WO1992005621A1 - Thrust generator - Google Patents

Thrust generator Download PDF

Info

Publication number
WO1992005621A1
WO1992005621A1 PCT/JP1991/001250 JP9101250W WO9205621A1 WO 1992005621 A1 WO1992005621 A1 WO 1992005621A1 JP 9101250 W JP9101250 W JP 9101250W WO 9205621 A1 WO9205621 A1 WO 9205621A1
Authority
WO
WIPO (PCT)
Prior art keywords
duct
current
thrust
electromagnetic fluid
lorentz force
Prior art date
Application number
PCT/JP1991/001250
Other languages
English (en)
French (fr)
Inventor
Eiichi Tada
Original Assignee
Eiichi Tada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eiichi Tada filed Critical Eiichi Tada
Priority to DE69108891T priority Critical patent/DE69108891T2/de
Priority to EP91916612A priority patent/EP0500970B1/en
Priority to US07/858,986 priority patent/US5298818A/en
Publication of WO1992005621A1 publication Critical patent/WO1992005621A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K44/00Machines in which the dynamo-electric interaction between a plasma or flow of conductive liquid or of fluid-borne conductive or magnetic particles and a coil system or magnetic field converts energy of mass flow into electrical energy or vice versa
    • H02K44/02Electrodynamic pumps
    • H02K44/04Conduction pumps

Definitions

  • the present invention is suitable for use as a superconducting electromagnetic thrust generator for propulsion of ships, maintenance of positions of marine stations, electromagnetic pumps, etc. It is suitable for use as a generator.
  • an electromagnetic propulsion device used in an electromagnetic propulsion ship or the like requires a strong magnetic field of 10 to 20 T in order to obtain propulsion efficiency that can be used on an actual ship.
  • installation on a hull with limited space limits the size, weight, etc. of the equipment, and no equipment has yet emerged that meets such required conditions. This is a problem in the development and design of electromagnetic propulsion vessels.
  • the present invention moves the propulsion duct wall to equalize the moving speed and the flow velocity of the electromagnetic fluid so as to minimize the occurrence of the fluid friction as described above. It is intended to provide a generator.
  • a thrust generating device comprises: a solenoid coil type superconducting magnet; A positive and negative electrode provided on the inner surface of the duct; and a power supply device for supplying a current to the electromagnetic fluid between the two electrodes to generate a magnetic field and Lorentz force in the electromagnetic fluid.
  • the inlet and outlet openings are opened along the center axis of the superconducting magnet, and the positive electrode is continuously provided on one side of the inner surface, and the negative electrode is provided on the other side. It is provided to be arranged facing.
  • a plurality of current leads for supplying current between the electrodes are fixed at equal intervals on at least one of the inner peripheral wall and the outer peripheral wall of the duct, and the supply current A magnetic field and Lorentz force are generated in the current lead, and the duct is rotated by the Lorentz force.
  • the thrust generator according to the present invention supplies current to the plurality of current leads.
  • a bus device for performing the operation can be provided.
  • This busbar device includes a ring portion concentric with the duct and a bus bar portion extending in the length direction of the duct. Then, the bus bar portion is brought into contact with the current lead portion. Further, the bus device can be configured to be rotatable together with the duct. For this reason, the bus bar is fixed to the current lead. Further, in order to connect the busbar device to a power supply, a power supply terminal from a power supply may be brought into contact with an inner peripheral surface or an outer peripheral surface of the ring portion. With such a configuration, the mechanical structure is simplified, and the friction loss can be reduced by using a roller-shaped power supply terminal. However, a rotating support device is required to support the weight of the rotating duct and power feeding device.
  • the thrust generating device may have a configuration in which the position is fixed so that the busbar device does not rotate.
  • a ring bus bar portion is interposed between the current lead portion and the bus bar portion.
  • the positive electrode is connected to the inner surface of the duct, and the negative electrode is connected to the duct. It is preferable to provide it on the outer diameter side.
  • FIG. 1 is a perspective view showing an embodiment of the present invention with a part cut away
  • FIG. 2 is an enlarged partial sectional view of the propulsion duct in Fig. 1
  • FIG. 3 is a sectional view taken along the line III-III in FIG. 2
  • Fig. 4 is a partial perspective view of the power supply device
  • FIG. 5 is a perspective view showing the state of generation of Lorentz force in the current lead
  • FIG. 6 is a velocity diagram showing the relationship between the rotation speed of the propulsion duct and the flow rate of the electromagnetic fluid
  • Fig. 7 is a graph showing the fluid friction loss of the electromagnetic fluid due to the change in the rotation speed of the propulsion duct.
  • FIG. 8 is a sectional view corresponding to FIG. 2 showing a second embodiment of the present invention.
  • the thrust generator according to the present embodiment mainly includes a solenoid coil type superconducting magnet propulsion duct 2 and a power supply device 3.
  • the superconducting magnet 1 has a structure as a cryostat, and has a superconducting coil 4 wound therein so as to generate a magnetic field in the hollow portion 5. I'm sorry.
  • the generator for flowing current to the superconducting coil 4 is not shown.
  • the shape of the superconducting coil 4 may be either a layer winding or a pancake winding.
  • the propulsion duct 2 is a hollow duct with a rectangular cross section in the shape of a spiral, and the entrance end 6 and the exit end 7 are centered on the superconducting magnet 1 at the tip openings 6a and 7a, respectively. It is located on the axis la and extends along the central axis la. Although not shown, the openings at both ends of the superconducting magnet 1 are of course closed, and only the entrance end 6 and the exit end 7 of the propulsion duct 2 are exposed to the outside. Although not shown, the propulsion duct 2 is rotatably supported in the superconducting magnet by a suitable support device (for example, a support device using a roller).
  • a suitable support device for example, a support device using a roller
  • the shape of the duct is not limited to the shape of the propulsion duct 2 in this example, and may be another shape such as a cylindrical shape.
  • Positive and negative electrodes 8 and 9 are attached to the inner surface of the propulsion duct 2.
  • hydrogen gas is generated on the negative electrode 9 by the electromagnetic fluid 10 such as seawater flowing in the propulsion duct 2, and the positive electrode 8 is placed on the inner diameter side of the propulsion duct 2 in consideration of reducing the effective area.
  • the electrode 9 is arranged on the outer diameter side.
  • the present invention is of course not limited to this arrangement.
  • the power supply device 3 includes a plurality of current leads 11 and 12 and bus devices 13 and 14 for supplying current to the current leads.
  • An inner current lead 11 is provided at intervals, and 45 between the outer circumference of the propulsion duct 2 and the inner circumference of the superconducting coil 1.
  • Outer current leads 12 are provided at intervals.
  • the two current leads 11 and 12 have their base ends buried and fixed in the propulsion duct 2, respectively, and the inner current lead 11 is positive electrode 8 and the outer current lead 12 is Connected to negative electrode 9.
  • the busbar device 13 on the inner peripheral side includes a ring portion 15 and four busbar portions 16... Extending from the ring portion 15.
  • the ring portion 15 is arranged concentrically with the propulsion duct 2, and the roller-shaped power supply terminals 17, 17 are in contact with the inner surface.
  • the bus bar portion 16 is inserted into the inner hollow portion of the propulsion duct 2 at a position corresponding to the inner current lead portion 11 and almost penetrates the inner hollow portion of the propulsion duct 2. It is connected to all the inner peripheral side current lead portions 11 at the corresponding positions.
  • the busbar device 14 on the outer peripheral side like the busbar device 13 on the inner peripheral side, includes a ring portion 18 and eight busbar portions 19... ′ Extending from the ring portion 18.
  • the ring portion 18 is arranged concentrically with the propulsion duct 2, and the inner surface thereof is in contact with a roller-shaped power supply terminal 20.
  • the bus bar 19 is arranged along the outer periphery of the propulsion duct 2 at a position corresponding to the outer peripheral current lead 12, and all the outer currents at the corresponding positions on the outer periphery of the propulsion duct 2 are arranged. Connected to lead 12.
  • the electrode current flows from the power supply terminal 17 of the busbar device 13 on the inner peripheral side to the four busbar portions 16 via the ring portion 15, and from the busbar portion 16 to the inner peripheral current lead portion 11. It reaches the positive electrode 8 and is supplied into the electromagnetic fluid 10.
  • the supplied current flows from the electromagnetic fluid 10 through a circuit including the negative electrode 9, the outer peripheral current lead 12, the bus bar 19, the ring 18, and the power supply terminal 20.
  • the magnetic field B generated by the superconducting magnet 1, the electrode current J flowing between the positive and negative electrodes 8, 9 and the Lorentz force F are directed in the directions indicated by arrows in the figure.
  • the electromagnetic fluid 10 enters the propulsion duct 2 through the opening 6a of the inlet end 6, and is accelerated by the continuous mouth-Lents force F in the propulsion duct 2, and is accelerated by the opening 7 of the outlet end 7. It is ejected from 7a to the outside, and the reaction force of the ejection power becomes the thrust.
  • FIG. 5 shows the outer peripheral side current lead 12.
  • the dimensions of the current lead are shown as w (m) width and h height. (n!), depth d (m) and I do. It is also assumed that m current leads are provided on the outer periphery of the propulsion duct 2 and n are provided in the direction of the axis la in the same manner as the number of cells of the propulsion duct 2.
  • the average current density j of the current lead is
  • the low lead ⁇ ⁇ generated in the electromagnetic lead portion is the thickness h of the current lead portion when the electrode current J and the magnetic field B are constant. Will be determined by And a rotating moment T for rotating the propulsion duct 2. Is Lorentz force Fe and radius r. With the product
  • h is the thickness of the inner current lead portion
  • is the inner radius of the propulsion duct 2.
  • V c V c cos
  • S -Cc Vccos
  • the velocity difference between the electromagnetic fluid 10 and the wall surface of the propulsion duct 2 is Uc ( ⁇ Vc), and the fluid friction loss is smaller than when the propulsion duct 2 is not rotating. Can be smaller. of course, In this case, Uc becomes zero, and there is no fluid friction.
  • Fig. 7 shows this equation as a graph. Then, as shown in Fig. 7, for example, if the lead angle is set to 30 and the peripheral speed of the propulsion duct 2 is set to 80% of the flow velocity of the electromagnetic fluid 10, the fluid friction loss can be reduced by about 90%. Understand.
  • FIG. 8 shows another embodiment. If the previous embodiment is a centralized power supply system, the device of this embodiment can be said to be a split power supply system.
  • the bus devices 13 and 14 of the power supply device 3 are provided with ring bus bars 21 and 22, respectively, and their positions are fixed so that the propulsion duct 2 is stationary even when rotated.
  • Previous The structure becomes more complicated than in the example, and the friction loss due to the sliding contact between the current ring bus bars 21 and 22 and the current leads 11 and 12 increases. There is an advantage that the devices 13 and 14 can be integrated.
  • the other structures and operations of the present embodiment are the same as those of the previous example, and thus description thereof is omitted.
  • thrust generating device of the present invention may be used alone, but as disclosed in the earlier international application PCT / JP89 / 01153 filed by the present inventors, a plurality of thrust generating devices may be used in combination. is there. Industrial applicability
  • the thrust generator according to the present invention is as described above, so that it can be used as a propulsion device for ships and the like if it generates thrust horizontally, and can generate thrust horizontally and vertically.
  • it can be used as a position holding device for a sea station.
  • the thrust generator is fixed so that current flows through the electromagnetic fluid in the duct, the electromagnetic fluid is ejected from the duct by Lorentz force, so that it can be used as a large-capacity seawater pump.
  • power can be generated by inverting the principle of thrust generation and flowing an electromagnetic fluid through the duct, so it can be used as a large-capacity generator such as an ocean current MHD power generator.

Description

明 細 書
推 力 発 生 装 置 技術分野
本発明は推力発生装置に鬨し、 船舶推進、 海上ステーションの位置保 持、 電磁ボンプ等用の超電導電磁推進力発生装置とするのに適し、 また MHD発電機や揚水発電機等用のポンプや発電機として使用するのに適す るものに閧する。 背景技術
従来、 上述のような用途に使用される超電導電磁推進力発生装置とし ては、 ダイポール型やくら型、 若しくはレーストラック型の超電導コィ ルを用いるものが広く知られている。
しかしながら、 上述した従来の推力発生装置は実機として採用可能な 程度の推進力を得るためには非常に大きな規模のものになるという問題 がある。
例えば電磁推進船等に用いられる電磁推進装置にあっては、 実船に使 用できる推進効率を得るためには 1 0〜2 0 Tの強磁界を必要とすると されている。 ところが、 スペースが限られている船体に設置するために、 装置のサイズ、 重量等が制限され、 そのような要求される条件を満足す る装置が現在のところ出現しておらず、 この点が電磁推進船の開発設計 上の問題点となっている。
本発明者らはこれらの問題に鑑み、 高磁場の電磁力を発生でき、 軽量 かつ省スペースな推力発生装置を提供するため、 国際出願 PCT/JP89A)1153において 、 ソレノィドコイル型の超電導マグネッ卜の中 空内部に、 蔓卷状の推進ダク トを揷通させ、 該推進ダクトの内面の一側 に正電極を、 他側に負電極を夫々連続的に配置して対向させると共に、 該推進ダクトの入側及び出側開口部を上記超電導マグネットの中心軸線 に沿わせて開口させてなる推力発生装置を提案した。
ところが、 このような推力発生装置は、 従来公知の装置における問題 点は解決できるものの、 電磁流体の流速が非常に大きくなると推進ダク ト壁との流体摩擦損失が非常に大きくなつてしまい、 推力発生ェネルギ 効率が低下するという問題が判明した。 発明の開示
本発明は上記の問題に鑑み、 推進ダクト壁を移動させてその移動速度 と電磁流体の流速とを同一化することにより、 上述のような流体摩擦を できるだけ発生させないようにし、 さらに高効率な推力発生装置を提供 しょうとするものである。
本発明に係る推力発生装置は、 上記目的を達成するために、 ソレノィ ドコイル型の超電導マグネットと、 該超電導マグネットの中空内部に回 転自在に支持した電磁流体を通すための薆卷状のダクトと、 該ダクト内 面に設けた正、 負電極と、 及び両電極間にある電磁流体に電流を供給し て該電磁流体中に磁界とローレンツ力を発生させる給電装置とからなる。 そして上記ダクトは、 入側及び出側開口部を上記超電導マグネットの中 心軸線に沿わせて開口させ、 かつ内面の一側に上記正電極を、 他側に上 記負電極を夫々連続的に対向配置して備える。 また上記給電装置は、 上 記ダクトの内周壁もしくは外周壁の少なくともいずれか一方に、 上記電 極間への電流供給用の複数の電流リード部を等間隔で固設し、 該供給電 流により該電流リード部に磁界及びローレンツ力を発生させ、 該ローレ ンッ力により上記ダクトを回転させる。
本発明に係る推力発生装置は、 上記複数の電流リード部に電流を供給 するための母線装置を備えることができる。 この母線装置は、 上記ダク トと同心のリング部と、 上記ダクトの長さ方向に伸びるブスバー部とか らなる。 そして上記ブスバー部を上記電流リード部に接触させる。 そし て、 上記母線装置を上記ダク トと共に回転可能とした構成とすることが できる。 このため上記ブスバー部を上記電流リード部に固定する。 また、 上記母線装置を電源に接続するために、 上記リング部の内周面もしくは 外周面に電源からの給電端子を接触させる構成とすることができる。 こ のような構成にすると、 機械的構造が簡単になり、 給電端子にローラ状 のものを採用すれば摩擦損失を小さくできる。 もっとも回転するダク ト 及び給電装置の重量を支えるための回転支持装置が必要となる。
また本発明に係る推力発生装置は、 上記母線装置が回転せぬよう位置 固定とした構成とすることができる。 この場合、 上記電流リード部と上 記ブスバー部との間にはリングブスバー部を介在させる。 このような構 成にすると、 機械的構図は複雑になり、 電流リード部とリングブスバー 部との摺接による摩擦損失が大きくなる。 但し、 ダクト重量を支える回 転支持装置と給電装置とを一体化できる。
上記ダクト内を流れる流体が海水等の場合、 負電極に水素ガスが発生 して有効面積を減らすことになるので、 上記正電極を上記ダクトの内径 側の面に、 上記負電極を上記ダクトの外径側の面に設けるようにすると よい。
上記ダクトは外径と内径の比を略 1 : 3 . 5にすると最も大きな推力 を発生する。 図面の簡単な説明
第 1図は、 本発明の一実施例を一部破断して示す斜視図、
第 2図は第 1図中の推進ダクトの拡大部分断面図、 第 3図は第 2図中の矢印 III一 III線に沿う断面図、
第 4図は給電装置の部分斜視図、
第 5図は電流リード部におけるローレンツ力の発生状態を示す斜視図、 第 6図は推進ダクトの回転速度と電磁流体の流速との閧連を示す速度 線図、
第 7図は推進ダクトの回転速度変化による電磁流体の流体摩擦損失を 示すグラフ、 そして
第 8図は本発明の第二の実施例を示す第 2図相当の断面図である。 発明を実施するための最良の形態
本実施例の推力発生装置は、 主にソレノィドコイル型の超電導マグネ ット 推進ダクト 2及び給電装置 3から構成される。
超電導マグネット 1は、 詳細には図示せぬが勿論クライォスタットと しての構造を有するもので、 内部には超電導コィル 4が卷き回してあり、 中空部 5内に磁場を発生させるようになつている。 なお、 超電導コイル 4 へ電流を流すための発電機は図示を省略してある。 また超電導コイル 4 の形はレイヤー卷でもパンケーキ卷でもいずれでもよい。
推進ダクト 2は、 断面が矩形の中空ダクトを蔓卷状にしてなるもので、 入側端部 6及び出側端部 7は夫々の先端開口 6a、 7aの開口中心が超電導マ グネット 1の中心軸線 la上に位置し、 中心軸線 laに沿って伸びている。 図 示せぬが、 超電導マグネット 1の両端開口は勿論閉塞され、 推進ダクト 2 は入側端部 6及び出側端部 7のみが外部に露出している。 なお、 図示せぬ が推進ダクト 2は超電導マグネット内で適宜の支持装置 (例えばローラを 用いた支持装置)により回転可能に支持する。 また本発明においては、 ダ クトの形状はこの例の推進ダクト 2の形状に限定されず、 円筒形等他の 形状であってもよい。 推進ダク ト 2の内面には、 正、 負の電極 8、 9が貼り付けてある。 図示 の例では、 推進ダクト 2内を流れる海水等の電磁流体 10によって負電極 9 に水素ガスが発生し、 有効面積を減らすことを勘案して正電極 8を推進 ダクト 2の内径側に、 負電極 9を外径側に配してある。 本発明は、 勿論こ の配置態様に限定されることはない。
給電装置 3は複数の電流リード部 1 1、 12とこの電流リード部に電流を 供給する母線装置 13、 14とからなる。
即ち、 ダクト 2の内周側中空部には 90。 間隔で内周側電流リード部 11 · · ' が設けてあり、 また推進ダクト 2の外周側で超電導コイル 1の内周面と の間には 45。 間隔で外周側電流リード部 12 · · ·が設けてある。 両電流 リード部 11、 12は夫々基端を推進ダクト 2に埋設して固定しており、 か つ内周側電流リ一ド部 11は正電極 8と、 外周側電流リ一ド部 12は負電極 9 と接続している。
内周側の母線装置 13はリング部 15と、 このリング部 15から伸びる四本 のブスバー部 16 . ■ . とからなる。 リング部 15は推進ダク ト 2と同心に 配置してあり、 内面にはローラ状の給電端子 17、 17が接触している。 ま た、 ブスバー部 16は、 内周側電流リード部 1 1と対応する位置で推進ダク ト 2の内周側中空部に挿入してあり、 推進ダクト 2の内周側中空部をほぼ 貫通し、 対応位置にあるすベての内周側電流リード部 11と接続している。 外周側の母線装置 14は、 内周側母線装置 13と同様に、 リング部 18と、 このリング部 18から伸びる八本のブスバ一部 19 · ■ ' とからなる。 リン グ部 18は推進ダクト 2と同心に配置してあり、 内面にはローラ状の給電 端子 20 . ■ ·が接触している。 また、 ブスバー部 19は、 外周側電流リー ド部 12と対応する位置で推進ダクト 2の外周に沿わせて配置してあつて、 推進ダクト 2の外周側で対応位置にあるすべての外周側電流リード部 12 と接続している。 この実施例では、 電極電流は内周側の母線装置 13の給電端子 17からリ ング部 15を経て四本のブスバー部 16に流れ、 ブスバー部 16から内周側電 流リード部 11を通って正電極 8に至り、 電磁流体 10中に供給される。 そ して供給された電流は、 電磁流体 10から負電極 9、 外周側電流リード部 12、 ブスバー 19、 リング部 18、 給電端子 20という回路を流れる。
超電導マグネット 1により発生する磁場 B、 正負電極 8、 9間に流れる 電極電流 J、 及びローレンツ力 Fは、 図中に夫々矢印で示す方向に向く。 このため、 電磁流体 10は入側端部 6の開口 6aから推進ダクト 2内に入って、 推進ダクト 2内で連続的に口一レンツ力 Fを受けて加速され、 出側端部 7 の開口 7aから外部に噴出し、 その噴出力の反力が推力となる。
ここで電極電流、 電極間電圧の初期値をそれぞれ J (A)、 V(V)とする と、 これらはそれぞれ、
Figure imgf000008_0001
と表される。
ただし、
j 推進ダクトの代表半径における電流密度 (ΑΛη2)
rc 代表半径 (m)-(r。+n) 2
Γο 推進ダクトの外半径 (m)
π 推進ダクトの内半径 (m)
b 推進ダクトのセルの長さ (m)
η 推進ダクトのセル数
1 推進ダクトの長さ
ΰ 海水導電率 (SAn)
である。
そして投入電力の初期値 P (W)は、 P =J-V
Figure imgf000009_0001
となる。
また推進ダクト 2の内部空間、 即ち電磁流体 10の通路体積 S(m3)は、 概 略
S=7T (ro2— n2)bn
と表される。
するとローレンツ力の初期値 F(N)は、
F =jBS
Figure imgf000009_0002
となり、 このローレンツ力 Fと投入電力の初期値 Pの閧係は、
F2
Figure imgf000009_0003
となる。 ここで、 Ρ(7Β2ττ12=Αとすると上式は,
F2=4A-
Figure imgf000009_0004
となり、 ローレンツ力 Fの極値は
Figure imgf000009_0005
ときである。 そしてこれ を数値的に解くと、 r。2 3. 5ϋの時にもっとも大きな推力が得られる。 また内周側電流リード部 11、 外周側電流リ一ド部 12等の各要素にも超 電導マグネット 1により発生する磁場 Βと各要素に流れる電極電流 Jに より口一レンツ力 f が発生する。 このローレンツ力 は、 推進ダク ト 2 に直接に掛かって、 推進ダクト 2を回転駆動する。
ここで第 5図に示すモデルにより電流リード部に発生する回転駆動力 について説明する。 なお第 5図では外周側電流リード部 12を示している。 電流リード部の寸法を図示のとおり横 w(m)、 縦 h。(n!)、 奥行き d(m)と する。 またこのような電流リード部が推進ダクト 2の外周に m個、 軸 la 方向に推進ダクト 2のセル数と同じく n個設けてあるとする。
電流リード部の平均電流密度 jは
j=(J/mn)(l/dw) (A/m2)
となる。 これが磁場 B (T)中にあるため、 単位体積当たりのローレンツ力 は、
Figure imgf000010_0001
となる。 そのため一個の電流リード部に発生するローレンツ力 feは、
Figure imgf000010_0002
であり、 mn個の電流リード部に発生する全口一レンツ力 Feは、
Figure imgf000010_0003
=JBh> (N)
となる。 即ち、 上式より明らかなように電磁リード部に発生するローレ ンッカ ίは電極電流 J、 磁場 Bを一定とすると、 電流リード部の厚み h。 により決定されることになる。 そして推進ダクト 2を回転させる回転モ 一メント T。は、 ローレンツ力 Feと半径 r。との積になり、
Figure imgf000010_0004
=2JBhoro
となる。 さらに内周側に発生する回転モーメント Tiも上記と同様に求め ると、
Figure imgf000010_0005
となる。 ただし、 hは内周側電流リード部の厚み、 ηは推進ダクト 2の内 周側の半径である。
そして推進ダクト 2を回転させる全回転モーメント Τは、
Figure imgf000011_0001
となる。
例えば J=4000A、 B=10T、 ro=0.8m、
Figure imgf000011_0002
とすると、
Figure imgf000011_0003
Ti= 1824( m)= 186(kgf-m)
T =8224(Nm)=839(kgf-m)
となる。
ここで、 推進ダクト 2が軸線周りに一周する場合に軸方向に進む距離、 即ちリードを kと し、 リード角を/?として、 推進ダクト 2のセンタの代 表位置での速度線図を示すと第 6図のようになる。
仮に推進ダクト 2の壁面と電磁流体 10との間に摩擦がなく、 電磁流体 10が静止状態にありかつ推進ダクト 2が周速 Ccで回転しているとすると、 電磁流体 10は推進ダクト 2の壁から力を受け図中 AD方向に移動する。 こ
Figure imgf000011_0004
で表される。 但し tan は、
tan. β =k 2 π rc
である。
一方、 推進ダクト 2が停止していれば、 電磁流体 10は推進ダクト 2に沿 つて 方向へ流れる。 その流速を Vcとする。 そして、 この状態で推進 ダクト 2が周速 Ccで図中 δδ"の方向に回転すると、 電磁流体 10は図に示す ように、 流速 Wcで^"方向に流れることになる。 この流速 Wcと推進ダク ト 2の回転を考慮すると、 電磁流体 10は回転する相対座標系の上で、 流 速 Ucで gS"方向に流れることになる。 ここで流速 Ucの大きさは、
Uc: Vc=Vccos;S -Cc: Vccos S
となるから、
Uc=Vc(VcCOS β - Cc) VcCOS β cosyS
Figure imgf000012_0001
と求められる。
即ち、 推進ダクト 2が静止している場合、 電磁流体 10と推進ダクト 2の 壁面との速度差は Vcであるのに対し、
推進ダクト 2が周速度で回転している場合の電磁流体 10と推進ダクト 2の 壁面の速度差は Uc(<Vc)となり、 流体摩擦損失は推進ダクト 2が回転して いない場合に比べて小さくできる。 もちろん、
Figure imgf000012_0002
の場合には、 Ucがゼロとなり、 流体摩擦がないことになる。
ここで推進ダク ト 2が周速 Ccを得るための回転数 n (rpm)は、 角速度を ωとすると、 より、
n=(30/ 7T )'(G: c) (rpm)
となる。
そして Ucの Vcに対する割合、 即ち流摩擦体損失の割合は、
Figure imgf000012_0003
で与えられる。 この式をグラフとしたのが第 7図である。 そして第 7図 に示すように、 例えばリード角 が 30 とし、 推進ダクト 2の周速を電 磁流体 10の流速の 80%に設定すれば、 流体摩擦損失を約 90%も低減でき ることがわかる。
第 8図は他の実施例を示し、 先の実施例を集中給電方式とすれば、 こ の実施例の装置は分割給電方式と言えるものである。 本実施例では給電 装置 3の母線装置 13、 14は夫々リングブスバー 21、 22を備えて位置を固 定とし、 推進ダク ト 2が回転しても静止しているようにしてある。 先の 例に比べ構造が複雑化し、 電流リングブスバー 21、 22と電流リード部 11、 12との摺接による摩擦損失が増えるが、 推進ダクト 2の重量を支える支 持装置 (例えばローラ支持装置)に母線装置 13、 14を一体化できる利点が ある。 本実施例のその他の構造、 作用は先の例と同一であるので説明は 省略する。
なお、 本発明の推力発生装置は単独で用いてもよいが、 本発明者等が なした先の国際出願 PCT/JP89ノ 01153にお いて開示したように、 複数連結 して用いることも可能である。 産業上の利用可能性
本発明に係る推力発生装置は、 以上説明してきたようなものなので、 推力を水平に発生させるようにすれば船舶等の推進装置として用いるこ とができ、 また水平及び垂直に推力を発生させれば海上ステーションの 位置保持装置として使用できる。
一方、 推力発生装置を固定してダクト中の電磁流体に電流が流れるよ うにすればローレンツ力によ り電磁流体がダクトから噴射されるので大 容量海水ポンプ等として使用できる。
さらに推力発生原理を逆にしてダクト中に電磁流体を流せば発電が可 能になるので、 海流 MHD発電装置等の大容量発電機としても使用できる。

Claims

請 求 の 範 囲
( 1 )ソレノイドコイル型の超電導マグネット、 該超電導マグネットの中 空内部に回転自在に支持した電磁流体を通すための蔓卷状のダクト、 該 ダクト内面に設けた正、 負電極、 及び両電極間にある電磁流体に電流を 供耠して該電磁流体中に磁界とローレンツ力を発生させる耠電装置とか らなり、
上記ダクトは、 入側及び出側開口部を上記超電導マグネットの中心軸 線に沿わせて開口させ、 かつ内面の一側に上記正電極を、 他側に上記負 電極を夫々連続的に対向配置して備え、
上記給電装置は、 上記ダクトの内周壁もしくは外周壁の少なくともい ずれか一方に、 上記電極間への電流供給用の複数の電流リ一ド部を等間 隔で固設し、 該供耠電流により該電流リード部に磁界及びローレンツ力 を発生させ、 該ローレンツ力により上記ダクトを回転させることを特徴 とする推力発生装置。
( 2 )上記複数の電流リード部に電流を供耠する母線装置を備え、 該母線 装置は、 上記ダクトと同心のリング部と、 上記ダクトの長さ方向に伸び るブスバー部とからなり、 該ブスバー部を上記電流リ一ド部に接触させ る請求項 1の推力発生装置。
( 3 )上記ブスバー部を上記電流リード部に固定し、 上記母線装置を上記 ダクトと共に回転可能とした請求項 2の推力発生装置。
(4 )上記リング部の内周面もしくは外周面に電源からの給電端子を接触 させた請求項 3の推力発生装置。
( 5 )上記母線装置は、 上記電流リード部と上記ブスバー部との間にリン ダブスバー部を介在させ、 かつ回転せぬよう位置固定とした請求項 2の 推力発生装置。
(6)上記正電極を上記ダクトの内径側の面に、 上記負電極を上記ダクト の外径側の面に設けた請求項 1ないし 5のいずれかの推力発生装置。
(7)上記ダクトの外径と内径の比を略 1 : 3. 5とした請求項 1ないし 6のいずれかの推力発生装置。
PCT/JP1991/001250 1990-09-21 1991-09-20 Thrust generator WO1992005621A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69108891T DE69108891T2 (de) 1990-09-21 1991-09-20 Schuberzeuger.
EP91916612A EP0500970B1 (en) 1990-09-21 1991-09-20 Thrust generator
US07/858,986 US5298818A (en) 1990-09-21 1991-09-20 Thrust generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2253380A JP3045754B2 (ja) 1990-09-21 1990-09-21 推力発生装置
JP2/253380 1990-09-21

Publications (1)

Publication Number Publication Date
WO1992005621A1 true WO1992005621A1 (en) 1992-04-02

Family

ID=17250559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001250 WO1992005621A1 (en) 1990-09-21 1991-09-20 Thrust generator

Country Status (5)

Country Link
US (1) US5298818A (ja)
EP (1) EP0500970B1 (ja)
JP (1) JP3045754B2 (ja)
DE (1) DE69108891T2 (ja)
WO (1) WO1992005621A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0749644A1 (en) * 1994-12-30 1996-12-27 Edward Benton Specifications for the pulsed field flux engine
US5668420A (en) * 1995-04-06 1997-09-16 The Penn State Research Foundation Magnetohydrodynamic apparatus
EP0931931A1 (en) * 1998-01-27 1999-07-28 Entry-Technology Magneto hydro dynamical tidal and ocean current converter
US6342071B1 (en) * 1999-07-08 2002-01-29 Benjamin David Pless Ambulatory blood pump
US6352455B1 (en) 2000-06-22 2002-03-05 Peter A. Guagliano Marine propulsion device
US7445531B1 (en) 2003-08-25 2008-11-04 Ross Anthony C System and related methods for marine transportation
DE102004044539B4 (de) * 2004-09-10 2008-08-28 Technische Universität Dresden Einrichtung zum Bewegen von elektrisch leitenden flüssigen Medien
US20060070371A1 (en) * 2004-10-05 2006-04-06 St Clair John Q Electric dipole moment propulsion system
US9597615B2 (en) 2005-02-15 2017-03-21 Spiroflo Holdings, Inc. Flow development chamber and separator
US7663261B2 (en) * 2005-02-15 2010-02-16 Spiroflo, Inc. Flow development and cogeneration chamber
DE102005058729A1 (de) * 2005-12-08 2007-06-14 Technische Universität Ilmenau Vorrichtung und Verfahren zur elektromagnetischen Beeinflussung der Strömung von gering elektrisch leitfähigen und hochviskosen Fluiden
WO2013082578A1 (en) * 2011-12-03 2013-06-06 Thomas Krupenkin Method and apparatus for mechanical energy harvesting using combined magnetic and microfluidic energy generation
US9259047B2 (en) * 2012-09-13 2016-02-16 Thomas Nikita Krupenkin Apparatus for footwear-embedded mechanical energy harvesting system based on dual-loop channel
CN103117640A (zh) * 2013-03-14 2013-05-22 周华 磁流体交直流发电机
US9543818B2 (en) * 2013-09-15 2017-01-10 The Boeing Company Ferrofluid motor
US20150145257A1 (en) * 2013-11-25 2015-05-28 Bryan P. Hendricks Energy generating apparatus for gas or liquid flowing conditions
KR101860895B1 (ko) * 2017-02-27 2018-06-29 울산과학기술원 전도성 물질 이송 장치
CN109030850B (zh) * 2018-09-20 2020-08-21 天津大学 一种mhd角速度传感器稳定调制磁场的驱动装置
CN109639095B (zh) * 2019-01-24 2020-10-30 中国科学院电工研究所 一种螺旋通道直流磁流体泵
CN110550174B (zh) * 2019-09-25 2020-07-07 中国科学院电工研究所 一种多螺旋通道环形超导磁流体推进器
CN111361720B (zh) * 2020-03-26 2021-02-02 中国科学院电工研究所 一种一体化磁流体推进器
RU2751728C1 (ru) * 2020-08-31 2021-07-16 Борис Клавдиевич Никитин Бесшумный гидравлический движитель
CN112591067B (zh) * 2020-12-17 2022-05-10 淮安普乐菲智能科技有限公司 一种可控双向喷射推进器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137158B2 (ja) * 1978-07-25 1986-08-22 Kawasaki Heavy Ind Ltd
JPS62160991A (ja) * 1985-09-18 1987-07-16 Mayekawa Mfg Co Ltd 海水船舶用推進装置
WO1991007806A1 (en) * 1989-11-10 1991-05-30 Muroya, Masaaki Thrust generator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2112791A5 (en) * 1970-11-09 1972-06-23 Alsthom Electromagnetic pump - needs no moving part to convey liquid which conducts electricity
JPS583565A (ja) * 1981-06-27 1983-01-10 Tanemi Notoko 電気回転機
WO1990014265A1 (de) * 1989-05-24 1990-11-29 Laukien Guenther Verfahren und vorrichtung zum antreiben von wasserfahrzeugen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137158B2 (ja) * 1978-07-25 1986-08-22 Kawasaki Heavy Ind Ltd
JPS62160991A (ja) * 1985-09-18 1987-07-16 Mayekawa Mfg Co Ltd 海水船舶用推進装置
WO1991007806A1 (en) * 1989-11-10 1991-05-30 Muroya, Masaaki Thrust generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0500970A4 *

Also Published As

Publication number Publication date
DE69108891T2 (de) 1995-08-24
EP0500970B1 (en) 1995-04-12
EP0500970A4 (en) 1993-02-24
JP3045754B2 (ja) 2000-05-29
DE69108891D1 (de) 1995-05-18
EP0500970A1 (en) 1992-09-02
US5298818A (en) 1994-03-29
JPH04133656A (ja) 1992-05-07

Similar Documents

Publication Publication Date Title
WO1992005621A1 (en) Thrust generator
US10988223B2 (en) Electrical underwater jet motor with multiple stator for sea vehicles
US5185545A (en) Dual propeller shock resistant submersible propulsor unit
US8146369B2 (en) Integrated direct drive starter/generator for turbines
US20080042507A1 (en) Turbine starter-generator
US20060279164A1 (en) Superconducting Acyclic Homopolar Electromechanical Power Converter
JP2523407B2 (ja) 船舶を駆動する方法及び装置
US5668420A (en) Magnetohydrodynamic apparatus
CN100417575C (zh) 一种超导磁流体船舶推进器
Cheng et al. Analytical design of the integrated motor used in a hubless rim‐driven propulsor
US6628033B1 (en) Reduction of induced magnetic forces on current collectors in homopolar machines having high magnetic fields
JP2001132607A (ja) 水力発電装置
US8575790B1 (en) Superconducting electrodynamic turbine
RU2397104C1 (ru) Спасательная шлюпка с устройством для обеспечения ее хода и ее непрямое применение
US5314311A (en) Thrust generator
US20240055169A1 (en) Applied Rotations of Anisotropic Homopolar Magnetic Domains
GB2217117A (en) Magnetohydrodynamic propulsion arrangements for marine vessels
RU2687397C2 (ru) Электрический подводный движитель
JP2007291986A (ja) 相反転クロスフロー型発電装置
JPH1111388A (ja) 電磁推進装置
KR102631686B1 (ko) 초소수력 발전 관로 장치
WO2023097410A1 (zh) 远洋船舶移动式水下发电系统
EP0086776A1 (en) Energy generation system having higher energy output than input
CA1085918A (en) Alternators with hydromagnetic engines
Mitchell et al. Induction-drive magnetohydrodynamic propulsion

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991916612

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991916612

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991916612

Country of ref document: EP