WO1993009424A1 - Process and device for detecting small ultimate particles on structured surfaces - Google Patents

Process and device for detecting small ultimate particles on structured surfaces Download PDF

Info

Publication number
WO1993009424A1
WO1993009424A1 PCT/DE1992/000896 DE9200896W WO9309424A1 WO 1993009424 A1 WO1993009424 A1 WO 1993009424A1 DE 9200896 W DE9200896 W DE 9200896W WO 9309424 A1 WO9309424 A1 WO 9309424A1
Authority
WO
WIPO (PCT)
Prior art keywords
detectors
laser beam
aperture
scattered light
signal
Prior art date
Application number
PCT/DE1992/000896
Other languages
German (de)
French (fr)
Inventor
Roelof Wijnaendts-Van-Resandt
Matthias Botz
Original Assignee
Leica Lasertechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leica Lasertechnik Gmbh filed Critical Leica Lasertechnik Gmbh
Publication of WO1993009424A1 publication Critical patent/WO1993009424A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4711Multiangle measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95676Masks, reticles, shadow masks

Definitions

  • the invention relates to a method and a device for detecting the smallest particles on structured surfaces by scanning the surface with a focused laser beam with a small numerical aperture, detecting the scattered light originating from the laser focus and analyzing the scattered light in an electronic evaluation circuit .
  • Structured areas in connection with the invention are in particular wafer disks during the manufacturing process of integrated circuits and exposure masks for producing the structures on the wafer disks.
  • Standardized ICs are manufactured in large quantities today.
  • the wafer exposure processes necessary for the production are subject to a development process which makes it possible to produce ever smaller structures on the corresponding wafers.
  • This development the importance of inspection systems increases, with the aid of which contamination on exposure masks can be detected. 75% of the committee in IC production today is based on undetected contaminants such as dust can also occur during the production of the wafers.
  • the first automatic inspection systems that were developed to control contamination were laser scanning systems. These work with the scattered light that arises during the scanning. A beam of light is focused on the area to be examined and the area is two-dimensionally focussed gropes. As long as unstructured wafers, masks or mirrors are examined, particles with a diameter of 0.15 ⁇ m to 0.2 ⁇ m can be detected with a detection reliability of 50% to 90%.
  • the disadvantage of these scattered light measuring methods is their sharp drop in sensitivity to detection in the case of structured surfaces, since the scattered radiation which arises on the structures leads to a high radiation background.
  • a modified laser scattering measurement method is given in US Pat. No. 5008558.
  • the direction of incidence of the laser beam is then periodically changed by a small angle.
  • Components are filtered out of the scattered light signal whose frequency corresponds to an integral multiple of the modulation frequency and which have a constant phase position with the modulation frequency over a certain time.
  • This method is intended to detect small particles on the surface of a wafer and those in the space above the wafer.
  • the invention is based on the task of specifying a method with which reliable detection of even the smallest particles from a scattered light signal is possible even on structured surfaces without the need to use polarizing components and with which a detection sensitivity comparable to the scattered light measurement on unstructured surfaces is possible is achieved.
  • This object is achieved according to the invention in a method of the type mentioned at the outset by the characterizing features of Claim 1.
  • An advantageous development of the method results from the features of claim 2.
  • a device for performing the method is specified in claims 4 and 5.
  • the invention is based on the knowledge that it is possible to detect the scattered light which has arisen on impurities due to its geometric intensity distribution. While the scattered light emanating from structures can be described by cylindrical waves, the scattered light of impurities propagates in the form of spherical waves. This results in a different spatial intensity distribution I s / ⁇ ,), which is used for detection. Equation (1) given below describes the light scattered on spheres and serves as a model for the scattering on impurities. Equation (2) describes the light scattered on cylinders and serves as a model for the scattering on structures.
  • I 0 intensity of the l I / o perpendicular ei n- (1)
  • I s • I 0 • / S ( ⁇ , f)
  • the intensities are essentially geometrical Distinguish spreading function. Both scattering functions depend on the height angle ⁇ , ie the angle at which the scattering intensity is observed with respect to the optical axis of the incident light. Experimental investigations have shown that the differences in intensity of the scattered light when scattered on a sphere and scattered on a cylinder do not significantly depend on the height angle ⁇ . However, the magnitude of the intensities is greater the smaller the angle between the vertical direction of irradiation and the direction of observation. The detectors should therefore be arranged as close as possible to the lens for focusing the laser beam.
  • the spreading function for a ball also depends on the side angle, i.e. the observation angle in a plane perpendicular to the optical axis of the incident light.
  • the dependence of the intensity distribution on the side angle is all the more measurable if the diameter of the laser focus is smaller than the diameter of the particles and the numerical aperture NA of the laser beam is as small as possible.
  • the effect which is essential for the method according to the invention is that scattering radiation occurs in every direction when scattering on a particle.
  • the scattering function for a cylinder means that scattered radiation only occurs in the plane that is perpendicular to the cylinder axis and that contains the optical axis of the incident light. Of a plurality of detectors arranged around the optical axis of the incident light, only the detectors symmetrical to the cylinder axis and in the vicinity of the scattered radiation plane will generate a signal.
  • the method used for the method according to the invention However, the significant effect is that, when scattered on a structure, pronounced signal maxima occur at detectors which are essentially symmetrical to one another and no significant signal is produced at the other detectors.
  • FIG. 1 shows a laser scanner with scattered light detectors
  • FIG. 2 shows a circuit arrangement for analyzing the detector signals.
  • FIG. 1 shows the head of a laser scanner 10 with an objective 12 focusing a laser beam 11.
  • the focus 13 of the laser beam 12 lies on the surface of a wafer 14.
  • the optical axis 15 of the laser beam 11 is perpendicular to the wafer 14.
  • a funnel-shaped holder 16 is coupled to the objective 12, into which a plurality of detectors 17 to 24 that receive scattered light are inserted.
  • the detectors are aligned so that their
  • Axes are directed to the focus 13.
  • the inclination with respect to the optical axis 15 of the laser beam is denoted by ⁇ .
  • a diaphragm in front of the detector limits the scattered light cone to an angle ⁇ ( ⁇ ).
  • a triangular diaphragm 25 is used, the base of which is aligned parallel to the surface of the wafer 14.
  • FIG. 2 shows a top view of the arrangement of eight detectors 17 to 24 evenly distributed around the focus 13.
  • the arrangement assumes that the scattered light is taken up by light guides and that photomultipliers are provided as photoelectric detectors .
  • the output signals of the photomultipliers are each fed to one input of a differential amplifier, at the other input of which an adjustable reference voltage is applied.
  • the outputs of the differential amplifiers are input into a pulse decoder, which uses them to form a signal code that corresponds to the number and position of the signaling detectors. By comparing with a predetermined signal code, it can be decided in the circuit whether a particle has been detected and whether an output signal is generated.
  • a particle is the scattering center when more than five detectors emit a signal.
  • a structural element as a scattering center is present if only two detectors opposite one another emit a signal. In between, however, there may also be transitional give shape. If a structural element forms a corner, for example, two pairs of detectors opposite one another can simultaneously emit a signal. All other signal combinations are then to be interpreted as particle scattering.

Abstract

A process for detecting impurities on wafer masks uses a focussed laser beam (11) having a reduced numeric aperture for scanning the wafer mask (14). The geometrical distribution of the diffused light intensity in the space surrounding the scanning laser beam is determined by n detectors (17 to 24). Whereas the diffused light emanating from structures on the wafer mask may be described by cylindrical waves, the diffused light emanating from impurities expands as spherical waves. An irregular intensity distribution results, so that only a determined number of selected detectors generate a signal. From the number and position of the signal-generating detectors, the geometric distribution of the diffused light, therefore its origin, may be deduced.

Description

Verfahren und Vorrichtung zur Detektion kleinster Teilchen auf strukturierten Flächen Method and device for the detection of tiny particles on structured surfaces
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur De- tektion kleinster Teilchen auf strukturierten Flächen durch punkt¬ weises Abtasten der Fläche mit einem fokussierten Laserstrahl kleiner numerischer Apertur, Detektion des vom Laserfokus ausge¬ henden Streulichts und Analyse des Streulichts in einer elektroni¬ schen Auswerteschaltung.The invention relates to a method and a device for detecting the smallest particles on structured surfaces by scanning the surface with a focused laser beam with a small numerical aperture, detecting the scattered light originating from the laser focus and analyzing the scattered light in an electronic evaluation circuit .
Strukturierte Flächen im Zusammenhang mit der Erfindung sind ins¬ besondere Waferscheiben während des Herstellungsprozesses von in¬ tegrierten Schaltkreisen und Belichtungsmasken zur Erzeugung der Strukturen auf den Waferscheiben.Structured areas in connection with the invention are in particular wafer disks during the manufacturing process of integrated circuits and exposure masks for producing the structures on the wafer disks.
Standardisierte ICs werden heute in großen Mengen hergestellt. Die für die Herstellung notwendigen Waferbelichtungsverfahren unter¬ liegen einem Entwicklungsprozeß, der es ermöglicht, immer kleinere Strukturen auf den entsprechenden Wafern herzustellen. Mit dieser Entwicklung steigt die Bedeutung von Inspektionssystemen, mit de¬ ren Hilfe Verunreinigungen auf Belichtungsmasken nachgewiesen wer- den können. 75% des Ausschusses bei der IC-Produktion beruht heute auf unentdeckten Verunreinigungen, wie sie z.B. durch anfallenden Staub auch während der Produktion der Wafer entstehen können.Standardized ICs are manufactured in large quantities today. The wafer exposure processes necessary for the production are subject to a development process which makes it possible to produce ever smaller structures on the corresponding wafers. With this development, the importance of inspection systems increases, with the aid of which contamination on exposure masks can be detected. 75% of the committee in IC production today is based on undetected contaminants such as dust can also occur during the production of the wafers.
Die ersten automatischen Inspektionssysteme, die zur Kontrolle von Kontaminationen entwickelt wurden, waren Laser-Scanning-Syste e. Diese arbeiten mit dem Streulicht, das während der Abtastung ent¬ steht. Ein Lichtbündel wird dabei auf die zu untersuchende Fläche fokussiert und die Fläche wird zweidi ensional punktweise abge- tastet. Solange unstrukturierte Wafer, Masken oder Spiegel unter¬ sucht werden, können Partikel mit einem Durchmesser von 0,15μm bis 0,2μm mit einer Nachweissicherheit von 50% bis 90% erfaßt werden. Der Nachteil dieser Streulicht-Meßverfahren ist ihr starker Abfall der Nachweisempfindlichkeit bei strukturierten Flächen, da die an den Strukturen entstehende Streustrahlung zu einem hohen Strah¬ lungshintergrund führt.The first automatic inspection systems that were developed to control contamination were laser scanning systems. These work with the scattered light that arises during the scanning. A beam of light is focused on the area to be examined and the area is two-dimensionally focussed gropes. As long as unstructured wafers, masks or mirrors are examined, particles with a diameter of 0.15 μm to 0.2 μm can be detected with a detection reliability of 50% to 90%. The disadvantage of these scattered light measuring methods is their sharp drop in sensitivity to detection in the case of structured surfaces, since the scattered radiation which arises on the structures leads to a high radiation background.
Es wurden daher verschiedene Geräte entwickelt, die mit Hilfe von linear polarisiertem Licht das an den Strukturen entstehende Streulicht von dem an Verunreinigungen entstehenden Streulicht un¬ terscheiden können« Die physikalische Grundlage hierfür ist die Tatsache, daß linear polarisiertes Licht, welches an einer Struk¬ tur gestreut wird, sowohl Polaristionsrichtung als auch Polarisa¬ tionsgrad im wesentlichen beibehält, während sich der Polarisa- tionsgrad des an Verunreinigungen gestreuten Lichtes verändert. Bekannte Geräte geben eine Nachweiswahrscheinlichkeit von 90% bis 95% für Teilchen mit einem Durchmesser von 0,8μm bis l.Oμm an. Ne¬ ben der verringerten Nachweisempfindlichkeit erfordern die Geräte einen erheblichen optischen Konstruktionsaufwand.Various devices have therefore been developed which, with the aid of linearly polarized light, can distinguish the scattered light which arises on the structures from the scattered light which arises on impurities is scattered, essentially maintains both the direction of polarization and the degree of polarization, while the degree of polarization of the light scattered by impurities changes. Known devices indicate a detection probability of 90% to 95% for particles with a diameter of 0.8 μm to 10 μm. In addition to the reduced sensitivity to detection, the devices require considerable optical design effort.
Ein modifiziertes Laser-Streulich-Meßverfahren wird in der US-PS 5008558 angegeben. Die Einstrahlrichtung des Laserstrahls wird danach um einen kleinen Winkel periodisch geändert. Aus dem Streu¬ lichtsignal werden Komponenten herausgefiltert, deren Frequenz einen ganzzahligeπ Vielfachen der Modulationsfrequenz enspricht und die über eine bestimmte Zeit eine konstante Phasenlage zu der Modulationsfrequenz haben. Mit diesem Verfahren sollen kleine Par¬ tikel auf der Oberfläche einer Waferscheibe und solche in dem Raum oberhalb der Waferscheibe detektiert werden.A modified laser scattering measurement method is given in US Pat. No. 5008558. The direction of incidence of the laser beam is then periodically changed by a small angle. Components are filtered out of the scattered light signal whose frequency corresponds to an integral multiple of the modulation frequency and which have a constant phase position with the modulation frequency over a certain time. This method is intended to detect small particles on the surface of a wafer and those in the space above the wafer.
Der Erfindung liegt die Aufgäbe zugrunde, ein Verfahren anzugeben, mit dem auch auf strukturierten Flächen eine sichere Detektion von keinsten Teilchen aus einem Streulichtsignal möglich ist, ohne daß pola isierende Bauelemente eingesetzt werden müssen und mit dem eine der Streulichtmessung an unstrukturierten Flächen vergleich¬ bare Nachweisempfindlichkeit erreicht wird. Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art erfindungsgemäß durch die kennzeichnenden Merkmale des Anspructis 1 gelöst. Eine vorteilhafte Weiterbildung des Verfahrens ergibt sich aus den Merkmalen des Anspruchs 2. Eine Vorrichtung zur Durch- führung des Verfahrens ist in den Ansprüchen 4 und 5 angegeben.The invention is based on the task of specifying a method with which reliable detection of even the smallest particles from a scattered light signal is possible even on structured surfaces without the need to use polarizing components and with which a detection sensitivity comparable to the scattered light measurement on unstructured surfaces is possible is achieved. This object is achieved according to the invention in a method of the type mentioned at the outset by the characterizing features of Claim 1. An advantageous development of the method results from the features of claim 2. A device for performing the method is specified in claims 4 and 5.
Die Erfindung geht von der Erkenntnis aus, daß die Detektion des an Verunreinigungen entstandenen Streulichts aufgrund seiner geo¬ metrischen Intensitätsverteilung möglich ist. Während das von Strukturen ausgehende Streulicht durch Zylinderwellen beschrieben werden kann, erfolgt die Ausbreitung des Streulichts von Verunrei¬ nigungen in Form von Kugelwellen. Es resultiert also eine unter¬ schiedliche räumliche Intensitätsverteilung Is/Θ, ), die zur De¬ tektion genutzt wird. Die nachfolgend angegebene Gleichung (1) be¬ schreibt das an Kugeln gestreute Licht und dient als Modell für die Streuung an Verunreinigungen. Gleichung (2) beschreibt das an Zylindern gestreute Licht und dient als Modell für die Streuung an Strukturen.The invention is based on the knowledge that it is possible to detect the scattered light which has arisen on impurities due to its geometric intensity distribution. While the scattered light emanating from structures can be described by cylindrical waves, the scattered light of impurities propagates in the form of spherical waves. This results in a different spatial intensity distribution I s / Θ,), which is used for detection. Equation (1) given below describes the light scattered on spheres and serves as a model for the scattering on impurities. Equation (2) describes the light scattered on cylinders and serves as a model for the scattering on structures.
I0 = Intensität des l I / o senkrecht e i n- ( 1 ) I s = I0 / S ( θ ,f ) | 2 f a l lenden L i chts
Figure imgf000005_0001
I 0 = intensity of the l I / o perpendicular ei n- (1) I s = I 0 / S (θ, f) | 2 falling lights
Figure imgf000005_0001
Intensität des Streul ichtsScattering intensity
(2) Is = --)— I0 [T (θ)[2 iTr S(ΘY) = Streufunk¬ tion Kugel(2) I s = -) - I 0 [T (θ) [ 2 iTr S (ΘY) = scattering function sphere
T(θ)= Streufunktion Zylinder θ = Höhenwinkel j = Seitenwinkel l = Laser-Wellen¬ länge r = Abstand vom Laser-FokusT (θ) = scattering function cylinder θ = elevation angle j = side angle l = laser wavelength r = distance from the laser focus
Die beiden Gleichungen machen deutlich, daß sich die Intensitäten bis auf konstante Faktoren im wesentlichen durch die geometrische Streufunktion unterscheiden. Beide Streufunktionen hängen vom Höhenwinkel θ ab, d. h. dem Winkel unter dem die Streuintensitat gegenüber der optischen Achse des einfallenden Lichtes beobachtet wird. Experimentelle Untersuchungen haben ergeben, daß die Inten- sitätsunterschiede des Streulichts bei Streuung an einer Kugel und Streuung an einem Zylinder nicht signifikant vom Höhenwinkel θ ab¬ hängen. Der Betrag der Intensitäten ist jedoch umso größer je ge¬ ringer der Winkel zwischen senkrechter Einstrahlrichtung und Be¬ obachtungsrichtung ist. Die Detektoren sollten daher möglichst nahe dem Objektiv für die Fokussierung des Laserstrahls angeordnet werden.The two equations make it clear that, apart from constant factors, the intensities are essentially geometrical Distinguish spreading function. Both scattering functions depend on the height angle θ, ie the angle at which the scattering intensity is observed with respect to the optical axis of the incident light. Experimental investigations have shown that the differences in intensity of the scattered light when scattered on a sphere and scattered on a cylinder do not significantly depend on the height angle θ. However, the magnitude of the intensities is greater the smaller the angle between the vertical direction of irradiation and the direction of observation. The detectors should therefore be arranged as close as possible to the lens for focusing the laser beam.
Die Streufunktion für eine Kugel ist zusätzlich vom Seitenwinkel abhängig, d.h. dem Beobachtungs-Winkel in einer Ebene senkrecht zur optischen Achse des einfallenden Lichtes. Experimentelle Un- tersuchungen haben ergeben, daß die Abhängigkeit der Intensi¬ tätsverteilung vom Seitenwinkel umso besser meßbar ist, wenn der Durchmesser des Laserfokus kleiner als der Durchmesser der Teilchen ist und die numerische Apertur NA des Laserstrahlbündels möglichst klein ist. Der für das erfindungsgemäße Verfahren we- sentliche Effekt besteht jedoch darin, daß bei Streuung an einem Teilchen in jeder Richtung Streustrahlung auftritt.The spreading function for a ball also depends on the side angle, i.e. the observation angle in a plane perpendicular to the optical axis of the incident light. Experimental investigations have shown that the dependence of the intensity distribution on the side angle is all the more measurable if the diameter of the laser focus is smaller than the diameter of the particles and the numerical aperture NA of the laser beam is as small as possible. However, the effect which is essential for the method according to the invention is that scattering radiation occurs in every direction when scattering on a particle.
Die Streufunktion für einen Zylinder besagt, daß Streustrahlung nur in der Ebene auftritt, die senkrecht zur Zylinderachse steht und die die optische Achse des einfallenden Lichtes enthält. Von mehreren um die optische Achse des einfallenden Lichtes herum an¬ geordneten Detektoren werden also nur die symmetrisch zur Zylin¬ derachse und in der Nähe der Streustrahlungsebene liegenden Detek¬ toren ein Signal erzeugen. Je kleiner die Strukturen auf der zu untersuchenden Fläche sind, μmso mehr hängt auch hier die tatsäch- liehe Streulichtverteilung von der Größe des Laserfokus und der numerischen Apertur NA ab. Werden mehrere Strukturen mit unter¬ schiedlichen Kantenrichtungen gleichzeitig vom Laserfokus erfaßt, so ergibt sich eine unscharfe Streustrahlungsebene und es können auch unsymmetrisch zueinander angeordnete Detektoren gleichzeitig ein Signal erzeugen. Der für das erfindungsgemäße Verfahren we- sentliche Effekt besteht jedoch darin, daß bei Streuung an einer Struktur ausgeprägte Signalmaxima an zueinander im wesentlichen symmetrisch liegenden Detektoren entstehen und an den übrigen Dek- toren kein signifikantes Signal entsteht.The scattering function for a cylinder means that scattered radiation only occurs in the plane that is perpendicular to the cylinder axis and that contains the optical axis of the incident light. Of a plurality of detectors arranged around the optical axis of the incident light, only the detectors symmetrical to the cylinder axis and in the vicinity of the scattered radiation plane will generate a signal. The smaller the structures on the area to be examined, the more the actual scattered light distribution depends on the size of the laser focus and the numerical aperture NA. If the laser focus detects several structures with different edge directions at the same time, this results in an unsharp scattered radiation plane and detectors arranged asymmetrically to one another can also generate a signal at the same time. The method used for the method according to the invention However, the significant effect is that, when scattered on a structure, pronounced signal maxima occur at detectors which are essentially symmetrical to one another and no significant signal is produced at the other detectors.
In der Praxis müssen sowohl bei der numerischen Apertur NA des La¬ serstrahlenbündels als auch dem Durchmesser des Fokus aufgrund der optischen Korrektur des abbildenden Objektivs Grenzen in Kauf ge¬ nommen weden. Außerdem haben die zu detektierenden Teilchen keine einheitliche Größe und auch die Verteilung und Geometrie der Strukturen auf den zu untersuchenden Flächen ist sehr unterschied¬ lich. Es tritt daher immer ein undifferenzierter Streustrahlungs¬ untergrund auf. Experimentelle Untersuchungen haben ergeben, daß dieser durch eine geeignete Referenzspannung an den Detektoren kompensiert werden kann und sich danach die beschriebenen Ab- hängigkeiten in der geometrischen Streulichtverteilung eindeutig nachweisen lassen. Es erzeugt jeweils eine bestimmte Auswahl der Detektoren aufgrund des Streulichts ein Signal. Aus der Anzahl und der Lage der ansprechenden Detektoren kann auf die geometrische Verteilung des Streulichts und damit auf seinen Ursprung geschlos- sen werden. Eine Steigerung der Nachweisempfindlichkeit konnte er¬ reicht werden, wenn der zu empfangende Steulichtkegel durch eine definierte Apertur der Detektoren begrenzt wird. Dabei ist die Apertur der Detektoren der numerischen Apertur NA des LaserstrahlsIn practice, limits have to be accepted both for the numerical aperture NA of the laser beam and for the diameter of the focus due to the optical correction of the imaging lens. In addition, the particles to be detected do not have a uniform size and the distribution and geometry of the structures on the surfaces to be examined are also very different. An undifferentiated scattered radiation background therefore always occurs. Experimental investigations have shown that this can be compensated for by a suitable reference voltage at the detectors and that the described dependencies in the geometric scattered light distribution can then be clearly demonstrated. A specific selection of the detectors generates a signal based on the scattered light. The geometrical distribution of the scattered light and thus its origin can be inferred from the number and position of the responding detectors. An increase in the detection sensitivity could be achieved if the cone of light to be received is limited by a defined aperture of the detectors. The aperture of the detectors is the numerical aperture NA of the laser beam
360 NA nach der Beziehung α(θ)= — - 2 aresin anzupassen, wobei α n cosθ der Öffnungswinkel der Apertur bezogen auf den Fokus des Laser¬ strahls ist. Als vorteilhafte Näherung für die geometrische Form der Aperturblende hat sich ein Dreieck ergeben, dessen Basis pa- rallel zur untersuchten Fläche ausgerichtet wurde. Mit einer nu¬ merischen Apertur NA = 0,25 des Laserstrahlenbündels und einem Fo¬ kusdurchmesser von 5μm konnten Teilchen mit einem Durchmesser ab 0,3μm auf einer struktu-rierten Fläche sicher detektiert werden.Adjust 360 NA according to the relationship α (θ) = - - 2 aresin, where α n cosθ is the aperture angle of the aperture based on the focus of the laser beam. A triangle has emerged as an advantageous approximation for the geometric shape of the aperture diaphragm, the base of which has been aligned parallel to the examined area. With a numerical aperture NA = 0.25 of the laser beam and a focal diameter of 5 μm, particles with a diameter from 0.3 μm could be reliably detected on a structured surface.
In der Zeichnung ist eine Vorrichtung zur Durchführung des erfin- dungsgemäßen Verfahrens schematisch dargestellt. Sie wird anhand der Figuren beschrieben. Diese zeigen in Fig. 1 einen Laser-Scanner mit Streulichtdetektoren, Fig. 2 eine Schaltungsanordnung zur Analyse der De¬ tektorsignale.In the drawing, a device for performing the method according to the invention is shown schematically. It is described using the figures. These show in 1 shows a laser scanner with scattered light detectors, FIG. 2 shows a circuit arrangement for analyzing the detector signals.
Fig. 1 zeigt den Kopf eines Laser-Scanners 10 mit einem ein La- sterstrahlenbündel 11 fokussierenden Objektiv 12. Der Fokus 13 des Laserstrahlenbündels 12 liegt auf der Oberfläche einer Waferschei¬ be 14. Die optische Achse 15 des Laserstrahlenbündels 11 steht senkrecht auf der Waferscheibe 14.1 shows the head of a laser scanner 10 with an objective 12 focusing a laser beam 11. The focus 13 of the laser beam 12 lies on the surface of a wafer 14. The optical axis 15 of the laser beam 11 is perpendicular to the wafer 14.
Mit dem Objektiv 12 ist eine trichterförmige Halterung 16 gekop- pelt, in die mehrere Streulicht aufnehmende Detektoren 17 bis 24 eingesetzt sind. Die Detektoren sind so ausgerichtet, daß ihreA funnel-shaped holder 16 is coupled to the objective 12, into which a plurality of detectors 17 to 24 that receive scattered light are inserted. The detectors are aligned so that their
Achsen auf den Fokus 13 gerichtet sind. Die Neigung gegenüber der optischen Achse 15 des Laserstrahlenbündels ist mit θ bezeichnet.Axes are directed to the focus 13. The inclination with respect to the optical axis 15 of the laser beam is denoted by θ.
Eine Blende vor dem Detektor begrenzt den aufgenommenen Streu- lichtkegel auf einen Winkel α(θ). Insbesondere wird eine dreieck- förmige Blende 25 verwendet, deren Basis parallel zur Oberfläche der Waferscheibe 14 ausgerichtet ist.A diaphragm in front of the detector limits the scattered light cone to an angle α (θ). In particular, a triangular diaphragm 25 is used, the base of which is aligned parallel to the surface of the wafer 14.
Fig. 2 zeigt in der Aufsicht zunächst die Anordnung von acht De¬ tektoren 17 bis 24 gleichmäßig verteilt um den Fokus 13. Die An- Ordnung geht davon aus, daß die Streu!ichtaufnähme durch Licht¬ leiter erfolgt und als fotoelektrische Detektoren Photomultiplier vorgesehen sind. Die Ausgangssignale der Photomultiplier werden jeweils dem einen Eingang eines Differenzverstärkers zugeführt, an dessen anderen Eingang eine einstellbare Referenzspannung gelegt wird. Die Ausgänge der Differenzverstärker werden in einen Puls- Decoder eingegeben, der daraus einen Signalcode bildet, der der Anzahl und Lage der Signalgebenden Detektoren entspricht. Durch Vergleich mit einem vorgegebenen Signalcode kann in der Schaltung entschieden werden, ob ein Teilchen detektiert wurde und ein Aus- gangssignal erzeugt werden.2 shows a top view of the arrangement of eight detectors 17 to 24 evenly distributed around the focus 13. The arrangement assumes that the scattered light is taken up by light guides and that photomultipliers are provided as photoelectric detectors . The output signals of the photomultipliers are each fed to one input of a differential amplifier, at the other input of which an adjustable reference voltage is applied. The outputs of the differential amplifiers are input into a pulse decoder, which uses them to form a signal code that corresponds to the number and position of the signaling detectors. By comparing with a predetermined signal code, it can be decided in the circuit whether a particle has been detected and whether an output signal is generated.
Ein Teilchen als Streuzentrum liegt dann vor, wenn mehr als fünf Detektoren ein Signal abgeben. Ein Strukturelement als Streuzen¬ trum liegt vor, wenn nur zwei einander gegenüberliegende Detekto¬ ren ein Signal abgeben. Dazwischen kann es jedoch auch Übergangs- formen geben. Bildet ein Strukturelement z.B. eine Ecke, so können gleichzeitig zwei Paare von einander gegenüberliegenden Detektoren ein Signal abgeben. Alle anderen Signalkombinationen sind dann als Teilchenstreuung zu interpretieren. A particle is the scattering center when more than five detectors emit a signal. A structural element as a scattering center is present if only two detectors opposite one another emit a signal. In between, however, there may also be transitional give shape. If a structural element forms a corner, for example, two pairs of detectors opposite one another can simultaneously emit a signal. All other signal combinations are then to be interpreted as particle scattering.

Claims

A n s p r ü c h e Expectations
1. Verfahren zur Detektion kleinster Teilchen auf strukturierten Flächen durch punktweises Abtasten der Fläche mit einem fo¬ kussierten Laserstrahl kleiner numerischer Apertur NA, Detek- tion des von Laserfokus ausgehenden Streulichts und Analyse des Streulichts in einer elektronischen Auswerteschaltung, d a d u r c h g e k e n n z e i c h n e t, daß - die Streulichtverteilung um die optische Achse des Laser¬ strahls herum durch eine Mehrzahl von n > 3 zueinander sym- metrisch angeordneter Detektoren gemessen wird, deren Auf- nahmerichtung gegenüber der optischen Achse des Laser¬ strahls um einen Winkel θ geneigt und deren empfangener Streulichtkegel durch eine definierte Apertur begrenzt ist, wobei — der Neigungswinkel θ im wesentlichen durch die geometri¬ schen Abmessungen der Laserstrahl-Optik bestimmt wird, ~ die Apertur der Detektoren der des Laserstrahls nach der1. Method for the detection of very small particles on structured surfaces by scanning the surface point by point with a focused laser beam with a small numerical aperture NA, detection of the scattered light originating from the laser focus and analysis of the scattered light in an electronic evaluation circuit, characterized in that - the scattered light distribution by the optical axis of the laser beam is measured by a plurality of n> 3 symmetrically arranged detectors, the recording direction of which is inclined by an angle θ with respect to the optical axis of the laser beam and whose received scattered light cone is limited by a defined aperture is, - the angle of inclination θ is essentially determined by the geometrical dimensions of the laser beam optics, ~ the aperture of the detectors that of the laser beam according to
360 NA360 NA
Beziehung α(θ)= 2arc sin angepaßt wird, n cosθ mit α = Öffnungswinkel der Apertur bezogen auf den Fokus des Laserstrahls, — die Anzahl n der Detektoren umso größer gewählt wird, je kleiner die numerische Apertur des Laserstrahls istRelationship α (θ) = 2arc sin is adapted, n cosθ with α = aperture angle of the aperture based on the focus of the laser beam, - the larger the number n of detectors is chosen, the smaller the numerical aperture of the laser beam
- die Detektorsignale mit einer Referenzspannung verglichen werden, deren Größe in Abhängigkeit von den auf der Fläche vorhandenen Strukturen und der zu detektierenden Teilchen¬ größe einstellbar ist, - die die Referenzspannung überschreitenden Signale einer De¬ coderschaltung zugeführt werden, in der die den Detektoren zugeordneten Signale logisch miteinander verknüpft werden, wobei ein Teilchen als erkannt gilt, wenn -- im Falle n < 5 alle Detektoren gleichzeitig ein Signal er¬ zeugen, -- im Falle n > 5 mehr als 5 Detektoren gleichzeitig ein Sig¬ nal erzeugen.the detector signals are compared with a reference voltage, the size of which can be set as a function of the structures present on the surface and the particle size to be detected, the signals exceeding the reference voltage are fed to a decoder circuit in which the detector assigned signals are logically linked to one another, a particle being considered recognized if - if n <5 all detectors generate a signal simultaneously, - if n> 5 more than 5 detectors simultaneously generate a signal.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n ¬ z e i c h n e t, daß den Detektoren « β« näherungsweise eine dreieckförmige Apertur zugeordnet wird, deren Basis parallel zur abzutastenden strukturierten Fläche ausgerichtet wird.2. The method of claim 1, d a d u r c h g e k e n n ¬ z e i c h n e t that the detectors «β« is approximately assigned a triangular aperture, the base of which is aligned parallel to the structured surface to be scanned.
3. Vorrichtung zur Detektion kleinster Teilchen auf strukturierten3. Device for the detection of tiny particles on structured
Flächen mit einer Laser-Scan-Vorrichtung (10) zur punktweisen Abtastung der Fläche (14) mit einem fokussierten Laserstrahl (11) kleiner numerischer Apertur, einem Streulichtdetektor und einer elektronischen Auswerteschaltung, d a d u c h g e k e n n z e i c h n e t, daßSurfaces with a laser scanning device (10) for point-by-point scanning of the surface (14) with a focused laser beam (11) with a small numerical aperture, a scattered light detector and an electronic evaluation circuit, that is, that
- dem den Laserstrahl (11) fokussierenden Objektiv (12) der Laser-Scan-Vorrichtung (10) in symmetrischer Verteilung konzentrisch zur optischen Achse (15) des Laserstrahls (11) eine Mehrzahl von n > 3 Streulicht-Detektoren (17-24) zuge¬ ordnet ist, wobei -- die Aufnahmerichtung der Detektoren unter einem Winkel θ gegenüber der optischen Achse (15) des Laserstrahls (11) geneigt und auf den Fokus (13) des Laserstrahls gerichtet ist,- The laser beam (11) focusing lens (12) of the laser scanning device (10) in a symmetrical distribution concentric to the optical axis (15) of the laser beam (11) a plurality of n> 3 scattered light detectors (17-24) is assigned, wherein - the recording direction of the detectors is inclined at an angle θ with respect to the optical axis (15) of the laser beam (11) and is directed at the focus (13) of the laser beam,
— die Apertur der Detektoren der des Laserstrahls (11) an¬ gepaßt ist und- The aperture of the detectors is adapted to that of the laser beam (11) and
-- die Anzahl der Detektoren umso größer ist, je kleiner die Apertur des Laserstrahls (11) ist, - die Auswerteschaltung eine einstellbare Referenzspannung, eine Schaltung zum Vergleich jedes Detektorsignals mit der Referenzspannung, eine Decoderschaltung zur Erzeugung eines den Detektoren zugeordneten Signalcodes und eine Logik¬ schaltung enthält, die bei Vorliegen eines definierten Sig- nalcodes ein Ausgangssignal für die Detektion eines Teil¬ chens erzeugt.- The number of detectors is greater, the smaller the aperture of the laser beam (11), - The evaluation circuit is an adjustable reference voltage, a circuit for comparing each detector signal with the reference voltage, a decoder circuit for generating a signal code assigned to the detectors and logic ¬ circuit which, if a defined sig- nalcodes generates an output signal for the detection of a particle.
4. Vorrichtung nach Anspruch 3, d a d u r c h g e k e n n ¬ z e i c h n e t, daß die Apertur der Detektoren dreieckig ist, wobei die Basis des Dreiecks (25) parallel zur abzu¬ tastenden Fläche (14) ausgerichtet ist. 4. Apparatus according to claim 3, d a d u r c h g e k e n n ¬ z e i c h n e t that the aperture of the detectors is triangular, the base of the triangle (25) is aligned parallel to the surface to be scanned (14).
PCT/DE1992/000896 1991-10-31 1992-10-28 Process and device for detecting small ultimate particles on structured surfaces WO1993009424A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19914135958 DE4135958A1 (en) 1991-10-31 1991-10-31 METHOD AND DEVICE FOR DETECTING THE SMALLEST PARTICLES ON STRUCTURED SURFACES
DEP4135958.5 1991-10-31

Publications (1)

Publication Number Publication Date
WO1993009424A1 true WO1993009424A1 (en) 1993-05-13

Family

ID=6443871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1992/000896 WO1993009424A1 (en) 1991-10-31 1992-10-28 Process and device for detecting small ultimate particles on structured surfaces

Country Status (2)

Country Link
DE (1) DE4135958A1 (en)
WO (1) WO1993009424A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112113977A (en) * 2011-07-12 2020-12-22 科磊股份有限公司 Wafer inspection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889998A (en) * 1987-01-29 1989-12-26 Nikon Corporation Apparatus with four light detectors for checking surface of mask with pellicle
EP0475748A2 (en) * 1990-09-12 1992-03-18 Nikon Corporation Foreign particle detecting apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889998A (en) * 1987-01-29 1989-12-26 Nikon Corporation Apparatus with four light detectors for checking surface of mask with pellicle
EP0475748A2 (en) * 1990-09-12 1992-03-18 Nikon Corporation Foreign particle detecting apparatus

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IBM TECHNICAL DISCLOSURE BULLETIN Bd. 27, Nr. 12, 1. Mai 1985, Seiten 6971 - 6973 'INSPECTION SYSTEM FOR PARTICULATE AND DEFECT DETECTION' WHOLE DOCUMENT *
IBM TECHNICAL DISCLOSURE BULLETIN Bd. 30, Nr. 3, 1. August 1987, Seiten 1248 - 1249 'COINCIDENT ILLUMINATION OPTICAL DETECTOR' WHOLE DOCUMENT *
PATENT ABSTRACTS OF JAPAN vol. 13, no. 200 (P-869)(3548) 12. Mai 1989 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112113977A (en) * 2011-07-12 2020-12-22 科磊股份有限公司 Wafer inspection
CN112113977B (en) * 2011-07-12 2022-08-30 科磊股份有限公司 Wafer inspection

Also Published As

Publication number Publication date
DE4135958A1 (en) 1993-05-06

Similar Documents

Publication Publication Date Title
DE69819159T2 (en) SYSTEM FOR DETECTING SURFACE ANOMALIES AND / OR FEATURES
DE3048053C2 (en)
DE3540916C2 (en)
DE2617457A1 (en) METHOD OF GENERATING A VISUAL IMAGE OF AN OBJECTIVE TO BE TESTED BY MEANS OF TRANSMISSION AND OPTICAL TESTING DEVICE
EP0162120A1 (en) Method and device for the inspection of surfaces
DE2256736B2 (en) Measuring arrangement for the automatic testing of the surface quality and evenness of a workpiece surface
DE102009000528B4 (en) Inspection device and method for the optical examination of object surfaces, in particular of wafer surfaces
DE2539766A1 (en) METHOD AND DEVICE FOR TESTING LIQUID-FILLED TRANSPARENT VESSELS FOR THE PRESENCE OF EXTERNAL PARTICLES IN THE LIQUID
DE4007401C2 (en) Device for determining a property of an object
DE112005000828B4 (en) Apparatus and method for testing semiconductor wafers
DE2637375B2 (en) OPTICAL SURFACE INSPECTION DEVICE
DE3714305C2 (en) Device and method for scanning surfaces with beam-generating devices which generate a first and a second illumination beam with different polarizations
DE19734074C2 (en) Particle detection method and detection system for detecting tiny particles on a workpiece
DE4434699C2 (en) Arrangement for checking transparent or reflective objects
EP1850119A1 (en) Optical sensor and method for optical inspection of surfaces
EP0624787B1 (en) Method and device for non-distructive testing of surfaces
DE112005001256B4 (en) Apparatus and method for testing semiconductor wafers
EP0218865B1 (en) Test arrangement for the contactless ascertainment of flows in non-structured surfaces
WO1993009424A1 (en) Process and device for detecting small ultimate particles on structured surfaces
DE102010029133A1 (en) Method and device for characterization of pyramidal surface structures on a substrate
DE3020044A1 (en) Contactless surface quality testing system for automatic production - using partly coherent light with superimposed incoherent component
DE19824623A1 (en) Technical surface characterisation device
DE3930642C2 (en) Highly sensitive particle size detector with noise suppression
DE102020116790B4 (en) Method of determining misalignment and alignment apparatus for aligning two flat objects relative to each other
DE102007024684A1 (en) Three-dimensional structure i.e. thin course, detecting method for sheet metal of vehicle body, involves obtaining information about structure from brightness difference of two-dimensional images produced by optical viewing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

122 Ep: pct application non-entry in european phase