WO1992020310A1 - Phaco handpiece providing fingertip control of ultrasonic energy - Google Patents

Phaco handpiece providing fingertip control of ultrasonic energy Download PDF

Info

Publication number
WO1992020310A1
WO1992020310A1 PCT/US1992/003578 US9203578W WO9220310A1 WO 1992020310 A1 WO1992020310 A1 WO 1992020310A1 US 9203578 W US9203578 W US 9203578W WO 9220310 A1 WO9220310 A1 WO 9220310A1
Authority
WO
WIPO (PCT)
Prior art keywords
handpiece
main body
body portion
probe tip
adapter
Prior art date
Application number
PCT/US1992/003578
Other languages
French (fr)
Inventor
Jerry Zelman
Theodore S. Cribari
Original Assignee
Ophthalmocare, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ophthalmocare, Inc. filed Critical Ophthalmocare, Inc.
Publication of WO1992020310A1 publication Critical patent/WO1992020310A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/02Bases, casings, or covers
    • H01H9/06Casing of switch constituted by a handle serving a purpose other than the actuation of the switch, e.g. by the handle of a vacuum cleaner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00736Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
    • A61F9/00745Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00973Surgical instruments, devices or methods, e.g. tourniquets pedal-operated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2223/00Casings
    • H01H2223/01Mounting on appliance
    • H01H2223/022Adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2239/00Miscellaneous
    • H01H2239/062Disposable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2300/00Orthogonal indexing scheme relating to electric switches, relays, selectors or emergency protective devices covered by H01H
    • H01H2300/014Application surgical instrument

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

A handpiece for the phacoemulsification of cataract tissue is provided in accordance with the present invention. The handpiece (26) can be operatively coupled to a phacoemulsification machine (22) to supply the handpiece with irrigation fluid, aspiration suction and ultrasonic energy. The application of irrigation fluid and aspiration suction to the handpiece are preferably controlled with a foot pedal (24) which is operatively coupled to the phacoemulsification machine. The application of ultrasonic energy to the handpiece is controlled by a button (40), slide tab (32), knob (36) or the like which is preferably detachably mounted (54) to the main body of the handpiece so that the application of ultrasonic energy can be manually controlled by the surgeon.

Description

PHACO HANDPIECE PROVIDING FINGERTIP CONTROL OF ULTRASONIC ENERGY
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a phacoemulsification handpiece and, more particularly, to a handpiece which provides fingertip control of ultrasonic energy during a phacoemulsification procedure.
2. Description of the Related Art
The human eye is divided by a normally transparent lens into anterior and posterior chambers. The transparent lens focuses light onto the retina defined on the rear surface of the posterior chamber. The lens of the eye may become cloudy for any one of a variety of reasons. When this happens, sight is impaired and the cloudy lens material must be removed. The function of the lens is then performed with an intraocular lens (IOL) implant or by using thick glasses or contact lenses.
A number of techniques are now being used for removing the cloudy, cataractous lens material. In all these techniques, a surgical tool is inserted into the eye through an incision. The phacoemulsification technique is a recently developed technique which is being used with increasing frequency. With that technique, an incision is made in the eye and a probe is inserted into the eye and into contact with the cataract tissue. Irrigation and aspiration passages are each defined through the probe and the probe is operatively coupled to a source of ultrasonic energy. Ultrasonic energy is selectively applied to the probe to break up the cataract tissue in contact with the tip of the probe so that the cataract tissue can be aspirated together with irrigating liquid. More particularly, the probe is manipulated to engage the harder cataract tissue which is then held in place by the aspiration and phacoemulsified by moving a foot pedal to activate ultrasound energy. The intensity of the ultrasound energy which can be applied is typically preselected by the surgeon. Ultrasonic energy is delivered as long as the foot pedal is held in position and is sufficient for phacoemulsifying the particles of cataract material. Some conventional foot switches utilized with phacoemulsification machines and handpieces have four positions. There is a completely off position, where the foot pedal is not depressed at all, and an irrigation position, actuated by partial depression of the foot pedal. A combination of irrigation and aspiration is effected by a further depression of the foot pedal. Finally, there is an irrigation, aspiration and phaco position. With such a system, a fixed aspiration level is provided and the application of ultrasonic energy is either linear, that is a certain percent of power depending upon the disposition of the foot pedal, or fixed, that is a certain percent of power which is preselected by the surgeon.
In other conventional systems, a foot pedal is provided wherein there is a zero, or everything off, position, a first position where an irrigation fluid is supplied to the surgical site and a second position for irrigation and aspiration. With that system, instead of a fixed aspiration level, aspiration is linear from zero to the maximum millimeters of mercury which can be applied through the particular handpiece. Main phaco switching is provided to the right of the aspiration/irrigation foot pedal and is actuated by moving the foot to the right. A disadvantage of the foregoing conventional systems is that the foot is utilized to control all the functions of the handpiece, specifically irrigation, aspiration and phaco whether linear or fixed. Because the foot does not have the touch sensitivity or fast, controlled response possible with, for example, the human hand, particularly when shoes are worn, it is difficult for the surgeon using his foot to properly time the application of phaco as well as to sense the amount of phaco being provided, when a linear application of phaco is utilized. Therefore, it would be desirable to provide a system for controlling ultrasonic energy delivered to a phacoemulsification handpiece which does not require use the surgeon's foot and hence does not exhibit the inherent inaccuracy and lack of control of conventional systems. SUMMARY OF THE INVENTION It is object of the invention to provide a phacoemulsification handpiece wherein application of ultrasonic energy is advantageously controlled by the surgeon's hand rather than by his foot whereas control of the irrigation and aspiration functions are effected with a foot pedal.
In order to achieve the foregoing and other objects, in accordance with the present. invention, a switch is provided on the main boάv of the phacoemulsification handpiece itself which can be selectively activated by the surgeon's finger, for example his index finger, so that the timing of ultrasonic energy application and the amount of ultrasonic energy applied can be easily sensed and controlled.
In accordance another aspect of the invention, in order to provide control of ultrasonic energy with the surgeon's finger(s) or hand rather than with his foot, the control device of the invention can be detachably coupled to the phaco handpiece or to a remote surface, such as the surgeon's finger. Thus, the ultrasonic energy control device can be provided in a location which is practical for a particular surgeon and/or for a particular procedure. Such a selectively detachable control unit could be but need not necessarily be disposable. Switch as used here in below, therefore, refers generically to a switch permanently and fixedly mounted to a phaco handpiece or to switch which may be detachably coupled to the phaco handpiece, to the surgeon's finger or another part of the surgeon's body or to a structure which is readily accessible to the surgeon. Further, switch as used herein, encompasses on-off type switches, control units which allow the linear increase and/or decrease of ultrasonic energy and control units providing for control in stepped increments.
Other objects, features and characteristics of the present invention, as well as the methods of operation and functions of the related elements of the structure, and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following detailed description and the appended claims with reference to the accompanying drawings all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGURE 1 is a schematic perspective view of a phacoemulsification apparatus, foot pedal and handpiece in accordance with the invention;
FIGURE 2 is an enlarged perspective view of an alternate embodiment of a fingertip control device provided in accordance with the present invention;
FIGURE 3 is a perspective view of a further alternate fingertip control device in accordance with the invention; FIGURE 4 is an elevational view of the switch adapter provided in accordance with the present invention;
FIGURE 5 is a top plan view of the adapter of FIGURE 4;
FIGURE 6 is an elevational view of an alternate switch adapter provided in accordance with the present invention; and
FIGURE 7 is a top plan view of the switch adapter of FIGURE 6.
FIGURE 8 is an elevational view of an integral adapter similar to FIGURE 4; and
FIGURE 9 is an elevational view of an integral adapter similar to FIGURE 6.
DETAILED DESCRIPTION OF THE
PRESENTLY PREFERRED EXEMPLARY EMBODIMENTS
With reference to FIGURE 1, the apparatus of the present invention includes a phaco handpiece 10 which may have, for example, a tubular probe 12 defining an aspiration passage and a sleeve 14 disposed thereabout and defining an irrigation passage for conveying irrigating fluid to a surgical site. At the proximal end of the phaco handpiece, means 16, 18 are provided for operatively coupling the aspiration passage and irrigation passage to a source of suction and a source of irrigating fluid, respectively. Further, means 20 are provided for operatively coupling the probe tip 12 of the handpiece 10 to a source of ultrasonic energy for selectively applying ultrasonic energy to the probe tip 12 to vibrate the same to emulsify cataract tissue in contact therewith.
A phacoemulsification machine shown generally at 22 is provided for allowing the surgeon to select a desired aspiration level or maximum and minimum aspiration levels for linear aspiration, as well as a desired power level or range of power levels for ultrasonic energy. Such determinations are made upon the age of the patient and the age of the cataract. Generally, a certain percentage of full power is designated as the desired maximum ultrasonic energy to be applied in a given procedure.
A foot pedal 24 is operatively coupled to phacoemulsification machine 22 in any known manner for controlling the irrigation and aspiration functions. Thus, depression of the foot pedal 24 by a certain amount will activate irrigation supply to the handpiece 10. Further depression of the foot pedal 24 will activate the aspiration function of the machine. Such aspiration activation can either be linear or fixed depending on the needs of the surgeon as determined prior to initiation of the surgical procedure. Where linear aspiration control is desired, depression of the foot pedal 24 will linearly increase the aspiration from a predetermined minimum to a predetermined maximum.
In accordance with the present invention, control of the delivery of ultrasonic energy to the tip 12 of the handpiece 10 is controlled manually by the surgeon. Specifically, a switch for controlling the application of ultrasonic energy is defined on the main body 26 of the handpiece 10 and is accessible to the fingers of the surgeon, most preferably the surgeon's index finger. In the embodiment illustrated in Figure 1, a button 28 is defined in the surface of the main body 26 handpiece 10. Such a system can be used, for example, to selectively turn on and turn off fixed application of phaco. With such a structure the surgeon would preselect a certain percentage of full phaco power at the phacoemulsification machine 22 prior to initiation of the procedure. Depression of the button 28 by the surgeon's index finger during the procedure, then, will apply the fixed phaco preselected by the surgeon to the probe tip 12 to allow emulsification of cataract tissue.
Where the linear application of phaco power is desired, a button 28 as shown in FIGURE 1 can be provided which linearly increases the application of ultrasonic pressure with increased depression of the button 28. In the alternative, as shown in FIGURE 2, a slide 30 can be provided in the handpiece so that movement of the upstanding tab 32 of the slide 30 relative to a longitudinal slot 34 in the main body 26 handpiece 10 will linearly increase or decrease the application of ultrasonic energy to the probe tip. As yet a further alternative, as shown in FIGURE 3, a turn knob 36 can be provided on the main body 26 of the phaco handpiece which, like the slide 30, gradually increases or decreases ultrasonic energy to the probe tip 12. As is apparent from the foregoing, any suitable switch, whether on and off or variable, can be provided on the main body or hand held portion of a handpiece in accordance with the present invention so as to provide fingertip control of the application of ultrasonic energy. The particular electrical and mechanical connections between the button, switch, knob or the like provided on the phaco handpiece and the phacoemulsification machine could be any suitable electro/mechanical system in which depression of a button, rotation of a knob or the like controls the delivery of power. Suitable systems are well known and would be readily apparent to the ordinary artisan upon review of this disclosure. An on/off, a linear or a step switch in accordance with the present invention, as described hereinabove, can also be detachably coupled to the phaco handpiece so as to provide fingertip control of ultrasonic energy. Thus, for example, the switch for controlling ultrasonic energy may be in the form of a membrane switch 40 having a lead or leads 50, for example a positive lead and a negative lead for coupling the same to the ultrasonic energy control system. With such a structure, depressing the membrane switch 40 will effect contact closing the current flow path between the positive and negative leads and thereby actuate the application of ultrasonic energy.
The membrane switch 40 can be provided with an adhesive surface 42 which is covered prior to use with a non-stick backing 44. Thus, the membrane switch and attached leads could be provided as a disposable unit selectively electrically connected to the ultrasonic control center .and applied to the handpiece so as to provide finger tip control as desired by the surgeon. More particularly, when the switch is to be attached to the handpiece, the non-stick backing 44 is peeled off to expose the adhesive surface 42 of the membrane switch 40 and the membrane switch 40 is applied to a desired portion of the phaco handpiece. In this manner, the membrane switch can be placed in the location which is most convenient to the surgeon and can accommodate the needs of either a right handed or left handed surgeon or a surgeon who utilizes a phaco handpiece handling technique which would otherwise render it difficult to access and operate a preformed, prelocated switch.
While a membrane switch has been described above, it is to be appreciated that any type of switch including a depressible button, a rotary knob or a slide could be suitably electrically coupled to the ultrasonic control system and coupled to the surface of the phaco handpiece so as to be selectively positioned, detached and/or discarded. For example, a potentiometer or the like could be mounted to the handpiece to provide variable control.
Further, while lead(s) 50 have been illustrated as providing communication between the switch and the primary ultrasound energy control, it is to be understood that other systems such as systems providing mechanical interconnection or a transmitter-type, wireless coupling between the switch and the ultrasound generating system could be provided without departing from the invention. In accordance with yet a further aspect of the invention, rather than utilizing an adhesive backing for securing the switch to a desired location on the handpiece itself, the switch can be applied to a structure which is easily accessible to the surgeon such as, for example an arm rest, instrument support tray or the like. Even further, the switch could be coupled to the surgeon's finger. Pressing the surgeon's finger against the handpiece, then, would actuate ultrasonic energy application. Likewise, touching the finger to an adjacent, solid surface would effect the application of ultrasonic energy. Providing a switch which is attached to the surgeon's finger rather than to that handpiece itself provides the further significant and unobvious advantage that the handpiece can be rotated and moved without displacing the switch from ready access to the surgeon. Indeed, irrespective of the orientation of the handpiece or where along the handpiece's main body the surgeon's hand rests, ultrasonic energy can be positively and predeterminately controlled.
In accordance with yet a further aspect of the invention, in order to avoid undesirable ultrasound actuation as a result of bending and curving the membrane switch in accordance with the shape of the handpiece surface, a switch mounting element or adapter 46 can be provided. As illustrated in FIGURE 4, the adapter 46 is a plastic, stainless steel or hard rubber element which has a pressure sensitive adhesive 48 on a curved surface thereof which is exposed by peeling off a protective backing 44. The adapter is sized and the curved surface has a curvature designed to accommodate a particular manufacturer's phaco handpiece. Thus, the adapter can be provided in a variety of sizes and detailed shapes. The switch for controlling the ultrasonic energy in accordance with the invention is provided on a planer surface of the adapter. The switch may be in the form of a membrane switch which is permanently mounted to the planer surface of the adapter or integrally formed therewith
(FIGURE 8) . In the alternative, the switch can be selectively attached to the adapter (as shown in FIGURES 4 and 5) . The adapter 46 is autoclavable and reusable or may be provided as a disposable one use device.
As an alternative to adhesively securing an adapter to the handpiece as described above with reference to FIGURE 4 and 5, the adapter may be in the form of a plastic, stainless steel or hard rubber ring 52 as illustrated in particular in FIGURE 6. The ring has a planer surface for receiving a switch in accordance with the invention. For example, a disposable single use membrane switch 40 can be adhesively secured to the planer surface of the adapter ring 52. The ring, like the switch, can be disposable for single use or could be provided so as to be autoclavable and reusable. The ring can be slidably mounted to the phaco handpiece and thus, is preferably manufactured in a variety of sizes to accommodate the different diameters of various phaco handpieces which are being marketed. In that regard, the ring is preferably formed with two clamping fingers 54 to engage and grip the phaco handpiece. Indeed, providing a ring having an unstressed internal diameter slightly less than the diameter of the phaco handpiece will cause the clamping fingers 54 to be deflected outwardly slightly when the adapter ring is mounted to the handpiece so that the reaction force of the fingers tightly grips the surface of the handpiece and maintains the adapter in place once positioned.
As an alternative to slidably mounting the adapter ring to the phaco handpiece, the switch adapter ring 52 can be mounted to the surgeons's finger and the button activated by pressing it against another finger of the user or a hard surface such as the handpiece.
While the switch provided on the adapter ring as illustrated in FIGURE 6 is a membrane switch which is selectively attached to the adapter, it is to be understood that the switch may be permanently mounted on the planer surface of the adapter or integrally formed therewith (FIGURE 9) .
As is apparent from the foregoing, providing a switch which can be selectively coupled either with adhesive or with a clamp to either the surgeon's finger(s) or the phaco handpiece provides a structure which is uniquely versatile in that it can accommodate a particular surgeon's handling of the phaco handpiece or surgical style.
While the invention is described herein with reference to ophthalmic procedures and a phaco handpiece, it is to be understood that the detachable switch of the invention, in particular, can be advantageously used with other medical handpieces. Furthermore, the switch can be used to control functions other than ultrasound, such as aspiration, irrigation, laser energy, etc.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiment, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims

WHAT IS CLAIMED IS:
1. A handpiece comprising: a main body portion; a probe tip portion; an aspiration passage defined through said probe tip and through said main body portion; an irrigation passage defined through said probe tip and through said main body portion; means for coupling said aspiration passage and said irrigation passage, respectively, to a source of aspiration suction and a source of irrigation fluid; means for operatively coupling said main body portion and said probe tip to a source of ultrasonic energy, and manually engageable means for controlling the application of one of aspiration suction, irrigation fluid, and ultrasonic energy to said probe tip as to provide fingertip control of the same to said probe tip, said manually engageable means including means for selectively coupling to said main body portion.
2. A handpiece as in claim 1, wherein said manually engageable means comprises a switch having an adhesive applied to a surface thereof.
3. A handpiece as in claim 2, wherein a non-stick backing covers said adhesive.
4. A handpiece as in claim 2, wherein said switch button is operatively coupled to the source of ultrasonic energy so as to selectively turn ultrasonic power on and off.
5. A handpiece as in claim 2, wherein depression of the switch linearly increases ultrasonic power.
6. A handpiece as in claim 1, wherein said manually engageable means is a rotatable knob for linear variation of ultrasonic power.
7. A handpiece as in claim 1, wherein said means for detachably coupling comprises an adapter for selectively engaging an exterior surface of said main body portion.
8. A handpiece as in claim 7, wherein said adapter is axially and circumferentially slidable on said main body portion.
9. A handpiece as in claim 7, wherein said adapter has an adhesive applied to a surface thereof for adhesively attaching the same to said main body portion.
10. A handpiece as in claim 8, wherein said adapter includes first and second clamping elements for clampingly engaging an exterior surface of said main body portion.
11. An apparatus for phacoemulsif ing cataract tissue comprising: a phacoemulsification machine having a source of irrigation fluid, a source of aspiration suction and a source of ultrasonic energy; a handpiece including a main body portion; a probe tip operatively coupled to said main body portion; an aspiration passage defined through said probe tip and through said main body portion; an irrigation passage defined through said probe tip and through said main body portion; means for coupling said aspiration passage and said irrigation passage, respectively, to said phacoemulsification machine; means for operatively coupling said main body portion and said probe tip to said phacoemulsification machine; and manually engageable means for controlling the application of one of aspiration suction, irrigation fluid, and ultrasonic energy to said probe tip as to provide fingertip control of the same to said probe tip, said manually engageable means including means for selectively coupling to said main body portion.
12. An apparatus as in claim 11, further comprising a foot pedal operatively coupled to said phacoemulsification machine for selectively controlling another of aspiration suction, irrigation fluid, and ultrasonic energy to said probe tip.
13. An apparatus as in claim 11, wherein said manually engageable means comprises a switch having an adhesive applied to a surface thereof.
14. An apparatus as in claim 13, wherein a non-stick backing covers said adhesive.
15. An apparatus as in claim 13, wherein said switch button is operatively coupled to the source of ultrasonic energy so as to selectively turn ultrasonic power on and off.
16. An apparatus as in claim 13, wherein depression of the switch linearly increases ultrasonic power.
17. An apparatus as in claim 11, wherein said manually engageable means is a rotatable knob for linear variation of ultrasonic power.
18. An apparatus as in claim 11, wherein said means for detachably coupling comprises an adapter for selectively engaging an exterior surface of said main body portion.
19. An apparatus as in claim 18, wherein said adapter is axially and circumferentially slidable on said main body portion.
20. An apparatus as in claim 19, wherein said adapter includes first and second clamping elements for clampingly engaging an exterior surface of said main body portion.
21. An apparatus as in claim 18, wherein an adhesive is applied to a surface of said adapter for adhesively securing said adapter to said main body portion.
22. An apparatus as in claim 18, wherein said manually engageable means further comprises a switch having an adhesive applied to a surface thereof for selective attachment to said adapter.
PCT/US1992/003578 1991-05-10 1992-05-07 Phaco handpiece providing fingertip control of ultrasonic energy WO1992020310A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US69820391A 1991-05-10 1991-05-10
US698,203 1991-05-10

Publications (1)

Publication Number Publication Date
WO1992020310A1 true WO1992020310A1 (en) 1992-11-26

Family

ID=24804305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1992/003578 WO1992020310A1 (en) 1991-05-10 1992-05-07 Phaco handpiece providing fingertip control of ultrasonic energy

Country Status (1)

Country Link
WO (1) WO1992020310A1 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995000086A1 (en) * 1993-06-22 1995-01-05 Allergan, Inc. Variable vacuum/variable flow phacoemulsification method
EP0686013A1 (en) * 1993-02-16 1995-12-13 Danek Medical, Inc. Method and apparatus for invasive tissue removal
AU676980B2 (en) * 1991-01-03 1997-03-27 John A. Costin Computer controlled smart phacoemulsification method and apparatus
US7012203B2 (en) 2001-09-07 2006-03-14 Carl Zeiss Surgical Gmbh Foot switch pedal controller for a surgical instrument
US8409155B2 (en) 2008-11-07 2013-04-02 Abbott Medical Optics Inc. Controlling of multiple pumps
US8565839B2 (en) 2005-10-13 2013-10-22 Abbott Medical Optics Inc. Power management for wireless devices
US8635042B2 (en) 2008-11-07 2014-01-21 Abbott Medical Optics Inc. Semi-automatic device calibration
US8749188B2 (en) 2008-11-07 2014-06-10 Abbott Medical Optics Inc. Adjustable foot pedal control for ophthalmic surgery
US8923768B2 (en) 2005-10-13 2014-12-30 Abbott Medical Optics Inc. Reliable communications for wireless devices
US9005157B2 (en) 2008-11-07 2015-04-14 Abbott Medical Optics Inc. Surgical cassette apparatus
US9089364B2 (en) 2010-05-13 2015-07-28 Doheny Eye Institute Self contained illuminated infusion cannula systems and methods and devices
US9295765B2 (en) 2006-11-09 2016-03-29 Abbott Medical Optics Inc. Surgical fluidics cassette supporting multiple pumps
US9386922B2 (en) 2012-03-17 2016-07-12 Abbott Medical Optics Inc. Device, system and method for assessing attitude and alignment of a surgical cassette
US9463070B2 (en) 2007-04-20 2016-10-11 Doheny Eye Institute Sterile surgical tray
US9492317B2 (en) 2009-03-31 2016-11-15 Abbott Medical Optics Inc. Cassette capture mechanism
US9522221B2 (en) 2006-11-09 2016-12-20 Abbott Medical Optics Inc. Fluidics cassette for ocular surgical system
US9526580B2 (en) 2007-04-20 2016-12-27 Doheny Eye Institute Sterile surgical tray
US9566188B2 (en) 2008-11-07 2017-02-14 Abbott Medical Optics Inc. Automatically switching different aspiration levels and/or pumps to an ocular probe
US9730833B2 (en) 2007-04-20 2017-08-15 Doheny Eye Institute Independent surgical center
US9757275B2 (en) 2006-11-09 2017-09-12 Abbott Medical Optics Inc. Critical alignment of fluidics cassettes
US9795507B2 (en) 2008-11-07 2017-10-24 Abbott Medical Optics Inc. Multifunction foot pedal
US9962226B2 (en) 2013-11-28 2018-05-08 Alcon Pharmaceuticals Ltd. Ophthalmic surgical systems, methods, and devices
US10219940B2 (en) 2008-11-07 2019-03-05 Johnson & Johnson Surgical Vision, Inc. Automatically pulsing different aspiration levels to an ocular probe
US10219695B2 (en) 2006-11-10 2019-03-05 Doheny Eye Institute Enhanced visualization illumination system
US10342701B2 (en) 2007-08-13 2019-07-09 Johnson & Johnson Surgical Vision, Inc. Systems and methods for phacoemulsification with vacuum based pumps
US10349925B2 (en) 2008-11-07 2019-07-16 Johnson & Johnson Surgical Vision, Inc. Method for programming foot pedal settings and controlling performance through foot pedal variation
US10363166B2 (en) 2007-05-24 2019-07-30 Johnson & Johnson Surgical Vision, Inc. System and method for controlling a transverse phacoemulsification system using sensed data
US10478336B2 (en) 2007-05-24 2019-11-19 Johnson & Johnson Surgical Vision, Inc. Systems and methods for transverse phacoemulsification
US10537472B2 (en) 2013-11-28 2020-01-21 Alcon Pharmaceuticals Ltd. Ophthalmic surgical systems, methods, and devices
US10596032B2 (en) 2007-05-24 2020-03-24 Johnson & Johnson Surgical Vision, Inc. System and method for controlling a transverse phacoemulsification system with a footpedal
US10959881B2 (en) 2006-11-09 2021-03-30 Johnson & Johnson Surgical Vision, Inc. Fluidics cassette for ocular surgical system
US11337855B2 (en) 2006-11-09 2022-05-24 Johnson & Johnson Surgical Vision, Inc. Holding tank devices, systems, and methods for surgical fluidics cassette

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3589363A (en) * 1967-07-25 1971-06-29 Cavitron Corp Material removal apparatus and method employing high frequency vibrations
US3959883A (en) * 1973-07-23 1976-06-01 Walls Earl L Hand control system for power hand tools
US4552143A (en) * 1981-03-11 1985-11-12 Lottick Edward A Removable switch electrocautery instruments

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3589363A (en) * 1967-07-25 1971-06-29 Cavitron Corp Material removal apparatus and method employing high frequency vibrations
US3959883A (en) * 1973-07-23 1976-06-01 Walls Earl L Hand control system for power hand tools
US4552143A (en) * 1981-03-11 1985-11-12 Lottick Edward A Removable switch electrocautery instruments

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU676980B2 (en) * 1991-01-03 1997-03-27 John A. Costin Computer controlled smart phacoemulsification method and apparatus
EP0686013A1 (en) * 1993-02-16 1995-12-13 Danek Medical, Inc. Method and apparatus for invasive tissue removal
EP0686013A4 (en) * 1993-02-16 1997-12-29 Danek Medical Inc Method and apparatus for invasive tissue removal
WO1995000086A1 (en) * 1993-06-22 1995-01-05 Allergan, Inc. Variable vacuum/variable flow phacoemulsification method
US7012203B2 (en) 2001-09-07 2006-03-14 Carl Zeiss Surgical Gmbh Foot switch pedal controller for a surgical instrument
US9131034B2 (en) 2005-10-13 2015-09-08 Abbott Medical Optics Inc. Power management for wireless devices
US8923768B2 (en) 2005-10-13 2014-12-30 Abbott Medical Optics Inc. Reliable communications for wireless devices
US9635152B2 (en) 2005-10-13 2017-04-25 Abbott Medical Optics Inc. Power management for wireless devices
US8565839B2 (en) 2005-10-13 2013-10-22 Abbott Medical Optics Inc. Power management for wireless devices
US9522221B2 (en) 2006-11-09 2016-12-20 Abbott Medical Optics Inc. Fluidics cassette for ocular surgical system
US9757275B2 (en) 2006-11-09 2017-09-12 Abbott Medical Optics Inc. Critical alignment of fluidics cassettes
US11337855B2 (en) 2006-11-09 2022-05-24 Johnson & Johnson Surgical Vision, Inc. Holding tank devices, systems, and methods for surgical fluidics cassette
US10441461B2 (en) 2006-11-09 2019-10-15 Johnson & Johnson Surgical Vision, Inc. Critical alignment of fluidics cassettes
US11065153B2 (en) 2006-11-09 2021-07-20 Johnson & Johnson Surgical Vision, Inc. Fluidics cassette for ocular surgical system
US11058577B2 (en) 2006-11-09 2021-07-13 Johnson & Johnson Surgical Vision, Inc. Fluidics cassette for ocular surgical system
US9295765B2 (en) 2006-11-09 2016-03-29 Abbott Medical Optics Inc. Surgical fluidics cassette supporting multiple pumps
US10959881B2 (en) 2006-11-09 2021-03-30 Johnson & Johnson Surgical Vision, Inc. Fluidics cassette for ocular surgical system
US11918729B2 (en) 2006-11-09 2024-03-05 Johnson & Johnson Surgical Vision, Inc. Fluidics cassette for ocular surgical system
US10219695B2 (en) 2006-11-10 2019-03-05 Doheny Eye Institute Enhanced visualization illumination system
US9730833B2 (en) 2007-04-20 2017-08-15 Doheny Eye Institute Independent surgical center
US9463070B2 (en) 2007-04-20 2016-10-11 Doheny Eye Institute Sterile surgical tray
US10070934B2 (en) 2007-04-20 2018-09-11 Doheny Eye Institute Sterile surgical tray
US10363165B2 (en) 2007-04-20 2019-07-30 Doheny Eye Institute Independent surgical center
US9526580B2 (en) 2007-04-20 2016-12-27 Doheny Eye Institute Sterile surgical tray
US10485699B2 (en) 2007-05-24 2019-11-26 Johnson & Johnson Surgical Vision, Inc. Systems and methods for transverse phacoemulsification
US11504272B2 (en) 2007-05-24 2022-11-22 Johnson & Johnson Surgical Vision, Inc. Systems and methods for transverse phacoemulsification
US10478336B2 (en) 2007-05-24 2019-11-19 Johnson & Johnson Surgical Vision, Inc. Systems and methods for transverse phacoemulsification
US11690758B2 (en) 2007-05-24 2023-07-04 Johnson & Johnson Surgical Vision, Inc. System and method for controlling a transverse phacoemulsification system with a footpedal
US10363166B2 (en) 2007-05-24 2019-07-30 Johnson & Johnson Surgical Vision, Inc. System and method for controlling a transverse phacoemulsification system using sensed data
US10857030B2 (en) 2007-05-24 2020-12-08 Johnson & Johnson Surgical Vision, Inc. System and method for controlling a transverse phacoemulsification system using sensed data
US10596032B2 (en) 2007-05-24 2020-03-24 Johnson & Johnson Surgical Vision, Inc. System and method for controlling a transverse phacoemulsification system with a footpedal
US11911315B2 (en) 2007-05-24 2024-02-27 Johnson & Johnson Surgical Vision, Inc. System and method for controlling a transverse phacoemulsification system using sensed data
US10342701B2 (en) 2007-08-13 2019-07-09 Johnson & Johnson Surgical Vision, Inc. Systems and methods for phacoemulsification with vacuum based pumps
US10265443B2 (en) 2008-11-07 2019-04-23 Johnson & Johnson Surgical Vision, Inc. Surgical cassette apparatus
US11369729B2 (en) 2008-11-07 2022-06-28 Johnson & Johnson Surgical Vision, Inc. Automatically switching different aspiration levels and/or pumps to an ocular probe
US10251983B2 (en) 2008-11-07 2019-04-09 Johnson & Johnson Surgical Vision, Inc. Automatically switching different aspiration levels and/or pumps to an ocular probe
US8409155B2 (en) 2008-11-07 2013-04-02 Abbott Medical Optics Inc. Controlling of multiple pumps
US8635042B2 (en) 2008-11-07 2014-01-21 Abbott Medical Optics Inc. Semi-automatic device calibration
US10219940B2 (en) 2008-11-07 2019-03-05 Johnson & Johnson Surgical Vision, Inc. Automatically pulsing different aspiration levels to an ocular probe
US10349925B2 (en) 2008-11-07 2019-07-16 Johnson & Johnson Surgical Vision, Inc. Method for programming foot pedal settings and controlling performance through foot pedal variation
US8749188B2 (en) 2008-11-07 2014-06-10 Abbott Medical Optics Inc. Adjustable foot pedal control for ophthalmic surgery
US9005157B2 (en) 2008-11-07 2015-04-14 Abbott Medical Optics Inc. Surgical cassette apparatus
US9271806B2 (en) 2008-11-07 2016-03-01 Abbott Medical Optics Inc. Adjustable foot pedal control for ophthalmic surgery
US10478534B2 (en) 2008-11-07 2019-11-19 Johnson & Johnson Surgical Vision, Inc. Automatically switching different aspiration levels and/or pumps to an ocular probe
US9795507B2 (en) 2008-11-07 2017-10-24 Abbott Medical Optics Inc. Multifunction foot pedal
US11369728B2 (en) 2008-11-07 2022-06-28 Johnson & Johnson Surgical Vision, Inc. Automatically switching different aspiration levels and/or pumps to an ocular probe
US10993839B2 (en) 2008-11-07 2021-05-04 Johnson & Johnson Surgical Vision, Inc. Automatically pulsing different aspiration levels to an ocular probe
US11364145B2 (en) 2008-11-07 2022-06-21 Johnson & Johnson Surgical Vision, Inc. Automatically pulsing different aspiration levels to an ocular probe
US9566188B2 (en) 2008-11-07 2017-02-14 Abbott Medical Optics Inc. Automatically switching different aspiration levels and/or pumps to an ocular probe
US10668192B2 (en) 2008-11-07 2020-06-02 Johnson & Johnson Surgical Vision, Inc. Automatically switching different aspiration levels and/or pumps to an ocular probe
US10813790B2 (en) 2008-11-07 2020-10-27 Johnson & Johnson Surgical Vision, Inc. Automatically pulsing different aspiration levels to an ocular probe
US9133835B2 (en) 2008-11-07 2015-09-15 Abbott Medical Optics Inc. Controlling of multiple pumps
US10238778B2 (en) 2008-11-07 2019-03-26 Johnson & Johnson Surgical Vision, Inc. Automatically switching different aspiration levels and/or pumps to an ocular probe
US11266526B2 (en) 2008-11-07 2022-03-08 Johnson & Johnson Surgical Vision, Inc. Automatically pulsing different aspiration levels to an ocular probe
US10905588B2 (en) 2008-11-07 2021-02-02 Johnson & Johnson Surgical Vision, Inc. Automatically pulsing different aspiration levels to an ocular probe
US9492317B2 (en) 2009-03-31 2016-11-15 Abbott Medical Optics Inc. Cassette capture mechanism
US9877865B2 (en) 2009-03-31 2018-01-30 Abbott Medical Optics Inc. Cassette capture mechanism
US9089364B2 (en) 2010-05-13 2015-07-28 Doheny Eye Institute Self contained illuminated infusion cannula systems and methods and devices
US10857029B2 (en) 2012-03-17 2020-12-08 Johnson & Johnson Surgical Vision, Inc. Valve system of surgical cassette manifold, system, and methods thereof
US11872159B2 (en) 2012-03-17 2024-01-16 Johnson & Johnson Surgical Vision, Inc. Pre-alignment surgical cassette interface
US10980668B2 (en) 2012-03-17 2021-04-20 Johnson & Johnson Surgical Vision, Inc. Surgical cassette
US11154422B2 (en) 2012-03-17 2021-10-26 Johnson & Johnson Surgical Vision, Inc. Surgical cassette manifold, system, and methods thereof
US9386922B2 (en) 2012-03-17 2016-07-12 Abbott Medical Optics Inc. Device, system and method for assessing attitude and alignment of a surgical cassette
US10888456B2 (en) 2012-03-17 2021-01-12 Johnson & Johnson Surgical Vision, Inc. Surgical cassette
US10583040B2 (en) 2012-03-17 2020-03-10 Johnson & Johnson Surgical Vision, Inc. Device, system and method for assessing attitude and alignment of a surgical cassette
US10219938B2 (en) 2012-03-17 2019-03-05 Johnson & Johnson Surgical Vision, Inc. Surgical cassette manifold, system, and methods thereof
US9700457B2 (en) 2012-03-17 2017-07-11 Abbott Medical Optics Inc. Surgical cassette
US9895262B2 (en) 2012-03-17 2018-02-20 Abbott Medical Optics Inc. Device, system and method for assessing attitude and alignment of a surgical cassette
US10265217B2 (en) 2012-03-17 2019-04-23 Johnson & Johnson Surgical Vision, Inc. Pre-alignment surgical cassette interface
US10537472B2 (en) 2013-11-28 2020-01-21 Alcon Pharmaceuticals Ltd. Ophthalmic surgical systems, methods, and devices
US9962226B2 (en) 2013-11-28 2018-05-08 Alcon Pharmaceuticals Ltd. Ophthalmic surgical systems, methods, and devices
US10987183B2 (en) 2013-11-28 2021-04-27 Alcon Inc. Ophthalmic surgical systems, methods, and devices

Similar Documents

Publication Publication Date Title
WO1992020310A1 (en) Phaco handpiece providing fingertip control of ultrasonic energy
US5433702A (en) Phaco handpiece providing fingertip control of ultrasonic energy
US4642090A (en) Disposable combination scalpel blade and incision irrigator for ophthalmological use
US6641039B2 (en) Surgical procedure identification system
US6674030B2 (en) Intelligent surgical footpedal with low noise, low resistance vibration feedback
US9107688B2 (en) Activation feature for surgical instrument with pencil grip
US6083236A (en) Keratome method and apparatus
AU2014253909B2 (en) Foot pedal system and apparatus
CA2809988C (en) Activation feature for surgical instrument with pencil grip
JPH06509258A (en) Handpiece motion control in eye surgery
US20210386412A1 (en) System and apparatus for enhancing the ergonomics of a surgical foot pedal
US4424055A (en) Irrigation and aspiration syringe
EP1442722B1 (en) Surgical tool holder
US20210106734A1 (en) Systems and Methods for Controlling Continuous Irrigation in Surgical Systems
US20040144673A1 (en) Surgical tray with tubing management feature
CA1209431A (en) Irrigation and aspiration syringe
HSSL-STR et al. Woodlyn, Inc.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase