WO1991016990A1 - Insecticide dispensing apparatus - Google Patents

Insecticide dispensing apparatus Download PDF

Info

Publication number
WO1991016990A1
WO1991016990A1 PCT/US1991/002876 US9102876W WO9116990A1 WO 1991016990 A1 WO1991016990 A1 WO 1991016990A1 US 9102876 W US9102876 W US 9102876W WO 9116990 A1 WO9116990 A1 WO 9116990A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
liquid
pesticide
line
wand
Prior art date
Application number
PCT/US1991/002876
Other languages
French (fr)
Inventor
Salvatore F. Aiello
Edward J Lazzeroni, Sr.
John F. Quella
Cyril Quella
William J. Maurino
Donald F. Karasek
Jeffrey K. Brown
Original Assignee
S.C. Johnson & Son, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S.C. Johnson & Son, Inc. filed Critical S.C. Johnson & Son, Inc.
Publication of WO1991016990A1 publication Critical patent/WO1991016990A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/30Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages
    • B05B1/3033Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages the control being effected by relative coaxial longitudinal movement of the controlling element and the spray head
    • B05B1/304Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages the control being effected by relative coaxial longitudinal movement of the controlling element and the spray head the controlling element being a lift valve
    • B05B1/3046Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages the control being effected by relative coaxial longitudinal movement of the controlling element and the spray head the controlling element being a lift valve the valve element, e.g. a needle, co-operating with a valve seat located downstream of the valve element and its actuating means, generally in the proximity of the outlet orifice
    • B05B1/3053Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages the control being effected by relative coaxial longitudinal movement of the controlling element and the spray head the controlling element being a lift valve the valve element, e.g. a needle, co-operating with a valve seat located downstream of the valve element and its actuating means, generally in the proximity of the outlet orifice the actuating means being a solenoid
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/0025Mechanical sprayers
    • A01M7/0032Pressure sprayers
    • A01M7/0046Hand-operated sprayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/02Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery
    • B05B12/06Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery for effecting pulsating flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns

Definitions

  • This invention relates to devices to dispense insecticides for use by commercial pest elimination services or other pest control. More particularly, it relates to a device to dispense two different pesticides through a single wand.
  • U.S. Pat. No. 3,194,438 discloses a cleaning machine designed to dispense chemicals from tanks 7 mixed with water and air. The tanks are controlled by valves 30 and mixed with the air in nozzle N.
  • U.S. Pat. No. 3,575,348 describes a device for rinsing and washing using water pressure to dispense an active material from tank 32.
  • the water and chemical are mixed in venturi device 42.
  • U.S. Pat. No. 3,797,744 discloses a cleaning device comprising a series of tanks for cleaning chemicals, a source of air pressure and water. The chemicals are mixed with the air and water in the spray nozzle. The device also shows a separate nozzle for dispensing a mixture of air and oil. It is also known to use an electrostatic charge to assist in the dispensing of insecticides, see U.S. Pat. Nos.- 4,341,347, 4,275,846, 4,356,528, 4,358,059, and 4,362,275.
  • This invention relates to a self-contained insect control system comprising: 1) a mobile platform which includes a first supply means for a first pesticide, a second supply means for a second pesticide and air pressure supply means; 2) a wand separately in communication with the first supply means, the second supply means and the air pressure supply means and including means to pulse the flow of the first pesticide; means to selectively dispense any combination of the first* pesticide, the second pesticide, and air from the air pressure supply means; and means to place an electrostatic charge on the first pesticide as it is sprayed.
  • Figure 1 is a front view of the cart with the attached wand;
  • Figure 2 is a front view of the cart with the front open to show the tanks and partial hose routing;
  • Figure 3 is a view similar to Fig 2 of the cart but with the tanks removed to show added detail;
  • Figure 4 is a rear view of the unit with the back removed to show the interior detail
  • Figure 5 is a schematic view of the hose routing
  • Figure 6 is a side view of the wand
  • Figure 7 is an enlarged view of the wand handle, broken away to show the detail
  • Figure 8 is an enlarged view of the nozzle section of the wand broken away to show the detail
  • Figure 9 is an electrical schematic for the wand;
  • Figure 10 is a detail view of the chiller device; and
  • Figure 11 is a view of the chiller device taken along line 11-11 in Figure 10.
  • Figure 12 is a view of the wand barrel taken along line 12-12 in Figure 6.
  • Figure 13 is a view of the wand barrel taken along line 13-13 in Figure 8.
  • the device of the present invention comprises cart 10 and wand 100 connected to cart 10 by flexible hose 80, which schematically contains a power cord and three separate hoses. Flexible hose 80 can be replaced by a separate power cord and/or separate hoses.
  • Cart 10 has a removable front cover 12 which is held in place by two hinges, not shown, a bumper strip 14 around the front and the right and left sides.
  • Cart 10 has a top housing 16 and side housings 18 and 20, shown in Figure 3.
  • Cart 10 has two front wheels 22 and 24, both of which can rotate 360°, and two rear wheels 26 and 28, shown in Figure 4.
  • Cart 10 also has handle 30 connected to the side housings 18 and 20 by pivot means 32 and 34, shown in Figure 4.
  • pivot means may include means, not shown, to lock handle 30 in a series of preset positions for easy movement of the cart.
  • Front cover 12 has two cutouts 36 and 38, shown in
  • Top housing 16 also has two cutouts 36a and 38a which mate with cutouts 36 and 38 to provide openings in the outer housing for tanks 40 and 42.
  • Tank handles 44 and 46 for tanks 40 and 42 enable the operator to easily remove the tanks for refilling.
  • Top housing 16 includes an on-off switch 48 and an opening 50 for flexible hose 80.
  • Flexible hose 80 is connected to the rear end of wand 100.
  • Wand 100 includes a trigger 102, a light 104, a hand grip 106, a barrel 108, a flexible barrel 110 and nozzle assembly 112.
  • FIG 2 front cover 12 has been folded down to show the interior of cart 10.
  • tanks 40 and 42 are held in place by retaining means 70 and 71.
  • Tank 40 has an opening which is closed by handle 44
  • Figure 5 shows screw threads 45, an air inlet port 52 and a liquid out port 54.
  • Tank 40 also may have an optional magnetic stirring device 95 contained inside if the pesticide is subject to separation.
  • Connected to liquid out port 54 is a draw tube 93, which extends to the bottom of tank 40.
  • Air inlet port 52 is connected to air line 60.
  • the air pressure in air line 60 is regulated by pressure regulator 91.
  • Air line 60 is connected to the air manifold 87.
  • Liquid out port 54 is connected to liquid line 64, which includes conventional filter device 67.
  • Liquid line 64 is connected to line 81a, which is part of two hose line 81 which makes up a portion of flexible hose 80 to wand 100.
  • Tank 42 is connected to the air supply in a manner similar to tank 40.
  • Air line 62 includes a pressure regulator 92 to regulate the air pressure to tank 42.
  • Air line 62 is connected to air inlet port 56.
  • Liquid outlet port 58 is connected to a draw tube 94, which extends to the bottom of tank 42 and to liquid line 66, which has a conventional filter 68.
  • Liquid line 66 can either pass directly to line 81b which forms part of flexible hose 81 or preferably can pass through chiller device 72.
  • the liquid from chiller device 72 has been cooled to a temperature within the range of 0°C to 10°C. This enhances the effectiveness of certain pesticides, such as pyrethrum and the synthetic pyrethroids, by reducing the degradation of the pesticide.
  • the outlet of chiller 72 is connected to liquid line 65, which is connected to line 81b.
  • Bracket 74 holds lines 62, 64 and 66 -in place to prevent tangling and to keep them out of the way of the operator when changing the tanks.
  • the air pressure for the device is supplied by conventional air compressor 84.
  • the outlet of air compressor 84 is connected to air line 86 which connects to the air manifold.
  • Air line 86 includes a pressure relief valve 85.
  • Air manifold is connected to air lines 60, 62 and 88.
  • Air line 88 includes a pressure regulator 90 and is connected to flexible hose 82, which can form a portion of flexible hose 80 to wand 100.
  • Transformer 97 provides the power at the proper voltage for the wand.
  • Tube 96 is a guide tube for the power cord to the wand, not shown.
  • the power cord can be optionally held in place with a retractable cord reel placed below the tanks.
  • Figure 3 shows opening 51 in top housing 16. This is to hold the wand while the cart is being moved or stored.
  • Figure 4 shows a rear view of the cart with rear panel 13 open.
  • Air compressor 84 is visible as is electrical junction box 98.
  • Power cord 99 is the power from the electrical service to the unit.
  • the three power leads 77 leaving junction box 98 are connected to power air compressor 84, the magnetic stirrer, not shown, and the chiller 72.
  • Power lead 76 provides power to transformer 97 for the power to wand 100.
  • Junction box 98 can also be fitted with utility electrical outlets, not shown, for other optional equipment.
  • Belts 300 and 302 are to assist moving the cart up and down stairs. These belts are around pulleys 304, 304a, 306 and 306a.
  • Figure 6 shows a side view of wand 100.
  • Hand grip 106 has three push buttons 114 with LED on/off indicators for controlling the flow of liquid 1 and liquid 2, as well as the power to the electrostatic device.
  • Light 104 is to enable the operator to see in tight and dark locations without having to carry an extra light.
  • Cross brace 116 is an optional support member. It functions to protect the operator's hand and gives support to the wand. It can also be used to route the electrical wiring to the nozzle assembly.
  • Flexible barrel 110 is made so that the barrel can be bent to fit into tight locations and around corners. Under flexible barrel covering 110 is any conventional means to create a bendable barrel.
  • Barrel 108 and flexible barrel 110 are hollow and contain tubes for the liquids and the air as ell as wiring for the electrostatic anode and cathode and the control device for the liquid 1 dispensing va ve.
  • Figure 12 shows a crossectional view of barrel 108 and shows the placement of liquid line 132, liquid line 140 and air line 122, as well as electrical connections 200 and 202 to the liquid 1 dispensing valve and electrical connection 204 to the electrostatic cathode and electrical connection 206 to the electrostatic anode.
  • Nozzle assembly 112 is attached to the end of flexible barrel 110 and will be described in more detail with reference to Figure 8.
  • Figure 7 shows a view of the handle portion of wand 100, partially broken away to show the inner detail.
  • Base 119 has both an electrical connection, connection for the air line and a connection for the two liquid lines to flexible hose 80, not shown.
  • Power line 150 is connected to the electronics as more fully described with reference to Figure 9.
  • Liquid line 140 for liquid 1 enters the base 119 and passes directly to nozzle assembly 112.
  • Air line 120 enters air manifold 121 and splits into air line 122 which provides air to nozzle assembly 112 and into electrical pulsing unit 128 which provides air pulses through air line 124 to air inlet 133 of pulsing valve 134.
  • Liquid line 130 enters liquid inlet 131 of pulsing valve 134 and leaves through liquid line 132 as pulses of liquid to nozzle assembly 112.
  • Pulsing valve 134 is a normally closed pneumatically controlled valve and is opened by application of air pressure. When electrical pulsing unit 128 is switched off, no liquid will flow through pulsing valve 134. Therefore this valve functions not only to pulse the liquid in liquid line 132 but also acts as an on-off flow valve.
  • liquid channel 240 in sprayer body 272 is in fluid communication with liquid line 140, liquid channel 232 is in fluid communication with liquid line 132 and the air channel 223, shown in figure 13, is in fluid communication between nozzle air manifold 222 and air line 122.
  • Air line 122 has air flowing through it at all time the apparatus is in operation.
  • Sprayer body 272 has channels 201, 205 and 207 for passage of the electrical lines to the electromagnet and the electrostatic cathode and anode.
  • Liquid channel 240 terminates in annular space 242 around cutoff needle 212. Between the termination of liquid channel 240 and cutoff needle 212 is placed filter 220.
  • Filter 220 will remove any foreign particles in the liquid to be sprayed to prevent clogging of the orifices in cutoff cup 225 and sprayer nozzle 226.
  • Cutoff needle 212 is held in the closed position against cutoff cup 225 by spring 211.
  • Cutoff cup 225 is held in place by nozzle adapter 219.
  • Sprayer nozzle 226 is held in place by sprayer cap 228.
  • O- Ring 218 seals the space between sprayer body 272 and nozzle adapter 219.
  • Electromagnet assembly 210 includes spring 211, cutoff needle 212, electromagnet coils 213 and electromagnet body 214.
  • Electromagnet assembly 210 is held in place in sprayer body 272 by O-rings 216 and 217.
  • cutoff needle 212 moves backward from cutoff cup 225 against spring 211 and allows liquid 1, which is under air pressure from tank 40 to flow through cutoff cup 225 into sprayer nozzle 226 to be sprayed as a wet course spray.
  • Liquid 2 flows in a pulsed fashion from pulsing valve 134 through liquid line 132 which is in fluid communication with liquid channel 232.
  • Liquid channel 232 is in fluid communication with nozzle liquid channel 262 through the center of nozzle body 260.
  • Air from nozzle air manifold 222 which is an annular space in sprayer body cover 270 and surrounds the nozzle liquid channel 262, but is not in fluid communication with channel 262.
  • Nozzle air manifold is in fluid communication with nozzle air channel 224 through a series of holes in anode 250 and electrode gasket 252.
  • Air from nozzle air channels 224 is mixed with the pulsed liquid coming from nozzle liquid channel 262 in sprayer nozzle 290.
  • Nozzle body 260 is made of an electrically conductive material and is in electrical contact with electrostatic anode 250.
  • Anode 250 is in electrical contact with electrical connection 206.
  • Air cap electrode 280 places a positive charge at a high voltage on the liquid to be sprayed through air cap orifice 284 and assists in dispersing the particle in a fine mist.
  • Air cap electrode 280 is in electrical contact with electrical connection 204 and is protected by air cap cover 282 which is electrically insulating.
  • FIG 9 which is a schematic of the electrical circuits for wand 100
  • a source of +14 volts DC 500, from line 150 is connected to three microswitches 502, 504 and 506.
  • Each microswitch has a corresponding LED 510, 512 and 514 and a diode 516, to prevent the reverse flow of electricity through the switches.
  • Each LED is connected to ground through a IK ohm resistor 518.
  • Light 104 is also connected to power source 500 and to ground.
  • Microswitch 502 controls the pulsing of liquid 2 and the flow of liquid through pulsing valve 134.
  • Microswitch 502 is connected through line 522 to poles 4 and 8 of a 555 integrated circuit timing chip 520 and to a 3K ohm resistor 524.
  • the output of resistor 524 is connected to pole 7 of chip 520 and to a 36K ohm resistor 526 by line 528.
  • Resistor 526 is connected to poles 2 and 6 of chip 520 and to 4.7 mfd capacitor 532.
  • the output of capacitor 532 is connected to common 540.
  • Pole 1 of chip 520 is also connected to common 540 by line 534 and pole 5 of chip 520 is connected to common 540 through 0.01 mfd capacitor 536.
  • Pole 3 of chip 520 is connected to line 538 which is connected to electrical pulsing unit 128.
  • electrical pulsing unit can be any convention unit, the present embodiment uses a Clippard ETM3 unit.
  • the output of electrical pulsing unit 128 is connected to common 540.
  • Trigger 102 is connected to common 540 by line 562 and when trigger 102 is closed send common 540 to ground potential.
  • electrical pulsing unit 128 causes the air in air line 124 to pulse. This causes pulsing valve 134 to impart a pulse to liquid flowing through liquid line 132. Pulsing valve 134 operates such that when there is no air pressure in air line 124, no liquid flows through pulsing valve 134.
  • Opening trigger 102 causes the flow of liquid in liquid line 132 to stop.
  • Microswitch 504 controls the electrostatic generator. Switch 504 is connected to line 550 which connects to 22 ohm resistor 552 at the positive input terminal of high voltage power supply 554. The negative input terminal of high voltage power supply 554 is connected by line 556 to common 540. High voltage power supply 554 converts the
  • a high voltage typically 5000-6000 VDC for the electrostatic electrodes.
  • Any suitable power supply can be used. In the present embodiment a Standard Energy SC50 is used.
  • the positive output terminal of high voltage power supply 554 is connected to a 5.6M ohm resistor 560.
  • Resistor 560 is connected to electrical connection 204 which connects to the air cap electrode 280.
  • the Negative output terminal ' of high voltage power supply 554 is connected by electrical connection 206 to anode 250.
  • microswitch 504 and trigger 102 are closed a high voltage is placed across air cap electrode 280 and anode 250. The liquid, if it has the right electrical properties can then have an electrostatic charge placed on it, which further enhances performance of the pesticide.
  • Microswitch 506 is connected to electrical connection 200 which is connected to electromagnet assembly 210. Line 202 from electromagnet device is connected to common 540. When microswitch 506 is closed and trigger 102 is closed the electromagnet opens the valve to dispense liquid 1.
  • the chiller device 72 has a base 600 which encloses a fan 616.
  • Base 600 is open so that fan 616 can circulate air through vents 618 in the bottom of base 600 through the fins of radiators 612 and 612a and out through opening 620 on each side of chiller 72.
  • Chiller 72 has a cover 602 and a central chiller assembly 626 which is thermally conductive and includes inlet 614, which is attached to liquid line 66, a piping arranged in a tortuous path 628 and an outlet 630, which is attached to liquid line 65.
  • Chiller 72 is operated by using two peltier chips 604 , which are placed in thermal communication with chiller assembly 626 and radiators 612 and 612a, respectively.
  • An electrically insulating, but heat conductive gasket 608 is paced between peltier chip 604 and chiller assembly 626 and both peltier chips are surrounded by an insulating material 606 and 606a.
  • a cover 610 is placed between gasket 608 and chip 604.
  • This invention is useful in the field of professional pest elimination services. It provides a single unit which can deliver both residual and knock-down types of pesticide and which can deliver these materials in an optimum manner.

Abstract

A device which can dispense at least one pesticide which comprises a base unit (10) containing tanks (40, 42) for the pesticides and a wand (100) including valves (212, 134) to control dispensing of the pesticides, an electrode (280) to place an electrostatic charge on one pesticide, and a pulsing unit (128) to pulse the flow of one pesticide.

Description

Insecticide Dispensing Apparatus Technical Field This invention relates to devices to dispense insecticides for use by commercial pest elimination services or other pest control. More particularly, it relates to a device to dispense two different pesticides through a single wand.
Background Art Commercial pest elimination services have used devices to dispense pesticides or insecticides for a long time.
These devices include a source of the pesticide, a source of air pressure and a wand or other dispensing means to place the pesticide in the desired location, often mounted on a cart for mobility, see U. S. Pat. No. 3,265,308. U.S. Pat. No. 3,194,438 discloses a cleaning machine designed to dispense chemicals from tanks 7 mixed with water and air. The tanks are controlled by valves 30 and mixed with the air in nozzle N.
U.S. Pat. No. 3,575,348 describes a device for rinsing and washing using water pressure to dispense an active material from tank 32. The water and chemical are mixed in venturi device 42.
U.S. Pat. No. 3,797,744 discloses a cleaning device comprising a series of tanks for cleaning chemicals, a source of air pressure and water. The chemicals are mixed with the air and water in the spray nozzle. The device also shows a separate nozzle for dispensing a mixture of air and oil. It is also known to use an electrostatic charge to assist in the dispensing of insecticides, see U.S. Pat. Nos.- 4,341,347, 4,275,846, 4,356,528, 4,358,059, and 4,362,275.
Disclosure of Invention This invention relates to a self-contained insect control system comprising: 1) a mobile platform which includes a first supply means for a first pesticide, a second supply means for a second pesticide and air pressure supply means; 2) a wand separately in communication with the first supply means, the second supply means and the air pressure supply means and including means to pulse the flow of the first pesticide; means to selectively dispense any combination of the first* pesticide, the second pesticide, and air from the air pressure supply means; and means to place an electrostatic charge on the first pesticide as it is sprayed. Brief Description of the Drawings Figure 1 is a front view of the cart with the attached wand;
Figure 2 is a front view of the cart with the front open to show the tanks and partial hose routing;
Figure 3 is a view similar to Fig 2 of the cart but with the tanks removed to show added detail;
Figure 4 is a rear view of the unit with the back removed to show the interior detail;
Figure 5 is a schematic view of the hose routing; Figure 6 is a side view of the wand; Figure 7 is an enlarged view of the wand handle, broken away to show the detail;
Figure 8 is an enlarged view of the nozzle section of the wand broken away to show the detail;
Figure 9 is an electrical schematic for the wand; Figure 10 is a detail view of the chiller device; and Figure 11 is a view of the chiller device taken along line 11-11 in Figure 10.
Figure 12 is a view of the wand barrel taken along line 12-12 in Figure 6. Figure 13 is a view of the wand barrel taken along line 13-13 in Figure 8.
Best Mode for Carrying Out The Invention Referring to Figure 1, the device of the present invention comprises cart 10 and wand 100 connected to cart 10 by flexible hose 80, which schematically contains a power cord and three separate hoses. Flexible hose 80 can be replaced by a separate power cord and/or separate hoses. Cart 10 has a removable front cover 12 which is held in place by two hinges, not shown, a bumper strip 14 around the front and the right and left sides. Cart 10 has a top housing 16 and side housings 18 and 20, shown in Figure 3. Cart 10 has two front wheels 22 and 24, both of which can rotate 360°, and two rear wheels 26 and 28, shown in Figure 4. Cart 10 also has handle 30 connected to the side housings 18 and 20 by pivot means 32 and 34, shown in Figure 4. One or both of pivot means may include means, not shown, to lock handle 30 in a series of preset positions for easy movement of the cart. Front cover 12 has two cutouts 36 and 38, shown in
Figure 2, which fit around the top of tanks 40 and 42, Shown in Figure 2. Top housing 16 also has two cutouts 36a and 38a which mate with cutouts 36 and 38 to provide openings in the outer housing for tanks 40 and 42. Tank handles 44 and 46 for tanks 40 and 42 enable the operator to easily remove the tanks for refilling. Top housing 16 includes an on-off switch 48 and an opening 50 for flexible hose 80.
Flexible hose 80 is connected to the rear end of wand 100. Wand 100 includes a trigger 102, a light 104, a hand grip 106, a barrel 108, a flexible barrel 110 and nozzle assembly 112.
In Figure 2, front cover 12 has been folded down to show the interior of cart 10. Referring also to Figures 3 and 5, a view similar to Figure 2, but with the tanks removed and the schematic hose routing diagram, tanks 40 and 42 are held in place by retaining means 70 and 71. Tank 40 has an opening which is closed by handle 44 , Figure 5 shows screw threads 45, an air inlet port 52 and a liquid out port 54. Tank 40 also may have an optional magnetic stirring device 95 contained inside if the pesticide is subject to separation. Connected to liquid out port 54 is a draw tube 93, which extends to the bottom of tank 40. Air inlet port 52 is connected to air line 60. The air pressure in air line 60 is regulated by pressure regulator 91. Air line 60 is connected to the air manifold 87. Liquid out port 54 is connected to liquid line 64, which includes conventional filter device 67. Liquid line 64 is connected to line 81a, which is part of two hose line 81 which makes up a portion of flexible hose 80 to wand 100. Tank 42 is connected to the air supply in a manner similar to tank 40. Air line 62 includes a pressure regulator 92 to regulate the air pressure to tank 42. Air line 62 is connected to air inlet port 56. Liquid outlet port 58 is connected to a draw tube 94, which extends to the bottom of tank 42 and to liquid line 66, which has a conventional filter 68. Liquid line 66 can either pass directly to line 81b which forms part of flexible hose 81 or preferably can pass through chiller device 72. The liquid from chiller device 72 has been cooled to a temperature within the range of 0°C to 10°C. This enhances the effectiveness of certain pesticides, such as pyrethrum and the synthetic pyrethroids, by reducing the degradation of the pesticide. The outlet of chiller 72 is connected to liquid line 65, which is connected to line 81b. Bracket 74 holds lines 62, 64 and 66 -in place to prevent tangling and to keep them out of the way of the operator when changing the tanks.
The air pressure for the device is supplied by conventional air compressor 84. The outlet of air compressor 84 is connected to air line 86 which connects to the air manifold. Air line 86 includes a pressure relief valve 85. Air manifold is connected to air lines 60, 62 and 88. Air line 88 includes a pressure regulator 90 and is connected to flexible hose 82, which can form a portion of flexible hose 80 to wand 100. Transformer 97 provides the power at the proper voltage for the wand. Tube 96 is a guide tube for the power cord to the wand, not shown. The power cord can be optionally held in place with a retractable cord reel placed below the tanks. Figure 3 shows opening 51 in top housing 16. This is to hold the wand while the cart is being moved or stored.
Figure 4 shows a rear view of the cart with rear panel 13 open. Air compressor 84 is visible as is electrical junction box 98. Power cord 99 is the power from the electrical service to the unit. The three power leads 77 leaving junction box 98 are connected to power air compressor 84, the magnetic stirrer, not shown, and the chiller 72. Power lead 76 provides power to transformer 97 for the power to wand 100. Junction box 98 can also be fitted with utility electrical outlets, not shown, for other optional equipment. Belts 300 and 302 are to assist moving the cart up and down stairs. These belts are around pulleys 304, 304a, 306 and 306a. Figure 6 shows a side view of wand 100. Hand grip 106 has three push buttons 114 with LED on/off indicators for controlling the flow of liquid 1 and liquid 2, as well as the power to the electrostatic device. Light 104 is to enable the operator to see in tight and dark locations without having to carry an extra light. Cross brace 116 is an optional support member. It functions to protect the operator's hand and gives support to the wand. It can also be used to route the electrical wiring to the nozzle assembly. Flexible barrel 110 is made so that the barrel can be bent to fit into tight locations and around corners. Under flexible barrel covering 110 is any conventional means to create a bendable barrel. Barrel 108 and flexible barrel 110 are hollow and contain tubes for the liquids and the air as ell as wiring for the electrostatic anode and cathode and the control device for the liquid 1 dispensing va ve. Figure 12 shows a crossectional view of barrel 108 and shows the placement of liquid line 132, liquid line 140 and air line 122, as well as electrical connections 200 and 202 to the liquid 1 dispensing valve and electrical connection 204 to the electrostatic cathode and electrical connection 206 to the electrostatic anode. Nozzle assembly 112 is attached to the end of flexible barrel 110 and will be described in more detail with reference to Figure 8.
Figure 7 shows a view of the handle portion of wand 100, partially broken away to show the inner detail. Base 119 has both an electrical connection, connection for the air line and a connection for the two liquid lines to flexible hose 80, not shown. Power line 150 is connected to the electronics as more fully described with reference to Figure 9. Liquid line 140 for liquid 1 enters the base 119 and passes directly to nozzle assembly 112. Air line 120 enters air manifold 121 and splits into air line 122 which provides air to nozzle assembly 112 and into electrical pulsing unit 128 which provides air pulses through air line 124 to air inlet 133 of pulsing valve 134. Liquid line 130 enters liquid inlet 131 of pulsing valve 134 and leaves through liquid line 132 as pulses of liquid to nozzle assembly 112. Pulsing valve 134 is a normally closed pneumatically controlled valve and is opened by application of air pressure. When electrical pulsing unit 128 is switched off, no liquid will flow through pulsing valve 134. Therefore this valve functions not only to pulse the liquid in liquid line 132 but also acts as an on-off flow valve.
In Figure 8, liquid channel 240 in sprayer body 272 is in fluid communication with liquid line 140, liquid channel 232 is in fluid communication with liquid line 132 and the air channel 223, shown in figure 13, is in fluid communication between nozzle air manifold 222 and air line 122. Air line 122 has air flowing through it at all time the apparatus is in operation. Sprayer body 272 has channels 201, 205 and 207 for passage of the electrical lines to the electromagnet and the electrostatic cathode and anode. Liquid channel 240 terminates in annular space 242 around cutoff needle 212. Between the termination of liquid channel 240 and cutoff needle 212 is placed filter 220. Filter 220 will remove any foreign particles in the liquid to be sprayed to prevent clogging of the orifices in cutoff cup 225 and sprayer nozzle 226. Cutoff needle 212 is held in the closed position against cutoff cup 225 by spring 211. Cutoff cup 225 is held in place by nozzle adapter 219. Sprayer nozzle 226 is held in place by sprayer cap 228. O- Ring 218 seals the space between sprayer body 272 and nozzle adapter 219. Electromagnet assembly 210 includes spring 211, cutoff needle 212, electromagnet coils 213 and electromagnet body 214. Electromagnet assembly 210 is held in place in sprayer body 272 by O-rings 216 and 217. When electromagnet assembly 210 is activated by the operator as will be described later, cutoff needle 212 moves backward from cutoff cup 225 against spring 211 and allows liquid 1, which is under air pressure from tank 40 to flow through cutoff cup 225 into sprayer nozzle 226 to be sprayed as a wet course spray.
Liquid 2 flows in a pulsed fashion from pulsing valve 134 through liquid line 132 which is in fluid communication with liquid channel 232. Liquid channel 232 is in fluid communication with nozzle liquid channel 262 through the center of nozzle body 260. Air from nozzle air manifold 222, which is an annular space in sprayer body cover 270 and surrounds the nozzle liquid channel 262, but is not in fluid communication with channel 262. Nozzle air manifold is in fluid communication with nozzle air channel 224 through a series of holes in anode 250 and electrode gasket 252. When pulsing valve 134 is operated, liquid flows through liquid line 132 to channel 232 to nozzle channel 262 and is mixed with air from nozzle air channel 224. Although only one nozzle channel is shown, there may be a series of such channels. In one embodiment there are a total of three nozzle air channels 224. Air from nozzle air channels 224 is mixed with the pulsed liquid coming from nozzle liquid channel 262 in sprayer nozzle 290. Nozzle body 260 is made of an electrically conductive material and is in electrical contact with electrostatic anode 250. Anode 250 is in electrical contact with electrical connection 206. Air cap electrode 280 places a positive charge at a high voltage on the liquid to be sprayed through air cap orifice 284 and assists in dispersing the particle in a fine mist. Air cap electrode 280 is in electrical contact with electrical connection 204 and is protected by air cap cover 282 which is electrically insulating. In Figure 9, which is a schematic of the electrical circuits for wand 100, a source of +14 volts DC 500, from line 150 is connected to three microswitches 502, 504 and 506. Each microswitch has a corresponding LED 510, 512 and 514 and a diode 516, to prevent the reverse flow of electricity through the switches. Each LED is connected to ground through a IK ohm resistor 518. Light 104 is also connected to power source 500 and to ground.
Microswitch 502 controls the pulsing of liquid 2 and the flow of liquid through pulsing valve 134. Microswitch 502 is connected through line 522 to poles 4 and 8 of a 555 integrated circuit timing chip 520 and to a 3K ohm resistor 524. The output of resistor 524 is connected to pole 7 of chip 520 and to a 36K ohm resistor 526 by line 528. Resistor 526 is connected to poles 2 and 6 of chip 520 and to 4.7 mfd capacitor 532. The output of capacitor 532 is connected to common 540. Pole 1 of chip 520 is also connected to common 540 by line 534 and pole 5 of chip 520 is connected to common 540 through 0.01 mfd capacitor 536. Pole 3 of chip 520 is connected to line 538 which is connected to electrical pulsing unit 128. While electrical pulsing unit can be any convention unit, the present embodiment uses a Clippard ETM3 unit. The output of electrical pulsing unit 128 is connected to common 540. Trigger 102 is connected to common 540 by line 562 and when trigger 102 is closed send common 540 to ground potential. When microswitch 502 is closed and trigger 102 is closed, electrical pulsing unit 128 causes the air in air line 124 to pulse. This causes pulsing valve 134 to impart a pulse to liquid flowing through liquid line 132. Pulsing valve 134 operates such that when there is no air pressure in air line 124, no liquid flows through pulsing valve 134. Opening trigger 102 causes the flow of liquid in liquid line 132 to stop. Microswitch 504 controls the electrostatic generator. Switch 504 is connected to line 550 which connects to 22 ohm resistor 552 at the positive input terminal of high voltage power supply 554. The negative input terminal of high voltage power supply 554 is connected by line 556 to common 540. High voltage power supply 554 converts the
+14 VDC to a high voltage, typically 5000-6000 VDC for the electrostatic electrodes. Any suitable power supply can be used. In the present embodiment a Standard Energy SC50 is used. The positive output terminal of high voltage power supply 554 is connected to a 5.6M ohm resistor 560.
Resistor 560 is connected to electrical connection 204 which connects to the air cap electrode 280. The Negative output terminal' of high voltage power supply 554 is connected by electrical connection 206 to anode 250. When microswitch 504 and trigger 102 are closed a high voltage is placed across air cap electrode 280 and anode 250. The liquid, if it has the right electrical properties can then have an electrostatic charge placed on it, which further enhances performance of the pesticide. Microswitch 506 is connected to electrical connection 200 which is connected to electromagnet assembly 210. Line 202 from electromagnet device is connected to common 540. When microswitch 506 is closed and trigger 102 is closed the electromagnet opens the valve to dispense liquid 1.
Referring to figures 10 and 11, the chiller device 72 has a base 600 which encloses a fan 616. Base 600 is open so that fan 616 can circulate air through vents 618 in the bottom of base 600 through the fins of radiators 612 and 612a and out through opening 620 on each side of chiller 72. Chiller 72 has a cover 602 and a central chiller assembly 626 which is thermally conductive and includes inlet 614, which is attached to liquid line 66, a piping arranged in a tortuous path 628 and an outlet 630, which is attached to liquid line 65. Chiller 72 is operated by using two peltier chips 604 , which are placed in thermal communication with chiller assembly 626 and radiators 612 and 612a, respectively. An electrically insulating, but heat conductive gasket 608 is paced between peltier chip 604 and chiller assembly 626 and both peltier chips are surrounded by an insulating material 606 and 606a. A cover 610 is placed between gasket 608 and chip 604.
Industrial Applicability This invention is useful in the field of professional pest elimination services. It provides a single unit which can deliver both residual and knock-down types of pesticide and which can deliver these materials in an optimum manner.

Claims

What is claimed is:
1. A self-contained insect control device comprising:
A) a mobile platform which includes: i) a first supply means for a first pesticide; ii) a second supply means for a second pesticide; and iii) air pressure supply means;
B) a delivery wand for spraying pesticides separately in communication with the first supply means, the second supply means, and the pressure supply means; characterized in that the wand includes means to selectively dispense the first pesticide, the second pesticide or both the first and second pesticides; the wand further includes means to pulse the flow of the first pesticide and to mix the first pesticide with air; and the wand further includes means to place an electrostatic charge on the first pesticide as it is sprayed from the wand.
2. The device of claim 1 wherein the mobile platform also includes means to cool the first pesticide.
PCT/US1991/002876 1990-05-10 1991-04-26 Insecticide dispensing apparatus WO1991016990A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US521,507 1990-05-10
US07/521,507 US5064123A (en) 1990-05-10 1990-05-10 Insecticide dispensing apparatus

Publications (1)

Publication Number Publication Date
WO1991016990A1 true WO1991016990A1 (en) 1991-11-14

Family

ID=24077018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1991/002876 WO1991016990A1 (en) 1990-05-10 1991-04-26 Insecticide dispensing apparatus

Country Status (3)

Country Link
US (1) US5064123A (en)
AU (1) AU8002891A (en)
WO (1) WO1991016990A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5810265A (en) * 1994-09-07 1998-09-22 Reckitt & Colman Products Limited Electrostatic spraying device
ITRM20100243A1 (en) * 2010-05-13 2011-11-14 Nabawy Metwaly APPARATUS AND METHOD FOR THERAPEUTIC TREATMENT OF PLANTS.

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4108775A1 (en) * 1991-03-18 1992-09-24 Kaercher Gmbh & Co Alfred HIGH PRESSURE CLEANER
US5228621A (en) * 1991-10-04 1993-07-20 The United States, As Represented By The Secretary Of Agriculture Apparatus and method for applying material to agricultural commodities
FR2698564B1 (en) * 1992-12-01 1995-03-03 Sames Sa Device for spraying a coating product with a rotary spraying element and tool for mounting and dismounting such a rotary element.
US5299767A (en) * 1992-12-14 1994-04-05 Simpson Cleaning Systems, Inc. Pressure washer frame having gunvalve and hose rack
US5279317A (en) * 1993-02-26 1994-01-18 Bowman Michael D Endoscopic cannulated instrument flushing apparatus for forcing a cleaning solution through an endoscopic cannulated instrument for removal of gross debris
US5395046A (en) * 1993-10-25 1995-03-07 Nordson Corporation Hand-held spray gun with replaceable handle
US5441297A (en) * 1993-11-10 1995-08-15 Graco Inc. Power unit cart
US5671889A (en) * 1995-02-17 1997-09-30 Petty; Ralph S. Waterproofing spray apparatus
USD381393S (en) * 1995-02-23 1997-07-22 One More Time, Inc. Liquid transfer unit
US5775595A (en) * 1996-02-16 1998-07-07 Knodel; John J. Gravity fed sprayer
US6003787A (en) * 1997-05-02 1999-12-21 Cal-Ag Industrial Supply, Inc. Insecticide spray apparatus
US5991966A (en) * 1998-07-16 1999-11-30 Sproule; Roger Allen Apparatus for cleaning athletic equipment
US6279838B1 (en) * 1999-01-15 2001-08-28 Empire Spraying Systems, Inc. Sprayer dolly
US6220526B1 (en) * 1999-09-20 2001-04-24 Capitol Usa, Llc Method and device for applying adhesives
US6443369B1 (en) * 2000-11-28 2002-09-03 Roger W. Dohrmann Forage preservative applicator system
US6446881B1 (en) 2001-02-01 2002-09-10 Jung You Portable spray car wash device
US6880191B2 (en) * 2001-12-31 2005-04-19 Joe G. Bristor Spray caddy and method of dispensing chemicals
US20040079816A1 (en) * 2002-10-28 2004-04-29 Daniel Ester Lee Easy sprayer: a sprayer assembly in which a foot operated pump is used to pressurize the sprayers' tank
US20060208112A1 (en) * 2003-01-10 2006-09-21 Piatt Beverly A Spray head for electrohydrodynamic spray device and electrohydrodynamic sprayer system
US6817553B2 (en) * 2003-02-04 2004-11-16 Efc Systems, Inc. Powder paint spray coating apparatus having selectable, modular spray applicators
US6837447B1 (en) 2003-05-30 2005-01-04 Lacey Booth Clark Apparatus for adapting air blower to perform liquid dispersal and related method
US20050081428A1 (en) * 2003-10-15 2005-04-21 Ramsey Bruce R. Method for controlling mosquito reproduction
US7905428B1 (en) * 2004-11-24 2011-03-15 Max A. Probasco Multiple chemical sprayer
US7661609B2 (en) * 2005-09-08 2010-02-16 Black & Decker Inc. Pressure washer with soft start washer wand
US7458601B2 (en) * 2006-03-31 2008-12-02 Wagner Spray Tech Corporation Collapsible cart for paint spray pump
US8167170B2 (en) 2006-06-15 2012-05-01 Handy & Harman Adhesive dispenser system
US20080083793A1 (en) * 2006-10-05 2008-04-10 Larry Swain Chemical distribution device
US8313047B2 (en) * 2007-12-10 2012-11-20 Micheli Paul R Spray gun having adjustable handle
US20100072717A1 (en) * 2008-05-06 2010-03-25 Graco Minnesota, Inc. Striper with adjustable handle
US8651397B2 (en) * 2009-03-09 2014-02-18 Techtronic Power Tools Technology Limited Paint sprayer
US20100282866A1 (en) 2009-05-06 2010-11-11 Briggs & Stratton Corporation Chemical injector for spray device
US8359820B2 (en) * 2010-01-13 2013-01-29 Dohrmann Daniel R Ultra-low flow agricultural pump with unobstructed flow path and electronic flow control, tank refill indication, and detection of loss of flow
US20120241537A1 (en) * 2011-03-22 2012-09-27 Puretech Systems, Llc Disinfecting spray device for a cleaning cart
US9901943B2 (en) * 2013-10-23 2018-02-27 Briggs & Stratton Corporation Pressure washer gun with chemical injection and foaming capabilities
AU2015235894B2 (en) * 2014-03-28 2017-12-07 Schertz Aerial Service, Inc. Spraying system and method
US9616798B2 (en) * 2015-01-28 2017-04-11 Fuelie Systems, Inc. Portable fuel storage device
CN107079898A (en) * 2017-05-24 2017-08-22 卢秀伟 A kind of sprayer
WO2019178315A1 (en) 2018-03-16 2019-09-19 Fuelie Systems, Inc. Fuel storage and dispensing device
USD976364S1 (en) * 2019-09-06 2023-01-24 Gema Switzerland Gmbh Coating machines
US11491500B2 (en) * 2019-10-11 2022-11-08 Delaware Capital Formation, Inc. Portable chemical dispenser and method of using same
USD945562S1 (en) * 2020-01-09 2022-03-08 Zhejiang Prulde Electric Appliance Co., Ltd. Spray gun
US20220134366A1 (en) * 2020-11-01 2022-05-05 Ecp Incorporated Nozzle handle apparatus with built-in air regulation
CN112704057A (en) * 2020-12-29 2021-04-27 江杨 Big-arch shelter intelligence watering equipment
BR102021004959A2 (en) * 2021-03-16 2022-09-20 Boris Participações Societárias Ltda. FINISHED ROD FOR SPRAYING DROPS ELECTRICATION

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1979135A (en) * 1932-01-25 1934-10-30 Hudson Mfg Co H D Sprayer
US2772921A (en) * 1955-12-05 1956-12-04 James R Nance Garden spraying device
US2807502A (en) * 1956-02-06 1957-09-24 Tharp Homer Ray Apparatus for killing roots in underground pipes
US2943797A (en) * 1956-06-04 1960-07-05 Neilson Chemical Company Apparatus for treating surfaces
US2953305A (en) * 1957-09-25 1960-09-20 Pierce Waller Company Plural fluid discharge assembly
US3016200A (en) * 1959-08-11 1962-01-09 Max F Boehm Spray device and method
US3018927A (en) * 1958-08-21 1962-01-30 Hudson Mfg Co H D Spraying apparatus
US3194438A (en) * 1964-11-19 1965-07-13 Maurice D Walker Cleaning and sanitizing machine
US3265308A (en) * 1964-03-16 1966-08-09 Homer W Hopkins Yard and garden spray device
US3402741A (en) * 1965-06-21 1968-09-24 Yurdin Alfred Self-supporting, bendable, shape retaining discharge conduit
US3504858A (en) * 1967-10-27 1970-04-07 Walter Frank Liddiard Portable washing and rinsing machine
US3575348A (en) * 1968-09-09 1971-04-20 Lincoln Mfg Co Device for washing and rinsing
US3680786A (en) * 1971-06-28 1972-08-01 Chemtrust Ind Corp Mobile cleaning apparatus
US3764072A (en) * 1972-04-26 1973-10-09 J Morehouse Spray tank
US3797744A (en) * 1972-11-20 1974-03-19 W Smith Portable cleaning and sanitizing system
US3905552A (en) * 1973-10-18 1975-09-16 Exotech Apparatus for forming pulsed jets of liquid
US3940065A (en) * 1975-03-14 1976-02-24 Graco Inc. Portable spraying apparatus
US3977602A (en) * 1974-10-29 1976-08-31 Kirch Paul W Mobile spray apparatus
US4135669A (en) * 1977-08-30 1979-01-23 Bridges Edward B Portable, wheeled electric sprayer with pressurized liquid reservoir
US4291839A (en) * 1979-11-05 1981-09-29 Brett Dennis A Vehicle rust-inhibiting spray gun with lighting means
US4367198A (en) * 1981-06-19 1983-01-04 Medical Laboratory Automation, Inc. Reagent reservoir system for use in testing apparatus
US4561037A (en) * 1983-03-25 1985-12-24 Imperial Chemical Industries Plc Electrostatic spraying
US4667880A (en) * 1985-02-21 1987-05-26 Spraying Systems Co. Multiple fluid supply spraying gun
US4842203A (en) * 1987-02-24 1989-06-27 Kopperschmidt-Mueller Gmbh & Co. Kg Nozzle assembly for spray guns

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1547545A (en) * 1924-01-24 1925-07-28 John W Wood High-pressure washing machine
US3380658A (en) * 1965-10-22 1968-04-30 Donald J Basch Portable power washing apparatus
US3403818A (en) * 1966-09-30 1968-10-01 Binks Res And Dev Corp Portable airless sprayer
US3623669A (en) * 1969-07-10 1971-11-30 Billy L Woods Spray gun
US3799451A (en) * 1972-12-13 1974-03-26 K Kollmai Fluid flow wand assembly
US3901449A (en) * 1974-03-01 1975-08-26 Hudson Mfg Co H D Cordless electric sprayer
US3904116A (en) * 1975-01-09 1975-09-09 Disston Inc Portable cordless sprayer
US4197995A (en) * 1978-11-13 1980-04-15 Mccord Corporation Agricultural spraying assembly
US4341347A (en) * 1980-05-05 1982-07-27 S. C. Johnson & Son, Inc. Electrostatic spraying of liquids
US4341350A (en) * 1980-09-05 1982-07-27 Otto Wemmer Chemical injection system for high pressure washers
US4407454A (en) * 1981-06-26 1983-10-04 Whitmire Research Laboratories, Inc. Spray system
US4546922A (en) * 1981-07-02 1985-10-15 Thometz Steve P Multi-colored airbrush attachment system having a spiral mixing chamber and a wrist/arm-mounted paint reservoir
US4621770A (en) * 1981-12-14 1986-11-11 Sayen Michael D Plant watering/misting device

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1979135A (en) * 1932-01-25 1934-10-30 Hudson Mfg Co H D Sprayer
US2772921A (en) * 1955-12-05 1956-12-04 James R Nance Garden spraying device
US2807502A (en) * 1956-02-06 1957-09-24 Tharp Homer Ray Apparatus for killing roots in underground pipes
US2943797A (en) * 1956-06-04 1960-07-05 Neilson Chemical Company Apparatus for treating surfaces
US2953305A (en) * 1957-09-25 1960-09-20 Pierce Waller Company Plural fluid discharge assembly
US3018927A (en) * 1958-08-21 1962-01-30 Hudson Mfg Co H D Spraying apparatus
US3016200A (en) * 1959-08-11 1962-01-09 Max F Boehm Spray device and method
US3265308A (en) * 1964-03-16 1966-08-09 Homer W Hopkins Yard and garden spray device
US3194438A (en) * 1964-11-19 1965-07-13 Maurice D Walker Cleaning and sanitizing machine
US3402741A (en) * 1965-06-21 1968-09-24 Yurdin Alfred Self-supporting, bendable, shape retaining discharge conduit
US3504858A (en) * 1967-10-27 1970-04-07 Walter Frank Liddiard Portable washing and rinsing machine
US3575348A (en) * 1968-09-09 1971-04-20 Lincoln Mfg Co Device for washing and rinsing
US3680786A (en) * 1971-06-28 1972-08-01 Chemtrust Ind Corp Mobile cleaning apparatus
US3764072A (en) * 1972-04-26 1973-10-09 J Morehouse Spray tank
US3797744A (en) * 1972-11-20 1974-03-19 W Smith Portable cleaning and sanitizing system
US3905552A (en) * 1973-10-18 1975-09-16 Exotech Apparatus for forming pulsed jets of liquid
US3977602A (en) * 1974-10-29 1976-08-31 Kirch Paul W Mobile spray apparatus
US3940065A (en) * 1975-03-14 1976-02-24 Graco Inc. Portable spraying apparatus
US4135669A (en) * 1977-08-30 1979-01-23 Bridges Edward B Portable, wheeled electric sprayer with pressurized liquid reservoir
US4291839A (en) * 1979-11-05 1981-09-29 Brett Dennis A Vehicle rust-inhibiting spray gun with lighting means
US4367198A (en) * 1981-06-19 1983-01-04 Medical Laboratory Automation, Inc. Reagent reservoir system for use in testing apparatus
US4561037A (en) * 1983-03-25 1985-12-24 Imperial Chemical Industries Plc Electrostatic spraying
US4667880A (en) * 1985-02-21 1987-05-26 Spraying Systems Co. Multiple fluid supply spraying gun
US4842203A (en) * 1987-02-24 1989-06-27 Kopperschmidt-Mueller Gmbh & Co. Kg Nozzle assembly for spray guns

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5810265A (en) * 1994-09-07 1998-09-22 Reckitt & Colman Products Limited Electrostatic spraying device
ITRM20100243A1 (en) * 2010-05-13 2011-11-14 Nabawy Metwaly APPARATUS AND METHOD FOR THERAPEUTIC TREATMENT OF PLANTS.

Also Published As

Publication number Publication date
AU8002891A (en) 1991-11-27
US5064123A (en) 1991-11-12

Similar Documents

Publication Publication Date Title
US5064123A (en) Insecticide dispensing apparatus
US11623231B2 (en) Electrostatic fluid delivery system
CN108698056B (en) Electrostatic fluid conveying backpack system
US7905428B1 (en) Multiple chemical sprayer
US11167300B1 (en) Portable spray system
US6371385B1 (en) Portable spraying device
KR20120056541A (en) Portable sprayer
KR20110135518A (en) Compact atomization spray apparatus
JP3661795B2 (en) Electrostatic spraying equipment
EP1592513B1 (en) Fluid container for electrohydrodynamic spray device and method of using same
CN215612490U (en) Portable spraying device
US20230033525A1 (en) Powered sprayer
US20230048335A1 (en) Portable Spray System With External Tank
US20230106729A1 (en) Electrostatic fluid delivery system
CN113663834A (en) Portable spraying device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

NENP Non-entry into the national phase

Ref country code: CA