WO1993006571A1 - Personal safety device - Google Patents

Personal safety device Download PDF

Info

Publication number
WO1993006571A1
WO1993006571A1 PCT/US1992/007863 US9207863W WO9306571A1 WO 1993006571 A1 WO1993006571 A1 WO 1993006571A1 US 9207863 W US9207863 W US 9207863W WO 9306571 A1 WO9306571 A1 WO 9306571A1
Authority
WO
WIPO (PCT)
Prior art keywords
personal safety
signal
recited
safety device
coupled
Prior art date
Application number
PCT/US1992/007863
Other languages
French (fr)
Inventor
Bruce A. Janis
Rebecca B. Robertson
Neil R. Taylor
Original Assignee
Egis Personal Safety Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/761,477 external-priority patent/US5196829A/en
Application filed by Egis Personal Safety Systems filed Critical Egis Personal Safety Systems
Priority to EP19920920461 priority Critical patent/EP0604556A4/en
Publication of WO1993006571A1 publication Critical patent/WO1993006571A1/en

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B15/00Identifying, scaring or incapacitating burglars, thieves or intruders, e.g. by explosives
    • G08B15/004Identifying, scaring or incapacitating burglars, thieves or intruders, e.g. by explosives using portable personal devices
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/001Alarm cancelling procedures or alarm forwarding decisions, e.g. based on absence of alarm confirmation

Definitions

  • the present invention relates to the personal safety devices and, more specifically, to devices for providing an alarm or distress signal upon activation by the user in order to, for example, deter an attack or to summon assistance.
  • the audible signal itself be offensive to the hearing of an attacker, rather than simply causing the attacker to fear having attention brought to the attack by the signal. In this way, the attacker may terminate the attack even if there is no other persons within hearing range to respond to the signal;
  • the device should produce an audible signal which will attract the attention of other persons who may come to the aid of the user of the device. To this end it is desirable for the device to produce an audible signal which can be heard at relatively long distances and which will attract the attention of other persons.
  • the device should be easy to carry in a manner which allows it to be readily available for activation; (4) The device should be easy to activate in unexpected circumstances.
  • the device prefferably be designed to allow activation when held in any of a number of orientations and, further, that the device be activated easily, for example, through some natural or intuitive response to an emergency situation; (5)
  • the device should be difficult for persons other than the intended user to deactivate; (6)
  • the device should be easily deactivated by the intended user so that, for example, it may be shut-off readily if accidently activated or if the user determines the audible signal produced by the device is escalating the level ofan attack; and (7)
  • the device should be designed to prevent false activations (false alarms) from occurring. Turning back to the known commercially available products, these products generally do not adequately provide for the above-described desirable features.
  • such known commercial products do not provide for an audible signal which is sufficient to deter an attack either due to having insufficient volume, poor sound composition to accomplish deterrence, or both.
  • the sounds produced by such devices tend to be similar to sounds produced by other types of alarms (e.g., car alarms, home burglar alarms, etc.), thus not providing a distinguishable sound which is likely to draw the attention of persons who might come to the assistance of the user of the device.
  • known devices do not provide adequate methods for activation of the device. Lack of adequate methods of activation may render the device ineffective in many situations. Even if activated, such devices are often easily deactivated by an attacker.
  • activation methods include a simple switch.
  • a simple switch is, of course, relatively easy to activate by the intended user of the device, if the device is properly oriented at the time when the user wishes to activate the device. However, in the likely event that the device is not properly oriented in the users hand at the time the user wishes to activate the device, the user must use valuable seconds orienting the device before it can be activated.
  • Another example of an activation mechanism is a pull string or lanyard which is pulled out of the device in order to activate it. This type of activation mechanism typically requires two hands to activate — one to pull on the string and the other to hold onto the device.
  • the manual switch located along one side of the unit and is described as being of the double-throw type in which one position is neutral position, one position causes a light bulb to light and one position causes an alarm to sound. Therefore, as understood, the described device requires orientation of the device in a manner such that a finger can rotate the manual switch in one direction in order to activate the device. Further, the device may be easily deactivated by simply moving the switch back to its normal position. Still further, the sound produced by the device is simply described as a loud noise; however, there is no teaching of the sound characteristics disclosed by the present invention which lead to both deterrence of an attacker and attraction of third-parties.
  • the sound making device is described as having a screw-threaded adjustment means for adjustment purposes.
  • the personal safety device is described.
  • a method for operating the device is described.
  • the personal safety device is preferably of what will be referred to as a dog bone shaped design — that is, the device is formed with a center cylindrical or tubular section having ends which are of a greater diameter than the diameter of the central tubular section. Each end of the device houses a speaker for emitting sound when the device is activated.
  • the center portion houses various circuitry including a microprocessor used for controlling the device. The circuitry will be described in greater detail herein.
  • the center portion further houses batteries used for powering the device.
  • the design has been exploited to provide for a number of advantages which will be more completely understood for the below Detailed Description. However, briefly, it might be summarized here that the design has been exploited to provide for at least the following advantages: (1) the speakers are placed to focus sound in directions generally opposite of each other thereby providing for broader sound coverage than with known personal safety devices employing, for example, a single speaker, (2) the speakers are placed sufficiently far apart such that a human hand cannot cover both speakers at the same time thereby making it difficult to cover the both speakers simultaneously with a single hand in order to muffle the sound emitted by the speakers; and (3) the device is activated by gripping (or, possibly, more appropriately squeezing) depressing a bar located on the tubular central section of the device — by locating the bar on the tubular central section, the bar is readily accessible by the user when the device is held in any of a number of natural orientations.
  • the personal safety device of the present invention is controlled by a microprocessor housed in the central portion of the dog bone housing.
  • the microprocessor is useful for provide a number of advantageous functions including: (1) the microprocessor may be utilized to produce digital signals which result in complex and unique tones being produced by the device; (2) the microprocessor may be utilized to control deactivation of the device such that, once activated, the device can only be deactivated by a person knowing and entering a predetermined deactivation code; and (3) the microprocessor may be utilized, in conjunction with detection circuitry disclosed herein, to detect and notify of certain faulty conditions in the device such as a low battery, and (4) the microprocessor may control activation, as will be described, in order to avoid false alarms or false activations.
  • the present invention further discloses generation of a unique noise which has the effect of being perceived by a listener as a confusing cacophony at close range while being perceived as set of relatively independent sound signals at a greater distance. It is anticipated that this signal will have the effect of deterring persons within a close proximity of the device (such as a would-be attacker) while attracting persons further away from the device (such as a would-be rescuer).
  • the present invention still further discloses a unique speaker design which readily produces loud sounds and, further, utilizes relatively inexpensive piezoelectric transducer technology.
  • FIG. 1 is a top, front and left side perspective view of the personal safety device of the present invention.
  • Hgure 2 is a bottom, back and right side perspective view of the personal safety device of the present invention.
  • Hgure 3 is a front side view of the personal safety device of the present invention.
  • Hgure 6 is a back side view of the personal safety device of the present invention.
  • Figure 5 is a left side view of the personal safety device of the present invention.
  • Figure 6 is a right side view of the personal safety device of the present invention.
  • Figure 7 is top view of the personal safety device of the present invention.
  • Figure 8 is bottom view of the personal safety device of the present invention.
  • Figure 9 is a cross-sectional view of the personal safety device.
  • Hgure 10 is a block diagram illustrating certain circuitry of the device.
  • Figure 11 is a circuit diagram illustrating certain electrical circuitry of the device of the present invention.
  • Figure 12 is a flow diagram illustrating certain methods implemented by an operating program executing on a processor utilized by the device of the present invention.
  • Figure 13 is diagram illustrating construction of speakers as may be utilized by the present invention.
  • Figure 14 is a diagram illustrating sounds generated by the two separate speakers or channels of the device of the present invention.
  • Figure 15 is a state diagram useful for illustrating the steps involved in using the device of the present invention.
  • reference numerals in all of the accompanying drawings typically are in the form "drawing number" followed by two digits, xx; for example, reference numerals on Figure 1 may be numbered Ixx; on Figure 3, reference numerals may be numbered 3xx.
  • a reference numeral may be introduced on one drawing and the same reference numeral may be utilized on other drawings to refer to the same item.
  • the preferred embodiment of the present invention is embodied in a personal safety device which provides for emitting a loud sound upon activation.
  • the design of the housing of the device may be thought of as being roughly in the shape of a bone and, therefore, the shape of this housing is referred to herein as a dog bone shape. It will be shown below that the present invention takes advantage of this shape in order to provide for a number of advantages.
  • the device is preferably controlled by a microprocessor.
  • the present invention takes advantage of controlling the device with the microprocessor to provide for several inventive advantageous features.
  • the present invention provides for a unique acoustic signal and acoustic design for speakers utilized by the device.
  • the personal safety device of the present invention is preferably housed in a dog bone shaped housing.
  • This housing 101 is illustrated with reference to Figures 1-8.
  • the dog bone design provides a generally cylindrical or tubular mid- section 104.
  • the device may be most properly described as a oval cylinder.
  • a cross-section of the mid-section 103 of the device is shown with reference to Figure 9 which illustrates the mid-section 103 as having a first dimension of approximately 42 millimeters along a first axis 108.
  • the mid-section's oval dimension along axis 112 is approximately 30 millimeters.
  • the mid-section 103 preferably measures approximately 77 millimeters (sometimes referred to herein as the device's first dimension) along a first axis 105.
  • the device further comprises two end sections, 102 and 103, located at opposite ends of the midsection along the first axis 105.
  • FIG. 7 is a top view of the device of the present invention while Figure 8 is a bottom view.
  • the top section 102 is generally oval shaped having a third dimension of approximately 52 millimeters along a third axis 109 and a dimension of approximately 41 millimeters along axis 113.
  • the top section 102 has defined therein sound chamber main 1 holes 117 and 118.
  • the holes 117 and 118 have a radius of approximately 9 millimeters.
  • top end further defines sound chamber vents 125.
  • the top end measures approximately 20.5 inches in height (e.g. along dimension 106).
  • the bottom section 103 further defines holes 121 and
  • the device is powered by a set of batteries. These batteries are
  • I 0 Battery cover 134 is designed to be relatively difficult to remove without the assistance of
  • I I some tool, such as a screwdriver blade or a coin.
  • the tool may be inserted in slot 135 in 1 2 order to remove the cover, for example, to change the batteries.
  • the cover for example, to change the batteries.
  • the device 101 further includes a clip 131 along its mid-section 103 which may be
  • I 8 strap of a purse held by the user I 8 strap of a purse held by the user.
  • the mid-section 103 includes a button 132.
  • the functions of the button 0 132 include resetting the device 101, testing the device 101, and deactivating the device 1 101. These functions will be described in greater detail below.
  • the button 132 is recessed 2 into the mid-section 103 to prevent accidental depression of the button 132. 1
  • the device 101 defines activation grips 136
  • the activation grips 136 and 137 are textured to allow
  • the grips 136 and 137 are located along substantially the entire
  • the device 101 is designed such that a predetermined amount of pressure is
  • the device is, for example, dropped on a surface.
  • the speakers are activated by depressing the activation grips 136 and
  • the speakers and holes 117 As another feature of the device of die present invention, the speakers and holes 117,
  • die housing of the device is made of a polycarbonate
  • the acoustic mounts described herein arc constructed of an ABS (acrylonitrile 5 butadiene styrene) resin.
  • ABS acrylonitrile 5 butadiene styrene
  • numerous other materials may be chosen without 6 departure from die spirit and scope of the present invention.
  • other plastics or 7 resins may be chosen with various cost and performance tradeoffs.
  • the device of the present invention measures, in 9 total, along axis 105 approximately 120 millimeters. This dimension has been chosen, 0 first, because it leads to a device size which may be comfortably carried in the typical user's 1 hand.
  • the device, with the described dog bone shape and size may be securely and 2 naturally held in the user's hand.
  • the chosen dimension leads 3 to a device of such length, witfi speakers positioned as has been described, which will make it extremely difficult, if not impossible, to cover both speakers (in an attempt to quiet the device) without using two hands to do so.
  • die attacker will then be faced widi the choice of either (1) holding the device with both hands in order to attempt to silence it, (2) to leave, or (3) to continue the attack while the device continues to emit sound.
  • the third option will not be attractive to the attacker not only because of the strong possibility of being apprehended, but also because the sound emitted by me device is offensive to the ears at short range.
  • option (2) is desirable because d e tiireat of attack is then eliminated.
  • Option (1) may also be desirable because the attacker cannot easily continue die attack while so holding the device.
  • a power source 100 preferably batteries and most preferably 4 "AAAA" type batteries, is housed in a secure compartment 1003 widiin mid-section 103.
  • the power source is coupled to various electronic security housed securely widiin the mid-section 103, including a a processing unit 1007, preferably a COP822 microprocessor available from National Semiconductor of Sunnyvale, California, and power test circuitry 1004.
  • the electronic circuitry provides for control of activation and deactivation of die device 101, tests the integrity of the power source 1001, generates the electronic signals required to create sounds, and amplifies tiiose signals to drive loudspeaker 1010 flioused in end 102) and loudspeaker 1011 (housed in end 103).
  • the processor 1007 is coupled to receive power from power
  • the processor is further coupled to receive a signal from power test circuitry
  • die processor 1007 is coupled witii a momentary switch which in turn is coupled
  • the momentary switch provides electrical signals to the processor
  • the processor 1007 is coupled to a second momentary switch which in turn is
  • the second momentary switch provides an electrical
  • the device further comprises a memory device 1006 which is programmed at time
  • processor 1001 is coupled widi speakers 1010 and 1011 dirough amplifiers 1005.
  • Power saving circuitry 1107 As can be seen, he processor 1007 is coupled witii a source of power on its V cc input In die preferred embodiment, the source of power is circuitry 1107 which is coupled to receive VBATT and to provide V ⁇ upon activation of die device 101 dirough depressing eitiier die button 132 and thereby activating switch 1101 or depressing either of grips 136 or 137 and diereby activating switch 1102. This allows power to be conserved during periods of time when the device is not being used.
  • the device may power itself off by the processor 1007 bringing low its L7 port. This low signal causes the darlington transistor Q3 of die power saving circuitry 1107 to be held low, removing its base drive. Widi its base drive removed, it can no longer supply current to the base of Q2, so Q2 is shut off. This removes power at point V cc and d e system is shut off.
  • Clocking circuitry 1105 and reset circuitry 1106 The processor 1007 is further coupled with oscillator circuitry 1105 for clocking the processor 1007 and is further coupled widi reset circuitry 1106 for resetting of die processor 1007.
  • Both die oscillator circuitry 1105 and die reset circuitry 1106 are well specified by the manufacturer and, d erefore, no further description of diis circuitry is understood to be necessary.
  • Battery test circuitry 1004 The battery test circuitry 1004 is now described. The battery test circuitry is coupled to provide a signal on die Gl (pin 18) input of the processor 1007 which indicates die power level of die battery as either high or low. As will be described below, the signal received on its Gl pin is used by the processor 1007 to provide with user with an indication of whedier the batteries should be changed. This feature is, of course, invaluable, in tiiat the device 101 must be, above all, dependable.
  • V- ⁇ power is applied dirough resistor R10 to zener diode D2, and if of at least the required minimum power level, current will flow dirough zener diode D2 and to resistor R8 and will also supply die base of transistor Ql widi current Transistor Ql is caused to turn on by application of this current If Ql is on, current flows through resistor R7 causing a voltage drop across it which in turn causes die connection to G 1 of processor 1007 to be low. If the power received on V cc is below the required minimum, zener diode D2 fails to conduct and, therefore, no current flows through R7. In this case, the connection to Gl of processor 1007 is shown as high.
  • Amplifier output circuitry 1005(a) and 1005(b) The circuitry of amplifiers 1005(a) and 1005(b) is identical and, therefore, will only be described widi reference to amplifier 1005(a).
  • the amplifier comprises darlington transistor Q5, transistor Q4, resistors R13 and R14, and transformer Tl.
  • a sound signal described below as a digital signal of varying frequency, is applied to Q5 via pin G3 of processor 1007. When G3 is high, this signal acts to turn on Q5 and allow a current to flow through its collector via Rl 3 which, in conjunction with Rl 4, limits the current to a level which will not harm Q5. This current acts to turn on Q4 which allows a large current to flow from VBATT dirough the primary of transformer Tl .
  • FIG. 12 is a flow diagram illustrating the functional flow of the operating program of the processor 1007.
  • the processor is powered on, block 1201 , in die manner that has been previously described. That is, the processor 1007 is powered by eidier depressing button 132 or one of die activation grips 136 and 137.
  • die processor 1007 first determines die status of the switch 1101 and 1102, block 1202. If switch 1101 is not active, block 1203, and if switch 1102 is not active, block 1204, the device is powered off.
  • die processor monitors die activate pin (pin 14) for a predetermined period of time to determine if the grips 136 and 137 remain squeezed continuously for this entire predetermined period of time.
  • the predetermined period is 250 microseconds. This feature of monitoring die status of the grips for a period of time is an important aspect of die present invention for prevention of false activations of die device.
  • the processor After reading and storing the deactivate code, the processor causes the appropriate alarm signals to appear at its output pins, block 1214, (the alarm signals of the preferred embodiment will be discussed in greater detail below). This will, of course, cause the alarm to sound. The processor continues to provide the alarm signals at its outputs until the alarm is deactivated as described below. Monitor for entry of the deactivate code
  • die user In order to deactivate the device of the prefeired embodiment die user first depresses button 132 (which is coupled widi switch 1102) to initiate the deactivate cycle. Therefore, after being activated, die processor monitors switch 1102, block 1215. If and when switch 1102 is depressed, branch on code 1216 is executed. The particular branch taken is dictated by the setting of die deactivate code 1006.
  • die deactivate code is preferrably set with jumbers 1121.
  • die code evaluates to a 1; if one jumper is open and die other jumper is close, die code evaluates to a 2; and if both jumpers are open, the code evaluates to a 3.
  • block 1217 is executed. Block 1217 is a branch on condition block in which the code is caused to branch to deactivation lockout code 1220 if eidier die activation switch is depressed (i.e., die grips 136 or 137 are squeezed) or if a timeout occurs.
  • a timeout occurs if neidier die activation switch or reset switch is depressed for a period of 3 seconds.
  • the deactivation lockout code 1220 causes further attempts to deactivate the device to be locked out for a period of 5 seconds.
  • a branch is made to die block of code for monitoring the reset switch, block 1215.
  • branch on condition code 1221 is also executed if the deactivation code set by the jumpers is set to 2.
  • Branch on condition code 1221 causes a branch to lockout code 1220 when either die grips 136 or 137 are squeezed or upon a timeout.
  • die deactivation code is set to 2
  • die reset button must be depressed two times, followed by squeezing die grips 136 or 137. If the deactivation code is set to 3, the reset button must be depressed tiiree times, again followed by squeezing the grips 136 or 137.
  • the acoustics comprise a conventional 4kHz piezoelectric bender 1301 which comprises a slice of piezoelectric crystal mounted on a diin metal disc.
  • the disc is preferably constructed of brass; however, alternative materials such as stainless steel or a hard plastic may be utilized.
  • the bender 1301 is coupled dirough electric leads 1315 widi an output of processor 1007 as was illustrated by Figure 11 (die acoustics mounted in end 102 being coupled, through one of the amplifiers 1005(a) or 1005(b), with one of leads 19 or 20 of processor 1007, while the acoustics of the other end 103 are coupled widi die otiier of leads 19 or 20, again through one of die amplifiers 1005(a) or 10050?) )•
  • bender 1301 vibrates in response to electrical signals received from processor 1007 and bender 1301's natural resonant free-air 1 frequency of 4kHz means tiiat input signals on line 1315 near 4kHz will produce maximum
  • the bender 1301 is mounted widiin
  • I 0 Helmholtz chamber 1306 is tuned to 3.33kHz and is used to tune die resonant
  • helmholtz chamber 1306 The port of helmholtz chamber 1306 is
  • the chamber 1302 0 comprises a rigid diaphragm 1302 and defines ports 1303 and 1305. Ports 1303 1 correspond to ports 125 and 126 of Hgure 1 while ports 1305 correspond to ports 117, 2 118, 121 and 122 of Figures 7 and 8.
  • the ports are positioned such tiiat ports 1305 allow for generated sounds to pass to die surrounding environment at high efficiency generally away from the device 101 and generally in die direction of axis 105 while ports 1303 allow generated sounds to pass to die surrounding environment again at a high efficiency, generally in the direction of axis 105 and back along die device 101 toward die od er speaker. In tiiis way, die sounds of die two speakers are allowed to combine to provide a net higher sound output
  • the chamber further defines a volume 1304 which acts as an acoustic load for sound energy received from chamber 1306.
  • bender 1301 is driven at very high energy levels, it tends to develop destructive frequency standing waves which could damage bender 1301 and which can reduce acoustic efficiency by shifting power to non-audible frequencies.
  • the destructive frequency waves are generally bodi higher and lower than die resonent frequency of the transducer. Therefore, the additional acoustic load provided by air in volume 1304 acts to dampen the destructive frequencies preventing die bender 1301 from oscillating destructively at die undesirable frequencies and allowing die substantially greater power levels to be applied to the device tiian would otherwise be achievable.
  • the increased power levels allow for louder sound to be produced which, in the device of the preferred embodiment, is a very desirable result.
  • die device of the present invention It is desirable in die device of the present invention to produce a sound which is relatively offensive to the human ear when heard by a listener who is widiin a short distance of the device. This goal is of course motivated by the fact diat the persons within a short distance of die device when it is activated are expected to be the user of the device and 1 an attacker or potential attacker. Of course, the sound may be offensive to both; however,
  • 3 point die user may then proceed to deactivate the device.
  • Figure 14 illustrates, in the form of a graph, two sound patterns which have been
  • die sound pattern CHI corresponds to die sound pattern generated
  • the sound pattern CH2 corresponds to the sound pattern generated by die odier 7 speaker (the "first speaker) housed in the odier end 102 or 103.
  • die frequency of the sound pattern is charted and along die vertical axis 1402, 9 passage of time is illustrated.
  • 0 Processor 1007 controls the first speaker to begin emitting at 3.0kHz and to sweep 1 to 3.5kHz in 0.05 seconds and then to sweep back from 3.5kHz to 3.0kHz in 0.05 2 seconds, creating a wave with a period of 0.10 seconds. This pattern is repeated until 3 deactivation.
  • Processor 1007 controls the second speaker to begin emitting at 2.0kHz and to sweep to 3.5kHz over a substantially longer period, specifically over 2.0 seconds. During the next 2.0 seconds the signal is caused to sweep back from 3.5kHz to 2.0kHz, creating a wave with a period of 4.0 seconds. This pattern is also repeated until deactivation. It is important to now consider the effect of these signals on the listener.
  • the two speakers create sound sources which, at any moment, are close to pure single frequency sinusoids due to die nature of the piezoelectric crystal 1301. However, die detector of these sound waves (e.g., the human ear) experiences two sounds impinging simultaneously.
  • d e detector perceives at least four sources because, from algebra, it is known diat die sum of the two sinusoidal sources, sin(channel 1) + sin(channel 2), is equivalent to the sum of two other signals — sin(channel 1 + channel 2) and sin(channel 1 - channel 2). Therefore, the detector perceives four sound sources which may be represented as sin(channel 1), sin(channel 2), sin(channel 1 + channel 2) and sin(channel 1 - channel 2). Any harmonic distortion present in the signals will tend to generate die same effect in each of the harmonics.
  • the two frequencies, from channel 1 and channel 2 are changing in time independent of each other, both in phase and in frequency. This results in an extremely complex and distinctive sound.
  • die sound experienced by die listener is different depending on die distance of the listener from the device 101.
  • die pure tones produced by die device of die present invention are experienced as relatively independent but distinctive signals.
  • the full range of harmonics described above are experienced as a confusing cacophony.
  • a single speaker may be provided and die single speaker may be coupled with bodi die first and second outputs of the processor 1007.
  • Such a design would lead to a device which would take advantage of at least some of the aspects of die present invention and a device of this design is thought to be within die scope of d e present invention.
  • the functioning of the device will then depend on the actions of die user (e.g., which buttons, if any are pushed).
  • the user may depress the reset button 132 in order to cause die device to perform a battery test 1502.
  • the device signals the result 1503, as has been described.
  • the device then returns to a state of waiting for die user to depress a button, either the reset button 132 or the activation grips 136.
  • the device 19 may be easily carried in de user's hand, may be carried by a lanyard, coupled wid a belt by using die belt clip 131, carried in a purse, or it may be odierwise transported.
  • die device 101 is easily and quickly gripped in a manner for activating the device.
  • the user simply grips the device widi slight but sufficient pressure almost anywhere along the body of die device 101.
  • the device 101 is activating by such gripping and die processor carries out its sequence (which has been already described) in order to cause the device 101 to begin generating sound Ooud sound!), 1512.
  • the device will stay activated as long as sufficient power remains in die batteries until it is explicitly deactivated by die user entering a code.
  • this code is preset at time of manufacture to require die user to depress die reset button 132 a predetermined number of times, 1513, followed by depressing die activation grips 136 again, 1514.
  • the alarm is, thus, deactivated, 1515, and returns to a state of waiting for a button to again be depressed.
  • die amplification circuitry could be read ⁇ y altered to use a single, multiplexed, amplification device which is switched between the two channels.
  • a second alternative may allow use of sound signals which are produced through use of analog voltage controlled oscillators, operating eidier independendy or being controlled by the processor 1007.
  • processors could be used.
  • the device itself could also be of various shapes, sizes and materials.
  • the invention is intended to be limited only by die claims which are meant to cover such obvious alternatives and deviations from the preferred design.

Abstract

A dog-bone-shaped personal safety device (101) has a cylindrical central section (104) with grips (136, 137) for activating the device. If a minimum pressure is applied for a minimum time to the grips (136, 137), an alarm sound is produced by issuing first and second different sinusoidal components from respective first and second speakers mounted in opposite ends (102, 103) of the device. The resulting sound is much more annoying at short distances from the device than farther away, encouraging an assailant to move away. A recessed button (132) is manipulated in combination with the grips (136, 137) to control the device via a microprocessor.

Description

PERSONAL SAFETY DEVICE BACKGROUND OF THE INVENTION
1. FIELD OF THE INVENTION The present invention relates to the personal safety devices and, more specifically, to devices for providing an alarm or distress signal upon activation by the user in order to, for example, deter an attack or to summon assistance.
2. DESCRIPTION OF THE RELATED ART There are a large number of personal safety devices currently available. These devices may be generally thought of as falling into two categories: (1) weapons, such as guns, mace, etc.; and (2) alarm and similar deterrence devices such as devices which produce audible alarms when activated by the user. The preferred embodiment of the present invention falls into the latter category. In reviewing alarm products which are currently commercially available, a number of shortcomings have been noted. It is an object of the present invention to overcome such shortcomings. Perhaps, these shortcomings will be best understood by detailing what is now considered to be desirable features of a personal safety device. (1) The device should produce an audible signal which will deter an attacker. It is desirable that the audible signal itself be offensive to the hearing of an attacker, rather than simply causing the attacker to fear having attention brought to the attack by the signal. In this way, the attacker may terminate the attack even if there is no other persons within hearing range to respond to the signal; (2) The device should produce an audible signal which will attract the attention of other persons who may come to the aid of the user of the device. To this end it is desirable for the device to produce an audible signal which can be heard at relatively long distances and which will attract the attention of other persons. It is also desirable to produce an audible signal which differentiates from other alarms found in today's products such as car alarms, smoke detectors, home security alarms, etc.; (3) The device should be easy to carry in a manner which allows it to be readily available for activation; (4) The device should be easy to activate in unexpected circumstances. It is desirable for the device to be designed to allow activation when held in any of a number of orientations and, further, that the device be activated easily, for example, through some natural or intuitive response to an emergency situation; (5) The device should be difficult for persons other than the intended user to deactivate; (6) The device should be easily deactivated by the intended user so that, for example, it may be shut-off readily if accidently activated or if the user determines the audible signal produced by the device is escalating the level ofan attack; and (7) The device should be designed to prevent false activations (false alarms) from occurring. Turning back to the known commercially available products, these products generally do not adequately provide for the above-described desirable features. For example, such known commercial products do not provide for an audible signal which is sufficient to deter an attack either due to having insufficient volume, poor sound composition to accomplish deterrence, or both. Further, the sounds produced by such devices tend to be similar to sounds produced by other types of alarms (e.g., car alarms, home burglar alarms, etc.), thus not providing a distinguishable sound which is likely to draw the attention of persons who might come to the assistance of the user of the device. Still further, known devices do not provide adequate methods for activation of the device. Lack of adequate methods of activation may render the device ineffective in many situations. Even if activated, such devices are often easily deactivated by an attacker. Other devices may be more difficult for an attacker to deactivate but prove to be difficult for the intended user of the device to deactivate also. Examples of known activation methods include a simple switch. A simple switch is, of course, relatively easy to activate by the intended user of the device, if the device is properly oriented at the time when the user wishes to activate the device. However, in the likely event that the device is not properly oriented in the users hand at the time the user wishes to activate the device, the user must use valuable seconds orienting the device before it can be activated. Another example of an activation mechanism is a pull string or lanyard which is pulled out of the device in order to activate it. This type of activation mechanism typically requires two hands to activate — one to pull on the string and the other to hold onto the device. Further, if accidently activated, the device requires a certain amount of coordination to reinsert the string in order to deactivate the device. If the string is misplaced, deac tivation is even more difficult. It is also noted that removal of batteries from the known devices is relatively simple and that such removal will result in deactivation of the device. One specific device is described in United States Patent Number 4,264,892 titled Alarm Device. This device is described as a multipurpose device which may be activated by use of a manually operated switch or, alternatively, by use of a circuit which includes a switch which is closed, for example, upon detecting heat (such as fire) or upon detect movement (such as movement of a door). The manual switch located along one side of the unit and is described as being of the double-throw type in which one position is neutral position, one position causes a light bulb to light and one position causes an alarm to sound. Therefore, as understood, the described device requires orientation of the device in a manner such that a finger can rotate the manual switch in one direction in order to activate the device. Further, the device may be easily deactivated by simply moving the switch back to its normal position. Still further, the sound produced by the device is simply described as a loud noise; however, there is no teaching of the sound characteristics disclosed by the present invention which lead to both deterrence of an attacker and attraction of third-parties. The sound making device is described as having a screw-threaded adjustment means for adjustment purposes. These and other objects of the present invention will be better understood with reference to the Detailed Description of the Prefeired Embodiment, the accompanying drawings, and the claims. SUMMARY OF THE INVENTION A personal safety device is described. In addition, a method for operating the device is described. The personal safety device is preferably of what will be referred to as a dog bone shaped design — that is, the device is formed with a center cylindrical or tubular section having ends which are of a greater diameter than the diameter of the central tubular section. Each end of the device houses a speaker for emitting sound when the device is activated. The center portion houses various circuitry including a microprocessor used for controlling the device. The circuitry will be described in greater detail herein. The center portion further houses batteries used for powering the device. The dog bone design has been exploited to provide for a number of advantages which will be more completely understood for the below Detailed Description. However, briefly, it might be summarized here that the design has been exploited to provide for at least the following advantages: (1) the speakers are placed to focus sound in directions generally opposite of each other thereby providing for broader sound coverage than with known personal safety devices employing, for example, a single speaker, (2) the speakers are placed sufficiently far apart such that a human hand cannot cover both speakers at the same time thereby making it difficult to cover the both speakers simultaneously with a single hand in order to muffle the sound emitted by the speakers; and (3) the device is activated by gripping (or, possibly, more appropriately squeezing) depressing a bar located on the tubular central section of the device — by locating the bar on the tubular central section, the bar is readily accessible by the user when the device is held in any of a number of natural orientations. As has been stated, the personal safety device of the present invention is controlled by a microprocessor housed in the central portion of the dog bone housing. Before continuing by briefly describing certain features which are provided in the device of the present invention through exploitation of the microprocessor control, it is noted that although microprocessor technology has been now long known in the art, the usefulness of such technology has been heretofore unrecognized in the art of the type of device described herein. Rather, known devices have simply relied on simple switching schemes to control activation and deactivation of sounds produced by such devices. The present invention goes even beyond discovery of the general usefulness of microprocessors in this type of device and has discovered ώat, once employed in the device, the microprocessor is useful for provide a number of advantageous functions including: (1) the microprocessor may be utilized to produce digital signals which result in complex and unique tones being produced by the device; (2) the microprocessor may be utilized to control deactivation of the device such that, once activated, the device can only be deactivated by a person knowing and entering a predetermined deactivation code; and (3) the microprocessor may be utilized, in conjunction with detection circuitry disclosed herein, to detect and notify of certain faulty conditions in the device such as a low battery, and (4) the microprocessor may control activation, as will be described, in order to avoid false alarms or false activations. The present invention further discloses generation of a unique noise which has the effect of being perceived by a listener as a confusing cacophony at close range while being perceived as set of relatively independent sound signals at a greater distance. It is anticipated that this signal will have the effect of deterring persons within a close proximity of the device (such as a would-be attacker) while attracting persons further away from the device (such as a would-be rescuer). The present invention still further discloses a unique speaker design which readily produces loud sounds and, further, utilizes relatively inexpensive piezoelectric transducer technology. These and other aspects of the present invention will be apparent to one of ordinary skill in the art with further reference to the below Detailed Description of the Preferred Embodiment and the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS Hgure 1 is a top, front and left side perspective view of the personal safety device of the present invention.
Hgure 2 is a bottom, back and right side perspective view of the personal safety device of the present invention.
Hgure 3 is a front side view of the personal safety device of the present invention.
Hgure 6 is a back side view of the personal safety device of the present invention.
Figure 5 is a left side view of the personal safety device of the present invention.
Figure 6 is a right side view of the personal safety device of the present invention.
Figure 7 is top view of the personal safety device of the present invention.
Figure 8 is bottom view of the personal safety device of the present invention.
Figure 9 is a cross-sectional view of the personal safety device.
Hgure 10 is a block diagram illustrating certain circuitry of the device. Figure 11 is a circuit diagram illustrating certain electrical circuitry of the device of the present invention.
Figure 12 is a flow diagram illustrating certain methods implemented by an operating program executing on a processor utilized by the device of the present invention.
Figure 13 is diagram illustrating construction of speakers as may be utilized by the present invention.
Figure 14 is a diagram illustrating sounds generated by the two separate speakers or channels of the device of the present invention.
Figure 15 is a state diagram useful for illustrating the steps involved in using the device of the present invention.
For ease of reference, it might be pointed out that reference numerals in all of the accompanying drawings typically are in the form "drawing number" followed by two digits, xx; for example, reference numerals on Figure 1 may be numbered Ixx; on Figure 3, reference numerals may be numbered 3xx. In certain cases, a reference numeral may be introduced on one drawing and the same reference numeral may be utilized on other drawings to refer to the same item.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT What is described herein is a personal safety device which provides for deterrence of attackers as well as providing a signal useful for attracting the attention of third-parties when the user of the device requires assistance. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be obvious, however, to one skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known circuits, structures and techniques have not been shown in detail in order not to unnecessarily obscure the present invention.
OVERVIEW OF THE PERSONAL SAFETY DEVICE OF THE PRESENT INVENTION The preferred embodiment of the present invention is embodied in a personal safety device which provides for emitting a loud sound upon activation. The design of the housing of the device may be thought of as being roughly in the shape of a bone and, therefore, the shape of this housing is referred to herein as a dog bone shape. It will be shown below that the present invention takes advantage of this shape in order to provide for a number of advantages. Further, the device is preferably controlled by a microprocessor. The present invention takes advantage of controlling the device with the microprocessor to provide for several inventive advantageous features. Finally, the present invention provides for a unique acoustic signal and acoustic design for speakers utilized by the device. Each of these features of the present invention will be described in greater detail below. THE OQ gONE PKIQN
As has been stated, the personal safety device of the present invention is preferably housed in a dog bone shaped housing. This housing 101 is illustrated with reference to Figures 1-8.
Overview The dog bone design provides a generally cylindrical or tubular mid- section 104. In its prefeiTed embodiment the device may be most properly described as a oval cylinder. A cross-section of the mid-section 103 of the device is shown with reference to Figure 9 which illustrates the mid-section 103 as having a first dimension of approximately 42 millimeters along a first axis 108. The mid-section's oval dimension along axis 112 is approximately 30 millimeters. The mid-section 103 preferably measures approximately 77 millimeters (sometimes referred to herein as the device's first dimension) along a first axis 105. The device further comprises two end sections, 102 and 103, located at opposite ends of the midsection along the first axis 105. These end sections 102 and 103 are sometimes referred to herein as sound chambers and it will be seen that in the preferred embodiment, these ends house the speakers of the device of the present invention. The end sections are of relatively identical construction and are illustrated with reference to Figures 7 and 8. Figure 7 is a top view of the device of the present invention while Figure 8 is a bottom view. The top section 102 is generally oval shaped having a third dimension of approximately 52 millimeters along a third axis 109 and a dimension of approximately 41 millimeters along axis 113. The top section 102 has defined therein sound chamber main 1 holes 117 and 118. The holes 117 and 118 have a radius of approximately 9 millimeters.
2 Looking at Figure 1, it is seen that the top end further defines sound chamber vents 125.
3 The top end measures approximately 20.5 inches in height (e.g. along dimension 106). As
4 was stated the bottom section is of relatively identical construction having a fourth
5 dimension along axis 107 of approximately 52 millimeters and a dimension along axis 114
6 of approximately 41 millimeters. The bottom section 103 further defines holes 121 and
7 122, as well as defining holes 126.
8 It will be seen that the device is powered by a set of batteries. These batteries are
9 held in a battery chamber within mid-section 104 which is covered with battery cover 134.
I 0 Battery cover 134 is designed to be relatively difficult to remove without the assistance of
I I some tool, such as a screwdriver blade or a coin. The tool may be inserted in slot 135 in 1 2 order to remove the cover, for example, to change the batteries. However, it should be
1 3 difficult if not impossible to remove the batteries without assistance of some type of a tool.
1 4 This leads to the advantage of preventing easy removal of the batteries (and, thus, disabling
1 5 of the device) by an attacker.
1 6 The device 101 further includes a clip 131 along its mid-section 103 which may be
1 7 used to attach the device 101 to, for example, a belt worn by the user or to the carrying
I 8 strap of a purse held by the user.
1 9 Still further, the mid-section 103 includes a button 132. The functions of the button 0 132 include resetting the device 101, testing the device 101, and deactivating the device 1 101. These functions will be described in greater detail below. The button 132 is recessed 2 into the mid-section 103 to prevent accidental depression of the button 132. 1 Finally, and perhaps, most importantly, the device 101 defines activation grips 136
2 and 137 along mid-section 103. The activation grips 136 and 137 are textured to allow
3 easy gripping. Importantly, the grips 136 and 137 are located along substantially the entire
4 length of mid-section 103 and are located on opposing sides of the mid-section 103. The
5 device 101 is naturally held by the user along the mid-section 103 and, regardless of the
6 orientation of the device when so held, the user will have the ability to depress one or both
7 of the grips 136 and 137 to activate the device.
8 The device 101 is designed such that a predetermined amount of pressure is
9 required to be applied on either grip 136 or 137 to activate the device 101. In the preferred
I 0 embodiment, approximately fourteen (14) pounds of pressure must be applied to the center
I I of the grip in order to acheive activation. Slightly less pressure may be applied to the outer 1 2 edges of the grip. It has been found that requiring approximately fourteen pounds of
1 3 pressure leads to an optimal tradeoff between prevention of false activations and allowing
1 4 the device to be readily activated. It might also be noted here that the device is activated
1 5 only after the appropriate amount of pressure is applied to the grips continuously for a
1 6 preset period of time. In other words, some instantaneous pressure exceeding the fourteen
1 7 pound threshold would not cause activation of the device. This feature helps prevent false
1 8 alarms which may otherwise occur when the user, for example, while running with the
1 9 device in hand, trips slightly and momentarily accidenύy squeezes the device. Activation of 0 the device will be described in greater detail below with reference to the discussion of 1 microprocessor control of the device. 2 It is now noted that as one feature of the present invention, the third and fourth 3 dimensions described herein are larger than the second dimension. As can be seen from a 1 review of the figures, this provides for protection of the activation grips 136 and 137 in the
2 event the device is, for example, dropped on a surface.
3 Further, it is again noted that ends 102 and 103 in the preferred embodiment each
4 house a speaker. The speakers are activated by depressing the activation grips 136 and
5 137. As another feature of the device of die present invention, the speakers and holes 117,
6 118, 121 and 122 (which provide for emitting of the sound) are positioned such that the
7 sound when emitted is directed in substantially a first direction (generally along axis 105)
8 by a first of the speakers located in end 102 and the sound when emitted is directed in
9 substantially a second direction, generally opposite (180°) of the first direction, (and, again
I 0 generally along axis 105). This feature of positioning the speakers to direct sound in
I I generally opposite directions provides for increased area coverage by sound produced by
1 2 the device of the present invention.
1 3 In the preferred embodiment, die housing of the device is made of a polycarbonate
1 4 material. The acoustic mounts described herein arc constructed of an ABS (acrylonitrile 5 butadiene styrene) resin. Of course, numerous other materials may be chosen without 6 departure from die spirit and scope of the present invention. For example, other plastics or 7 resins may be chosen with various cost and performance tradeoffs. 8 In addition, it is now noted that the device of the present invention measures, in 9 total, along axis 105 approximately 120 millimeters. This dimension has been chosen, 0 first, because it leads to a device size which may be comfortably carried in the typical user's 1 hand. The device, with the described dog bone shape and size, may be securely and 2 naturally held in the user's hand. Secondly, and importandy, the chosen dimension leads 3 to a device of such length, witfi speakers positioned as has been described, which will make it extremely difficult, if not impossible, to cover both speakers (in an attempt to quiet the device) without using two hands to do so. In the event of an attack, and upon activation of die device, die attacker will then be faced widi the choice of either (1) holding the device with both hands in order to attempt to silence it, (2) to leave, or (3) to continue the attack while the device continues to emit sound. As will be discussed in more detail below, the third option will not be attractive to the attacker not only because of the strong possibility of being apprehended, but also because the sound emitted by me device is offensive to the ears at short range. Of course, option (2) is desirable because d e tiireat of attack is then eliminated. Option (1) may also be desirable because the attacker cannot easily continue die attack while so holding the device.
BLOCK DIAGRAM OF COMPONENTS OF THE PERSONAL S FETY DEVICE Hgure 10 illustrates a block diagram of certain components of die device of die present invention. A power source 1001, preferably batteries and most preferably 4 "AAAA" type batteries, is housed in a secure compartment 1003 widiin mid-section 103. The power source is coupled to various electronic security housed securely widiin the mid-section 103, including a a processing unit 1007, preferably a COP822 microprocessor available from National Semiconductor of Sunnyvale, California, and power test circuitry 1004. The electronic circuitry provides for control of activation and deactivation of die device 101, tests the integrity of the power source 1001, generates the electronic signals required to create sounds, and amplifies tiiose signals to drive loudspeaker 1010 flioused in end 102) and loudspeaker 1011 (housed in end 103). 1 The processor 1007, as has been stated, is coupled to receive power from power
2 source 1001. The processor is further coupled to receive a signal from power test circuitry
3 1004 indicating whedier the power level of the power source 1001 is either low or high.
4 Further, die processor 1007 is coupled witii a momentary switch which in turn is coupled
5 witii grips 136 and 137. The momentary switch provides electrical signals to the processor
6 1007 indicating die one or botii of the grips 136 and 137 have been depressed. Still
7 further, the processor 1007 is coupled to a second momentary switch which in turn is
8 coupled with die reset button 132. The second momentary switch provides an electrical
9 signal to processor 1007 each time button 132 is depressed.
I 0 The device further comprises a memory device 1006 which is programmed at time
I I of manufacture widi a disable code which consists of information detailing a sequence of
1 2 inputs which must be received from button 132 and activation grips 136 and 137 in order to
1 3 deactivate die device 101 once die device has been activated. In die preferred embodiment,
1 4 a set of jumpers are utilized as the memory device as will be described in greater detail
1 5 below. However, in alternative embodiments, other forms of memory devices may be 6 utilized such as a ROM or an EEPROM. 7 The memory device 1006 is coupled witii the processor 1007 and it will be seen that 8 during operation of die device, die information in the memory device 1006 is read by die 9 processor 1007 to allow comparison of this information witii input patterns of inputs 0 received from button 132 and activation grips 136 and 137. 1 Of course, it is recognized tiiat one of ordinary skill in the art could develop an 2 alternative embodiment in which these sequences were programmable and reprogrammable 3 by the user of the device. Further, it is thought that one of ordinaiy skill in the art could develop an alternative embodiment in which odier input means are utilized to input a code which acts to deactivate the device. Finally, the processor 1001 is coupled widi speakers 1010 and 1011 dirough amplifiers 1005.
ELECTRONIC dRCUTTRY OF THE PREFERRED EMBODIMENT The electronic circuitry of the device of the preferred embodiment is better illustrated with reference to Figure 11. Power saving circuitry 1107 As can be seen, he processor 1007 is coupled witii a source of power on its Vcc input In die preferred embodiment, the source of power is circuitry 1107 which is coupled to receive VBATT and to provide V^ upon activation of die device 101 dirough depressing eitiier die button 132 and thereby activating switch 1101 or depressing either of grips 136 or 137 and diereby activating switch 1102. This allows power to be conserved during periods of time when the device is not being used. When eitiier switch 1101 or 1102 is pressed, current is supplied to the base of transistor Q2 which turns on and presents a voltage at Vςς. This voltage enables current to flow through a resistive divider (R12 and R9), providing a base current to darlington transistor Q3. This base current turns on transistor Q3 and once Q3 is tumed on, current is continuously supplied to the base of Q2, keeping Q2 on even after die pressed switch 1101 or 1102 is released. Once power is supplied to processor 1007 as described above, die processor 1007 is reset via the reset circuit 1106 and the processor initiates the rest of die described circuit in accordance witii its programming. The programming of the processor 1007 is described in greater detail below widi reference to Figure 12. The device may power itself off by the processor 1007 bringing low its L7 port. This low signal causes the darlington transistor Q3 of die power saving circuitry 1107 to be held low, removing its base drive. Widi its base drive removed, it can no longer supply current to the base of Q2, so Q2 is shut off. This removes power at point Vcc and d e system is shut off. Clocking circuitry 1105 and reset circuitry 1106 The processor 1007 is further coupled with oscillator circuitry 1105 for clocking the processor 1007 and is further coupled widi reset circuitry 1106 for resetting of die processor 1007. Both die oscillator circuitry 1105 and die reset circuitry 1106 are well specified by the manufacturer and, d erefore, no further description of diis circuitry is understood to be necessary. Battery test circuitry 1004 The battery test circuitry 1004 is now described. The battery test circuitry is coupled to provide a signal on die Gl (pin 18) input of the processor 1007 which indicates die power level of die battery as either high or low. As will be described below, the signal received on its Gl pin is used by the processor 1007 to provide with user with an indication of whedier the batteries should be changed. This feature is, of course, invaluable, in tiiat the device 101 must be, above all, dependable. V-ς power is applied dirough resistor R10 to zener diode D2, and if of at least the required minimum power level, current will flow dirough zener diode D2 and to resistor R8 and will also supply die base of transistor Ql widi current Transistor Ql is caused to turn on by application of this current If Ql is on, current flows through resistor R7 causing a voltage drop across it which in turn causes die connection to G 1 of processor 1007 to be low. If the power received on Vcc is below the required minimum, zener diode D2 fails to conduct and, therefore, no current flows through R7. In this case, the connection to Gl of processor 1007 is shown as high. Amplifier output circuitry 1005(a) and 1005(b) The circuitry of amplifiers 1005(a) and 1005(b) is identical and, therefore, will only be described widi reference to amplifier 1005(a). The amplifier comprises darlington transistor Q5, transistor Q4, resistors R13 and R14, and transformer Tl. A sound signal, described below as a digital signal of varying frequency, is applied to Q5 via pin G3 of processor 1007. When G3 is high, this signal acts to turn on Q5 and allow a current to flow through its collector via Rl 3 which, in conjunction with Rl 4, limits the current to a level which will not harm Q5. This current acts to turn on Q4 which allows a large current to flow from VBATT dirough the primary of transformer Tl . When G3 is low, this signal "turns off Q5 which in turn turns off Q4, ceasing current flow through the primary of Tl . The result is a large alternating current on the primary of Tl which appears as a large alternating voltage on the secondary of Tl. This alternating voltage of the secondary of Tl is applied to piezoelectric element 1008 of speaker 1010. As stated above, circuit 1005(b) works in a similar manner to apply a voltage to piezoelectric element 1109. Deactivate codes 1121 In the preferred embodiment the deactivate codes for die system are coded in two jumpers JP1 and JP2, allowing for four combinations of codes. These jumpers are coupled widi die L4 and L5 inputs of processor 1007 and are read by processor 1007 as will be described. Of course, in an alternative embodiment, the codes may be stored in another type of a memory device such as a ROM or an EEPROM. However, such an alternative while allowing certain advantages such as an increased number of possible codes, also will likely involve increased cost
OPER A TION OF THE DEVICE OF THE PREFERRED EMBODIMENT It is now worthwhile to discuss the operation of die device of die preferred embodiment in greater detail and this is done widi reference to Figure 12 which is a flow diagram illustrating the functional flow of the operating program of the processor 1007. Power on Initially, the processor is powered on, block 1201 , in die manner that has been previously described. That is, the processor 1007 is powered by eidier depressing button 132 or one of die activation grips 136 and 137. At die time it is powered up, die processor 1007 first determines die status of the switch 1101 and 1102, block 1202. If switch 1101 is not active, block 1203, and if switch 1102 is not active, block 1204, the device is powered off. Battery Test Odierwise, if switch 1102 is active, block 1204, die battery test input (Gl) is tested to determine die state of the batter . If the battery tests goods, a good battery "beep" is sounded, block 1208, and die device powers itself off, block 1219. If the battery does not test good, a bad battery "beep" is sounded, block 1207, and die device retests the battery every fifteen minutes, block 1211, until die battery eidier tests good or the batteries are removed from die device or battery power goes so low that it cannot power the processor. Activate Device In die event die activate switch 1101 is found to be depressed, block 1203, die processor monitors die activate pin (pin 14) for a predetermined period of time to determine if the grips 136 and 137 remain squeezed continuously for this entire predetermined period of time. In die preferred embodiment the predetermined period is 250 microseconds. This feature of monitoring die status of the grips for a period of time is an important aspect of die present invention for prevention of false activations of die device. After the processor determines d e grips have been squeezed for the full, continuous period, die processor tiien reads die deactivate code inputs on its L4 and L5 inputs, block 1213. After reading and storing the deactivate code, the processor causes the appropriate alarm signals to appear at its output pins, block 1214, (the alarm signals of the preferred embodiment will be discussed in greater detail below). This will, of course, cause the alarm to sound. The processor continues to provide the alarm signals at its outputs until the alarm is deactivated as described below. Monitor for entry of the deactivate code In order to deactivate the device of the prefeired embodiment die user first depresses button 132 (which is coupled widi switch 1102) to initiate the deactivate cycle. Therefore, after being activated, die processor monitors switch 1102, block 1215. If and when switch 1102 is depressed, branch on code 1216 is executed. The particular branch taken is dictated by the setting of die deactivate code 1006. As has been discussed, die deactivate code is preferrably set with jumbers 1121. In the preferred embodiment, if botii jumpers are closed, die code evaluates to a 1; if one jumper is open and die other jumper is close, die code evaluates to a 2; and if both jumpers are open, the code evaluates to a 3. Thus, as can be seen, if the deactivate code is a 3, block 1217 is executed. Block 1217 is a branch on condition block in which the code is caused to branch to deactivation lockout code 1220 if eidier die activation switch is depressed (i.e., die grips 136 or 137 are squeezed) or if a timeout occurs. A timeout occurs if neidier die activation switch or reset switch is depressed for a period of 3 seconds. The deactivation lockout code 1220 causes further attempts to deactivate the device to be locked out for a period of 5 seconds. After the lockout period, a branch is made to die block of code for monitoring the reset switch, block 1215. Alternatively, if the reset switch is again depressed, a branch is made to branch on condition code 1221. Branch on condition code 1221 is also executed if the deactivation code set by the jumpers is set to 2. Branch on condition code 1221 causes a branch to lockout code 1220 when either die grips 136 or 137 are squeezed or upon a timeout. Alternatively, if die reset switch is again depressed, a branch is made to branch on condition code 1218. If die deactivation code is set to a 1, branch on condition code 1218 is also branched to from branch on code 1216. In eitiier event branch on condition code 1218 causes the code to branch to lockout code 1220 when eidier die reset button is depressed or upon a timeout Alternatively, if the grips 136 or 137 are squeezed, the device is deactivated and powered off, block 1219. Thus, it can be seen that die deactivation code being set to 1 causes the deactivation sequence to require die reset button to be depressed one time, followed by squeezing die activation grips 136 or 137. If die deactivation code is set to 2, die reset button must be depressed two times, followed by squeezing die grips 136 or 137. If the deactivation code is set to 3, the reset button must be depressed tiiree times, again followed by squeezing the grips 136 or 137.
ACOUSTIC PESION Two aspects of the acoustic design of die present invention are especially worth noting. First, it is worthwhile to describe die construction of die speakers tiiemselves, and dien it is worthwhile to describe the signals received by each of the two speakers from processor 1007 and the sound generated as a result of d e speaker design and received signals. Speaker Construction Referring now to Figure 13, certain features of the acoustic structure of the device of die present invention will be described in greater detail. As has been described, die acoustics of Figure 13 are housed in each end 102 and 103 of d e device. The acoustics comprise a conventional 4kHz piezoelectric bender 1301 which comprises a slice of piezoelectric crystal mounted on a diin metal disc. The disc is preferably constructed of brass; however, alternative materials such as stainless steel or a hard plastic may be utilized. The bender 1301 is coupled dirough electric leads 1315 widi an output of processor 1007 as was illustrated by Figure 11 (die acoustics mounted in end 102 being coupled, through one of the amplifiers 1005(a) or 1005(b), with one of leads 19 or 20 of processor 1007, while the acoustics of the other end 103 are coupled widi die otiier of leads 19 or 20, again through one of die amplifiers 1005(a) or 10050?) )• Now, it is important to note that bender 1301 vibrates in response to electrical signals received from processor 1007 and bender 1301's natural resonant free-air 1 frequency of 4kHz means tiiat input signals on line 1315 near 4kHz will produce maximum
2 vibration. However, it is desired by the design of the system of die preferred embodiment
3 to produce loud output for input signals on line 1315 at 3.3kHz. It might be noted tiiat
4 aldiough alternative frequencies may be utilized in certain alternative embodiments, it has
5 been found tiiat use of die preferred 3.3kHz resonent frequency leads to a preferred sound.
6 Of course, 3.3kHz crystals could be substituted for the 4kHz crystals of die
7 preferred embodiment of die present invention. Unfortunately, 3.3kHz crystals are not as
8 commonly available as 4kHz crystals. Therefore, the bender 1301 is mounted widiin
9 helmholtz chamber 1306.
I 0 Helmholtz chamber 1306 is tuned to 3.33kHz and is used to tune die resonant
I I frequency of bender 1301 by providing a resonant system at 3.33kHz which is excited by
1 2 d e broadband sound radiation from the bender. The port of helmholtz chamber 1306 is
1 3 also tuned to 3.3kHz to provide maximum transfer of sound energy from the piezoelectric
1 4 transducer 1301 to the free air environment Design of such a helmholtz chamber is well 5 within the capabilities of a person of ordinary skill in die art and, in fact such chambers are 6 described in Hezo-Alarms, Catalog No. P-01-A available from Murata Erie North America 7 of Smyrna, Georgia. 8 Chamber 1306 is suspended on plastic web 1311 within chamber 1302. Plastic 9 web 1311 allows flow of air around and widiin chamber 1302. The chamber 1302 0 comprises a rigid diaphragm 1302 and defines ports 1303 and 1305. Ports 1303 1 correspond to ports 125 and 126 of Hgure 1 while ports 1305 correspond to ports 117, 2 118, 121 and 122 of Figures 7 and 8. The ports are positioned such tiiat ports 1305 allow for generated sounds to pass to die surrounding environment at high efficiency generally away from the device 101 and generally in die direction of axis 105 while ports 1303 allow generated sounds to pass to die surrounding environment again at a high efficiency, generally in the direction of axis 105 and back along die device 101 toward die od er speaker. In tiiis way, die sounds of die two speakers are allowed to combine to provide a net higher sound output The chamber further defines a volume 1304 which acts as an acoustic load for sound energy received from chamber 1306. This is important because when bender 1301 is driven at very high energy levels, it tends to develop destructive frequency standing waves which could damage bender 1301 and which can reduce acoustic efficiency by shifting power to non-audible frequencies. The destructive frequency waves are generally bodi higher and lower than die resonent frequency of the transducer. Therefore, the additional acoustic load provided by air in volume 1304 acts to dampen the destructive frequencies preventing die bender 1301 from oscillating destructively at die undesirable frequencies and allowing die substantially greater power levels to be applied to the device tiian would otherwise be achievable. Of course, the increased power levels allow for louder sound to be produced which, in the device of the preferred embodiment, is a very desirable result. Signals received by the speakers and resulting sounds It is desirable in die device of the present invention to produce a sound which is relatively offensive to the human ear when heard by a listener who is widiin a short distance of the device. This goal is of course motivated by the fact diat the persons within a short distance of die device when it is activated are expected to be the user of the device and 1 an attacker or potential attacker. Of course, the sound may be offensive to both; however,
2 it is hoped diat the sound will be offensive enough to motivate die attacker to leave at which
3 point die user may then proceed to deactivate the device.
4 It is equally desirable in die device of the present invention to produce a sound
5 which may tend to attract persons, at greater distances from die device, to come to the
6 source of the sound.
7 To diese ends, significant work has been performed in die development of die
8 device of die present invention to develop a device capable of producing such a sound. The
9 sound is produced bodi as a result of die construction of die speaker which has been
I 0 described herein and as a result of control of those speakers through signals generated by
I I die microprocessor 1007. The control of the speakers will now be discussed in greater 1 2 detail with reference to Hgure 14.
1 3 Figure 14 illustrates, in the form of a graph, two sound patterns which have been
1 4 labeled CHI and CH2; die sound pattern CHI corresponds to die sound pattern generated
1 5 by one of the speakers (die "first speaker) housed in one end 102 or 103 of the device 101 6 while the sound pattern CH2 corresponds to the sound pattern generated by die odier 7 speaker (the "first speaker) housed in the odier end 102 or 103. Along the horizontal axis 8 1401, die frequency of the sound pattern is charted and along die vertical axis 1402, 9 passage of time is illustrated. 0 Processor 1007 controls the first speaker to begin emitting at 3.0kHz and to sweep 1 to 3.5kHz in 0.05 seconds and then to sweep back from 3.5kHz to 3.0kHz in 0.05 2 seconds, creating a wave with a period of 0.10 seconds. This pattern is repeated until 3 deactivation. Processor 1007 controls the second speaker to begin emitting at 2.0kHz and to sweep to 3.5kHz over a substantially longer period, specifically over 2.0 seconds. During the next 2.0 seconds the signal is caused to sweep back from 3.5kHz to 2.0kHz, creating a wave with a period of 4.0 seconds. This pattern is also repeated until deactivation. It is important to now consider the effect of these signals on the listener. The two speakers create sound sources which, at any moment, are close to pure single frequency sinusoids due to die nature of the piezoelectric crystal 1301. However, die detector of these sound waves (e.g., the human ear) experiences two sounds impinging simultaneously. In fact d e detector perceives at least four sources because, from algebra, it is known diat die sum of the two sinusoidal sources, sin(channel 1) + sin(channel 2), is equivalent to the sum of two other signals — sin(channel 1 + channel 2) and sin(channel 1 - channel 2). Therefore, the detector perceives four sound sources which may be represented as sin(channel 1), sin(channel 2), sin(channel 1 + channel 2) and sin(channel 1 - channel 2). Any harmonic distortion present in the signals will tend to generate die same effect in each of the harmonics. The two frequencies, from channel 1 and channel 2, are changing in time independent of each other, both in phase and in frequency. This results in an extremely complex and distinctive sound. Now, due to die nature of absorption of sound waves in the air, it has been found diat the higher frequency harmonies and die pure tones generated by die speakers themselves will tend to have a greater range than odier tones. Therefore, and importandy, die sound experienced by die listener is different depending on die distance of the listener from the device 101. At relatively long distances, die pure tones produced by die device of die present invention are experienced as relatively independent but distinctive signals. At relatively closer distances, the full range of harmonics described above are experienced as a confusing cacophony. It might be noted diat the present invention utilizes bodi a first and a second speaker to provide die described sound output In an alternative embodiment, a single speaker may be provided and die single speaker may be coupled with bodi die first and second outputs of the processor 1007. Such a design would lead to a device which would take advantage of at least some of the aspects of die present invention and a device of this design is thought to be within die scope of d e present invention.
OPERATION QF THE PEV7CE OF THE PRESENT INVENTION The operation of de device 101 has already been described in significant detail, especially from a mechanical, electrical and sound generation standpoint However, it is now appropriate to briefly turn to operation of die device from die standpoint of a user of die device in order to describe certain advantages of such operation. For purposes of this discussion, grips 136 will be referred to as die activation grips and button 132 will be refeired to as a reset button aldiough die button serves additional functions beyond acting under certain circumstances to reset the device 101. Figure 15 is a state diagram which illustrates certain states of use of the device and tiiis figure will now be discussed in greater detail. Initially, batteries are inserted, 1501. The functioning of the device will then depend on the actions of die user (e.g., which buttons, if any are pushed). The user may depress the reset button 132 in order to cause die device to perform a battery test 1502. After completing the battery test, the device signals the result 1503, as has been described. The device then returns to a state of waiting for die user to depress a button, either the reset button 132 or the activation grips 136. Now, the user may carry the device about during everyday activities. The device 191, as has been described, may be easily carried in de user's hand, may be carried by a lanyard, coupled wid a belt by using die belt clip 131, carried in a purse, or it may be odierwise transported. In any event, it can now be appreciated that die device 101 is easily and quickly gripped in a manner for activating the device. When it is desired to activate die device 101, the user simply grips the device widi slight but sufficient pressure almost anywhere along the body of die device 101. The device 101 is activating by such gripping and die processor carries out its sequence (which has been already described) in order to cause the device 101 to begin generating sound Ooud sound!), 1512. The device will stay activated as long as sufficient power remains in die batteries until it is explicitly deactivated by die user entering a code. In die preferred embodiment, this code is preset at time of manufacture to require die user to depress die reset button 132 a predetermined number of times, 1513, followed by depressing die activation grips 136 again, 1514. The alarm is, thus, deactivated, 1515, and returns to a state of waiting for a button to again be depressed.
ALTERNATIVE EMBODIMENTS There are, of course, any number of alternatives or changes in the design of die device 101 which may be readily apparent to one of ordinary skill in the art . Such alternatives may not be employed in the device of die preferred embodiment for any number of reasons, such as cost and performance considerations, size constraints, availability of materials, arbitrary design decisions, and die like. A number of tiiese alternatives have been mentioned above. However, it is felt that it may be worthwhile to mention several odier alternatives here for purposes of examples of such alternative embodiments. This is, of course, done widiout limitation to odier embodiments which may be equally obvious to one of ordinary skill, but are not mentioned here because of time and space constraints. As one alternative, die amplification circuitry could be readϋy altered to use a single, multiplexed, amplification device which is switched between the two channels. A second alternative may allow use of sound signals which are produced through use of analog voltage controlled oscillators, operating eidier independendy or being controlled by the processor 1007. Of course, many alternative processors could be used. Also, the device itself could also be of various shapes, sizes and materials. Thus, the invention is intended to be limited only by die claims which are meant to cover such obvious alternatives and deviations from the preferred design. __=__=___=___=__=_:______^^ Thus, what has been described is a personal safety device which provides for both deterrence of attackers and for attracting third-parties to come to the assistance of the individual using the device.

Claims

_______What is claimed is:
1. A personal safety device comprising:
(a) a housing for housing components of said personal safety device;
(b) sound generation means for producing an audible alarm, said sound generation means housed widiin said housing;
(c) activation means for allowing a user of said personal safety device to cause activation of said sound generation means, said activation means housed widiin said housing;
(d) a multiple-bit microprocessor for controlling functions of said personal safety device, said microprocessor housed within said housing.
2. The personal safety device as recited in Qaim 1 wherein said sound generation means comprises at least one speaker.
3. The personal safety device as recited in Claim 2 wherein said sound generation means comprises a first speaker and a second speaker.
4. The personal safety device as recited in Gaim 1 wherein said activation means comprises a momentary switch depressible when squeezing said housing, said momentary switch coupled to provide a first electrical signal to said microprocessor responsive to said momentary switch being depressed.
5. The personal safety device of claim 4 wherein said microprocessor is coupled to provide second electrical signals to said speakers responsive to receiving said first electrical signal.
6. The personal safety device of claim 1 further comprising deactivation means coupled widi said microprocessor for deactivating said personal safety device.
7. The personal safety device cf claim 6 wherein said deactivation means comprises at least one switch which may be alternatively opened and closed in a preset pattern wherein said microprocessor deactivates said sound generation means responsive to said preset pattern being applied to said switch.
8. The personal safety device of claim 7 wherein a representation of said preset pattern is stored in a storage means, said storage means coupled widi and accessible to said microprocessor such diat said microprocessor can compare patterns input widi said switch widi said stored representation of said preset pattern.
9. The personal safety device of claim 2 wherein said microprocessor is coupled widi said speaker through an amplifier, said microprocessor supplying a digital signal to said amplifier, said amplifier supplying an analog signal to said speaker.
10. The personal safety device of claim 3 wherein said microprocessor is coupled with said first speaker dirough a first amplifier and a said microprocessor is coupled widi said second speaker dirough a second amplifier.
11. The personal safety device of claim 10 wherein said microprocessor provides a first digital signal to said first amplifier, said first amplifier supplying a first analog signal to said first speaker responsive to receiving said first digital signal and wherein said microprocessor provides a second digital signal to said second amplifier, said second amplifier supplying a second analog signal to said second speaker responsive to receiving said second digital signal.
12. The personal safety device of claim 11 wherein said first analog signal has a sinusoidal wave component sin(a) and said second analog signal has a sinusoidal wave component sin(b).
13. The personal safety device of claim 12 wherein die frequency of said sinusoidal wave component sin(a) oscillates between FI and F2 with a period PI and die frequency of said sinusoidal wave component sin(b) oscillates between F3 and F4 with a period P2.
14. The personal safety device of claim 12 wherein FI is 3.0 kHz, F2 is 3.5 kHz, F3 is 2.0 kHz, F4 is 3.5 kHz, PI is 0.10 seconds and P2 is 4 seconds.
15. The personal safety device of Gaim 1 wherein said sound generation means is powered by a stored energy supply, said device further comprising a test circuit for testing die power level of said stored energy supply, said test circuit coupled with said stored energy supply and further coupled widi said microprocessor for supplying said microprocessor with a signal representative of the power level of said stored energy supply.
16. A personal safety device for generating noise responsive to receiving a stimuli, said personal safety device comprising:
(a) a first sound source for generating noise into an environment said first sound source producing said noise responsive to receiving signals from a signal source; and
(b) said signal source comprising at least a multiple-bit microprocessor capable of producing a first digital signal representative of a sound wave, said multiple-bit microprocessor further for controlling other functions of said personal safety device.
17. The personal safety device as recited by claim 16 wherein said signal source further comprises an amplifier for amplifying said first digital signal received from said microprocessor and for converting said first digital signal to a first analog signal for presentation to said first sound source.
18. The personal safety device as recited by claim 16 further comprising a second source coupled widi said signal source.
19. The personal safety device as recited by claim 18 wherein said signal source further comprises a first amplifier for amplifying said first digital signal received from said microprocessor and for converting said first digital signal to a first analog signal for presentation to said first sound source and wherein said signal source still further comprises a second amplifier for amplifying a second digital signal received from said microprocessor and for converting said second digital signal to a second analog signal for presentation to said second sound source.
20. The personal safety apparatus of claim 19 wherein said first analog signal has a sinusoidal component sin(a) and said second analog signal has a sinusoidal component sin(b).
21. The personal safety apparatus of claim 20 wherein said sinusoidal component sin(a) has oscillates from a frequency FI to a frequency F2 widi a period PI and said sinusoidal component sin(b) oscillates from a frequency F3 to a frequency F4 with a period P2.
22. The personal safety device of claim 21 wherein FI is 3.0 kHz, F2 is 3.5 kHz, F3 is 2.0 kHz, F4 is 3.5 kHz, PI is 0.10 seconds and P2 is 4 seconds.
23. A personal safety device comprising:
(a) an activation switch for activating said device;
(b) deactivation means for deactivating said device, said deactivation means allowing entry of a predetermined sequence of signals to said device; and
(c) control means for controlling said device coupled widi said deactivation means, said control means including logic to determine if said predetermined sequence of signals has been entered using said deactivation means.
24. The personal safety device as recited in Claim 23 wherein said control means comprises a microprocessor and storage means coupled widi said microprocessor for storing data representative of said predetermined sequence.
25. A personal safety device comprising:
(a) a housing;
(b) an activation switch for activating said device, said activation switch accessible from outside of said housing;
(c) a deactivation means for deactivating said device, said deactivation means accessible from outside of said housing;
(d) a microprocessor housed widiin said housing and coupled with said activation switch and said deactivation means, said deactivation means allowing entry of a predetermined sequence of signals to said microprocessor, and
(e) storage means f br storing data representative of said predetermined sequence of signals, said storage means coupled wid said microprocessor.
26. The personal safety device as recited by claim 25 wherein said housing is a dog bone shaped housing and said activation switch comprises a switch depressible upon gripping a center portion of said housing
27. The personal safety device as recited by claim 26 wherein said deactivation means comprises a second switch on the outside of said housing used in combination widi said activation switch to enter said predetermined sequence of signals.
28. An personal safety alarm comprising:
(a) a sound source for providing a sound waves;
(b) a stored power source for providing power to said sound source;
(c) activation means coupled between said sound source and said stored power source for providing for activation of said sound source by allowing power to reach said sound source; and
(d) detection means for detecting die power level of said stored power source, said detection means coupled widi said stored power source.
29. The personal safety alarm as recited by claim 28 wherein said detection means is further coupled to provide a signal to a microprocessor, said signal indicative of d e power level of said stored power source.
30. The personal safety alarm as recited by claim 29 wherein said signal indicates is the power level of said stored power source is low or high.
31. The personal safety alarm as recited by claim 29 wherein said detection means comprises a transistor having its base coupled widi said power source, having its collector coupled wid a ground and having its emitter coupled to an input of said microprocessor.
32. The personal safety alarm as recited in claim 28 wherein said stored power source comprises a battery.
33. The personal safety alarm as recited by claim 32 wherein said sound source comprises a speaker.
34. An method for operating a personal safety device comprising the steps of:
(a) a user utilizing an activation means to activate said device, said activation means causing said device to emit a signal;
(b) allowing said device to remain activated for a period of time;
(c) utilizing code entry means to present a deactivate code to said device; and
(d) said device ceasing emittance of said signal responsive to receiving said deactivate code.
35. The method as recited by Claim 34 wherein said activation step comprises the step of squeezing said device.
36. The mediod as recited by Gaim 35 wherein said activation step comprises squeezing said device at least for a predetermined period of time.
37. The mediod as recited by Gaim 36 wherein predetermined period of time is 200 milliseconds.
38. The method as recited by Gaim 34 wherein said activation step comprising squeezing said device with at least a predetermined amount of pressure over a predetermined period of time.
39. The method as recited by Claim 38 wherein said predetermined amount of pressure is approximately 14 pounds and said predetermined period of time is 200 milliseconds.
40. The method as recited by Gaim 34 wherein said activation step requires said user to utilize said activation means continuously over a predetermined period of time.
41. The method as recited by Claim 40 wherein said predetermined period of time is 200 milliseconds.
42. The mediod as recited by Claim 34 wherein said step of presenting a deactivate code to said device comprises the steps of depressing a first button a predetermined number of times followed by again gripping said device.
43. The mediod as recited by Gaim 42 further comprising die step of periodically verifying die level of power stored in batteries required to operate said device, said step of periodically verifying the level of power stored in said batteries comprising die step of said user depressing said first button, said device responding by emitting a first sound if said battery power level is sufficient for operation of said device and emitting a second sound if said battery power level is not sufficient for such operation.
44. An method for activating a device for generating sound comprising die steps of:
(a) a user initiating an activation means to activate said device;
(b) monitoring said activation means for a predetermined period of time to determine if said user continues to attempt to active said device;
(c) if said user continues to attempt to activate said device over said predetermined period of time, activating said device; and
(d) if said user does not continue to attempt to activate said device over said predetermined period of time, not activating said device.
45. The method as recited by Claim 44 wherein said step of initiating said activation means comprises die step of squeezing said device.
46. The method as recited by Claim 44 wherein said predetermined period of time is 200 milliseconds.
47. The method as recited by Gaim 44 wherein said apparatus for generating sound is a personal safety device.
48. An apparatus for producing a noise responsive to a stimuli having an activation means, said activation means comprising:
(a) a user accessible switch which may be held in an activate position by said user, and
(b) monitoring means for monitoring the status of said switch over a period of time T, said monitoring means coupled to receive a signal from said switch indicative of die position of said switch.
49. The apparatus of Claim 48 wherein said user accessible switch are grips on a dog bone shaped device.
50. The apparatus of Gaim 48 wherein said monitoring means comprising a microprocessor.
51. The apparatus of Claim 50 wherein said period of time T is approximately 200 milliseconds.
52. The apparatus of Gaim 50 wherein said switch is held in an active position by said user by applying a predetermined amount of pressure to said switch.
53. The apparatus of Claim 52 wherein said predetermined amount of pressure is approximately 14 pounds.
54. An apparatus for producing noise comprising:
(a) first signal generation means for generating a first signal having a first frequency characteristic;
(b) second signal generation means for generating a second signal having a second frequency characteristic;
(c) first sound generation means coupled to said first signal generation means for generating a first sound wave responsive to said first signal; and
(d) second sound generation means coupled to said second signal generation means for generating a second sound wave responsive to said second signal wherein said noise is perceived differendy by a human dependent on die distance between the human and said apparatus.
55. The apparatus as recited in Gaim 54 wherein said first signal and said second signal are caused to vary in frequency independent of each odier.
56. The apparatus as recited in Gaim 54 wherein said first signal is caused to vary between FI and F2 widi a period PI and said second signal is caused to vary between F3 and F4 widi a period P2.
57. The apparatus as recited in Gaim 56 wherein FI is 3.0 kHz, F2 is 3.5 kHz and PI is 0.10 seconds.
58. The apparatus as recited in Claim 56 wherein F3 is 2.0 kHz, F4 is 3.5 kHz and P2 is 4 seconds.
59. The apparatus as recited by Claim 54 wherein said apparatus is a personal safety device.
60. The apparatus as recited by Gaim 54 wherein said first signal generation means and said second signal generation means are a microprocessor.
61. The apparatus as recited by Claim 60 wherein said first sound generation means is a first loudspeaker and said second sound generation means is a second loudspeaker.
62. The apparatus as recited by Gaim 61 wherein said first loudspeaker is coupled with said microprocessor through a first amplifier.
63. The apparatus as recited by Gaim 61 wherein said second loudspeaker is coupled with said microprocessor through a second amplifier.
64. An apparatus for producing an audible response to a stimuli comprising:
(a) first signal generation means for generating a first signal having a first frequency characteristic which is caused to vary between FI and F2 with a period PI;
(b) second signal generation means for generating a second signal having a second frequency characteristic which is caused to vary between F3 and F4 with a period P2;
(c) first sound generation means coupled to said first signal generation means for generating a first sound wave responsive to said first signal; and
(d) second sound generation means coupled to said second signal generation means for generating a second sound wave responsive to said second signal.
65. The apparatus as recited in Gaim 64 wherein said noise is perceived differendy by a human dependent on die distance between the human and said apparatus.
66. The apparatus as recited in Gaim 64 wherein FI is 3.0 kHz, F2 is 3.5 kHz and PI is 0.10 seconds.
67. The apparatus as recited in Claim 64 wherein F3 is 2.0 kHz, F4 is 3.5 kHz and P2 is 4 seconds.
68. The apparatus as recited by Gaim 64 wherein said apparatus is a personal safety device.
69. The apparatus as recited by Gaim 64 wherein said first signal generation means and said second signal generation means are output pins of a microprocessor.
70. The apparatus as recited by Claim 69 wherein said first sound generation means is a first loudspeaker and said second sound generation means is a second loudspeaker.
71. The apparatus as recited by Claim 70 wherein said first loudspeaker is coupled widi said microprocessor dirough a first amplifier and said second loudspeaker is coupled widi said microprocessor dirough a second amplifier.
72. A personal safety device which produces audible sounds in response to being activated by a user comprising:
(a) activation means for allowing said user to activate generation of said audible sounds, said activation means coupled to provide signals to a processing means;
(b) said processing means for generating a first signal of having a first frequency characteristic and a second signal having a second signal characteristic; (c) a first speaker coupled to receive said first signal from said processing means for producing a first audible sound wave responsive to said first frequency characteristic of said first signal; and
(d) a second speaker coupled to receive said second signal from said processing means for producing a second audible sound wave responsive to said second frequency characteristic of said second signal; wherein said first and second signals are perceivable by a listener at distance Dl as independent tones while said first and second signals are perceivable by a listener at distance D2 as a cacophony.
73. The personal safety device of claim 72 wherein said distance Dl is greater than said distance D2.
74. The personal safety device as recited in Claim 72 wherein said first signal is caused to vary between FI and F2 with a period PI and said second signal is caused to vary between F3 and F4 widi a period P2.
75. The personal safety device as recited in Claim 74 wherein FI is 3.0 kHz, F2 is 3.5 kHz and PI is 0.10 seconds.
76. The personal safety device as recited in Claim 74 wherein F3 is 2.0 kHz, F4 is 3.5 kHz and P2 is 4 seconds.
77. A personal safety device which produces audible sounds in response to being activated by a user comprising:
(a) activation means for allowing said user to activate generation of said audible sounds, said activation means coupled to provide signals to a processing means; (b) said processing means for generating a first signal of having a first frequency characteristic and a second signal having a second signal characteristic,
(c) a first speaker coupled to receive said first signal from said processing means for producing a first audible sound wave responsive to said first frequency characteristic of said first signal, said first audible sound wave having a sinusoidal component sin(a); and
(d) a second speaker coupled to receive said second signal from said processing means for producing a second audible sound wave responsive to said second frequency characteristic of said second signal, said second audible sound wave having a sinusoidal component sin(b); wherein said sinusoidal compoent sin(a) and said sinusoidal component sin(b) combine during transmission to produce sound waves having said sinusoidal component sin(a), said sinusoidal component sin(b) and, additionally having a sinusoidal component sin(a+ b) and a sinusoidal component sin(a-b).
78. An apparatus for producing a noise comprising:
(a) signal generation means for generating an electrical signal;
(b) a transducer coupled widi said signal generation means for receiving said electrical signal, said transducer producing sound waves responsive to said electrical signal, said sound waves having destructive frequency components; and
(c) means for producing an acoustic load on said transducer whereby said destructive components are damped.
79. The apparatus as recited in Gaim 78 wherein said signal generation means comprises a microprocessor.
80. The apparatus as recited by Claim 79 wherein said signal generation means further comprises an amplifier coupled between said microprocessor and said transducer.
81. The apparatus as recited by Gaim 78 wherein said transducer comprises a piezoelectric crystal.
82. The apparatus as recited by Gaim 81 wherein die free-air resonant frequency of said transducer is 4 kHz.
83. The apparatus as recited by Qaim 81 wherein the free-air resonant frequency of said transducer is 3.3 kHz.
84. The apparatus as recited by Gaim 79 wherein said means for producing an acoustic load comprises a helmholtz chamber and wherein said transducer is mounted widiin said chamber.
85. The apparatus as recited by Claim 84 wherein said helmholtz chamber is suspended within a second chamber, said second chamber having at least one first port above said helmholtz chamber and having at least one second port to the side of said helmholtz chamber.
86. The apparatus as recited by Claim 78 wherein certain of said destructive frequency components are of a higher frequency than said frequency F2.
87. The apparatus as recited by Gaim 86 wherein certain others of said destructive frequency components are of a lower frequency than said frequency F2.
88. The apparatus as recited by Claim 78 wherein said apparatus is a personal safety device.
89. An apparatus for producing a noise comprising:
(a) signal generation means for generating an electrical signal having a frequency characteristic FI;
(b) a transducer coupled with said signal generation means for receiving said electrical signal, said transducer having a free-air resonant frequency F2, said transducer producing sound waves responsive to said electrical signal, said sound waves having frequency components higher and lower tiian said frequency F2; and
(c) means for producing an acoustic load on said transducer for damping said destructive frequencies.
90. The apparatus as recited by Claim 89 wherein said apparatus is a personal safety device.
91. An apparatus for producing noise comprising:
(a) first signal generation means for generating a first signal having a first frequency characteristic;
(b) second signal generation means for generating a second signal having a second frequency characteristic, said second frequency characteristic different than said first frequency charaαeristic; and
(c) sound generation means coupled to said first and second signal generation means for generating a first and second sound waves responsive to said first signal and second signals, respectively; and wherein said noise is perceived differendy by a human dependent on die distance between the human and said apparatus.
92. The apparatus as recited in Claim 91 wherein said first signal and said second signal are caused to vary in frequency independent of each odier.
93. The apparatus as recited in Qaim 91 wherein said first signal is caused to vary between FI and F2 with a period PI and said second signal is caused to vary between F3 and F4 with a period P2.
94. The apparatus as recited in Qaim 93 wherein FI is 3.0 kHz, F2 is 3.5 kHz and PI is 0.10 seconds.
95. The apparatus as recited in Gaim 94 wherein F3 is 2.0 kHz, F4 is 3.5 kHz and P2 is 4 seconds.
96. The apparatus as recited by Gaim 91 wherein said apparatus is a personal safety device.
97. The apparatus as recited by Gaim 86 wherein said first signal generation means and said second signal generation means are output pins of a microprocessor.
98. A personal safety device comprising:
(a) a mid-section having a first dimension along a first axis and second dimension along a second axis;
(b) a first end section housing a speaker for generating noise coupled widi a first side of said mid-section, said first side of said mid-section located along said second axis, said first end section having a third dimension along a third axis, said third axis substantially parallel with said first axis, said third dimension being larger tiian said first dimension of said mid-section; and (c) a second end section housing a speaker for generating noise coupled widi a second side of said mid-section, said second side of said mid-section located along said second axis of said mid-section and opposite said first side, said second end section having a fourth dimension along a fourth axis, said fourth axis substantially parallel with said first axis, said fourth dimension approximately equal to said third dimension.
99. The personal safety device as recited in Claim 98 wherein said mid-section is substantially tubular in shape.
100. An apparatus for generating noise responsive to a stimuli comprising:
(a) a substantially tubular mid-section for housing circuitry for controlling generation of said noise;
(b) a first housing containing a first speaker, said first housing coupled widi one end of said mid-section; and
(c) a second housing containing a second speaker, said second housing coupled widi a second end of said mid-section, said second end substantially opposite said first end.
101. A personal safety device for generating noise responsive to a stimuli, said personal safety device being substantially of a dog bone shape and being holdable in a human hand and having a plurality of noise generating means for generating noise contained tiierein.
102. The personal safety device of claim 101 wherein a first end of said device houses a first speaker and a second end of said device houses a second speaker.
103. The personal safety device of claim 101 wherein one or more of said noise generating means may be activated by depressing a first switch, said first switch located on a mid-section of said personal safety device allowing for gripping and activation of the device widi a single hand of a user of the device.
104. The personal safety device of claim 101 wherein one or more of said noise generating means may be activated by depressing a first switch, said first switch located on a mid-section of said personal safety device, said device having a first end and a second end protruding from said mid-section, said first end and said second end substantially preventing accidental activation of said device when said device is dropped on a surface.
105. The personal safety device of Qaim 101 wherein said device comprises a mid-section, a first end and a second end, said first end housing a first of said plurality of noise generating means, said second end housing a second of said plurality of noise generating means, said mid-section of sufficient length so as to prevent simultaneous covering of both said first end and said second end widi a single human hand.
106. The personal safety device of Claim 101 wherein said device coπφrises a mid-section, a first end and a second end, said first end housing a first speaker, said second end housing a second speaker, said first speaker placed to direct sound substantially in a first direction and said second speaker placed to direct sound in substantially a second direction, said second direction substantially opposite said first direction.
107. A personal safety device comprising:
(a) a first speaker for producing a first sound wave directed in substantially a first direction; and (b) a second speaker for producing a second sound wave directed in substantially a second direction, said second direction substantially opposite said first direction.
108. The personal safety device as recited by Gaim 107 wherein said personal safety device is of substantially a dog bone shape and said first speaker is housed at a first end of said dog bone and said second speaker is housed at a second end of said dog bone.
109. A personal safety device having at least a first speaker for producing a first sound waves and a second speaker for producing second sound waves, said first speaker mounted relative to said second speaker such that said first speaker and said second speaker may not be simultaneously covered widi a single human hand.
110. The personal safety device of Gaim 109 wherein said device is of a substantially dog bone design and said first speaker is housed in a first end of said dog bone and said second end is housed in a second end of said dog bone.
111. A personal safety apparatus having a substantially dog bone shape, said personal safety apparatus comprising a mid-section including an activation means, said mid-section being of a size which may be gripped in a human hand, said activation means being accessible by said human hand when so gripped such that said personal safety device may be activated by increasing the pressure of said grip on said device.
112. The personal safety device of claim 111 wherein said pressure is increased to approximately 14 pounds in order to cause activation of said device.
113. The personal safety device of claim 111 wherein said pressure is increased to approximately 14 pounds for at least approximately 200 milliseconds in order to cause activation of said device.
114. An apparatus for producing noise responsive to a stimuli, said apparatus comprising gripping means which may be gripped by a human hand for holding said apparatus such as during normal transportation of said apparatus, said gripping means being accessible by said human hand when so gripped such diat said apparatus may be activated by increasing the pressure of said grip on said device, said activation causing production of said noise.
115. The personal safety device of claim 114 wherein said pressure is increased to approximately 14 pounds in order to cause activation of said device.
116. The personal safety device of claim 114 wherein said pressure is increased to approximately 14 pounds for at least approximately 200 milliseconds in order to cause activation of said device.
117. A personal safety device for generating noise responsive to a stimuli comprising:
(a) a housing for housing circuitry for controlling generation of said noise;
(b) a first speaker coupled under control of said circuitry, said first speaker placed to direct sound substantially in a first direction; and
(c) a second speaker coupled under control of said circuitry, said second speaker placed to direct sound in substantially a second direction, said second direction substantially opposite said first direction.
118. The personal safety device of Gaim 117 wherein said first direction is generally along a line and said second direction is generally along said line, said second direction being 180° opposite said first direction.
119. A personal safety device, having an outer surface, said outer surface being defined by having:
(a) a mid-section having a first dimension along a first axis and second dimension along a second axis;
(b) a first end section coupled with a first side of said mid-section, said first side of said mid-section located along said second axis, said first end section having a third dimension along a third axis, said third axis substantially parallel with said first axis, said third dimension being larger than said first dimension of said mid-section; and
(c) a second end section coupled widi a second side of said mid-section, said second side of said mid-section located along said second axis of said mid-section and opposite said first side, said second end section having a fourth dimension along a fourth axis, said fourth axis substantially parallel with said first axis, said fourth dimension approximately equal to said third dimension.
120. The apparatus as recited by Gaim 114 wherein said increased pressure must be applied for a predetermined period of time in order to achieve activation of said device.
121. The apparatus as recited by Claim 114 wherein said apparatus is a personal safety device.
122. An apparatus for producing noise responsive to a stimuli, said apparatus comprising gripping means which may be gripped by a human hand, said gripping means being accessible by said human hand when so gripped such that said apparatus may be activated by increasing the pressure of said grip on said device for a predetermined period of time, said activation causing production of said noise.
123. The apparatus as recited by Gaim 122 wherein said apparatus is a personal safety device.
124. The apparatus as recited by Gaim 122 wherein said predetermined period of time is greater tiian 50 microseconds.
125. The apparatus as recited by Gaim 124 wherein said predetermined period of time is approximately 250 microseconds.
126. An apparatus for producing noise responsive to a stimuli, said apparatus comprising an elongated gripping means which may be gripped by a human hand, said elongated gripping means having a first end portion, a second end portion and a center portion, said gripping means being accessible by said human hand when so gripped such that said apparatus may be activated by increasing the pressure of said grip on at least one of said first end portion, said second end portion or said center portion of said gripping means, said activation causing production of said noise, said apparatus requiring at least slighdy greater pressure to be applied to activate said apparatus if pressure is applied to either die first end portion or die second end portion tiian if pressure is applied said center portion.
127. An apparatus for producing noise responsive to a stimtdi, said apparatus comprising an elongated gripping means which may be gripped by a human hand, said elongated gripping means having a first end portion and a second end portion, said gripping means being accessible by said human hand when so gripped such that said apparatus may be activated by increasing die pressure of said grip on at least one of said first end portion or said second end portion of said gripping means, said activation causing production of said noise, said apparatus requiring at least slighdy greater pressure to be applied to activate said apparatus if pressure is applied to said first end portion than if pressure is applied to said second end portion.
PCT/US1992/007863 1991-09-17 1992-09-16 Personal safety device WO1993006571A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19920920461 EP0604556A4 (en) 1991-09-17 1992-09-16 Personal safety device.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US762,570 1985-08-05
US76147891A 1991-09-17 1991-09-17
US76257091A 1991-09-17 1991-09-17
US761,478 1991-09-17
US07/761,477 US5196829A (en) 1991-09-17 1991-09-17 Personal safety device having microprocessor control and method for operating the same
US761,477 1991-09-17

Publications (1)

Publication Number Publication Date
WO1993006571A1 true WO1993006571A1 (en) 1993-04-01

Family

ID=27419545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1992/007863 WO1993006571A1 (en) 1991-09-17 1992-09-16 Personal safety device

Country Status (4)

Country Link
EP (1) EP0604556A4 (en)
AU (1) AU2665592A (en)
CA (1) CA2119235A1 (en)
WO (1) WO1993006571A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006037339A1 (en) * 2004-10-08 2006-04-13 Travel-Safe Security Products Inc. Portable personal alarm device
GB2486728A (en) * 2010-12-24 2012-06-27 Techwall Electronics Company Ltd Personal safety alarm
EP3754623A3 (en) * 2019-06-19 2021-03-03 Medion AG Emergency signalling device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10522008B1 (en) 2018-09-24 2019-12-31 Challenge/Surge Inc. Alarm with piezoelectric element driven repetitively over pseudorandom frequencies

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3171109A (en) * 1961-07-21 1965-02-23 Andrew L Appel Combined flashlight, fire alarm, and distress signal
US4386341A (en) * 1981-06-04 1983-05-31 Yujiro Yamamoto Security apparatus with audible alarm of enhanced urgency
US4418334A (en) * 1981-01-26 1983-11-29 Burnett Dorothy K Signal display system and luminaire apparatus for operating same
US4566085A (en) * 1982-01-19 1986-01-21 Wein Products, Inc. High intensity ultrasonic generator
US4602245A (en) * 1983-04-29 1986-07-22 Ensco, Inc. General purpose modular acoustic signal generator
US4660027A (en) * 1984-08-31 1987-04-21 Motorola, Inc. Reduced power consumption low battery alert device
US4724424A (en) * 1985-01-07 1988-02-09 Nippondenso Co., Ltd. Warning chord sound producing apparatus including an integrated circuit
US5012221A (en) * 1989-03-24 1991-04-30 Siren Sounds, Inc. Emergency vehicle audible warning system and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3171109A (en) * 1961-07-21 1965-02-23 Andrew L Appel Combined flashlight, fire alarm, and distress signal
US4418334A (en) * 1981-01-26 1983-11-29 Burnett Dorothy K Signal display system and luminaire apparatus for operating same
US4386341A (en) * 1981-06-04 1983-05-31 Yujiro Yamamoto Security apparatus with audible alarm of enhanced urgency
US4566085A (en) * 1982-01-19 1986-01-21 Wein Products, Inc. High intensity ultrasonic generator
US4602245A (en) * 1983-04-29 1986-07-22 Ensco, Inc. General purpose modular acoustic signal generator
US4660027A (en) * 1984-08-31 1987-04-21 Motorola, Inc. Reduced power consumption low battery alert device
US4724424A (en) * 1985-01-07 1988-02-09 Nippondenso Co., Ltd. Warning chord sound producing apparatus including an integrated circuit
US5012221A (en) * 1989-03-24 1991-04-30 Siren Sounds, Inc. Emergency vehicle audible warning system and method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Eversafe Personal Alarm Brochure", Everready Battery Company, Inc., St. Louis, MO., 1988, see 2nd page, column 1, lines 3-4 and Diagram A. *
See also references of EP0604556A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006037339A1 (en) * 2004-10-08 2006-04-13 Travel-Safe Security Products Inc. Portable personal alarm device
GB2486728A (en) * 2010-12-24 2012-06-27 Techwall Electronics Company Ltd Personal safety alarm
EP3754623A3 (en) * 2019-06-19 2021-03-03 Medion AG Emergency signalling device

Also Published As

Publication number Publication date
CA2119235A1 (en) 1993-04-01
EP0604556A1 (en) 1994-07-06
EP0604556A4 (en) 1994-11-17
AU2665592A (en) 1993-04-27

Similar Documents

Publication Publication Date Title
US8847772B2 (en) Smoke detector with remote alarm silencing means
US5651070A (en) Warning device programmable to be sensitive to preselected sound frequencies
US9153107B2 (en) Multi-sensory alarming device
US6147602A (en) Luggage locator system
US5126719A (en) Remotely armed alarm system
US4853674A (en) Signalling apparatus for hearing impaired persons
US20060202813A1 (en) Ambient condition detector with time delayed function
US5274358A (en) Personal safety device having microprocess control and method for operating the same
US4587516A (en) Personal security alarm
US3710371A (en) Portable security alarm and alarm system
JP2008501159A (en) Personal security device
JP2002269646A (en) Touch sensitive alarm device
JPH0243228B2 (en)
US6462658B1 (en) Object locator and protection system
US5196829A (en) Personal safety device having microprocessor control and method for operating the same
US5512881A (en) Personal alarm apparatus
US6285289B1 (en) Smoke detector wrist kidnapper alarm
US4386341A (en) Security apparatus with audible alarm of enhanced urgency
US20040017293A1 (en) Talking locator device and system
WO1993006571A1 (en) Personal safety device
US4479114A (en) Omnidirectional acceleration alarm and switch therefor
US5614886A (en) Article removal alarm system for use with portable electronic device
US20010026219A1 (en) Battery having a lost article location module
JP3514327B2 (en) Helmet mounting alarm
JP3066197U (en) Portable anti-theft, self-defense, deworming, earthquake alarm, power failure alarm, lighting equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CA CH CS DE DK ES FI GB HU JP KP KR LK LU MG MN MW NL NO PL RO RU SD SE

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE BF BJ CF CG CI CM GA GN ML MR SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2119235

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1992920461

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1992920461

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1992920461

Country of ref document: EP