WO1992020799A1 - Amino acid sequence of anticancer human monoclonal antibody and dna base sequence coding for the same - Google Patents

Amino acid sequence of anticancer human monoclonal antibody and dna base sequence coding for the same Download PDF

Info

Publication number
WO1992020799A1
WO1992020799A1 PCT/JP1992/000650 JP9200650W WO9220799A1 WO 1992020799 A1 WO1992020799 A1 WO 1992020799A1 JP 9200650 W JP9200650 W JP 9200650W WO 9220799 A1 WO9220799 A1 WO 9220799A1
Authority
WO
WIPO (PCT)
Prior art keywords
ser
thr
leu
ala
tyr
Prior art date
Application number
PCT/JP1992/000650
Other languages
French (fr)
Japanese (ja)
Inventor
Hideaki Hagiwara
Yasuyuki Aotsuka
Original Assignee
Hagiwara, Yoshihide
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hagiwara, Yoshihide filed Critical Hagiwara, Yoshihide
Publication of WO1992020799A1 publication Critical patent/WO1992020799A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to antigens useful in a wide range of fields such as medical and pharmaceutical fields such as prevention, treatment and diagnosis of human diseases, pharmacology such as biochemical reagents and biopolymer purification reagents, and biochemical fields. It relates to the structure of the variable region of specific human immunoglobulin. More specifically, the present invention relates to a heavy chain of a cancer cell antigen-specific human immunoglobulin produced by a human Z human fusion cell line CL NZ SUZHI 1 of a B cell of a human uterine cancer patient and a human lymphoblast cell line. And the amino acid sequence of the light chain variable region and the nucleotide sequence of the gene.
  • Japanese Patent Application Laid-Open No. 58-201994 Japanese Patent Publication No. 01-59878
  • Japanese Patent Application Laid-Open Nos. 59-135898 and 59-137497 As disclosed in detail, a cell line CLNZSUZ HI 1 (ATCC No. HB8307) producing a human monoclonal antibody having high reactivity to human cancer cells was established.
  • the antibody (CLN-IgG) produced by this cell line has an antibody class of IgG, isotypes y1 and / c, and immunohistologically binds to the ⁇ antigen present on the surface of cancer cells.
  • more interesting findings have been obtained on the effect of suppressing the growth of cancer cells.
  • Monoclonal antibody-producing cell lines are generally known to decrease their antibody productivity with passage. Also, generally speaking, human hybridomas produce less antibody than mice. When human monoclonal antibodies are used for immunotherapy or diagnosis, a large amount of antibodies is required, and the solution of this problem is essential.
  • a main object of the present invention is to elucidate the gene structure of the light chain and heavy chain of the CLN-IgG monoclonal antibody.
  • the present inventors separated cDNAs encoding the light chain and heavy chain of the CLN-IgG monoclonal antibody, elucidated the DNA base sequence, and, based on the sequences, the light chain and heavy chain variable regions of the antibody.
  • the amino acid sequence of was determined, and the present invention was completed.
  • niRNA was prepared from CLNZSUZ HI1, and the cDNA A lambda phage 'library' prepared therefrom was screened by the plaque hybridization method, and the isolated phage clone was used. This was achieved by determining the nucleotide sequence of the inserted DNA.
  • the present invention will be described in more detail.
  • FIG. 2 shows a Kabat & Wu plot of 21 variable region sequences belonging to human heavy chain subgroup 3.
  • the DNA sequences of the light chain variable region and heavy chain variable region of the CLN-IgG monoclonal antibody can be determined using the human antibody gene fragment amplified by PCR (polymerase chain reaction) as a probe. It is determined by cloning the monoclonal antibody light chain and heavy chain cDNA and analyzing the DNA nucleotide sequence.
  • PCR polymerase chain reaction
  • the cell line used in the present invention is a human Z human hybridoma obtained by fusing human uterine cancer patient lymphocytes and human lymphoblasts. Specifically, the cell line is disclosed in Japanese Patent Application Laid-Open No. 58-201994 (Japanese Patent Publication No. 01-59878). Publication No. 2), which produces a human-type monoclonal antibody that specifically reacts with the cell surface antigen of cancer cells such as human brain tumors, lung cancer, stomach cancer, and malignant melanoma. It is.
  • This hybridoma is registered with ATCC (American Type Culture Collection) under the registration number HB8307.
  • the resulting poly (A) + RNA can be further used for preparing a cDNA library.
  • total RNA is extracted from CLN-SUZH11 hybridoma cells, and poly (A) + RNA is purified from this extract using an oligo dT cellulose column, and the following cDNA is prepared.
  • the library was used for construction.
  • an EcoRI linker can be ligated to the cDNA thus obtained, followed by digestion with EcoRI to introduce a sticky end.
  • the obtained fragment is ligated to an EcoRI site of an appropriate phage vector, for example, a ⁇ £ ⁇ 10 vector or an igtl1 vector, and then subjected to in vitro packaging to prepare a cDNA library. Can be made.
  • a human immunoglobulin light or heavy chain constant region or variable region gene or a fragment thereof, or a chemically synthesized oligonucleotide having a nucleotide sequence corresponding to the amino acid S sequence in that portion is used.
  • those labeled with 32 P, biotin or the like by the nick translation method can be used.
  • a fragment amplified by PCR in which the cDNA is subjected to type III and sequences corresponding to a part of the light chain and heavy chain of the antibody in a primer sequence is biotinylated by the nick translation method. Things can be used as probes.
  • the ICLN-G111 and the EcoRI fragment of ICLN-K411 obtained in the step [4] are recloned into pBluescript SK + and then infected with helper phage R408. Single-stranded DNA was prepared and its nucleotide sequence was determined by the Sanger method.
  • the method for obtaining the mRNA fraction from the human hypride dorma CLNZSUZ HI1 is as follows.
  • RNA was obtained from the total RNA fraction obtained by the above method by the method of Chirgwin [Chirgwin, J. ⁇ ⁇ , Przybyla, A. E-, MacDonald, RJ, & Rutter, WJ ( 1979) Biochemistry, 18, 5294-5299].
  • the solution is applied to an oligo (dT) cell source column that has been equilibrated with a binding buffer (0.5 M lithium chloride, 0.2% SDS, 1 OmM triethanolamine hydrochloride, pH 7.4) in advance. Further wash with 10 column volumes of binding buffer. You.
  • the poly (A) + RNA bound to the column is eluted with elution buffer (1 OmM triethanolamine hydrochloride, pH 7.4), and the RNA fraction is collected.
  • the resulting poly (A) + RNA solution is heat-treated at 100 ° C for 5 minutes, and the above-mentioned chromatography using an oligo (dT) cellulose column is repeated once again using a new column.
  • RNA For RNA, add 2.5 volumes of ethanol and 1/10 volume of 2M sodium acetate to the eluate, and recover as a precipitate after centrifugation at 10,000 xg. Dissolve the purified poly (A) + RNA precipitate in sterile pure water and store at 2 70 g at a concentration of 2 zg / zl.
  • cDNA was synthesized according to the protocol of Amersham's cDNA synthesis kit and 3.2 ⁇ g was recovered. After treating this cDNA fragment with EcoRI methylase, the EcoRI linker was ligated using T4 DNA ligase. After EcoR I digestion, a cDNA fraction having an EcoR I end was recovered using an Amersham column.
  • a sequence having a homology with the partial amino acid sequence of the CLN-IgG heavy chain determined in Example 3 was searched from the NBRF protein database (NBRF-PDB; National Biomedical Research Foundation Protein Data Base).
  • VH26 entity H3HU26, Accession number A02047) was found to have the highest homology. Therefore, it corresponds to the N-terminal amino acid 10 residues of the VH26 DNA sequence (ID name: HSIGHAU, Accession number M17747) in the EMBL DNA database (EMBL-GDB; European Molecular Biology Laboratory Gene data Base).
  • 30 nucleotides (Primer No. 1) were synthesized.
  • 30 nucleotides (primer No. 2) corresponding to 10 amino acid residues at the C-terminal side of the DNA sequence of the heavy chain 1 CHI domain (EMBL-GDB; ID name HS I GCC4, Accession number J00228) were synthesized.
  • the CLNZSUZ HI lcDNA library obtained in Example 2 was subjected to plaque hybridization using the biotinylated probe obtained in Example 4 to obtain 13 positive clones.
  • One of these clones had about 1.6K base pairs of imported DNA, and this phage was named; ICLN-G111.
  • CLNZSUZ HI lcDNA library obtained in Example 2 was subjected to plaque hybridization using the biotinylated probe obtained in Example 4 to obtain 27 positive clones.
  • Clone 411 in this contains about 1.0 K base pairs of imported DNA, and this phage was named CLN-K411.
  • variable regions there are regions (variable regions) in which the sequences are different from certain regions (constant regions).
  • variable regions the regions that are particularly rich in variability are called hyper-variable regions (Hv regions), and there are three heavy chains and three light chains. From the amino terminus, they are called Hvl, ⁇ 2, and Hv3, respectively.
  • Hv regions hyper-variable regions
  • Hvl, ⁇ 2, and Hv3 hyper-variable regions
  • CDR complementarity determining region
  • the amino acid sequence of the CLN-IgG light chain revealed that it belongs to kappa chain subgroup 1. Therefore, 24 sequences belonging to subgroup 1 contained in the NBRF-PDB (rel. 26) were arranged together with the CLN-IgG light chain, and the mutation degree was calculated at each position to create a Kabat & Wu plot (Fig. 1) From the results, Hvl, ⁇ 2, and Hv3 were determined as residue numbers 28 to 34, 50 to 56, and 91 to 96, respectively.
  • Hv2 Ala Ala Ser Ser Leu His Arg
  • the amino acid sequence of the heavy chain of CLN-IgG revealed that it belongs to Hv subgroup 3. Therefore, the Kabat & Wu plot was prepared by calculating the mutation degree at each position by juxtaposing the 21 sequences belonging to subgroup 3 contained in the NBRF-PDB (rel. 26) together with the CLN-IgG heavy chain (Fig. 2). , Up to residue number 96). As a result, Hvl and Hv2 were determined as residue numbers 31 to 35 and 49 to 59, respectively. Regarding Hv3, in the case of heavyweight, as shown in Table 3 below, it is difficult to exactly match the positions because the length of each sequence is significantly different.
  • the residue number is 1.0 for 96 cysteine, 2.1 for 97 glycine, 3.9 for 98 arginine, 29.3 for 99 valine, 18.4 for 109 tyrosine, 3.5 for 111 tributophan, 111 for 111 Glycine is 1.0.
  • the degree of mutation is high at residues 99 to 109, and this region is H Is equivalent to
  • Hv2 Ser Alalie Thr Pro Ser Gly Gly Ser Thr Asn
  • Hv3 Val Pro Tyr Arg Ser Thr Trp Tyr Pro Leu Tyr 3 Table
  • CAK GYIWNGNWFDSWGQGTLVTVS was CAR FRQ PFVQFFDVFGQGTLVT Bur CAK LIAVAG - TRDFWGQGTLVTVSL Tur CAR LSVTAVAFDVWGQGTKVS Til CAK GKVSAYYFDYWGEGTLVTVS S zap CAR TRPGGYFSDVWGQGTLVS Nie CAR IRDTAMFFAHWGQGTLVTVS S Jon CAR VWS TSMDVWGQGTPVT Gal CAR GWGGGDYWGQGTLVTVST But CAR DLAAARLFGKGTTVTVS S
  • the elucidation of the CL N-IgG antibody and its gene structure makes it possible to introduce this gene into animal cells and host cells such as Escherichia coli and express it, thereby obtaining a large amount of the antibody. Furthermore, not only complete antibodies, but also certain antibody fragments, such as heavy chains only, light chains only, Fab fragments, F (ab) ' 2 fragments, FV fragments, domain fragments (dAb), CDR fragments and other antibody-derived fragments Can be obtained. Further, by causing artificial mutations in the antibody gene, complete antibodies or fragments derived from various antibodies whose amino acid sequences are partially different can be obtained.
  • CLN-IgG acts on human cancer cells such as human stomach cancer, lung cancer, brain tumor, and malignant melanoma, and suppresses the growth of these cancer cells by its own action. Is expected to kill cancer cells and further suppress cancer cell growth with the help of traps or K-cells and macrophages, and to kill cancer cells.
  • CLN-IgG gene by modifying the CLN-IgG gene and partially substituting the amino acids of the antibody, it is possible to further increase the activity of the antibody. For example, it can be modified so as to increase the binding affinity to an antigen, the anticancer activity via an immunocompetent cell, or the invasiveness to a tissue.
  • cytotoxicity, enzymatic activity, immunity-inducing activity, etc. are added to an antibody molecule or a fragment thereof at the gene level by adding toxicity, enzyme activity, immunity-inducing activity, etc. to the antibody molecule or a fragment thereof at the gene level. It is conceivable to design a molecule having a higher anticancer activity.
  • Specific examples include the use of cancer-specific antibodies as carriers, for example, chemotherapeutic agent binding-human monoclonal antibody, interferon binding-human monoclonal antibody, high molecular weight toxin binding It is useful as a drug that induces cancer cell growth inhibition or death in the form of a monoclonal antibody, drug-containing ribosome binding-human monoclonal antibody, and the like.
  • radiosensitizers may be conjugated to antibodies and administered to patients, selectively accumulate in spheroid cells, and improve therapeutic and diagnostic effects.
  • a complete antibody may be used as a human monoclonal antibody, or as described above, for example, only a heavy chain, only a light chain, a Fab fragment, an F (ab) ' 2 fragment, Smaller fragments containing specific antigen recognition sites, such as v-fragments, domain fragments (dAbs), and CDR fragments can also be used.

Abstract

Amino acid sequences of the heavy chain and light chain variable regions of the cancer cell antigen specific human immunoglobulin CLN-IgG produced by the human/human fused cell line CLN/SUZ H11 composed of the B cell of a patient with uterine cancer and a human lymphoblast cell line; and base sequences of the genes thereof. These amino acid and base sequences are useful in the medical and pharmaceutical fields for the prevention, treatment and diagnosis of human diseases and in the pharmacological and biochemical fields as biochemical reagents and reagents for purifying biopolymers.

Description

明 細 書  Specification
抗癌ヒトモノクローナル抗体のァミノ酸配列及びそれをコードする D N A塩基配列 技術分野  Amino acid sequence of anti-cancer human monoclonal antibody and DNA base sequence encoding the same
本発明は、 たとえば、 ヒトの疾患の予防、 治療、 診断などの医学及び 薬学分野や、 生化学的試薬、 生体高分子の精製試薬などの薬理学、 生化 学分野などの広い分野において有用な抗原特異的ヒト免疫グロプリンの 可変領域の構造に関する。 さらに詳しくは、 本発明は、 ヒト子宮癌患者 の B細胞とヒ トリンパ芽球細胞株とのヒ ト Zヒ 卜融合細胞株 C L NZ S U Z H I 1が産生する癌細胞抗原特異的ヒト免疫グロプリンの重鎖及 び軽鎖可変領域のァミノ酸配列ならびにその遺伝子の塩基配列に関する。  The present invention relates to antigens useful in a wide range of fields such as medical and pharmaceutical fields such as prevention, treatment and diagnosis of human diseases, pharmacology such as biochemical reagents and biopolymer purification reagents, and biochemical fields. It relates to the structure of the variable region of specific human immunoglobulin. More specifically, the present invention relates to a heavy chain of a cancer cell antigen-specific human immunoglobulin produced by a human Z human fusion cell line CL NZ SUZHI 1 of a B cell of a human uterine cancer patient and a human lymphoblast cell line. And the amino acid sequence of the light chain variable region and the nucleotide sequence of the gene.
背景技術  Background art
細胞融合あるいは細胞の不死化によるモノクロ一ナル抗体作成の技術 の開発以来、 多くの有用な抗体が主にマウスなどをつかって得られてき た。 そのなかでも悪性腫瘍細胞に対するモノクローナル抗体は、 腫瘍抗 原の解析等の基礎研究への利用のほかに、 血清診断、 標識化抗体による 腫瘍の画像診断などに利用されはじめ、 その利用価値はきわめて高い。 しかし、 マウス等の異種抗体はヒ卜にとって異物であり、 ヒトに頻回投 与することは投与抗体に対する免疫反応を惹起し、 その結果、 副作用並 びに抗体の治療または予防効果の低下を引き起こす。 以上の点から、 ヒ トの癌の予防、 治療、 体内診断など、 実際に抗体をヒトに投与する臨床 分野を考えると、 ヒト型の抗体を用いることが望ましい。 しかし、 ヒ ト 型のモノクローナル抗体は、 その作成が困難であることから、 現在のと ころほとんど実用に供されていない。 Since the development of technology for producing monoclonal antibodies by cell fusion or cell immortalization, many useful antibodies have been obtained mainly using mice and the like. Among them, monoclonal antibodies against malignant tumor cells are extremely valuable, beginning to be used not only for basic research such as analysis of tumor antigens, but also for serodiagnosis and diagnostic imaging of tumors using labeled antibodies. . However, heterologous antibodies such as mice are foreign to humans, and frequent administration to humans causes an immune response to the administered antibodies, resulting in side effects and a reduction in the therapeutic or preventive effects of the antibodies. In view of the above, it is desirable to use human-type antibodies in the clinical field where antibodies are actually administered to humans, such as prevention, treatment, and in-vivo diagnosis of human cancer. However, it is difficult to prepare human monoclonal antibodies. It is hardly practical at this time.
このような状況の中で本発明者の一人は、 特開昭 58— 201994 号公報 (特公平 01— 59878号公報) 、 特開昭 59— 135898 号公報および特開昭 59— 137497号公報に詳しく開示されている ごとく、 ヒト癌細胞に高い反応性を有するヒトモノクローナル抗体を産 生する細胞株 CLNZSUZ HI 1 (ATCC No. HB 8307) を樹立した。 この細胞株が産生する抗体 (CLN— IgGと命名) は、 抗体クラスが IgG、 アイソタイプが y 1型および/ c型であり、 免疫組 織学的に癌細胞の表面に存在する瘙抗原に結合し、 なおかつ癌細胞の増 殖を抑制する効果をもっという興味ある知見が得られている。  Under such circumstances, one of the present inventors has disclosed in Japanese Patent Application Laid-Open No. 58-201994 (Japanese Patent Publication No. 01-59878), Japanese Patent Application Laid-Open Nos. 59-135898 and 59-137497. As disclosed in detail, a cell line CLNZSUZ HI 1 (ATCC No. HB8307) producing a human monoclonal antibody having high reactivity to human cancer cells was established. The antibody (CLN-IgG) produced by this cell line has an antibody class of IgG, isotypes y1 and / c, and immunohistologically binds to the 瘙 antigen present on the surface of cancer cells. However, more interesting findings have been obtained on the effect of suppressing the growth of cancer cells.
このような技術背景の中で、 以下に述べる如き解決すべき課題がある。 In such a technical background, there are problems to be solved as described below.
1) モノクローナル抗体産生細胞株は、 一般に継代と共にその抗体産性 能の低下することが知られている。 また一般的に言って、 ヒトハイプリ ドーマはマウスのそれと比較して抗体の産生量が低い。 ヒトモノクロ一 ナル抗体を瘙洽療や診断に用いる場合、 大量の抗体が必要であり、 この 問題の解決は必須である。 1) Monoclonal antibody-producing cell lines are generally known to decrease their antibody productivity with passage. Also, generally speaking, human hybridomas produce less antibody than mice. When human monoclonal antibodies are used for immunotherapy or diagnosis, a large amount of antibodies is required, and the solution of this problem is essential.
2)現在の免疫学の知見によれば、 モノクローナル抗体がヒ 卜癌細胞に 結合し、 抗体それ自体の作用で癌細胞の増殖を抑制し、 あるいは癌細胞 を死滅させる機構が知られている。 更にはまた、 捕体もしくは K一細胞 やマクロファージなどの助けを借りて癌細胞の増殖を抑制し、 癌細胞の 死滅を引き起こすことが知られている。 しかし、 これらの効果は実際の ところ期待されるほど強力ではなく、 それゆえ更に抗体の抗癌活性を上 昇させる試みが必要である。  2) According to current knowledge of immunology, a mechanism is known in which a monoclonal antibody binds to human cancer cells and suppresses the growth of cancer cells or kills cancer cells by the action of the antibody itself. Furthermore, it is known that with the help of traps or K-cells or macrophages, the growth of cancer cells is suppressed and the cancer cells are killed. However, these effects are not as potent as expected in practice, and further attempts are needed to further increase the anti-cancer activity of the antibody.
以上のような課題の解決手段、 すなわち抗体産生量の改善と抗体の抗 癌活性の上昇を具体化するひとつの手段として遺伝子操作による方法が ある。 例えば上記 1) の問題の場合、 抗体遺伝子をクローニングした後、 動物細胞や大腸菌などの宿主細胞に遺伝子を導入し、 抗体遺伝子を発現 させ、 抗体を多量に得る方法によって解決することが考えられ、 また上 記 2)の問題の場合、 抗体遺伝子を人為的に換えることによって、 抗体 の種々の機能、 たとえば抗原との結合親和性や、 免疫担当細胞を介した 抗癌活性あるいは組織浸潤性を上昇させるように改変したり、 さらには 本来抗体が持たない機能、 たとえば細胞毒性、 酵素活性、 免疫誘導活性 などを抗体分子もしくはその断片に付 inすることで、 より抗癌活性の高 い分子をデザィンすることが考えられる。 Means for solving the above problems, namely, improvement of antibody production and anti- One means for realizing the increase in cancer activity is a method by genetic manipulation. For example, in the case of the problem 1) above, after cloning the antibody gene, the gene may be introduced into animal cells or host cells such as Escherichia coli, the antibody gene may be expressed, and a method for obtaining a large amount of the antibody may be solved. In the case of the above 2), by artificially changing the antibody gene, various functions of the antibody, such as the binding affinity with the antigen, the anticancer activity via the immunocompetent cell, or the tissue invasiveness are increased. By adding functions that are not originally possessed by antibodies, such as cytotoxicity, enzymatic activity, and immunity-inducing activity, to antibody molecules or fragments thereof, to design molecules with higher anticancer activity. It is possible to do.
これらの目的を達成するためには、 抗体遺伝子の分離さらに構造の解 明が重要である。 しかしながら、 該 C LN— I gGモノクローナル抗体 を構成する軽鎖と重鎖の構造、 さらには抗原と特異的に結合する機能を 有する可変領域の遺伝子構造についてはこれまで全く知られていない。 そこで本発明の主たる目的は、 該 CLN— IgGモノクローナル抗体 の軽鎖と重鎖の遺伝子構造を解明することにある。  In order to achieve these objectives, it is important to separate antibody genes and elucidate their structures. However, the structures of the light chain and heavy chain constituting the CLN-IgG monoclonal antibody, and the gene structure of a variable region having a function of specifically binding to an antigen have not been known at all. Therefore, a main object of the present invention is to elucidate the gene structure of the light chain and heavy chain of the CLN-IgG monoclonal antibody.
発明の開示  Disclosure of the invention
本発明者らは、 該 C LN— I gGモノクローナル抗体の軽鎖及び重鎖 をコードする cDNAを分離し、 該 DNA塩基配列を解明し、 またその 配列より該抗体の軽鎖及び重鎖可変領域のァミノ酸配列を決定し本発明 を完成するに至った。  The present inventors separated cDNAs encoding the light chain and heavy chain of the CLN-IgG monoclonal antibody, elucidated the DNA base sequence, and, based on the sequences, the light chain and heavy chain variable regions of the antibody. The amino acid sequence of was determined, and the present invention was completed.
具体的には、 CLNZSUZ HI 1より niRNAを調製し、 そこか ら作成した cDN Aラムダファージ 'ライブラリ一を、 プラークハイブ リダイゼーシヨン法によりスクリーニングし、 単離したファージクロー ンの揷入 DNAの塩基配列を決定することにより達成された。 以下本発 明について更に詳細に説明する。 Specifically, niRNA was prepared from CLNZSUZ HI1, and the cDNA A lambda phage 'library' prepared therefrom was screened by the plaque hybridization method, and the isolated phage clone was used. This was achieved by determining the nucleotide sequence of the inserted DNA. Hereinafter, the present invention will be described in more detail.
図面の簡単な説明 - 図 1は、 ヒト c鎖サブグループ 1に属する 24の可変領域配列の Kab at & Wu plotを示す。  BRIEF DESCRIPTION OF THE FIGURES-FIG. 1 shows a Kabat & Wu plot of 24 variable region sequences belonging to human c-chain subgroup 1.
図 2は、 ヒト重鎖サブグループ 3に属する 21の可変領域配列の Kab at & Wu plotを示す。  FIG. 2 shows a Kabat & Wu plot of 21 variable region sequences belonging to human heavy chain subgroup 3.
発明の詳細な記述  Detailed description of the invention
本発明によれば、 CLN— IgGモノクローナル抗体軽鎖可変領域お よび重鎮可変領域の DN A塩基配列は、 PCR法 (ポリメラーゼ鎖反応 法) により増幅したヒト抗体遺伝子断片をプローブとして、 CLN— I gGモノクローナル抗体軽鎮および重鎖の cDNAをクローニングし、 該 DNA塩基配列を解析することにより決定される。 以下、 これらの工程 について更に詳細に説明する。  According to the present invention, the DNA sequences of the light chain variable region and heavy chain variable region of the CLN-IgG monoclonal antibody can be determined using the human antibody gene fragment amplified by PCR (polymerase chain reaction) as a probe. It is determined by cloning the monoclonal antibody light chain and heavy chain cDNA and analyzing the DNA nucleotide sequence. Hereinafter, these steps will be described in more detail.
[1] mRNA単離精製  [1] mRNA isolation and purification
本発明において使用される細胞株は、 ヒト子宮癌患者リンパ球とヒト リンパ芽球を融合させたヒト Zヒトハイプリ ドーマであり、 具体的には 特開昭 58— 201994号公報 (特公平 01— 59878号公報) に 詳しく開示され、 ヒト脳腫瘍、 肺ガン、 胃ガン、 悪性黒色腫などのごと き癌細胞の細胞表面抗原に特異的に反応するヒト型モノクローナル抗体 を産生するハイブリ ドーマ CLN— SUZ HI 1である。 このハイブ リ ドーマは ATCC (American Type Culture Collection) に登録 番号 HB 8307として登録されている。  The cell line used in the present invention is a human Z human hybridoma obtained by fusing human uterine cancer patient lymphocytes and human lymphoblasts. Specifically, the cell line is disclosed in Japanese Patent Application Laid-Open No. 58-201994 (Japanese Patent Publication No. 01-59878). Publication No. 2), which produces a human-type monoclonal antibody that specifically reacts with the cell surface antigen of cancer cells such as human brain tumors, lung cancer, stomach cancer, and malignant melanoma. It is. This hybridoma is registered with ATCC (American Type Culture Collection) under the registration number HB8307.
この細胞を適当な条件下、 例えば温度 37°C、 炭酸ガス濃度 5%の条 件下、 5%牛胎児血清を含む培養液、 たとえば RDF培地中で培養増殖 させ、 得られる細胞を遠心分離によって集めた後、 細胞から常法、 例え ば Hanらのグァニジゥムチオシァネート法 [Han, J. H., S tratowa, C., & Rutter, W. J. (1987) Biochemistry, 26, 16 17-1625] により全 RNAを抽出し、 ついでこれを常法、 例えば オリゴ dTセルロースを用いる吸着カラムクロマトグラフィまたはバッチ 法によりポリ (A) +RN A画分を分離精製する。 The cells are grown under appropriate conditions, for example, at 37 ° C and 5% CO2. Under these conditions, the cells are grown in a culture solution containing 5% fetal bovine serum, for example, RDF medium, and the resulting cells are collected by centrifugation and then collected from the cells by a conventional method, for example, guanidinium thiosinate of Han et al. Total RNA was extracted by the method [Han, JH, Stratowa, C., & Rutter, WJ (1987) Biochemistry, 26, 16 17-1625], and then subjected to a conventional method, for example, adsorption column chromatography using oligo dT cellulose. Alternatively, separate and purify the poly (A) + RNA fraction by the batch method.
得られるポリ (A) +RNAはさらに cDNAライブラリーの作製に利 用することができる。 本発明においては、 具体的には CLN— SUZ H 11ハイプリ ドーマ細胞から全 RNAを抽出し、 この抽出物からオリ ゴ dTセルロースカラムを用いてポリ (A) +RNAを精製し、 以下の cD NAライブラリーの作製に供した。  The resulting poly (A) + RNA can be further used for preparing a cDNA library. In the present invention, specifically, total RNA is extracted from CLN-SUZH11 hybridoma cells, and poly (A) + RNA is purified from this extract using an oligo dT cellulose column, and the following cDNA is prepared. The library was used for construction.
[2] cDNAライブラリーの作製  [2] Preparation of cDNA library
[1] の工程で得られるポリ (A) +RNAを铸型とし、 ポリ Aに対 応ずるオリゴ dT、 あるいは抗体の定常領域に対応すると考えられる塩基 配列を有する合成ヌクレオチドをプライマーとして、 dATP、 dGTP、 dTTP、 dCTPの存在下で逆転写酵素により mR N Aと相補的な一本 鎖 DN Aを合成する。 次いで大腸菌 RN A分解酵素 Hで RN Aを断片化 した後、 この一本鎖 DNAを铸型として、 大腸菌 DNAポリメラーゼ I を用いて二本鎖 cDNAを合成する。 こうして得られる cDNAに、 たと えば EcoR I リンカーを連結後、 EcoR I消化することによって粘着末 端を導入することができる。 得られる断片を適当なファージベクター、 たとえば λ£ΐ10ベクター、 igtl 1ベクターなどの EcoR I部位に連 結した後、 インビトロパッケージングを行い、 cDNAライブラリーを 作製することができる。 The poly (A) + RNA obtained in the step [1] is type II, and the primers are dATP and dGTP, using oligo dT corresponding to poly A or a synthetic nucleotide having a base sequence considered to correspond to the constant region of the antibody as a primer. A single-stranded DNA complementary to mRNA is synthesized by reverse transcriptase in the presence of dTTP and dCTP. Next, the RNA is fragmented with Escherichia coli RNA degrading enzyme H, and then the single-stranded DNA is converted into type II to prepare a double-stranded cDNA using Escherichia coli DNA polymerase I. For example, an EcoRI linker can be ligated to the cDNA thus obtained, followed by digestion with EcoRI to introduce a sticky end. The obtained fragment is ligated to an EcoRI site of an appropriate phage vector, for example, a λ £ ΐ10 vector or an igtl1 vector, and then subjected to in vitro packaging to prepare a cDNA library. Can be made.
本発明の具体的操作においては、 [1] の工程で得られるポリ (A) + RNAを鋅型とし cDNAを合成し、 この cDNAを; Igtl 0ベクタ に連結し cDN Aライブラリーを作製した。  In a specific operation of the present invention, a cDNA was synthesized using the poly (A) + RNA obtained in the step [1] as type III, and the cDNA was ligated to an Igtl0 vector to prepare a cDNA library.
[3] プローブの作製  [3] Preparation of probe
プローブとしては、 ヒト免疫グロプリン軽鎖又は重鎖の定常領域ある いは可変領域の遺伝子もしくはその断片、 あるいはその部分のァミノ酸 S列に対応する塩基配列を有するオリゴヌクレオチドを化学合成したも のを、 たとえばニックトランスレーション法により32 P、 ピオチンなど で標識を行ったものを用いることができる。 As the probe, a human immunoglobulin light or heavy chain constant region or variable region gene or a fragment thereof, or a chemically synthesized oligonucleotide having a nucleotide sequence corresponding to the amino acid S sequence in that portion is used. For example, those labeled with 32 P, biotin or the like by the nick translation method can be used.
本発明において好適には、 cDNAを鍀型に、 抗体の軽鎖および重鎖 の一部に相当する配列をブライマ一にして行つた P C Rにより増幅され た断片を、 ニックトランスレーション法によりピオチン化したものをプ ローブとすることができる。  In the present invention, preferably, a fragment amplified by PCR in which the cDNA is subjected to type III and sequences corresponding to a part of the light chain and heavy chain of the antibody in a primer sequence is biotinylated by the nick translation method. Things can be used as probes.
[4] cDNAのクローニング  [4] cDNA cloning
[2] の工程で得られる cDNAライブラリーを、 [3] の工程で得 られるプローブを用いることにより目的とするクローンの選択を行う。 例えば [2] の工程で得られる cDNAライブラリーの; Igtl 0ファー ジを大腸菌株 (C600H — ) に感染させることでプラークを形成さ せ、 さらにプラークハイブリダイゼーション法によって陽性クローンを 選別する。 これにより、 CLN— IgG重鎖 cDNAクローンとして; I C LN— Gl 11が、 CLN— IgG軽鎖 cDNAクローンとして; I CLN -K411が選択され塩基配列決定に供された。  The desired clone is selected by using the cDNA library obtained in the step [2] and the probe obtained in the step [3]. For example, by infecting the E. coli strain (C600H—) with Igtl0 phage of the cDNA library obtained in the step [2], plaques are formed, and positive clones are selected by plaque hybridization. As a result, ICLN-G11 was selected as a CLN-IgG heavy chain cDNA clone, and ICLN-K411 was selected as a CLN-IgG light chain cDNA clone, and subjected to nucleotide sequencing.
[5] 塩基配列の決定 [4] の工程で得られる cDNAクローンは、 たとえば pUC18のよ うなプラスミッ ドベクターや Ml 3ファージなどのファージベクターあ るいは pUC 118、 pBluescript SK+などのファージミッ ドベクタ 一に再クローン化し、 得られるサブクローンの挿入部分の DN A塩基配 列をマキサム、 ギルバ一ト法ゃサンガー法を用いて塩基配列を決定する ことができる。 [5] Determination of base sequence The cDNA clone obtained in the step [4] is recloned into a plasmid vector such as pUC18, a phage vector such as M13 phage, or a phagemid vector such as pUC118 or pBluescript SK +. The nucleotide sequence of the DNA base sequence at the insertion site can be determined using the Maxam, Gilbert method and Sanger method.
本発明の具体的操作においては、 [4] の工程で得られる; I C LN— G 111および; I C LN-K411の EcoR I断片を、 pBluescript SK +に再クローン化後、 ヘルパーファージ R 408感染により一本鎖 DNAを調製し、 サンガー法によりその塩基配列を決定した。 In the specific operation of the present invention, the ICLN-G111 and the EcoRI fragment of ICLN-K411 obtained in the step [4] are recloned into pBluescript SK + and then infected with helper phage R408. Single-stranded DNA was prepared and its nucleotide sequence was determined by the Sanger method.
以下、 実施例により本発明をさらに具体的に説明する。  Hereinafter, the present invention will be described more specifically with reference to examples.
実施例  Example
実施例 1 :ハイプリ ドーマ CLN SUZ HI 1からの mRNA (ポ リ (A) +RNA) の単離精製 Example 1: Isolation and purification of mRNA (poly (A) + RNA) from Hypri-Doma CLN SUZ HI 1
ヒ トヒ トハイプリ ドーマ CLNZSUZ HI 1から mRNA分画を 得た方法は以下のとおりである。  The method for obtaining the mRNA fraction from the human hypride dorma CLNZSUZ HI1 is as follows.
CLNZSUZ HI 1細胞から、 グァニジゥムチオシァネート法 [Han, J. H., S tratowa, C, & Rutter, W. J. (1987). Biochemistry, 26, 1617— 1625] により、 全 RN Aを調整 した。 培養細胞 109個を遠心分離で集め生理食塩水で洗浄する。 80 Orpmで遠心し集めた細胞の沈殿に、 あらかじめ氷冷しておいた 8%2 —メルカプトエタノールを含む 5 Mグァニジゥムチオシァネートを 20 ml加え、 すみやかにホモジヱナイズする。 その細胞破砕液を、 あらか じめ 7.5m 1のエタノールを入れ一 20°Cに冷やしておいたポリプロ ピレン遠心チューブに入れて混合し、 即座に 10, 00 Orpmで 5分間遠 心する。 得られた沈殿にあらかじめ氷冷しておいた 8 % 2—メルカプト エタノールを含む 5Mグァニジゥムチオシァネートを 10m 1加えホモ ジェナイズした後、 そこへ 1M酔酸 0.25m 1と 7.5m 1の冷ェタノ ールを加え、 一 20°Cで一晩放置する。 10, 00 Orpmで 10分間遠心 分離し得られた沈殿を 10mM2—メルカブトエタノールを含む 6M塩 酸グァニジン 10mlに溶解し、 さらに 1M酔酸 0.25m 1と 5m 1 の冷エタノールを加え一 20でで 3時間放置する。 10, 00 Orpmで 1 0分間遠心分離し得られた沈殿を 6M塩酸グァニジン 5m 1に溶解し 1 MS ^酸 0.125m 1と 2.5m 1の冷エタノールを加え一 20ででさら に 3時間放置する。 10, 00 Orpraで 10分間遠心分離し得られた沈殿 を滅菌純水 5 m 1に溶解し、 2 M酢酸ナトリウム 0.5 m 1および冷ェ タノール 12.5m 1加え一 20でで全 RNA分画として保存する。 Total RNA was prepared from CLNZSUZ HI1 cells by the guanidinium thiosinate method [Han, JH, Stratowa, C, & Rutter, WJ (1987). Biochemistry, 26, 1617-1625]. 10 9 cultured cells are collected by centrifugation and washed with physiological saline. 20 ml of 5 M guanidium thiosinate containing 8% 2-mercaptoethanol, which had been ice-cooled beforehand, was added to the precipitate of the cells collected by centrifugation at 80 Orpm, and the mixture was immediately homogenized. The cell lysate was previously mixed with 7.5 ml of ethanol and cooled to 120 ° C. Mix in a pyrene centrifuge tube and immediately centrifuge at 10,000 Orpm for 5 minutes. 10 ml of 5 M guanidinium thiosinate containing 8% 2-mercaptoethanol, which had been ice-cooled beforehand, was added to the obtained precipitate and homogenized. Add cold ethanol and leave at 120 ° C overnight. The precipitate obtained by centrifugation at 10,000 rpm for 10 minutes was dissolved in 10 ml of 6M guanidine hydrochloride containing 10 mM 2-mercaptoethanol, and 0.25 ml of 1 M acetic acid and 5 ml of cold ethanol were added to the mixture. Leave for 3 hours. After centrifugation at 10,000 rpm for 10 minutes, the resulting precipitate is dissolved in 5 ml of 6 M guanidine hydrochloride, 0.125 ml of 1 MS ^ acid and 2.5 ml of cold ethanol are added, and the mixture is left at 120 for another 3 hours. . The precipitate obtained by centrifugation at 10,000 Orpra for 10 minutes is dissolved in 5 ml of sterilized pure water, added with 0.5 ml of 2 M sodium acetate and 12.5 ml of cold ethanol, and stored as a total RNA fraction at 1-20. I do.
ポリ (A) +RNAは、 上述の方法で得られた全 RNA分画から Chir gwinの方法 [ C hirgwin, J . Μ·, P rzybyla, A. E -, MacDonald, R. J., & Rutter, W. J. (1979) Biochemistry, 18, 5294-5299] を用いて調製した。 まず CLNZSUZ HI 1 細胞の全 RNA9mgを純水に解かし 2.5mg/m 1とする。 100 °Cで 5分間熱処理し、 氷上で急冷した後、 5M塩化リチウム、 10% SDS、 1Mトリエタノールアミン塩酸 pH7.4をそれぞれ最終濃度 0. 5M、 0.2%、 1 OmMになるように加える。 その溶液を、 あらかじめ 結合緩衝液 (0.5M塩化リチウム、 0.2%SDS、 1 OmMトリエタ ノールアミン塩酸、 pH7.4) で平衡化しておいたオリゴ (dT)セル口 ースカラムにかける。 さらにカラム体積の 10倍の結合緩衝液で洗浄す る。 カラムに結合したポリ (A) +RNAを溶出緩衝液 (1 OmMトリエ タノールアミン塩酸、 pH7.4) で溶出し、 RNA分画を集める。 得ら れたポリ (A) +RNA溶液は 100°Cで 5分間熱処理した後、 上述の オリゴ (dT)セルロースカラムを用いたクロマトグラフィーを新しい力 ラムをつかってもう一度繰り返す。 RNAは、 溶出液に 2.5倍量のェ タノールと 1/10量の 2M酢酸ナトリウムを加え、 10, 000 xgの遠心 分離した後の沈殿として回収する。 精製ポリ (A) +RNA沈殿を滅菌 純水に溶解し 2 zg/ zlの濃度で一 70°Cで保存する。 Poly (A) + RNA was obtained from the total RNA fraction obtained by the above method by the method of Chirgwin [Chirgwin, J. Μ ·, Przybyla, A. E-, MacDonald, RJ, & Rutter, WJ ( 1979) Biochemistry, 18, 5294-5299]. First, 9 mg of total RNA of CLNZSUZ HI 1 cells is dissolved in pure water to 2.5 mg / ml. After heat treatment at 100 ° C for 5 minutes and quenching on ice, add 5M lithium chloride, 10% SDS, 1M triethanolamine hydrochloride pH 7.4 to final concentrations of 0.5M, 0.2%, 1OmM, respectively. The solution is applied to an oligo (dT) cell source column that has been equilibrated with a binding buffer (0.5 M lithium chloride, 0.2% SDS, 1 OmM triethanolamine hydrochloride, pH 7.4) in advance. Further wash with 10 column volumes of binding buffer. You. The poly (A) + RNA bound to the column is eluted with elution buffer (1 OmM triethanolamine hydrochloride, pH 7.4), and the RNA fraction is collected. The resulting poly (A) + RNA solution is heat-treated at 100 ° C for 5 minutes, and the above-mentioned chromatography using an oligo (dT) cellulose column is repeated once again using a new column. For RNA, add 2.5 volumes of ethanol and 1/10 volume of 2M sodium acetate to the eluate, and recover as a precipitate after centrifugation at 10,000 xg. Dissolve the purified poly (A) + RNA precipitate in sterile pure water and store at 2 70 g at a concentration of 2 zg / zl.
実施例 2 : CLN/SUZ HI 1ライブラリーの作成 Example 2: Creation of CLN / SUZ HI 1 library
実施例 1で得られたポリ (A) +RNA4 /gを用い、 アマシャム社の cDNA合成キッ トのプロトコールに従い、 cDNAを合成し 3.2〃g回 収した。 この cDNA断片を EcoR Iメチラーゼ処理後、 EcoR Iリン カーを T4 DNA ligaseを用いて連結した。 EcoR I消化後、 アマ シャム社製カラムにより EcoR I末端を有する cDN A分画を回収した。 この cDNA 10 Ongを; Igtl 0ベクタ一 (ストラタジーン社製) 1 /zg に連結後、 in vitroパッケージングをパッケージングキッ ト (G I GA PACK GOLD ;ストラタジーン社製) を用いて行い CLNZSU Z Hl lcDNAライブラリー 7.8x 106pfu//zg DNAを作成 した。 Using the poly (A) + RNA4 / g obtained in Example 1, cDNA was synthesized according to the protocol of Amersham's cDNA synthesis kit and 3.2 µg was recovered. After treating this cDNA fragment with EcoRI methylase, the EcoRI linker was ligated using T4 DNA ligase. After EcoR I digestion, a cDNA fraction having an EcoR I end was recovered using an Amersham column. After ligation of 10 ng of this cDNA to 1 / zg of Igtl 0 vector-1 (Stratagene), in vitro packaging was performed using a packaging kit (GIGA PACK GOLD; Stratagene) and CLNZSU ZHl An lcDNA library of 7.8 × 10 6 pfu // zg DNA was prepared.
実施例 3 :プロテインシーケンサーによる CLN— IgGのアミノ酸配 列の決定 Example 3: Determination of amino acid sequence of CLN-IgG by protein sequencer
精製 CLN— IgGを還元後、 ゲルろ過により精製した重鎖および軽 鎖のそれぞれ 30〃gをプロテインシーケンサー 477 A (アプライ ト バイオシステムズ社製) にかけ、 N末端からのアミノ酸配列を約 30残 基決定した。 また重鎖を臭化シアンによりメチォニン特異的に切断し断 片を逆相液体ク口マトグラフィで分離精製後、 同様に一部のァミノ酸配 列を決定した。 After reducing purified CLN-IgG, 30 µg of each of the heavy and light chains purified by gel filtration was applied to Protein Sequencer 477A (manufactured by Applied Biosystems), and about 30 amino acid sequences from the N-terminus were retained. I decided. The heavy chain was specifically cleaved with methionine using cyanogen bromide. The fragments were separated and purified by reversed-phase liquid chromatography, and a part of the amino acid sequence was similarly determined.
実施例 4 :プローブの作成法  Example 4: Probe creation method
(1) 重鎮のプローブ  (1) Heavyweight probe
実施例 3で決定した CLN— IgG重鎮の部分アミノ酸配列とホモ口 ジーをもつ配列を NBRF蛋白質データベース (NBRF— PDB ; N ational Biomedical Research Foundation Protein Data Base) から検索した結果、 ヒ ト免疫グロプリン germ line VH26 (ェントリ 一名 H3HU26、 Accession number A02047) が最も高いホモロジ一 を持つことが明らかとなった。 そこで EMBL DNAデータベース (E MB L— G D B ; European Molecular Biology Laboratory Gene deta Base) にある VH26の DNA配列 (I D名 HS I GHAU, A ccession number M17747) のうちから N末端アミノ酸 10残基に相当す る 30ヌクレオチド (プライマ一 No. 1) を合成した。 また重鎮ァ 1 C H I ドメインの DNA配列 (EMBL— GDB ; I D名 HS I GCC4, Accession number J00228) の C末端側ァミノ酸 10残基に相当する 3 0ヌクレオチド (プライマー No.2) を合成した。  A sequence having a homology with the partial amino acid sequence of the CLN-IgG heavy chain determined in Example 3 was searched from the NBRF protein database (NBRF-PDB; National Biomedical Research Foundation Protein Data Base). VH26 (entry H3HU26, Accession number A02047) was found to have the highest homology. Therefore, it corresponds to the N-terminal amino acid 10 residues of the VH26 DNA sequence (ID name: HSIGHAU, Accession number M17747) in the EMBL DNA database (EMBL-GDB; European Molecular Biology Laboratory Gene data Base). 30 nucleotides (Primer No. 1) were synthesized. In addition, 30 nucleotides (primer No. 2) corresponding to 10 amino acid residues at the C-terminal side of the DNA sequence of the heavy chain 1 CHI domain (EMBL-GDB; ID name HS I GCC4, Accession number J00228) were synthesized.
合成 DNA (プライマー No. 1)  Synthetic DNA (Primer No. 1)
5' -GAGGTGCAGCTGTTGGAGTCTGGGGGAGGC-3'  5 '-GAGGTGCAGCTGTTGGAGTCTGGGGGAGGC-3'
合成 DNA (プライマー No.2)  Synthetic DNA (Primer No.2)
5'-AACTTTCTTGTCCACCTTGGTGTTGCTGGG-3'  5'-AACTTTCTTGTCCACCTTGGTGTTGCTGGG-3 '
この 2種類のブライマ,を用いて実施例 2で調製した CLNZSUZ HI lcDNA4ngをテンプレートに PCR (ポリメラーゼ鎖反応) を 行った。 その結果、 約 660塩基対の断片 (PCRy C3) が増幅され、 塩基配列決定により抗体重鎖 y 1 CHI ドメインおよび可変領域に相 当することがあきらかとなった。 このァ C 3をニック トランスレーシヨ ンの方法でピオチン化しプローブ (ピオチン化 PCRy C3) を得た。 PCR (polymerase chain reaction) was performed using 4 ng of CLNZSUZ HI lcDNA prepared in Example 2 using these two types of primers as a template. went. As a result, a fragment of about 660 base pairs (PCRy C3) was amplified, and it was clarified that the nucleotide sequence determination corresponded to the antibody heavy chain y1 CHI domain and variable region. This C3 was biotinylated by the method of nick translation to obtain a probe (biotinylated PCRy C3).
(2) 軽鎖のプローブ  (2) Light chain probe
実施例 3で決定した CLN— IgG軽鎖の部分アミノ酸配列とホモ口 ジーをもつ配列を NBRF蛋白質データベースから検索した結果、 Dau di細胞由来のヒ ト免疫グロプリン (ェントリ一名 K 1 HUD I、 Acces sion number A01884) の配列と最も高いホモロジ一があった。 そこで E MB L DNAデータベースにある Daudi抗体軽鎖の DNA配列 ( I D 名 HSVK02, Accession number X00966) のうちから N末端アミノ 酸 10残基に相当する 30ヌクレオチド (プライマー No.3) を合成し た。 また軽鎮 (/c鎖) Cドメインの DN A配列 (EMBL— GDB ; I D名 HS I GK1, A ccession number V00557) の C末端側アミノ酸 1 0残基に相当する 30ヌクレオチド (プライマー No.4) を合成した。 合成 DNA (プライマー No.3)  As a result of searching the NBRF protein database for a sequence having a homology with the partial amino acid sequence of the CLN-IgG light chain determined in Example 3, human immunoglobulin derived from Dau di cells (entry name K 1 HUD I, Acces sion number A01884). Therefore, 30 nucleotides (primer No. 3) corresponding to 10 residues of the N-terminal amino acid were synthesized from the DNA sequence of the Daudi antibody light chain (ID name HSVK02, Accession number X00966) in the EMBL DNA database. 30 nucleotides (primer No. 4) corresponding to the C-terminal amino acid residue 10 of the DNA sequence of the light domain (/ c chain) C domain (EMBL-GDB; ID name HS I GK1, Accession number V00557) Was synthesized. Synthetic DNA (Primer No.3)
5' -GACATCCAGATGACCCAGTCTCCATCCTCC-3'  5 '-GACATCCAGATGACCCAGTCTCCATCCTCC-3'
合成 DNA (プライマー No.4)  Synthetic DNA (Primer No.4)
5' -CTAACACTCTCCCCTGTTGAAGCTCTTTGT-3'  5 '-CTAACACTCTCCCCTGTTGAAGCTCTTTGT-3'
この 2種類のプライマーを用いて実施例 2で調製した CLN/SUZ CLN / SUZ prepared in Example 2 using these two primers
HI icDNA4ngをテンプレー卜に PC Rを行った。 その結果、 約 660塩基対の断片 (PCR c A4) が増幅され、 塩基配列決定により 抗体軽鎖 (Λ鎖) Cドメインおよび可変領域に相当することが明らかと なった。 この PCR c 4をニック トランスレーションの方法でピオチン 化しプローブ (ピオチン化 PC R c A 4) を得た。 PCR was performed using 4 ng of HI icDNA as a template. As a result, a fragment (PCR cA4) of about 660 base pairs was amplified, and the nucleotide sequence was determined to correspond to the antibody light chain (Λ chain) C domain and variable region. This PCR c4 is used for nick translation Then, a probe (biotinylated PC RcA4) was obtained.
実施例 5: cDNAのクローニング  Example 5: Cloning of cDNA
(1)重鎮 cDN Aのクローニング  (1) Cloning of heavyweight cDNA
前記実施例 2で得られた CLNZSUZ HI lcDNAライブラリ —に対して実施例 4で得られたピオチン化プローブを用いてプラークハ イブリダイゼーシヨンを行い 13個の陽性クローンを得た。 この中のク ローンのひとつは約 1.6K塩基対の揷入 DNAを持っており、 このフ ァージを; I CLN— G 111と命名した。  The CLNZSUZ HI lcDNA library obtained in Example 2 was subjected to plaque hybridization using the biotinylated probe obtained in Example 4 to obtain 13 positive clones. One of these clones had about 1.6K base pairs of imported DNA, and this phage was named; ICLN-G111.
(2)軽鎖 cDN Aのクローニング  (2) Cloning of light chain cDNA
前記実施例 2で得られた CLNZSUZ HI lcDNAライブラリ 一に対して実施例 4で得られたビォチン化プロ一ブを用いてプラークハ イブリダィゼーシヨンを行い 27個の陽性クローンを得た。 この中のク ローン 411は約 1.0K塩基対の揷入 DNAを持っており、 このファ —ジを; CLN— K411と命名した。  The CLNZSUZ HI lcDNA library obtained in Example 2 was subjected to plaque hybridization using the biotinylated probe obtained in Example 4 to obtain 27 positive clones. Clone 411 in this contains about 1.0 K base pairs of imported DNA, and this phage was named CLN-K411.
実施例 6 :塩基配列の決定 Example 6: Determination of base sequence
実施例 5においてクローン化したス CLN— Gl 11および; ICLN -K411の EcoR I断片をファージミッ ド Bluescript SK +に再ク ローン化した。 このファージミツ ドで形質転換した大腸菌 XL 1- Blue にヘルパーファージ R 408を感染させ、 一本鎖 DN Aを調整し、 サン ガー法 [Sanger, F. et al. Proc. Natl. Acad. Sci. USA. 74 ; 5463 (1977) ] により塩基配列を決定した。 その結果得 られた CLN— IgG軽鎖 cDNAクローンの可変領域の塩基配列および それから予測されるアミノ酸配列を以下に示す。 第 1表: C L N - I g G重鎖(y )可変領域断片 The EcoR I fragment of cloned CLN-G11 and of ICLN-K411 in Example 5 was recloned into the phagemid Bluescript SK +. Escherichia coli XL1-Blue transformed with this phagemid is infected with helper phage R408, the single-stranded DNA is prepared, and the Sanger method [Sanger, F. et al. Proc. Natl. Acad. Sci. USA 74; 5463 (1977)]. The nucleotide sequence of the variable region of the resulting CLN-IgG light chain cDNA clone and the amino acid sequence predicted therefrom are shown below. Table 1: CLN-IgG heavy chain (y) variable region fragment
AGC CCA GCC CTG GGA TTT TCA GGT GTT TTC ATT TGG TGA TCA GGA CTG AAC AGA GAA CTC AGC CCA GCC CTG GGA TTT TCA GGT GTT TTC ATT TGG TGA TCA GGA CTG AAC AGA GAA CTC
- 19 - 10 - 1-19-10-1
ACC ATG GAC TTT GGG CTG AGC TGG CTT TTT CTT GTG GCT ATT TTA AAA GGT GTC CAG TGT ACC ATG GAC TTT GGG CTG AGC TGG CTT TTT CTT GTG GCT ATT TTA AAA GGT GTC CAG TGT
Met Asp Phe Gly Leu Ser Trp Leu Phe Leu al Ala l ie Leu Lys Gly Val Gin Cys  Met Asp Phe Gly Leu Ser Trp Leu Phe Leu al Ala lie Leu Lys Gly Val Gin Cys
10 20 10 20
GAG GTG CAG CTG TTG GAG TCT GGG GGA GAC TTG GTA CAG CCT GGG GGG TCG CTG AGA CTC GAG GTG CAG CTG TTG GAG TCT GGG GGA GAC TTG GTA CAG CCT GGG GGG TCG CTG AGA CTC
Glu Val Gin Leu Leu Glu Ser Gly Gly Asp Leu Val Gin Pro Gly Gly Ser Leu Arg Leu  Glu Val Gin Leu Leu Glu Ser Gly Gly Asp Leu Val Gin Pro Gly Gly Ser Leu Arg Leu
30 40 30 40
TCC TGT GCA GCC TCT GGA TTC ACC TTC AGC AAC TAT GCC ATG AGC TGG GTC CGC CAG GCT TCC TGT GCA GCC TCT GGA TTC ACC TTC AGC AAC TAT GCC ATG AGC TGG GTC CGC CAG GCT
Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr Ala Met Ser Trp Val Arg Gin Ala  Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr Ala Met Ser Trp Val Arg Gin Ala
50 60 50 60
CCA GGG AAG GGG CTG GAG TGG GTC TCA GCG ATT ACT CCT AGT GGT GGT AGT ACA AAT TAT CCA GGG AAG GGG CTG GAG TGG GTC TCA GCG ATT ACT CCT AGT GGT GGT AGT ACA AAT TAT
Pro Gly Lys Gly Leu Glu Trp Val Ser Ala l ie Thr Pro Ser Gly Gly Ser Thr Asn Tyr  Pro Gly Lys Gly Leu Glu Trp Val Ser Ala lie Thr Pro Ser Gly Gly Ser Thr Asn Tyr
70 80 70 80
GCA GAC TCC GTG AAG GGC CGG TTC ACC ATC TCC AGA GAC AAT TCC CAG AAT ACA CTG TAT GCA GAC TCC GTG AAG GGC CGG TTC ACC ATC TCC AGA GAC AAT TCC CAG AAT ACA CTG TAT
Ala Asp Ser al Lys Gly Arg Phe Thr l ie Ser Arg Asp Asn Ser Gin Asn Thr Leu Tyr  Ala Asp Ser al Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Gin Asn Thr Leu Tyr
90 100 90 100
CTG CAA ATG AAC AGC CTG AGA GTC GAG GAC ACG GCC GTA TAT TAC TGT GGG AGA GTC CCA CTG CAA ATG AAC AGC CTG AGA GTC GAG GAC ACG GCC GTA TAT TAC TGT GGG AGA GTC CCA
Leu Gin Met Asn Ser Leu Arg Val Glu Asp Thr Ala Val Tyr Tyr Cys Gly Arg al Pro  Leu Gin Met Asn Ser Leu Arg Val Glu Asp Thr Ala Val Tyr Tyr Cys Gly Argal Pro
110 120 110 120
TAT AGA AGC ACT TGG TAC CCT TTA TAT TGG GGC CAG GGA ACC CTG GTC ACC GTC TCC TCA TAT AGA AGC ACT TGG TAC CCT TTA TAT TGG GGC CAG GGA ACC CTG GTC ACC GTC TCC TCA
Tyr Arg Ser Thr Trp Tyr Pro Leu Tyr Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser  Tyr Arg Ser Thr Trp Tyr Pro Leu Tyr Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser
GCC GCC
Ala Ala
JDd、 JDd,
66卜 OAV  66 UAV
SJV sAq aてェ ηιε) Ι¾Λ sAq Jtii Λχο VOO VW DIiV 0V0 Si〇 SW 00V OOD SJV sAq a ηιε) Ι¾Λ sAq Jtii Λχο VOO VW DIiV 0V0 Si〇 SW 00V OOD
ATO Ato am ani, 3X1 c <j 33W u o neq sAo JAJ, xAjj ν[ί Β ν atld Js¾ η ο VOO DDO οω ODV 0Ji¾ iYi OVO JiD 001, OVJi JIVOJ JIOV VOO JnLJi .LVO ¾vo οοτ 06 ATO Ato am ani, 3X1 c <j 33W uo neq sAo JAJ, xAjj ν [ί ν ν atld Js¾ η ο VOO DDO οω ODV 0Ji¾ iYi OVO JiD 001, OVJi JIVOJ JIOV VOO JnLJo .LVOτ06vo
oad uto naq jes ana, na<j ュ i stfd dsv ュ njj AtD XBS Λχο J3S ΛΤΟ J3S a¾d titO ADD ovo ai oov ODV 0Λ0 i! V DUi JiVO ¾0W OOD J «L VOO JiOV DOD OOV OJML WO oad uto naq jes ana, na <j i i stfd dsv n njj AtD XBS Λχο J3S ΛΤΟ J3S a¾d titO ADD ovo ai oov ODV 0Λ0 i! V DUi JiVO ¾0W OOD J «L VOO JiOV DOD OOV OJML WO
08 0ム 08 0
aqii ojtd Ι¾Λ 8Λι BJCV STfH BTV εχ¾ XAjj θ ΐ na ュ as sAi cud ε ν s¾ Λ ο ¾DV VDD OliO OW ODV DVD DDCL VOO J D iVJL DI.V OJiD 03Λ OW JiDO DDO Wtf 000 09 OS  aqii ojtd Ι¾Λ 8Λι BJCV STfH BTV εχ¾ XAjj θ ΐ na as asAi cud ε ν s¾ Λ ¾ ¾DV VDD OliO OW ODV DVD DDCL VOO J D iVJL DI.V OJiD 03Λ OW JiDO DDO Wtf000 09
OXd sAq. uxo u o 3 lid djcj, α ϋ, USV J3S atl (3s¾ UXO S HIV 6JV SAQ jrtf βχΐ VOO VW 0¾0 D¾0 !LLl OOJi 000 JJ. !1Λ 1 iLW JiOV JJJ OYO DVD JJOV ODD 030 iLOJi JiOV DJ,V 0 οε  Uxd sAq. 0 οε
ュ tWi ΙΒΛ J5av dsv jess ns1! ass Jss οα<3 ュ as uxo ュ Hi u o an cisv ODV 0,10 VO¾ 0¾3 VOO VJ,3 iLDJi VOO J tL OJiD VOJJ DDJJ VDD iDJi OVO ODV OJM OVO OIiV OVO 02 OT T tWi ΙΒΛ J5av dsv jess ns 1 !
sAo Bav SAo uto naq Λ ο naq naq βχ« BTV nsq て ΒΛ BJV aw dsv aw ώΟΛ ¾0¾ OOIJ QMD 00,1 ΟΛΟ JJDO JJOIL 0J»D 000 DJ.0 DliD DOV iLDO OiD. 0ΛΟ VOW OIiY DVO OvLV  sAo Bav SAo uto naq Λ ο naq naq βχ «BTV nsq te ΒΛ BJV aw dsv aw ώΟΛ ¾0¾ OOIJ QMD 00,1 ΟΛΟ JJDO JJOIL 0J» D 000 DJ.0 DliD DOV iLDO OiD. 0ΛΟ VOW OIiY DVO Ov
OT- 02  OT- 02
DOV OVO VOO ¾0i ooo ων VOO DOV OVO VOO ¾0i ooo ων VOO
また、 CLN— I gG重鎖および軽鎖のサブグループを決定するため コンピューター検索を行い相同性の高い遺伝子を調べた結果、 CLN— IgG重鎖可変領域はサブグループ 3に、 まだ軽鎖 ( 鎖) 可変領域は サブグループ 1に属することが明かとなった。 In addition, as a result of a computer search to determine the subgroups of CLN-IgG heavy and light chains, a gene with high homology was examined. It was revealed that the variable region belongs to subgroup 1.
実施例 7 :超可変領域の決定  Example 7: Determination of hypervariable region
種々の抗体の重鎖及び軽鎖のァミノ酸配列を各々比較す と、 配列が 一定の領域 (定常領域) と異なっている領域 (可変領域) が存在するこ とがわかる。 可変領域の中でも特に変異性に富んでいるところを超可変 領域 (hyper-variable region, Hv領域) と呼び、 重鎖及び軽鎖それぞ れ 3箇所ずつ存在する。 アミノ末端から、 それぞれ Hv l、 Ην 2、 H v 3と呼ぶ。 これらの超可変領域は抗原との結合部位を形づくり、 抗原 決定基と直接接触するアミノ酸残基を含んでいると考えられている。 そ のため超可変領域は、 相補性決定領域 (CDR ; Complementarity det erraining region) とも呼ばれ、 抗体の抗原特異性を支配している領域 である。  Comparing the amino acid sequences of the heavy and light chains of various antibodies, respectively, shows that there are regions (variable regions) in which the sequences are different from certain regions (constant regions). Among the variable regions, the regions that are particularly rich in variability are called hyper-variable regions (Hv regions), and there are three heavy chains and three light chains. From the amino terminus, they are called Hvl, Ην2, and Hv3, respectively. These hypervariable regions shape the binding site for antigen and are thought to contain amino acid residues that directly contact antigenic determinants. Therefore, the hypervariable region, also called the complementarity determining region (CDR), is the region that controls the antigen specificity of the antibody.
C LN— I gGの超可変領域を決定するために Kabat & Wuプロッ ト を用いた。 [Kabat, E. A., Wu, T. Τ. , Bilofsky, Η. Varia ble Regions of I mmunoglobulin Chains (Medical Comput. S yst eras, Bolt, B eranek & Newman, Cambridge, 1976) ] これは 種々の抗体の配列を並べて、 各位置ごとに変異度を計算してプロッ 卜す るものである。 ここでいう変異度とは、 「任意の位置における出現アミ ノ酸の種類数」 と 「その位置で最も頻繁に出現するアミノ酸の頻度」 の 比であり、 理論的に 1から 400の値をとる。 変異度の値が大きい領域 が超可変領域である。 (1) CLN— IgG軽鎖の超可変領域の決定 Kabat & Wu plots were used to determine the hypervariable region of CLN-IgG. [Kabat, EA, Wu, T. Τ., Bilofsky, Η. Variable Regions of Immunoglobulin Chains (Medical Comput. Syst eras, Bolt, Beranek & Newman, Cambridge, 1976)] Are arranged and the degree of variation is calculated for each position and plotted. The degree of mutation referred to here is the ratio of `` the number of types of amino acid appearing at any position '' to `` frequency of the most frequently occurring amino acid at that position '', and theoretically takes a value from 1 to 400 . The region where the value of the degree of mutation is large is the hypervariable region. (1) CLN—determination of hypervariable region of IgG light chain
CLN- IgG軽鎖のアミノ酸配列から、 カッパ鎖サブグループ 1に 属することが明かとなった。 そこで NBRF— PDB (rel.26) に含ま れているサブグループ 1に属する 24の配列を CLN— IgG軽鎖と共 に並べ、 各位置で変異度を計算し Kabat & Wuプロットを作製した(図 1) 。 その結果から、 Hvl、 Ην2、 Hv 3をそれぞれ残基番号 28 から 34、 50から 56、 91から 96と決定した。  The amino acid sequence of the CLN-IgG light chain revealed that it belongs to kappa chain subgroup 1. Therefore, 24 sequences belonging to subgroup 1 contained in the NBRF-PDB (rel. 26) were arranged together with the CLN-IgG light chain, and the mutation degree was calculated at each position to create a Kabat & Wu plot (Fig. 1) From the results, Hvl, Ην2, and Hv3 were determined as residue numbers 28 to 34, 50 to 56, and 91 to 96, respectively.
CLN— IgG軽鎖の超可変領域  CLN—Hypervariable region of IgG light chain
H V 1 : Asp lie Ser Asn Tyr Leu Ala  H V 1: Asp lie Ser Asn Tyr Leu Ala
H v 2 : Ala Ala Ser Ser Leu His Arg  Hv2: Ala Ala Ser Ser Leu His Arg
H v 3 : Tyr Mer Thr Tyr Pro lie  Hv3: Tyr Mer Thr Tyr Pro lie
(2) CLN— IgG重鎮の超可変領域の決定  (2) Determination of the hypervariable region of CLN-IgG heavyweight
CLN- IgG重鎖のァミノ酸配列から、 Hvサブグループ 3に属す ることが明かとなった。 そこで NBRF— PDB (rel.26) に含まれて いるサブグループ 3に属する 21の配列を CLN— IgG重鎮と共に並 ベ、 各位置で変異度を計算し Kabat & Wuプロッ トを作製した (図 2、 残基番号 96まで表示)。 その結果、 Hvl、 Hv 2をそれぞれ残基番 号 31から 35、 49から 59と決定した。 Hv 3に関しては、 重鎮の 場合、 下記第 3表に示すごとく、 各配列間で顕著に鎖長が異なるため位 置を正確にあわせることが困難である。 ギヤップを考慮せずに変異度を 計算すると、 残基番号 96システィンが 1. 0、 97グリシンが 2.1、 98アルギニンが 3.9、 99バリンが 29.3、 109チロシンが 18. 4、 110トリブトファンが 3.5、 111グリシンが 1.0となる。 明 かに残基番号 99から 109までの位置で変異度が高く、 この領域が H に相当する。 The amino acid sequence of the heavy chain of CLN-IgG revealed that it belongs to Hv subgroup 3. Therefore, the Kabat & Wu plot was prepared by calculating the mutation degree at each position by juxtaposing the 21 sequences belonging to subgroup 3 contained in the NBRF-PDB (rel. 26) together with the CLN-IgG heavy chain (Fig. 2). , Up to residue number 96). As a result, Hvl and Hv2 were determined as residue numbers 31 to 35 and 49 to 59, respectively. Regarding Hv3, in the case of heavyweight, as shown in Table 3 below, it is difficult to exactly match the positions because the length of each sequence is significantly different. Calculating the degree of mutation without considering the gap, the residue number is 1.0 for 96 cysteine, 2.1 for 97 glycine, 3.9 for 98 arginine, 29.3 for 99 valine, 18.4 for 109 tyrosine, 3.5 for 111 tributophan, 111 for 111 Glycine is 1.0. Apparently, the degree of mutation is high at residues 99 to 109, and this region is H Is equivalent to
CLN- I gG重鎖の超可変領域  Hyper-variable region of CLN-IgG heavy chain
H V 1 : Asn Tyr Ala Met Ser H V 1: Asn Tyr Ala Met Ser
H v 2 : Ser Ala lie Thr Pro Ser Gly Gly Ser Thr Asn H v 3 : Val Pro Tyr Arg Ser Thr Trp Tyr Pro Leu Tyr 3 表  Hv2: Ser Alalie Thr Pro Ser Gly Gly Ser Thr Asn Hv3: Val Pro Tyr Arg Ser Thr Trp Tyr Pro Leu Tyr 3 Table
Kol CARDGGHGFCSSASCFGPDYWGQGTPVTVS SKol CARDGGHGFCSSASCFGPDYWGQGTPVTVS S
Bro CARSPVSLVDGWLYYYYGSVWGQGTL Bro CARSPVSLVDGWLYYYYGSVWGQGTL
Cam CAR DRPLYGDYRAFNYWGQGTLVTVS S Cam CAR DRPLYGDYRAFNYWGQGTLVTVS S
Tro CAA TDDFDWSTFSLDYWGEGDLVTVS STro CAA TDDFDWSTFSLDYWGEGDLVTVS S
Tei CAR VTPAAASLTFSAV GQGTLVTTei CAR VTPAAASLTFSAV GQGTLVT
Pom CAR DAGPY VS PTFF AH YGQGTLVTPom CAR DAGPY VS PTFF AH YGQGTLVT
Ga CAR SGIALGSVAGTDYWGEGTLVTISSGa CAR SGIALGSVAGTDYWGEGTLVTISS
Lay CAR DAGPYVSPTFFAHWGQGTLVTLay CAR DAGPYVSPTFFAHWGQGTLVT
Hil CAR DPDIIiTAFSFD YWGQGVLiVTVS S Hil CAR DPDIIiTAFSFD YWGQGVLiVTVS S
99 i09  99 i09
CLN CG - PYRST YPLWGQGTLVTVS SAS CLN CG-PYRST YPLWGQGTLVTVS SAS
Dob CAK GYIWNGNWFDSWGQGTLVTVS was CAR FRQ PFVQFFDVFGQGTLVT Bur CAK LIAVAG - TRDFWGQGTLVTVSL Tur CAR LSVTAVAFDVWGQGTKVS Til CAK GKVSAYYFDYWGEGTLVTVS S zap CAR TRPGGYFSDVWGQGTLVS Nie CAR IRDTAMFFAHWGQGTLVTVS S Jon CAR VWS TSMDVWGQGTPVT Gal CAR GWGGGDYWGQGTLVTVST But CAR DLAAARLFGKGTTVTVS SDob CAK GYIWNGNWFDSWGQGTLVTVS was CAR FRQ PFVQFFDVFGQGTLVT Bur CAK LIAVAG - TRDFWGQGTLVTVSL Tur CAR LSVTAVAFDVWGQGTKVS Til CAK GKVSAYYFDYWGEGTLVTVS S zap CAR TRPGGYFSDVWGQGTLVS Nie CAR IRDTAMFFAHWGQGTLVTVS S Jon CAR VWS TSMDVWGQGTPVT Gal CAR GWGGGDYWGQGTLVTVST But CAR DLAAARLFGKGTTVTVS S
WEA CAR - GWLLNWGQGTLVTVS S 産業上の利用可能性 WEA CAR-GWLLNWGQGTLVTVS S Industrial applicability
C L N- I gG抗体及びその遺伝子構造が明かになったことによって、 この遺伝子を動物細胞や大腸菌などの宿主細胞に導入し発現させ、 抗体 を多量に得ることが可能となる。 更には完全抗体のみならず、 ある種の 抗体断片、 たとえば重鎮のみ、 軽鎖のみ、 Fab断片、 F (ab)' 2断片、 F V断片、 ドメイン断片 (dAb)、 C D R断片などの各種抗体由来断片を 得ることが可能となる。 また更に抗体遺伝子に人為的突然変異を起こす ことにより、 ァミノ酸配列の一部異なる完全抗体もしくは各種抗体由来 断片を得ることができる。 The elucidation of the CL N-IgG antibody and its gene structure makes it possible to introduce this gene into animal cells and host cells such as Escherichia coli and express it, thereby obtaining a large amount of the antibody. Furthermore, not only complete antibodies, but also certain antibody fragments, such as heavy chains only, light chains only, Fab fragments, F (ab) ' 2 fragments, FV fragments, domain fragments (dAb), CDR fragments and other antibody-derived fragments Can be obtained. Further, by causing artificial mutations in the antibody gene, complete antibodies or fragments derived from various antibodies whose amino acid sequences are partially different can be obtained.
現在までの研究の結果、 C L N— I gGは、 たとえばヒト胃ガン、 肺 ガン、 脳腫瘍、 悪性黒色腫などのごときヒト癌細胞に働き、 それ自体の 作用でこれら癌細胞の増殖を抑制し、 或は癌細胞を死滅させ、 さらには 捕体もしくは K—細胞やマクロファージなどの助けを借りて癌細胞の増 殖を抑制し、 癌細胞の死滅を引き起こすことが期待される。 しかし、 C L N - I gGの遺伝子を改変し抗体のアミノ酸を一部置換することによ り、 更に抗体の活性を上昇させることが可能である。 たとえば抗原との 結合親和性や、 免疫担当細胞を介した抗癌活性、 あるいは組織への浸潤 性などが上昇するように改変できる。 さらには、 たとえば細胞毒性、 酵 素活性、 免疫誘導活性などを抗体分子もしくはその断片に遺伝子レベル で付加する毒性、 酵素活性、 免疫誘導活性などを抗体分子もしくはその 断片に遺伝子レベルで付加することで、 より抗癌活性の高い分子をデザ インすることが考えられる。 具体例を挙げれば、 癌特異的抗体をキヤリ ァ一として利用して、 例えば化学療法剤結合ーヒトモノクローナル抗体、 インターフェロン結合ーヒトモノクローナル抗体、 高分子毒素結合ーヒ トモノクローナル抗体、 薬物入りリボゾーム結合ーヒ トモノクローナル 抗体、 などの形で癌細胞の増殖抑制や死滅を誘導する薬剤として有用で ある。 また、 抗体に放射線感受性物質を結合させて患者に投与し、 釋細 胞に選択的に集積させ、 治療、 診断の効果を上げることも考えられる。 このような癌に対する利用に際しては、 ヒ トモノクローナル抗体として 完全な抗体を用いてもよいし、 前述したとおり、 例えば重鎖のみ、 軽鎖 のみ、 F ab断片、 F (ab)' 2断片、 F v断片、 ドメイン断片 (dAb) 、 C D R断片などの特異的抗原認識部位を含むより小さな断片を用いること もできる。 As a result of research to date, CLN-IgG acts on human cancer cells such as human stomach cancer, lung cancer, brain tumor, and malignant melanoma, and suppresses the growth of these cancer cells by its own action. Is expected to kill cancer cells and further suppress cancer cell growth with the help of traps or K-cells and macrophages, and to kill cancer cells. However, by modifying the CLN-IgG gene and partially substituting the amino acids of the antibody, it is possible to further increase the activity of the antibody. For example, it can be modified so as to increase the binding affinity to an antigen, the anticancer activity via an immunocompetent cell, or the invasiveness to a tissue. Furthermore, for example, cytotoxicity, enzymatic activity, immunity-inducing activity, etc. are added to an antibody molecule or a fragment thereof at the gene level by adding toxicity, enzyme activity, immunity-inducing activity, etc. to the antibody molecule or a fragment thereof at the gene level. It is conceivable to design a molecule having a higher anticancer activity. Specific examples include the use of cancer-specific antibodies as carriers, for example, chemotherapeutic agent binding-human monoclonal antibody, interferon binding-human monoclonal antibody, high molecular weight toxin binding It is useful as a drug that induces cancer cell growth inhibition or death in the form of a monoclonal antibody, drug-containing ribosome binding-human monoclonal antibody, and the like. It is also conceivable that radiosensitizers may be conjugated to antibodies and administered to patients, selectively accumulate in spheroid cells, and improve therapeutic and diagnostic effects. For use against such cancers, a complete antibody may be used as a human monoclonal antibody, or as described above, for example, only a heavy chain, only a light chain, a Fab fragment, an F (ab) ' 2 fragment, Smaller fragments containing specific antigen recognition sites, such as v-fragments, domain fragments (dAbs), and CDR fragments can also be used.

Claims

請 求 の 範 囲 The scope of the claims
1. 下記のアミノ酸配列 1. The following amino acid sequence
H V 1 : Asn Tyr Ala Met Ser  H V 1: Asn Tyr Ala Met Ser
H v 2 : Ser Ala lie Thr Pro Ser Gly Gly Ser Thr Asn H v 2: Ser Ala lie Thr Pro Ser Gly Gly Ser Thr Asn
H v 3 : Val Pro Tyr Arg Ser Thr Trp Tyr Pro Leu Tyr を有する超可変領域 Hvl、 Hv2及び Hv3から選ばれる少なくとも 1つの 超可変領域を含むことを特徵とする免疫グロプリン重鎖可変領域断片。 Hv3: an immunoglobulin heavy chain variable region fragment characterized by including at least one hypervariable region selected from the hypervariable regions Hvl, Hv2, and Hv3 having Val Pro Tyr Arg Ser Thr Trp Tyr Pro Leu Tyr.
2. 下記のアミノ酸配列  2. The following amino acid sequence
Glu Val Gin Leu Leu Glu Ser Gly Gly Asp10 Glu Val Gin Leu Leu Glu Ser Gly Gly Asp 10
Leu Val Gin Pro Gly Gly Ser Leu Arg Leu20 Leu Val Gin Pro Gly Gly Ser Leu Arg Leu 20
Ser Cys Ala Ala Ser Gly Plie Thr Phe Ser30 Ser Cys Ala Ala Ser Gly Plie Thr Phe Ser 30
Asn Tyr Ala Met Ser Trp Val Arg Gin. Ala40 Asn Tyr Ala Met Ser Trp Val Arg Gin. Ala 40
Pro Gly Lys Gly Leu Glu Trp Val Ser Ala50 Pro Gly Lys Gly Leu Glu Trp Val Ser Ala 50
ェ le Thr Pro Ser Gly Gly Ser Thr Asn Tyr60 Lele Thr Pro Ser Gly Gly Ser Thr Asn Tyr 60
Ala Asp Ser Val Lys Gly Arg Phe Thr lie70 Ala Asp Ser Val Lys Gly Arg Phe Thr lie 70
Ser Arg Asp Asn Ser Gin Asn Thr Leu Tyr80 Ser Arg Asp Asn Ser Gin Asn Thr Leu Tyr 80
Leu Gin Met Asn Ser Leu Arg Val Glu Asp90 Leu Gin Met Asn Ser Leu Arg Val Glu Asp 90
Thr Ala al Tyr Tyr Cys Gly Arg Val Pro100 Thr Ala al Tyr Tyr Cys Gly Arg Val Pro 100
Tyr Arg Ser 1¾r Trp Tyx Pro Leu Tyr Trp110 Tyr Arg Ser 1¾r Trp Tyx Pro Leu Tyr Trp 110
Gly Gin Gly Thr Leu Val Thr Val Ser Ser120 Gly Gin Gly Thr Leu Val Thr Val Ser Ser 120
Ala を有する免疫グロプリン重鎮可変領域断片。  Immunoglobulin heavyweight variable region fragment with Ala.
3. 下記のアミノ酸配列 H V 1 : Asn Tyr Ala Met Ser  3. The following amino acid sequence H V 1: Asn Tyr Ala Met Ser
H v 2 : Ser Ala lie Thr Pro Ser Gly Gly Ser Thr Asn H v 3 : Val Pro Tyr Arg Ser Thr Trp Tyr Pro Leu Tyr を有する超可変領域 H vl、 Η ν2及び Η ν3から選ばれる少なくとも 1つの 超可変領域をコードする塩基配列を含むことを特徵とする免疫グロプリ ン重鎖可変領域の少なくとも一部をコードする D N A及び R N A断片。 Hv2: Ser Alalie Thr Pro Ser Gly Gly Ser Thr Asn Hv3: Val Pro Tyr Arg Ser Thr Trp Tyr Pro Leu Tyr A DNA encoding at least a part of an immunoglobulin heavy chain variable region, comprising a nucleotide sequence encoding at least one hypervariable region selected from hypervariable regions Hvl, Ην2 and Ην3 having RNA fragment.
4. 請求の範囲第 2項記載のアミノ酸配列をコードする D N A及び R N A塩基配列。  4. DNA and RNA base sequences encoding the amino acid sequence according to claim 2.
5. 下記の塩基配列  5. The following base sequence
10 20 30 40 50 6010 20 30 40 50 60
GAGGTGCAGCTGTTGGAGTCTGGGGGAGACTTGGTACAGCCTGGGGGGTCGCTGAGACTC GAGGTGCAGCTGTTGGAGTCTGGGGGAGACTTGGTACAGCCTGGGGGGTCGCTGAGACTC
7 0 80 90 100 110 120 7 0 80 90 100 110 120
TCCTGTGCAGCCTCTGGAT CACCTTCAGCAACTATGCCATGAGCTGGGTCCGCCAGGCT TCCTGTGCAGCCTCTGGAT CACCTTCAGCAACTATGCCATGAGCTGGGTCCGCCAGGCT
130 140 150 160 17 0 180 130 140 150 160 17 0 180
CCAGGGAAGGGGCTGGAGTGGGTCTCAGCGATTACTCCTAGTGGTGGTAGTACAAATTAT CCAGGGAAGGGGCTGGAGTGGGTCTCAGCGATTACTCCTAGTGGTGGTAGTACAAATTAT
190 200 210 220 230 240 190 200 210 220 230 240
GCAGACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCCAGAATACACTGTAT GCAGACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCCAGAATACACTGTAT
250 260 270 280 290 300 250 260 270 280 290 300
CTGCAAATGAACAGCCTGAGAGTCGAGGACACGGCCGTATATTACTGTGGGAGAGTCCCA CTGCAAATGAACAGCCTGAGAGTCGAGGACACGGCCGTATATTACTGTGGGAGAGTCCCA
310 320 330 . 340 350 360 310 320 330. 340 350 360
TATAGAAGCACTTGGTACCCTTTATATTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCATATAGAAGCACTTGGTACCCTTTATATTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA
GCC GCC
を有する請求の範囲第 4項記載の D N A塩基配列及びこれに対応する R N A塩基配列。 5. The DNA base sequence according to claim 4, which has the following sequence: and the RNA base sequence corresponding thereto.
6. 下記のアミノ酸配列  6. The following amino acid sequence
H V 1 : Asp lie Ser Asn Tyr Leu Ala  H V 1: Asp lie Ser Asn Tyr Leu Ala
H v 2 : Ala Ala Ser Ser Leu His Arg  Hv 2: Ala Ala Ser Ser Leu His Arg
H v 3 : Tyr Met Thr Tyr Pro lie  Hv3: Tyr Met Thr Tyr Pro lie
を有する超可変領域 H vl、 H v2及び H v3から選ばれる少なくとも 1つの 超可変領域を含むことを特徴とする免疫グロプリン軽鎖可変領域断片。 An immunoglobulin light chain variable region fragment comprising at least one hypervariable region selected from hypervariable regions Hvl, Hv2 and Hv3 having the following:
7 . 下記のアミノ酸配列 Asp lie Gin Met Thr Gin Ser Pro Ser Ser 10 7. The following amino acid sequence Asp lie Gin Met Thr Gin Ser Pro Ser Ser 10
Leu Ser Ala Ser Val Gly Asp Arg Val hr 20 lie Thr Cys Arg Ala Ser Gin Asp lie Ser 30 Asn Tyr Leu Ala Trp Phe Gin Gin Lys Pro 0 Gly Lys Ala Pro Lys Ser Leu lie Tyr Ala 50 Ala Ser Ser Leu His Arg Lys Val Pro Thr 60 Leu Ser Ala Ser Val Gly Asp Arg Val hr 20 lie Thr Cys Arg Ala Ser Gin Asp lie Ser 30 Asn Tyr Leu Ala Trp Phe Gin Gin Lys Pro 0 Gly Lys Ala Pro Lys Ser Leu lie Tyr Ala 50 Ala Ser Ser Leu His Arg Lys Val Pro Thr 60
Gin Phe Ser Gly Ser Gly Ser Gly Thr Asp 70 Gin Phe Ser Gly Ser Gly Ser Gly Thr Asp 70
Phe Thr Leu Thr lie Ser Ser Leu Gin Pro 80 Phe Thr Leu Thr lie Ser Ser Leu Gin Pro 80
Glu Asp Phe Ala Thr Tyx Tyr Cys Leu Gin 90 Glu Asp Phe Ala Thr Tyx Tyr Cys Leu Gin 90
Tyr Met Thr Tyr Pro lie Thr PHe Gly Gl 100 Tyr Met Thr Tyr Pro lie Thr PHe Gly Gl 100
Gly Thr Lys Val Glu lie Lys Arg  Gly Thr Lys Val Glu lie Lys Arg
を有する免疫グロプリン軽鎖可変領域断片。 An immunoglobulin light chain variable region fragment having the formula:
8. 下記のアミノ酸配列  8. The following amino acid sequence
H V 1 : Asp He Ser Asn Tyr Leu Ala  H V 1: Asp He Ser Asn Tyr Leu Ala
H v 2 : Ala Ala Ser Ser Leu His Arg  Hv2: Ala Ala Ser Ser Leu His Arg
H v 3 : Thr Met Thr Tyr Pro lie  Hv3: Thr Met Thr Tyr Pro lie
を有する超可変領域 H vl、 H v2及び H v3から選ばれる少なくとも 1つの 超可変領域をコードする塩基配列を含むことを特徴とする免疫グロブリ ン軽鎮可変領域の少なくとも一部をコ一ドする D N A及び R N A断片。 And encoding at least a part of the immunoglobulin light chain variable region, which comprises a nucleotide sequence encoding at least one hypervariable region selected from Hvl, Hv2, and Hv3. DNA and RNA fragments.
9. 請求の範囲第 7項記載のアミノ酸配列をコードする D NA及び R NA塩基配列。  9. DNA and RNA base sequences encoding the amino acid sequence according to claim 7.
1 0. 下記の塩基配列 10 20 30 40 50 601 0. The following base sequence 10 20 30 40 50 60
GACATCCAGATGACCCAGTCTCCATCCTCACTGTCTGCATCTGTAGGAGACAGAGTCACC GACATCCAGATGACCCAGTCTCCATCCTCACTGTCTGCATCTGTAGGAGACAGAGTCACC
7 0 80 9 0 100 110 120 7 0 80 9 0 100 110 120
ATCACTTGTCGGGCGAGTCAGGACA TAGTAATTATTTAGCCTGG T CAGCAGAAACCA ATCACTTGTCGGGCGAGTCAGGACA TAGTAATTATTTAGCCTGG T CAGCAGAAACCA
130 140 150 160 170 " 180 130 140 150 160 170 "180
GGGAAAGCCCCTAAGTCCCTGATCTATGCTGCATCCAGT GCACAGGAAGGTCCCAACA GGGAAAGCCCCTAAGTCCCTGATCTATGCTGCATCCAGT GCACAGGAAGGTCCCAACA
19 0 200 210 22 0 230 240 19 0 200 210 22 0 230 240
CAATTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCT CAATTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCT
250 260 ' 270 280 290 300 250 260 '270 280 290 300
GAAGATTTTGCAACTTATTACTGCCTACAGTATATGACTTACCCTATCACCTTCGGCGGA GAAGATTTTGCAACTTATTACTGCCTACAGTATATGACTTACCCTATCACCTTCGGCGGA
310 320  310 320
GGGACCAAGGTGGAGATCAAACGA を有する請求の範囲第 9項記載の D N A塩基配列及びこれに対応する R N A塩基配列。 10. The DNA base sequence according to claim 9 having GGGACCAAGGTGGAGATCAAACGA and an RNA base sequence corresponding thereto.
PCT/JP1992/000650 1991-05-22 1992-05-21 Amino acid sequence of anticancer human monoclonal antibody and dna base sequence coding for the same WO1992020799A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3/145218 1991-05-22
JP3145218A JPH04346792A (en) 1991-05-22 1991-05-22 Amino acid sequence of anti-cancer human monoclonal antibody and dna base sequence coding the same antibody

Publications (1)

Publication Number Publication Date
WO1992020799A1 true WO1992020799A1 (en) 1992-11-26

Family

ID=15380096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000650 WO1992020799A1 (en) 1991-05-22 1992-05-21 Amino acid sequence of anticancer human monoclonal antibody and dna base sequence coding for the same

Country Status (3)

Country Link
JP (1) JPH04346792A (en)
AU (1) AU1875592A (en)
WO (1) WO1992020799A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044461A2 (en) * 1996-05-22 1997-11-27 Novopharm Biotech, Inc. Antigen binding fragments that specifically detect cancer cells, nucleotides encoding the fragments, and use thereof for the prophylaxis and detection of cancers
EP0971034A4 (en) * 1996-11-19 2005-02-23 Hagiwara Yoshihide Process for preparing antibody molecules
US7115722B1 (en) 1997-05-22 2006-10-03 Viventia Biotech, Inc. Antigen binding fragments that specifically detect cancer cells, nucleotides encoding the fragments, and use thereof for the prophylaxis and detection of cancers
US20120128723A1 (en) * 2004-12-21 2012-05-24 Viventia Biotechnologies Inc. Cancer specific antibody and cell surface proteins

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101999A (en) * 1993-10-06 1995-04-18 Hagiwara Yoshihide Amino acid sequence of anti-idiotype antibody to anti-cancer human monoclonal antibody and dna base sequence coding for the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201994A (en) * 1982-05-21 1983-11-25 Hideaki Hagiwara Method for producing antigen-specific human immunoglobulin
JPS59135898A (en) * 1983-01-20 1984-08-04 ザ・リ−ジエンツ・オブ・ザ・ユニバ−シテイ・オブ・カリフオルニア Production of antigen peculiar human immune globulin
JPS59137497A (en) * 1983-01-20 1984-08-07 ザ・リ−ジエンツ・オブ・ザ・ユニバ−シテイ・オブ・カリフオルニア Antigen idiosyncratic immunogloblin producing human/human hybridoma and producing antibody

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201994A (en) * 1982-05-21 1983-11-25 Hideaki Hagiwara Method for producing antigen-specific human immunoglobulin
JPS59135898A (en) * 1983-01-20 1984-08-04 ザ・リ−ジエンツ・オブ・ザ・ユニバ−シテイ・オブ・カリフオルニア Production of antigen peculiar human immune globulin
JPS59137497A (en) * 1983-01-20 1984-08-07 ザ・リ−ジエンツ・オブ・ザ・ユニバ−シテイ・オブ・カリフオルニア Antigen idiosyncratic immunogloblin producing human/human hybridoma and producing antibody

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044461A2 (en) * 1996-05-22 1997-11-27 Novopharm Biotech, Inc. Antigen binding fragments that specifically detect cancer cells, nucleotides encoding the fragments, and use thereof for the prophylaxis and detection of cancers
WO1997044461A3 (en) * 1996-05-22 1998-05-07 Novopharm Biotech Inc Antigen binding fragments that specifically detect cancer cells, nucleotides encoding the fragments, and use thereof for the prophylaxis and detection of cancers
US6207153B1 (en) 1996-05-22 2001-03-27 Viventia Biotech, Inc. Antigen binding fragments that specifically detect cancer cells, nucleotides encoding the fragments, and use thereof for the prophylaxis and detection of cancers
US7166286B2 (en) 1996-05-22 2007-01-23 Viventia Biotech Inc. Antigen binding fragments that specifically detect cancer cells, nucleotides encoding the fragments, and use thereof for prophylaxis and detection of cancers
EP0971034A4 (en) * 1996-11-19 2005-02-23 Hagiwara Yoshihide Process for preparing antibody molecules
US7115722B1 (en) 1997-05-22 2006-10-03 Viventia Biotech, Inc. Antigen binding fragments that specifically detect cancer cells, nucleotides encoding the fragments, and use thereof for the prophylaxis and detection of cancers
US20120128723A1 (en) * 2004-12-21 2012-05-24 Viventia Biotechnologies Inc. Cancer specific antibody and cell surface proteins
US8697075B2 (en) * 2004-12-21 2014-04-15 Viventia Bio Inc. Cancer specific antibody and cell surface proteins

Also Published As

Publication number Publication date
JPH04346792A (en) 1992-12-02
AU1875592A (en) 1992-12-30

Similar Documents

Publication Publication Date Title
JP2996864B2 (en) Antibody variable region DNA
US6287562B1 (en) Methods of inhibiting the growth of cells bearing LewisY antigens using B1, B3, or B5 targeted immunoconjugates
JP2000511403A (en) Humanization of anti-carcinoembryonic antigen anti-idiotype antibodies and their use as tumor vaccines and for targeting applications
HU211885A9 (en) Cd 25 binding molecules
KR20010043470A (en) Antibodies to cd23, derivatives thereof, and their therapeutic uses
JPH06511144A (en) Tumor rejection antigen precursors, tumor rejection antigens and their uses
JPH06237772A (en) Immunosuppressant
JPH09509835A (en) In vitro antibody affinity maturation by alanine scanning mutagenesis
CN113527498B (en) anti-Trop 2 nano antibody and application thereof
JPH06506358A (en) DNA and amino acid sequences specific to natural killer cells
JPH05509234A (en) Nucleotide sequence encoding the variable region of human T lymphocyte receptor alpha chain and corresponding peptide segment and use in diagnosis and therapy
CA3067597C (en) Chimeric antibodies for treatment of amyloid deposition diseases
AU736287B2 (en) Humanized anti-human Fas antibody
WO1992020799A1 (en) Amino acid sequence of anticancer human monoclonal antibody and dna base sequence coding for the same
AU717611B2 (en) Tumor-specific antibody fragments, fusion proteins, and uses thereof
CN110357959B (en) GCGR antibody, fusion protein of GCGR antibody and GLP-1, and pharmaceutical composition and application of GCGR antibody and fusion protein
AU2022332521A1 (en) Polypeptide fusion molecule close to natural molecule
JPH06141884A (en) Amino acid sequence of anticancer human monoclonal antibody and dna base sequence capable of coding the same
WO2019096219A1 (en) Humanized anti-il-13 antibody and preparation method and use thereof
WO2023006084A1 (en) Anti-dll3 antibody and preparation method therefor, drug conjugate and application thereof
US6444800B1 (en) Human gastric cancer antigen gene and gastric cancer antigen protein
WO2023133842A1 (en) ANTIBODY TARGETING IL-18Rβ AND APPLICATION THEREOF
JPH05503219A (en) Polypeptides having human dopaminergic receptor activity, nucleic acids encoding these polypeptides, use of such polypeptides to screen for substances active against these polypeptides
AU2022275043A1 (en) Anti-Claudin 18.2 antibody and antibody-drug conjugate thereof
US20020106777A1 (en) Human PEC-60-like protein and DNA encoding this protein

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU HU KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT NL SE