WO1993019092A1 - Defective recombinant adenoviruses expressing characteristic epstein-barr virus proteins - Google Patents

Defective recombinant adenoviruses expressing characteristic epstein-barr virus proteins Download PDF

Info

Publication number
WO1993019092A1
WO1993019092A1 PCT/FR1992/000256 FR9200256W WO9319092A1 WO 1993019092 A1 WO1993019092 A1 WO 1993019092A1 FR 9200256 W FR9200256 W FR 9200256W WO 9319092 A1 WO9319092 A1 WO 9319092A1
Authority
WO
WIPO (PCT)
Prior art keywords
ebv
cells
adenovirus
recombinant vector
genome
Prior art date
Application number
PCT/FR1992/000256
Other languages
French (fr)
Inventor
Michel Perricaudet
Thierry Ragot
Susan Finerty
Andrew J. Morgan
Original Assignee
Centre National De La Recherche Scientifique
Cancer Research Campaign In London
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique, Cancer Research Campaign In London filed Critical Centre National De La Recherche Scientifique
Priority to PCT/FR1992/000256 priority Critical patent/WO1993019092A1/en
Priority to AU16480/92A priority patent/AU1648092A/en
Publication of WO1993019092A1 publication Critical patent/WO1993019092A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16211Lymphocryptovirus, e.g. human herpesvirus 4, Epstein-Barr Virus
    • C12N2710/16222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16211Lymphocryptovirus, e.g. human herpesvirus 4, Epstein-Barr Virus
    • C12N2710/16234Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the subject of the invention is recombinant adenoviruses defective for replication expressing glycoproteins characteristic of the Epstein-Barr virus, in particular major envelope glycoproteins of this virus, as well as the use of these recombinant adenoviruses in vaccine compositions directed against pathologies resulting from an individual's infection with the Epstein-Barr virus (EBV).
  • EBV Epstein-Barr virus
  • Epstein-Barr virus is present in a latent state in a fraction of the B lymphocytes of the vast majority of adults.
  • This herpes virus is responsible for infectious mononucleosis and is etiologically associated with endemic Burlcitt lymphoma and undifferentiated carcinoma of the nasopharynx (NPC) (Epstein and Achong, 1979, 1986). It is also involved in lymphomas appearing in immunocompromised patients, such as individuals who have undergone an organ transplant or patients with AIDS (Thomas and Crawford, 1989). More recently this virus has been associated with certain types of Hodgkin's lymphoma (Mueller et al., 1989; Pallesen et al., 1991).
  • EBV therefore represents a major health problem worldwide. Unfortunately, it is not possible to use EBV as a live vaccine because it replicates very weakly in vitro and transforms human B lymphocytes in vivo.
  • the major envelope glycoproteins of EBV namely the gp340 and gp220 proteins, both originate from the same viral gene by a splicing phenomenon without changing the reading frame (Beisel et al., 1985), and are expressed on the outer surface of virions and on the membrane of infected cells. These proteins bind to the CR2 cellular receptor (CD21) of the complement C3d component (Fingeroth et al., 1984; Tanner et al., 1988) and are capable of inducing the formation of EBV neutralizing antibodies in humans. (Thorley-Lawson and Poodry, 1982). Monoclonal antibodies against gp340 / 220 also neutralize the virus in vitro (Hoffman et al., 1980).
  • T cells T cells
  • T cells Uleato et al., 1988; Bejarano et al., 1990
  • an antibody-dependent cell cytotoxicity Qaltière et al., 1982
  • neutralizers also induces the formation of antibodies. neutralizers.
  • Cottontop tamarin monkeys have been successfully protected against EBV-induced lymphoma by a gp340-based vaccine purified from B95 / 8 cells (Epstein et al., 1985; Morgan et al., 1988a and 1989).
  • the quantity of gp340 directly obtained from EBV is too insufficient to allow consideration of the use of proteins purified from EBV as a vaccine.
  • the preparations obtained can be contaminated with EBV DNA, which is not acceptable in human vaccination.
  • Recombinant vectors have been made using recombinant viral vectors expressing the gene encoding gp340 / gp220, such as vaccinia virus (Mackett and Arrand, 1985) and varicella-zoster virus (Lowe et al., 1987). Protection against EBV-induced lymphoma was achieved using a vaccinia virus laboratory strain (WK) as a vector, but was not achieved using a more attenuating vaccine strain ( Wyeth) (Morgan et al., 1988b). However, only one attenuated strain of the vaccinia virus can be used in the context of a vaccination against EBV using recombinant vaccinia, which consequently limits the effectiveness of this type of vaccine.
  • WK vaccinia virus laboratory strain
  • Wyeth more attenuating vaccine strain
  • One of the aims of the present invention is to provide vaccinating compositions against the pathologies caused by the infection of an individual by EBV, which have both the advantage:
  • the subject of the present invention is recombinant nucleic acids characterized in that they comprise, on the one hand, a genomic sequence of a defective adenovirus, that is to say devoid of the sequences necessary for its replication, and, on the other hand on the other hand, an insert comprising one or more DNA sequences coding for any protein characteristic of EBV which is capable of inducing in an individual the formation of protective neutralizing antibodies against EBV and, where appropriate of protective cells, in particular cytotoxic T cells and T helper cells, this insert being placed under the control of a promoter present or previously inserted into the genome of the adenovirus.
  • the genomic sequence of the abovementioned defective adenovirus nevertheless includes those of the sequences which in this genome are the carrier of the genetic information necessary for the corresponding adenovirus to penetrate cells which can be infected with it, and, the if necessary, all of the essential sequences necessary for the packaging of this adenovirus.
  • the invention relates more particularly to the use of these nucleic acids as vectors for the transformation of human or animal cells.
  • the promoter under whose control the above-mentioned insert is placed, is advantageously likely to be recognized by the polymerases (and more particularly the polymerases II) of human or animal cells infectable with this virus (representing a large number of different cell types), this promoter being in particular the late major major promoter (MLP) of human adenovirus type 2 (Levrero et al., 1991) or any other known ubiquitous promoter.
  • MLP late major major promoter
  • human adenovirus type 2 Levrero et al., 1991
  • Adenoviruses in particular adenoviruses of type 2 or 5 (Ad2 or Ad5), represent particularly preferred vectors within the framework of the present invention, for the following reasons: in general, adenoviruses are relatively stable, can be cultured easily and rapidly (30 h viral cycle), give particularly high titers (up to 104 to 105 plaque forming units or pfu per infected cell).
  • Types 2 or 5 are more particularly preferred since these serotypes are not oncogenic in rodents such as, for example, serotype 7, the complete sequence of their viral genome has been established (Chrobozek et al., 1992), their molecular biology has been intensively studied, finally, many mutants, in particular deletion mutants have been obtained, making it possible to insert large DNA fragments (Berkner, 1988).
  • the DNA sequence (s) mentioned above, coding for any protein characteristic of EBV is or are included in a defective adenovirus genome, this genome being devoid of the essential nucleotide sequences necessary the replication of this virus in permissive cells, and more particularly sequences coding for the E1 region, and, where appropriate for the E3 region.
  • This E1 region comprises the immediately early gene E1A which activates the other early transcription units of the virus and is therefore necessary for its replication, and the E1B gene which is responsible for the complete transformation of cells in culture in the presence of E1A.
  • the defective genome adenovirus nevertheless preferably comprises all of the essential sequences necessary for the constitution of a viral stock on cells (293 cells) complementing the E1 region (E1A + E1B) of the virus.
  • the above-mentioned foreign DNA sequences are inserted in place of the E1 region of the Ad5 genome, a region allowing the insertion of several genes coding for immunogenic proteins .
  • the genome of the recombinant vectors according to the invention comprises a DNA sequence coding for a major envelope glycoprotein of EBV, and more particularly for the glycoprotein gp340 or gp220 of EBV, or for any fragment of these. proteins which is capable of inducing the formation of protective antibodies against EBV in an individual, and, where appropriate, of protective cells of the immune system, in particular cytotoxic T cells and T helper.
  • recombinant vectors in the context of the present invention are those whose genome comprises a DNA sequence coding for an EBV membrane antigen involved in the mechanism of fusion of the EBV viral envelope with the membrane of B lymphocytes and epithelial cells, and more particularly the glycoprotein gp85 (Haddad et al., 1989), or for any fragment of this protein capable of inducing the formation of protective antibodies or protective cells as defined above.
  • Preferred vectors according to the invention are those comprising both an insertion nucleic acid encoding a major envelope glycoprotein of EBV, and more particularly for the glycoprotein EBV gp340 or gp220, or for any fragment of these proteins as defined above, and an insertion nucleic acid encoding an EBV membrane antigen involved in the fusion mechanism of the viral envelope EBV with the cell membrane of the body's cells, and more particularly the glycoprotein gp85 or for any fragment of this protein as defined above.
  • the genome of the vectors according to the invention also comprises a DNA sequence coding for a protein stimulating the immune system, and more particularly the cellular response (cytokines).
  • the present invention relates to vectors as described above and whose genome comprises a DNA sequence coding for interleukin-2, interleukin-3, interleukin-4, interleukin -5, interleukin-6, interleukin-7, or any fragments thereof that may stimulate the immune system.
  • the invention also relates to pharmaceutical compositions comprising one or a combination of several recombinant vectors as described above, in combination with a pharmaceutically acceptable vehicle (adjuvants, immunostimulatory complexes).
  • a pharmaceutically acceptable vehicle adjuvants, immunostimulatory complexes.
  • the invention more particularly relates to vaccines directed against pathologies caused by EBV in humans or animals, these vaccinating compositions comprising one or more recombinant vectors as described above, in combination with a pharmaceutically carrier acceptable.
  • the present invention relates to methods of prevention, mitigation or treatment of pathologies caused by EBV in humans or animals, these methods comprising the administration in humans or animals likely to be infected with EBV or at risk of being infected, of a vaccine or of a pharmaceutical composition according to the invention.
  • non-replicable adenoviruses in the context of the present invention offers the advantage on the one hand of avoiding contamination of the environment of the individuals treated with the aid of these vectors, and, on the other hand, to avoid obtaining in the treated individuals too strong immunization against the proteins characteristic of the adenovirus, and more particularly against the proteins of the capsid (hexons and fiber), thus authorizing the carrying out of several immunizations in complete safety.
  • the quantity of vectors administered into the organism is advantageously chosen so as to provoke an appropriate immune response directed essentially against the vaccinating antigens inserted into the viral vector in the organism into which they are injected.
  • the routes of administration chosen in the context of the present invention are the intramuscular, intranasal or the oral route in the form of gastro-protected capsules capable of delivering the viral vector to the intestinal epithelium.
  • infectious mononucleosis endemic Burkitt lymphoma, undifferentiated carcinoma of the nasopharynx (NPC), lymphomas appearing in immunocompromised patients, such as individuals who have undergone an organ transplant or even patients suffering from AIDS, or even certain types of Hodgkin lymphoma where EBV is involved.
  • NPC undifferentiated carcinoma of the nasopharynx
  • the subject of the invention is also a process for obtaining the recombinant vectors described above which comprises, after the actual construction step of these vectors by introducing one or more sequence (s) of foreign DNA into their genome , a step of transforming transformable cell lines of higher eukaryotes (in particular of human or animal origin) themselves comprising a distinct DNA sequence capable of complementing the part of the genome of the adenovirus essential for the replication of the latter and of which the abovementioned vector is devoid, said distinct sequence preferably being incorporated into the genome of the cells of said cell line.
  • line 293 (Graham et al., 1977), a human embryonic kidney line which contains, integrated into its genome, the first eleven percent of the left end of the genome d adenovirus type 5 (Ad5).
  • Ad5 adenovirus type 5
  • the eukaryotic expression vector pMLP10 was described in the article by Levrero et al., 1991.
  • Plasmids pL1C and pL2C contain the major late promoter Ad2 (MLP) joined to its leader sequence
  • tripartite (leading sequence), followed by the region coding for the EBV gp340 and 220 glycoproteins and its polyadenylation signal or by the sequence originating from a complementary DNA clone (cDNA) of a spliced version of the 'MRNA, corresponding to the region encoding only for gp220.
  • cDNA complementary DNA clone
  • constructs pL1CD and pL2CD were obtained from the preceding plasmids, after suppression of the DNA regions corresponding to the transmembrane and cytoplasmic domains of the proteins and addition of a stop codon and a polyadenylation signal from the gene coding for the SV40 virus early antigen (Tosoni-Pittoni et al.,
  • IF immunofluorescence
  • the cells underwent trypsin treatment and were resuspended for 2 h at the concentration of 10 6 cells per ml in a medium not comprising serum. 2x10 6 cells were recovered and resuspended in 500 ⁇ l of anti-gp340 / 220 monoclonal antibody (New England Nuclear) diluted 100 times in phosphate buffer for 1 h at 37 ° C. An anti-mouse IgG antibody conjugated to fluorescein was added and the cells were incubated for 1 hour at 37 ° C. The washed cells were examined using a fluorescence microscope.
  • the adenoviruses were first purified by two passages in cesium chloride density gradients, and were dialyzed and diluted in PBS before inoculation.
  • New Zeland rabbits were inoculated by different routes with 10 10 pfu (assuming that a unit of optical density at 260 nm obtained for the viral suspension is equivalent to 3 ⁇ 10 10 pfu / ml) of recombinant Ad or of Ad -dl324 as a negative control.
  • Ad-gp340 Recombinant Ad expressing gp340 / 220 (Ad-gp340) was used to immunize four cottontop tamarins.
  • An animal (R155 in Figure 4) was vaccinated with a non-recombinant control Ad (strain Ad-dl324) and another animal was not immunized (B159). The animals were vaccinated by three intramuscular injections.
  • the first dose was 5.10 9 pfu in one ml of buffered solution, and since the tamarins did not show any adverse reactions, the next two doses were 10 10 pfu and 2.10 10 pfu respectively in the 5th and 13th weeks after the first injection.
  • the titers of the antibodies directed against the proteins of the capsid of the adenovirus and against the gp340 of the EBV were measured weekly.
  • the tamarind plasma samples are tested for the antibody response against gp340 by ELISA and for the antibody response against the capsid antigens of the adenovirus by immunofluorescence.
  • the adenoviruses containing the EBV gene gp340 / 220 under the control of MLP Ad2 were constructed as illustrated in FIG. 1.
  • a BglII-HindIII fragment (nucleotides 3329 to 6242) of Ad5 was cloned between the BamHI and HindIII sites of the plasmids pLIC, pL2C or SphI (followed by repair of the DNA ends with Klenow polymerase) and HindIII of the plasmids pL1CD and pL2CD.
  • This 3 kbp sequence contains the complete protein IX gene which is necessary to obtain viral DNA up to 97% of its normal size (Ghosh-Choudhury et al., 1987) and allows recombination to be carried out in vivo in cells.
  • the reconstruction of recombinant Ad is described in the legend of Figure 1.
  • the capacity of the recombinant adenoviruses to express the gp340 / 220 glycoproteins was tested on various cell lines.
  • Cells 293, Hela and Vero were infected with 1, 10, 100, 1000 pfu / cell, and recovered daily up to 36 h, 4 days or 7 days after transfection respectively.
  • the strongest expression of gp340 / 220 was observed with the Hela cells 3 days after infection (FIG. 2B, well 5).
  • the EBV-derived membrane proteins produced by the recombinants Ad-gp340 and Ad-220 were labeled with 35 S methionine (FIG.
  • Antibody responses directed against gp340 / 220 were followed in rabbits after injection of recombinant Ad.
  • the immunization schedules are summarized in Table 1.
  • a first dose of highly purified Ad-gp340 or Ad-gp220 recombinant virus (expressing membrane glycoproteins) were detected two weeks later in all animals except one rabbit (rabbit # 33).
  • a strengthening effect was observed on the animals, which then show a strong antibody response a week later. Relatively high titers were detected 30 weeks after the last inoculation.
  • These antibodies can recognize the cells expressing gp340 / 220 by immunofluorescence and the proteins gp340 / 220 by immunoprecipitation (FIG. 2 A) and by immunoblotting according to the Western technique. There is no apparent difference between gp340 and gp220 in terms of their ability to induce specific antibodies.
  • the anti-gp340 / 220 titers obtained by rabbit inoculation with the recombinant Ad-gp340D are much lower, and a long-term response could not be observed.
  • Intramuscular and intravenous injections are as effective as each other.
  • the intranasal introduction of Ad triggers a slow first response, but similar antibody titers were obtained after the second vaccination (rabbit 68).
  • the anti-gp340 / 220 positive sera from immunized rabbits have all been shown to be able to strongly neutralize the virus (see last column of Table 1).
  • the 4 animals which received the recombinant virus develop antibodies against gp340 with titers ranging from 1/100 to 1/280.
  • the titer of these antibodies reaches values of 1/440 to 1/1520 three weeks after the third injection.
  • the 5 animals inoculated with adenovirus develop antibodies against the capsid antigens of the virus between 1/80 and 1/640 after the 2nd injection and 1/640 to 1/280 after the third injection. No specific antibody is detected in the non-immunized animal.
  • the 6 tamarins (including the non-immune control animal) received an intraperitoneal injection with a 100% tumorigenic dose of EBV (within 3 weeks) from '' a virus stock prepared from the B95 / 8 cell line. The 6 animals were then regularly examined by external palpation and measurement of the size of the lymph nodes and of the tumors thus induced.
  • the animal R155 which received the parental virus very quickly develops the disease with implication in the both peripheral and abdominal lymph nodes.
  • the unimmunized animal (B159) also develops the same symptoms.
  • the four tamarins immunized with recombinant Ad expressing gp340 are clearly protected and do not develop the disease after the injection of EBV.
  • the tissues obtained after biopsy do not have tumor characteristics as in control animals.
  • the inventors have demonstrated the expression of foreign genes in numerous cell lines infected with the aid of recombinant adenoviruses.
  • the secreted form of gp340 / 220 of EBV could be easily purified from a medium containing no serum. This suggests the presence of a highly efficient post-translational transformation system secreting these polypeptide sequences.
  • cells secrete glycoproteins which then accumulate in the cell environment. This provides a good source of antigens for the manufacture of a vaccine without risking contamination with EBV DNA.
  • sequences coding for the antigens used for immunization or coding for the cytokines are placed under the control of the late major promoter (ubiquitous promoter) of Ad2, followed by the entire tripartite leader sequence; these DNA sequences are cloned into the E1 region of the virus. Indeed, mRNAs containing only the first exon of the leader sequence are translated 20 times less efficiently (Thummell et al., 1983; Davis et al., 1985).
  • Recombinant adenoviruses recently described for the in vivo expression of foreign genes use a cloning site in the E3 region without deletion of the E1 gene (Morin et al., 1987; Johnson et al., Schneider et al., 1989).
  • the use of recombinant live viruses as vaccine vectors has many advantages over a subunit vaccine. These advantages include the possibility of producing viral glycoproteins in the absence of EVB DNA, obtaining correct post-translational modifications and an appropriate presentation of the antigen to effector T cells, a broad spectrum of immune responses, induction of long-term immunological memory, and finally a low cost of production and ease of inoculation of the vaccine (particularly in the case of use of a gastro-encapsulated vaccine).
  • live recombinant viruses is the broad host spectrum and the possibility of horizontal transmission between humans and other species. In the case of vaccinia and polio virus, transmission to immunocompromised individuals through contact with vaccinated individuals has serious consequences.
  • the present invention demonstrates that a recombinant Ad5 having a deletion in the E1 region allows the expression in vivo of products of foreign genes and can induce the formation of neutralizing antibodies in rabbits against these products.
  • the inventors have issued the hypothesis that insertion into the E1 region could have several advantages, in particular the fact of preventing the virus from replicating in vivo in. permissive hosts, in particular in humans, and consequently of limiting the risks of dissemination of the recombinant viruses, the latter then being able to carry out only a single cycle of infection in animal cells.
  • Another advantage could be that of preventing a strong immunization against the proteins of the Ad capsid and of allowing multiple vaccinations without affecting the quality of the immunization against the foreign antigens expressed by this virus.
  • the differences found in the anti-gp340 / 220 titers between the membrane and secreted forms of gp340 / 220 can be explained by the different presentations of antigens to T cells depending on the fact that the antigen is on the surface of cells presenting the antigen or secreted. It has already been shown that the addition of an anchor sequence leads to a marked increase in the levels of antibodies recognizing a foreign antigen (Langford et al., 1986). The total absence of antibody response when using the secreted form of gp220 is more surprising. Truncated gp220 must be less stable in vivo, but it is even more problematic if the conformation adopted by this recombinant protein when the anchor domain has been deleted is weakly immunogenic in rabbits.
  • the anti-gp340 / 220 positive sera obtained from immunized rabbits are all highly capable of neutralizing EBV.
  • the anti-gp340 / 220 sera directed against the recombinant Ad expressing the secreted gp340 / 220 also neutralize EBV in vitro despite much lower titers.
  • These results correspond to the fact that the secreted gp220 and truncated forms of gp220 in the C-terminal part, are still capable of binding to the EBV receptor (CR2) on the surface of B lymphocytes (Tanner et al., 1988). More precise mutations are needed inside the N-terminus of gp340 / 220 in order to identify the binding domain for CR2. Nevertheless, this work constitutes a preliminary step towards the identification of the gp340 / 220 epitopes involved in the immune response in terms of binding of antibodies with gp340 and neutralization of the virus.
  • the antibody response has been demonstrated to be able to persist appreciably for six months in rabbits. It is important to get long-term protection after vaccination.
  • Adenoviruses have a particular affinity for the gastrointestinal wall and upper respiratory tract, for the tonsils and salivary glands in humans and some vertebrates.
  • the use of recombinant Ad is therefore particularly advantageous for vaccination against EBV which replicates at the aforementioned sites, particularly by inducing the secretion of antibodies capable of protecting the oropharyngeal epithelium.
  • FIG. 1 Construction of recombinant adenoviruses
  • the DNA sequence coding for gp340 / 220 was inserted into the expression vector pMLP10.
  • This plasmid comprises 450 nucleotides from the left end of the Ad5 genome (that is to say the inverted terminal repeat containing the origin of viral replication, the sequence necessary for the packaging of the virus and the activator sequence of the region E1A) followed by the sequence comprising the major late promoter of Ad2 flanked by the tripartite leader sequence.
  • the plasmids pLCIX, pL2CIX, pLCDIX and pL2CDIX contain the different sequences allowing the expression of the various forms of gp340 / 220 described in the "methods" and "results" sections.
  • Recombinant adenoviruses are obtained by homologous recombination in vivo between the large fragment of the viral genome obtained after cleavage by a restriction enzyme and the homologous sequence existing in the plasmids described above (9.4 - 17% of the genome).
  • the DNA mixture comprising the viral genome fragment (2.6 to 100% of the genome) purified after cleavage by the restriction enzyme Cla I and the plasmid linearized by the same restriction enzyme is transfected into 293 cells.
  • Recombinant viruses respectively named Ad-gp340, Ad-gp220, Ad-gp340D and Ad-gp220D are then isolated.
  • Frames viral sequences (white: viral genome; hatched: glycoprotein gene; black: SV40 sequences).
  • Figure 2 Detection of gp340 / 2220 by immunoprecipitation.
  • Polyacrylamide gel showing the gp340 / 220 glycoproteins immunoprecipitated from cells infected with recombinant Ad titrating to 1000 pfu (plaque forming unit) per cell.
  • the radiolabelled proteins were extracted from 2.10 6 cells or from the culture medium corresponding to the same number of cells for the secreted forms.
  • A proteins detected 48 h after infection of the Hela cells with a positive rabbit polyclonal serum (well 1-4) or the preimmune serum (well 5), either from cell extracts (wells 1 and 2) or from the medium of culture concentrated in wells 3 to 5.
  • the viruses used for the infection of the cells are: Ad-gp340, 2: Ad-gp220, 3: Ad-gp340, 4-5: Ad-gp220D.
  • FIG. 3 Membrane immunofluorescence.
  • Vero cells are infected with the recombinant virus Adgp220 at 10 p.p. / cell and treated with a monoclonal antibody antigp340 / 220 and an anti-fluorescent mouse anti-IgG.
  • Figure 4 Protection in cottontop tamarin monkeys after vaccination.
  • the graph shown in the figure is obtained by plotting the tumor index of each animal (which represents the sum of the diameters of the palpable lymph nodes and the detectable tumor nodules in mm) against the time in days after the injection of EBV.
  • White circles animal immunized by the parental virus, sacrificed 25 days after the start of the experiment; white squares: non-immune animal.

Abstract

A recombinant vector characterized in that it includes a genomic sequence of a defective adenovirus, i.e. one that lacks the sequences needed for it to replicate, as well as an insert including one or more DNA sequences coding for any characteristic protein of the Epstein-Barr Virus (EBV) which can induce the formation in a patient of EBV-protective neutralizing antibodies and, if required, protective cells, particularly cytotoxic and helper lymphocytes, said insert being under the control of a promoter present in or pre-inserted into the adenovirus genome. Said vector may be used to produce vaccines for diseases caused by EBV in humans or animals.

Description

ADENOVIRUS RECOMBINANTS DEFECTIFS EXPRIMANT DES PROTEINES  DEFECTIVE RECOMBINANT ADENOVIRUSES EXPRESSING PROTEINS
CARACTERISTIQUES DU VIRUS EPSTEIN-BARR  CHARACTERISTICS OF EPSTEIN-BARR VIRUS
L'invention a pour objet des adénovirus recombinants défectifs pour la réplication exprimant des glycoprotéines caractéristiques du virus Epstein-Barr, notamment des glycoprotéines d'enveloppe majeures de ce virus, ainsi que l'utilisation de ces adénovirus recombinants dans des compositions vaccinantes dirigées contre les pathologies provenant de l'infection d'un individu par le virus Epstein-Barr (EBV). The subject of the invention is recombinant adenoviruses defective for replication expressing glycoproteins characteristic of the Epstein-Barr virus, in particular major envelope glycoproteins of this virus, as well as the use of these recombinant adenoviruses in vaccine compositions directed against pathologies resulting from an individual's infection with the Epstein-Barr virus (EBV).
Le virus Epstein-Barr est présent à l'état latent dans une fraction des lymphocytes B de la grande majorité des adultes. Ce virus herpès est responsable de la mononucléose infectieuse et est étiologiquement associé au lymphome endémique de Burlcitt et au carcinome indifférencié du nasopharynx (NPC) (Epstein et Achong, 1979, 1986). Il est également impliqué dans les lymphomes apparaissant chez les patients immunodéprimés, comme les individus ayant subi une greffe d'organe ou encore les malades atteints du SIDA (Thomas et Crawford, 1989). Plus récemment ce virus a été associé avec certains types de lymphomes de Hodgkin (Mueller et col., 1989; Pallesen et col., 1991).  The Epstein-Barr virus is present in a latent state in a fraction of the B lymphocytes of the vast majority of adults. This herpes virus is responsible for infectious mononucleosis and is etiologically associated with endemic Burlcitt lymphoma and undifferentiated carcinoma of the nasopharynx (NPC) (Epstein and Achong, 1979, 1986). It is also involved in lymphomas appearing in immunocompromised patients, such as individuals who have undergone an organ transplant or patients with AIDS (Thomas and Crawford, 1989). More recently this virus has been associated with certain types of Hodgkin's lymphoma (Mueller et al., 1989; Pallesen et al., 1991).
La prévention ou le contrôle de ces maladies par vaccination a fait l'objet de nombreuses recherches (Epstein, 1976), surtout dans le cas du NPC qui atteint jusqu'à 2 % de la population mâle du Sud de la Chine et d'autre régions à haute incidence telles que l'Asie du Sud-Est ou à moyenne incidence comme l'Afrique de Nord. The prevention or control of these diseases by vaccination has been the subject of much research (Epstein, 1976), especially in the case of NPC which reaches up to 2% of the male population in southern China and other high incidence regions such as Southeast Asia or medium incidence such as North Africa.
L'EBV représente donc un problème majeur de santé dans le monde. Il n'est malheureusement pas possible d'utiliser l'EBV en tant que vaccin vivant car il se réplique très faiblement in vitro et transforme les lymphocytes B humains in vivo.  EBV therefore represents a major health problem worldwide. Unfortunately, it is not possible to use EBV as a live vaccine because it replicates very weakly in vitro and transforms human B lymphocytes in vivo.
Les glycoprotéines majeurs d'enveloppe de l'EBV, à savoir les protéines gp340 et gp220, proviennent toutes les deux du même gène viral par un phénomène d'épissage sans changement du cadre de lecture (Beisel et col., 1985), et sont exprimées à la surface externe des virions et à la membrane des cellules infectées. Ces protéines se lient au récepteur cellulaire CR2 (CD21) du composant C3d du complément (Fingeroth et col., 1984; Tanner et col., 1988) et sont capables d'induire chez l'homme la formation d'anticorps neutralisant l'EBV (Thorley-Lawson et Poodry, 1982). Les anticorps monoclonaux dirigés contre gp340/220 neutralisent également le virus in vitro (Hoffman et col., 1980). Ces glycoprotéines induisent une réponse cellulaire (cellules T) (Uleato et col., 1988; Bejarano et col., 1990) ainsi qu'une cytotoxicité cellulaire dépendante des anticorps (Qualtière et col., 1982) et induit également la formation d'anticorps neutralisants.  The major envelope glycoproteins of EBV, namely the gp340 and gp220 proteins, both originate from the same viral gene by a splicing phenomenon without changing the reading frame (Beisel et al., 1985), and are expressed on the outer surface of virions and on the membrane of infected cells. These proteins bind to the CR2 cellular receptor (CD21) of the complement C3d component (Fingeroth et al., 1984; Tanner et al., 1988) and are capable of inducing the formation of EBV neutralizing antibodies in humans. (Thorley-Lawson and Poodry, 1982). Monoclonal antibodies against gp340 / 220 also neutralize the virus in vitro (Hoffman et al., 1980). These glycoproteins induce a cellular response (T cells) (Uleato et al., 1988; Bejarano et al., 1990) as well as an antibody-dependent cell cytotoxicity (Qualtière et al., 1982) and also induces the formation of antibodies. neutralizers.
Des singes tamarins cottontop ont été protégés avec succès contre le lymphome induit par l'EBV par un vaccin à base de gp340 purifiée à partir de cellules B95/8 (Epstein et col., 1985; Morgan et col., 1988a et 1989). Cependant la quantité de gp340 directement obtenue à partir d'EBV est trop insuffisante pour permettre d'envisager d'utiliser des protéines purifiées à partir d'EBV en tant que vaccin. D'autre part, les préparations obtenues peuvent être contaminées par l'ADN de l'EBV, ce qui n'est pas acceptable en vaccination humaine. Cottontop tamarin monkeys have been successfully protected against EBV-induced lymphoma by a gp340-based vaccine purified from B95 / 8 cells (Epstein et al., 1985; Morgan et al., 1988a and 1989). However, the quantity of gp340 directly obtained from EBV is too insufficient to allow consideration of the use of proteins purified from EBV as a vaccine. On the other hand, the preparations obtained can be contaminated with EBV DNA, which is not acceptable in human vaccination.
L'utilisation de vaccins à base de protéines recombinantes de l'EBV obtenues par transformation de bactéries ou levures par des séquences nucléotidiques codant pour ces protéines s'est heurtée au problème de l'absence de glycosylation ou de glycosylations différentes des polypeptides obtenus de celles normalement observées dans les cellules de mammifères. Ces protéines sont par conséquent faiblement immunogènes ou induisent des réponses immunitaires inadaptées chez le lapin (Emini et col., 1988).  The use of vaccines based on recombinant EBV proteins obtained by transformation of bacteria or yeasts by nucleotide sequences coding for these proteins has encountered the problem of the absence of glycosylation or glycosylations different from the polypeptides obtained from those normally seen in mammalian cells. These proteins are therefore weakly immunogenic or induce inappropriate immune responses in rabbits (Emini et al., 1988).
Des vecteurs recombinants ont été réalisés en utilisant des vecteurs viraux recombinants exprimant le gène codant pour gp340/gp220, comme le virus de la vaccine (Mackett et Arrand, 1985) et le virus varicelle- zooster (Lowe et col., 1987). La protection contre le lymphome induit par l'EBV a été obtenue en utilisant comme vecteur une souche de laboratoire du virus de la vaccine (WK) mais n'a pas été obtenue à l'aide d'une souche vaccinante du virus plus atténuée (Wyeth) (Morgan et col., 1988b). Toutefois, seule une souche atténuée du virus de la vaccine est utilisable dans le cadre d'une vaccination contre l'EBV à l'aide de vaccine recombinante, ce qui limite par conséquent l'efficacité de ce type de vaccin.  Recombinant vectors have been made using recombinant viral vectors expressing the gene encoding gp340 / gp220, such as vaccinia virus (Mackett and Arrand, 1985) and varicella-zoster virus (Lowe et al., 1987). Protection against EBV-induced lymphoma was achieved using a vaccinia virus laboratory strain (WK) as a vector, but was not achieved using a more attenuating vaccine strain ( Wyeth) (Morgan et al., 1988b). However, only one attenuated strain of the vaccinia virus can be used in the context of a vaccination against EBV using recombinant vaccinia, which consequently limits the effectiveness of this type of vaccine.
Un des buts de la présente invention est de fournir des compositions vaccinantes contre les pathologies provoquées par l'infection d'un individu par EBV, qui présentent à la fois l'avantage:  One of the aims of the present invention is to provide vaccinating compositions against the pathologies caused by the infection of an individual by EBV, which have both the advantage:
- de pouvoir être produites en quantité suffisante à un prix de revient avantageux,  - to be able to be produced in sufficient quantity at an advantageous cost price,
- de protéger efficacement les individus contre EBV en conférant une immunité cellulaire (cellules T "helper" et cytotoxiques) et par production d'anticorps protecteurs contre EBV, - to effectively protect individuals against EBV by conferring cellular immunity ("helper" T cells and cytotoxic) and by production of protective antibodies against EBV,
- de ne pas risquer de contaminer l'entourage des individus traités avec ces compositions et donc de pouvoir être utilisées en toute sécurité.  - not to risk contaminating the environment of individuals treated with these compositions and therefore to be able to be used safely.
La présente invention a pour objet des acides nucléiques recombinants caractérisés en ce qu'ils comprennent, d'une part, une séquence génomique d'un adénovirus defectif, c'est à dire dépourvue des séquences nécessaires à sa réplication, et, d'autre part, un insérât comprenant une ou plusieurs séquences d'ADN codant pour toute protéine caractéristique de l'EBV qui soit susceptible d'induire chez un individu la formation d'anticorps neutralisants protecteurs contre l 'EBV et, le cas échéant de cellules protectrices, notamment des cellules T cytotoxiques et T helper, cet insérât étant placé sous le contrôle d'un promoteur présent ou préalablement inséré dans le génome de l'adénovirus.  The subject of the present invention is recombinant nucleic acids characterized in that they comprise, on the one hand, a genomic sequence of a defective adenovirus, that is to say devoid of the sequences necessary for its replication, and, on the other hand on the other hand, an insert comprising one or more DNA sequences coding for any protein characteristic of EBV which is capable of inducing in an individual the formation of protective neutralizing antibodies against EBV and, where appropriate of protective cells, in particular cytotoxic T cells and T helper cells, this insert being placed under the control of a promoter present or previously inserted into the genome of the adenovirus.
Avantageusement, la séquence génomique de l'adénovirus defectif sus-mentionné comprend néanmoins celles des séquences qui dans ce génome sont le support de l'information génétique nécessaire à l'adénovirus correspondant pour pénétrer dans les cellules infectables par celui-ci, et, le cas échéant, l'ensemble des séquences essentielles nécessaires à l'encapsidation de cet adénovirus.  Advantageously, the genomic sequence of the abovementioned defective adenovirus nevertheless includes those of the sequences which in this genome are the carrier of the genetic information necessary for the corresponding adenovirus to penetrate cells which can be infected with it, and, the if necessary, all of the essential sequences necessary for the packaging of this adenovirus.
L'invention vise plus particulièrement l'utilisation de ces acides nucléiques en tant que vecteurs pour la transformation de cellules humaines ou animales.  The invention relates more particularly to the use of these nucleic acids as vectors for the transformation of human or animal cells.
A ce titre, le promoteur, sous le contrôle duquel est placé l'insérât sus-mentionné, est avantageusement susceptible d'être reconnu par les polymérases (et plus particulièrement les polymérases II) de cellules humaines ou animales infectables par ce virus (représentant un grand nombre de types cellulaires différents), ce promoteur étant notamment le promoteur fort majeur tardif (MLP) de l'adénovirus humain de type 2 (Levrero et col., 1991) ou tout autre promoteur ubiquitaire connu. As such, the promoter, under whose control the above-mentioned insert is placed, is advantageously likely to be recognized by the polymerases (and more particularly the polymerases II) of human or animal cells infectable with this virus (representing a large number of different cell types), this promoter being in particular the late major major promoter (MLP) of human adenovirus type 2 (Levrero et al., 1991) or any other known ubiquitous promoter.
Les adénovirus, notamment les adénovirus de type 2 ou 5 (Ad2 ou Ad5), représentent des vecteurs particulièrement préférés dans le cadre de la présente invention, pour les raisons suivantes: de façon générale, les adénovirus sont relativement stables, peuvent se cultiver facilement et rapidement (cycle viral de 30 h), donnent des titres particulièrement élevés (jusqu'à 104 à 105 unités formant plaque ou u.f.p. par cellule infectée). Les types 2 ou 5 sont plus particulièrement préférés car ces sérotypes ne sont pas oncogènes chez le rongeur comme par exemple le sérotype 7, la séquence complète de leur génome viral a été établie (Chrobozek et col., 1992), leur biologie moléculaire a été intensivement étudiée, enfin, de nombreux mutants, en particulier des mutants de délétion ont été obtenus, rendant possible l'insertion de fragments d'ADN de grande taille (Berkner, 1988).  Adenoviruses, in particular adenoviruses of type 2 or 5 (Ad2 or Ad5), represent particularly preferred vectors within the framework of the present invention, for the following reasons: in general, adenoviruses are relatively stable, can be cultured easily and rapidly (30 h viral cycle), give particularly high titers (up to 104 to 105 plaque forming units or pfu per infected cell). Types 2 or 5 are more particularly preferred since these serotypes are not oncogenic in rodents such as, for example, serotype 7, the complete sequence of their viral genome has been established (Chrobozek et al., 1992), their molecular biology has been intensively studied, finally, many mutants, in particular deletion mutants have been obtained, making it possible to insert large DNA fragments (Berkner, 1988).
Avantageusement, la ou les séquence(s) d'ADN susmentionnée (s), codant pour toute protéine caractéristique d'EBV, est ou sont comprise (s) dans un génome defectif d' adénovirus, ce génome étant dépourvu des séquences nucléotidiques essentielles nécessaires à la réplication de ce virus dans des cellules permissives, et plus particulièrement des séquences codant pour la région E1, et, le cas échéant pour la région E3. Cette région E1 comprend le gène immédiatement précoce E1A qui active les autres unités de transcription précoces du virus et est donc nécessaire à sa réplication, et le gène E1B qui est responsable de la transformation complète des cellules en culture en présence de E1A. Le génome defectif d'adénovirus comprend néanmoins préférentiellement l'ensemble des séquences essentielles nécessaires à la constitution d'un stock viral sur des cellules (cellules 293) complémentant la région E1 (E1A + E1B) du virus. Advantageously, the DNA sequence (s) mentioned above, coding for any protein characteristic of EBV, is or are included in a defective adenovirus genome, this genome being devoid of the essential nucleotide sequences necessary the replication of this virus in permissive cells, and more particularly sequences coding for the E1 region, and, where appropriate for the E3 region. This E1 region comprises the immediately early gene E1A which activates the other early transcription units of the virus and is therefore necessary for its replication, and the E1B gene which is responsible for the complete transformation of cells in culture in the presence of E1A. The defective genome adenovirus nevertheless preferably comprises all of the essential sequences necessary for the constitution of a viral stock on cells (293 cells) complementing the E1 region (E1A + E1B) of the virus.
Selon un mode de réalisation particulièrement avantageux de l'invention, les séquences d'ADN étranger sus-mentionnées sont insérées en lieu et place de la région E1 du génome d'Ad5, région permettant l'insertion de plusieurs gènes codant pour des protéines immunogèniques.  According to a particularly advantageous embodiment of the invention, the above-mentioned foreign DNA sequences are inserted in place of the E1 region of the Ad5 genome, a region allowing the insertion of several genes coding for immunogenic proteins .
De préférence, le génome des vecteurs recombinants selon l'invention comprend une séquence d'ADN codant pour une glycoprotéine d'enveloppe majeure de l'EBV, et plus particulièrement pour la glycoprotéine gp340 ou gp220 d'EBV, ou pour tout fragment de ces protéines qui soit susceptible d'induire la formation d'anticorps protecteurs contre l'EBV chez un individu, et, le cas échéant, de cellules protectrices du système immunitaire, notamment des cellules T cytotoxiques et T helper.  Preferably, the genome of the recombinant vectors according to the invention comprises a DNA sequence coding for a major envelope glycoprotein of EBV, and more particularly for the glycoprotein gp340 or gp220 of EBV, or for any fragment of these. proteins which is capable of inducing the formation of protective antibodies against EBV in an individual, and, where appropriate, of protective cells of the immune system, in particular cytotoxic T cells and T helper.
D'autres vecteurs recombinants particulièrement avantageux dans le cadre de la présente invention sont ceux dont le génome comprend une séquence d'ADN codant pour un antigène de membrane de l'EBV impliqué dans le mécanisme de fusion de l'enveloppe virale de l'EBV avec la membrane des lymphocytes B et des cellules épithéliales, et plus particulièrement la glycoprotéine gp85 (Haddad et col., 1989), ou pour tout fragment de cette protéine susceptible d'induire la formation d'anticorps protecteurs ou de cellules protectrices tels que définis ci-dessus.  Other particularly advantageous recombinant vectors in the context of the present invention are those whose genome comprises a DNA sequence coding for an EBV membrane antigen involved in the mechanism of fusion of the EBV viral envelope with the membrane of B lymphocytes and epithelial cells, and more particularly the glycoprotein gp85 (Haddad et al., 1989), or for any fragment of this protein capable of inducing the formation of protective antibodies or protective cells as defined above.
Des vecteurs préférés selon l'invention sont ceux comprenant à la fois un acide nucléique d'insertion codant pour une glycoprotéine d'enveloppe majeure de l'EBV, et plus particulièrement pour la glycoprotéine gp340 ou gp220 de l'EBV, ou pour tout fragment de ces protéines tel que défini ci-dessus, et un acide nucléique d'insertion codant pour un antigène de membrane de l'EBV impliqué dans le mécanisme de fusion de l'enveloppe virale de l'EBV avec la membrane cellulaire de cellules de l'organisme, et plus particulièrement la glycoprotéine gp85 ou pour tout fragment de cette protéine tel que défini ci-dessus. Preferred vectors according to the invention are those comprising both an insertion nucleic acid encoding a major envelope glycoprotein of EBV, and more particularly for the glycoprotein EBV gp340 or gp220, or for any fragment of these proteins as defined above, and an insertion nucleic acid encoding an EBV membrane antigen involved in the fusion mechanism of the viral envelope EBV with the cell membrane of the body's cells, and more particularly the glycoprotein gp85 or for any fragment of this protein as defined above.
Avantageusement, le génome des vecteurs selon l'invention comprend également une séquence d'ADN codant pour une protéine stimulant le système immunitaire, et plus particulièrement la réponse cellulaire (cytokines).  Advantageously, the genome of the vectors according to the invention also comprises a DNA sequence coding for a protein stimulating the immune system, and more particularly the cellular response (cytokines).
A ce titre la présente invention a pour objet des vecteurs tels que décrits ci-dessus et dont le génome comprend une séquence d'ADN codant pour l'interleukine-2, l'interleukine-3, l'interleukine-4, l'interleukine-5, l'interleukine-6, l'interleukine-7, ou tous fragments de ces dernières susceptibles de stimuler le système immunitaire.  As such, the present invention relates to vectors as described above and whose genome comprises a DNA sequence coding for interleukin-2, interleukin-3, interleukin-4, interleukin -5, interleukin-6, interleukin-7, or any fragments thereof that may stimulate the immune system.
L'invention concerne également des compositions pharmaceutiques comprenant un ou une combinaison de plusieurs vecteurs recombinants tels que décrits ci- dessus, en association avec un véhicule pharmaceutiquement acceptable (adjuvants, complexes immunostimulants).  The invention also relates to pharmaceutical compositions comprising one or a combination of several recombinant vectors as described above, in combination with a pharmaceutically acceptable vehicle (adjuvants, immunostimulatory complexes).
L'invention a plus particulièrement pour objet des vaccins dirigés contre les pathologies provoquées par l'EBV chez l'homme ou l'animal, ces compositions vaccinantes comprenant un ou plusieurs vecteurs recombinants tels que décrits ci-dessus, en association avec un véhicule pharmaceutiquement acceptable.  The invention more particularly relates to vaccines directed against pathologies caused by EBV in humans or animals, these vaccinating compositions comprising one or more recombinant vectors as described above, in combination with a pharmaceutically carrier acceptable.
A ce titre la présente invention a pour objet des méthodes de prévention, d'atténuation ou de traitement de pathologies provoquées par l'EBV chez l'homme ou l'animal, ces méthodes comprenant l'administration chez l'homme ou l'animal susceptible d'être infecté par EBV ou risquant de l'être, d'un vaccin ou d'une composition pharmaceutique selon l'invention. As such, the present invention relates to methods of prevention, mitigation or treatment of pathologies caused by EBV in humans or animals, these methods comprising the administration in humans or animals likely to be infected with EBV or at risk of being infected, of a vaccine or of a pharmaceutical composition according to the invention.
L'utilisation d'adénovirus non réplicables dans le cadre de la présente invention offre l'avantage d'une part d'éviter la contamination de l'entourage des individus traités à l'aide de ces vecteurs, et, d'autre part, d'éviter d'obtenir chez les individus traités une trop forte immunisation contre les protéines caractéristiques de l'adénovirus, et plus particulièrement contre les protéines de la capside (hexons et fibre), autorisant ainsi la réalisation de plusieurs immunisations en toute sécurité.  The use of non-replicable adenoviruses in the context of the present invention offers the advantage on the one hand of avoiding contamination of the environment of the individuals treated with the aid of these vectors, and, on the other hand, to avoid obtaining in the treated individuals too strong immunization against the proteins characteristic of the adenovirus, and more particularly against the proteins of the capsid (hexons and fiber), thus authorizing the carrying out of several immunizations in complete safety.
La quantité de vecteurs administrée dans l'organisme est avantageusement choisie de manière à provoquer une réponse immunitaire appropriée dirigée essentiellement contre les antigènes vaccinants insérés dans le vecteur viral chez l'organisme dans lequel ils sont injectés.  The quantity of vectors administered into the organism is advantageously chosen so as to provoke an appropriate immune response directed essentially against the vaccinating antigens inserted into the viral vector in the organism into which they are injected.
Avantageusement les voies d'administration choisies dans le cadre de la présente invention sont les voies intramusculaire, intranasale ou la voie orale sous la forme de capsules gastro-protégées susceptibles de délivrer le vecteur viral au niveau de l'épithélium intestinal.  Advantageously, the routes of administration chosen in the context of the present invention are the intramuscular, intranasal or the oral route in the form of gastro-protected capsules capable of delivering the viral vector to the intestinal epithelium.
Parmi les pathologies susceptibles d'être prévenues ou traitées par les compositions de l'invention, on peut citer principalement: la mononucléose infectieuse, le lymphome endémique de Burkitt, le carcinome indifférencié du nasopharynx (NPC), les lymphomes apparaissant chez les patients immunodéprimés, comme les individus ayant subi une greffe d'organe ou encore les malades atteints du SIDA, ou encore certains types de lymphomes de Hodgkin où l'EBV est implique. L'invention a également pour objet un procédé d'obtention des vecteurs recombinants décrits ci-dessus qui comprend après l'étape de construction proprement dite de ces vecteurs par introduction d'une ou plusieurs séquence (s) d'ADN étranger dans leur génome, une étape de transformation de lignées cellulaires transformables d'eucaryotes supérieurs (notamment d'origine humaine ou animale) comportant elles-mêmes une séquence distincte d'ADN apte à complémenter la partie du génome de l'adénovirus essentielle pour la réplication de ce dernier et dont le susdit vecteur est dépourvu, ladite séquence distincte étant de préférence incorporée au génome des cellules de ladite lignée cellulaire. Among the pathologies liable to be prevented or treated by the compositions of the invention, there may be mentioned mainly: infectious mononucleosis, endemic Burkitt lymphoma, undifferentiated carcinoma of the nasopharynx (NPC), lymphomas appearing in immunocompromised patients, such as individuals who have undergone an organ transplant or even patients suffering from AIDS, or even certain types of Hodgkin lymphoma where EBV is involved. The subject of the invention is also a process for obtaining the recombinant vectors described above which comprises, after the actual construction step of these vectors by introducing one or more sequence (s) of foreign DNA into their genome , a step of transforming transformable cell lines of higher eukaryotes (in particular of human or animal origin) themselves comprising a distinct DNA sequence capable of complementing the part of the genome of the adenovirus essential for the replication of the latter and of which the abovementioned vector is devoid, said distinct sequence preferably being incorporated into the genome of the cells of said cell line.
A titre d'exemple préféré de telles lignées cellulaires, on mentionnera la lignée 293 (Graham et col., 1977), lignée de rein embryonnaire humain qui contient, intégrés dans son génome, les onze premiers pourcents de l'extrémité gauche du génome d'un adénovirus de type 5 (Ad5). Ceux-ci permettent de complémenter des virus recombinants défectifs qui portent des délétions de cette région. Un tel procédé d'obtention est plus particulièrement décrit dans la demande de brevet européen nº 0 185 573 du 20/11/85.  As a preferred example of such cell lines, mention will be made of line 293 (Graham et al., 1977), a human embryonic kidney line which contains, integrated into its genome, the first eleven percent of the left end of the genome d adenovirus type 5 (Ad5). These make it possible to complement defective recombinant viruses which carry deletions from this region. Such a production process is more particularly described in European patent application No. 0 185 573 of 20/11/85.
Après transformation de ces lignées cellulaires, les vecteurs qui se sont ainsi multipliés sont récupérés et purifiés.  After transformation of these cell lines, the vectors which have thus multiplied are recovered and purified.
La présente invention sera davantage détaillée dans la description qui suit de la construction d'un adénovirus vecteur recombinant comprenant le gène codant pour les glycoprotéines gp340/220.  The present invention will be described in more detail in the following description of the construction of a recombinant vector adenovirus comprising the gene coding for the glycoproteins gp340 / 220.
I. METHODES a) Cellules et virus La lignée cellulaire 293 rénale embryonnaire humaine transformée par Ad-5 (Graham et col., 1977), a été utilisée pour la transfection d'ADN ainsi que pour la multiplication et la titration d'Ad. En effet, la lignée cellulaire 293 complémente les fonctions des gènes E1A et E1B et permet donc la réplication de l'Ad defectif. Pour la construction de l'Ad recombinant, l'Ad5-dl324 humain, portant des délétions dans les régions E1 (3.9-10.5 m.u.) et E3 (78.5-84.3 m.u.), a été utilisé (Shenk et Williams, 1984). Les lignées cellulaires 293, Hela et Vero ont été maintenues dans un milieu de culture minimum essentiel Eagle avec 10 % de sérum de veau fétal. b) Plasmides I. METHODS a) Cells and viruses The human embryonic renal cell line 293 transformed with Ad-5 (Graham et al., 1977), was used for DNA transfection as well as for the multiplication and titration of Ad. In fact, the cell line 293 complements the functions of the E1A and E1B genes and therefore allows replication of the defective Ad. For the construction of the recombinant Ad, human Ad5-dl324, carrying deletions in the E1 (3.9-10.5 mu) and E3 (78.5-84.3 mu) regions, was used (Shenk and Williams, 1984). Cell lines 293, Hela and Vero were maintained in an Eagle minimum essential culture medium with 10% fetal calf serum. b) Plasmids
Le vecteur d'expression eucaryote pMLP10 a été décrit dans l'article de Levrero et col., 1991.  The eukaryotic expression vector pMLP10 was described in the article by Levrero et al., 1991.
Les plasmides pL1C et pL2C contiennent le promoteur tardif majeur Ad2 (MLP) joint à sa séquence leader Plasmids pL1C and pL2C contain the major late promoter Ad2 (MLP) joined to its leader sequence
(séquence de tête) tripartite, suivi par la région codant pour les glycoprotéines gp340 et 220 de l'EBV et son signal de polyadénylation ou par la séquence provenant d'un clone d'ADN complémentaire (ADNc) d'une version épissèe de l'ARNm, correspondant à la région codant uniquement pour la gp220. De plus, les constructions pL1CD et pL2CD ont été obtenues à partir des plasmides précédents, après suppression des régions d'ADN correspondant aux domaines transmembranaires et cytoplasmiques des protéines et addition d'un codon stop et d'un signal de polyadénylation du gène codant pour l'antigène précoce du virus SV40 (Tosoni-Pittoni et col.,tripartite (leading sequence), followed by the region coding for the EBV gp340 and 220 glycoproteins and its polyadenylation signal or by the sequence originating from a complementary DNA clone (cDNA) of a spliced version of the 'MRNA, corresponding to the region encoding only for gp220. In addition, the constructs pL1CD and pL2CD were obtained from the preceding plasmids, after suppression of the DNA regions corresponding to the transmembrane and cytoplasmic domains of the proteins and addition of a stop codon and a polyadenylation signal from the gene coding for the SV40 virus early antigen (Tosoni-Pittoni et al.,
1989). c) Transfection d'ADN et isolement de virus recombinants Les adénovirus recombinants ont été obtenus par recombinaison in vivo. Des fragments d'ADN viraux ainsi que des plasmides linéarisés ont été transfectés dans les cellules 293 en utilisant la méthode de précipatation au phosphate de calcium (Graham et Van Der Eb, 1973). Des plages de lyse ont été isolées 10 jours après, et le virus a été amplifié en culture. L'ADN viral a été extrait par la procédure Hirt (Graham et col., 1977) et les virus recombinants ont été identifiés, cartographiés avec des enzymes de restriction. d) Identification et guantification de qp340/220 d'EBV 1989). c) DNA transfection and isolation of recombinant viruses The recombinant adenoviruses were obtained by recombination in vivo. Viral DNA fragments as well as linearized plasmids were transfected into 293 cells using the calcium phosphate precipitation method (Graham and Van Der Eb, 1973). Lysis plaques were isolated 10 days later, and the virus was amplified in culture. Viral DNA was extracted by the Hirt procedure (Graham et al., 1977) and the recombinant viruses were identified, mapped with restriction enzymes. d) Identification and guantification of EBV qp340 / 220
immunofluorescence (IF) : l'immunofluorescence indirecte de membrane a été réalisée sur les lignées cellulaires Hela ou Vero 24 heures après infection avec les virus recombinants (Ad-gp340, Ad-gp220) ou avec Ad-dl324 en tant que contrôle négatif. En résumé, les cellules ont subi un traitement à la trypsine et ont été resuspendues pendant 2 h à la concentration de 106 cellules par ml dans un milieu ne comprenant pas de sérum. 2x106 cellules ont été récupérées et resuspendues dans 500 μ l d'anticorps monoclonal anti-gp340/220 (New England Nuclear) dilués 100 fois dans un tampon phosphate pendant 1 h à 37 °C. Un anticorps anti-IgG de souris conjugué à de la fluorescéine a été additionné et les cellules ont été incubées pendant 1 heure à 37 °C. Les cellules lavées ont été examinées à l'aide d'un microscope à fluorescence. immunofluorescence (IF): indirect membrane immunofluorescence was carried out on the Hela or Vero cell lines 24 hours after infection with the recombinant viruses (Ad-gp340, Ad-gp220) or with Ad-dl324 as a negative control. In summary, the cells underwent trypsin treatment and were resuspended for 2 h at the concentration of 10 6 cells per ml in a medium not comprising serum. 2x10 6 cells were recovered and resuspended in 500 μl of anti-gp340 / 220 monoclonal antibody (New England Nuclear) diluted 100 times in phosphate buffer for 1 h at 37 ° C. An anti-mouse IgG antibody conjugated to fluorescein was added and the cells were incubated for 1 hour at 37 ° C. The washed cells were examined using a fluorescence microscope.
- immunoprécipitation : cette technique a été décrite pour l'isolement de gp340/220 provenant du milieu de culture dans l'article de Tosoni-Pittoni et col., 1989. Les extraits de cellules radiomarquées ont été obtenues à partir de 107 cellules infectées éclatées par sonication. e) détection des anticorps anti gp340/220 - immunoprecipitation: this technique was described for the isolation of gp340 / 220 from the culture medium in the article by Tosoni-Pittoni et al., 1989. The extracts of radiolabelled cells were obtained from 10 7 infected cells exploded by sonication. e) detection of anti gp340 / 220 antibodies
- immunofluorescence : des séries de dilution des sérums ont été analysées par IF sur des cellules 293 fixées dans un mélange acétone/méthanol (1:1), et préalablement transfectées avec un plasmide exprimant gp340/220 (PLIC) afin de déterminer les niveaux en anticorps anti-gp340/220 (Tosoni-Pittoni et col., 1989). - immunofluorescence: series of dilution of the sera were analyzed by IF on 293 cells fixed in an acetone / methanol mixture (1: 1), and previously transfected with a plasmid expressing gp340 / 220 (PLIC) in order to determine the levels in anti-gp340 / 220 antibody (Tosoni-Pittoni et al., 1989).
- expérience de neutralisation : cette expérience a été réalisée selon la technique de la transformation abortive des cellules lymphoides avec l'EBV (De Schryver et col., 1974). f) Inoculation d'animaux avec les adénovirus recombinants - neutralization experiment: this experiment was carried out according to the technique of the abortive transformation of lymphoid cells with EBV (De Schryver et al., 1974). f) Inoculation of animals with recombinant adenoviruses
- Inoculation de lapins - Inoculation of rabbits
Afin d'être inoculés, les adénovirus ont tout d'abord été purifiés par deux passages dans des gradients de densité de chlorure de césium, et ont été dialyses et dilués dans du PBS avant inoculation. Des lapines New Zeland ont été inoculées par différentes voies avec 1010 u.f.p. (en admettant qu'une unité de densité optique à 260 nm obtenue pour la suspension virale équivaut à 3 × 1010 u.f.p./ml) d'Ad recombinant ou d'Ad-dl324 en tant que contrôle négatif. In order to be inoculated, the adenoviruses were first purified by two passages in cesium chloride density gradients, and were dialyzed and diluted in PBS before inoculation. New Zeland rabbits were inoculated by different routes with 10 10 pfu (assuming that a unit of optical density at 260 nm obtained for the viral suspension is equivalent to 3 × 10 10 pfu / ml) of recombinant Ad or of Ad -dl324 as a negative control.
- Inoculation des tamarins cottontop - Inoculation of cottontop tamarins
Six animaux ont été utilisés, dont il avait été préalablement vérifié qu'ils ne possédaient pas d'anticorps dirigés contre gp340/220 de l'EBV par ELISA, contre les antigènes tardifs de l'EBV (VCA) par immunofluorescence et enfin contre les protéines de capside de l'adénovirus par immunofluorescence. L'Ad recombinant exprimant gp340/220 (Ad-gp340) a été utilisé pour immuniser quatre tamarins cottontop. Un animal (R155 sur la figure 4) a été vacciné avec un Ad non recombinant de contrôle (souche Ad-dl324) et un autre animal n'a pas été immunisé (B159). Les animaux ont été vaccinés par trois injections intramusculaires. La première dose a été de 5.109 u.f.p. dans un ml de solution tamponnée, et comme les tamarins ne présentaient pas de réactions néfastes, les deux doses suivantes ont été respectivement de 1010 u.f.p. et de 2.1010 u.f.p. aux 5ème et 13ème semaines après la première injection. Les titres des anticorps dirigés contre les protéines de la capside de l'adénovirus et contre la gp340 de l'EBV ont été mesurés toutes les semaines. Les échantillons de plasma de tamarin sont testés pour la réponse anticorps contre gp340 par ELISA et pour la réponse anticorps contre les antigènes de capside de l'adénovirus par immunofluorescence. Six animals were used, which it had previously been verified that they did not have antibodies directed against gp340 / 220 of EBV by ELISA, against late EBV antigens (VCA) by immunofluorescence and finally against Adenovirus capsid proteins by immunofluorescence. Recombinant Ad expressing gp340 / 220 (Ad-gp340) was used to immunize four cottontop tamarins. An animal (R155 in Figure 4) was vaccinated with a non-recombinant control Ad (strain Ad-dl324) and another animal was not immunized (B159). The animals were vaccinated by three intramuscular injections. The first dose was 5.10 9 pfu in one ml of buffered solution, and since the tamarins did not show any adverse reactions, the next two doses were 10 10 pfu and 2.10 10 pfu respectively in the 5th and 13th weeks after the first injection. The titers of the antibodies directed against the proteins of the capsid of the adenovirus and against the gp340 of the EBV were measured weekly. The tamarind plasma samples are tested for the antibody response against gp340 by ELISA and for the antibody response against the capsid antigens of the adenovirus by immunofluorescence.
II. RESULTATS a) Construction des adénovirus recombinants II. RESULTS a) Construction of the recombinant adenoviruses
Les adénovirus contenant le gène EBV gp340/220 sous le contrôle de MLP Ad2 ont été construits de la manière illustrée sur la figure 1. Afin d'obtenir les plasmides de série IX, un fragment BglII-HindIII (nucléotides 3329 à 6242) d'Ad5 a été clone entre les sites BamHI et HindIII des plasmides pLIC, pL2C ou SphI (suivi par réparation des extrémités d'ADN avec la polymérase de Klenow) et HindIII des plasmides pL1CD et pL2CD. Cette séquence de 3 kpb contient le gène de la protéine IX complète qui est nécessaire pour obtenir l'ADN viral jusqu'à 97 % de sa taille normale (Ghosh-Choudhury et col., 1987) et permet la réalisation de la recombinaison in vivo dans les cellules. La reconstruction des Ad recombinants est décrite dans la légende de la figure 1. b) Expression des glycoprotéines qp340/220 par des adénovirus recombinants The adenoviruses containing the EBV gene gp340 / 220 under the control of MLP Ad2 were constructed as illustrated in FIG. 1. In order to obtain the plasmids of series IX, a BglII-HindIII fragment (nucleotides 3329 to 6242) of Ad5 was cloned between the BamHI and HindIII sites of the plasmids pLIC, pL2C or SphI (followed by repair of the DNA ends with Klenow polymerase) and HindIII of the plasmids pL1CD and pL2CD. This 3 kbp sequence contains the complete protein IX gene which is necessary to obtain viral DNA up to 97% of its normal size (Ghosh-Choudhury et al., 1987) and allows recombination to be carried out in vivo in cells. The reconstruction of recombinant Ad is described in the legend of Figure 1. b) Expression of the qp340 / 220 glycoproteins by recombinant adenoviruses
La capacité des adénovirus recombinants à exprimer les glycoprotéines gp340/220 a été testée sur différentes lignées cellulaires. Les cellules 293, Hela et Vero ont été infectées avec 1, 10, 100, 1000 u.f.p./cellule, et récupérées chaque jour jusqu'à 36 h, 4 jours ou 7 jours après transfection respectivement. L'expression de gp340/220 la plus forte a été observée avec les cellules Hela 3 jours après infection (figure 2B, puits 5). Les protéines membranaires dérivés de l'EBV produites par les recombinants Ad-gp340 et Ad-220 ont été marquées à l'aide de méthionine 35S (figure 2A, puits 1,2), sont correctement glycosylées et ont pu être détectées à la surface de cellules humaines infectées par immunofluorescence membranaire avec différents anticorps monoclonaux (figure 3). De la même manière, les formes sécrétées de ces protéines ont pu être détectées par immunoprécipitation à partir de milieux de cultures cellulaires dans lesquels les recombinants Ad-gp340D et Ad-gp220D ont été utilisés pour l'infection (figure 2A, puits 3,4; figure 2B, puits 1, 4 et 5). D'autre part, l'immunoprécipitation des extraits cellulaires humains dans ce cas ne montre seulement que les précurseurs de glycosylation de gp340/220 tronquées (figure 2B, puits 3). Après l'infection, les cellules continuent de sécréter les glycoprotéines recombinantes qui peuvent s'accumuler dans le milieu de culture sans subir de protéolyse apparente (figure 2B, puits 4 et 5). c) Réponse anticorps chez les lapins inoculés avec les adénovirus recombinants exprimant EBV gp340/220 (tableau 1) The capacity of the recombinant adenoviruses to express the gp340 / 220 glycoproteins was tested on various cell lines. Cells 293, Hela and Vero were infected with 1, 10, 100, 1000 pfu / cell, and recovered daily up to 36 h, 4 days or 7 days after transfection respectively. The strongest expression of gp340 / 220 was observed with the Hela cells 3 days after infection (FIG. 2B, well 5). The EBV-derived membrane proteins produced by the recombinants Ad-gp340 and Ad-220 were labeled with 35 S methionine (FIG. 2A, well 1,2), are correctly glycosylated and could be detected using the surface of human cells infected by membrane immunofluorescence with different monoclonal antibodies (Figure 3). Similarly, the secreted forms of these proteins could be detected by immunoprecipitation from cell culture media in which the recombinants Ad-gp340D and Ad-gp220D were used for the infection (FIG. 2A, well 3.4 ; Figure 2B, wells 1, 4 and 5). On the other hand, the immunoprecipitation of human cell extracts in this case only shows that the truncated gp340 / 220 glycosylation precursors (FIG. 2B, well 3). After infection, the cells continue to secrete recombinant glycoproteins which can accumulate in the culture medium without undergoing apparent proteolysis (FIG. 2B, wells 4 and 5). c) Antibody response in rabbits inoculated with recombinant adenoviruses expressing EBV gp340 / 220 (Table 1)
Les réponses anticorps dirigés contre gp340/220 ont été suivies chez les lapins après injection d'Ad recombinant. Les schémas d'immunisation sont résumés sur le tableau 1. Après inoculation intraveineuse, intranasale, ou intramusculaire, d'une première dose de virus recombinants Ad-gp340 ou Ad-gp220 hautement purifiés (exprimant les glycoprotéines de membrane), les anticorps anti-gp340/220 ont été détectés deux semaines plus tard chez tous les animaux excepté chez un lapin (lapin nº 33). Après une seconde injection, un effet de renforcement a été observé sur les animaux qui présentent alors une forte réponse anticorps une semaine plus tard. Des titres relativement hauts ont été détectés 30 semaines après la dernière inoculation. Ces anticorps peuvent reconnaitre les cellules exprimant gp340/220 par immunofluorescence et les protéines gp340/220 par immunoprécipitation (figure 2 A) et par immunotransfert selon la technique Western. Il n'y a pas de différence apparente entre gp340 et gp220 en ce qui concerne leur capacité à induire des anticorps spécifiques.  Antibody responses directed against gp340 / 220 were followed in rabbits after injection of recombinant Ad. The immunization schedules are summarized in Table 1. After intravenous, intranasal, or intramuscular inoculation, a first dose of highly purified Ad-gp340 or Ad-gp220 recombinant virus (expressing membrane glycoproteins), anti- gp340 / 220 were detected two weeks later in all animals except one rabbit (rabbit # 33). After a second injection, a strengthening effect was observed on the animals, which then show a strong antibody response a week later. Relatively high titers were detected 30 weeks after the last inoculation. These antibodies can recognize the cells expressing gp340 / 220 by immunofluorescence and the proteins gp340 / 220 by immunoprecipitation (FIG. 2 A) and by immunoblotting according to the Western technique. There is no apparent difference between gp340 and gp220 in terms of their ability to induce specific antibodies.
Les titres anti-gp340/220 obtenus par inoculation de lapin avec l'Ad-gp340D recombinant (exprimant les glycoprotéines sous forme sécrétée) sont bien plus faibles, et une réponse à long terme n'a pu être observée.  The anti-gp340 / 220 titers obtained by rabbit inoculation with the recombinant Ad-gp340D (expressing the glycoproteins in secreted form) are much lower, and a long-term response could not be observed.
Différentes voies d'inoculation ont été testées. Les injections intramusculaire et intraveineuse sont aussi efficaces l'une que l'autre. L'introduction intranasale d'Ad déclenche une première réponse lente mais des titres similaires en anticorps ont été obtenus après la seconde vaccination (lapin 68). Les sérums anti-gp340/220 positifs provenant de lapins immunisés se sont révélés être tous capables de fortement neutraliser le virus (voir dernière colonne du tableau 1). d) Réponse anticorps chez les tamarins inoculés avec les adénovirus recombinants exprimant EBV gp340/220 Different routes of inoculation have been tested. Intramuscular and intravenous injections are as effective as each other. The intranasal introduction of Ad triggers a slow first response, but similar antibody titers were obtained after the second vaccination (rabbit 68). The anti-gp340 / 220 positive sera from immunized rabbits have all been shown to be able to strongly neutralize the virus (see last column of Table 1). d) Antibody response in tamarins inoculated with recombinant adenoviruses expressing EBV gp340 / 220
Trois semaines après la deuxième injection, les 4 animaux qui ont reçu le virus recombinant développent des anticorps contre gp340 avec des titres allant de 1/100 à 1/280. Le titre de ces anticorps atteint des valeurs de 1/440 à 1/1520 trois semaines après la troisième injection. Les 5 animaux inoculés avec l'adénovirus (incluant celui qui a reçu le virus parental), développent des anticorps contre les antigènes de capside du virus compris entre 1/80 et 1/640 après la 2ème injection et 1/640 à 1/280 après la troisième injection. Aucun anticorps spécifique n'est détecté chez l'animal non immunisé. e) Protection des singes tamarins contre les lymphomes induits par l'EBV  Three weeks after the second injection, the 4 animals which received the recombinant virus develop antibodies against gp340 with titers ranging from 1/100 to 1/280. The titer of these antibodies reaches values of 1/440 to 1/1520 three weeks after the third injection. The 5 animals inoculated with adenovirus (including that which received the parental virus), develop antibodies against the capsid antigens of the virus between 1/80 and 1/640 after the 2nd injection and 1/640 to 1/280 after the third injection. No specific antibody is detected in the non-immunized animal. e) Protection of tamarin monkeys against lymphomas induced by EBV
Trois semaines après la troisième injection, les 6 tamarins (y compris l'animal de contrôle non immunisé) ont reçu une injection par voie intra-péritonéale avec une dose 100% tumorigènique d'EBV (dans un délai de 3 semaines) à partir d'un stock de virus préparé à partir de la lignée cellulaire B95/8. Les 6 animaux ont été alors régulièrement examinés par palpation externe et mesure de la taille des ganglions lymphatiques et des tumeurs ainsi induites. Three weeks after the third injection, the 6 tamarins (including the non-immune control animal) received an intraperitoneal injection with a 100% tumorigenic dose of EBV (within 3 weeks) from '' a virus stock prepared from the B95 / 8 cell line. The 6 animals were then regularly examined by external palpation and measurement of the size of the lymph nodes and of the tumors thus induced.
L'animal R155 qui a reçu le virus parental développe de façon très rapide la maladie avec implication à la fois des ganglions lymphatiques périphériques et abdominaux. The animal R155 which received the parental virus very quickly develops the disease with implication in the both peripheral and abdominal lymph nodes.
L'animal a du être sacrifié le 25° jour après l'injection de l'EBV. L'animal non immunisé (B159) développe également les mêmes symptômes. A l'opposé, les quatre tamarins immunisés avec l'Ad recombinant exprimant gp340 sont clairement protégés et ne développent pas la maladie après l'injection de l'EBV. Seuls quelques ganglions lymphatiques ont été transitoirement repérés gonflés, d'une taille de 3 mm sur 3 mm de diamètre contre 14 mm sur 12 mm de diamètre pour les animaux non protégés. De plus les tissus obtenus après biopsie ne présentent pas de caractéristiques tumorales comme chez les animaux de contrôle.  The animal had to be sacrificed on the 25th day after the injection of EBV. The unimmunized animal (B159) also develops the same symptoms. In contrast, the four tamarins immunized with recombinant Ad expressing gp340 are clearly protected and do not develop the disease after the injection of EBV. Only a few lymph nodes were transiently identified as swollen, 3 mm by 3 mm in diameter compared to 14 mm by 12 mm in diameter for unprotected animals. In addition, the tissues obtained after biopsy do not have tumor characteristics as in control animals.
III. ANALYSE DES RESULTATS III. RESULTS ANALYSIS
Les inventeurs ont mis en évidence l'expression de gènes étrangers dans de nombreuses lignées cellulaires infectées à l'aide d'adénovirus recombinants. En particulier, la forme sécrétée de gp340/220 d'EBV a pu être facilement purifiée à partir d'un milieu ne contenant pas de sérum. Cela suggère la présence d'un système de transformation post-traductionnelle hautement efficace sécrétant ces séquences polypeptidiques. De plus, pendant l'infection, les cellules sécrètent les glycoprotéines qui s'accumulent alors dans le milieu cellulaire. Cela permet de fournir une bonne source d'antigènes pour la fabrication d'un vaccin sans risquer une contamination par de l'ADN de l'EBV. Dans les constructions de la présente invention, les séquences codant pour les antigènes servant à l'immunisation ou codant pour les cytokines sont placées sous le contrôle du promoteur majeur tardif (promoteur ubiquitaire) d'Ad2, suivi par la séquence leader tripartite dans son intégralité; ces séquences d'ADN sont clonées dans la région E1 du virus. En effet, les ARNm ne contenant seulement que le premier exon de la séquence leader sont traduits 20 fois moins efficacement (Thummell et col., 1983; Davis et col., 1985). Des adénovirus recombinants récemment décrits pour l'expression in vivo de gènes étrangers utilisent un site de clonage dans la région E3 sans déletion du gène E1 (Morin et col., 1987; Johnson et col., Schneider et col., 1989). The inventors have demonstrated the expression of foreign genes in numerous cell lines infected with the aid of recombinant adenoviruses. In particular, the secreted form of gp340 / 220 of EBV could be easily purified from a medium containing no serum. This suggests the presence of a highly efficient post-translational transformation system secreting these polypeptide sequences. In addition, during infection, cells secrete glycoproteins which then accumulate in the cell environment. This provides a good source of antigens for the manufacture of a vaccine without risking contamination with EBV DNA. In the constructions of the present invention, the sequences coding for the antigens used for immunization or coding for the cytokines are placed under the control of the late major promoter (ubiquitous promoter) of Ad2, followed by the entire tripartite leader sequence; these DNA sequences are cloned into the E1 region of the virus. Indeed, mRNAs containing only the first exon of the leader sequence are translated 20 times less efficiently (Thummell et al., 1983; Davis et al., 1985). Recombinant adenoviruses recently described for the in vivo expression of foreign genes use a cloning site in the E3 region without deletion of the E1 gene (Morin et al., 1987; Johnson et al., Schneider et al., 1989).
L'utilisation de virus vivants recombinants en tant que vecteurs vaccinants présentent beaucoup d'avantages par rapport à un vaccin sous-unité. Ces avantages comprennent la possibilité de produire des glycoprotéines virales en l'absence d'ADN de l'EVB, l'obtention des modifications post-traductionnelles correctes et d'une présentation appropriée de l'antigène aux cellules T effectrices, un large spectre de réponses immunes, l'induction d'une mémoire immunologique à long terme, et enfin un faible coût de production et une facilité d'inoculation du vaccin (particulièrement dans le cas d'utilisation d'un vaccin gastro-encapsulé). Mais l'inconvénient principal de l'utilisation des virus recombinants vivants est le large spectre d'hôtes et la possibilité de transmission horizontale entre les humains et les autres espèces. Dans le cas de la vaccine et du virus de la polio, la transmission à des individus immunodéprimés par l'intermédiaire du contact avec des individus vaccinés présente de graves conséquences.  The use of recombinant live viruses as vaccine vectors has many advantages over a subunit vaccine. These advantages include the possibility of producing viral glycoproteins in the absence of EVB DNA, obtaining correct post-translational modifications and an appropriate presentation of the antigen to effector T cells, a broad spectrum of immune responses, induction of long-term immunological memory, and finally a low cost of production and ease of inoculation of the vaccine (particularly in the case of use of a gastro-encapsulated vaccine). But the main drawback of using live recombinant viruses is the broad host spectrum and the possibility of horizontal transmission between humans and other species. In the case of vaccinia and polio virus, transmission to immunocompromised individuals through contact with vaccinated individuals has serious consequences.
La présente invention démontre qu'un Ad5 recombinant présentant une déletion dans la région E1 permet l'expression in vivo de produits de gènes étrangers et peut induire la formation d'anticorps neutralisants chez les lapins contre ces produits. Les inventeurs ont émis l'hypothèse que l'insertion dans la région E1 pouvait avoir plusieurs avantages, dont notamment le fait d'empêcher le virus de se répliquer in vivo chez. les hôtes permissifs, en particulier chez l'homme et par conséquent de limiter les risques de dissémination des virus recombinants, ceux-ci ne peuvant alors réaliser qu'un seul cycle d'infection dans les cellules animales. Un autre avantage pouvait être celui d'empêcher une forte immunisation contre les protéines de la capside d'Ad et de permettre des vaccinations multiples sans affecter la qualité de l'immunisation contre les antigènes étrangers exprimés par ce virus. The present invention demonstrates that a recombinant Ad5 having a deletion in the E1 region allows the expression in vivo of products of foreign genes and can induce the formation of neutralizing antibodies in rabbits against these products. The inventors have issued the hypothesis that insertion into the E1 region could have several advantages, in particular the fact of preventing the virus from replicating in vivo in. permissive hosts, in particular in humans, and consequently of limiting the risks of dissemination of the recombinant viruses, the latter then being able to carry out only a single cycle of infection in animal cells. Another advantage could be that of preventing a strong immunization against the proteins of the Ad capsid and of allowing multiple vaccinations without affecting the quality of the immunization against the foreign antigens expressed by this virus.
Ces différents aspects sont particulièrement importants dans le domaine de la sécurité et pour le développement potentiel d'Ad recombinant en tant que vaccin.  These different aspects are particularly important in the field of safety and for the potential development of recombinant Ad as a vaccine.
Les différences trouvées au niveau des titres anti- gp340/220 entre les formes membranaires et sécrétées de gp340/220 peuvent être expliquées par les différentes présentations des antigènes aux cellules T suivant le fait que l'antigène est à la surface des cellules présentant l'antigène ou sécrété. Il a déjà été démontré que l'addition d'une séquence d'ancrage conduit à une augmentation nette des taux d'anticorps reconnaissant un antigène étranger (Langford et col., 1986). L'absence totale de réponse anticorps lors de l'utilisation de la forme sécrétée de gp220 est plus surprenante. La gp220 tronquée doit être moins stable in vivo mais il est plus problable encore que la conformation adoptée par cette protéine recombinante lorsque le domaine d'ancrage a été supprimé soit faiblement immunogénique chez les lapins. The differences found in the anti-gp340 / 220 titers between the membrane and secreted forms of gp340 / 220 can be explained by the different presentations of antigens to T cells depending on the fact that the antigen is on the surface of cells presenting the antigen or secreted. It has already been shown that the addition of an anchor sequence leads to a marked increase in the levels of antibodies recognizing a foreign antigen (Langford et al., 1986). The total absence of antibody response when using the secreted form of gp220 is more surprising. Truncated gp220 must be less stable in vivo, but it is even more problematic if the conformation adopted by this recombinant protein when the anchor domain has been deleted is weakly immunogenic in rabbits.
Une autre hypothèse serait que l'unique domaine de la gp340 qui contient trois répétitions d'un motif amphopathique de 21 acides aminés (Beisel et col., 1985) pourrait être important dans le déclenchement de la réponse anticorps, particulièrement lorsque les protéines sont sous forme sécrétée. Another hypothesis would be that the single domain of gp340 which contains three repeats of an amphopathic motif of 21 amino acids (Beisel et al., 1985) could be important in triggering the antibody response, particularly when proteins are in secreted form.
Les sérums anti-gp340/220 positifs obtenus à partir de lapins immunisés sont tous fortement capables de neutraliser l'EBV. Les sérums anti-gp340/220 dirigés contre l'Ad recombinant exprimant les gp340/220 sécrétées neutralisent également l'EBV in vitro malgré des titres beaucoup plus faibles. Ces résultats correspondent avec le fait que la gp220 sécrétée et des formes tronquées de gp220 dans la partie C-terminale, sont toujours susceptibles de se lier au récepteur de l'EBV (CR2) à la surface des lymphocytes B (Tanner et col.,1988). Des mutations plus précises sont nécessaires à l'intérieur de l'extrémité N-terminale de gp340/220 afin d'identifier le domaine de liaison à CR2. Néanmoins, ce travail constitue une étape préliminaire vers l'identification des épitopes gp340/220 impliqués dans la réponse immune en termes de liaison des anticorps avec la gp340 et de neutralisation du virus.  The anti-gp340 / 220 positive sera obtained from immunized rabbits are all highly capable of neutralizing EBV. The anti-gp340 / 220 sera directed against the recombinant Ad expressing the secreted gp340 / 220 also neutralize EBV in vitro despite much lower titers. These results correspond to the fact that the secreted gp220 and truncated forms of gp220 in the C-terminal part, are still capable of binding to the EBV receptor (CR2) on the surface of B lymphocytes (Tanner et al., 1988). More precise mutations are needed inside the N-terminus of gp340 / 220 in order to identify the binding domain for CR2. Nevertheless, this work constitutes a preliminary step towards the identification of the gp340 / 220 epitopes involved in the immune response in terms of binding of antibodies with gp340 and neutralization of the virus.
La réponse anticorps a été démontrée comme pouvant persister six mois de façon appréciable chez le lapin. Il est important d'obtenir une protection à long terme après la vaccination.  The antibody response has been demonstrated to be able to persist appreciably for six months in rabbits. It is important to get long-term protection after vaccination.
Comme une réponse en anticorps neutralisant l'EBV in vivo a été obtenue chez les lapins vaccinés à l'aide d'Ad recombinant produisant les protéines de membrane gp340/220, les recombinants Ad-gp340/220 ont été testés avec succès quant à sa capacité à protéger des tamarins cottontop contre les lymphomes induits par l'EBV (voir figure 4).  As an antibody response neutralizing EBV in vivo has been obtained in rabbits vaccinated using recombinant Ad producing the membrane proteins gp340 / 220, the recombinants Ad-gp340 / 220 have been successfully tested for its ability to protect cottontop tamarins from EBV-induced lymphomas (see Figure 4).
La possibilité de délivrer les adénovirus par l'intermédiaire de plusieurs voies d'inoculation dont les voies intramusculaire, intranasale, intrapéritonéale, sous-cutanée ou orale, fait de ces adénovirus des outils performants pour l'expression in vivo de gènes étrangers. La possibilité d'obtenir une réponse immune aussi efficace par introduction intranasale du virus rend ce dernier très prometteur du point de vue de développement d'un vaccin. Les adénovirus ont une affinité particulière pour la paroi gastrointestinale et des voies respiratoires supérieures, pour les amygdales et les glandes salivaires chez l'homme et certains vertébrés. L'utilisation d'Ad recombinant est par conséquent particulièrement avantageuse pour la vaccination contre l'EBV qui se réplique au niveau des sites sus-mentionnés, particulièrement en induisant la sécrétion d'anticorps susceptibles de protéger l'épithélium oropharyngé. The possibility of delivering adenoviruses via several inoculation routes including the intramuscular, intranasal, intraperitoneal routes, subcutaneous or oral, makes these adenoviruses effective tools for the in vivo expression of foreign genes. The possibility of obtaining such an effective immune response by intranasal introduction of the virus makes the latter very promising from the point of view of vaccine development. Adenoviruses have a particular affinity for the gastrointestinal wall and upper respiratory tract, for the tonsils and salivary glands in humans and some vertebrates. The use of recombinant Ad is therefore particularly advantageous for vaccination against EBV which replicates at the aforementioned sites, particularly by inducing the secretion of antibodies capable of protecting the oropharyngeal epithelium.
Tableau 1 Table 1
Titre en anticorps (a) Antibody titer (a)
Virus type Animal Voies semaine après la lère injection Neutralisation  Animal type virus Ways week after the 1st injection Neutralization
0 4 7 25 40 de l'EBV (b) 0 4 7 25 40 of the EBV (b)
Ad-gp340 30 iv - 16 256 512 S +++ Ad-gp340 30 iv - 16 256 512 S +++
31 iv - 512 1024 256 256  31 iv - 512 1024 256 256
32 iv - 128 256 256 S  32 iv - 128 256 256 S
33 iv - - - 128 S  33 iv - - - 128 S
34 iv - 512 1024 S  34 iv - 512 1024 S
35 iv - 512 2048 256 S  35 iv - 512 2048 256 S
36 im - 1024 1024 256 256  36 im - 1024 1024 256 256
38 im - 1024 2048 S  38 im - 1024 2048 S
63 in - 32 512 S  63 in - 32,512 S
Ad-gp220 40 iv - 1024 1024 128 256 +++/++  Ad-gp220 40 iv - 1024 1024 128 256 +++ / ++
41 iv - 2048 1024 64 64  41 iv - 2048 1024 64 64
42 iv - 2048 1024 128 S  42 iv - 2048 1024 128 S
43 iv - 256 128 - S  43 iv - 256 128 - S
44 iv - 2048 512 256 64  44 iv - 2048 512 256 64
45 iv - 512 256 256 128  45 iv - 512 256 256 128
46 iv - 1024 512 16 S  46 iv - 1024 512 16 S
47 iv - 1024 1024 256 S  47 iv - 1024 1024 256 S
48 im - 512 256 128 S  48 im - 512 256 128 S
49 i m - 1024 512 256 4  49 i m - 1024 512 256 4
Ad-gp340D 54 iv - 128 16 - S ++  Ad-gp340D 54 iv - 128 16 - S ++
55 iv - 256 - - S  55 iv - 256 - - S
56 iv - 512 - - 56 iv - 512 - -
57 S 57 S
iv - 64 - - iv - 64 - -
58 S 58 S
iv - 8 16 - S  iv - 8 16 - S
59 iv - 64 8 - 59 iv - 64 8 -
60 S 60 S
im - 256 8 - im - 256 8 -
61 S 61 S
im - 64 32 8 S  im - 64 32 8 S
Ad-gp220D 65-67 iv - - - ND S ND  Ad-gp220D 65-67 iv - - - ND S ND
Ad dI324 80 iv - - - S - LEGENDE DES FIGURES ET DU TABLEAU 1 Ad dI324 80 iv - - - S - LEGEND OF FIGURES AND TABLE 1
Figure 1 : Construction des adénovirus recombinants Figure 1: Construction of recombinant adenoviruses
La séquence d'ADN codant pour gp340/220 a été insérée dans le vecteur d'expression pMLP10. Ce plasmide comprend 450 nucléotides de l'extrémité gauche du génome d'Ad5 (c'est-à-dire la répétition terminale inversée contenant l'origine de réplication virale, la séquence nécessaire à l'encapsidation du virus et la séquence activatrice de la région E1A) suivis de la séquence comportant le promoteur majeur tardif d'Ad2 flanqué de la séquence leader tripartite. Les plasmides pLCIX, pL2CIX, pLCDIX et pL2CDIX contiennent les différentes séquences permettant l'expression des diverses formes de gp340/220 décrites dans les sections "méthodes" et "résultats". The DNA sequence coding for gp340 / 220 was inserted into the expression vector pMLP10. This plasmid comprises 450 nucleotides from the left end of the Ad5 genome (that is to say the inverted terminal repeat containing the origin of viral replication, the sequence necessary for the packaging of the virus and the activator sequence of the region E1A) followed by the sequence comprising the major late promoter of Ad2 flanked by the tripartite leader sequence. The plasmids pLCIX, pL2CIX, pLCDIX and pL2CDIX contain the different sequences allowing the expression of the various forms of gp340 / 220 described in the "methods" and "results" sections.
Les adénovirus recombinants sont obtenus par recombinaison homologue in vivo entre le grand fragment du génome viral obtenu après clivage par une enzyme de restriction et la séquence homologue existant chez les plasmides décrits ci-dessus (9,4 - 17 % du génome). Le mélange d'ADN comprenant le fragment du génome viral (2,6 à 100 % du génome) purifié après clivage par l'enzyme de restriction Cla I et le plasmide linéarisé par le même enzyme de restriction est transfecté dans les cellules 293. Les virus recombinants dénommés respectivement Ad- gp340, Ad-gp220, Ad-gp340D et Ad-gp220D sont alors isolés.  Recombinant adenoviruses are obtained by homologous recombination in vivo between the large fragment of the viral genome obtained after cleavage by a restriction enzyme and the homologous sequence existing in the plasmids described above (9.4 - 17% of the genome). The DNA mixture comprising the viral genome fragment (2.6 to 100% of the genome) purified after cleavage by the restriction enzyme Cla I and the plasmid linearized by the same restriction enzyme is transfected into 293 cells. Recombinant viruses respectively named Ad-gp340, Ad-gp220, Ad-gp340D and Ad-gp220D are then isolated.
Cadres : séquences virales (blanc : génome viral ; hachuré : gène des glycoprotéines ; noir : séquences de SV40).  Frames: viral sequences (white: viral genome; hatched: glycoprotein gene; black: SV40 sequences).
Cadre fléché : promoteur MLP; trait fin : séquence bactérienne. D/A : sites donneur et accepteur d'épissage. 1 m.u. = 1 % du génome viral = 360 paires de bases. Arrow frame: MLP promoter; fine line: bacterial sequence. D / A: donor and acceptor splicing sites. 1 mu = 1% of the viral genome = 360 base pairs.
Figure 2 : Détection des gp340/2220 par immunoprécipitation. Figure 2: Detection of gp340 / 2220 by immunoprecipitation.
Gel de polyacrylamide montrant les glycoprotéines gp340/220 immunoprécipitées à partir de cellules infectées avec les Ad recombinants titrant à 1000 u.f.p. (unité formant plaque) par cellule. Les protéines radiomarquées ont été extraites à partir de 2.106 cellules ou à partir du milieu de culture correspondant au même nombre de cellules pour les formes sécrétées. Polyacrylamide gel showing the gp340 / 220 glycoproteins immunoprecipitated from cells infected with recombinant Ad titrating to 1000 pfu (plaque forming unit) per cell. The radiolabelled proteins were extracted from 2.10 6 cells or from the culture medium corresponding to the same number of cells for the secreted forms.
A : protéines détectées 48 h après infection des cellules Hela par un sérum polyclonal de lapin positif (puits 1-4) ou le sérum préimmun (puits 5), soit à partir d'extraits cellulaires (puits 1 et 2) ou du milieu de culture concentré dans les puits 3 à 5. Les virus employés pour l'infection des cellules sont : Ad-gp340, 2 : Ad-gp220, 3 : Ad-gp340, 4-5 :Ad-gp220D. A: proteins detected 48 h after infection of the Hela cells with a positive rabbit polyclonal serum (well 1-4) or the preimmune serum (well 5), either from cell extracts (wells 1 and 2) or from the medium of culture concentrated in wells 3 to 5. The viruses used for the infection of the cells are: Ad-gp340, 2: Ad-gp220, 3: Ad-gp340, 4-5: Ad-gp220D.
B : protéine gp 220 détectée 48 h (puits 4) ou 72 h (autres puits) après l'infection des cellules Vero (1-3) ou Hela (4 et 5) avec un anticorps monoclonal anti- gp340/220 à partir du milieu de culture (puits 1, 2, 4 et 5) ou d'extraits cellulaires (puits 3).  B: gp 220 protein detected 48 h (well 4) or 72 h (other well) after infection of Vero (1-3) or Hela cells (4 and 5) with an anti-gp340 / 220 monoclonal antibody from the culture medium (wells 1, 2, 4 and 5) or cell extracts (well 3).
Figure 3 : Immunofluorescence de membrane. Figure 3: Membrane immunofluorescence.
Des cellules Vero sont infectées par le virus recombinant Adgp220 à 10 u.f.p./cellule et traitées avec un anticorps monoclonal antigp340/220 et un anti-IgG de souris conjugué fluorescent.  Vero cells are infected with the recombinant virus Adgp220 at 10 p.p. / cell and treated with a monoclonal antibody antigp340 / 220 and an anti-fluorescent mouse anti-IgG.
Figure 4 : Protection chez les singes tamarins cottontop après vaccination. Figure 4: Protection in cottontop tamarin monkeys after vaccination.
Trois semaines après la troisième injection, (semaine 16), les animaux sont testés avec une dose 100 % lymphomagène (105,3 unités tranformantes), conduisant â l'apparition de tumeurs dans les 21 jours. Le graphe montré sur la figure est obtenu en portant l'index tumoral de chaque animal (qui représente la somme des diamètres des ganglions lymphatiques palpables et des nodules tumoraux détectables en mm) contre le temps en jours après l'injection de l'EBV. Ronds blancs : animal immunisé par le virus parental, sacrifié 25 jours après le début de l'expérience; carrés blancs : animal non immunisé. Three weeks after the third injection (week 16), the animals are tested with a 100% lymphomagenic dose (10 5.3 transforming units), leading to â the appearance of tumors within 21 days. The graph shown in the figure is obtained by plotting the tumor index of each animal (which represents the sum of the diameters of the palpable lymph nodes and the detectable tumor nodules in mm) against the time in days after the injection of EBV. White circles: animal immunized by the parental virus, sacrificed 25 days after the start of the experiment; white squares: non-immune animal.
Tableau 1 : Réponse anticorps chez les lapins inoculés avec les Ad recombinants. Table 1: Antibody response in rabbits inoculated with recombinant Ad.
(a) : titres des anticorps anti-gp340 détectés par immunofluorescence. Le titre des sérums est exprimé comme l'inverse de la dernière dilution positive détectée.  (a): titers of anti-gp340 antibodies detected by immunofluorescence. The titer of the sera is expressed as the inverse of the last positive dilution detected.
(b) : le test de neutralisation est basé sur la transformation abortive des cellules lymphoides avec l'EBV. (-) : résultat négatif. (S) : animal sacrifié ou mort au cours de la période d'expérimentation.  (b): the neutralization test is based on the abortive transformation of lymphoid cells with EBV. (-): negative result. (S): animal sacrificed or died during the experimentation period.
REFERENCES BIBLIOGRAPHIQUES BIBLIOGRAPHICAL REFERENCES
Beisel, C., et col., (1985), Journal of Virology 54, 665-674. Beisel, C., et al., (1985), Journal of Virology 54, 665-674.
Bejarano, M., T., et col., (1990), Journal of Virology 64, 1398-1401. Bejarano, M., T., et al., (1990), Journal of Virology 64, 1398-1401.
Berkner, K.L. (1988), Biotechniques 6, 616-629. Berkner, K.L. (1988), Biotechniques 6, 616-629.
Chroboezek, J., et col., (1992), Virology 186, 280-285. Chroboezek, J., et al., (1992), Virology 186, 280-285.
Davis, A.R., et col., (1985), Proceedings of the National Academy of Sciences, U.S.A. 82, 7560-7564. De Schryver, A., et col., (1974), International Journal of Cancer 13, 353-362. Davis, AR, et al. (1985), Proceedings of the National Academy of Sciences, USA 82, 7560-7564. De Schryver, A., et al., (1974), International Journal of Cancer 13, 353-362.
Emini, E.A., et col., (1988), Virology 166, 387-393. Emini, E.A., et al., (1988), Virology 166, 387-393.
Epstein, M.A. (1976), Cancer Research 38, 711-714. Epstein, M.A. (1976), Cancer Research 38, 711-714.
Epstein, M.A. & Achong B. G. (1979), The Epstein-Barr Virus. Springer-Verlag, Berlin. Epstein, M.A. & Achong B. G. (1979), The Epstein-Barr Virus. Springer-Verlag, Berlin.
Epstein, M.A. & Achong, B.G. (1986), The Epstein-Barr Virus : Récent Advances. Heinemann Médical Books, London. Epstein, M.A. & Achong, B.G. (1986), The Epstein-Barr Virus: Recent Advances. Heinemann Medical Books, London.
Epstein, M.A., et col., (1985), Nature 318, 287-289. Epstein, M.A., et al., (1985), Nature 318, 287-289.
Fingeroth, J., et col., (1984), Proceedings of the National Academy of Sciences, U.S.A. 81, 4510-4516. Fingeroth, J., et al., (1984), Proceedings of the National Academy of Sciences, U.S.A. 81, 4510-4516.
Ghosh-Choudhury, G., et col., (1987), EMBO Journal 6, 1733-1739. Ghosh-Choudhury, G., et al., (1987), EMBO Journal 6, 1733-1739.
Graham, F.L. & Van Der Eb, A.J. (1973), Virology 52, 456-467. Graham, F.L. & Van Der Eb, A.J. (1973), Virology 52, 456-467.
Graham, F.L. et col., (1977), Journal of General Viroloσy 36, 59-72. Graham, F.L. et al., (1977), Journal of General Viroloσy 36, 59-72.
Haddad, R.S., et Hutt-Fletcher, L.M., (1989), Journal of Virology 63, 4998-5005. Haddad, R.S., and Hutt-Fletcher, L.M., (1989), Journal of Virology 63, 4998-5005.
Hoffmann, G.J., et col., (1980), Proceedings of the National Academy of Sciences, U.S.A. 77, 2979-2983. Hoffmann, G.J., et al., (1980), Proceedings of the National Academy of Sciences, U.S.A. 77, 2979-2983.
Johnson, D.C., et col., (1988), Virology 164, 1-14. Johnson, D.C., et al., (1988), Virology 164, 1-14.
Langford, C.J., et col., (1986), Molecular and Cellular Biology 6, 3191-3199. Levrero, M., et col., (1991), Gène 101, 195-202 Langford, CJ, et al., (1986), Molecular and Cellular Biology 6, 3191-3199. Levrero, M., et al., (1991), Gene 101, 195-202
Lowe, S.R., et col., (1987), Proceedings of the National Academy of Sciences, U.S.A. 84, 3896-3900. Lowe, S.R., et al., (1987), Proceedings of the National Academy of Sciences, U.S.A. 84, 3896-3900.
Mackett, M. & Arrand, J. (1985), EMBO Journal 4, 3229. Mackett, M. & Arrand, J. (1985), EMBO Journal 4, 3229.
Morgan, A.J. et col., (1988a), Journal of General Virology 69, 2093-2096. Morgan, A.J. et al., (1988a), Journal of General Virology 69, 2093-2096.
Morgan, A.J. et col., (1988b), Journal of Médical Virology 25, 189-195. Morgan, A.J. et al., (1988b), Journal of Medical Virology 25, 189-195.
Morgan, A.J. et col., (1989), Journal of Médical Virology 69, 74-78. Morgan, A.J. et al., (1989), Journal of Medical Virology 69, 74-78.
Morin, J.E., et col., (1987), Proceedings of the National Academy of Sciences, U.S.A. 84, 4626-4630. Morin, J.E., et al., (1987), Proceedings of the National Academy of Sciences, U.S.A. 84, 4626-4630.
Mueller, N., et col., (1989), The New England Journal of Médecine 320, 689-695. Mueller, N., et al., (1989), The New England Journal of Medicine 320, 689-695.
Pallesen, G., et col., (1991), The Lancet 337, 320-322. Pallesen, G., et al., (1991), The Lancet 337, 320-322.
Qualtière, L.F. et col., (1982), Journal of Immunology, 129, 814-818. Qualtière, L.F. et al., (1982), Journal of Immunology, 129, 814-818.
Schneider M. et col., (1989), Journal of General Virology 70, 417-427. Schneider M. et al., (1989), Journal of General Virology 70, 417-427.
Shenk, T. & Williams, J. (1984), Current Topics in Microbiology and Immunology 111, 1-39. Shenk, T. & Williams, J. (1984), Current Topics in Microbiology and Immunology 111, 1-39.
Tanner, J., et col., (1988), Journal of Virology 62, 4452-4464. Tanner, J., et al., (1988), Journal of Virology 62, 4452-4464.
Thomas, J.A. & Crawford, D.H. (1989), The Lancet 1, 1075-1076. Thorley-Lawson, D.A. & Poodry, C.A. (1982), Journal of Virology 43, 730-736. Thomas, JA & Crawford, DH (1989), The Lancet 1, 1075-1076. Thorley-Lawson, DA & Poodry, CA (1982), Journal of Virology 43, 730-736.
Thumell, C., et col., (1983), Cell 33, 455-464. Thumell, C., et al., (1983), Cell 33, 455-464.
Tosoni-Pittoni, E., et col., (1989). Biochemical Biophysical Research Communication 158, 676-684. Tosoni-Pittoni, E., et al., (1989). Biochemical Biophysical Research Communication 158, 676-684.
Uleato, D., et col., (1988), European Journal of Immunology, 18, 1689-1697. Uleato, D., et al., (1988), European Journal of Immunology, 18, 1689-1697.

Claims

REVENDICATIONS
1. Vecteur recombinant caractérisé en ce qu'il comprend, d'une part, une séquence génomique d'un adénovirus defectif, c'est à dire dépourvue des séquences nécessaires à sa réplication, et, d'autre part, un insérât comprenant une ou plusieurs séquences d'ADN codant pour toute protéine caractéristique de l'EBV qui soit susceptible d'induire chez un individu la formation d'anticorps neutralisants protecteurs contre l'EBV et, le cas échéant de cellules protectrices, notamment des cellules T cytotoxiques et T helper, cet insérât étant placé sous le contrôle d'un promoteur présent ou préalablement inséré dans le génome de l' adénovirus. 1. Recombinant vector characterized in that it comprises, on the one hand, a genomic sequence of a defective adenovirus, that is to say devoid of the sequences necessary for its replication, and, on the other hand, an insert comprising a or several DNA sequences coding for any protein characteristic of EBV which is capable of inducing in an individual the formation of neutralizing antibodies protective against EBV and, where appropriate of protective cells, in particular cytotoxic T cells and T helper, this insert being placed under the control of a promoter present or previously inserted into the genome of the adenovirus.
2. Vecteur recombinant selon la revendication 1, caractérisé en ce que son génome comprend une séquence d'ADN codant pour la glycoprotéine gp340 ou gp220 du virus Epstein-Barr (EBV), ou pour tout fragment de ces protéines qui soit susceptible d'induire la formation d'anticorps protecteurs contre l'EBV chez un individu, et, le cas échéant, de cellules protectrices, notamment des cellules T cytotoxiques et T "helper".  2. Recombinant vector according to claim 1, characterized in that its genome comprises a DNA sequence coding for the glycoprotein gp340 or gp220 of the Epstein-Barr virus (EBV), or for any fragment of these proteins which is capable of inducing the formation of protective antibodies against EBV in an individual, and, where appropriate, protective cells, in particular cytotoxic T cells and T "helper" cells.
3. Vecteur recombinant selon la revendication 1 ou la revendication 2, caractérisé en ce que son génome comprend une séquence d'ADN codant pour un antigène de membrane d'EBV impliqué dans le mécanisme de fusion de l'enveloppe virale d'EBV avec la membrane des lymphocytes B et des cellules épithéliales, et plus particulièrement la glycoprotéine gp85, ou pour tout fragment de cette protéine susceptible d'induire la formation desdits anticorps protecteurs ou cellules protectrices.  3. Recombinant vector according to claim 1 or claim 2, characterized in that its genome comprises a DNA sequence coding for an EBV membrane antigen involved in the mechanism of fusion of the EBV viral envelope with the membrane of B lymphocytes and epithelial cells, and more particularly the glycoprotein gp85, or for any fragment of this protein capable of inducing the formation of said protective antibodies or protective cells.
4. Vecteur recombinant selon l'une des revendications 1 à 3, caractérisé en ce que la séquence génomique de l'adénovirus defectif comprend néanmoins celles des séquences qui dans ce génome sont le support de l'information génétique nécessaire à l'adénovirus correspondant pour pénétrer dans les cellules infectables par celui-ci, et, le cas échéant, l'ensemble des séquences essentielles nécessaires à l'encapsidation de cet adénovirus. 4. Recombinant vector according to one of claims 1 to 3, characterized in that the genomic sequence of the defective adenovirus nevertheless comprises those of the sequences which in this genome are the carrier of the genetic information necessary for the corresponding adenovirus to penetrate into the cells which can be infected with it, and, where appropriate, all of the essential sequences necessary for the packaging of this adenovirus.
5. Vecteur recombinant selon l'une des revendications 1 à 4, caractérisé en ce que le génome de l'adénovirus non réplicable ou defectif est dépourvu des séquences nucléotidiques de la région E1 nécessaires à la réplication de cet adénovirus.  5. Recombinant vector according to one of claims 1 to 4, characterized in that the genome of the non-replicable or defective adenovirus is devoid of the nucleotide sequences of the E1 region necessary for the replication of this adenovirus.
6. Vecteur recombinant selon l'une des revendications 1 à 5, caractérisé en ce que le génome de l'adénovirus comprend également une séquence d'ADN codant pour une protéine stimulant le système immunitaire.  6. Recombinant vector according to one of claims 1 to 5, characterized in that the adenovirus genome also comprises a DNA sequence coding for a protein stimulating the immune system.
7. Vecteur recombinant selon la revendication 6, caractérisé en ce que le génome de l'adénovirus comprend un acide nucléique d'insertion codant pour une ou plusieurs interleukines choisies parmi les interleukines-2, -3, -4, -5, -6, -7 ou tout fragment de ces dernières susceptibles de stimuler le système immunitaire.  7. Recombinant vector according to claim 6, characterized in that the adenovirus genome comprises an insertion nucleic acid coding for one or more interleukins chosen from interleukins-2, -3, -4, -5, -6 , -7 or any fragment thereof which may stimulate the immune system.
8. Composition pharmaceutique comprenant un ou plusieurs vecteur(s) recombinant(s) selon l'une des revendications 1 à 7, en association avec un véhicule pharmaceutiquement acceptable.  8. Pharmaceutical composition comprising one or more recombinant vector (s) according to one of claims 1 to 7, in combination with a pharmaceutically acceptable vehicle.
9. Vaccin dirigé contre les pathologies provoquées par l'EBV chez l'homme ou l'animal, cette composition vaccinante comprenant un ou plusieurs vecteur (s) recombinant (s) selon l'une des revendications 1 à 7, en association avec un véhicule pharmaceutiquement acceptable.  9. A vaccine directed against pathologies caused by EBV in humans or animals, this vaccinating composition comprising one or more recombinant vector (s) according to one of claims 1 to 7, in combination with a pharmaceutically acceptable vehicle.
10. Méthode de prévention ou de traitement de pathologies provoquées par EBV chez l'homme ou l'animal, cette méthode comprenant l'administration chez l'homme ou l'animal susceptible d'être infecté par l'EBV ou risquant de l'être, d'un vaccin ou d'une composition pharmaceutique selon la revendication 9 ou la revendication 8 respectivement. 10. Method for preventing or treating pathologies caused by EBV in humans or animals, this method comprising the administration in humans or animals likely to be infected with EBV or likely to be infected, of a vaccine or a pharmaceutical composition according to claim 9 or claim 8 respectively.
11. Méthode selon la revendication 10 caractérisée en ce qu'elle permet la prévention ou le traitement de la mononucléose infectieuse, du lymphome endémique de Burkitt, du carcinome indifférencié du nasopharynx (NPC), des lymphomes apparaissant chez les patients immunodéprimés, comme les individus ayant subi une greffe d'organe ou encore les malades atteints du SIDA, et de certains types de lymphomes de Hodgkin.  11. Method according to claim 10 characterized in that it allows the prevention or treatment of infectious mononucleosis, endemic Burkitt lymphoma, undifferentiated carcinoma of the nasopharynx (NPC), lymphomas appearing in immunocompromised patients, such as individuals having undergone an organ transplant or patients suffering from AIDS, and certain types of Hodgkin lymphoma.
PCT/FR1992/000256 1992-03-19 1992-03-19 Defective recombinant adenoviruses expressing characteristic epstein-barr virus proteins WO1993019092A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/FR1992/000256 WO1993019092A1 (en) 1992-03-19 1992-03-19 Defective recombinant adenoviruses expressing characteristic epstein-barr virus proteins
AU16480/92A AU1648092A (en) 1992-03-19 1992-03-19 Defective recombinant adenoviruses expressing characteristic epstein-barr virus proteins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR1992/000256 WO1993019092A1 (en) 1992-03-19 1992-03-19 Defective recombinant adenoviruses expressing characteristic epstein-barr virus proteins

Publications (1)

Publication Number Publication Date
WO1993019092A1 true WO1993019092A1 (en) 1993-09-30

Family

ID=9425562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1992/000256 WO1993019092A1 (en) 1992-03-19 1992-03-19 Defective recombinant adenoviruses expressing characteristic epstein-barr virus proteins

Country Status (2)

Country Link
AU (1) AU1648092A (en)
WO (1) WO1993019092A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995000655A1 (en) * 1993-06-24 1995-01-05 Mc Master University Adenovirus vectors for gene therapy
WO1995026411A2 (en) * 1994-03-25 1995-10-05 The Uab Research Foundation Composition and methods for creating syngeneic recombinant virus-producing cells
WO1995033835A1 (en) * 1994-06-02 1995-12-14 Chiron Corporation Nucleic acid immunization using a virus-based infection/transfection system
WO1996016164A1 (en) * 1994-11-23 1996-05-30 Cantab Pharmaceuticals Research Limited Viral preparations, immunogens, and vaccines
EP0769056A1 (en) * 1994-04-18 1997-04-23 Aviron, Inc. NON-SPLICING VARIANTS OF gp350/220
DE19731184A1 (en) * 1997-07-10 1999-01-14 Atotech Deutschland Gmbh Method and device for analytical monitoring of a bath for the electroplating treatment of substrate surfaces
US5869453A (en) * 1994-03-16 1999-02-09 The Council Of The Queensland Institute Of Medical Research Cytotoxic T-cell epitopes
US5919676A (en) * 1993-06-24 1999-07-06 Advec, Inc. Adenoviral vector system comprising Cre-loxP recombination
WO1999064603A2 (en) * 1998-06-12 1999-12-16 Henry M. Jackson Foundation For The Advancement Of Military Medicine ENHANCEMENT OF B CELL ACTIVATION AND IMMUNOGLOBULIN SECRETION BY CO-STIMULATION OF RECEPTORS FOR ANTIGEN AND EBV Gp350/220
EP1003773A1 (en) * 1997-07-10 2000-05-31 The Council Of The Queensland Institute Of Medical Research Ctl epitopes from ebv
US6080569A (en) * 1993-06-24 2000-06-27 Merck & Co., Inc. Adenovirus vectors generated from helper viruses and helper-dependent vectors
US6120764A (en) * 1993-06-24 2000-09-19 Advec, Inc. Adenoviruses for control of gene expression
US6140087A (en) * 1993-06-24 2000-10-31 Advec, Inc. Adenovirus vectors for gene therapy
US6379943B1 (en) 1999-03-05 2002-04-30 Merck & Co., Inc. High-efficiency Cre/loxp based system for construction of adenovirus vectors
US6692749B1 (en) 1994-04-18 2004-02-17 Medimmune Vaccines, Inc. Non-splicing variants of gp350/220
US6730507B1 (en) 1993-06-24 2004-05-04 Merck & Co., Inc. Use of helper-dependent adenoviral vectors of alternative serotypes permits repeat vector administration
US6974694B2 (en) 1995-06-07 2005-12-13 Advec, Inc. Adenoviruses for control of gene expression
US7045347B2 (en) 1993-06-24 2006-05-16 Advec, Inc. Helper dependent adenovirus vectors based on integrase family site-specific recombinases
US7135187B2 (en) 1993-06-24 2006-11-14 Advec, Inc. System for production of helper dependent adenovirus vectors based on use of endonucleases

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000971A1 (en) * 1986-08-01 1988-02-11 Commonwealth Scientific And Industrial Research Or Recombinant vaccine
EP0260012A1 (en) * 1986-09-02 1988-03-16 Merck & Co. Inc. Promoter for expression of heterologous proteins in mammalian cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000971A1 (en) * 1986-08-01 1988-02-11 Commonwealth Scientific And Industrial Research Or Recombinant vaccine
EP0260012A1 (en) * 1986-09-02 1988-03-16 Merck & Co. Inc. Promoter for expression of heterologous proteins in mammalian cells

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIOSIS PREVIEWS DATABASE, Philadelphia, US, Ab.No. 88:359107, N. MILLER et al.: "A monoclonal antibody to glycoprotein ***GP85*** inhibits fusion but not attachment of Epstein-Barr virus" & J. Virol., vol. 62, no. 7, 1988, pages 2366-2372 *
CHEMICAL ABSTRACTS DATABASE, Ohio, US, Ab.No. 116(17):171299x, T. RAGOT et al.: "Recombinant E1A-defective adenoviruses expressing pseudorabies and Epstein-Barr virus glycoproteins induce immunological responses as live vaccines in rabbits and mice" & Colloq. INSERM, 219 ÄHum. Gene TransferÜ, pages 249-260, 1991 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080569A (en) * 1993-06-24 2000-06-27 Merck & Co., Inc. Adenovirus vectors generated from helper viruses and helper-dependent vectors
US7135187B2 (en) 1993-06-24 2006-11-14 Advec, Inc. System for production of helper dependent adenovirus vectors based on use of endonucleases
US7045347B2 (en) 1993-06-24 2006-05-16 Advec, Inc. Helper dependent adenovirus vectors based on integrase family site-specific recombinases
US5919676A (en) * 1993-06-24 1999-07-06 Advec, Inc. Adenoviral vector system comprising Cre-loxP recombination
US6730507B1 (en) 1993-06-24 2004-05-04 Merck & Co., Inc. Use of helper-dependent adenoviral vectors of alternative serotypes permits repeat vector administration
US6140087A (en) * 1993-06-24 2000-10-31 Advec, Inc. Adenovirus vectors for gene therapy
US6120764A (en) * 1993-06-24 2000-09-19 Advec, Inc. Adenoviruses for control of gene expression
US6566128B1 (en) 1993-06-24 2003-05-20 Merck & Co., Inc. Adenovirus vectors generated from helper viruses and helper-dependent vectors
WO1995000655A1 (en) * 1993-06-24 1995-01-05 Mc Master University Adenovirus vectors for gene therapy
US5869453A (en) * 1994-03-16 1999-02-09 The Council Of The Queensland Institute Of Medical Research Cytotoxic T-cell epitopes
WO1995026411A3 (en) * 1994-03-25 1996-07-18 Uab Research Foundation Composition and methods for creating syngeneic recombinant virus-producing cells
WO1995026411A2 (en) * 1994-03-25 1995-10-05 The Uab Research Foundation Composition and methods for creating syngeneic recombinant virus-producing cells
EP0769056A4 (en) * 1994-04-18 1998-03-04 Aviron Inc NON-SPLICING VARIANTS OF gp350/220
US6054130A (en) * 1994-04-18 2000-04-25 Spaete; Richard Non-splicing variants of gp350/220
US6458364B1 (en) 1994-04-18 2002-10-01 Aviron Non-splicing variants of gp350/220
US5824508A (en) * 1994-04-18 1998-10-20 Aviron Inc Non-splicing variants of gp350/220
EP0769056A1 (en) * 1994-04-18 1997-04-23 Aviron, Inc. NON-SPLICING VARIANTS OF gp350/220
US6692749B1 (en) 1994-04-18 2004-02-17 Medimmune Vaccines, Inc. Non-splicing variants of gp350/220
WO1995033835A1 (en) * 1994-06-02 1995-12-14 Chiron Corporation Nucleic acid immunization using a virus-based infection/transfection system
US6355247B1 (en) 1994-06-02 2002-03-12 Chiron Corporation Nucleic acid immunization using a virus-based infection/transfection system
WO1996016164A1 (en) * 1994-11-23 1996-05-30 Cantab Pharmaceuticals Research Limited Viral preparations, immunogens, and vaccines
US6974694B2 (en) 1995-06-07 2005-12-13 Advec, Inc. Adenoviruses for control of gene expression
EP1003773A1 (en) * 1997-07-10 2000-05-31 The Council Of The Queensland Institute Of Medical Research Ctl epitopes from ebv
EP1003773A4 (en) * 1997-07-10 2002-08-07 Queensland Inst Med Res Ctl epitopes from ebv
US6723695B1 (en) 1997-07-10 2004-04-20 Council Of The Queensland Institute Of Medical Research CTL epitopes from EBV
DE19731184A1 (en) * 1997-07-10 1999-01-14 Atotech Deutschland Gmbh Method and device for analytical monitoring of a bath for the electroplating treatment of substrate surfaces
US6432679B1 (en) 1998-06-12 2002-08-13 Henry M. Jackson Foundation For The Advancement Of Military Medicine Enhancement of B cell activation and immunoglobulin secretion by co-stimulation of receptors for antigen and EBV Gp350/220
WO1999064603A3 (en) * 1998-06-12 2000-02-10 Jackson H M Found Military Med ENHANCEMENT OF B CELL ACTIVATION AND IMMUNOGLOBULIN SECRETION BY CO-STIMULATION OF RECEPTORS FOR ANTIGEN AND EBV Gp350/220
WO1999064603A2 (en) * 1998-06-12 1999-12-16 Henry M. Jackson Foundation For The Advancement Of Military Medicine ENHANCEMENT OF B CELL ACTIVATION AND IMMUNOGLOBULIN SECRETION BY CO-STIMULATION OF RECEPTORS FOR ANTIGEN AND EBV Gp350/220
US6379943B1 (en) 1999-03-05 2002-04-30 Merck & Co., Inc. High-efficiency Cre/loxp based system for construction of adenovirus vectors

Also Published As

Publication number Publication date
AU1648092A (en) 1993-10-21

Similar Documents

Publication Publication Date Title
WO1993019092A1 (en) Defective recombinant adenoviruses expressing characteristic epstein-barr virus proteins
ES2883354T3 (en) Adenoviral vector
Green et al. C3d enhancement of neutralizing antibodies to measles hemagglutinin
BE1023087B1 (en) ANTIGENS OF CYTOMEGALOVIRUS AND USES THEREOF
Sathaliyawala et al. Assembly of human immunodeficiency virus (HIV) antigens on bacteriophage T4: a novel in vitro approach to construct multicomponent HIV vaccines
JP6230527B2 (en) Simian adenovirus and hybrid adenovirus vectors
EP0799893B1 (en) Use of plasmids for the manufacture of a composition for vaccine treatment by human and animal
FR2928926A1 (en) CHIMERIC POLYNUCLEOTIDES AND POLYPEPTIDES FOR THE SECRETION OF A POLYPEPTIDE OF INTEREST IN ASSOCIATION WITH EXOSOMES AND THEIR USE FOR THE PRODUCTION OF IMMUNOGENIC COMPOSITIONS
JP2006104216A (en) Dampening of immunodominant epitope of antigen for use in plant, animal or human vaccine and immunotherapy
FR2750865A1 (en) RECOMBINANT LIVE VACCINE BASED ON CANIN HERPESVIRUS, IN PARTICULAR AGAINST SQUARE DISEASE, RABIES OR PARAINFLUENZA VIRUS TYPE 2
CH676247A5 (en)
JP2000517290A (en) Methods and compositions for protective and therapeutic gene immunization
CA2234263C (en) Pharmaceutical composition for treating papillomavirus tumours and infection
EP0259212A1 (en) Expression of a tumour-specific antigen by a recombinant viral vector, and its use to prevent or cure the corresponding tumour
JP7319368B2 (en) Adenovirus and methods for using adenovirus
US20110110892A1 (en) Vectors for delivering disease neutralizing agents
Lee et al. DNA inoculations with HIV-1 recombinant genomes that express cytokine genes enhance HIV-1 specific immune responses
US20110123485A1 (en) Viral vectors for delivering vaccines for hiv and other infectious diseases
JP2005333990A (en) Gp350/220 non-splicing variant
JPH06165689A (en) Recombinant adenovirus vaccine
WO1998026074A1 (en) Fusion protein comprising the whole or part of the pp65 protein of human cmv, useable in particular for preparing a vaccine
CA2483819C (en) Non-immunosuppressive imunogenic or vaccine composition comprising a mutated e7 protein of the hpv-16 virus
FR2768749A1 (en) Papillomavirus virus-like particles
EP0871738B1 (en) Viral recombinant pseudo-particles and vaccinal and anti-tumoral applications
CN112368017A (en) HSV-2-DELTA-gD vaccines and methods of making and using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 08211416

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: CA