WO1993014835A1 - Snowboard boot binding system - Google Patents

Snowboard boot binding system Download PDF

Info

Publication number
WO1993014835A1
WO1993014835A1 PCT/US1993/001090 US9301090W WO9314835A1 WO 1993014835 A1 WO1993014835 A1 WO 1993014835A1 US 9301090 W US9301090 W US 9301090W WO 9314835 A1 WO9314835 A1 WO 9314835A1
Authority
WO
WIPO (PCT)
Prior art keywords
binding
snowboard
plate
support
hold
Prior art date
Application number
PCT/US1993/001090
Other languages
French (fr)
Inventor
Jake Burton Carpenter
David Dodge
Original Assignee
The Burton Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25247016&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1993014835(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP93906961A priority Critical patent/EP0624112B1/en
Priority to AU37736/93A priority patent/AU672196B2/en
Priority to KR1019940702590A priority patent/KR0150024B1/en
Priority to JP5513534A priority patent/JP2931405B2/en
Priority to DK93906961T priority patent/DK0624112T3/en
Application filed by The Burton Corporation filed Critical The Burton Corporation
Priority to SK910-94A priority patent/SK91094A3/en
Priority to DE0624112T priority patent/DE624112T1/en
Priority to KR1019940702590A priority patent/KR950700099A/en
Priority to DE69325704T priority patent/DE69325704T2/en
Publication of WO1993014835A1 publication Critical patent/WO1993014835A1/en
Priority to FI943531A priority patent/FI106100B/en
Priority to FI964498A priority patent/FI105455B/en
Priority to FI974551A priority patent/FI105456B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C10/00Snowboard bindings
    • A63C10/24Calf or heel supports, e.g. adjustable high back or heel loops
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C5/00Skis or snowboards
    • A63C5/03Mono skis; Snowboards
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C10/00Snowboard bindings
    • A63C10/02Snowboard bindings characterised by details of the shoe holders
    • A63C10/04Shoe holders for passing over the shoe
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C10/00Snowboard bindings
    • A63C10/16Systems for adjusting the direction or position of the bindings
    • A63C10/18Systems for adjusting the direction or position of the bindings about a vertical rotation axis relative to the board
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C10/00Snowboard bindings
    • A63C10/16Systems for adjusting the direction or position of the bindings
    • A63C10/20Systems for adjusting the direction or position of the bindings in longitudinal or lateral direction relative to the board
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C10/00Snowboard bindings
    • A63C10/16Systems for adjusting the direction or position of the bindings
    • A63C10/22Systems for adjusting the direction or position of the bindings to fit the size of the shoe

Definitions

  • This invention relates generally to boot binding systems for snowboards. More specifically, the invention relates to a snowboard binding having multiple degrees of freedom and adjust ⁇ ability.
  • the rider is able to and often must assume body positions not often found in other sports.
  • the angle between the midline of the foot and the midline of the snowboard is often greatly altered for different snowboarding styles, such as acrobatics or simple traveling, and for different athletes. It is often the case that either a boot worn by the rider or the binding itself will be provided with a support for the lower leg just above the ankle.
  • a simple, rigid support that is merely perpendicular to the board and aligned along the midline of the foot is used. Some of these supports have the capability to fold down against the snowboard surface. Other degrees of freedom are available, but only by disassembly and reassembly of the binding and snowboard.
  • boot binding system be collapsible for storage and transport. It is a still further object of the invention that the boot binding system be simple and cost effective to manufacture, yet reliable and efficient in use.
  • a boot binding system comprises a binding plate, the bottom of which is supported on a snowboard.
  • the plate includes a circular opening in its center which receives a disk shaped hold-down plate.
  • the hold- down plate may be secured to the board in several different positions on the board with the binding plate assuming any rotational position with respect to the hold-down plate.
  • a highback support attached at the rear of the binding plate may be rotated along an axis generally normal to the binding plate (and therefore the board) and secured in its rotated position, to enable a rider to transmit forces to the snowboard from a variety of stance positions.
  • Pig. 1 is a perspective view of a rider on a board having a snowboard binding system according to the invention
  • Fig. 2 is a perspective view of a single snowboard binding according to the present invention.
  • Fig. 3 is a top view of a snowboard binding according to the present invention.
  • Fig. 4 is a cross sectional view taken along the line IV- IV of Fig. 3 and looking in the direction of the arrows;
  • Fig. 5 is a schematic view of the pattern of a set of screw-receiving openings formed in a snowboard using the snowboard binding system of the present invention.
  • Fig. 1 shows a snowboard 10 having a snowboard binding system 12 according • to the present invention, with a rider 14 having his feet engaged in the system.
  • the center line of each of the rider's feet i.e., a line from the heel to the toe, is situated at an angle to the center line A of the board 10.
  • the angle between the lower leg and the foot is somewhat different with each leg, partially due to the spread of the feet and also the varied angle of the feet with respect to the center line of the board 10.
  • each individual binding 16 Support for the feet, preferably wearing a boot, and the lower legs while in this and various other body positions is provided by each individual binding 16.
  • the base binding plate 18 that is mounted to the top of the snowboard 10 (Fig. 4) is seen with two side walls 20 rising from it near the heel 22 of the plate 18. At the heel 22 the two side walls 20 preferably extend rearward of the binding plate 16 and connect to form a curved heel wall 24 (Fig. 3). .
  • a highback leg support 28 which is adjustable as described more fully below.
  • the binding plate 18 is attached to the snowboard 10 through the use of a hold-down plate 30 having splines, ribs or ridges 32 on at least a portion of its under surface that engage complimentary splines, ribs or ridges 34 on a central aperture 36 in the binding plate 18.
  • the hold-down plate 30 preferably has an inverted frusto- conical shape where the sloped walls 38 include the ridges 32 that engage the binding plate 18.
  • the aperture 36 in the binding plate 18 has a complimentary frusto-conical shape with sloped walls 40 having complimentary ridges 34. Both sets of ridges 32,34 are symmetrical around their entire circumferences so that they will mate at many discrete positions.
  • the hold-down plate 30 includes three screw-receiving holes 42 which are arranged so as to lie at the vertices of an equilateral triangle.
  • the pattern of holes 42 of the hold-down plate is repeated on the hold-down plate 30 three times in laterally shifted orientation.
  • the three repetitions of each hole 42 overlap as shown in Figs. 2 and 3 for quick adjustment by loosening the screws (not shown) used to mount the plate 30, but not removing them, and sliding the hold-down plate 30.
  • the three repetitions of holes 42 could be separate or could be merged into a single oblong hole.
  • the three repetitions of the holes 42 allow the hold-down plate 30 to be shifted to either side of the board in order to achieve further positioning flexibility of the binding plate 18 on the board 10.
  • a similar pattern of holes 44 is provided on the board 10 to match the equilateral orientation of the holes 42 in the hold-down plate 30 and is repeated twice.
  • Each pattern repetition includes a fourth hole intermediate to two of the holes of the equilateral triangle and being on a circle intersecting the three holes of the triangle.
  • the two triangles are arranged so that they are rotated by 180° with respect to each other, placing the two intermediate holes as close as possible to each other.
  • the pattern of holes 44 permits the hold-down plate 30 to be oriented in four positions that are displaced from each other along the length of the snowboard.
  • Each possible position of the hold-down plate 30, not taking into account the three repetitions of holes 42, is indicated by a circle B in Fig. 5.
  • the pattern 44 permits the hold-down plate 30 to be mounted in two positions facing in one direction and two positions facing the other direction, for a total of four positions, since the rotation of the hold-down plate 30 with respect to the center line A of the board 10 is irrelevant, because the binding plate 18 may be rotated a full 360° relative to the hold-down plate 30. It can be seen, for example, that the two rightmost positions B (as seen in Fig. 5) are formed by adding only one additional hole 44 (at position E) to those holes 44 already used to form the rightmost position B.
  • the binding plate 18 is held at the desired angular position while the hold- down plate 30 is mounted on top of the binding plate 18 and screwed into the board 10.
  • the holes 44 in the board 10 may also include metal sleeves having internal threads for sturdier connection to the hold-down plate 30. It will also be appreciated by those skilled in the art that the pattern of holes 44 could be formed in a plate (not shown) embedded within or mounted onto the board 10.
  • the highback leg support 28 embodying the present invention includes an upright portion 46 and two forward diagonally extending arms 48 terminating at connection points 26 with the side walls 20 of the binding plate 18. These two connection points 26 allow pivoting of the highback 28 to a forward closed position (folded down) (indicated by arrow D, Fig. 4) for transport or storage.
  • the highback 28 may also be rotatably adjusted about the vertical axis (indicated by arrow C, Fig. 3) due to several structural elements.
  • the contacting surfaces of the highback 28 and the heel wall 24 of the binding plate 18 are both generally semi-cylindrical having similar radii.
  • the . connection points 26 of the highback 28 are bolted through mounting holes 50 that are oblong along the length of the side walls 20. Therefore, it is possible to move one connection point 26 towards the heel while moving the other connection point 26 towards the toe of the binding 16, creating a rotation of the highback 28 about the vertical axis.
  • the outer surface of the side walls 20 adjacent the oblong mounting holes 50 is provided with splines, ribs or ridges 52.
  • a bolt 54 and washer 56 are used with a corresponding nut 58 to lock the connection points 26 in place, the washer 56 having complimentary splines, ribs or ridges to those around the oblong mounting holes 50.
  • the preferred binding 16 shown in Figs. 2, 3 and 4 is specifically designed for a left foot in that the front of the binding plate is skewed to the right side to accommodate the ball and large toe of the foot. Of course, this can simply be mirror- imaged to result in a similar binding for the right foot.
  • the front areas of the side walls 20 are preferably provided with a plurality of holes 60 or any other attachment points necessary to attach accessories (not shown) to the binding 16, such as straps for holding a boot in the binding.
  • a similar hole 62 is formed ⁇ toward the rear of the side walls 20 for attachment of an ankle strap (not shown) .
  • All of the components of the binding system 12 shown in Figs. 1-4, except the nut 58, bolt 54 and washer 56 used to secure the highback 28, are preferably formed of a high impact, high strength plastic, such as polycarbonate or any other known plastic material. These components can be formed by injection molding or any known manufacturing technique. Of course, other materials able to withstand the significant forces exerted during operation of the snowboard can be used similarly. While the preferred embodiments shown and described are fully capable of achieving the objects of the present invention, these embodiments are shown and described only for the purpose of illustration and not for the purpose of limitation, and those skilled in the art will appreciate that many additions, modifica- tions and substitutions are possible without departing from the scope and spirit of the invention as defined in the accompanying claims.

Abstract

A snowboard binding system having a binding plate (18), the bottom of which is supported on a snowboard (10). The plate (18) includes a circular-opening (36) in its center which receives a disk shaped hold-down plate (30). The hold-down plate (30) may be secured to the snowboard (10) in several different positions on the snowboard (10) with the binding plate (18) assuming any rotational position with respect to the hold-down plate (30). Additionally, a highback support (28) attached at the rear of the binding plate (18) may be rotated along an axis generally normal to the binding plate (18) (and therefore the snowboard (10)) and secured in its rotated position, to enable a rider to transmit forces to the snowboard (10) from a variety of stance positions.

Description

;
SNOWBOARD BOOT BINDING SYSTEM
Field of the Invention
This invention relates generally to boot binding systems for snowboards. More specifically, the invention relates to a snowboard binding having multiple degrees of freedom and adjust¬ ability.
Background of the Invention A recently popular sport, snowboarding presents operating conditions and physical demands not found in other skiing-type sports. In snowboarding, the operator stands with both feet on the snowboard, somewhat similar to a slalom water ski. However, in waterskiing,. the operator is pulled in a single direction by a power boat. The strength and positioning requirements of the attachment apparatus used for securing the operator's feet to the ski are therefore quite limited.
In snowboarding, since the motive force is provided by gravity as the rider travels down a hill, the rider is able to and often must assume body positions not often found in other sports. Specifically, the angle between the midline of the foot and the midline of the snowboard is often greatly altered for different snowboarding styles, such as acrobatics or simple traveling, and for different athletes. It is often the case that either a boot worn by the rider or the binding itself will be provided with a support for the lower leg just above the ankle. However, when the angle of the midline of the foot with respect to the board is changed, this can also change the angle between the leg and the foot. Currently, a simple, rigid support that is merely perpendicular to the board and aligned along the midline of the foot is used. Some of these supports have the capability to fold down against the snowboard surface. Other degrees of freedom are available, but only by disassembly and reassembly of the binding and snowboard.
Different riders also have differing requirements as to the distance between the two bindings on the board as well as the binding's position with respect to the lateral dimension of the board.
Thus it is an object of the invention to provide a boot binding system for a snowboard that has several degrees of freedom along the surface of the board. It is a further object of the invention to provide a boot binding system providing freedom about a normal to the surface of the board.
It is yet another object of the invention that the boot binding system be collapsible for storage and transport. It is a still further object of the invention that the boot binding system be simple and cost effective to manufacture, yet reliable and efficient in use.
Summary of the Invention " ' In accordance with a preferred embodiment demonstrating further objects, features, and advantages of the invention, a boot binding system comprises a binding plate, the bottom of which is supported on a snowboard. The plate includes a circular opening in its center which receives a disk shaped hold-down plate. The hold- down plate may be secured to the board in several different positions on the board with the binding plate assuming any rotational position with respect to the hold-down plate. Additionally, a highback support attached at the rear of the binding plate may be rotated along an axis generally normal to the binding plate (and therefore the board) and secured in its rotated position, to enable a rider to transmit forces to the snowboard from a variety of stance positions.
Brief Description of the Drawings The foregoing and other objects, features and advantages of the present invention will be understood more completely by those skilled in the art upon reading the following detailed description in conjunction with a review of the appended drawings, in which: Pig. 1 is a perspective view of a rider on a board having a snowboard binding system according to the invention;
Fig. 2 is a perspective view of a single snowboard binding according to the present invention;
Fig. 3 is a top view of a snowboard binding according to the present invention;
Fig. 4 is a cross sectional view taken along the line IV- IV of Fig. 3 and looking in the direction of the arrows; and
Fig. 5 is a schematic view of the pattern of a set of screw-receiving openings formed in a snowboard using the snowboard binding system of the present invention.
Detailed Description of the Preferred Embodiments
Referring now to the details of the drawings, Fig. 1 shows a snowboard 10 having a snowboard binding system 12 according to the present invention, with a rider 14 having his feet engaged in the system. As can be seen in the figure, the center line of each of the rider's feet, i.e., a line from the heel to the toe, is situated at an angle to the center line A of the board 10. It can also be seen generally that, at each of the rider's ankles, the angle between the lower leg and the foot is somewhat different with each leg, partially due to the spread of the feet and also the varied angle of the feet with respect to the center line of the board 10.
Support for the feet, preferably wearing a boot, and the lower legs while in this and various other body positions is provided by each individual binding 16. In Figure 2, the base binding plate 18 that is mounted to the top of the snowboard 10 (Fig. 4) is seen with two side walls 20 rising from it near the heel 22 of the plate 18. At the heel 22 the two side walls 20 preferably extend rearward of the binding plate 16 and connect to form a curved heel wall 24 (Fig. 3). .
Mounted at two connection points 26 to the side walls 20 is a highback leg support 28 which is adjustable as described more fully below. As seen in Figs. 3 and 4, the binding plate 18 is attached to the snowboard 10 through the use of a hold-down plate 30 having splines, ribs or ridges 32 on at least a portion of its under surface that engage complimentary splines, ribs or ridges 34 on a central aperture 36 in the binding plate 18. As will be described more fully below, the structure of these various components of the binding 16 allows for freedom of movement of the binding plate 18 along the center line A of the board, movement lateral to the center line A of the board, rotation about an axis normal to the board, and rotation of the leg support 28 toward the binding plate 18 and about an axis normal to the board 10. The hold-down plate 30 preferably has an inverted frusto- conical shape where the sloped walls 38 include the ridges 32 that engage the binding plate 18. The aperture 36 in the binding plate 18 has a complimentary frusto-conical shape with sloped walls 40 having complimentary ridges 34. Both sets of ridges 32,34 are symmetrical around their entire circumferences so that they will mate at many discrete positions.
For connection to the board 10, the hold-down plate 30 includes three screw-receiving holes 42 which are arranged so as to lie at the vertices of an equilateral triangle. The pattern of holes 42 of the hold-down plate is repeated on the hold-down plate 30 three times in laterally shifted orientation. Preferably, the three repetitions of each hole 42 overlap as shown in Figs. 2 and 3 for quick adjustment by loosening the screws (not shown) used to mount the plate 30, but not removing them, and sliding the hold-down plate 30. Alternatively, the three repetitions of holes 42 could be separate or could be merged into a single oblong hole. The three repetitions of the holes 42 allow the hold-down plate 30 to be shifted to either side of the board in order to achieve further positioning flexibility of the binding plate 18 on the board 10.
In addition, a similar pattern of holes 44 is provided on the board 10 to match the equilateral orientation of the holes 42 in the hold-down plate 30 and is repeated twice. Each pattern repetition includes a fourth hole intermediate to two of the holes of the equilateral triangle and being on a circle intersecting the three holes of the triangle. Also, the two triangles are arranged so that they are rotated by 180° with respect to each other, placing the two intermediate holes as close as possible to each other. The pattern of holes 44 permits the hold-down plate 30 to be oriented in four positions that are displaced from each other along the length of the snowboard. Each possible position of the hold-down plate 30, not taking into account the three repetitions of holes 42, is indicated by a circle B in Fig. 5. The pattern 44 permits the hold-down plate 30 to be mounted in two positions facing in one direction and two positions facing the other direction, for a total of four positions, since the rotation of the hold-down plate 30 with respect to the center line A of the board 10 is irrelevant, because the binding plate 18 may be rotated a full 360° relative to the hold-down plate 30. It can be seen, for example, that the two rightmost positions B (as seen in Fig. 5) are formed by adding only one additional hole 44 (at position E) to those holes 44 already used to form the rightmost position B.
Once the particular set of holes 44 in the board 10 is determined, the particular repetition of holes 42 in the hold-down plate 30 and its rotational orientation are chosen, the binding plate 18 is held at the desired angular position while the hold- down plate 30 is mounted on top of the binding plate 18 and screwed into the board 10. The holes 44 in the board 10 may also include metal sleeves having internal threads for sturdier connection to the hold-down plate 30. It will also be appreciated by those skilled in the art that the pattern of holes 44 could be formed in a plate (not shown) embedded within or mounted onto the board 10. It will be appreciated that the construction of the binding plate and hole pattern permit a great deal of freedom in adjusting the position of the bindings fore and aft, laterally and 'rotationally on the board, as well as the spacing between them. It will also be appreciated by those skilled in the art that the hold- down plate 30 need not be round to achieve the advantages of the pattern of holes 44, but should be symmetrical when rotated 180". The highback leg support 28 embodying the present invention includes an upright portion 46 and two forward diagonally extending arms 48 terminating at connection points 26 with the side walls 20 of the binding plate 18. These two connection points 26 allow pivoting of the highback 28 to a forward closed position (folded down) (indicated by arrow D, Fig. 4) for transport or storage.
The highback 28 may also be rotatably adjusted about the vertical axis (indicated by arrow C, Fig. 3) due to several structural elements. At the heel of the binding 16 the contacting surfaces of the highback 28 and the heel wall 24 of the binding plate 18 are both generally semi-cylindrical having similar radii. Additionally, the . connection points 26 of the highback 28 are bolted through mounting holes 50 that are oblong along the length of the side walls 20. Therefore, it is possible to move one connection point 26 towards the heel while moving the other connection point 26 towards the toe of the binding 16, creating a rotation of the highback 28 about the vertical axis.
To insure positive locking of the highback 28 in its rotated position, the outer surface of the side walls 20 adjacent the oblong mounting holes 50 is provided with splines, ribs or ridges 52. Preferably, a bolt 54 and washer 56 are used with a corresponding nut 58 to lock the connection points 26 in place, the washer 56 having complimentary splines, ribs or ridges to those around the oblong mounting holes 50. The preferred binding 16 shown in Figs. 2, 3 and 4 is specifically designed for a left foot in that the front of the binding plate is skewed to the right side to accommodate the ball and large toe of the foot. Of course, this can simply be mirror- imaged to result in a similar binding for the right foot. The front areas of the side walls 20 are preferably provided with a plurality of holes 60 or any other attachment points necessary to attach accessories (not shown) to the binding 16, such as straps for holding a boot in the binding. A similar hole 62 is formed toward the rear of the side walls 20 for attachment of an ankle strap (not shown) .
All of the components of the binding system 12 shown in Figs. 1-4, except the nut 58, bolt 54 and washer 56 used to secure the highback 28, are preferably formed of a high impact, high strength plastic, such as polycarbonate or any other known plastic material. These components can be formed by injection molding or any known manufacturing technique. Of course, other materials able to withstand the significant forces exerted during operation of the snowboard can be used similarly. While the preferred embodiments shown and described are fully capable of achieving the objects of the present invention, these embodiments are shown and described only for the purpose of illustration and not for the purpose of limitation, and those skilled in the art will appreciate that many additions, modifica- tions and substitutions are possible without departing from the scope and spirit of the invention as defined in the accompanying claims.

Claims

What is claimed is: 1. A snowboard binding, comprising: a base plate having a front and a rear; a highback leg support, said support positioned near said rear and extending substantially perpendicular to said base plate; and means for .mounting said support for rotational movement about an axis generally normal to said plate, said mounting means including means for fixing said highback leg support in its rotational orientation.
2. A binding as in claim 1, wherein said base plate further comprises a side wall, said support being attached to said side wall.
3. A binding as in claim 2, wherein said means for mounting comprises an oblong hole in said sidewall, parallel to said plate, and a releasable fastener through said hole to said support.
4. A binding as in claim 3, further comprising ridges formed on said sidewall around said hole, said ridges being engaged by said fastener.
5. A binding as in claim 1, wherein said base plate has two sidewalls, said support being connected to each of said sidewalls.
6. A binding as in claim 5, wherein said two sidewalls merge behind the rear of said support to form a heel wall.
7. A binding as in claim 6, wherein said leg support and heel wall are semi-cylindrical and nested.
8. A binding as in claim 1, wherein said support is rotatable about an axis parallel to said plate.
9. A snowboard binding system for a snowboard, comprising: a hold-down plate, said plate including at least two first holes; a base plate forming a part of a binding for receiving the leg of a user and having an aperture shaped and sized for receiving said hold-down plate in at least two rotational orientations; means defining a pattern of second holes in said snowboard, said pattern formed such that said first holes are aligned with a like number of second holes when said hold-down plate is at at least two spaced positions with respect to said snowboard, each corresponding to a different rotational orientation of said hold-down plate; and means for retaining said first holes in alignment with said like number of second holes, while securing said hold- down plate to said snowboard.
10. A snowboard binding system as in claim 9, wherein said pattern includes less than twice the number of said first holes.
11. A snowboard binding system as in claim 9, wherein said hold-down plate is round.
12. A snowboard binding system as in claim 9, wherein said hold-down plate has an inverted frusto-conical shape with a first sloped sidewall, said aperture having a complementary sloped sidewall, said sidewalls engaging each other.
13. A snowboard binding system as in claim 12, wherein said sidewalls have ridges to prevent relative rotation between said hold-down plate and said base plate when secured to said board.
14. A snowboard binding system as in claim 9, wherein each of said first holes comprises three overlapping holes.
15. A snowboard binding system as in claim 9, wherein said base plate has a rear and further comprising: a highback leg support, said support positioned near said rear and extending substantially perpendicular to said base plate; and means for mounting said support for rotational movement about an axis generally normal to said plate, said mounting means including means for fixing said highback leg support in its rotational orientation.
16. A binding as in claim 15, wherein said base plate further comprises a side wall, said support being attached to said side wall.
17. A binding as in claim 16, wherein said means for mounting comprises an oblong hole in said sidewall, parallel to said plate, and a releasable fastener through said hole to said support.
18. A binding as in claim 15, wherein said base plate has two sidewalls, said support being connected to each of said sidewalls.
19. A binding as in claim 18, wherein said two sidewalls merge behind the rear of said support to form a heel wall, and said leg support and heel wall are semi-cylindrical and nested.
20. A binding as in claim 15, wherein said support is rotatable about an axis parallel to said plate.
21. In a snowboard binding system of the type utilizing a triangular arrangement of fastening means to retain a binding base plate to the snowboard, a pattern of fastening elements in the snowboard, comprising: first, second, and third fastening elements arranged to duplicate said basic pattern; a fourth fastening element positioned at the center of a first circle passing through said first, second and third fastening element; fifth and sixth fastening elements located on a second circle centered on one of said first, second and third elements and passing through said fourth element, said fifth and sixth elements being positioned to duplicate the basic pattern in combination with said fourth element.
22. A snowboard binding system in accordance with Claim 21, further comprising a seventh fastening element located on a third circle passing through the center of said second circle and said fifth and sixth elements, said seventh element being positioned so as to define said basic pattern in cooperation with said fifth and sixth elements.
23. A snowboard binding system in accordance wit Claim 22, further comprising an eighth fastening element positioned on a circle passing through said fourth element and two of said first second and third elements which are outside said second circle, said eighth element being positioned to define said basic pattern in combination with said two elements.
PCT/US1993/001090 1992-01-28 1993-01-27 Snowboard boot binding system WO1993014835A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
DE69325704T DE69325704T2 (en) 1992-01-28 1993-01-27 BOOT TIE SYSTEM FOR SNOWBOARD
DE0624112T DE624112T1 (en) 1992-01-28 1993-01-27 BOOT TIE SYSTEM FOR SNOWBOARD.
KR1019940702590A KR0150024B1 (en) 1992-01-28 1993-01-27 Snow board boot binding system
JP5513534A JP2931405B2 (en) 1992-01-28 1993-01-27 Snowboard boots and bindings
DK93906961T DK0624112T3 (en) 1992-01-28 1993-01-27 Snowboard boot binding system
EP93906961A EP0624112B1 (en) 1992-01-28 1993-01-27 Snowboard boot binding system
SK910-94A SK91094A3 (en) 1992-01-28 1993-01-27 Snowboard binding
AU37736/93A AU672196B2 (en) 1992-01-28 1993-01-27 Snowboard boot binding system
KR1019940702590A KR950700099A (en) 1992-01-28 1993-01-27 Snowboard boots binding system
FI943531A FI106100B (en) 1992-01-28 1994-07-27 Snowboard and snowboard bindings
FI964498A FI105455B (en) 1992-01-28 1996-11-08 A binding system for snowboard shoes
FI974551A FI105456B (en) 1992-01-28 1997-12-18 Snowboard binder system consisting of binder plate, binder binder and binder itself

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US826,598 1992-01-28
US07/826,598 US5261689A (en) 1992-01-28 1992-01-28 Snowboard boot binding system

Publications (1)

Publication Number Publication Date
WO1993014835A1 true WO1993014835A1 (en) 1993-08-05

Family

ID=25247016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1993/001090 WO1993014835A1 (en) 1992-01-28 1993-01-27 Snowboard boot binding system

Country Status (14)

Country Link
US (2) US5261689A (en)
EP (5) EP0791380B1 (en)
JP (4) JP2931405B2 (en)
KR (2) KR950700099A (en)
AT (4) ATE177965T1 (en)
AU (5) AU672196B2 (en)
CA (1) CA2117424C (en)
CZ (1) CZ181394A3 (en)
DE (6) DE998963T1 (en)
DK (1) DK0624112T3 (en)
FI (1) FI106100B (en)
HK (1) HK1027767A1 (en)
SK (1) SK91094A3 (en)
WO (1) WO1993014835A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995019205A1 (en) * 1994-01-18 1995-07-20 Thomas Paul Sims Snowboard binding system
FR2732230A1 (en) * 1995-03-31 1996-10-04 Brechet Daniel Semi-automatic fastener holding boot on snow board
EP0756882A1 (en) * 1995-08-01 1997-02-05 NORDICA S.p.A Snowboard adjustable binding
FR2743306A1 (en) * 1996-01-04 1997-07-11 Duret M & Fils Binding to hold boot on snow board
EP0787512A1 (en) * 1996-01-30 1997-08-06 Fritschi AG - Swiss Bindings Snowboard binding
WO1997028858A1 (en) * 1996-02-06 1997-08-14 Preston Binding Company Snowboard binding assembly with adjustable forward lean backplate
AT403249B (en) * 1995-04-05 1997-12-29 Fritschi Apparatebau Binding for a snowboard
EP0823268A1 (en) * 1996-08-09 1998-02-11 Salomon S.A. Device for holding a boot on a snowboard
US5762357A (en) * 1994-02-24 1998-06-09 F2 International Ges. M.B.H. Safety binding for snowboards
WO1998047581A1 (en) * 1997-04-18 1998-10-29 The Burton Corporation Snowboard boot and binding
FR2769238A1 (en) * 1997-10-03 1999-04-09 Salomon Sa Retaining arrangement for boot attached to sliding board, etc., for snow surfing of boot with slots arranged as arcs of circle having common radius and centre
US6027136A (en) * 1997-01-08 2000-02-22 The Burton Corporation System for preventing toe-edge travel of a hi-back
DE19633536C2 (en) * 1996-08-20 2000-07-13 F2 Int Gmbh Snowboard
EP1095675A1 (en) * 1999-10-28 2001-05-02 Emery S.A. Binding system for snowboard
US6257613B1 (en) 1996-08-21 2001-07-10 Salomon S.A. Device for fixing a boot onto a sporting article
FR2804877A1 (en) 2000-02-15 2001-08-17 Rossignol Sa SURF FIXING
US6283482B1 (en) 1998-12-07 2001-09-04 The Burton Corporation Binding with a tool-free selectively adjustable leg support member
US6364323B1 (en) 1999-12-07 2002-04-02 The Burton Corporation Tool-free adjustment system for a leg support member of a binding
EP1254685A1 (en) 2001-05-02 2002-11-06 Skis Rossignol S.A. Snowboardbinding
US6543793B1 (en) 2000-10-03 2003-04-08 The Burton Corporation Highback formed of multiple materials
US7077403B2 (en) 2000-04-28 2006-07-18 The Burton Corporation Highback with independent forward lean adjustment
US7204495B2 (en) 2000-01-06 2007-04-17 The Burton Corporation Highback formed of multiple materials
US7823905B2 (en) 2006-03-17 2010-11-02 William J Ritter Splitboard bindings
US8226109B2 (en) 2006-03-17 2012-07-24 William J Ritter Splitboard bindings
US9022412B2 (en) 2006-03-17 2015-05-05 William J Ritter Splitboard bindings
US9126099B2 (en) 2013-01-27 2015-09-08 William J Ritter Boot binding system with foot latch pedal

Families Citing this family (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413372A (en) * 1993-04-06 1995-05-09 Evans Slalom Ski Binding Company Pivotal and adjustable slalom monaski binding
US5413373A (en) * 1993-04-06 1995-05-09 Evans Slalom Ski Binding Company Solo ski system
US5409244A (en) * 1993-07-12 1995-04-25 Young; Jeffrey A. Plateless snowboard binding device
US5505477A (en) 1993-07-19 1996-04-09 K-2 Corporation Snowboard binding
US5906058A (en) * 1993-07-19 1999-05-25 K-2 Corporation Snowboard boot having a rigid strut
US5417443A (en) * 1993-09-01 1995-05-23 Blattner; Jacob A. Snowboard binding
AT402475B (en) * 1994-01-13 1997-05-26 Aigner Ges M B H BINDING FOR SNOWBOARD SHOES
US5556123A (en) * 1994-05-12 1996-09-17 Fournier; Louis Snowboard binding with compensating plate
US5971420A (en) * 1994-06-06 1999-10-26 Shimano, Inc. Snowboard binding
US5577755A (en) * 1994-07-11 1996-11-26 Kuusport Manufacturing Limited Rotatable binding for snowboard
US5474322A (en) * 1994-07-21 1995-12-12 Crush Snowboard Products, Inc. Snowboard binding
US5660410A (en) * 1994-12-09 1997-08-26 Device Manufacturing Corporation Strapless boot binding for snowboards
US5553883A (en) * 1995-04-06 1996-09-10 Erb; George A. Snowboard binding which permits angular reorientation of a user's foot while maintaining that foot attached to the snowboard
US5765853A (en) * 1995-04-06 1998-06-16 Erb; George A. Snowboard binding which permits angular reorientation of a user's foot while maintaining that foot attached to the snowboard
US5586779A (en) * 1995-06-06 1996-12-24 Dawes; Paul J. Adjustable snowboard boot binding apparatus
IT239582Y1 (en) * 1995-06-21 2001-03-05 Nordica Spa SOCK ADAPTATION DEVICE, ESPECIALLY FOR SPORTS FOOTWEAR ATTACKS
US5690351A (en) 1995-07-21 1997-11-25 Karol; Chris Snowboard binding system
JPH0984921A (en) * 1995-09-27 1997-03-31 Yonetsukusu Kk Binding for boots for snowborad
US5765854A (en) * 1995-10-23 1998-06-16 Moore; Lonny J. Binding mounting system
JP2780086B2 (en) * 1995-10-25 1998-07-23 有限会社マルゼン Snowboard bindings
US5876045A (en) * 1995-12-04 1999-03-02 Acuna, Jr.; Peter R. Angularly adjustable snowboard boot binding
US5915718A (en) * 1996-01-08 1999-06-29 The Burton Corporation Method and apparatus for canting and lifting a snowboard binding
DE29700632U1 (en) * 1997-01-17 1997-06-05 Marker Deutschland Gmbh Snowboard binding
US5894684A (en) * 1996-01-26 1999-04-20 Vans, Inc. Snowboard boot ankle support device
DE19603522A1 (en) * 1996-02-02 1997-08-07 Marker Deutschland Gmbh Holding parts, in particular fastening plate, for holding bindings on snowboards or the like.
US5791678A (en) * 1996-06-05 1998-08-11 Perlman; Richard I. Adjustable boot-binding mount for snowboard
US5803481A (en) * 1996-03-01 1998-09-08 Eaton; Eric L. Foot mounts for snowboards
US5584492A (en) * 1996-03-13 1996-12-17 Fardie; Kenneth W. Snowboard binding mechanism
JPH09276473A (en) * 1996-04-08 1997-10-28 Tokyo Ichitsuru:Kk Binding for snowboard
US6123354A (en) 1996-05-29 2000-09-26 Laughlin; James Step-in snowboard binding
FR2749181B1 (en) * 1996-06-04 1998-09-11 Salomon Sa DEVICE FOR RETAINING A SHOE ON A SNOWBOARD, THE DEVICE INCLUDING AN ARTICULATED BACK SUPPORT ELEMENT
FR2749484B1 (en) 1996-06-06 1998-08-07 Salomon Sa SPORTS SHOE FOR SNOW SURFING
WO1997049464A1 (en) 1996-06-25 1997-12-31 Berger, Richard, W. Snowboard binding
US6499757B1 (en) 1996-06-25 2002-12-31 Richard W. Berger Wakeboard binding
US5820155A (en) * 1996-07-05 1998-10-13 Brisco; Don L. Step-in binding system for retro-fitting to a snowboard boot binder
DE19627808A1 (en) * 1996-07-11 1998-01-15 Marker Deutschland Gmbh Binding for snowboard or the like
US6293577B1 (en) 1996-10-03 2001-09-25 Peter Shields Foot binding assembly
FR2755029B1 (en) * 1996-10-25 1999-01-15 Salomon Sa DEVICE FOR ADJUSTING THE POSITION OF A FIXATION ON A SNOWBOARD, IN PARTICULAR SNOW SURFING
FR2755028B1 (en) * 1996-10-31 1999-01-15 Salomon Sa DEVICE FOR STRAP CONNECTING A SHOE
US5890729A (en) * 1996-12-05 1999-04-06 Items International, Inc. Rotatably adjustable snowboard binding assembly
US5941552A (en) * 1996-12-20 1999-08-24 Bc Creations, Inc. Adjustable snowboard binding apparatus and method
US6283492B1 (en) 1996-12-27 2001-09-04 Noah W. Hale Snowboard binding system and a snowboard step-in boot system with gradually increasing resistance
US5909894A (en) * 1997-01-02 1999-06-08 K-2 Corporation Snowboard binding
US6053524A (en) 1997-01-08 2000-04-25 The Burton Corporation Method and apparatus for indicating when a snowboard binding is locked
US6648365B1 (en) 1997-01-08 2003-11-18 The Burton Corporation Snowboard binding
US5906388A (en) * 1997-01-14 1999-05-25 Quiksilver, Inc. Footwear mounting system
DE29700631U1 (en) * 1997-01-17 1997-06-05 Marker Deutschland Gmbh Snowboard binding
US6283491B1 (en) 1997-03-06 2001-09-04 Maclean-Esna, L.P. Sportboard fastener
US6029991A (en) * 1997-03-13 2000-02-29 Frey; Bernard M. Impact releasable snowboard boot binding assembly and method
US5971407A (en) * 1997-03-26 1999-10-26 Sims Sports, Inc. Snowboard binding
FR2761895B1 (en) 1997-04-11 1999-06-04 Salomon Sa SNOWBOARD FOR SNOW SURFING
US6739615B1 (en) 1997-04-18 2004-05-25 The Burton Corporation Snowboard binding
EP1249259A3 (en) 1997-04-18 2002-10-30 The Burton Corporation Snowboard binding
ATE235937T1 (en) 1997-04-18 2003-04-15 Burton Corp SNOWBOARD BOOTS WITH A CUTOUT FOR A CONNECTING ELEMENT FOR ATTACHING TO A SNOWBOARD
US6145868A (en) * 1997-05-16 2000-11-14 The Burton Corporation Binding system for an article used to glide on snow
US6786502B2 (en) * 1997-07-28 2004-09-07 Stephen R. Carlson Longitudinally adjustable mount for a snowboard binding
FR2767486B1 (en) * 1997-08-22 1999-10-22 Salomon Sa DEVICE FOR RETAINING A SHOE ON A SNOWBOARD INTENDED FOR SNOW SURFING
DE19739223C2 (en) * 1997-09-08 2002-04-25 Reinhard Hansen snowboard binding
US6394483B2 (en) 1997-11-19 2002-05-28 North Shore Partners Snowboard body
US6382658B1 (en) 1997-11-19 2002-05-07 North Shore Partners Method of making a snowboard having improved turning performance
US5967542A (en) * 1997-11-25 1999-10-19 Sims Sports, Inc. Mounting disk and base for snowboard binding
US6189913B1 (en) 1997-12-18 2001-02-20 K-2 Corporation Step-in snowboard binding and boot therefor
US6061870A (en) 1998-01-07 2000-05-16 The Burton Corporation Bushing system
JP3665946B2 (en) 1998-02-12 2005-06-29 株式会社カーメイト Snowboard binding
WO1999048573A2 (en) * 1998-03-23 1999-09-30 Sabol Jeffrey P Double lock rotatable snowboard boot binding
US6022040A (en) * 1998-04-23 2000-02-08 Buzbee; Douglas C. Freely rotating step-in snowboard binding
US6102430A (en) * 1998-05-07 2000-08-15 Reynolds; Dwight H. Dual-locking automatic positioning interface for a snowboard boot binding
US6382641B2 (en) 1998-05-19 2002-05-07 K-2 Corporation Snowboard binding system with automatic forward lean support
US6302411B1 (en) 1998-06-12 2001-10-16 William A. Huffman Rotatable snowboard boot binding
US6155591A (en) * 1998-06-12 2000-12-05 William A. Huffman Rotatable snowboard boot binding
DE19828128A1 (en) * 1998-06-25 1999-12-30 Marker Deutschland Gmbh Binding system for a snowboard
US6206403B1 (en) * 1998-06-26 2001-03-27 Nike International, Inc. Snowboard strap binding
US6557865B1 (en) * 1998-10-09 2003-05-06 The Burton Corporation Highback with adjustable stiffness
US6196559B1 (en) * 1998-11-02 2001-03-06 Scott Cress Snowboot binding
IT1302744B1 (en) * 1998-11-12 2000-09-29 Piva Calzaturificio SNOWBOARD ATTACK WITH ADJUSTABLE RIGIDNESS BASE
US6250651B1 (en) 1998-12-04 2001-06-26 The Burton Corporation Adjustable strap
US6203051B1 (en) * 1999-03-23 2001-03-20 Jeffrey P. Sabol Safety rotatable snowboard boot binding
FR2801514B1 (en) * 1999-11-25 2001-12-21 Rossignol Sa SURF FIXING
US6257614B1 (en) 1999-12-14 2001-07-10 John C. Duggan Dynamic syncronous pivoting boot and foot mounting system for sportingboards
US6631919B1 (en) 2000-01-06 2003-10-14 The Burton Corporation Wing-shaped leg support for a highback
FR2804340B1 (en) * 2000-01-28 2002-03-08 Rossignol Sa SNOWBOARD FIXING
US6390492B1 (en) 2000-02-22 2002-05-21 Sidway Sports, Llc Snowboard binding system with tool-less adjustments
US6315305B1 (en) * 2000-02-23 2001-11-13 Yu Tze Gien Snowboard binding having adjustable toe
US6450511B1 (en) * 2000-02-28 2002-09-17 Lavoy Thomas F. Snowboard binding mount assembly
US6290243B1 (en) 2000-03-04 2001-09-18 Bc Creations, Inc. Angular displacement control apparatus and method for rotationally adjustable snowboard bindings
FR2811583B1 (en) 2000-07-17 2002-10-04 Emery Sa SURF FIXING
JP2002085622A (en) * 2000-09-18 2002-03-26 Japana Co Ltd Snowboard binding
FR2814963B1 (en) * 2000-10-06 2003-01-10 Salomon Sa DEVICE FOR RETAINING A SHOE ON A SLIDING, RUNNING OR WALKING BOARD FOR THE PRACTICE OF A SPORT
FR2817163B1 (en) * 2000-11-24 2003-02-21 Salomon Sa SHOE RETAINING ASSEMBLY ON A BOARD
JP2004516117A (en) * 2000-12-22 2004-06-03 ニトロ・エス・アール・エル Especially for snowboard bindings
IT1316560B1 (en) * 2000-12-28 2003-04-22 Benetton Spa ANGULAR ADJUSTMENT DEVICE, PARTICULARLY FOR A DASNOWBOARD ATTACK.
US6467795B1 (en) 2000-12-29 2002-10-22 Shimano Inc. Snowboard binding with highback
US6715773B2 (en) 2001-01-09 2004-04-06 K-2 Corporation Adjustable damping pads for snowboard bindings
EP1264619A1 (en) 2001-06-06 2002-12-11 The Burton Corporation Binding mounting method and apparatus
US20020185840A1 (en) * 2001-06-06 2002-12-12 Schaller Hubert M. Binding mounting method and apparatus
AT411016B (en) * 2001-08-29 2003-09-25 Atomic Austria Gmbh BINDING DEVICE FOR SPORTS EQUIPMENT, ESPECIALLY FOR A SNOWBOARD
US6817622B2 (en) 2001-08-29 2004-11-16 David J. Dodge Mounting disk for a snowboard binding
US6684534B2 (en) 2001-09-28 2004-02-03 K2 Snowshoes, Inc. Step-in snowshoe binding system
DE60203240T2 (en) * 2001-11-21 2006-02-09 The Burton Corp. Binding board for a snowboard
US6722688B2 (en) 2001-11-21 2004-04-20 The Burton Corporation Snowboard binding system
FR2834909B1 (en) * 2002-01-18 2004-04-09 Emery Sa IMPROVEMENT FOR A DEVICE FOR RETAINING A SHOE ON A SNOWBOARD OF THE SURF TYPE
AT413650B (en) * 2002-01-18 2006-04-15 Atomic Austria Gmbh SNOWBOARD BINDING
US7191568B1 (en) 2002-01-30 2007-03-20 Nick Choate Modular safety surface and method for preparing the same
AU2003241498A1 (en) * 2002-05-21 2003-12-12 Raymond R. Kavarsky Jr. Interface system for retaining a foot or a boot on a sports article
US6575489B1 (en) * 2002-07-05 2003-06-10 Rick Albert White Snowboard rotatable binding conversion apparatus
US7159892B2 (en) * 2002-12-19 2007-01-09 K-2 Corporation Snowboard binding with suspension heel loop
US6923454B2 (en) * 2002-12-30 2005-08-02 Dean M. Drako Snowboard binding rotational mechanism
US6916036B1 (en) 2003-01-07 2005-07-12 Kent Egli Adjustable two-position snowboard binding mount and methods
DE10305764B4 (en) * 2003-02-11 2007-04-12 Goodwell International Ltd., Tortola snowboard binding
DE10335850A1 (en) * 2003-08-06 2005-07-07 Head Sport Ag Snowboard binding
FR2859390B1 (en) * 2003-09-08 2005-11-18 Emery SNOW SURF MOUNTING
US6969075B2 (en) * 2003-10-21 2005-11-29 The Burton Corporation Snowboard binding with reduced vertical profile
FR2865658B1 (en) * 2004-01-30 2006-06-09 Salomon Sa DEVICE FOR HOSTING A FOOT OR SHOE ON A SPORT MACHINE
US20050194753A1 (en) * 2004-03-08 2005-09-08 Craven Richard J.Jr. Snowboard Binding
US7300070B2 (en) 2004-05-10 2007-11-27 Jean-Francois Pelchat Binding mounting system for recreational board
FR2871709B1 (en) * 2004-06-21 2006-09-29 Salomon Sa DEVICE FOR MAINTAINING A FOOT OR SHOE ON A SPORT MACHINE
US20060033293A1 (en) * 2004-08-16 2006-02-16 Tsuboi Raiden J Sixth gear
US20060237920A1 (en) * 2005-04-25 2006-10-26 K-2 Corporation Virtual forward lean snowboard binding
GB2428012A (en) * 2005-07-07 2007-01-17 Ezio Panzeri Rotating connection system
US20070007735A1 (en) * 2005-07-11 2007-01-11 Stefanic Daniel M Freely rotatable binding for board sports with internal resilience and safety lock
US7134928B1 (en) * 2005-08-16 2006-11-14 Connelly Skis, Inc. Binding for water sports boards
US8192244B2 (en) * 2005-08-16 2012-06-05 Connelly Skis, Inc. Water sports binding assembly
US8016315B2 (en) * 2005-09-30 2011-09-13 Flow Sports, Inc. Modular binding for sports board
WO2007053953A1 (en) * 2005-11-10 2007-05-18 Gagne Marc Swivel binding mounts for sliding boards
US7384048B2 (en) * 2006-02-28 2008-06-10 Paul Cerrito Rotatable binding apparatus for a snowboard
US7571924B2 (en) * 2006-06-14 2009-08-11 Rick White Rotatable snowboard boot binding apparatus
US7823892B2 (en) * 2007-05-04 2010-11-02 Quiksilver, Inc. Snowboard
US20080277904A1 (en) * 2007-05-11 2008-11-13 Peter Etges Snowboard binding system
US20100154254A1 (en) * 2007-05-16 2010-06-24 Nicholas Fletcher Boot binding
US7992888B2 (en) * 2007-12-07 2011-08-09 K-2 Corporation Blockless highback binding
EP2424630A4 (en) 2009-04-30 2014-10-29 Jf Pelchat Inc Binding system for recreational board
US9016714B2 (en) 2009-04-30 2015-04-28 Jf Pelchat Inc. Binding system for recreational board
US8276921B2 (en) * 2009-09-04 2012-10-02 Brendan Walker Snowboard binding
WO2012016204A1 (en) 2010-07-30 2012-02-02 Van Bregmann Industries, Inc. Rotationally adjustable adapter for sport boot binding
WO2012051549A2 (en) * 2010-10-15 2012-04-19 BackCountry Garage, LLC Hinge mechanism, collapsible ascension ski having such a hinge mechanism, and related methods and kits
WO2012103480A1 (en) 2011-01-27 2012-08-02 Brendan Walker Board sport bindings
US20160082343A1 (en) * 2014-09-22 2016-03-24 Timothy Hughes Universal snowboard binding
US10758811B2 (en) 2016-01-28 2020-09-01 BackCountry Garage, LLC Collapsible ski having fabric hinge
WO2017184894A1 (en) 2016-04-20 2017-10-26 Digby Daniel Releaseable binding assembly for various sports
US10086257B2 (en) * 2016-06-28 2018-10-02 Mad Jack Snow Sports Apparatus for adapting a snowboard boot for use with an alpine ski
JP6153685B1 (en) * 2017-04-11 2017-06-28 株式会社 Jp Tight Snowboard binding plate
DE202019102639U1 (en) 2019-05-10 2019-05-22 Head Technology Gmbh Mounting plate for connecting a snowboard binding with a snowboard
US11285377B2 (en) 2019-06-05 2022-03-29 Harry Jason Talanian Adjustable boot binding apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2740972A (en) * 1951-05-22 1956-04-10 Taylor William Humphrey Water ski harness
US2919452A (en) * 1958-05-15 1960-01-05 Anthony M Kluge Binding for water skis
US4040137A (en) * 1975-05-19 1977-08-09 Composite Structures Corporation Binding for water ski
US4718873A (en) * 1985-08-30 1988-01-12 O'brien International, Inc. Lock for water ski binding
FR2627097A1 (en) * 1988-02-11 1989-08-18 Duret Michel Bindings for a snowboard
US4871337A (en) * 1987-07-27 1989-10-03 Treon Corporation Binding with longitudinal and angular adjustment
EP0398794A1 (en) * 1989-05-16 1990-11-22 Michel Jean Georges Chabiland Adjustable binding device for skiing and skating
US5021017A (en) * 1990-08-30 1991-06-04 Wellington Leisure Products, Inc. Water sports board with adjustable binder plates

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US599495A (en) * 1898-02-22 dueel
US1678579A (en) * 1927-07-28 1928-07-24 Vincent Perlo Skate
US2130693A (en) * 1936-02-27 1938-09-20 Nashe Leif Ski binding
FR1336175A (en) * 1962-07-05 1963-08-30 Ski binding device
US3295859A (en) * 1964-06-04 1967-01-03 Elijah R Perry Metal ski having a pair of grooves at the opposite edges thereof
AU7002574A (en) * 1974-06-12 1975-12-18 Collins J W Ski boots
FR2592807A1 (en) * 1986-01-13 1987-07-17 Duport Xavier System for fastening a boot onto a snow board which can be converted temporarily into the monoski position
FR2595579B1 (en) * 1986-03-14 1989-05-05 Salomon Sa SKI WITH PRE-DRILLS FOR MOUNTING BINDINGS
CH672432A5 (en) * 1987-03-27 1989-11-30 Hansruedi Naepflin
CH678397A5 (en) * 1989-01-31 1991-09-13 Fritschi Apparatebau Safety release binding for snow boards - has sole plate fixed on central release pivot on snow board
US5046746A (en) * 1989-02-27 1991-09-10 Gierveld Beheer B.V. Frame for a skate, method for the manufacture thereof, skating shoe and skate
CH676205A5 (en) * 1989-05-04 1990-12-28 Urs P Meyer
FR2656227A1 (en) * 1989-12-22 1991-06-28 Gabri Gilles Binding (fastening) with rotary plate for snowboard
US4979760A (en) * 1989-12-26 1990-12-25 Derrah Steven J Soft boot binding for snow boards
CA2030429A1 (en) * 1990-11-21 1992-05-22 Gad Shaanan Binding for a snowboard and a snowboard incorporating the bindings
AT397918B (en) * 1990-12-14 1994-08-25 Tyrolia Freizeitgeraete SKI-BINDING COMBINATION
US5147234A (en) * 1991-02-08 1992-09-15 Byron Lance Brug Heel-binding device
US5172924A (en) * 1991-03-27 1992-12-22 Barci Robert S Hard shell boot snowboard bindings and system
DE9108513U1 (en) * 1991-07-10 1991-09-26 F 2 International Ges.M.B.H., Kirchdorf, At
DE9113766U1 (en) * 1991-11-05 1992-02-27 Take Off Production Ag, Vicosoprano, Ch

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2740972A (en) * 1951-05-22 1956-04-10 Taylor William Humphrey Water ski harness
US2919452A (en) * 1958-05-15 1960-01-05 Anthony M Kluge Binding for water skis
US4040137A (en) * 1975-05-19 1977-08-09 Composite Structures Corporation Binding for water ski
US4718873A (en) * 1985-08-30 1988-01-12 O'brien International, Inc. Lock for water ski binding
US4871337A (en) * 1987-07-27 1989-10-03 Treon Corporation Binding with longitudinal and angular adjustment
FR2627097A1 (en) * 1988-02-11 1989-08-18 Duret Michel Bindings for a snowboard
EP0398794A1 (en) * 1989-05-16 1990-11-22 Michel Jean Georges Chabiland Adjustable binding device for skiing and skating
US5021017A (en) * 1990-08-30 1991-06-04 Wellington Leisure Products, Inc. Water sports board with adjustable binder plates

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480176A (en) * 1994-01-18 1996-01-02 Sims; Thomas P. External mounted binding
WO1995019205A1 (en) * 1994-01-18 1995-07-20 Thomas Paul Sims Snowboard binding system
US5762357A (en) * 1994-02-24 1998-06-09 F2 International Ges. M.B.H. Safety binding for snowboards
FR2732230A1 (en) * 1995-03-31 1996-10-04 Brechet Daniel Semi-automatic fastener holding boot on snow board
AT403249B (en) * 1995-04-05 1997-12-29 Fritschi Apparatebau Binding for a snowboard
EP0756882A1 (en) * 1995-08-01 1997-02-05 NORDICA S.p.A Snowboard adjustable binding
FR2743306A1 (en) * 1996-01-04 1997-07-11 Duret M & Fils Binding to hold boot on snow board
EP0787512A1 (en) * 1996-01-30 1997-08-06 Fritschi AG - Swiss Bindings Snowboard binding
US5727797A (en) * 1996-02-06 1998-03-17 Preston Binding Company Snowboard binding assembly with adjustable forward lean backplate
WO1997028858A1 (en) * 1996-02-06 1997-08-14 Preston Binding Company Snowboard binding assembly with adjustable forward lean backplate
EP0823268A1 (en) * 1996-08-09 1998-02-11 Salomon S.A. Device for holding a boot on a snowboard
FR2752169A1 (en) * 1996-08-09 1998-02-13 Salomon Sa DEVICE FOR RETAINING A SHOE ON A SNOWBOARD
US6007085A (en) * 1996-08-09 1999-12-28 Salomon S. A. Device for retaining a boot on a gliding board
DE19633536C2 (en) * 1996-08-20 2000-07-13 F2 Int Gmbh Snowboard
US6257613B1 (en) 1996-08-21 2001-07-10 Salomon S.A. Device for fixing a boot onto a sporting article
US6322096B2 (en) 1996-08-21 2001-11-27 Salomon S.A. Device for fixing a boot onto a sporting article
US6283495B1 (en) 1997-01-08 2001-09-04 The Burton Corporation System for preventing toe-edge travel of a hi-back
US6027136A (en) * 1997-01-08 2000-02-22 The Burton Corporation System for preventing toe-edge travel of a hi-back
WO1998047581A1 (en) * 1997-04-18 1998-10-29 The Burton Corporation Snowboard boot and binding
US6394484B1 (en) 1997-04-18 2002-05-28 The Burton Corporation Snowboard boot and binding
FR2769238A1 (en) * 1997-10-03 1999-04-09 Salomon Sa Retaining arrangement for boot attached to sliding board, etc., for snow surfing of boot with slots arranged as arcs of circle having common radius and centre
US6283482B1 (en) 1998-12-07 2001-09-04 The Burton Corporation Binding with a tool-free selectively adjustable leg support member
US6578865B1 (en) 1999-10-28 2003-06-17 Emery Sa Board binding
FR2800293A1 (en) * 1999-10-28 2001-05-04 Emery Sa FIXING SURFBOARDS
EP1095675A1 (en) * 1999-10-28 2001-05-02 Emery S.A. Binding system for snowboard
US6364323B1 (en) 1999-12-07 2002-04-02 The Burton Corporation Tool-free adjustment system for a leg support member of a binding
US7566062B2 (en) 2000-01-06 2009-07-28 The Burton Corporation Highback formed of multiple materials
US7204495B2 (en) 2000-01-06 2007-04-17 The Burton Corporation Highback formed of multiple materials
US6609720B2 (en) 2000-02-15 2003-08-26 Skis Rossignol S.A. Snowboard binding
FR2804877A1 (en) 2000-02-15 2001-08-17 Rossignol Sa SURF FIXING
EP1125604A1 (en) 2000-02-15 2001-08-22 Skis Rossignol S.A. Snowboard binding
US7748729B2 (en) 2000-04-28 2010-07-06 The Burton Corporation Highback with independent forward lean adjustment
US7077403B2 (en) 2000-04-28 2006-07-18 The Burton Corporation Highback with independent forward lean adjustment
US6543793B1 (en) 2000-10-03 2003-04-08 The Burton Corporation Highback formed of multiple materials
FR2824274A1 (en) 2001-05-02 2002-11-08 Rossignol Sa SNOW SURF FIXING
EP1254685A1 (en) 2001-05-02 2002-11-06 Skis Rossignol S.A. Snowboardbinding
US7823905B2 (en) 2006-03-17 2010-11-02 William J Ritter Splitboard bindings
US8226109B2 (en) 2006-03-17 2012-07-24 William J Ritter Splitboard bindings
US9022412B2 (en) 2006-03-17 2015-05-05 William J Ritter Splitboard bindings
US9126099B2 (en) 2013-01-27 2015-09-08 William J Ritter Boot binding system with foot latch pedal
US9573043B2 (en) 2013-01-27 2017-02-21 William J Ritter Boot binding system with foot latch pedal

Also Published As

Publication number Publication date
DE69325704T2 (en) 2000-01-13
DE69323912T2 (en) 1999-08-05
EP0998963B1 (en) 2001-08-22
EP0624112A4 (en) 1995-01-25
AU679882B2 (en) 1997-07-10
DE69324176D1 (en) 1999-04-29
DE69330651D1 (en) 2001-09-27
AU697913B2 (en) 1998-10-22
DE624112T1 (en) 1997-08-28
AU8928798A (en) 1998-12-03
CA2117424A1 (en) 1993-08-05
ATE204497T1 (en) 2001-09-15
AU5948596A (en) 1996-09-05
FI943531A0 (en) 1994-07-27
FI106100B (en) 2000-11-30
DE998963T1 (en) 2000-10-05
FI943531A (en) 1994-07-27
EP0791380B1 (en) 1999-03-24
EP0624112B1 (en) 1999-07-21
ATE182275T1 (en) 1999-08-15
JP2918866B2 (en) 1999-07-12
AU716439B2 (en) 2000-02-24
DE69324176T2 (en) 1999-08-19
AU672196B2 (en) 1996-09-26
DK0624112T3 (en) 1999-11-29
DE69323912D1 (en) 1999-04-15
SK91094A3 (en) 1995-04-12
EP0998963A1 (en) 2000-05-10
EP0791379B1 (en) 1999-03-10
JP2918865B2 (en) 1999-07-12
EP0791380A1 (en) 1997-08-27
JPH10174734A (en) 1998-06-30
DE69325704D1 (en) 1999-08-26
AU3773693A (en) 1993-09-01
JPH07503389A (en) 1995-04-13
US5356170A (en) 1994-10-18
EP0791379A1 (en) 1997-08-27
JP2918864B2 (en) 1999-07-12
JPH10165561A (en) 1998-06-23
CZ181394A3 (en) 1994-12-15
EP0624112A1 (en) 1994-11-17
HK1027767A1 (en) 2001-01-23
JPH10165560A (en) 1998-06-23
ATE177334T1 (en) 1999-03-15
KR950700099A (en) 1995-01-16
EP0916371A1 (en) 1999-05-19
US5261689A (en) 1993-11-16
CA2117424C (en) 1997-03-25
AU5948396A (en) 1996-09-05
JP2931405B2 (en) 1999-08-09
KR0150024B1 (en) 1998-10-15
ATE177965T1 (en) 1999-04-15
DE69330651T2 (en) 2002-07-04
AU5948696A (en) 1996-09-05

Similar Documents

Publication Publication Date Title
US5261689A (en) Snowboard boot binding system
US5520405A (en) Snowboard binding and boot including complementary opening and binding member
US5586779A (en) Adjustable snowboard boot binding apparatus
US5409244A (en) Plateless snowboard binding device
US6206402B1 (en) Snowboard binding adjustment mechanism
US20060237920A1 (en) Virtual forward lean snowboard binding
US7059614B2 (en) Freely rotatable binding for snowboarding and other single-board sports
US7384048B2 (en) Rotatable binding apparatus for a snowboard
AU2001267692B2 (en) An accessory for a snowboard
WO1999041130A1 (en) Freely rotatable binding for snowboarding and other single-board sports
FI105455B (en) A binding system for snowboard shoes
US20030146588A1 (en) Swivelable mount for attaching a binding to a snowboard
EP0553051A1 (en) Connection device between the sole of a ski boot and a ski, monoski or snow gliter
WO2000004964A1 (en) Snowboard binding mechanism
WO1989006996A1 (en) Snowboard binding

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BG CA CZ FI HU JP KP KR NO NZ PL RU SK UA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: NZ,UA

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: NZ,UA

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: NZ,UA

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: NZ,UA

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: NZ,UA

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: NZ,UA

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: NZ,UA

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1993906961

Country of ref document: EP

Ref document number: 2117424

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 251010

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 943531

Country of ref document: FI

Ref document number: 1019940702590

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PV1994-1813

Country of ref document: CZ

Ref document number: 91094

Country of ref document: SK

WWP Wipo information: published in national office

Ref document number: 1993906961

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1994-1813

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 964498

Country of ref document: FI

WWE Wipo information: entry into national phase

Ref document number: 974551

Country of ref document: FI

WWR Wipo information: refused in national office

Ref document number: PV1994-1813

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1993906961

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 974551

Country of ref document: FI

Ref document number: 964498

Country of ref document: FI

WWG Wipo information: grant in national office

Ref document number: 943531

Country of ref document: FI