WO1990001767A1 - Magnetic head locking mechanism - Google Patents

Magnetic head locking mechanism Download PDF

Info

Publication number
WO1990001767A1
WO1990001767A1 PCT/US1989/003270 US8903270W WO9001767A1 WO 1990001767 A1 WO1990001767 A1 WO 1990001767A1 US 8903270 W US8903270 W US 8903270W WO 9001767 A1 WO9001767 A1 WO 9001767A1
Authority
WO
WIPO (PCT)
Prior art keywords
head arm
locking mechanism
swing plate
magnet
plate
Prior art date
Application number
PCT/US1989/003270
Other languages
French (fr)
Inventor
Edward Lee
Kai C. K. Sun
Original Assignee
Microscience International Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microscience International Inc. filed Critical Microscience International Inc.
Publication of WO1990001767A1 publication Critical patent/WO1990001767A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/16Supporting the heads; Supporting the sockets for plug-in heads
    • G11B21/22Supporting the heads; Supporting the sockets for plug-in heads while the head is out of operative position

Definitions

  • the present invention relates to locking mechanisms for holding a head arm assembly in place when power is off.
  • Disk drives have a head arm for positioning a head above a disk to read data from the disk and write on to the disk.
  • This head arm is moved with either a rotary or linear actuator.
  • the head arm When power is removed, the head arm is moved so that the heads are placed at the edge of the disk or near the center of the disk away from the data in the middle portion of a disk. This is done to prevent the heads from contacting the disk near the data portions and damaging the data.
  • a capacitor is discharged or a motor winding is switched to provide the necessary power to move the head arm assembly to its parking position.
  • a limit stop is provided to stop the movement of the head arm assembly, incorporating a shock absorption mechanism to absorb the shock of a fast moving head arm as it engages the limit stops.
  • a solenoid actuated brake or locking mechanism is typically used to hold the head arm in place after it contacts the stop.
  • a magnet is shown in U.S. Patent 4,594,627.
  • the magnet is used to hold the head arm assembly in place when it contacts the mechanical stop.
  • the magnet is mounted on the bobbin of a linear motor for a linear head arm actuator.
  • An alternate method to the mechanical latching mechanism is the use of a weaker magnet whose field will not extend as far, and thus will not interfere with the read/write operation.
  • the head arm assembly may become separated from the magnet when the disk drive housing receives a large shock.
  • the present invention provides a magnet positioned to attract and hold a portion of a head arm in a disk drive assembly.
  • the magnet is mounted by a resilient mechanism to a support structure so that there is some .overtravel when the head arm assembly contacts the magnet, to dampen the impact and prevent the head arm from bouncing away.
  • the present invention is preferably implemented with a swing plate which extends downward from the head arm support structure and is mounted at the top portion by a spring-loaded screw.
  • a magnet is mounted on the bottom portion of the swing plate, and interacts with a preamble iron pin coupled to the voice coil of the head arm assembly.
  • a pair of locating pins extend through holes in the mid-portion of the swing plate to guide the movement of the swing plate.
  • the swing plate is levered about a short intermediate plate between it and the support structure which extends approximately one-third of the length of the swing plate. The length of this intermediate plate is chosen to give an optimum compromise between the amount of overtravel in the swing plate and the holding force of the swing plate and magnet arrangement.
  • the swing plate is a permeable plate to which the magnet is mounted. This permeable plate flattens out the flux field from the magnet so that the field does not extend too far and interfere with the movement of the head arm during read/write operations.
  • a separate, disk-shaped magnet is used with a cylindrical shaped main magnet to flatten out the flux field.
  • the present invention improves over the prior art in two respects.
  • the magnet is resiliently mounted so that it provides a damping, overtravel movement, so that a weaker magnet can be used to hold the head arm assembly, and thus reduce the possibility of interference with the head arm during read/write operations. A capture and holding range is thereby established.
  • Figure 1 is a perspective view of a disk drive head arm assembly showing the position of the magnetic locking swing- plate
  • Figure 2 is a perspective view, partially broken away, of the swing plate of the present invention.
  • Figures 3A and 3B show the shape of the magnetic flux without and with the permeable plate, respectively.
  • Figure 4 is a side view of an alternate embodiment of the present invention using a cylindrical and disk shaped magnet.
  • Figure 1 shows a head arm assembly 10 which positions a read/write head 12 over a disk 14 in a stack of disks.
  • a head arm 16 rotates about a pivot 18 coupled to a head arm support structure 20.
  • Voice coil 22 moves between magnets 24 to cause movement of head arm 16 about pivot 18.
  • voice coil 22 is moved so that a pin 26 comes in contact with a magnet on a swing plate 28 to hold the head arm in position away from the data tracks on disks 14. Swing plate 28 is shown in more detail in Fig. 2.
  • swing plate 28 is mounted to support structure 20 with a screw 30. Swing plate 28 is spring loaded by a spring 32. An intermediate plate 34 magnetically isolates swing plate 28 from support structure 20. A pair of guide pins 36 extend through holes in plate 28 to guide the movement of plate 28. A magnet 38 coupled to the bottom end of swing plate 28 attracts an iron pin 26 affixed on a mounting structure 39 for voice coil 22.
  • a stop 40 made of an energy absorbing material is coupled to structure 20 to contact voice coil structure 22 essentially simultaneously with pin 26 contacting swing plate 28. This provides additional damping to the movement of swing plate 28.
  • voice coil 22 may bounce backwards, but swing plate 28 will follow it and will swing in the opposite direction, pivoting about a bottom edge 42 of plate 34. This pivoting movement allows the swing plate with magnet 38 to stay in contact with pin 26, and thus prevent the voice coil structure from bouncing off of the swing plate and maintain contact when the disk drive housing receives a shock.
  • Swing plate 28 is made up of permeable material which serves to flatten the magnetic field from magnet 38. This effect is shown in Figs. 3A and 3B.
  • Figure 3A shows the flux lines from magnet 38 without plate 28.
  • Figure 3B shows how plate 28 flattens the flux on the left side of magnet 38, so that the flux lines do not extend as far towards pin 26 as they would in the configuration of Fig. 3A.
  • the magnetic field will not interfere with pin 26 until pin 26 is very close to plate 28. This prevents the magnetic lock from interfering with the movement of the head arm assembly during the read/write operations.
  • the holes through which pins 36 extend are made long enough in the vertical direction so that they do not interfere with the movement of the plate. The pins guide the plate so that it does not move side to side.
  • Figure 4 shows an alternate embodiment of the present invention which uses a cylindrical magnet 42 coupled to a disk-shaped magnet 44.
  • Magnet 44 serves to flatten the field from cylindrical magnet 42, thus allowing a stronger magnet to be used without its field extending to interfere with the movement of coil 22 during read/write operations.
  • a resilient stop 46 is included.
  • Magnet 42 is mounted with a spring 48 to allow it to move.
  • a stop 50 prevents disk shaped magnet 44 from being pulled along with coil 22 away from the stop mechanism.
  • the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof.
  • a different resilient mechanism could be used to mount the magnet 38 rather than swing arm 28, such as a leaf spring.
  • recesses in the swing plate could be provided to interact with projections in the position of pins 36. Accordingly, the disclosure of the preferred embodiments of the invention is intended to be illustrative, but not limiting, of the scope of the invention which is set forth in the following claims.

Abstract

The present invention provides a magnet (38) positioned to attract and hold a portion (26) of a head arm in a disk drive assembly. The magnet is mounted by a resilient mechanism (28) to a support structure so that there is some overtravel when the head arm assembly contacts the magnet, to dampen the impact and prevent the head arm from bouncing away and maintain contact when the disk drive housing receives an external shock.

Description

MAGNETIC HEAD LOCKING MECHANISM
BACKGROUND
The present invention relates to locking mechanisms for holding a head arm assembly in place when power is off.
Disk drives have a head arm for positioning a head above a disk to read data from the disk and write on to the disk. This head arm is moved with either a rotary or linear actuator. When power is removed, the head arm is moved so that the heads are placed at the edge of the disk or near the center of the disk away from the data in the middle portion of a disk. This is done to prevent the heads from contacting the disk near the data portions and damaging the data. Typically, upon loss of power, a capacitor is discharged or a motor winding is switched to provide the necessary power to move the head arm assembly to its parking position. A limit stop is provided to stop the movement of the head arm assembly, incorporating a shock absorption mechanism to absorb the shock of a fast moving head arm as it engages the limit stops. A solenoid actuated brake or locking mechanism is typically used to hold the head arm in place after it contacts the stop.
However, if the brake or locking mechanism is not engaged, the head arm can move outward and damage the recording surfaces of the heads or the disk. One mechanism which is used in place of a brake or mechanical locking mechanism is a magnet. Such a magnet is shown in U.S. Patent 4,594,627. The magnet is used to hold the head arm assembly in place when it contacts the mechanical stop. As shown in the '627 patent, the magnet is mounted on the bobbin of a linear motor for a linear head arm actuator.
As discussed in U.S. -Patent 4,562,500, the purpose of such a magnet prevents the head arm from operating too close to the magnet, for the motion of the head arm can be influenced by the locking magnetic field. This constraint places a limit on the number of data tracks which can be placed on a disk, since data tracks near the stop position can not be accurately read without supplying more power, due to the effect of the magnet stop on the head arm during a read/write operation.
The disadvantages of a magnetic latch are overcome in the ' 500 patent through the use of a mechanical locking mechanism.
An alternate method to the mechanical latching mechanism is the use of a weaker magnet whose field will not extend as far, and thus will not interfere with the read/write operation. However, the head arm assembly may become separated from the magnet when the disk drive housing receives a large shock.
SUMMARY OF THE INVENTION
The present invention provides a magnet positioned to attract and hold a portion of a head arm in a disk drive assembly. The magnet is mounted by a resilient mechanism to a support structure so that there is some .overtravel when the head arm assembly contacts the magnet, to dampen the impact and prevent the head arm from bouncing away.
The present invention is preferably implemented with a swing plate which extends downward from the head arm support structure and is mounted at the top portion by a spring-loaded screw. A magnet is mounted on the bottom portion of the swing plate, and interacts with a preamble iron pin coupled to the voice coil of the head arm assembly. A pair of locating pins extend through holes in the mid-portion of the swing plate to guide the movement of the swing plate. The swing plate is levered about a short intermediate plate between it and the support structure which extends approximately one-third of the length of the swing plate. The length of this intermediate plate is chosen to give an optimum compromise between the amount of overtravel in the swing plate and the holding force of the swing plate and magnet arrangement.
The swing plate is a permeable plate to which the magnet is mounted. This permeable plate flattens out the flux field from the magnet so that the field does not extend too far and interfere with the movement of the head arm during read/write operations. In an alternate embodiment, a separate, disk-shaped magnet is used with a cylindrical shaped main magnet to flatten out the flux field. Thus, the present invention improves over the prior art in two respects. First, the magnet is resiliently mounted so that it provides a damping, overtravel movement, so that a weaker magnet can be used to hold the head arm assembly, and thus reduce the possibility of interference with the head arm during read/write operations. A capture and holding range is thereby established. Second, by shaping the flux field so that it is close to the magnet, a stronger magnet can be used without having its flux extend far enough to interfere with the movement of the head arm during read/write operations.
For a fuller understanding of the nature and advantages of the invention, reference should be made to the ensuing detailed description taken in conjunction with accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a perspective view of a disk drive head arm assembly showing the position of the magnetic locking swing- plate;
Figure 2 is a perspective view, partially broken away, of the swing plate of the present invention;
Figures 3A and 3B show the shape of the magnetic flux without and with the permeable plate, respectively; and
Figure 4 is a side view of an alternate embodiment of the present invention using a cylindrical and disk shaped magnet.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Figure 1 shows a head arm assembly 10 which positions a read/write head 12 over a disk 14 in a stack of disks. A head arm 16 rotates about a pivot 18 coupled to a head arm support structure 20. Voice coil 22 moves between magnets 24 to cause movement of head arm 16 about pivot 18. When power is off, voice coil 22 is moved so that a pin 26 comes in contact with a magnet on a swing plate 28 to hold the head arm in position away from the data tracks on disks 14. Swing plate 28 is shown in more detail in Fig. 2.
As shown in Fig. 2, swing plate 28 is mounted to support structure 20 with a screw 30. Swing plate 28 is spring loaded by a spring 32. An intermediate plate 34 magnetically isolates swing plate 28 from support structure 20. A pair of guide pins 36 extend through holes in plate 28 to guide the movement of plate 28. A magnet 38 coupled to the bottom end of swing plate 28 attracts an iron pin 26 affixed on a mounting structure 39 for voice coil 22.
A stop 40 made of an energy absorbing material is coupled to structure 20 to contact voice coil structure 22 essentially simultaneously with pin 26 contacting swing plate 28. This provides additional damping to the movement of swing plate 28.
As can be seen, when pin 26 hits swing plate 28, the bottom portion of swing plate 28 will swing outwards, guided by 'pins 36. This outward movement causes swing plate 28 to pivot about its top end against the resistance of spring 32.
After an initial contact, voice coil 22 may bounce backwards, but swing plate 28 will follow it and will swing in the opposite direction, pivoting about a bottom edge 42 of plate 34. This pivoting movement allows the swing plate with magnet 38 to stay in contact with pin 26, and thus prevent the voice coil structure from bouncing off of the swing plate and maintain contact when the disk drive housing receives a shock.
Swing plate 28 is made up of permeable material which serves to flatten the magnetic field from magnet 38. This effect is shown in Figs. 3A and 3B. Figure 3A shows the flux lines from magnet 38 without plate 28. Figure 3B shows how plate 28 flattens the flux on the left side of magnet 38, so that the flux lines do not extend as far towards pin 26 as they would in the configuration of Fig. 3A. Thus, the magnetic field will not interfere with pin 26 until pin 26 is very close to plate 28. This prevents the magnetic lock from interfering with the movement of the head arm assembly during the read/write operations. The holes through which pins 36 extend are made long enough in the vertical direction so that they do not interfere with the movement of the plate. The pins guide the plate so that it does not move side to side. Figure 4 shows an alternate embodiment of the present invention which uses a cylindrical magnet 42 coupled to a disk-shaped magnet 44. Magnet 44 serves to flatten the field from cylindrical magnet 42, thus allowing a stronger magnet to be used without its field extending to interfere with the movement of coil 22 during read/write operations. A resilient stop 46 is included. Magnet 42 is mounted with a spring 48 to allow it to move. A stop 50 prevents disk shaped magnet 44 from being pulled along with coil 22 away from the stop mechanism.
As will -be understood by those familiar with the art, the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. For example, a different resilient mechanism could be used to mount the magnet 38 rather than swing arm 28, such as a leaf spring. In addition, rather than guide pines 36, recesses in the swing plate could be provided to interact with projections in the position of pins 36. Accordingly, the disclosure of the preferred embodiments of the invention is intended to be illustrative, but not limiting, of the scope of the invention which is set forth in the following claims.

Claims

What Is Claimed Is:
1. A locking mechanism for magnetically coupling to a metal portion of a head arm in a disk drive to hold said head arm in place, comprising: a magnet positioned to contact said metal portion of said head arm when a head mounted on said head arm is proximate a center portion or a perimeter of a disk in said disk drive; and means, coupling said magnet to a portion of said disk drive fixed with respect to said head arm, for allowing overtravel movement of said magnet when contacted by said metal portion of said head arm.
.
2. The locking mechanism of claim 1 wherein said resilient means comprises a swing plate having said magnet mounted on a first end and being hingedly coupled at a second end to a support structure.
3. The locking mechanism of claim 2 wherein said swing plate is coupled to said support structure with a mechanism including a spring.
4. The locking mechanism of claim 2 further comprising a pair of pins extending through slots in said swing plate for guiding movement of said swing plate.
5. The locking mechanism of claim 2 wherein said swing plate is made of a magnetically permeable material.
6. The locking mechanism of claim 2 further comprising an intermediate plate mounted between said swing plate and said support structure.
7. The locking mechanism of claim 2 wherein said metal portion is a pin having a flat surface proximate said swing plate -for providing a maximum contact area with said swing plate.
8. The locking mechanism of claim 6 wherein said intermediate plate is shorter than said swing plate.
9. The locking mechanism of claim 1 further comprising an energy absorbing material fixed with respect to -said head arm to contact a portion of said head arm at approximately the same time said magnet contacts said head arm.
10. The locking mechanism of claim 1 wherein said metal portion of said head arm comprises an iron pin mounted on a voice coil structure of said head arm.
li. The locking mechanism of claim 1 wherein said magnet comprises a first, elongate portion having an elongate axis pointed toward said metal portion of said head arm and a second, flat portion having a first dimension substantially orthogonal to said elongate axis, said first dimension being larger than a second dimension parallel to said elongate axis.
12. The locking mechanism of claim 11 wherein said first and second portions are separable.
13. The locking mechanism of claim 11 wherein said first, elongate portion of said magnet has a cylindrical shape taped proximate said flat portion and said second, flat portion has a disk shape.
14. A locking mechanism for magnetically coupling to a metal portion of a movable head arm assembly mounted in a fixed head arm structure to hold said head arm assembly in place when power is removed, comprising: a swing plate hingedly coupled at a first end to said support structure; a magnet coupled to a second end of said swing plate on a side of said swing plate opposite said head arm assembly; a intermediate plate positioned between said support structure and said swing plate, said intermediate plate extending less than the distance of the length of said swing plate; and means for biasing said first end of said swing plate towards said support structure.
PCT/US1989/003270 1988-07-29 1989-07-28 Magnetic head locking mechanism WO1990001767A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22616988A 1988-07-29 1988-07-29
US226,169 1988-07-29

Publications (1)

Publication Number Publication Date
WO1990001767A1 true WO1990001767A1 (en) 1990-02-22

Family

ID=22847849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1989/003270 WO1990001767A1 (en) 1988-07-29 1989-07-28 Magnetic head locking mechanism

Country Status (1)

Country Link
WO (1) WO1990001767A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0573160A1 (en) * 1992-06-05 1993-12-08 Seagate Technology International Crash stop and magnetic latch for optimum use of disc space
WO1996041337A1 (en) 1995-06-07 1996-12-19 International Business Machines Corporation Dual latch apparatus for restraining a direct access storage device actuator
US5805387A (en) * 1997-03-27 1998-09-08 Seagate Technology, Inc. Mechanism to dampen vibration of a stop pin of a disc drive actuator arm
US5956213A (en) * 1988-01-25 1999-09-21 Seagate Technology, Inc. Latch mechanism for disk drive using magnetic field of actuator magnets

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594627A (en) * 1983-06-28 1986-06-10 Priam Corporation Safety latch for pickup heads and carriage disc drive

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594627A (en) * 1983-06-28 1986-06-10 Priam Corporation Safety latch for pickup heads and carriage disc drive

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5956213A (en) * 1988-01-25 1999-09-21 Seagate Technology, Inc. Latch mechanism for disk drive using magnetic field of actuator magnets
US6429999B1 (en) 1988-01-25 2002-08-06 Seagate Technology Llc Pre-assembled voice coil magnetic assembly and rotatable attachment structure/method to base plate for disc drive
EP0573160A1 (en) * 1992-06-05 1993-12-08 Seagate Technology International Crash stop and magnetic latch for optimum use of disc space
WO1996041337A1 (en) 1995-06-07 1996-12-19 International Business Machines Corporation Dual latch apparatus for restraining a direct access storage device actuator
US5805387A (en) * 1997-03-27 1998-09-08 Seagate Technology, Inc. Mechanism to dampen vibration of a stop pin of a disc drive actuator arm

Similar Documents

Publication Publication Date Title
US5003422A (en) Magnetic head locking mechanism
US5124867A (en) Actuator returning and holding device for a disk unit
US4787000A (en) Head lifter for disk drive
US5365389A (en) Crash stop and magnetic latch for optimum use of disc space
KR930000070B1 (en) Storage device having a lock system for the access mechanism and method for locking
US5793572A (en) Shock resistant actuator latch for a disk drive
JPH06259898A (en) Actuator for driving rotary disk
JPH04214285A (en) Magnetic disk device
JPH0644714A (en) Combination of disk drive and magnetic latch
US4654735A (en) Latch for head positioning actuator for disc files
US4947274A (en) Resiliently mounted crash stop and magnetic latch for a voice coil actuator
PL179626B1 (en) Disk storage device
JPS6113480A (en) Positioning apparatus for magnetic disc memory
KR0131421B1 (en) Actuator fixing device for hdd
EP0704090B1 (en) Passive non-contact magnetic latch
WO1990001767A1 (en) Magnetic head locking mechanism
US6108173A (en) Magnetic locking mechanism for a disk drive actuator
US7248441B2 (en) Disk drive actuator parking method using impact rebound crash stop with bias tab and pusher and crash stop faces
EP0880775A1 (en) Molded actuator crash stops
CA2220304A1 (en) Head loading mechanism for a disk drive
US6246540B1 (en) Damping and latch mechanism for a recording medium recording/reproducing device
KR100282498B1 (en) Actuator locking mechanism
US5146447A (en) Optical/optomagnetic disk apparatus
US4974107A (en) High performance linear actuator for memory storage device
KR970011819B1 (en) Actuator fixing apparatus of hdd

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642