WO1990003762A1 - Surgical suturing system and probe assembly - Google Patents

Surgical suturing system and probe assembly Download PDF

Info

Publication number
WO1990003762A1
WO1990003762A1 PCT/US1989/004480 US8904480W WO9003762A1 WO 1990003762 A1 WO1990003762 A1 WO 1990003762A1 US 8904480 W US8904480 W US 8904480W WO 9003762 A1 WO9003762 A1 WO 9003762A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
tissue
aperture
suction
working end
Prior art date
Application number
PCT/US1989/004480
Other languages
French (fr)
Inventor
William D. Richards
Original Assignee
Ophthalmic Ventures Limited Partnership
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ophthalmic Ventures Limited Partnership filed Critical Ophthalmic Ventures Limited Partnership
Publication of WO1990003762A1 publication Critical patent/WO1990003762A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/0682Surgical staplers, e.g. containing multiple staples or clamps for applying U-shaped staples or clamps, e.g. without a forming anvil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/30Surgical pincettes without pivotal connections
    • A61B2017/306Surgical pincettes without pivotal connections holding by means of suction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S604/00Surgery
    • Y10S604/902Suction wands

Definitions

  • the present invention relates to surgical devices used for suturing human or animal tissue and, more particularly, is directed towards a surgical suturing system and probe assembly for juxtapositioning and holding the edges of an incision in apposition during suturing.
  • prior surgical stapling systems and probe assemblies suffer from a variety of disadvantages, including but not limited to (1) excessive size for the intended application, (2) the need to bend the staples across a stapler anvil resting on the tissue, which may induce severe traumatic effects, (3) the need to extract the stapler anvil from between the staple and the tissue surface after the staples have been implanted, and (4) th inability to maintain precise edge alignment and smoothness between opposing portions of tissue to be sutured.
  • prior medical staplers have been met with varying degrees of success.
  • a need exists for an improved surgical suturing system characterized by a device that precisely aligns the edges of the tissue to be sutured and sutures the incision.
  • An object of the invention is to provide a new and improved surgical suturing system which is characterized by selectively positioning and holding the edges of the tissue to be sutured in juxtapositional alignment and suturing the held edges.
  • Another object of the invention is to provide a probe assembly that is adapted to position and hold the edges of tissue to be sutured in juxtapositional and coplanar alignment preparatory to suturing.
  • Yet another object of the invention is to provide a suturing system that is adapted to position and hold the edges of the tissue to be sutured in juxtapositional alignment preparatory to suturing the tissue with staples.
  • a further object of the invention is to provide a surgical suturing system with a vacuum positioning system for juxtapositional alignment of the edges of an incision that is to be sutured and a staple suturing system for closing the incision.
  • Still another object of the present invention is to provide a suturing system for positioning and holding the edges of an incision in very delicate tissue such as the incisions involved in ophthalmic operations, neurosurgery or plastic surgery, and for suturing the incision while the edges are held in place.
  • Yet still another object of the invention is to provide a microsurgical stapling system in which the edges of an incision are moved into juxtapositional alignment by means of a vacuum positioning system and the edges of the incision are sutured together by means of a microstapling system which is designed to suture together delicate tissue in a manner which reduces trauma to a minimum and assures proper incision alignment, as is essential for ophthalmic or plastic surgery where incision stresses can induce post-operative deformations such as astigmatism or scarring.
  • a surgical suturing system having a probe assembly for juxtapositioning of the edges of an incision in tissue to be sutured and holding the incision edges in opposition, and a stapling system for suturing the incision in the tissue.
  • the stapling system includes a stapler having a housing with a staple ejection slot, a magazine of preformed staples received within the housing and a driver for driving the leading staple in the magazine out the ejection slot.
  • the probe assembly includes a holding probe disposed in close proximity to the staple ejection slot, the probe assembly being adapted to connect with a vacuum source. The probe is configured to selectively grab onto the tissue on both sides of the incision to be sutured by the stapler.
  • the probe supports the tissue being stapled and secures the driving end of the stapler in correct driving position during deployment of the staples.
  • one edge of the tissue to be sutured is held by the holding probe and moved into a position adjacent the other edge of the tissue to be sutured. Both edges are then held in juxtapositional alignment while the tissue is sutured by a staple ejected from the stapler.
  • the invention accordingly comprises the apparatuses and systems, together with their parts, elements and inter-relationships, that are exemplified in the following disclosure, the scope of which will be indicated in the appended claims.
  • Fig. 1 is a side elevation view, partly in cross-section and partly broken away, of a surgical suturing system embodying the present invention
  • Fig. 2 is an enlarged bottom plan view of the holding probe and staple ejection slot of the surgical suturing system of Fig. 1;
  • Fig. 3 is a side elevation view, partly in ⁇ ross-section and partly broken away, of an alternative embodiment of the invention.
  • Fig. 4 is an enlarged bottom plan view of the holding probe and ejection slot of the surgical suturing system of Fig. 3;
  • Fig. 5 is another alternative embodiment of the holding probe.
  • Fig. 6 is a side elevation of a probe assembly embodying the invention.
  • Fig. 7 is a side elevation, somewhat enlarged, of the probe tip of Fig. 6;
  • Fig. 8 is an end view of Fig. 7.
  • Surgical suturing system 10 includes a stapler assembly 100 and a probe assembly 200, the stapler and probe assemblies being held together by a fastener or band 300.
  • Stapler assembly 100 is preferably a stapler assembly of the type disclosed in U.S. Patent Application Serial No. 906,151, filed September 11, 1986, by Richards et al., which application is incorporated herein by reference.
  • stapler assembly 100 could be another known stapler assembly capable of operating in conjunction with probe assembly 200, as will hereinafter be described in detail.
  • stapler assembly 100 comprises a stapler 102 and an actuator 104.
  • Stapler 102 includes a housing 106, a staple magazine 108 which contains a plurality of staples 110, a staple driver 112 and a staple advance mechanism 114. As described in the Richards et al.
  • staple driver 112 when actuator 104 is energized, staple driver 112 is driven downwardly toward staple magazine 108, so that staple driver 112 contacts the leading staple 110 in staple magazine 108 and the staple is ejected through an ejection slot 116 formed in the head 118 of housing 106 (Fig. 2) .
  • Staple advance mechanism 114 then advances the next staple 110 in staple magazine 108 into a position where it will be contacted by staple driver 112 and ejected from the stapler assembly 100 the next time actuator 104 is energized.
  • the staple 110 that is ejected through ejection slot 116 penetrates tissue 400 on opposite sides of an incision 402 (Fig. 2) , the edges of the incision being moved into and held in juxtapositional alignment during the suturing process by the probe assembly 200 hereinafter described.
  • tissue 400 and incision 402 are shown by the dashed lines that are superimposed on probe assembly 200 in Fig. 2.
  • Probe assembly 200 includes a probe 202 and an interface 204 that is configured to be connected to a vacuum source 206 by means of a line 208.
  • Probe 202 has a suction head 210 at a working end 212 and a plug 214 at an opposite end.
  • Plug 214 is configured to interconnect with a socket 216 of interface 204.
  • suction head 210 terminates in a substantially oval-shaped aperture 218 and a flat tissue supporting member 219 that extends forward of the aperture.
  • Aperture 218 is positioned in close proximity to ejection slot 116 of stapler assembly 100, tissue supporting member 219 being disposed between aperture 218 and ejection slot 116.
  • Head 210 is used to capture and draw the edges of incision 402 into juxtapositional coplanar alignment with one another and to hold the edges of the incision in apposition while one or more staples 110 is being driven into tissue 400 to suture the tissue and close the incision.
  • the cross-sectional area of aperture 218 is such that a vacuum is maintained at the aperture even though a portion of the aperture is holding the tissue on one side of an incision.
  • aperture 218 is sized so that a vacuum is maintained at the aperture when only a portion of the aperture is covered.
  • the tissue to be held is pulled across the flat tissue supporting member 219 so that the tissue at the sides of the incision are held flat in coplanar relationship against the tissue supporting member.
  • the gathering together of the edges of incision 402 and holding of tissue 400 in apposition serves many purposes, for example, it supports the tissue during suturing, secures the head 118 of stapler 102 in correct driving position for suturing the tissue, and resists relative movement between the tissue and stapler caused by stapler recoil.
  • vacuum source 206 is energized and a suction is created at aperture 218.
  • the head 118 of stapler 102 is positioned near the edges of incision 402.
  • the suture system 10 is rotated on its longitudinal axis and moved so that stapler head 118 approaches one edge of the incision 402.
  • Suturing system 10 is positioned carefully and precisely so that only one edge of the incision is captured or sucked into contact with one side of aperture 218 of suction head 210. It has been found that a change in the sound emitted from vacuum source 206 is detected by the user when the tissue on one side of the incision is captured by suction head 210.
  • the engaged edge of the incision 402 is then moved into a position beside the other or uncaptured edge of the incision. This is achieved by moving suturing system 10 (and hence its attached tissue) until the free edge of the tissue and the captured edge of the tissue are juxtaposed. Then, suturing system 10 is rotated carefully and precisely on its longitudinal axis again until the free edge of the incision is also captured by aperture 218 of suction head 210. It has been found that a further change in the sound emitted by vacuum source 206 is detected when the tissue on both sides of the incision is captured by suction head 210. Both edges of incision 402 are held in a juxtaposed coplanar relationship against flat tissue supporting member 219. Next, actuator 104 is energized and the leading staple 1 in the staple magazine 108 is driven by staple driver 11 The driven staple 110 is ejected through the ejection sl 116 and into tissue 400 for suturing the tissue and closing incision 402.
  • a surgical suturing system 20 having a stapler assembly 120 and a probe assembly 220.
  • Stapler assembly 120 is identical to the stapler assembly 100 discussed above. Accordingly, corresponding parts of stapler assemblies 100 and 120 are identified by like reference characters and distinguished by a prime notation when referring to the parts of stapler assembly 120.
  • Probe assembly 220 is similar to probe assembly 200 discussed above, with the exception of the relative position of the stapler ejection slot and the probe assembly's suction head, as will hereinafter be discussed in further detail. Accordingly, corresponding parts of probe assemblies 200 and 220 are identified by like reference characters and distinguished by a prime notation when referring to the parts of probe assembly 220.
  • Probe assembly 220 includes a probe 222 and an interface 204'' that is configured to be connected to a vacuum source 206" by means of a line 208".
  • Probe 222 has a suction head 224 at a working end 226 and a plug 214' at an opposite end. Plug 214' is configured to interconnect with a socket 216 of interface 204'.
  • suction head 224 is formed with an aperture 228 defining a substantially o-shaped track.
  • Aperture 228 is positioned about ejection slot 116' of stapler assembly 120 and defines a suction path about ejection slot 116'.
  • head 224 is used to draw the edges of incision 402 / into juxtapositional coplanar alignment with one another and hold the edges of the incision in apposition while the staple 110' is being driven into the tissue 400' for suturing the tissue and closing the incision.
  • vacuum source 206' is energized and a suction is created at aperture 228.
  • the head 118' of suturing system 20 is positioned near the edges of the incision 402'.
  • Head 118' of the suturing system 20 is moved toward the edges of the incision 402' until one edge of the incision is captured or sucked into contact with one side of aperture 228 of suction head 224.
  • a change in the sound emitted from vacuum source 206' indicates that tissue 400' has been captured by suction head 224.
  • the suturing system 20 is moved toward the free edge of incision 402' until the free edge is also captured by suction head 224.
  • a further change in the sound emitted by vacuum source 206' indicates both sides of the incision are captured by vacuum probe 220.
  • the edges of incision 402' are held in a juxtaposed coplanar relationship by suction head 224.
  • actuator 104' is energized and the leading staple 110' in the staple magazine 108' is driven through the ejection slot 116' and into tissue 400' for suturing the tissue and closing incision 402'.
  • Probe assembly 230 is somewhat similar to probe assembly 220 in that probe assembly 230 includes a probe 232 having a suction head 234 with an aperture 236 defining a substantially O-shaped track that is positioned about a stapler ejection slot 116'.
  • aperture 236 is bifurcated into a pair of substantially U-shaped tracked apertures 238 and 240 which define a bifurcated suction path.
  • Aperture 238 is connected by a line 242 to a controller 244 and aperture 240 is connected to the controller 244 by a line 246.
  • Controller 244 is connected to a vacuum source (not shown) by a line 248.
  • Controller 244 includes flow controls 250 and 252 for independently controlling the suction at apertures 238 and 240, respectively.
  • probe assembly 230 is similar to the operation of probe assembly 220 previously described, with the exception that the suction applied to the sides of aperture 236 is independently controlled via flow controls 250 and 252. Independent control of the suction on each side of aperture 236 facilitates placement of the edges of the incision in coplanar juxtaposition alignment.
  • Probe assembly 500 for positioning and holding tissue at the edges of an incision to be sutured in juxtapositional coplanar alignment preparatory to suturing.
  • Probe assembly 500 includes an elongated body 502 having a suction head 504 at one end and a connector 506 at the other end.
  • Suction head 504 includes a tubular member 508 that is narrowed at 510 and cut away at 512 to form a substantially oval-shaped aperture 514 with an extending flat tissue supporting member 516.
  • the cross-sectional area of aperture 514 is sufficiently small in cross-sectional area with respect to the cross-sectional area of tubular member 504 that a suction is maintained at the aperture while only a portion of the aperture is covered by the tissue at one side of the incision to be sutured.
  • the cross-sectional area of tubular member 504 is at least one and one half times the cross-sectional area of aperture 514.
  • a vacuum controller 520 having ports 522 and 524 is provided in body 502 for controlling the suction at aperture 514.
  • Suction head 504 is used to capture and draw the tissue at the edges of an incision into juxtapositional coplanar alignment with one another and hold the the tissue in apposition while the incision is being sutured by surgical staples or conventional suturing or other means for closing an incision.
  • a vacuum source (not shown) is connected to probe assembly 500 by means of a line 526 that is fitted to connector 506.
  • Aperture 514 is positioned adjacent the tissue at one edge of the incision and port 522 is covered to increase the suction at aperture 514.
  • the suction pulls the tissue at the one side of the incision across a portion of tissue supporting member 516 and covers a portion of aperture 514.
  • the captured tissue is moved to close the incision and the suction pulls the tissue at the other side of the incision across tissue supporting member 516 and aperture 514.
  • Port 524 is then covered to further increase the hold on the tissue so that the tissue will be securely supported during subsequent incision closing.
  • the two pieces of tissue are held in juxtapositional coplanar alignment while the incision is closed by stapling, conventional suturing or other incision closing means.

Abstract

A surgical suturing system (10) having a probe assembly (200) for positioning tissue to be sutured and a stapling system (100) for suturing tissue. The stapling system includes a stapler (102) having a housing (106) with a staple ejection slot, a magazine (108) of preformed staples received within the housing and a drive for driving the leading staple in the magazine through the ejection slot (116). The probe assembly includes a holding probe in close proximity to the staple ejection slot, the probe assembly being adapted to connect with a vacuum source (206). A working end of the holding probe is configured to selectively hold onto and position the edges of the tissue to be sutured in juxtapositional coplanar alignment while the tissue is being sutured by a staple ejected from the stapler.

Description

SURGICAL SUTURING SYSTEM AND PROBE ASSEMBLY
Field Of The Invention
The present invention relates to surgical devices used for suturing human or animal tissue and, more particularly, is directed towards a surgical suturing system and probe assembly for juxtapositioning and holding the edges of an incision in apposition during suturing.
Background Of The Invention
Suturing is a very time-consuming phase of most surgical operations. Heretofore it has been realized that suturing time can be reduced considerably by the use of stapling techniques. As a consequence, in recent years several types of stapling systems have come into use for surgical suturing.
By way of example, the following U.S. patents illustrate various types of staplers which have been used for suturing purposes: 3,604,561, 3,646,801, 4,162,678, 4,316,468, 4,317,451, and 4,485,816, and the references cited therein.
However, prior surgical stapling systems and probe assemblies suffer from a variety of disadvantages, including but not limited to (1) excessive size for the intended application, (2) the need to bend the staples across a stapler anvil resting on the tissue, which may induce severe traumatic effects, (3) the need to extract the stapler anvil from between the staple and the tissue surface after the staples have been implanted, and (4) th inability to maintain precise edge alignment and smoothness between opposing portions of tissue to be sutured. As a consequence, prior medical staplers have been met with varying degrees of success. A need exists for an improved surgical suturing system characterized by a device that precisely aligns the edges of the tissue to be sutured and sutures the incision.
Summary Of The Invention
An object of the invention is to provide a new and improved surgical suturing system which is characterized by selectively positioning and holding the edges of the tissue to be sutured in juxtapositional alignment and suturing the held edges.
Another object of the invention is to provide a probe assembly that is adapted to position and hold the edges of tissue to be sutured in juxtapositional and coplanar alignment preparatory to suturing.
Yet another object of the invention is to provide a suturing system that is adapted to position and hold the edges of the tissue to be sutured in juxtapositional alignment preparatory to suturing the tissue with staples.
A further object of the invention is to provide a surgical suturing system with a vacuum positioning system for juxtapositional alignment of the edges of an incision that is to be sutured and a staple suturing system for closing the incision.
Still another object of the present invention is to provide a suturing system for positioning and holding the edges of an incision in very delicate tissue such as the incisions involved in ophthalmic operations, neurosurgery or plastic surgery, and for suturing the incision while the edges are held in place.
Yet still another object of the invention is to provide a microsurgical stapling system in which the edges of an incision are moved into juxtapositional alignment by means of a vacuum positioning system and the edges of the incision are sutured together by means of a microstapling system which is designed to suture together delicate tissue in a manner which reduces trauma to a minimum and assures proper incision alignment, as is essential for ophthalmic or plastic surgery where incision stresses can induce post-operative deformations such as astigmatism or scarring.
These and other objects of the invention are achieved by a surgical suturing system having a probe assembly for juxtapositioning of the edges of an incision in tissue to be sutured and holding the incision edges in opposition, and a stapling system for suturing the incision in the tissue. The stapling system includes a stapler having a housing with a staple ejection slot, a magazine of preformed staples received within the housing and a driver for driving the leading staple in the magazine out the ejection slot. The probe assembly includes a holding probe disposed in close proximity to the staple ejection slot, the probe assembly being adapted to connect with a vacuum source. The probe is configured to selectively grab onto the tissue on both sides of the incision to be sutured by the stapler. In addition, the probe supports the tissue being stapled and secures the driving end of the stapler in correct driving position during deployment of the staples. In operation of the suturing system, one edge of the tissue to be sutured is held by the holding probe and moved into a position adjacent the other edge of the tissue to be sutured. Both edges are then held in juxtapositional alignment while the tissue is sutured by a staple ejected from the stapler.
The invention accordingly comprises the apparatuses and systems, together with their parts, elements and inter-relationships, that are exemplified in the following disclosure, the scope of which will be indicated in the appended claims.
Brief Description Of The Drawings
A fuller understanding of the nature and objects of the present invention will become apparent upon consideration of the following detailed description taken in connection with the accompanying drawings, wherein:
Fig. 1 is a side elevation view, partly in cross-section and partly broken away, of a surgical suturing system embodying the present invention;
Fig. 2 is an enlarged bottom plan view of the holding probe and staple ejection slot of the surgical suturing system of Fig. 1;
Fig. 3 is a side elevation view, partly in σross-section and partly broken away, of an alternative embodiment of the invention;
Fig. 4 is an enlarged bottom plan view of the holding probe and ejection slot of the surgical suturing system of Fig. 3; and
Fig. 5 is another alternative embodiment of the holding probe.
Fig. 6 is a side elevation of a probe assembly embodying the invention;
Fig. 7 is a side elevation, somewhat enlarged, of the probe tip of Fig. 6; and
Fig. 8 is an end view of Fig. 7.
Detailed Description Of The Preferred Embodiments
Referring now to Figs. 1 and 2, there is shown a surgical suturing system 10 embodying the present invention. Surgical suturing system 10 includes a stapler assembly 100 and a probe assembly 200, the stapler and probe assemblies being held together by a fastener or band 300.
Stapler assembly 100 is preferably a stapler assembly of the type disclosed in U.S. Patent Application Serial No. 906,151, filed September 11, 1986, by Richards et al., which application is incorporated herein by reference. Alternatively, stapler assembly 100 could be another known stapler assembly capable of operating in conjunction with probe assembly 200, as will hereinafter be described in detail. Generally, stapler assembly 100 comprises a stapler 102 and an actuator 104. Stapler 102 includes a housing 106, a staple magazine 108 which contains a plurality of staples 110, a staple driver 112 and a staple advance mechanism 114. As described in the Richards et al. patent application, when actuator 104 is energized, staple driver 112 is driven downwardly toward staple magazine 108, so that staple driver 112 contacts the leading staple 110 in staple magazine 108 and the staple is ejected through an ejection slot 116 formed in the head 118 of housing 106 (Fig. 2) . Staple advance mechanism 114 then advances the next staple 110 in staple magazine 108 into a position where it will be contacted by staple driver 112 and ejected from the stapler assembly 100 the next time actuator 104 is energized.
The staple 110 that is ejected through ejection slot 116 penetrates tissue 400 on opposite sides of an incision 402 (Fig. 2) , the edges of the incision being moved into and held in juxtapositional alignment during the suturing process by the probe assembly 200 hereinafter described. For convenience, tissue 400 and incision 402 are shown by the dashed lines that are superimposed on probe assembly 200 in Fig. 2.
Probe assembly 200 includes a probe 202 and an interface 204 that is configured to be connected to a vacuum source 206 by means of a line 208. Probe 202 has a suction head 210 at a working end 212 and a plug 214 at an opposite end. Plug 214 is configured to interconnect with a socket 216 of interface 204.
As best shown in Fig. 2, suction head 210 terminates in a substantially oval-shaped aperture 218 and a flat tissue supporting member 219 that extends forward of the aperture. Aperture 218 is positioned in close proximity to ejection slot 116 of stapler assembly 100, tissue supporting member 219 being disposed between aperture 218 and ejection slot 116. Head 210 is used to capture and draw the edges of incision 402 into juxtapositional coplanar alignment with one another and to hold the edges of the incision in apposition while one or more staples 110 is being driven into tissue 400 to suture the tissue and close the incision. The cross-sectional area of aperture 218 is such that a vacuum is maintained at the aperture even though a portion of the aperture is holding the tissue on one side of an incision. That is, aperture 218 is sized so that a vacuum is maintained at the aperture when only a portion of the aperture is covered. The tissue to be held is pulled across the flat tissue supporting member 219 so that the tissue at the sides of the incision are held flat in coplanar relationship against the tissue supporting member. The gathering together of the edges of incision 402 and holding of tissue 400 in apposition serves many purposes, for example, it supports the tissue during suturing, secures the head 118 of stapler 102 in correct driving position for suturing the tissue, and resists relative movement between the tissue and stapler caused by stapler recoil.
In operation of surgical suturing system 10, vacuum source 206 is energized and a suction is created at aperture 218. The head 118 of stapler 102 is positioned near the edges of incision 402. The suture system 10 is rotated on its longitudinal axis and moved so that stapler head 118 approaches one edge of the incision 402. Suturing system 10 is positioned carefully and precisely so that only one edge of the incision is captured or sucked into contact with one side of aperture 218 of suction head 210. It has been found that a change in the sound emitted from vacuum source 206 is detected by the user when the tissue on one side of the incision is captured by suction head 210. The engaged edge of the incision 402 is then moved into a position beside the other or uncaptured edge of the incision. This is achieved by moving suturing system 10 (and hence its attached tissue) until the free edge of the tissue and the captured edge of the tissue are juxtaposed. Then, suturing system 10 is rotated carefully and precisely on its longitudinal axis again until the free edge of the incision is also captured by aperture 218 of suction head 210. It has been found that a further change in the sound emitted by vacuum source 206 is detected when the tissue on both sides of the incision is captured by suction head 210. Both edges of incision 402 are held in a juxtaposed coplanar relationship against flat tissue supporting member 219. Next, actuator 104 is energized and the leading staple 1 in the staple magazine 108 is driven by staple driver 11 The driven staple 110 is ejected through the ejection sl 116 and into tissue 400 for suturing the tissue and closing incision 402.
Referring now to Figs. 3 and 4, there is shown a surgical suturing system 20 having a stapler assembly 120 and a probe assembly 220. Stapler assembly 120 is identical to the stapler assembly 100 discussed above. Accordingly, corresponding parts of stapler assemblies 100 and 120 are identified by like reference characters and distinguished by a prime notation when referring to the parts of stapler assembly 120.
Probe assembly 220 is similar to probe assembly 200 discussed above, with the exception of the relative position of the stapler ejection slot and the probe assembly's suction head, as will hereinafter be discussed in further detail. Accordingly, corresponding parts of probe assemblies 200 and 220 are identified by like reference characters and distinguished by a prime notation when referring to the parts of probe assembly 220. Probe assembly 220 includes a probe 222 and an interface 204'' that is configured to be connected to a vacuum source 206" by means of a line 208". Probe 222 has a suction head 224 at a working end 226 and a plug 214' at an opposite end. Plug 214' is configured to interconnect with a socket 216 of interface 204'.
As best shown in Fig. 4, suction head 224 is formed with an aperture 228 defining a substantially o-shaped track. Aperture 228 is positioned about ejection slot 116' of stapler assembly 120 and defines a suction path about ejection slot 116'. As in the case of suction head 210 discussed above, head 224 is used to draw the edges of incision 402/ into juxtapositional coplanar alignment with one another and hold the edges of the incision in apposition while the staple 110' is being driven into the tissue 400' for suturing the tissue and closing the incision. The gathering together of the edges of incision 402" and holding of tissue 400 in this manner supports the tissue during suturing, secures the head 118' of stapler 102' in correct driving position for suturing the tissue, and resists relative movement between the tissue and stapler caused by stapler recoil.
In operation of surgical suturing system 20, vacuum source 206' is energized and a suction is created at aperture 228. The head 118' of suturing system 20 is positioned near the edges of the incision 402'. Head 118' of the suturing system 20 is moved toward the edges of the incision 402' until one edge of the incision is captured or sucked into contact with one side of aperture 228 of suction head 224. A change in the sound emitted from vacuum source 206' indicates that tissue 400' has been captured by suction head 224. Next, the suturing system 20 is moved toward the free edge of incision 402' until the free edge is also captured by suction head 224. A further change in the sound emitted by vacuum source 206' indicates both sides of the incision are captured by vacuum probe 220. The edges of incision 402' are held in a juxtaposed coplanar relationship by suction head 224. Then, actuator 104' is energized and the leading staple 110' in the staple magazine 108' is driven through the ejection slot 116' and into tissue 400' for suturing the tissue and closing incision 402'.
Referring now to Fig. 5, there is shown a further embodiment of a probe assembly 230 made in accordance with the teachings of the present invention. Probe assembly 230 is somewhat similar to probe assembly 220 in that probe assembly 230 includes a probe 232 having a suction head 234 with an aperture 236 defining a substantially O-shaped track that is positioned about a stapler ejection slot 116'. However, aperture 236 is bifurcated into a pair of substantially U-shaped tracked apertures 238 and 240 which define a bifurcated suction path. Aperture 238 is connected by a line 242 to a controller 244 and aperture 240 is connected to the controller 244 by a line 246. Controller 244 is connected to a vacuum source (not shown) by a line 248. Controller 244 includes flow controls 250 and 252 for independently controlling the suction at apertures 238 and 240, respectively.
The operation of probe assembly 230 is similar to the operation of probe assembly 220 previously described, with the exception that the suction applied to the sides of aperture 236 is independently controlled via flow controls 250 and 252. Independent control of the suction on each side of aperture 236 facilitates placement of the edges of the incision in coplanar juxtaposition alignment.
Referring now to Figs. 6 through 8, there is shown a probe assembly 500 for positioning and holding tissue at the edges of an incision to be sutured in juxtapositional coplanar alignment preparatory to suturing. Probe assembly 500 includes an elongated body 502 having a suction head 504 at one end and a connector 506 at the other end. Suction head 504 includes a tubular member 508 that is narrowed at 510 and cut away at 512 to form a substantially oval-shaped aperture 514 with an extending flat tissue supporting member 516. The cross-sectional area of aperture 514 is sufficiently small in cross-sectional area with respect to the cross-sectional area of tubular member 504 that a suction is maintained at the aperture while only a portion of the aperture is covered by the tissue at one side of the incision to be sutured. In the illustrated embodiment, the cross-sectional area of tubular member 504 is at least one and one half times the cross-sectional area of aperture 514. A vacuum controller 520 having ports 522 and 524 is provided in body 502 for controlling the suction at aperture 514. Suction head 504 is used to capture and draw the tissue at the edges of an incision into juxtapositional coplanar alignment with one another and hold the the tissue in apposition while the incision is being sutured by surgical staples or conventional suturing or other means for closing an incision.
In operation of probe assembly 500, a vacuum source (not shown) is connected to probe assembly 500 by means of a line 526 that is fitted to connector 506. Aperture 514 is positioned adjacent the tissue at one edge of the incision and port 522 is covered to increase the suction at aperture 514. The suction pulls the tissue at the one side of the incision across a portion of tissue supporting member 516 and covers a portion of aperture 514. Next, the captured tissue is moved to close the incision and the suction pulls the tissue at the other side of the incision across tissue supporting member 516 and aperture 514. Port 524 is then covered to further increase the hold on the tissue so that the tissue will be securely supported during subsequent incision closing. The two pieces of tissue are held in juxtapositional coplanar alignment while the incision is closed by stapling, conventional suturing or other incision closing means.
Since certain changes may be made in the foregoing disclosure without departing from the scope of the invention herein involved, it is intended that all matter contained in the above description and depicted in the accompanying drawings be construed in an illustrative and not in a limiting sense.

Claims

WHAT IS CLAIMED IS:
1. A surgical suturing system for suturing human and animal tissue, said system configured to be connected to a vacuum source, said system comprising: a) stapler means for suturing human and animal tissue, said staple means configured to selectively eject at least one staple from an ejection slot in said stapler means for suturing adjacent edges of the tissue; and b) a probe connected to said stapler means for positioning and holding the edges of the tissue to be sutured in juxtapositional coplanar alignment, an aperture formed at a working end of said probe is positioned in proximity to said ejection slot, said probe configured to be connected to a vacuum source, a suction at said aperture at said working end of said probe being sufficient to captively hold the tissue being sutured when said probe is placed in proximity to the tissue, said working end of said probe configured to capture one edge of the tissue to be sutured and hold the one edge while said stapler means is moved to a position for placing the one edge in juxtapositional alignment with the other or free edge of the tissue and capturing the free edge of the tissue, the one edge and the other edge of the tissue to be sutured are held in coplanar juxtapositional alignment by said probe while said stapler means is suturing the tissue.
2. The surgical suturing system as claimed in claim 1 including means for controlling the force of the suction at said aperture at said working end of said probe.
3. The surgical suturing system as claimed in claim 1 wherein said aperture at said working end of said probe is adjacent said ejection slot.
4. The surgical suturing system as claimed in claim 1 wherein said aperture at said working end of said probe defines a suction path that is disposed about said ejection slot.
5. The surgical suturing system as claimed in claim 1 wherein said aperture at said working end of said probe defines a bifurcated suction path that is disposed about said ejection slot.
6. The surgical suturing system as claimed in claim 1 wherein said aperture at said working end of said probe defines first and second suction paths, said first suction path located adjacent one end of said ejection slot and said second suction path located adjacent an opposite end of said ejection slot.
7. A surgical suturing system for suturing human and animal tissue, said system comprising: a) a stapler having a housing, a staple ejection slot formed in said housing, a plurality of staples carried in said housing, a driver having energized and deenergized states, and means for energizing said driver, said driver mounted in said housing and configured to selectively engage and eject said staples through said ejection slot when said driver is in its energized state; and b) probe means for positioning and holding the edges of tissue which is to be sutured in juxtapositional alignment, said probe means including a holding probe and suction means, said holding probe mounted to said housing, a working end of said probe positioned in close proximity to said ejection slot, said suction means communicating with said holding probe, said suction means creating a suction at said working end of said holding probe for engaging the tissue being sutured when said holding probe is placed in proximity to the tissue, said working end of said holding probe configured to engage one edge of the tissue to be sutured and hold the one edge while said stapler is moved to position said one edge in juxtapositional alignment with the other edge of the tissue to be sutured, the other edge engaged and held in juxtapositional coplanar alignment with the one edge by said working end of said holding probe, said driver is energized and a staple is ejected through said ejection slot to suture the tissue while said working end of said holding probe holds said one edge and the other edge in juxtapositional coplanar alignment.
8. The surgical suturing system as claimed in claim 7 including control means communicating with said holding probe for controlling the suction force at said working end of said holding probe.
9. The surgical suturing system as claimed in claim 7 wherein said working end of said holding probe is formed with an aperture that is positioned adjacent said ejection slot.
10. The surgical suturing system as claimed in claim 7 wherein said working end of said holding probe is formed with an aperture that is disposed about said ejection slot and defines a suction path in the form of a track that is disposed about said ejection slot.
11. The surgical suturing system as claimed in claim 7 wherein said working end of said holding probe is formed with a bifurcated aperture that is disposed about said ejection slot and defines a suction path in the form of a bifurcated track that is disposed about said ejection slot.
12. The surgical suturing system as claimed in claim 7 wherein said working end of said holding probe defines first and second suction paths, said first suction path located adjacent one end of said ejection slot and said second suction path located adjacent an opposite end of said ejection slot.
13. A probe assembly for positioning and holding human and animal tissue for suturing, the probe assembly configured to be connected to a vacuum source, the probe assembly comprising an elongated body having a suction head at one end, said suction head having a tubular member that is narrowed at a working end, an aperture and a supporting member formed in said narrowed tubular member at said working end, said supporting member extending forward of said aperture, a suction at said aperture being sufficient to hold tissue to be sutured, the tissue sutured being drawn across said supporting member and captured by the suction at said aperture.
14. The probe assembly as claimed in claim 13 wherein the cross-sectional area at said aperture is such that a vacuum is maintained at said aperture when a portion of said aperture is covered by the tissue to be sutured.
15. The probe assembly as claimed in claim 14 wherein the cross-sectional area of said tubular member is at least one and one half times the cross-sectional area of said aperture.
16. The probe assembly as claimed in claim 13 including control means operatively connected to said body for regulating the suction at said aperture.
17. The probe assembly as claimed in claim 13 wherein said aperture is substantially oval-shaped.
18. The probe assembly as claimed in claim 17 wherein the cross-sectional area at said oval-shaped aperture is such that a vacuum is maintained at an uncovered portion of said aperture when the remaining portion of said aperture is covered by tissue to be sutured.
19. The probe assembly as claimed in claim 18 wherein the cross-sectional area of said tubular member is at least one and one half times the cross-sectional area of said oval-shaped aperture.
20. The probe assembly as claimed in claim 19 including at least two port means formed in said body for regulating the suction at said oval-shaped aperture.
PCT/US1989/004480 1988-10-07 1989-10-06 Surgical suturing system and probe assembly WO1990003762A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US255,541 1981-04-20
US07/255,541 US4927428A (en) 1988-10-07 1988-10-07 Surgical suturing system and probe assembly

Publications (1)

Publication Number Publication Date
WO1990003762A1 true WO1990003762A1 (en) 1990-04-19

Family

ID=22968794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1989/004480 WO1990003762A1 (en) 1988-10-07 1989-10-06 Surgical suturing system and probe assembly

Country Status (2)

Country Link
US (1) US4927428A (en)
WO (1) WO1990003762A1 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640870A1 (en) * 1988-12-26 1990-06-29 Kabbara Jamil
US5282807A (en) * 1990-11-05 1994-02-01 Knoepfler Dennis J Automatic stapler for laparoscopic procedure with selective cutter, nontraumatic jaws and suction irrigator
AU682529B2 (en) * 1993-07-26 1997-10-09 Depuy Mitek, Inc. Suture grasping device
GB9405790D0 (en) * 1994-03-23 1994-05-11 Univ London Sewing device
US6074208A (en) * 1998-08-21 2000-06-13 Mitchell; Kenneth B. Noise reduction in fluid flow passage
US6464707B1 (en) 1999-04-01 2002-10-15 David B. Bjerken Vacuum-assisted remote suture placement system
US6626930B1 (en) * 1999-10-21 2003-09-30 Edwards Lifesciences Corporation Minimally invasive mitral valve repair method and apparatus
US7993368B2 (en) * 2003-03-13 2011-08-09 C.R. Bard, Inc. Suture clips, delivery devices and methods
WO2001066018A1 (en) * 2000-03-03 2001-09-13 C. R. Bard, Inc. Endoscopic tissue apposition device with multiple suction ports
US8105351B2 (en) 2001-05-18 2012-01-31 C.R. Bard, Inc. Method of promoting tissue adhesion
ES2435094T3 (en) 2000-05-19 2013-12-18 C.R. Bard, Inc. Device and method of tissue capture and suturing
US7033373B2 (en) 2000-11-03 2006-04-25 Satiety, Inc. Method and device for use in minimally invasive placement of space-occupying intragastric devices
US7083629B2 (en) 2001-05-30 2006-08-01 Satiety, Inc. Overtube apparatus for insertion into a body
US6558400B2 (en) 2001-05-30 2003-05-06 Satiety, Inc. Obesity treatment tools and methods
US6746460B2 (en) 2002-08-07 2004-06-08 Satiety, Inc. Intra-gastric fastening devices
US7033384B2 (en) 2002-08-30 2006-04-25 Satiety, Inc. Stented anchoring of gastric space-occupying devices
US7214233B2 (en) * 2002-08-30 2007-05-08 Satiety, Inc. Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach
WO2004021873A2 (en) 2002-09-06 2004-03-18 C.R. Bard, Inc. Integrated endoscope and accessory treatment device
JP4660714B2 (en) * 2002-09-06 2011-03-30 シー・アール・バード・インク Endoscopic tissue acquisition system
US7229428B2 (en) * 2002-10-23 2007-06-12 Satiety, Inc. Method and device for use in endoscopic organ procedures
US7220237B2 (en) 2002-10-23 2007-05-22 Satiety, Inc. Method and device for use in endoscopic organ procedures
US6656194B1 (en) 2002-11-05 2003-12-02 Satiety, Inc. Magnetic anchoring devices
US7175638B2 (en) 2003-04-16 2007-02-13 Satiety, Inc. Method and devices for modifying the function of a body organ
MXPA05012303A (en) 2003-05-16 2006-02-22 Bard Inc C R Single intubation, multi-stitch endoscopic suturing system.
US7914543B2 (en) 2003-10-14 2011-03-29 Satiety, Inc. Single fold device for tissue fixation
US7097650B2 (en) * 2003-10-14 2006-08-29 Satiety, Inc. System for tissue approximation and fixation
US20050177176A1 (en) 2004-02-05 2005-08-11 Craig Gerbi Single-fold system for tissue approximation and fixation
US8828025B2 (en) 2004-02-13 2014-09-09 Ethicon Endo-Surgery, Inc. Methods and devices for reducing hollow organ volume
MXPA06009971A (en) 2004-02-27 2007-08-08 Satiety Inc Methods and devices for reducing hollow organ volume.
US9028511B2 (en) 2004-03-09 2015-05-12 Ethicon Endo-Surgery, Inc. Devices and methods for placement of partitions within a hollow body organ
US8252009B2 (en) 2004-03-09 2012-08-28 Ethicon Endo-Surgery, Inc. Devices and methods for placement of partitions within a hollow body organ
US8449560B2 (en) 2004-03-09 2013-05-28 Satiety, Inc. Devices and methods for placement of partitions within a hollow body organ
US8628547B2 (en) 2004-03-09 2014-01-14 Ethicon Endo-Surgery, Inc. Devices and methods for placement of partitions within a hollow body organ
AU2005231323B2 (en) 2004-03-26 2011-03-31 Ethicon Endo-Surgery, Inc Systems and methods for treating obesity
US20060106288A1 (en) 2004-11-17 2006-05-18 Roth Alex T Remote tissue retraction device
US8906040B2 (en) * 2005-07-13 2014-12-09 Creighton University Systems and techniques for minimally invasive gastrointestinal procedures
US8641729B2 (en) * 2005-07-13 2014-02-04 Creighton University Systems and techniques for minimally invasive gastrointestinal procedures
US7771440B2 (en) * 2005-08-18 2010-08-10 Ethicon Endo-Surgery, Inc. Method and apparatus for endoscopically performing gastric reduction surgery in a single pass
US9005220B2 (en) * 2006-04-04 2015-04-14 C.R. Bard, Inc. Suturing devices and methods with energy emitting elements
US20090082802A1 (en) * 2007-09-26 2009-03-26 Medtronic Vascular, Inc. Mechanism and Method for Closing an Arteriotomy
US20090228040A1 (en) * 2008-03-04 2009-09-10 Medtronic Vascular, Inc. Mechanism and Method for Closing an Arteriotomy
WO2009157908A1 (en) 2008-06-27 2009-12-30 Davol, Inc. Endoscopic vacuum controller
CA2738426C (en) 2008-09-29 2016-03-15 C.R. Bard, Inc. Endoscopic suturing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3516160A (en) * 1968-03-18 1970-06-23 Pelton & Crane Co Dental aspirating cuspidor
US3804089A (en) * 1970-08-13 1974-04-16 H Bridgman Vacuum cannula apparatus
US3916909A (en) * 1973-08-01 1975-11-04 Bio Medicus Inc Suction surgical instrument of the forceps type
DE2611721A1 (en) * 1976-03-19 1977-09-29 R Geerd Dr Med Hamer VACUUM SERUM SUCTION DEVICE
US4536180A (en) * 1983-07-22 1985-08-20 Johnson Gerald W Surgical instrument for suction lipolysis
US4589869A (en) * 1982-02-24 1986-05-20 Mediplast Ab Suction device and a method of manufacturing the same
US4627834A (en) * 1984-05-07 1986-12-09 Hans Lee Apparatus for performing suction lipectomy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60120C (en) * KALLE & CO. in Biebrich a. Rh Process for the preparation of a nitrosonaphtylamine sulfonic acid
FR2559066B1 (en) * 1984-02-03 1987-01-09 Medicalex FAT SUCTION CANNULA

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3516160A (en) * 1968-03-18 1970-06-23 Pelton & Crane Co Dental aspirating cuspidor
US3804089A (en) * 1970-08-13 1974-04-16 H Bridgman Vacuum cannula apparatus
US3916909A (en) * 1973-08-01 1975-11-04 Bio Medicus Inc Suction surgical instrument of the forceps type
DE2611721A1 (en) * 1976-03-19 1977-09-29 R Geerd Dr Med Hamer VACUUM SERUM SUCTION DEVICE
US4589869A (en) * 1982-02-24 1986-05-20 Mediplast Ab Suction device and a method of manufacturing the same
US4536180A (en) * 1983-07-22 1985-08-20 Johnson Gerald W Surgical instrument for suction lipolysis
US4627834A (en) * 1984-05-07 1986-12-09 Hans Lee Apparatus for performing suction lipectomy

Also Published As

Publication number Publication date
US4927428A (en) 1990-05-22

Similar Documents

Publication Publication Date Title
US4990153A (en) Surgical suturing system and probe assembly
US4927428A (en) Surgical suturing system and probe assembly
US11882987B2 (en) Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US11896225B2 (en) Staple cartridge comprising a pan
CN101028205B (en) Surgical stapling instrument having force controlled spacing end effector
US5782397A (en) Stapling device
US5364003A (en) Staple cartridge for a surgical stapler
JP5042595B2 (en) Surgical instrument having a hydraulically operated end effector
US4821942A (en) Driver for surgical microstapler
EP0514139B1 (en) Surgical stapler with spent cartridge sensing and lockout means
US5458279A (en) Surgical stapler with safety feature
US5014899A (en) Surgical stapling apparatus
JP3828183B2 (en) Surgical fastener applicator
US4493322A (en) Surgical stapling instrument
JPH01500802A (en) surgical micro stapling device
US6446854B1 (en) Surgical stapling apparatus
MX2007003818A (en) Surgical stapling instrument.
CA1174932A (en) Surgical stapling instrument
US11259890B2 (en) Surgical stapling instruments and surgical loading units thereof
CN114451944B (en) Surgical instrument and nail bin assembly thereof
US5658297A (en) Surgical staple remover
US20230310000A1 (en) Buttress applicator system for surgical stapler
KR20050016474A (en) Surgical stapling device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CH DE GB JP NL

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642