WO1991003375A1 - Manufacture of printed circuit boards - Google Patents

Manufacture of printed circuit boards Download PDF

Info

Publication number
WO1991003375A1
WO1991003375A1 PCT/US1990/004761 US9004761W WO9103375A1 WO 1991003375 A1 WO1991003375 A1 WO 1991003375A1 US 9004761 W US9004761 W US 9004761W WO 9103375 A1 WO9103375 A1 WO 9103375A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photoresist
dielectric
substrate
patterned
Prior art date
Application number
PCT/US1990/004761
Other languages
French (fr)
Inventor
Edward J. Conlon
Simon M. Boardman
Ashok N. Prabhu
Valerie Ann Pendrick
Original Assignee
David Sarnoff Research Center, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB898919710A external-priority patent/GB8919710D0/en
Priority claimed from GB898919711A external-priority patent/GB8919711D0/en
Priority claimed from GB898921385A external-priority patent/GB8921385D0/en
Priority claimed from US07/477,393 external-priority patent/US5035939A/en
Application filed by David Sarnoff Research Center, Inc. filed Critical David Sarnoff Research Center, Inc.
Publication of WO1991003375A1 publication Critical patent/WO1991003375A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4061Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in inorganic insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0041Etching of the substrate by chemical or physical means by plasma etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0166Polymeric layer used for special processing, e.g. resist for etching insulating material or photoresist used as a mask during plasma etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0384Etch stop layer, i.e. a buried barrier layer for preventing etching of layers under the etch stop layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0562Details of resist
    • H05K2203/0582Coating by resist, i.e. resist used as mask for application of insulating coating or of second resist
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/30Details of processes not otherwise provided for in H05K2203/01 - H05K2203/17
    • H05K2203/308Sacrificial means, e.g. for temporarily filling a space for making a via or a cavity or for making rigid-flexible PCBs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/002Etching of the substrate by chemical or physical means by liquid chemical etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4664Adding a circuit layer by thick film methods, e.g. printing techniques or by other techniques for making conductive patterns by using pastes, inks or powders
    • H05K3/4667Adding a circuit layer by thick film methods, e.g. printing techniques or by other techniques for making conductive patterns by using pastes, inks or powders characterized by using an inorganic intermediate insulating layer

Definitions

  • This invention relates to the manufacture of printed circuit boards. More particularly, this invention relates to printed circuit boards having small via holes of high aspect ratio.
  • This basic technique has also been applied to other layers, such as dielectric layers made from devitrifying glasses which are mixed with an organic vehicle to form a paste.
  • the paste is applied to the entire substrate, which substrate can be covered by a patterned conductive layer, and dried.
  • via holes are formed in the dielectric layer which is to be filled with a conductor such as copper.
  • a photoresist layer is applied over the dried dielectric layer, the resist is exposed using a photo tool to define the via holes, the resist developed to remove unexposed photoresist, and the dielectric washed away to form via apertures.
  • the substrate is then fired in an appropriate atmosphere, e.g.
  • the dielectric paste in the small vias is very difficult to remove, especially when the dielectric layer is quite thick.
  • the dielectric cannot be completely removed from the side walls, and in some cases cannot be removed down to the bottom of the via hole.
  • the photoresist is absorbed by the dielectric ink to some extent during the drying step.
  • the dielectric is rendered gummy which further interferes with removal of the dielectric layer. This exacerbates the difficulty of removal of portions of the dielectric paste.
  • Another problem encountered when making very small patterns and via connections is that all of the various unfired or fired layers of conductor and dielectric inks, as well as specialty inks such as dielectric overglaze inks and the like, undergo some absorption of the conductive copper into underlying and overlying dielectric layers, and some absorption of photoresist into both the copper layers and the dielectric layers. While these problems are present to some extent in the manufacture of all printed circuit boards, they are more troublesome when very small patterns and via holes are to be made.
  • a polymeric barrier layer can be deposited between all the various layers, including photoresist, conductor layers and dielectric layers, as well as various known intermediate layers, to reduce or eliminate the absorption and interaction of one layer by another.
  • FIGS. 1 - 2 illustrate the steps of preparation of via holes in dielectric layers in accordance with the method of the invention.
  • Figures 3 - 6 illustrate the steps of preparation of filled via holes in dielectric layers over a patterned copper layer using a barrier layer over said dielectric layer in accordance with another embodiment of the invention.
  • very small via holes having high aspect ratios can be made, e.g., via holes between about 50 and 125 micrometers in diameter, using photoresist printing techniques, as contrasted with the state of the art manufacture of via holes of 100-250 micrometers in diameter.
  • a first layer of photoresist 14 is deposited on the substrate 12 and patterned in conventional manner so that photoresist "posts" remain where the via holes are to be made.
  • the s? 'trate 12 can be any conventional printed circuit board material such as metal or ceramic, which can withstand firing temperatures of about 600° C to 1000°C.
  • steel, alumina and glass coated (glazed) alumina can be employed as the substrate.
  • a first copper pattern (not shown) can be applied to the substrate using screen printing techniques, and the copper paste dried and fired in nitrogen at 900° C prior to forming the photoresist "posts".
  • a suitable devitrifying glass dielectric ink layer 16 is deposited over the patterned photoresist layer 14 using conventional screen printing or spinning techniques. The dielectric glass layer 16 is dried at a temperature between about 110°C and 125°C. for about 15 minutes, but not fired.
  • the glass dielectric layer 16 is thinnest where the via holes are to be made.
  • the organics in the dielectric paste can be partially or completely removed by subjecting the dielectric paste layer to an oxygen plasma treatment for from about 10 to 60 minutes.
  • a second photoresist layer 18 is now applied over the dielectric layer 16.
  • An opening 20 is formed where the via holes are desired and over the "posts", by exposing and developing the second photoresist layer 18 using conventional techniques. The pattern in the second photoresist layer 18 thus is complementary to the first photoresist layer 14.
  • the dielectric layer 16 is removed from the opening 20 during development of the second photoresist layer 18, as shown in Figure 2. Due to the presence of the photoresist "posts" 14, the layer of dielectric 16 to be removed from the opening 20 is comparatively shallow and thus the dielectric 16 can be removed completely and cleanly, even from narrow holes between about 50 andl25 micrometers in diameter.
  • Figure 2 illustrates the patterned substrate just before firing or subsequent patterning takes place. When the substrate is fired, as in nitrogen at a temperature between about 800° C and 900° C, the remaining photoresist 14 in the via holes is completely burned away and the dielectric layer 16 is sintered. Thus the resulting via hole can have a high aspect ratio (height:diameter) of up to 0.5 for 50 micrometer diameter via holes.
  • a suitable resin barrier layer- is applied between the layers on the substrate.
  • the barrier layer must be a material that is impermeable to photoresist migration into a conductive or dielectric layer; must be compatible with both a copper or dielectric layer and photoresist to avoid blistering during firing; it should be easy to remove as by washing during development of the photoresist; and it must be completely removed upon heating to the firing temperature of the printed circuit boards, either in air or in an inert atmosphere.
  • This polymer is a poly(alkylene carbonate) which is soluble in 2-ethoxy ethyl acetate and compatible with Waycoat SC 450 photoresist, available from Hunt Chemical Co. It can be rinsed away from exposed areas with acetone. It burns cleanly in nitrogen or an oxygen-containing gas such as air.
  • one or more layers of a barrier resin 24 is spin coated over the patterned dielectric layer 16 and a copper layer 22, drying at about 120°C for about 20 minutes between each application. This coating forms a barrier between the dielectric layer 16 and a subsequently applied conductor layer.
  • a conventional thick copper via fill paste or ink 26 is next screen printed onto the substrate so that the print is somewhat larger than the final feature size, as shown in Figure 4.
  • the via fill ink 26 is then dried at about HOoC for about 20 minutes.
  • One or more layers of a barrier resin 27 is spin coated over the entire substrate, drying at about 120°C for about 20 minutes between each application. This coating forms a barrier between the copper layer 26 and a subsequently applied photoresist layer.
  • a photoresist layer 28 is applied, exposed to pattern the desired via features and conductor lines, if desired, and developed so that the desired copper is protected under the exposed area of the photoresist, as shown in Figure 5.
  • the excess portion of the via fill ink layer 26 is removed along with the excess portions of the barrier layers 24 and 27 in those areas not covered with the photoresist layer 28, by spraying with acetone.
  • the substrate 12 is fired in nitrogen at temperatures between about 600° C and 1000°C to remove the remaining photoresist and organics, while the copper pattern is sintered.
  • the resultant substrate is shown in Figure 6.
  • the barrier layers can also be applied during other steps of the process. For example, when the dielectric layer has been oxygen plasma treated to remove organics, as detailed above, a barrier layer can be applied over the dielectric layer 16 prior to applying the photoresist layer 18 thereover. The barrier layer can be removed by washing with acetone after the development of the photoresist 18. A barrier layer is also suitably applied to the substrate prior to application of the first photoresist layer 14.

Abstract

In the manufacture of printed circuit boards, a first photoresist post (14) is patterned on the substrate where via holes are to be made. A dielectric layer (16) is put down, a second photoresist layer (18) patterned so as to have openings over and in alignment with the photoresist posts (14), and the dielectric removed from the via holes. Barrier layers to reduce interaction between layers of copper, dielectric and photoresist during filling of the via holes with a conductor via fill ink are also described.

Description

MANUFACTURE OF PRINTED CIRCUIT BOARDS
This invention relates to the manufacture of printed circuit boards. More particularly, this invention relates to printed circuit boards having small via holes of high aspect ratio.
BACKGROUND OF THE INVENTION
Screen printing techniques have long been used to fabricate printed circuit boards and other substrates for the electronics industry, wherein conductive inks are applied to the substrate through a patterned screen and fired to remove the organics, leaving a patterned layer of the conductor, e.g. copper, on the substrate.
As the patterns became smaller and more intricate, screen printing was supplemented by photoresist technology. The conductive material was put down as a thin layer, a photoresist layer applied thereover, and then exposed and developed to form a patterned layer. The uncoated conductive layer was etched away, and the remaining photoresist dissolved away or fired, leaving a patterned conductive layer on the substrate.
This basic technique has also been applied to other layers, such as dielectric layers made from devitrifying glasses which are mixed with an organic vehicle to form a paste. The paste is applied to the entire substrate, which substrate can be covered by a patterned conductive layer, and dried. In order to gain access to the underlying conductor pattern, via holes are formed in the dielectric layer which is to be filled with a conductor such as copper. A photoresist layer is applied over the dried dielectric layer, the resist is exposed using a photo tool to define the via holes, the resist developed to remove unexposed photoresist, and the dielectric washed away to form via apertures. The substrate is then fired in an appropriate atmosphere, e.g. nitrogen for copper, air for inert conductors such as silver and gold, whereupon the organic materials, the paste organic vehicle and remaining photoresist, burn away, and the glass dielectric sinters onto the substrate. The via holes are then filled with copper using screen printing techniques.
The above technique is eminently suitable to form via holes between about 100 and 250 micrometers in diameter. However, with the increased miniaturization required for the electronics and computer industries, it is desired to make smaller via holes between about 25 and 125 micrometers in diameter.
Conventional screen printing or photoresist techniques have grave problems when very small via holes through comparatively thick layers of, inter alia, dielectric, are to be made.
The dielectric paste in the small vias is very difficult to remove, especially when the dielectric layer is quite thick. The dielectric cannot be completely removed from the side walls, and in some cases cannot be removed down to the bottom of the via hole. In addition, it is difficult to fill small holes with copper paste using screen printing techniques.
Further, the photoresist is absorbed by the dielectric ink to some extent during the drying step. Thus when the photoresist is subsequently exposed to ultraviolet light, the dielectric is rendered gummy which further interferes with removal of the dielectric layer. This exacerbates the difficulty of removal of portions of the dielectric paste. Another problem encountered when making very small patterns and via connections is that all of the various unfired or fired layers of conductor and dielectric inks, as well as specialty inks such as dielectric overglaze inks and the like, undergo some absorption of the conductive copper into underlying and overlying dielectric layers, and some absorption of photoresist into both the copper layers and the dielectric layers. While these problems are present to some extent in the manufacture of all printed circuit boards, they are more troublesome when very small patterns and via holes are to be made. SUMMARY OF THE INVENTION
We have found that by reducing the amount of dielectric paste to be removed in a via hole, small diameter vias and other patterns of high aspect ratio can be formed readily, producing substrates and printed circuit boards that are an advance over the art. Also we have found that a polymeric barrier layer can be deposited between all the various layers, including photoresist, conductor layers and dielectric layers, as well as various known intermediate layers, to reduce or eliminate the absorption and interaction of one layer by another.
BRIEF DESCRIPTION OF THE DRAWING
Figures 1 - 2 illustrate the steps of preparation of via holes in dielectric layers in accordance with the method of the invention.
Figures 3 - 6 illustrate the steps of preparation of filled via holes in dielectric layers over a patterned copper layer using a barrier layer over said dielectric layer in accordance with another embodiment of the invention.
DETAILED DESCRIPTION OF THE INVENTION
In the process of the present invention very small via holes having high aspect ratios can be made, e.g., via holes between about 50 and 125 micrometers in diameter, using photoresist printing techniques, as contrasted with the state of the art manufacture of via holes of 100-250 micrometers in diameter.
According to the present process, and as shown in Figure 1, a first layer of photoresist 14 is deposited on the substrate 12 and patterned in conventional manner so that photoresist "posts" remain where the via holes are to be made.
The s? 'trate 12 can be any conventional printed circuit board material such as metal or ceramic, which can withstand firing temperatures of about 600° C to 1000°C. For example, steel, alumina and glass coated (glazed) alumina can be employed as the substrate. A first copper pattern (not shown) can be applied to the substrate using screen printing techniques, and the copper paste dried and fired in nitrogen at 900° C prior to forming the photoresist "posts". A suitable devitrifying glass dielectric ink layer 16 is deposited over the patterned photoresist layer 14 using conventional screen printing or spinning techniques. The dielectric glass layer 16 is dried at a temperature between about 110°C and 125°C. for about 15 minutes, but not fired. It will be apparent that the glass dielectric layer 16 is thinnest where the via holes are to be made. The organics in the dielectric paste can be partially or completely removed by subjecting the dielectric paste layer to an oxygen plasma treatment for from about 10 to 60 minutes. A second photoresist layer 18 is now applied over the dielectric layer 16. An opening 20 is formed where the via holes are desired and over the "posts", by exposing and developing the second photoresist layer 18 using conventional techniques. The pattern in the second photoresist layer 18 thus is complementary to the first photoresist layer 14.
The dielectric layer 16 is removed from the opening 20 during development of the second photoresist layer 18, as shown in Figure 2. Due to the presence of the photoresist "posts" 14, the layer of dielectric 16 to be removed from the opening 20 is comparatively shallow and thus the dielectric 16 can be removed completely and cleanly, even from narrow holes between about 50 andl25 micrometers in diameter. Figure 2 illustrates the patterned substrate just before firing or subsequent patterning takes place. When the substrate is fired, as in nitrogen at a temperature between about 800° C and 900° C, the remaining photoresist 14 in the via holes is completely burned away and the dielectric layer 16 is sintered. Thus the resulting via hole can have a high aspect ratio (height:diameter) of up to 0.5 for 50 micrometer diameter via holes.
The via holes now must be filled with a conductive material such as copper, using a conventional via fill paste or ink of copper powder in an organic vehicle. In order to impart a smooth surface to the substrate, and to eliminate or reduce migrations from one layer to another, optionally a suitable resin barrier layer- is applied between the layers on the substrate. The barrier layer must be a material that is impermeable to photoresist migration into a conductive or dielectric layer; must be compatible with both a copper or dielectric layer and photoresist to avoid blistering during firing; it should be easy to remove as by washing during development of the photoresist; and it must be completely removed upon heating to the firing temperature of the printed circuit boards, either in air or in an inert atmosphere.
A polymer available as QPAC, a trademark of Air Products and Chemical Co, has been found to be a suitable barrier layer. This polymer is a poly(alkylene carbonate) which is soluble in 2-ethoxy ethyl acetate and compatible with Waycoat SC 450 photoresist, available from Hunt Chemical Co. It can be rinsed away from exposed areas with acetone. It burns cleanly in nitrogen or an oxygen-containing gas such as air.
Referring now to Figure 3, one or more layers of a barrier resin 24 is spin coated over the patterned dielectric layer 16 and a copper layer 22, drying at about 120°C for about 20 minutes between each application. This coating forms a barrier between the dielectric layer 16 and a subsequently applied conductor layer.
A conventional thick copper via fill paste or ink 26 is next screen printed onto the substrate so that the print is somewhat larger than the final feature size, as shown in Figure 4. The via fill ink 26 is then dried at about HOoC for about 20 minutes.
One or more layers of a barrier resin 27 is spin coated over the entire substrate, drying at about 120°C for about 20 minutes between each application. This coating forms a barrier between the copper layer 26 and a subsequently applied photoresist layer.
A photoresist layer 28 is applied, exposed to pattern the desired via features and conductor lines, if desired, and developed so that the desired copper is protected under the exposed area of the photoresist, as shown in Figure 5.
The excess portion of the via fill ink layer 26 is removed along with the excess portions of the barrier layers 24 and 27 in those areas not covered with the photoresist layer 28, by spraying with acetone. The substrate 12 is fired in nitrogen at temperatures between about 600° C and 1000°C to remove the remaining photoresist and organics, while the copper pattern is sintered. The resultant substrate is shown in Figure 6. The barrier layers can also be applied during other steps of the process. For example, when the dielectric layer has been oxygen plasma treated to remove organics, as detailed above, a barrier layer can be applied over the dielectric layer 16 prior to applying the photoresist layer 18 thereover. The barrier layer can be removed by washing with acetone after the development of the photoresist 18. A barrier layer is also suitably applied to the substrate prior to application of the first photoresist layer 14.
Although the present invention has been described using a particular sequence of steps, and using particular materials, other materials and steps can be utilized as will be known to one skilled in the art, and the invention is not meant to be limited to the details described hereinabove. The invention is only to be limited by the following claims.

Claims

We Claim:
1. A method of making small via holes of high aspect ratio on a substrate which comprises
1) applying a first patterned photoresist layer on said substrate such that the photoresist is situated where the via hole is to be made,
2) depositing a dielectric ink layer thereover,
3) subjecting the dielectric layer to an oxygen plasma treatment,
4) applying a second photoresist layer over said dielectric layer,
5) patterning said second photoresist layer so that it has an opening over and aligned with said first photoresist layer, and
6) removing said dielectric in said opening.
2. A method according to claim 1 wherein a barrier layer is deposited prior to the first photoresist layer.
3. A method according to claim 1 wherein a barrier layer is deposited over the dielectric layer.
4. A method according to claim 1 wherein a barrier layer is deposited over the second photoresist layer.
5. A method according to claim 1 wherein a conductor via fill ink is deposited in said opening.
6. A method according to claim 5 wherein a barrier layer is deposited over said via fill ink layer.
7. A method according to claim 1 wherein a barrier layer is deposited over a patterned copper layer on said substrate.
8. A method according to claim 5 wherein said conductor is copper.
9. A substrate having a first patterned photoresist layer thereon, a dielectric layer thereover, and a patterned photoresist layer having openings over and aligned with said first patterned photoresist layer.
10. A substrate having a patterned copper layer thereon, a dielectric layer thereover and a barrier layer contacting said dielectric layer.
11. A substrate according to claim 9 wherein said dielectric layer is patterned to have via holes therein.
12. A substrate according to claim 9 wherein a photoresist layer is deposited over said barrier layer.
13. An unfired printed circuit board having a patterned copper circuit thereon, a dielectric layer thereover having via holes therein of between about 50 and 125 micrometers in diameter, and a photoresist post at the bottom of one or more of said via holes.
14. A printed circuit board according to claim 13 wherein a barrier layer is deposited over said dielectric layer,
15. An unfired printed circuit board having a patterned copper circuit thereon, a dielectric layer thereover having via holes therein between about 50 and 125 micrometers in diameter, a first barrier layer over said dielectric layer, a conductor via fill ink filling said via holes, and a second barrier layer over said conductor via fill ink.
16. A printed circuit board according to claim 15 having a photoresist layer over said second barrier layer.
17. A printed circuit board according to claim 15 wherein said conductor is copper.
PCT/US1990/004761 1989-08-31 1990-08-24 Manufacture of printed circuit boards WO1991003375A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
GB8919711.5 1989-08-31
GB898919710A GB8919710D0 (en) 1989-08-31 1989-08-31 Method of fabrication for thick film vias having high aspect ratios
GB8919710.7 1989-08-31
GB898919711A GB8919711D0 (en) 1989-08-31 1989-08-31 Photo-defined vias in dielectric films
GB8921385.4 1989-09-21
GB898921385A GB8921385D0 (en) 1989-09-21 1989-09-21 Photo-defined thick film conductors
US07/477,393 US5035939A (en) 1989-08-31 1990-02-09 Manufacture of printed circuit boards
US477,393 1990-02-09

Publications (1)

Publication Number Publication Date
WO1991003375A1 true WO1991003375A1 (en) 1991-03-21

Family

ID=27450395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1990/004761 WO1991003375A1 (en) 1989-08-31 1990-08-24 Manufacture of printed circuit boards

Country Status (1)

Country Link
WO (1) WO1991003375A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998020535A2 (en) * 1996-11-08 1998-05-14 W.L. Gore & Associates, Inc. Multiple frequency processing to minimize manufacturing variability of high aspect ratio micro through-vias
WO1998020533A2 (en) * 1996-11-08 1998-05-14 W.L. Gore & Associates, Inc. Method for using photoabsorptive coatings to enhance both blind and through micro-via entrance quality
WO1999003684A2 (en) * 1997-07-18 1999-01-28 Cambridge Sensors Limited The production of microstructures for use in assays
JP2013504887A (en) * 2009-09-15 2013-02-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Ceramic component manufacturing method, ceramic component and component assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897338A (en) * 1987-08-03 1990-01-30 Allied-Signal Inc. Method for the manufacture of multilayer printed circuit boards
US4902610A (en) * 1985-08-02 1990-02-20 Shipley Company Inc. Method for manufacture of multilayer circuit board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902610A (en) * 1985-08-02 1990-02-20 Shipley Company Inc. Method for manufacture of multilayer circuit board
US4897338A (en) * 1987-08-03 1990-01-30 Allied-Signal Inc. Method for the manufacture of multilayer printed circuit boards

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998020535A2 (en) * 1996-11-08 1998-05-14 W.L. Gore & Associates, Inc. Multiple frequency processing to minimize manufacturing variability of high aspect ratio micro through-vias
WO1998020533A2 (en) * 1996-11-08 1998-05-14 W.L. Gore & Associates, Inc. Method for using photoabsorptive coatings to enhance both blind and through micro-via entrance quality
WO1998020535A3 (en) * 1996-11-08 1998-07-23 Gore & Ass Multiple frequency processing to minimize manufacturing variability of high aspect ratio micro through-vias
WO1998020533A3 (en) * 1996-11-08 1998-11-12 Gore & Ass Method for using photoabsorptive coatings to enhance both blind and through micro-via entrance quality
US6018196A (en) * 1996-11-08 2000-01-25 W. L. Gore & Associates, Inc. Semiconductor flip chip package
US6132853A (en) * 1996-11-08 2000-10-17 W. L. Gore & Asssociates, Inc. Multiple frequency processing to minimize manufacturing variability of high aspect ratio micro through-vias
WO1999003684A2 (en) * 1997-07-18 1999-01-28 Cambridge Sensors Limited The production of microstructures for use in assays
WO1999003684A3 (en) * 1997-07-18 1999-05-14 Cambridge Sensors Ltd The production of microstructures for use in assays
US6440645B1 (en) 1997-07-18 2002-08-27 Cambridge Sensors Limited Production of microstructures for use in assays
JP2013504887A (en) * 2009-09-15 2013-02-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Ceramic component manufacturing method, ceramic component and component assembly
US8952259B2 (en) 2009-09-15 2015-02-10 Robert Bosch Gmbh Method for producing a ceramic component, ceramic component and component assembly

Similar Documents

Publication Publication Date Title
US4336320A (en) Process for dielectric stenciled microcircuits
US5035939A (en) Manufacture of printed circuit boards
US4546065A (en) Process for forming a pattern of metallurgy on the top of a ceramic substrate
US4666818A (en) Method of patterning resist for printed wiring board
JP2597453B2 (en) How to make patterns on organic polymer membranes
US4828961A (en) Imaging process for forming ceramic electronic circuits
EP0285850B1 (en) Improved screen printing method for producing lines of uniform width and height
KR960006986B1 (en) Via hole structure and process for formation thereof
CN1155158A (en) Multi-layer circuit substrate and mfg. method thereof
US5776662A (en) Method for fabricating a chip carrier with migration barrier, and resulating chip carrier
US4963512A (en) Method for forming conductor layers and method for fabricating multilayer substrates
WO1991003375A1 (en) Manufacture of printed circuit boards
GB2201637A (en) Screen for printing electrical circuits
JP2000299560A (en) Manufacture of ceramic circuit board
US6194085B1 (en) Optical color tracer identifier in metal paste that bleed to greensheet
US6150074A (en) Method of forming electrically conductive wiring pattern
US5292624A (en) Method for forming a metallurgical interconnection layer package for a multilayer ceramic substrate
US20010012692A1 (en) Thick-film etch-back process for use in manufacturing fine-line hybrid circuits
US5234745A (en) Method of forming an insulating layer on a printed circuit board
JPS625356B2 (en)
JPS61139089A (en) Manufacture of printed wiring board
JPH0983096A (en) Circuit base board and its preparation
JPH0722732A (en) Forming method for microwiring
JPS6155796B2 (en)
JP2755019B2 (en) Method for manufacturing multilayer wiring board

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE