03 Thoratec Corporation Catheter pump
US8485961B2 (en) 2011-01-05 2013-07-16 Thoratec Corporation Impeller housing for percutaneous heart pump
WO2012094535A2 (en) 2011-01-06 2012-07-12 Thoratec Corporation Percutaneous heart pump
WO2012094641A2 (en) 2011-01-06 2012-07-12 Thoratec Corporation Percutaneous heart pump
EP2693609B1 (en) 2011-03-28 2017-05-03 Thoratec Corporation Rotation and drive device and centrifugal pump device using same
WO2013056131A1 (en) 2011-10-13 2013-04-18 Reichenbach Steven H Pump and method for mixed flow blood pumping
US20130138205A1 (en) 2011-11-28 2013-05-30 MI-VAD, Inc. Ventricular assist device and method
JP6083929B2 (en) 2012-01-18 2017-02-22 ソーラテック コーポレイション Centrifugal pump device
WO2013134319A1 (en) 2012-03-05 2013-09-12 Justin Aron Callaway Modular implantable medical pump
US9446179B2 (en) 2012-05-14 2016-09-20 Thoratec Corporation Distal bearing support
US9327067B2 (en) 2012-05-14 2016-05-03 Thoratec Corporation Impeller for catheter pump
GB2504176A (en) 2012-05-14 2014-01-22 Thoratec Corp Collapsible impeller for catheter pump
US8721517B2 (en) 2012-05-14 2014-05-13 Thoratec Corporation Impeller for catheter pump
US9872947B2 (en) 2012-05-14 2018-01-23 Tc1 Llc Sheath system for catheter pump
EP3868321B1 (en) 2012-06-04 2022-11-16 Boston Scientific Scimed, Inc. Systems for treating tissue of a passageway within a body
US9358329B2 (en) 2012-07-03 2016-06-07 Thoratec Corporation Catheter pump
EP4186557A1 (en) 2012-07-03 2023-05-31 Tc1 Llc Motor assembly for catheter pump
US9421311B2 (en) 2012-07-03 2016-08-23 Thoratec Corporation Motor assembly for catheter pump
US9592086B2 (en) 2012-07-24 2017-03-14 Boston Scientific Scimed, Inc. Electrodes for tissue treatment
US9339636B1 (en) 2012-09-06 2016-05-17 Mubashir H Khan Subcutaneous fluid pump
US9272132B2 (en) 2012-11-02 2016-03-01 Boston Scientific Scimed, Inc. Medical device for treating airways and related methods of use
WO2014071372A1 (en) 2012-11-05 2014-05-08 Boston Scientific Scimed, Inc. Devices for delivering energy to body lumens
US9398933B2 (en) 2012-12-27 2016-07-26 Holaira, Inc. Methods for improving drug efficacy including a combination of drug administration and nerve modulation
US9371826B2 (en) 2013-01-24 2016-06-21 Thoratec Corporation Impeller position compensation using field oriented control
US9556873B2 (en) 2013-02-27 2017-01-31 Tc1 Llc Startup sequence for centrifugal pump with levitated impeller
EP4122520A1 (en) 2013-03-13 2023-01-25 Tc1 Llc Fluid handling system
US11033728B2 (en) 2013-03-13 2021-06-15 Tc1 Llc Fluid handling system
EP3797810A1 (en) 2013-03-15 2021-03-31 Tc1 Llc Catheter pump assembly including a stator
US9308302B2 (en) 2013-03-15 2016-04-12 Thoratec Corporation Catheter pump assembly including a stator
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization
US9713663B2 (en) 2013-04-30 2017-07-25 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
CN110547865B (en) 2013-08-09 2022-10-04 波士顿科学国际有限公司 Expandable catheter and related methods of manufacture and use
WO2015130768A2 (en) 2014-02-25 2015-09-03 KUSHWAHA, Sudhir Ventricular assist device and method
US10105475B2 (en) 2014-04-15 2018-10-23 Tc1 Llc Catheter pump introducer systems and methods
US10029037B2 (en) 2014-04-15 2018-07-24 Tc1 Llc Sensors for catheter pumps
EP3131599B1 (en) 2014-04-15 2019-02-20 Tc1 Llc Catheter pump with access ports
US10583232B2 (en) 2014-04-15 2020-03-10 Tc1 Llc Catheter pump with off-set motor position
WO2016028644A1 (en) 2014-08-18 2016-02-25 Thoratec Corporation Guide features for percutaneous catheter pump
US9623161B2 (en) 2014-08-26 2017-04-18 Tc1 Llc Blood pump and method of suction detection
EP3223880A4 (en) 2014-11-26 2018-07-18 Tc1 Llc Pump and method for mixed flow blood pumping
EP3598986B1 (en) 2015-01-22 2021-02-17 Tc1 Llc Motor assembly with heat exchanger for catheter pump
WO2016118784A1 (en) 2015-01-22 2016-07-28 Thoratec Corporation Attachment mechanisms for motor of catheter pump
EP3247420B1 (en) 2015-01-22 2019-10-02 Tc1 Llc Reduced rotational mass motor assembly for catheter pump
EP3256183A4 (en) 2015-02-11 2018-09-19 Tc1 Llc Heart beat identification and pump speed synchronization
EP3256185B1 (en) 2015-02-12 2019-10-30 Tc1 Llc System and method for controlling the position of a levitated rotor
US10371152B2 (en) 2015-02-12 2019-08-06 Tc1 Llc Alternating pump gaps
WO2016130989A1 (en) 2015-02-13 2016-08-18 Thoratec Corporation Impeller suspension mechanism for heart pump
US9907890B2 (en) 2015-04-16 2018-03-06 Tc1 Llc Catheter pump with positioning brace
CN104888293B (en) * 2015-04-28 2017-03-22 武汉理工大学 Implantable axial-flow type blood pump temperature detection system and method based on fiber bragg gratings
US10117983B2 (en) 2015-11-16 2018-11-06 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
US10857273B2 (en) 2016-07-21 2020-12-08 Tc1 Llc Rotary seal for cantilevered rotor pump and methods for axial flow blood pumping
EP3487549B1 (en) 2016-07-21 2021-02-24 Tc1 Llc Fluid seals for catheter pump motor assembly
WO2018017683A1 (en) 2016-07-21 2018-01-25 Thoratec Corporation Gas-filled chamber for catheter pump motor assembly
WO2018031741A1 (en) 2016-08-12 2018-02-15 Tc1 Llc Devices and methods for monitoring bearing and seal performance
CN110944689B (en) 2017-06-07 2022-12-09 施菲姆德控股有限责任公司 Intravascular fluid movement devices, systems, and methods of use
CN111556763B (en) 2017-11-13 2023-09-01 施菲姆德控股有限责任公司 Intravascular fluid movement device and system
DE102018201030A1 (en) 2018-01-24 2019-07-25 Kardion Gmbh Magnetic coupling element with magnetic bearing function
JP7410034B2 (en) 2018-02-01 2024-01-09 シファメド・ホールディングス・エルエルシー Intravascular blood pump and methods of use and manufacture
DE102018211327A1 (en) 2018-07-10 2020-01-16 Kardion Gmbh Impeller for an implantable vascular support system
WO2021016372A1 (en) 2019-07-22 2021-01-28 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
WO2021062265A1 (en) 2019-09-25 2021-04-01 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof
EP4077947A4 (en) * 2019-12-19 2024-01-10 Shifamed Holdings Llc Intravascular blood pumps, motors, and fluid control
DE102020102474A1 (en) 2020-01-31 2021-08-05 Kardion Gmbh Pump for conveying a fluid and method for manufacturing a pump

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2274274A (en) * 1939-03-17 1942-02-24 Albert R Pexxillo Fluid pump and metering device
US2747512A (en) * 1951-05-24 1956-05-29 Fouche Rene Paul Motor pump
US4382199A (en) * 1980-11-06 1983-05-03 Nu-Tech Industries, Inc. Hydrodynamic bearing system for a brushless DC motor
US4625712A (en) * 1983-09-28 1986-12-02 Nimbus, Inc. High-capacity intravascular blood pump utilizing percutaneous access
US4688998A (en) * 1981-03-18 1987-08-25 Olsen Don B Magnetically suspended and rotated impellor pump apparatus and method
US4763032A (en) * 1983-11-29 1988-08-09 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Magnetic rotor bearing
US4779614A (en) * 1987-04-09 1988-10-25 Nimbus Medical, Inc. Magnetically suspended rotor axial flow blood pump
US4817586A (en) * 1987-11-24 1989-04-04 Nimbus Medical, Inc. Percutaneous bloom pump with mixed-flow output
US4846152A (en) * 1987-11-24 1989-07-11 Nimbus Medical, Inc. Single-stage axial flow blood pump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2485408A (en) * 1948-05-14 1949-10-18 Republic Industries Motor pump unit
US4704121A (en) * 1983-09-28 1987-11-03 Nimbus, Inc. Anti-thrombogenic blood pump

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2274274A (en) * 1939-03-17 1942-02-24 Albert R Pexxillo Fluid pump and metering device
US2747512A (en) * 1951-05-24 1956-05-29 Fouche Rene Paul Motor pump
US4382199A (en) * 1980-11-06 1983-05-03 Nu-Tech Industries, Inc. Hydrodynamic bearing system for a brushless DC motor
US4688998A (en) * 1981-03-18 1987-08-25 Olsen Don B Magnetically suspended and rotated impellor pump apparatus and method
US4625712A (en) * 1983-09-28 1986-12-02 Nimbus, Inc. High-capacity intravascular blood pump utilizing percutaneous access
US4763032A (en) * 1983-11-29 1988-08-09 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Magnetic rotor bearing
US4779614A (en) * 1987-04-09 1988-10-25 Nimbus Medical, Inc. Magnetically suspended rotor axial flow blood pump
US4817586A (en) * 1987-11-24 1989-04-04 Nimbus Medical, Inc. Percutaneous bloom pump with mixed-flow output
US4846152A (en) * 1987-11-24 1989-07-11 Nimbus Medical, Inc. Single-stage axial flow blood pump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368438A (en) * 1993-06-28 1994-11-29 Baxter International Inc. Blood pump
EP0764448A2 (en) * 1995-09-22 1997-03-26 United States Surgical Corporation Cardiac support device
EP0764448A3 (en) * 1995-09-22 1997-05-28 United States Surgical Corp Cardiac support device
WO1999049912A1 (en) * 1998-03-30 1999-10-07 Nimbus, Inc. Sealed motor stator assembly for implantable blood pump
CN104379185A (en) * 2012-05-11 2015-02-25 海德威公司 Silver motor stator for implantable blood pump

Also Published As

Publication number Publication date
CA1327677C (en) 1994-03-15
US4908012A (en) 1990-03-13
AU4062789A (en) 1990-03-05

Similar Documents

Publication Publication Date Title
US4908012A (en) Chronic ventricular assist system
US6176848B1 (en) Intravascular blood pump
US20210146116A1 (en) Purge-free miniature rotary pump
US11590338B2 (en) Heart pump with passive purge system
US9616157B2 (en) Blood pump
CA1308319C (en) Drive mechanism for powering intravascular blood pumps
JP4200006B2 (en) Equipment for the axial transport of liquids
US10646630B2 (en) Cantilevered rotor pump and methods for axial flow blood pumping
US5692882A (en) Axial pump
EP0157871B1 (en) High-capacity intravascular blood pump utilizing percutaneous access
EP2438937B1 (en) Blood pump
US4927407A (en) Cardiac assist pump with steady rate supply of fluid lubricant
EP0764448B1 (en) Cardiac support device
EP0768091A1 (en) Artificial heart
AU2019237194A1 (en) Intravascular blood pump
WO1985001436A1 (en) Anti-thrombogenic blood pump
IL124876A (en) Sealless rotary blood pump
IL121834A (en) Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings
JP2003525708A (en) Blood pump
WO1992003181A1 (en) Cardiac assist centrifugal pump
WO2023202165A1 (en) Blood pump and heart assist device
CN116966413A (en) Blood pump and heart assist device
Bozeman Jr et al. Method for Reducing Pumping Damage to Blood

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE