WO1994004563A1 - PEPTIDES CONTAINING RESPECTIVE AMINO ACID SEQUENCES SELECTED FROM AMONG THOSE OF LIPOPROTEIN(a) AND APOLIPOPROTEIN(a), ANTIBODIES RESPECTIVELY RECOGNIZING THESE AMINO ACID SEQUENCES, AND METHOD OF ASSAYING WITH THESE ANTIBODIES - Google Patents

PEPTIDES CONTAINING RESPECTIVE AMINO ACID SEQUENCES SELECTED FROM AMONG THOSE OF LIPOPROTEIN(a) AND APOLIPOPROTEIN(a), ANTIBODIES RESPECTIVELY RECOGNIZING THESE AMINO ACID SEQUENCES, AND METHOD OF ASSAYING WITH THESE ANTIBODIES Download PDF

Info

Publication number
WO1994004563A1
WO1994004563A1 PCT/JP1993/001142 JP9301142W WO9404563A1 WO 1994004563 A1 WO1994004563 A1 WO 1994004563A1 JP 9301142 W JP9301142 W JP 9301142W WO 9404563 A1 WO9404563 A1 WO 9404563A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
lipoprotein
apolipoprotein
seq
antibody
Prior art date
Application number
PCT/JP1993/001142
Other languages
English (en)
French (fr)
Inventor
Shingo Yamada
Keiichi Inoue
Megumi Kitajima
Hajime Yoshimura
Ikunosuke Sakurabayashi
Original Assignee
Shino-Test Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shino-Test Corporation filed Critical Shino-Test Corporation
Priority to US08/211,747 priority Critical patent/US5733549A/en
Priority to EP94908101A priority patent/EP0621284A4/en
Priority to AU47614/93A priority patent/AU672028B2/en
Publication of WO1994004563A1 publication Critical patent/WO1994004563A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/775Apolipopeptides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors

Definitions

  • the present invention relates to a peptide selected from apolipoprotein (a) which is a risk factor for arteriosclerosis and a component of riboprotein (a) which is clinically significant, as a lipoprotein ( a ) or as an apolipoprotein ( a ).
  • the present invention relates to antibodies and a method for measuring lipoprotein (a) or apolipoprotein (a) using these antibodies.
  • Lipoprotein (a) (lipoprotein (a), L p (a)) was first reported as a variant of i3-lipoprotein by Berg in 1963. L. Ber, Acta Patho l. Mi cr ob iol. i> cand., 59, 369-382 (1963)]. After various studies, it was found that lipoprotein (a) is a low-density lipoprotein (LDL) that normally plays a major role in the transport of cholesterol esters in vivo and apolipoprotein, a protein unique to lipoprotein (a).
  • LDL low-density lipoprotein
  • Disulfide consists of protein (a) (apo 1 ipoprotein (a), apo (a), apo (a)), and adisulfide between apolipoprotein B-100, which is the protein part of LDL, and apolipoprotein (a) The substance was found to be bound by bonding (see Figure 36).
  • apolipoprotein (a) is called kringle 4 of plasminogen It has a maximum of 37 highly homologous parts to the structure, followed by a part that is highly homologous to the plasminogen Kring 5 structure, and a serine protease structural part that has a highly homologous site to plasminogen. I have. Of these 37 kringles, 28 have a completely repeating structure.
  • lipoprotein (a) has an isoform (Pheno eve) [G. Utermann eta 1., J. Clin. Invest., 80, 458-465. (1 987), HG Kr afteta 1., Arteriosclerosis, 8., 21 22-2 16 (1 988), G. Ut ermann eta 1., Hum. Genet., 78, 41-46 (1988)], which is thought to be due to the difference in the number of repeats of the kringle 4 equivalent part of the apolipoprotein (a) [VN Trieuetal., J. Biol. Chem., 266, 5480- 5485
  • FDS, B, S1, S2, S3, S4, and 0 types were recognized by fractionation using SDS electrophoresis and immunoplotting. [G. Ut Ermann et al., J. Clin. Invest., 80, 458-465 (1987)].
  • lipoprotein (a) and apolipoprotein (a) are important keys in considering arteriosclerosis, lipoprotein, and blood coagulation / fibrinolysis system from the same viewpoint.
  • lipoprotein (a) is not only a risk factor for atherosclerosis, but is also high in people who have restenosis after glycemic nephropathy or PTCA (percutaneous coronary lumen dilatation). It has been reported that it has a tendency to show lipoprotein (a) and apolipoprotein (a) in the living body such as blood, etc. Has become clinically important, and a method that can accurately measure lipoprotein (a) and apolipoprotein (a) is desired.
  • Lipoprotein (a) is measured by simple immunodiffusion, rocket immunoelectrophoresis, immunoturbidimetry, latex nephelometry, radioimmunoassay (RIA) [JJ A 1 berseta 1., J.L. iid R e s., 1 8, 33 1-
  • lipoprotein (a) contains LDL in its molecule and has a high homology to brassminogen. As a result, it reacts with the LD-brassminogen contained in the biological sample and also measures LDL and brasminogen, so that accurate lipoprotein (a) measurement values cannot be obtained. Therefore, apolipoprotein (L) was removed from lipoprotein (a).
  • polyclonal antibody does not cross-react with LDL
  • this antiserum polyclonal antibody
  • apolipoprotein (a) has a high homology with plasminogen. Has cross-reactivity.
  • this antiserum (polyclonal antibody) cannot be used without a complicated operation of absorbing human plasminogen and removing the antibody reacting with plasminogen.
  • apolipoprotein (a) When apolipoprotein (a) is specifically measured, that is, when apolipoprotein (a) in which lipoprotein (a) has disulfide bond broken is measured, apolipoprotein (a) is used.
  • a method of applying an antiserum (polyclonal antibody) prepared as an immunogen to the above-described immunoassay can be considered.
  • antiserum (polyclonal antibody) prepared using apolipoprotein (a) as an immunogen also reacts with lipoprotein (a), so that in addition to the absorption operation using human plasminogen, the absorption operation using lipoprotein (a) is performed.
  • Do lipo It is necessary to remove the antibody that reacts with the protein (a). However, this is complicated and the yield is low, so that it is difficult to obtain a large amount of antiserum (polyclonal antibody).
  • the antiserum and the polyclonal antibody against the lipoprotein (a) or apolipoprotein (a) prepared by such an operation have a very large difference in the lot, and the lipoprotein (a) or the apolipoprotein (a) under the same conditions.
  • the measurement value will differ depending on the lot of antiserum or polyclonal antibody, so it is necessary to reset the measurement conditions for each mouth.
  • lipoprotein (a) or apolipoprotein (a) as an immunogen for obtaining these antisera, polyclonal antibodies, or monoclonal antibodies cannot be obtained unless purified from a biological sample. The operation requires skill and is complicated.
  • the lipoproteins (a) and apolipoproteins (a), which are immunogens, are not very stable and can be stored for a long time even after purification through complicated procedures.
  • the difficulty is that it is difficult.
  • apolipoprotein (a) when apolipoprotein (a) is prepared by removing the LDL portion from lipoprotein (a) to be used as an immunogen for antibody production, apolipoprotein (a) may be denatured during the process. It is likely that it is no longer native apolipoprotein (a).
  • the present inventors have found that the obtained antibody itself does not cause a cross-reaction with LDL and plasminogen, so that the absorption operation on LDL or plasminogen, LDL and plasminogen, and There is no need for complicated procedures such as selection of antibody-producing cell strains without cross-reaction, lot-to-lot difference correction, and immunogen purification, which is more labor-intensive, time-consuming, and cost-effective than conventional methods.
  • Antibodies specifically recognizing lipoprotein (a), immunogens for producing these antibodies, methods for measuring lipoprotein (a) using these antibodies, and lipoproteins With the task of developing a peptide selected from the amino acid sequence of (a), we conducted intensive research.
  • the present inventors have found that the obtained antibody itself does not cause a cross-reaction with lipoprotein (a) and plasminogen, and therefore, the absorption operation for lipoprotein (a) or plasminogen, lipoprotein (a) and It does not require complicated operations such as selection of antibody-producing cell lines that do not cross-react with plasminogen, lot-to-lot difference correction, and immunogen purification.
  • the present invention includes the following inventions.
  • a peptide comprising 50 or less amino acids, including part or all of the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2 in the sequence listing selected from the amino acid sequence of lipoprotein (a) .
  • an amino acid sequence selected from the amino acid sequence of lipoprotein (a) is characterized in that it has specificity as lipoprotein (a) and has low homology to LDL and brassinogen.
  • the amino acid sequence was selected from the amino acid sequence of lipoprotein (a).
  • the amino acid sequence having such a characteristic and a peptide containing a part or the whole of the amino acid sequence thereof show the same antigenicity as the specific antigenicity of lipoprotein (a), and the antigen of LDL and plasminogen. It has no immunogenicity, that is, it has immunogenicity capable of producing an antibody that specifically recognizes lipoprotein (a), and cannot specifically bind to an antibody against lipoprotein (a). can, therefore, help determine the antibody that specifically recognizes lipoprotein (a), as immunogens to produce an antibody specifically recognizing lipoic evening protein of (a), Matari lipoproteins (a ) Is used as a standard substance for immunoassay, and is used for purification of antibodies that specifically recognize lipoprotein (a) by affinity chromatography. It is useful, for example, as a gand.
  • an amino acid sequence selected from the amino acid sequence of apolipoprotein (a) has specificity as apolipoprotein (a) and has low homology to brassinogen.
  • an amino acid sequence characterized by having no antigenicity as lipoprotein (a) is selected from the amino acid sequence of apolipoprotein (a).
  • An amino acid sequence having such characteristics and a part or all of the amino acid sequence may be an antigen similar to the specific antigenicity of apolipoprotein (a). And has no antigenicity of lipoprotein (a) or plasminogen, that is, immunogenicity capable of producing an antibody that specifically recognizes apolipoprotein (a). And specifically binds to an antibody against apolipoprotein (a), thus helping to determine antibodies that specifically recognize apolipoprotein (a) and specifically recognize apolipoprotein (a)
  • An antibody that specifically recognizes apolipoprotein (a) is used as an immunogen for producing antibodies, as a standard substance when apolipoprotein (a) is measured by immunoassay, and as an antibody. It is useful, for example, as a ligand for purification by T-chromatography.
  • an amino acid sequence satisfying the two conditions of (1) having specificity as lipoprotein (a) and (2) having low homology to LDL and plasminogen is defined as lipoprotein (a).
  • lipoprotein (a) an amino acid sequence satisfying the two conditions of (1) having specificity as lipoprotein (a) and (2) having low homology to LDL and plasminogen is defined as lipoprotein (a).
  • amino acid sequence of the present invention that satisfies the two conditions of (1) having specificity as apolipoprotein (a) and (2) having no antigenicity as lipoprotein (a) and plasminogen. Is also selected from the amino acid sequence of apolipoprotein (a).
  • apolipoprotein apolipoprotein
  • lipoprotein (a) or apolipoprotein (a) is advantageous for the measurement of apo lipoprotein (a), and because potential force 5 'high accommodate various isoforms of lipoprotein (a) or Aporipotanpa click protein (a).
  • Such an amino acid sequence is used for the 4,529 amino acids of apolipoprotein (a). Select from sequences consisting of acids.
  • the selected amino acid sequence is divided into several segments for examination.
  • the amino acid sequence that specifically expresses the antigenicity of the substance in an immunogen for antibody production is highly hydrophilic and likely to be present on the surface of the protein molecule.
  • the amino acid sequence of a portion that is not included in a special three-dimensional structure and belongs to a flexible structure having large spatial fluctuations is suitable. Therefore, the properties of each segment are estimated from such a viewpoint.
  • a segment having an amino acid sequence satisfying the above conditions is selected.
  • the amino acid sequence selected from the amino acid sequence of the lipoprotein (a) in the present invention the amino acid sequence of the selected segment and the amino acid sequence of plasminogen are compared in detail, and amino acids having low homology are identified. The sequence is selected, and an amino acid sequence that is suitable as an immunogen for producing an antibody against lipoprotein (a) is used.
  • amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2 in the sequence listing of the present invention can be obtained by selecting as described above.
  • amino acid sequence selected from the amino acid sequence of apolipoprotein (a) in the present invention has a low homology by comparing the amino acid sequence of the selected segment and the amino acid sequence of plasminogen in detail. Select the amino acid sequence.
  • lipoprotein (a) an antibody was prepared using a peptide containing these amino acid sequences as an immunogen for antibody production, and the obtained antibody was obtained. Confirm the reactivity between lipoprotein (a) and lipoprotein (a) by Western blotting. In addition, the reactivity of this antibody with apolipoprotein (a) is confirmed by Western blot method or the like.
  • amino acid sequence contained in the immunogen of the antibody that does not react with the lipoprotein (a) is selected as the amino acid sequence having no antigenicity as the lipoprotein (a).
  • amino acid sequence selected in this manner is adopted as the amino acid sequence selected from the amino acid sequence of apoliboprotein (a) in the present invention.
  • amino acid sequence represented by SEQ ID NO: 3 in the sequence listing in the present invention can be obtained by selecting as described above.
  • a peptide comprising 50 or less amino acids containing a part or the whole of the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2 in the sequence listing selected from the amino acid sequence of lipoprotein (a) is , (1) lipoprotein (a) and (2) has low homology to LDL and plasminogen, and exhibits specific antigenicity to lipoprotein (a). Determination of antibodies that do not show the antigenicity of LDL or plasminogen and that specifically recognize lipoprotein (a), immunogens for producing such antibodies, and standard substances for lipoprotein (a) measurement It is useful as a ligand when purifying an antibody that specifically recognizes lipoprotein (a).
  • a peptide comprising 50 or less amino acids, including a part or the whole of the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing selected from the amino acid sequence of apolipoprotein (a), (1) it has the specificity of apolipoprotein (a), and (2) it has no antigenicity as lipoprotein (a) and plasminogen.
  • an antibody that specifically recognizes apolipoprotein (a) without showing the antigenicity of lipoprotein (a) or plasminogen while showing antigenicity specific to quality (a)
  • an immunogen for production a standard substance for measuring apolipoprotein (a), and a ligand for purifying antibodies that specifically recognize apolipoprotein (a) It is those of use.
  • the amino acid sequence also includes those in which the amino acid or the peptide is further bound to the N-terminal or C-terminal or both the N-terminal and the C-terminal of the peptide Means that The amino acid or peptide to be bound here is not particularly limited as long as it does not contain an amino acid sequence highly homologous to LDL or plasminogen.
  • the peptides of the invention are preferably composed of up to 50 amino acids, more preferably up to 30 amino acids.
  • a peptide composed of amino acids within 5 ⁇ including a part or the whole of the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing is defined as a part of or a whole of the amino acid sequence represented by SEQ ID NO: 3.
  • the amino acid or the peptide further binds to the N-terminal or C-terminal or both the N-terminal and the C-terminal of the peptide.
  • the amino acid or peptide to be bound here is not particularly limited as long as it does not contain an amino acid sequence highly homologous to plasminogen or an amino acid sequence having antigenicity as lipoprotein (a).
  • the peptide of the present invention is preferably composed of 50 amino acids or less, more preferably 30 amino acids or less, because of the possibility of taking amino acids.
  • the present invention comprises a part or the whole of the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2 in the sequence listing selected from the amino acid sequence of lipoprotein (a).
  • a peptide composed of amino acids within 50, and amino acids within 50, including a part or all of the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing selected from the amino acid sequence of apolipoprotein (a) Can be synthesized by a peptide synthesis method such as a liquid phase method and a solid phase method, or an automatic peptide synthesizer may be used.
  • Protein chemistry such as a liquid phase method and a solid phase method, or an automatic peptide synthesizer may be used.
  • peptides may be prepared from the DNA having the corresponding sequence using recombinant DNA technology. See “Sequence Chemistry Experiment Course 1 Genetic Research Method I” edited by The Biochemical Society of Japan '' 6., The Biochemical Society of Japan, “Sequence Chemistry Experiment Lecture, 1 Genetic Research Method II", Tokyo Kagaku Dojin, 1986. The preparation may be performed with reference to Tokyo Chemical Dojin, 1987. -[3] Immunogens for antibody production
  • an antibody against the lipoprotein (a) comprising a peptide comprising 50 or less amino acids, including a part or the whole of the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2 in the Sequence Listing of the present invention.
  • the peptide comprising 50 or less amino acids refers to the peptide of the present invention described above.
  • a peptide comprising up to 50 amino acids including a part or all of the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2 in the sequence listing selected from the amino acid sequence of lipoprotein (a) Consisting of
  • the peptide of the present invention comprising a peptide comprising 50 or less amino acids, including a part or the whole of the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2 in the sequence listing.
  • An immunogen for producing an antibody against the poprotein (a) is used to (1) specifically recognize the lipoprotein (a) and (2) does not cross-react with LDL and plasminogen. An antibody satisfying the conditions can be obtained.
  • apolipoprotein (a) consisting of a peptide comprising 50 or less amino acids, including a part or the whole of the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing.
  • a peptide comprising 50 or less amino acids, including a part or all of the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing is the apolipoprotein (a) of the present invention described above. It comprises a peptide comprising 50 or less amino acids, including a part or the whole of the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing selected from the following.
  • the present invention provides a method for producing an antibody against apolipoprotein (a), comprising a peptide comprising 50 or less amino acids, including a part or all of the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing.
  • the immunogen can be used to obtain an antibody that satisfies the two conditions of (1) specifically recognizing the apolipoprotein (a) and (2) not cross-reacting with the lipoprotein (a) and plasminogen. You.
  • an antibody against lipoprotein (a) comprising a peptide comprising 50 or less amino acids, including a part or the whole of the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2 in the sequence listing
  • An antibody against apolipoprotein (a) comprising an immunogen for producing, and a peptide comprising 50 or less amino acids, including a part or all of the amino acid sequence shown by SEQ ID NO: 3 in the sequence listing.
  • an immunogen for production an animal may be immunized with these peptides themselves as an immunogen for antibody production, or an immunogen for antibody production may be obtained by combining these peptides with a carrier (carrier). The animal may be immunized as such.
  • the immunogen When the immunogen is a low-molecular substance, it is common to immunize a substance bound to a carrier, but a peptide having 5 amino acids is used as an immunogen to specifically react with the immunogen. There is also a report that the body has been produced [Kiyama et al. “Summary of the 11th Annual Meeting of the Pharmaceutical Society of Japan 3”, 1992, p. 122.], so the use of a carrier is not essential.
  • KLH keyhole limpet hemocyanin
  • BSA sea urchin serum albumin
  • human serum albumin human serum albumin
  • nitrile serum albumin poly (L-lysine)
  • poly (alanyl lysine) poly (alanyl lysine)
  • Known carriers such as mytilysine, tetanus toxoid or polysaccharide can be used.
  • the method of binding the peptide to the carrier of the present invention includes the glutaraldehyde method, the 1-ethyl-3- (3-dimethylaminobutyral pill) carpoimide method, and the maleimidbenzoyl-N-hydroxysuccinimide ester method.
  • a known binding method such as a N-succimidyl-3- (2-pyridyldithio) propionic acid method, a bisdiazonated benzylidine method, or a dipalmityl lysine method can be used.
  • a carrier such as nitrocellulose particles, polyvinylpyrrolidone, or ribosome to which the above-mentioned peptide is adsorbed can be used as an immunogen for antibody production.
  • the antibody of the present invention for lipoprotein (a) comprising a peptide comprising 50 or less amino acids, including a part or the whole of the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2 in the sequence listing.
  • An antibody against apolipoprotein (a) comprising an immunogen to be produced, and a peptide comprising up to 50 amino acids, including a part or all of the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing.
  • Immunogens are stable due to their low molecular weight and can be stored for long periods of time.
  • a polyclonal antibody against lipoprotein (a) that specifically recognizes part or all of the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing, and part of the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing
  • an antibody against lipoprotein (a) that specifically recognizes the whole does not cause cross-reaction with LDL and plasminogen, and can be used as an antibody that specifically recognizes lipoprotein (a). Wear.
  • the polyclonal antibody and the antibody against the lipoprotein (a) have specific affinity for a part or the whole of these amino acid sequences in the lipoprotein (a), in other words, the specific antibody. It has a binding property.
  • the polyclonal antibody and the antibody against the lipoprotein (a) according to the present invention have the ability to specifically bind to the lipoprotein (a) and the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2 in the sequence listing. It can specifically bind to a peptide or a protein containing a part or the whole, respectively.
  • amino acid sequence here means that the antibody recognizes the antigenic determinant (epitope) of the antigen in a three-dimensional structure. It is not limited to amino acid sequences but should mean any three or more amino acids in these amino acid sequences.
  • the amino acid sequence obtained by narrowing down these amino acid sequences from the viewpoint of low homology with plasminogen includes:
  • the amino acid sequence of SEQ ID NO: 1 in the sequence listing includes the amino acid sequence of SEQ ID NO: 4, and the amino acid sequence of SEQ ID NO: 2 includes the amino acid sequence of SEQ ID NO: 5.
  • the antibody against apolipoprotein (a) specifically recognizing a part or the whole of the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing crosses the lipoprotein (a) and plasminogen. It can be used as an antibody that does not react and specifically recognizes apolipoprotein (a).
  • the antibody against apolipoprotein (a) that specifically recognizes a part or the whole of the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing of the present invention is a lipoprotein (a) containing apolipoprotein (a) in its molecule.
  • the reason for specifically recognizing and binding to apolipoprotein (a) in which lipoprotein (a) does not bind to disulfide bond but does not bind to (a) is currently unclear. But three-dimensional structure It is speculated that this is due to the difference.
  • An antibody against apolipoprotein (a) that specifically recognizes a part or all of the amino acid sequence represented by SEQ ID NO: 3 in this sequence listing may be a part or a part of these amino acid sequences in apolipoprotein (a). It has specific affinity for the whole, in other words, it has specific binding.
  • An antibody against apolipoprotein ( a ) that specifically recognizes a part or all of the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing of the present invention can specifically bind to apolipoprotein (a) Can specifically bind to a peptide or a protein containing a part or the whole of the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing, respectively.
  • amino acid sequence here means that the antibody is three-dimensionally recognizing the antigenic determinant (epitope) of the antigen. It is not limited to an amino acid sequence but should mean any three or more amino acids in these amino acid sequences.
  • this amino acid sequence has homology to plasminogen.
  • the amino acid sequence obtained by narrowing down from the aspect of low amino acid sequence includes the amino acid sequence of SEQ ID NO: 6.
  • the antibody against ribonucleoprotein (a) that specifically recognizes the entirety is composed of amino acids within 50, including a part or the whole of the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2 in the sequence listing, respectively.
  • the antibody can be obtained by immunizing an animal with an immunogen for producing an antibody against the lipoprotein (a) comprising the peptide to be prepared.
  • an antibody against apolipoprotein ( a ) which specifically recognizes apolipoprotein ( a ) comprises a peptide comprising 50 amino acids or less, including a part or the whole of the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing. It can be obtained by immunizing an animal with an immunogen for producing an antibody against the protein (a).
  • the polyclonal antibody against the lipoprotein (a) that specifically recognizes a part or the whole of the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing of the present invention comprises the polyclonal antibody itself or the polyclonal antibody It may be of any type of antiserum, and also includes fragments of these antibodies (Fab, F (ab ') 2 , Fab', etc.).
  • an antibody against the lipoprotein ( a ) specifically recognizing a part or the whole of the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing, and the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing of the present invention.
  • the antibody against apolipoprotein (a) that specifically recognizes part or all may be any type of polyclonal antibody, antiserum comprising polyclonal antibody, or monoclonal antibody.
  • Antibody fragments Fab, F (ab ') 2 , Fab', etc. are also included.
  • Polyclonal antibodies and antisera can be prepared by the following procedures. First, an antibody-producing immunity comprising a peptide comprising 50 or less amino acids containing a part or the whole of the amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3 in the above sequence listing. Immunize a mammal (mouse, egret, rat, sheep, goat, magma, etc.) or bird (eg, chicken) with the original (carriers may or may not be used).
  • the amount of immunization of the antibody-producing immunogen is appropriately determined depending on the type of the immunized animal, the site of the immunization injection, and the like.
  • An immunogen for antibody production is injected by an amount containing 1 ag to 5 mg, preferably 50 g to 1 mg of the peptide.
  • an amount of the antibody for antibody production containing 10 ⁇ g to several tens of mg of the peptide per heron
  • the immunogen is immunized.
  • the immunogen for antibody production is preferably mixed with an adjuvant and injected for immunization.
  • an adjuvant known ones such as Freund's complete adjuvant, Freund's incomplete adjuvant, aluminum hydroxide adjuvant, or B. pertussis adjuvant can be used.
  • the immunization injection may be performed at a site such as subcutaneous, intravenous, intraperitoneal or back.
  • booster injections of the immunogen for antibody production are given to the site such as subcutaneous, intravenous, intraperitoneal or back at intervals of 2 to 3 weeks.
  • an adjuvant to the immunogen for antibody production and to perform a booster injection.
  • the antibody titer in the serum of the immunized animal is repeatedly measured by the ELISA method or the like.
  • the antibody titer reaches a plateau, whole blood is collected, and the serum is separated to obtain an antiserum.
  • the antiserum is purified by salting out with ammonium sulfate, sodium sulfate, etc., ion exchange chromatography, gel filtration, affinity chromatography, etc., or by combining these methods to purify the antibody.
  • the polyclonal antibody of the present invention can be obtained.
  • the resulting antibody or antiserum may contain an antibody that cross-reacts with human serum albumin. It is preferable to perform such an antibody removal treatment.
  • the removal method includes the ability to remove the aggregates formed by adding human serum albumin or BSA used as a carrier to the obtained antibody or antiserum solution, and the human serum albumin used as a carrier.
  • a method in which BSA is solid-phased on an insolubilized carrier and removed by affinity chromatography can be used.
  • Monoclonal antibodies are based on the cell fusion method of Keller et al. [G. Koehleret a 1., Naure, 256, 495-497 (1975)], or antibody-producing cells such as tumorigenic cells caused by a virus such as Ebstan-bar virus.
  • Preparation of the monoclonal antibody by the cell fusion method can be performed by the following operation.
  • an immunogen for antibody production consisting of a peptide comprising 50 or less amino acids, including a part or all of the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 3 in the above-mentioned sequence listing, was prepared using a mammal ( Immunize mice, nude mice, rats, etc., such as BALBZc) of inbred mice or birds (eg, chickens).
  • the immunological amount of the immunogen for antibody production is appropriately determined depending on the type of the immunized animal, the site of the immunization injection, and the like.For example, in the case of a mouse, 0.1 g to 5 mg per mouse is used. It is preferable to carry out immunoinjection of an immunogen for antibody production in an amount containing the peptide.
  • the immunogen for antibody production is preferably mixed with an adjuvant and injected for immunization.
  • adjuvants such as Freund's complete adjuvant, Freund's incomplete adjuvant, aluminum hydroxide adjuvant, or B. pertussis adjuvant can be used.
  • the immunization injection may be performed at a site such as subcutaneous, intravenous, intraperitoneal or back.
  • booster injections of the immunogen for antibody production are given at intervals of 1 to 2 weeks, such as subcutaneously, intravenously, intraperitoneally or on the back.
  • the frequency of this booster injection is generally 2 to 6 times.
  • the antibody titer in the serum of the immunized animal is repeatedly measured by ELISA or the like, and when the antibody titer reaches a plateau, the antibody-producing immunogen is added to physiological saline (0.9% chloride). Sodium solution) is injected intravenously or intraperitoneally for final immunization.
  • physiological saline (0.9% chloride).
  • Sodium solution is injected intravenously or intraperitoneally for final immunization.
  • cells having antibody-producing ability such as spleen cells, lymph node cells, or peripheral lymphocytes of the immunized animal are obtained.
  • a cell line deficient in enzymes such as xanthine, guanine, phosphoribosyl, transferase (HGPRT) or thymidine kinase (TK) is preferable.
  • HGPRT-deficient cell line derived from BALBZc mouse, Ag8 strain (ATCC TI B9), P3-X63—Ag8—U1 strain (Cancer Research Research Source Bank (JCRB) 9085), P3-NS1-1-1 Ag4-1 strain (JCRB0009), P3-X63 -Ag 8 ⁇ 653 strains (JCRB 0028) or SP2 / 0-Ag- 14 strains (JCRB
  • Cell fusion can be carried out by force using a fusion promoter such as polyethylene glycol (PEG) of various molecular weights, ribosomes or Sendai virus (HVJ), or by a gas fusion method.
  • a fusion promoter such as polyethylene glycol (PEG) of various molecular weights, ribosomes or Sendai virus (HVJ), or by a gas fusion method.
  • PEG polyethylene glycol
  • HVJ Sendai virus
  • the Mie cell is an HGPRT-deficient strain or a TK-deficient strain
  • cells that have antibody-producing ability can be obtained by using a selection medium (HAT medium) containing hypoxanthine, aminopterin, and thymidine.
  • HAT medium a selection medium containing hypoxanthine, aminopterin, and thymidine. Only the fused cells (hybridomas) of Escherichia coli and myeloma cells can be selectively cultured and proliferated.
  • the culture supernatant of the hybridoma obtained in this manner was measured by an immunoassay such as an ELISA method or a Western blotting method to obtain a part of the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing.
  • Hybridomas can be selected, and by combining this method with a known cloning method such as a limiting dilution method, the cell line producing the monoclonal antibody of the present invention can be isolated and obtained. .
  • This monoclonal antibody-producing cell line is cultured in an appropriate medium, and the culture supernatant is used.
  • the monoclonal antibody of the present invention can be obtained from the above, a serum-free medium or a low-concentration serum medium may be used as the medium. In this case, it is preferable in that the antibody can be easily purified.
  • a medium such as RPMI 1640 medium or ASF medium 103 can be used.
  • the monoclonal antibody-producing cell line may be injected into the abdominal cavity of a mammal that has been stimulated with pristane, etc., which is compatible therewith, and after a certain period of time, the monoclonal antibody of the present invention may be obtained from ascites accumulated in the abdominal cavity. it can.
  • the monoclonal antibody thus obtained can be obtained by a method such as salting out with ammonium sulfate or sodium sulfate, ion exchange chromatography, gel filtration, or affinity chromatography, or a combination of these methods. As a result, a purified monoclonal antibody of the present invention can be obtained.
  • a polyclonal antibody against lipoprotein which specifically recognizes a part or the whole of the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing, (2) SEQ ID NO: 1 in the sequence listing A part of the amino acid sequence represented by SEQ ID NO: 4 in the sequence listing, wherein the polyclonal antibody according to (1), (3) the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing (1) characterized in that it is obtained from an immunogen for producing an antibody against lipoprotein (a), comprising a peptide comprising up to 50 amino acids, including a part or the whole of an amino acid sequence.
  • an antibody against lipoprotein (a) that specifically recognizes a part or all of the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing; (5) an antibody against lipoprotein (a) represented by SEQ ID NO: 2 in the sequence listing Amino acid sequence A part thereof is the amino acid sequence represented by SEQ ID NO: 5 in the sequence listing; (6) comprising a part or the whole of the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing; An antibody against lipoprotein (a) consisting of a peptide composed of 50 amino acids (4) the antibody of (4), which is obtained from an immunogen for production; (7) the antibody of (4), (5) or (6), which is a monoclonal antibody;
  • the method for measuring lipoprotein (a), which is characterized by using at least one of the antibodies in 7) above, does not measure LDL or plasminogen in the sample. This is a method that can accurately measure the concentration of lipoprotein (a).
  • an antibody against apolipoprotein which specifically recognizes a part or all of the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing,
  • the antibody of (1) wherein a part of the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing is the amino acid sequence represented by SEQ ID NO: 6 in the sequence listing; Obtained from an immunogen for producing an antibody against apolipoprotein (a), comprising a peptide comprising 50 or less amino acids, including a part or the whole of the amino acid sequence represented by SEQ ID NO: 3.
  • apolipoprotein a
  • the antibody of the above (1) which is characterized by comprising:
  • the method for measuring apolipoprotein (a), characterized in that at least one of the antibodies (1) to (4) is used, comprises the steps of: measuring lipoprotein (a) and plasminogen in a sample; This is a method that can accurately measure the concentration of apolipoprotein (a) without measuring the concentration of apolipoprotein (a).
  • the assay is an antibody, that is, an immunological assay
  • the desired effect can be obtained by using the aforementioned antibody as the antibody used in the assay in any method.
  • ELISA EIA
  • fluorescence immunoassay fluorescence immunoassay
  • radioimmunoassay RIA
  • luminescence immunoassay enzyme-linked immunosorbent assay
  • fluorescent antibody assay immunoturbidimetry, latex agglutination, latex turbidimetry, Hemagglutination reaction, particle agglutination reaction, Western blot method, etc. This measurement method is performed.
  • Samples used in this assay include blood, serum, plasma, urine, cerebrospinal fluid, saliva, sweat, ascites, amniotic fluid, cell or organ extract, lipoprotein (a) or apolipoprotein (a) Or, if it is a biological sample that may contain those components, it is a target.
  • this assay is performed by an immunoassay using a labeled antibody, such as an enzyme immunoassay, a fluorescence immunoassay, a radioimmunoassay, or a luminescence immunoassay, it can also be performed by a sandwich method or a competition method.
  • a sandwich method at least one of the antibodies directly binding to the lipoprotein (a) or the apolipoprotein (a) such as the immobilized antibody and the labeling antibody may be the above-mentioned antibodies.
  • Solid carriers include polystyrene, polycarbonate, polyvinyltoluene, polypropylene, polyethylene, polyvinyl chloride, nylon, polymethacrylate, latex, gelatin, agarose, cellulose, sepharose, glass, metal, ceramics, magnetic materials, etc. Solid supports in the form of beads, microplates, test tubes, sticks, or test pieces made of the following materials can be used.
  • the immobilized antibody can be prepared by a known method such as a physical adsorption method, a chemical bonding method, or a combination thereof, using a solid phase carrier and an antibody.
  • labeling substance in the case of an enzyme immunoassay, peroxidase (POD), alkaline phosphatase (ALP), J3-galactosidase, perease, force codase, glucose oxidase are used. , Lactate dehydrogenase or amylase, etc., in the case of fluorescence immunoassay, fluorescein isothiocyanate, tetramethyl rhodamine isotiosinate, substituted rhodamine isotiosinate or dichlorotria.
  • the light emitting immune measurement method is, NADH-FMNH 2 - Rushifuweraze system, luminol one hydrogen peroxide one
  • a known method such as a glutaraldehyde method, a maleimide method, a pyridyl disulfide method, or a periodic acid method can be used as a method for binding the labeling substance to the antibody.
  • the sample For example, reacting the sample with the immobilized antibody and reacting the labeled antibody at the same time, or reacting the labeled antibody after washing, and then immobilizing the antibody-lipoprotein (a) —the labeled antibody or the immobilized antibody Form a complex of antibody-apolipoprotein (a) -labeled antibody. Then, the unbound labeled antibody is washed and separated, and the amount of lipoprotein (a) or apolipoprotein (a) in the sample can be measured from the amount of bound labeled antibody or the amount of unbound labeled antibody.
  • a substrate is reacted with a labeled enzyme under the optimal conditions, and the amount of the reaction product is measured by an optical method or the like.
  • fluorescent immunoassay the fluorescence intensity by fluorescent substance labeling is measured
  • radioimmunoassay the radiation dose by radioactive substance labeling is measured.
  • luminescence immunoassay the amount of luminescence by a luminescence reaction system is measured.
  • a phosphate buffer, a glycine buffer, a Tris buffer, a good buffer, or the like can be used as a solvent, and a reaction accelerator such as polyethylene glycol can be used. Or a non-specific reaction inhibitor.
  • polystyrene When using antibodies sensitized to a solid support, use polystyrene as the solid support.
  • Styrene-butadiene copolymer, (meth) acrylate polymers, latex, gelatin, ribosomes, microcapsules, erythrocytes, silica, alumina, carbon black, metal compounds, metals, ceramics or magnetic materials Can be used.
  • a known method such as a physical adsorption method, a chemical bonding method, or a combination of these methods can be used.
  • the measurement can be performed by a known method.
  • the sample and the antibody, or the sample and the antibody sensitized to the solid phase carrier are reacted, and the The transmitted light and scattered light are measured by the point method or the rate method.
  • the measurement is performed visually, the sample and the antibody sensitized to the solid phase carrier are reacted in a container such as a plate or a microtiter plate, and the state of aggregation is visually determined.
  • the measurement may be performed using a device such as a microplate reader instead of performing the measurement visually.
  • FIG. 1 is a graph showing the estimation of the hydrophilicity of each amino acid residue by the method of Hop et al.
  • FIG. 2 is a graph of estimation of the hydrophilicity of each amino acid residue by the method of Parker et al.
  • FIG. 3 is a graph of estimation of whether each amino acid residue belongs to a special steric structure by the method of Garnier et al.
  • FIG. 4 is a graph of estimation of whether each amino acid residue belongs to a flexible structure having a large spatial fluctuation according to the method of Riichi Brass et al.
  • FIG. 5 shows the results of analysis of the synthetic peptide obtained in Example 3 by high performance liquid chromatography (HPLC).
  • FIG. 6 is a mass spectrum of the synthetic peptide obtained in Example 3.
  • FIG. 7 shows the results of HPLC analysis of the synthetic peptide obtained in Example 4.
  • FIG. 8 is a mass spectrum of the synthetic peptide obtained in Example 4.
  • FIG. 9 shows the results of HPLC analysis of the synthetic peptide obtained in Example 5.
  • FIG. 10 is a mass spectrum of the synthetic peptide obtained in Example 5.
  • FIG. 11 shows the results of the ELISA method in which the reactivity of the polyclonal antibody against the lipoprotein (a) obtained in Example 9 with the peptide represented by SEQ ID NO: 8 in the sequence listing was determined.
  • FIG. 12 shows the results of the ELISA method in which the reactivity of the polyclonal antibody against the lipoprotein (a) obtained in Example 10 with the peptide represented by SEQ ID NO: 9 in the sequence listing was determined.
  • FIG. 13 shows the electrophoresis pattern in the Western blot method, which shows the reactivity of the polyclonal antibody against lipoprotein (a) obtained in Examples 9 and 10 with lipoprotein (a) and LDL. It is a photograph.
  • Fig. 14 is a photograph showing the electrophoresis pattern of the western blotting method showing the reactivity of a polyclonal antibody against lipoprotein (a) obtained in Examples 9 and 10 with plasminogen. It is.
  • FIG. 15 shows the results of the ELISA method in which the reactivity of the polyclonal antibody against apolipoprotein (a) obtained in Example 11 with the peptide represented by SEQ ID NO: 10 in the sequence listing was determined.
  • FIG. 16 is a photograph showing an electrophoresis pattern by Western blotting which shows the reactivity of a polyclonal antibody against apolipoprotein (a) obtained in Example 11 with apolipoprotein (a).
  • FIG. 17 shows the electrophoresis pattern of a negative control by Western blotting, which shows the reactivity of the polyclonal antibody against apolipoprotein (a) to apolipoprotein (a) obtained in Example 11 It is a photograph.
  • FIG. 18 is a photograph showing the electrophoresis pattern of a control by the Western blotting method, which shows the reactivity of the polyclonal antibody against apolipoprotein (a) obtained in Example 11 to apolipoprotein (a). It is.
  • FIG. 19 is a photograph showing the electrophoresis pattern of the Western blot method, which shows the reactivity of the polyclonal antibody against apolipoprotein (a) obtained in Example 11 with lipoprotein (a). is there.
  • FIG. 20 is a graph of a calibration curve for lipoprotein (a) measurement by immunoturbidimetry using a polyclonal antibody against lipoprotein (a) obtained in Example 9.
  • FIG. 21 is a graph of a calibration curve for lipoprotein (a) measurement by immunoturbidimetry using a polyclonal antibody against lipoprotein (a) obtained in Example 10.
  • FIG. 22 is a graph of a calibration curve for lipoprotein (a) measurement by ELISA using a polyclonal antibody against lipoprotein (a) obtained in Example 9.
  • FIG. 23 is a graph of a calibration curve for lipoprotein (a) measurement by ELISA using a polyclonal antibody against lipoprotein (a) obtained in Example 10.
  • FIG. 24 is a graph showing the effect of plasminogen on the lipoprotein (a) measurement method of the present invention.
  • FIG. 25 is a graph of a calibration curve for apolipoprotein (a) measurement by the ELISA method using a polyclonal antibody against apolipoprotein (a) obtained in Example 11;
  • FIG. 26 shows an ELISA method in which the reactivity of the monoclonal antibody against the lipoprotein (a) obtained in Example 22 to the peptides shown in SEQ ID NO: 8, SEQ ID NO: 9, and SEQ ID NO: 10 in the sequence listing was determined.
  • FIG. 27 shows ELISA showing the reactivity of the monoclonal antibody against apolipoprotein (a) obtained in Example 23 to the peptides shown in SEQ ID NO: 8, SEQ ID NO: 9 and SEQ ID NO: 10 in the sequence listing. The result of the law.
  • FIG. 28 is a photograph showing an electrophoresis pattern by Western blotting which shows the reactivity of a monoclonal antibody against apolipoprotein (a) obtained in Example 23 with apolipoprotein (a).
  • FIG. 29 is a photograph showing the electrophoresis pattern of a negative control by Western blotting which shows the reactivity of the monoclonal antibody against apolipoprotein (a) obtained in Example 23 to apolipoprotein (a). It is.
  • FIG. 30 is a photograph showing an electrophoresis pattern of a control by Western blotting which shows the reactivity of a monoclonal antibody against apolipoprotein (a) obtained in Example 23 to apolipoprotein (a). . ⁇
  • FIG. 31 shows the reactivity of the monoclonal antibody against lipoprotein (a) obtained in Example 22 and the monoclonal antibody against apolipoprotein (a) obtained in Example 23 with lipoprotein (a).
  • 4 is a photograph showing an electrophoresis pattern in a Western blotting method in which the sample was viewed.
  • FIG. 32 shows Western blots showing the reactivity of the monoclonal antibody against lipoprotein (a) obtained in Example 22 and the monoclonal antibody against apolipoprotein (a) obtained in Example 23 to LDL.
  • 4 is a photograph showing an electrophoresis pattern in a proto method.
  • FIG. 33 shows the reactivity of the monoclonal antibody against lipoprotein (a) obtained in Example 22 and the monoclonal antibody against apolipoprotein (a) obtained in Example 23 with plasminogen.
  • 4 is a photograph showing an electrophoresis pattern in a Western plot method.
  • FIG. 34 is a graph of a calibration curve for lipoprotein (a) measurement by ELISA using a monoclonal antibody against lipoprotein (a) obtained in Example 22. It is.
  • FIG. 35 is a graph showing a calibration curve for apolipoprotein (a) measurement by ELISA using a monoclonal antibody against apolipoprotein (a) obtained in Example 23.
  • FIG. 36 is a schematic diagram of the structure of lipoprotein (a). BEST MODE FOR CARRYING OUT THE INVENTION
  • segment 3 The amino acid sequence represented by SEQ ID NO: 7 from segment 3 alanine to the 14th cysteine from the N-terminus is segment 1, segment 15 from tyrosine 35 Segment 2 from the cysteine of the eye, Segment 3 from the glutamine at the 36th to the cystine at the 63rd, Segment 4 from the arginine at the 64th to the 74th cysteine, and Segmentation from the tyrosine at the 75th to the 86th cysteine.
  • segment 5 was divided into segments 6 from asparagine 87 to cystein 91, segment 7 from serine 92 to glutamine 116, and 7 segments based on cysteine residues. .
  • the horizontal axis represents the order of amino acid residues from the N-terminal side
  • the vertical axis represents that the larger the value, the higher the hydrophilicity.
  • the horizontal axis represents the order of the amino acid residues from the N-terminal side
  • the vertical axis represents that the larger the value, the harder the amino acid residue belongs to a special steric structure.
  • the horizontal axis indicates the order of amino acid residues from the N-terminal side
  • the vertical axis indicates that the larger the numerical value, the more easily the amino acid residue belongs to a flexible structure with large spatial fluctuation.
  • segment 2 has a special three-dimensional structure.
  • segment 5 is likely to be buried inside the protein molecule due to its high hydrophobicity.
  • the amino acid sequences of these two segments were considered to be inappropriate as amino acid sequences that specifically indicate antigenicity of immunogens for producing antibodies.
  • segment 6 since sugar is bound to segment 6, it is not suitable as an amino acid sequence that specifically indicates antigenicity.
  • the amino acid sequence of segment 3 is highly homologous to the amino acid sequence of plasminogene: Cannot be used.
  • the antigenicity of lipoprotein (a), which has specificity as lipoprotein (a) and has a feature of being small in homology with LDL and plasminogen is specified. It is preferable to select the amino acid sequence to be represented from segment 1, segment 4 and segment 7, and to study in detail so that the homology with the plasminogen amino acid sequence is as small as possible. As a result of examining the suitability of the antibody against protein (a) as an immunogen for antibody production, the amino acid sequences shown in SEQ ID NO: 1 and SEQ ID NO: 2 in the sequence listing were selected. Example 2 Selection of amino acid sequence from apolipoprotein (a)
  • the amino acid sequence represented by SEQ ID NO: 7 has a segment 1 from the alanine at the third end to the 14th cysteine from the N-terminus and a segment 2 from the tyrosine at the 15th position to the cysteine at the 35th position.
  • Glutamine to 63rd cystine in segment 3; 64th arginine to 74th cysteine in segment 4; 75th tyrosine to 86th cysteine in segment 5; 87th asparagine to 9 Segment 6 was divided into the first cysteine, segment 7 from the 92nd serine to 11th glutamine, and 7 segments based on cysteine residues as the main criteria.
  • segment 2 is likely to have a special three-dimensional structure, and segment 5 is likely to be buried inside the protein molecule due to its high hydrophobicity.
  • segment 5 is likely to be buried inside the protein molecule due to its high hydrophobicity.
  • amino acid sequences of these two segments are not appropriate as amino acid sequences that specifically express antigenicity of immunogens for producing antibodies. It was thought.
  • segment 6 is not suitable as an amino acid sequence that specifically expresses antigenicity because it has sugar s bonds, and the amino acid sequence of segment 3 is highly homologous to the amino acid sequence of plasminogen. Cannot be used.
  • the amino acid sequence specifically representing the antigenicity of apolipoprotein (a) is preferably selected from segment 1, segment 4 and segment 7, and has as little homology as possible to the plasminogen amino acid sequence.
  • the amino acid sequences shown in SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3 in the sequence listing were selected as candidates.
  • the antigen of apolipoprotein (a) according to the present invention which has specificity as apolipoprotein (a) and has no antigenicity as lipoprotein (a) or plasminogen
  • the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing was selected as the amino acid sequence that specifically indicates the sex.
  • t-butoxycarbonyl amino acid was fixed using a model 43 OA peptide automatic synthesizer (Applied Biosystems) (Applied Biosystems) according to the instruction manual.
  • the peptide was synthesized by a phase method.
  • elimination of the synthesized peptide from the resin by the hydrogen fluoride method in the presence of dimethyl sulfide, P-thiocresol, m-cresol, and anisol as scavengers was used.
  • the scavenger was extracted with dimethyl ether, and the peptide synthesized with 2N acetic acid was extracted.
  • the purified and fractionated synthetic peptide was freeze-dried with an evaporator and concentrated.
  • the purity of the obtained synthetic peptide was analyzed by HPLC.
  • the equipment and conditions were determined using a reverse phase 0D S column YMC-R-0DS-5 (4.9 mm x 300 mm) from Yamamura Chemical Research Laboratories, and a TWI NCLE pump from JASCO and a GP from JASCO.
  • UV manufactured by JASCO Corporation I DEC—Detection was performed with a 100 V detector (210 nm, 1.28 AUFS).
  • PKNO represents the number of the peak in the chart
  • T IME represents the elution time
  • AREA represents the peak area
  • CONC represents the ratio of the peak area in the total peak area (that is, percent concentration).
  • the amino acid composition of the obtained synthetic peptide was analyzed using a Waters (Pico-Tag) amino acid analyzer of Millipore (Mi11 ipore) according to the instruction manual.
  • the peptide samples were hydrolyzed in 6N hydrochloric acid containing 1% phenol at 150 ° C for 1 hour.
  • Table 1 shows the results of the amino acid analysis. (Since the cysteine cannot be quantified by the hydrochloric acid hydrolysis method, the analytical values are omitted.) Number of amino acid residues in synthesized peptides
  • the obtained synthetic peptide had the same composition as the amino acid sequence represented by SEQ ID NO: 8 in the sequence listing, and was the peptide represented by SEQ ID NO: 8 in the sequence listing.
  • the isoelectric point of the obtained synthetic peptide was 2.9.
  • Fig. 6 shows the mass spectrum.
  • a peptide comprising the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing was synthesized as the peptide represented by SEQ ID NO: 9 in the sequence listing.
  • FIG. 7 shows the results obtained by analyzing the purity of the obtained synthetic peptides by HPLC.
  • PKN0 is the peak number in the chart
  • T IME is the elution time
  • ARE A indicates the peak area
  • CONC indicates the ratio of the peak area to the total peak area (that is, the percentage concentration).
  • G 1X represents glutamine or glutamic acid.
  • the synthetic peptide had the same composition as the amino acid sequence represented by SEQ ID NO: 9 in the sequence listing, and was the peptide represented by SEQ ID NO: 9 in the sequence listing.
  • the isoelectric point of the obtained synthetic peptide was 4.
  • Fig. 8 shows the mass spectrum.
  • FIG. 9 shows the results obtained by analyzing the purity of the obtained synthetic peptide by HPLC.
  • PKN0 is the peak number in the chart
  • T IME is the elution time
  • ARE A indicates the peak area
  • CNC indicates the ratio of the peak area to the total peak area (that is, the percent concentration).
  • Table 3 shows the results of amino acid composition analysis of the obtained synthetic peptides. .. Table 3
  • the obtained synthetic peptide had the same composition as the amino acid sequence represented by SEQ ID NO: 10 in the sequence listing, and was a peptide represented by SEQ ID NO: 10 in the sequence listing.
  • the isoelectric point of the obtained synthetic peptide was 5.
  • Fig. 10 shows the mass spectrum.
  • KLH Keyhole limpet hemocyanin
  • BSA Serum albumin
  • 1 Omg is 1 OmM potassium dihydrogen phosphate-dipotassium hydrogen phosphate buffer ( PH 7.0) and 150 ul of 2.5% maleimidobenzoyl N-hydroxysuccinimide ester (MBS) [manufactured by Pierce] dissolved in N, N-dimethylformamide. The mixture was reacted at room temperature with stirring for 30 minutes.
  • the MBS-carrier-bound component was adjusted to pH 7.0 with trisodium phosphate, and the peptide represented by SEQ ID NO: 8 in the sequence listing synthesized in Example 3 was added thereto and mixed, followed by reaction for 150 minutes. .
  • the mixture was dialyzed three times against water, and then freeze-dried to obtain an immunogen for antibody production comprising a carrier bound to peptide shown in SEQ ID NO: 8 in the sequence listing.
  • the harmful lj ratio (weight ratio) of the peptide represented by SEQ ID NO: 8 in the immunogen for antibody production was 33% when the carrier was KLH and 27% when the carrier was BSA. .
  • Example 7 Preparation of an immunogen for antibody production comprising a carrier bound to a peptide represented by SEQ ID NO: 9 in the sequence listing
  • Example 4 Preparation was carried out in the same manner as in Example 6. From the peptide synthesized in Example 4, an immunogen for antibody production comprising a carrier bound to the peptide represented by SEQ ID NO: 9 in the sequence listing was obtained.
  • the ratio (weight ratio) of the peptide represented by SEQ ID NO: 9 in the immunogen for antibody production is 23% when the carrier is KLH and 25% when the carrier is BSA. 7
  • Example 5 Preparation was carried out in the same manner as in Example 6. From the peptide synthesized in Example 5, an immunogen for antibody production consisting of a carrier bound to the peptide represented by SEQ ID NO: 10 in the sequence listing was obtained. The yield was 75% when the carrier was KLH, and 52% when the carrier was BSA.
  • the ratio (weight ratio) of the peptide represented by SEQ ID NO: 10 in the immunogen for antibody production was 30% when the carrier was KLH and 21% when the carrier was BSA.
  • the antibody-producing immunogen (of KLH carrier) obtained in Example 6 was dissolved in physiological saline (0.9% aqueous sodium chloride solution) to a concentration of 360/1111, and this was dissolved in Freund's complete adjuvant. Emulsions were mixed by volume, and 0.5 ml of the abdominal subcutaneous injection was injected into 8-week-old female BALBc mice (Charles River Japan). ⁇
  • the above-mentioned immunogen for antibody production was dissolved in physiological saline to a concentration of 180 g / m1 and mixed with an equal amount of Freund's incomplete adjuvant to form an emulsion.
  • a booster injection was given by 1. This booster injection was given every two weeks.
  • the antibody titer in the serum of this immunized mouse was measured every week by enzyme immunoassay (ELISA, EIA).
  • the antibody-producing immunogen obtained in Example 6 (the carrier is BSA) is immobilized on a microplate, the serum of the immunized animal is added thereto, and the mixture is washed.
  • the reaction is carried out by adding a POD-labeled anti-mouse IgG antibody, and after washing, hydrogen peroxide and 2,2'-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) [ [ABTS] was added to develop a color, and the antibody titer was determined by measuring the absorbance at 415 nm using an EIA plate reader (manufactured by BioRad).
  • This antiserum was centrifuged at 10, OOO r. P.m. for 30 minutes to remove insolubles, and then salted out at 0.10 g / ml of antiserum at a temperature of 20 ° C with 0.18 g of sodium sulfate.
  • the immunoglobulin precipitate fraction obtained here was dissolved in a minimum amount of 17.5 mM sodium dihydrogen phosphate-disodium hydrogen phosphate buffer (pH 6.3). Dialysis was sufficiently performed with a sodium dihydrogen acid-disodium hydrogen phosphate buffer solution (pH 6.3).
  • the amount of the obtained antibody was 1.0 mg in terms of protein.
  • the polyclonal antibody against the lipoprotein (a) obtained in Example 9 was converted into a peptide containing the amino acid sequence represented by SEQ ID NO: 1 in the Sequence Listing to the peptide represented by SEQ ID NO: 8 in the Sequence Listing. Reactivity was confirmed by ELISA.
  • Example 6 The antibody-producing immunogen (of BSA carrier) obtained in Example 6 was dissolved in physiological saline (0.9% aqueous sodium chloride solution) to a concentration of 5 wgm1. 100 ⁇ l / well was added to a well-microplate (manufactured by Nunc), and the mixture was allowed to stand at 37 ° C for 2 hours to immobilize the peptide.
  • a polyclonal antibody against lipoprotein (a) obtained in Example 9 dissolved in phosphate buffered saline containing 3% BSA to 60 gZm1, and 3% BSA make a series of dilutions by doubling from 2 to 2,048-fold with phosphate buffered saline solution, add 100 1 per well, and allow to stand at 37 ° C for 2 hours for reaction. And then washed with a washing solution.
  • the microplate of (2) was added in an amount of 1 O 2 per 1 ⁇ l, and allowed to stand at 37 ° C. for 2 hours to cause a reaction, followed by washing with a washing solution.
  • peroxidase reaction solution (2 w 1 per 1 ml of 5 OmM disodium hydrogen phosphate containing 3 mM o-phenylenediamine-24 mM citrate buffer) (7% hydrogen peroxide added immediately before use) was added in an amount of 100 ⁇ l / well and allowed to react at room temperature. After 15 minutes, the reaction was stopped by adding 50 u1 of 6 N sulfuric acid per 1 ⁇ l.
  • Example 9 the polyclonal antibody against lipoprotein (a) obtained in Example 9 is a peptide containing the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing, and is shown in SEQ ID NO: 8 in the sequence listing. It was confirmed that the peptide specifically recognized and bound.
  • the immunogen for antibody production (with KLH as the carrier) obtained in Example 7 was dissolved in physiological saline so as to be 500 ug / m1 at the time of the first immunization, and 250 ag / Example 1 except that the antibody titer was dissolved in physiological saline so as to obtain an m1 and that the immunogen for antibody production (of BSA carrier) obtained in Example 7 was immobilized on a solid phase to measure the antibody titer.
  • An antibody was prepared in the same manner as in 9, to obtain a mouse polyclonal antibody against lipoprotein (a) that specifically recognizes the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing.
  • the amount of the obtained antibody was 1.1 lm in terms of protein.
  • Example 10 Instead of using the polyclonal antibody against lipoprotein (a) obtained in Example 10 at the same concentration in place of the polyclonal antibody against lipoprotein (a) obtained in Example 9, it was obtained in Example 6. In the same manner as in Reference Example 1, except that the same concentration of the immunogen for antibody production (of BSA carrier) obtained in Example 7 was immobilized on a microplate instead of the immunogen for antibody production. A measurement was made.
  • polyclonal lipoprotein (a) obtained in Example 10 was -It was confirmed that the null antibody specifically recognizes and binds to the peptide represented by SEQ ID NO: 9 in the sequence listing, which is a peptide containing the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing.
  • Lipoprotein (a) Ultracentrifugation of human serum with high concentration and fractionation of the specific gravity of 1.05 or more and 1.12 or less, and further lysine-cepharose 4B affinity chromatography ( And purified lipoprotein (a). ⁇
  • Example 9 Each of the polyclonal antibodies against lipoprotein (a) obtained in Example 9 and Example 10 was dissolved in 20 ⁇ l of phosphate buffered saline (80 ⁇ g), and the two types were dissolved. Each of the nitrocellulose membranes subjected to the operation of (7) was immersed in the solution of (2) at room temperature for 2 hours to react.
  • nitrocellulose membrane obtained in (7) was applied to any of the polyclonal antibody, the anti-lipoprotein (a) antibody and the goat anti-a polypoprotein B antibody obtained in Examples 9 and 10. Those that did not act were also provided as negative controls.
  • Figure 13 shows the results of this Western blot method.
  • P is a control
  • N is a negative control
  • 1 and 2 are the results of the action of the polyclonal antibody against lipoprotein (a) obtained in Example 9 and Example 10, respectively.
  • LDL is transcribed on the right side of the lipoprotein (a).
  • the polyclonal antibody against lipoprotein (a) obtained in Example 9 and Example 10 showed color development at the same position as that of the commercially available anti-lipoprotein (a) antibody, and showed that No color development was observed at the position where color development was observed with the antibody B, confirming that it specifically binds to lipoprotein (a) and does not bind to LDL.
  • Human plasma with a high plasminogen concentration is subjected to ultracentrifugation to separate a portion having a specific gravity of 1.21 or more.
  • affinity chromatography in which an anti-lipoprotein (a) antibody (manufactured by Imno) was bound as a ligand to obtain a purified fraction, thereby obtaining purified plasminogen.
  • Electrophoresis was performed using 101 of plasminogen dissolved in physiological saline (0.9% aqueous sodium chloride solution) so as to have a concentration of 1.0 mg Zm1.
  • the support is a 3- to 12% SDS polyacrylamide gel, and the electrophoresis buffer is 25 mM Tris containing 0.1% SDS and 0.19 M glycine buffer. I went.
  • a 9 cm x 9 cm nitrocellulose membrane (manufactured by Bio-Rad) is overlaid on the 3-12% SDS polyacrylamide gel of (2) placed on the transfer device, and 48 mM Tris, 39 mM Using a transfer buffer consisting of glycine, 0.0375% (W / V) sodium dodecyl sulfate (SDS), and 20% (V / V) methanol, transfer was performed at a current of 65 mA for 2 hours.
  • Figure 14 shows the results of this Western blot method.
  • P is a control
  • N is a negative control
  • 1 and 2 are the results obtained by the action of the polyclonal antibody against the lipoprotein (a) obtained in Examples 9 and 10, respectively.
  • Example 9 the polyclonal antibody against lipoprotein (a) obtained in Example 9 and Example 10 did not bind to brassminogen because no color was observed at the position where color was developed with a commercially available anti-plasminogen antibody. Was confirmed.
  • non-specific color development did not occur. Indicated.
  • Example 11 Preparation of mouse polyclonal antibody against apolipoprotein (a) that specifically recognizes the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing
  • the antibody-producing immunogen obtained in Example 8 (with KLH as the carrier) was dissolved in physiological saline at the time of the first immunization to 400 wg / m1, and 200 ii g / ml at the time of booster immunization.
  • Example 9 except that the antibody titer was dissolved in physiological saline as described above, and the antibody titer was measured by immobilizing the antibody-producing immunogen obtained in Example 8 (with BSA as the carrier). Then, an antibody was prepared to obtain a mouse polyclonal antibody against apolipoprotein (a) which specifically recognizes the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing.
  • the amount of the obtained antibody was 1.0 mg in terms of protein.
  • polyclonal antibody against lipoprotein (a) obtained in Example 9 polyclonal antibody against apolipoprotein (a) obtained in Example 11 was used at the same concentration.
  • a null antibody and using the same concentration of the immunogen for antibody production (of BSA carrier) obtained in Example 8 on a microplate instead of the immunogen for antibody production obtained in Example 6 The measurement was performed in the same manner as in Reference Example 1 except that the conversion was performed.
  • Example 11 the polyclonal antibody against apolipoprotein (a) obtained in Example 11 is represented by SEQ ID NO: 10 in the sequence listing, which is a peptide containing the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing. It was confirmed that the peptide specifically recognized and bound.
  • Lipoprotein (a) Ultracentrifugation was performed on the four types of human sera with high concentration to separate fractions with specific gravities of 1.05 or more and 1.12 or less, and then lysine-sepharose 4B Four types of purified lipoproteins (a) were obtained by affinity chromatography (Pharmacia-Elke-Bi).
  • SDS polyacrylamide gel electrophoresis was performed using a 4% SDS polyacrylamide gel (manufactured by Tefco).
  • 40 mM Tris, 40 mM boric acid Using a buffer consisting of 0.1% sodium dodecyl sulfate (SDS) (pH 8.64) and 0.43M Tris buffer (pH 9.18) as the anode buffer, applying a current of 20 mA for 75 minutes I went.
  • Example 1 80 W and g dissolved apolipoprotein obtained in 1 (a) for Poriku ⁇ - Anal antibody in phosphate buffered saline 2 Om l, the solution operations (6) The nitrocellulose membrane thus immersed was reacted at room temperature for 2 hours.
  • a hidge anti-lipoprotein (a) antibody reacting with the same concentration of apolipoprotein (a) (7) was performed by using (made by Imno Corporation).
  • the nitrocellulose membrane obtained in (6) was coated with a polyclonal antibody against apolipoprotein (a) obtained in Example 11 and an anti-lipid anti-lipoprotein.
  • Protein (a) A protein in which none of the antibodies acted was prepared as a negative control.
  • FIGS. 16, 17 and 18 show the results obtained when a polyclonal antibody against apolipoprotein (a) obtained in Example 11 was allowed to act.
  • FIG. 16 1 to 4 show the results of electrophoresis of purified apolipoprotein (a) derived from four kinds of human sera, and B shows the position of apolipoprotein B-100 as a guide for the migration position. is there.
  • FIG. 17 shows the results of the negative control, wherein 1 to 4 show the results of electrophoresis of purified apolipoprotein (a) derived from four types of human sera.
  • FIG. 18 shows the results obtained by reacting an anti-lipoprotein (a) antibody reacting with apolipoprotein (a) as a control, and the above-mentioned serum-derived purified apolipoprotein (a) of one band was used as a sample.
  • B indicates the position of apolipoprotein B-100 as a guide.
  • the polyclonal antibody against apolipoprotein (a) obtained in Example 11 shows color development at the same position as the anti-riboprotein (a) antibody that reacts with apolipoprotein (a). This confirmed that it specifically binds to apolipoprotein (a).
  • FIG. 16 it was confirmed that the polyclonal antibody to apolipoprotein (a) obtained in Example 11 reacted with various isoforms of apolipoprotein (a).
  • FIG. 17 non-specificity was observed because no color was observed in the negative control in which the polyclonal antibody against the apolipoprotein (a) and the anti-lipoprotein (a) antibody obtained in Example 11 were not acted on. No color development has occurred.
  • Lipoprotein (a) High-concentration human serum is subjected to ultracentrifugation to separate a portion having a specific gravity of not less than 1.05 and not more than 1.12, and further lysine-sepharose 4B affinity chromatography ( (Pharmacia-Elke-B) Thus, purified lipoprotein (a) was obtained.
  • This purified lipoprotein (a) is dissolved in physiological saline (0.9% aqueous sodium chloride solution) to a concentration of 0.5 mgZm1, and this 21 is used as a sample for titan-jule-lipoprotein electrophoresis. Electrophoresis was performed using a kit (Helena Research Laboratories). The support was an agarose gel, and the electrophoresis was performed using a balpital buffer solution ( ⁇ 8.8) at a voltage of 90 V for 75 minutes.
  • a 9 cm x 9 cm nitrocellulose membrane (manufactured by Bio-Rad) was placed on the agarose gel of (2) placed on the transfer device, and 48 mM Tris, 39 mM glycine, 0.0375% (W / V ) Using a transfer buffer consisting of SDS and 20% (V / V) methanol, transfer was performed at a current of 65 mA for 2 hours.
  • Fig. 19 shows the results of the Western blot method.
  • P represents a control
  • N represents a negative control
  • S represents the result of the action of a polyclonal antibody against the apolipoprotein (a) obtained in Example 11.
  • the reactivity of the polyclonal antibody against apolipoprotein (a) obtained in Example 11 to plasminogen was confirmed by Western blotting.
  • the operation was performed in the same manner as in Reference Example 4.
  • the polyclonal antibody against apolipoprotein (a) obtained in Example 11 did not bind to plasminogen because no color was observed at the position where color was developed with a commercially available anti-plasminogen antibody. It was confirmed that it would not.
  • Example 1 2 Preparation of a Perian Heron polyclonal antibody against lipoprotein (a) that specifically recognizes the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing
  • Example 6 The antibody-producing immunogen obtained in Example 6 (with KLH as the carrier) was dissolved in physiological saline (0.9% aqueous sodium chloride solution) to a concentration of 1.6 mg Zml, and this was dissolved in a complete oral adjuvant. Emulsion was mixed with the same amount as above, and 1 ml was immunized subcutaneously into the back of 20-month-old egos (Japanese white) at more than 20 sites.
  • physiological saline 0.9% aqueous sodium chloride solution
  • the above-mentioned immunogen for antibody production was dissolved in physiological saline to a concentration of 0.8 mg Zml, mixed with an equal amount of Freund's incomplete adjuvant to form an emulsion, and added in 1 ml. Immunization injections were given. This booster injection was given every two weeks.
  • ELISA enzyme immunoassay
  • the immunogen for antibody production (of which the carrier is BSA) obtained in Example 6 was immobilized on a microplate, the serum of the immunized animal was added thereto, reacted, washed, and further purified.
  • Oxidase (POD) -labeled anti-Egret IgG antibody is added to allow the reaction to proceed, and after washing, hydrogen peroxide and 2,2'-monoazinobis (3-ethylbenzthiazoline-6-sulfonic acid)
  • a color developing solution containing [ABTS] was added to develop a color, and the antibody titer was determined by measuring the absorbance at 415 nm using an EIA plate reader (manufactured by Biorad).
  • This antiserum was centrifuged at 10, OO r. P.m. for 30 minutes to remove insolubles, and then salted out at 0.10 g / ml of antiserum at a temperature of 20 ° C. with 0.18 g of sodium sulfate.
  • the immunoglobulin precipitated fraction obtained here was dissolved in a minimum amount of 17.5 mM sodium dihydrogen phosphate-ninadium phosphate buffer (PH6.3), and the 17.5 mM dihydrogen phosphate was added.
  • the dialysis was sufficiently performed with a sodium disodium hydrogen phosphate buffer (pH 6.3).
  • the amount of the obtained antibody was 0.74 g in terms of protein.
  • the immunogen for antibody production (with KLH as the carrier) obtained in Example 7 was dissolved in physiological saline so as to be 2.2 mg / m 1 at the time of the first immunization and 1. lm gZm l at the time of the booster immunization.
  • Example 12 except that the antibody titer was dissolved in physiological saline to obtain an antibody titer, and the immunogen for antibody production (with BSA as the carrier) obtained in Example 7 was immobilized on a solid phase.
  • An antibody was prepared in the same manner as described above, to obtain a polyclonal antibody to lipoprotein (a) specifically recognizing the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing. The amount of the obtained antibody was 0.78 in terms of protein.
  • the immunogen for antibody production (with KLH as the carrier) obtained in Example 8 was dissolved in physiological saline at the time of the first immunization to 1.7 mg / ml, and 0.9 mg / ml at the time of booster immunization.
  • Example 12 except that the antibody was dissolved in physiological saline so that the antibody-producing immunogen obtained in Example 8 (with BSA as the carrier) was immobilized and the antibody titer was measured.
  • an antibody was prepared to obtain a rabbit polyclonal antibody against apolipoprotein (a) that specifically recognizes the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing.
  • the amount of the obtained antibody was 0.71 in terms of protein.
  • the reagents used for the measurement were 4 mM Tris-HCl buffer (pH 7.0) containing 300 mM sodium chloride, 5 (W / W) polyethylene glycol 6000 as reagent 1, and 6 mg / m 1 as reagent 2.
  • Phosphate buffered saline containing a polyclonal antibody against lipoprotein (a) obtained in Example 9 (5.59 mM disodium hydrogen phosphate, 1.47 mM potassium dihydrogen phosphate, 137 mM sodium chloride sodium salt, 2. 68 mM potassium chloride (pH 7.2)) was prepared.
  • Fig. 20 shows the calibration curves obtained by measuring three types of samples.
  • Example 15 Instead of a polyclonal antibody against lipoprotein (a) obtained in Example 9 as a component of reagent 2 of (1), lipoprotein (a) obtained in Example 10 at the same concentration was used. The measurement was carried out in the same manner as in Example 15 except that a polyclonal antibody against was used.
  • microplate of (5) was added at 100 1 / well, and allowed to stand at 37 ° C for 2 hours to react (secondary antibody).
  • a peroxidase reaction solution (3 mM; 5 mM Oxygen Phosphate Hydrogen Phosphate Containing One Dienylene Diamine) 2 u1 per 1 ml of 24 mM citrate buffer 1.7% of 2 u1 Hydrogen peroxide added immediately before use) was added at 100 u1 per i-well and allowed to react at room temperature. 15 minutes later 1 ⁇ L The reaction was stopped by adding 50 ⁇ l of 6 ⁇ sulfuric acid.
  • a lipoprotein (a) measurement system was established by the ELISA method.
  • Example 17 Instead of the polyclonal antibody against lipoprotein (a) obtained in Example 9 of (5), a polyclonal antibody against lipoprotein (a) obtained in Example 10 at the same concentration is used. Except for the above, the measurement was performed in the same manner as in Example 17.
  • Fig. 23 shows the calibration curves obtained by measuring five types of samples.
  • Lipoprotein (a) assay using a polyclonal antibody against lipoprotein (a) obtained in Example 10 of the present invention ELISA method
  • lipoprotein (a) assay reagent ELI manufactured by Company A
  • sample 1 For sample 1, sample 2 and sample 3 consisting of three kinds of sera, lipoprotein (a) assay using polyclonal antibody against lipoprotein (a) obtained in Example 10 of the present invention (ELISA method) was measured. The operation of the ELISA method was performed in the same manner as in Example 17.
  • a passoxidase-labeled anti-mouse IgG antibody (Amersham) was prepared as a secondary antibody.
  • FIG. 24 shows the results obtained by measuring five kinds of plasminogen samples.
  • the measurement system using the antibody (B) that binds only to plasminogen as the primary antibody and the measurement system using the antibody (C) obtained by using lipoprotein (a) as an immunogen detect plasminogen. You can see that it has been measured.
  • the lipoprotein (a) of the present invention using a polyclonal antibody (A-1, A-2) against the lipoprotein (a) obtained in Example 9 or Example 10 as a primary antibody ) It turns out that the measurement system does not measure plasminogen at all.
  • the method for measuring lipoprotein (a) of the present invention was a method capable of correctly quantifying the concentration of lipoprotein (a) without being affected by plasminogen in the sample.
  • Example 20 Apolipoprotein (a) assay by ELISA method Using a polyclonal antibody against apolipoprotein (a) obtained in Example 11, an apolipoprotein (a) assay system by ELISA was established.
  • An anti-lipoprotein (a) antibody (available from Internatinal National Enzyme) which also reacts with apolipoprotein (a) was treated with pepsin to obtain F (ab ') 2 Thereafter, 15 wg / m 1 of this antibody fragment was added to a 96-well microplate (manufactured by Nunc) at 100 1 / well, and allowed to stand at 37 ° C for 2 hours.
  • the anti-lipoprotein (a) antibody fragment was immobilized (immobilized antibody).
  • This microplate is washed with a washing solution (0.05% Tween 20 (Tween)
  • Lipoprotein (a) Ultracentrifugation is performed on human serum with a high concentration to separate a portion with a specific gravity of 1.05 or more and 1.12 or less, and then lysine-cepharose 4B affinity chromatography (Pharmacia-ELKB) to obtain purified lipoprotein (a).
  • purified lipoprotein (a) 1 mM dithiothreitol was added to the purified lipoprotein (a) for processing, followed by ultracentrifugation again to separate out a portion having a specific gravity of 1.21 or more to remove the LDL portion. This was designated as purified apolipoprotein (a).
  • the purified apolipoprotein (a) was diluted with physiological saline (0.9% aqueous sodium chloride solution) to 4 Omg / d1, and then diluted with physiological saline in four steps. a) Four samples having concentrations of 1 Omg // d1, 2 Omg / d1, 3 Omg / dl, and 4 Omg "d1 were prepared.
  • Fig. 25 shows the calibration curves obtained by measuring four types of samples.
  • the apolipoprotein (a) can be quantitatively measured by the apolipoprotein (a) measurement method of the present invention.
  • Example 21 Influence of serum sample on apolipoprotein (a) assay Apolipoprotein (a) assay using polyclonal antibody against apolipoprotein (a) obtained in Example 11 (ELISA method) In), a spike recovery test confirmed that the sample was not affected by the serum sample.
  • the purified apolipoprotein (a) 0.1 ml obtained in Example 20 was prepared by using 0.9 ml of the three types of serum (A, B, C) in 100 mg Zd 1 with physiological saline. By adding and mixing, the three types of serum samples prepared in 1 increased the concentration of apolipoprotein (a) by 1 OmgZd1.
  • the measurement method of the apolipoprotein (a) of the present invention can obtain a measurement value almost in accordance with the theoretical value even in the measurement of one serum sample.
  • the apolipoprotein (a) measurement method of the present invention is a method that can accurately measure apolipoprotein (a) in a serum sample without being affected by a nonspecific reaction or the like caused by the serum sample. However, it was confirmed that there was no practical problem in clinical examination.
  • the immunogen for antibody production (carrier is KLH) obtained in Example 7 was dissolved in physiological saline (0.9% sodium chloride aqueous solution) to 500 g Zm1 and the solution was dissolved. Emulsion was mixed with an equal volume of a complete adjuvant in the mouth and used as an emulsion, and 0.5 subcutaneously in the abdomen of an 8-week-old female B ALBZc mouse (Charles River Japan). ml was immunized.
  • the antibody titer in the serum of the immunized mouse was measured every week from the 6th week after the first immunization by enzyme immunoassay (ELISA, EIA).
  • ELISA enzyme immunoassay
  • the antibody-producing immunogen (in which the carrier is BSA) obtained in Example 7 was immobilized on a microplate, the serum of an immunized animal was added thereto, reacted, washed, and further purified.
  • the reaction is carried out by adding an anti-mouse IgG antibody labeled with oxidase (POD), and after washing, hydrogen peroxide and 2,2'-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) [ABTS was developed by adding a color-developing solution containing the above], and measuring the absorbance at 415 nm with an EIA plate reader (manufactured by BioRad) to determine the antibody titer.
  • POD oxidase
  • ABTS 2,2'-azinobis (3-ethylbenzthiazoline-6-sulfonic acid)
  • mice of the immunized animals were obtained from mice of the immunized animals.
  • BAL BZc Mouse derived hypoxanthine / guanine / phosphoribosyl / transferase-deficient myeloma cell line P3—X63—Ag8-U1 (Cancer Research Source Bank 9085) and 10% embryonic serum
  • the cells were grown in RPMI 1640 tissue culture medium (BioCell) supplemented with glutamin, penicillin and streptomycin.
  • myeloma cells are placed in a medium-sized cell culture bottle (Nunc, 200 ml).
  • the spleen obtained from the mouse of the immunized animal was sufficiently loosened using a stainless steel mesh # 200, and filtered while washing with a serum-free RPMI 1640 medium solution.
  • centrifugation was performed at 200 g to separate spleen cells.
  • spleen cells were again washed three times with RPMI 1640 medium containing no serum.
  • the mixed cells were slowly suspended in an RPMI 1640 medium containing 50% polyethylene glycol 1500 (PEG 1500, manufactured by Principle Mannheim).
  • each well was supplemented with 100 1 HAT medium (the above-mentioned growth medium was supplemented with 0.01 ⁇ M hypoxanthine, 1.6 ⁇ M thymidine and 0.04 ⁇ M aminobuterin, respectively). (Both manufactured by Tokyo Chemical Industry Co., Ltd.). For the next three days, about half of the HAT medium was replaced with a new HAT medium every day, and thereafter, the same replacement was performed every two to three days.
  • hybridomas were cultured and maintained in HT medium (HAT medium without aminopterin and hybridoma cloning factor).
  • the cell number of these hybridomas was counted by trypan blue exclusion and a hemocytometer.
  • hybridomas are suspended in two ratios of 0.5 viable cell ratio and 1 viable cell ratio per 100 HT medium. 100 1 was dispensed per 1 ⁇ l.
  • Example 7 The medium was exchanged every two to three days, and the hybridoma was grown. (2) Two weeks later, the number of colonies in each well was examined under a microscope, and the immunogen for antibody production obtained in Example 7, which was a peptide containing the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing ( Pells that produced antibodies that bound to the carrier and those that did not bind to BSA were examined by ELISA in the same manner as described above.
  • one hybridoma was a cell line that produced an antibody against lipoprotein (a) that specifically recognizes the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing.
  • a hybridoma cell line producing a monoclonal antibody against lipoprotein (a) specifically recognizing a part or the whole of the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing of the present invention [243G7E7F 10 strain ]
  • This hybridoma cell line [243 G7E7F 10 strain] has been deposited on August 4, 1993 with the Ministry of International Trade and Industry at the National Institute of Bioscience and Human-Technology, National Institute of Industrial Science and Technology as FERM BP-4379.
  • the obtained monoclonal antibody-producing cell line against lipoprotein (a) was cultured in a medium-sized bottle (manufactured by Nunc) in HT medium until cells occupy about 80% of the bottom surface.
  • the hybridoma suspension (lml) obtained in (2) was injected.
  • immunoglobulin G (IgG) was contained in the flow-through fraction of the eluate, and this was collected and concentrated to 2 ml.
  • the amount of the obtained monoclonal antibody was 15 mg in terms of protein.
  • Example 6 The immunogen for antibody production obtained in Example 6 (the carrier is BSA), the immunogen for antibody production obtained in Example 7 (the carrier is BSA), and the immunogen obtained in Example 8
  • the antibody-producing immunogens were dissolved in physiological saline (0.9% aqueous sodium chloride solution) to a concentration of 5 gZm1, and these were dissolved in a 96- ⁇ l microplate (manufactured by Nunc). ) was added at 100 ⁇ l / well, and allowed to stand at 37 ° C for 2 hours to immobilize the peptide.
  • Example 22 The monoclonal antibody against lipoprotein (a) obtained in Example 22 was diluted with phosphate-buffered saline containing 3% BSA to give 0.1 l / g / ml and 0.5 gZm Samples were prepared at four different antibody concentrations: l, 1.O gZml and 5.0 g / ml. Each of these was added at 1 O O per well, and allowed to stand at 37 ° C for 2 hours to react, followed by washing with a washing solution.
  • a peroxidase reaction solution (1.7% excess of 21% per 1 ml of 5 OmM dihydrogen phosphate containing 3 mM o-phenylenediamine, 24 mM citrate buffer) (Hydrogen oxide added immediately before use) was added at a rate of 100 w / l and reacted at room temperature. After 15 minutes, the reaction was stopped by adding 50 1 of 6 N sulfuric acid per 1 ⁇ l.
  • Example 26 1, 2, and 3 are the immunogen for antibody production obtained in Example 6, the immunogen for antibody production obtained in Example 7, and the immunogen for antibody production obtained in Example 8, respectively.
  • the measured value (absorbance) for is shown.
  • the monoclonal antibody against lipoprotein (a) obtained in Example 22 was a peptide having the amino acid sequences represented by SEQ ID NO: 1 and SEQ ID NO: 3 in the sequence listing, respectively.
  • a peptide containing an amino acid sequence represented by SEQ ID NO: 2 which does not bind to the peptides represented by SEQ ID NO: 8 and SEQ ID NO: 10 of the Sequence Listing. It was confirmed that it specifically recognized and bound.
  • Example 8 The immunogen for antibody production (with KLH carrier) obtained in Example 8 was dissolved in physiological saline (0.9% sodium chloride aqueous solution) to 400 jg1. This was mixed with an equal volume of Freund's complete adjuvant in an equal volume to give an emulsion, and 0.5 ml of an 8-week-old female B ALBZc mouse (Charles River Japan) was subcutaneously injected subcutaneously in the abdomen.
  • the antibody titer in the serum of the immunized mouse was measured every week from the 6th week after the first immunization by enzyme immunoassay (ELISA, EIA).
  • ELISA enzyme immunoassay
  • the antibody-producing immunogen (in which the carrier is BSA) obtained in Example 8 was immobilized on a microplate, the serum of an immunized animal was added thereto, reacted, washed, and further purified.
  • the reaction was carried out by adding a oxidase (POD) -labeled anti-mouse IgG antibody, and after washing, hydrogen peroxide and 2,2′-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) [ABTS] were added.
  • Color development was performed by adding the contained color developing solution, and the antibody titer was determined by measuring absorbance at 415 nm using an EIA plate reader (manufactured by BioRad).
  • the antibody titer was found to have reached a plateau 18 weeks after the first immunization. Therefore, the immunized animal was subcutaneously abdominalized to 800 / LL gZml with saline in Example 8. 0.5 ml of the antibody-producing immunogen (of which the carrier is KLH) obtained in (1) was injected.
  • mice of the immunized animals were obtained from mice of the immunized animals.
  • B P3 X63-Ag8-U1, a myeloma cell line deficient in hypoxanthine / guanine / phosphoribosyl / transferase derived from ALB / c mice (Cancer Research Source Bank 9085), RPMI 1640 tissue culture medium supplemented with glutamine, penicillin and streptomycin (BioCell).
  • the myeloma cells were grown in a medium-sized cell culture bottle (Nunc, 200 ml) until about 80% of the bottom of the bottle was occupied by cells.
  • the number of cells was counted by a tripan blue dye exclusion method and a hemocytometer.
  • the spleen obtained from the mouse of the immunized animal was sufficiently loosened using a stainless steel mesh # 200, and filtered while washing with a serum-free RPMI 1640 medium solution.
  • centrifugation was performed at 200 g to separate spleen cells.
  • spleen cells were washed again three times with RPMI 1640 medium without serum.
  • the mixed cells were slowly suspended in an RPM 1640 medium containing 50% of polyethylene glycol 1500 (PEG 1500, manufactured by Hopkins Mannheim).
  • PEG 1500 polyethylene glycol 1500, manufactured by Hopkins Mannheim.
  • the clone of the hybridoma appears after 10 days, and after 14 days, the supernatant of the well is subjected to ELISA to test for the production of an antibody recognizing the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing. Screened.
  • the operation of the ELISA method was performed in the same manner as in Reference Example 5.
  • hybridomas were cultured and maintained in HT medium (HAT medium containing neither aminobuterin nor hybrid-macro-Jung factor).
  • the cell number of these hybridomas was counted by trypan blue exclusion and a hemocytometer.
  • hybridomas were suspended at two ratios, 0.5 viable cell ratio and 1 viable cell ratio, per 100 HT medium and 96 wells. 100 u1 was dispensed per 1 ⁇ l of the flat bottom microplate.
  • the medium was changed every two to three days, and the hybridoma was grown.
  • Example 8 Two weeks later, the number of colonies in each well was examined under a microscope, and the immunogen (carrier) for antibody production obtained in Example 8, which was a peptide containing the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing, was used.
  • the antibody that binds to BSA and produces an antibody that does not bind to BSA was examined by the ELISA method in the same manner as described above.
  • the procedure was as follows: only one type of purified apolipoprotein (a) was swim in (2) of Reference Example 6, and instead of the polyclonal antibody against apolipoprotein (a) obtained in Example 11 The procedure was performed in the same manner as in Reference Example 6, except that the culture supernatant of the hybridoma was used.
  • hybridoma was a cell line that produced an antibody against apolipoprotein (a) that specifically recognizes the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing.
  • the cells produced an antibody against apolipoprotein (a) which specifically recognizes the amino acid sequence represented by SEQ ID NO: 3 in the clone sequence listing of all of these hybridomas.
  • a hybridoma cell line that produces a monoclonal antibody against apolipoprotein (a) that specifically recognizes a part or the whole of the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing of the present invention [161 E2H6 strain ]
  • This hybridoma cell line ⁇ 161 E2H6 strain has been deposited with the Ministry of International Trade and Industry, National Institute of Advanced Industrial Science and Technology, as a FERM BP-4378 on August 4, 1993.
  • the obtained monoclonal antibody-producing cell strain against apolipoprotein (a) was cultured in a medium-sized bottle (manufactured by Nunc) in HT medium until cells occupy about 80% of the bottom surface.
  • the hybridoma suspension (lml) obtained in (2) was injected.
  • immunoglobulin G (IgG) was contained in the flow-through fraction of the eluate, and this was collected and concentrated to 2 ml.
  • the amount of the obtained monoclonal antibody was 1 Omg in terms of protein.
  • the antibody class and subtype of the monoclonal antibody against apolipoprotein (a) obtained here were determined by IgG-! Using the commercially available specific anti-mouse immunoglobulin antiserum (manufactured by Dako) for IgG! The chain was determined.
  • Reference Example 11 1 Reactivity of the monoclonal antibody against the apolipoprotein (a) obtained in Example 23 to the peptide represented by SEQ ID NO: 8, SEQ ID NO: 9 and SEQ ID NO: 10 in the sequence listing
  • SEQ ID NO: 8 which is a peptide containing the amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3 in the monoclonal antibody against apolipoprotein (a) obtained in Example 23,
  • the reactivity to the peptides represented by SEQ ID NO: 9 and SEQ ID NO: 10 was confirmed by ELISA.
  • Example 22 instead of using the monoclonal antibody against lipoprotein (a) obtained in Example 22 in place of the monoclonal antibody against apolipoprotein (a) obtained in Example 23, the sample concentration of this antibody was changed. The measurement was carried out in the same manner as in Reference Example 10 except that the values were 5.0 g / m 1, 10 jug / m 1, 50 ug / m 1 and 100 / m 1.
  • 1, 2, and 3 represent the immunogen for antibody production obtained in Example 6, the immunogen for antibody production obtained in Example ⁇ ⁇ , and the immunogen for antibody production obtained in Example 8, respectively. Indicates the measured value (absorbance) for the original.
  • the monoclonal antibody against apolipoprotein (a) obtained in Example 23 was a peptide containing the amino acid sequence shown in SEQ ID NO: 1 and SEQ ID NO: 2 in the sequence listing, respectively.
  • a peptide that does not bind to the peptides represented by SEQ ID NO: 8 and SEQ ID NO: 9 in the sequence listing and that contains the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing, represented by SEQ ID NO: 10 in the sequence listing It was confirmed that specifically recognized and bound.
  • Monoclonal antibody against apolipoprotein (a) obtained in Example 23 The reactivity of A with the apolipoprotein (a) was confirmed by Western blotting.
  • the procedure was based on the fact that the number of purified apolipoproteins (a) derived from human serum to be electrophoresed was five, and that the polyclonal antibody to apolipoprotein (a) obtained in Example 11 was used instead.
  • the procedure was performed in the same manner as in Reference Example 6, except that a monoclonal antibody against the apolipoprotein (a) obtained in Example 23 was used.
  • FIGS. 28, 29 and 30 The results of this Western blotting method are shown in FIGS. 28, 29 and 30.
  • FIG. 28 shows the results obtained when a monoclonal antibody against the apolipoprotein (a) obtained in Example 23 was allowed to act.
  • FIG. 28 1 to 5 show the results of electrophoresis of purified apolipoproteins (a) derived from five kinds of human sera, and B shows the position of apolipoprotein B-100 as a guide for the migration position. is there. ⁇
  • FIG. 29 shows a negative control, where 1 to 5 are the results of electrophoresis of purified apolipoprotein (a) derived from five types of human serum. Further, R indicates, as a guide, the migration position of the purified apolipoprotein (a) derived from the serum of the aforementioned one band.
  • FIG. 30 shows the results obtained by reacting an anti-lipoprotein (a) antibody reacting with apolipoprotein (a) as a control, and using the serum-derived purified apolipoprotein (a) of one band as the sample.
  • B indicates the electrophoretic position of apolipoprotein B-100 as a guide.
  • apolipoprotein (s) obtained in Example 23 was obtained.
  • the monoclonal antibody against is colored at the same position as the anti-lipoprotein (a) antibody that reacts with apolipoprotein (a), confirming that it specifically binds to apolipoprotein (a). .
  • the reactivity of the monoclonal antibody against lipoprotein (a) obtained in Example 22 and the monoclonal antibody against apolipoprotein (a) obtained in Example 23 with lipoprotein (a) was confirmed by Western blotting.
  • the procedure was as follows. Instead of the polyclonal antibody against apolipoprotein (a) obtained in Example 11, the monoclonal antibody against lipoprotein (a) obtained in Example 22 and the monoclonal antibody obtained in Example 23 were used. The procedure was performed in the same manner as in Reference Example 7, except that a monoclonal antibody against apolipoprotein (a) was used.
  • Figure 31 shows the results of this Western blot method.
  • Fig. 31 P is a control, N is a negative control, 2 is a monoclonal antibody against lipoprotein (a) obtained in Example 22, and 3 is apolipoprotein obtained in Example 23. A monoclonal antibody against (a) was reacted.
  • Example 23 shows no color development at the position where color is developed with a commercially available anti-lipoprotein (a) antibody. Did not bind.
  • a 9 cm x 9 cm nitrocellulose membrane (manufactured by Bio-Rad) was placed on the agarose gel of (2) placed on the transfer device, and 48 mM Tris, 39 mM glycine, 0.0375% (W / V ) Using a transfer buffer consisting of sodium dodecyl sulfate (SDS) and 20% (V / V) methanol, transfer was performed at a current of 65 mA for 2 hours.
  • SDS sodium dodecyl sulfate
  • V / V 20%
  • Figure 32 shows the results of this Western blot method.
  • P is a control
  • N is a negative control
  • 2 is a monoclonal antibody against the lipoprotein ( a ) obtained in Example 22
  • 3 is a fruit
  • ⁇ apolipoprotein obtained in Example 23 This is the result of the action of a monoclonal antibody against protein (a).
  • the monoclonal antibody against the lipoprotein (a) obtained in Example 22 and the monoclonal antibody against the apolipoprotein (a) obtained in Example 23 were each a commercially available anti-apolipoprotein. No color development was observed at the position where color development was observed with the Poprotein B antibody, confirming that it did not bind to LDL.
  • Example 22 The reactivity of the monoclonal antibody against lipoprotein (a) obtained in Example 22 and the monoclonal antibody against apolipoprotein (a) obtained in Example 23 with plasminogen was confirmed by Western blotting.
  • the procedure was similar to that of the monoclonal antibody against lipoprotein (a) obtained in Example 22 except that the polyclonal antibody against lipoprotein (a) obtained in Example 9 and Example 10 was used.
  • the procedure was performed in the same manner as in Reference Example 4, except that a monoclonal antibody against the apolipoprotein (a) obtained in 23 was used.
  • Figure 33 shows the results of this Western blot method.
  • P is a control
  • N is a negative control
  • 2 is a monoclonal antibody against lipoprotein (a) obtained in Example 22
  • 3 is an apolipoprotein obtained in Example 23 ( a) A monoclonal antibody against a) was reacted.
  • the monoclonal antibody against lipoprotein (a) obtained in Example 22 and the monoclonal antibody against apolipoprotein (a) obtained in Example 23 were colored with a commercially available anti-plasminogen antibody. Since no color was formed at the position indicating, it was confirmed that it did not bind to brassinogen.
  • Example 17 Polypeptide against lipoprotein (a) obtained in Example 9 of (5) The measurement was carried out in the same manner as in Example 17, except that the monoclonal antibody against the lipoprotein (a) obtained in Example 22 was used at the same concentration instead of the oral antibody.
  • Fig. 34 shows the calibration curves obtained by measuring five types of samples.
  • the lipoprotein (a) assay using a monoclonal antibody against the lipoprotein (a) obtained in Example 22 of the present invention was carried out by the assay method (ELISA method). A measurement was made. The operation of the ELISA method was performed in the same manner as in Example 17.
  • the lipoprotein (a) measurement value obtained by the lipoprotein (a) measurement method of the present invention shows the same value as the measurement value obtained by the existing measurement method. It was confirmed that there was no problem in clinical laboratory tests.
  • Example 26 Apolipoprotein (a) assay by ELISA method Using a monoclonal antibody against apolipoprotein (a) obtained in Example 23, an apolipoprotein (a) assay system by ELISA was established. The procedure used was to use a monoclonal antibody against apolipoprotein (a) obtained in Example 23 in place of the polyclonal antibody against apolipoprotein (a) obtained in Example 11; (A) The measurement was performed in the same manner as in Example 20 except that five types of samples having a concentration of 1 OmgZdl, 2 Omg / d1, 30 mg / dl, 40 mg / dl, and 50 mg / dl were used.
  • 1 OmgZdl 2 Omg / d1
  • 30 mg / dl 30 mg / dl
  • 40 mg / dl 40 mg / dl
  • 50 mg / dl were used.
  • the calibration curve obtained by measuring five types of samples is shown in FIG. Thus, it was confirmed that the apolipoprotein (a) can be quantitatively measured by the apolipoprotein (a) measurement method of the present invention.
  • Example 27 Effect of Serum Sample on Apolipoprotein (a) Assay Method
  • apolipoprotein (a) assay method using monoclonal antibody against apolipoprotein (a) obtained in Example 23 ELISA method
  • the measurement method of the apolipoprotein (a) of the present invention can obtain a measured value almost in accordance with the theoretical value even in the measurement of a serum sample.
  • the apolipoprotein (a) measurement method of the present invention is a method that can accurately measure apolipoprotein (a) in a serum sample without being affected by a nonspecific reaction or the like caused by the serum sample.
  • apolipoprotein (a) measurement method of the present invention is a method that can accurately measure apolipoprotein (a) in a serum sample without being affected by a nonspecific reaction or the like caused by the serum sample.
  • the antibody against lipoprotein (a) of the present invention is an antibody that specifically recognizes lipoprotein (a) without causing a cross reaction with LDL and plasminogen. This eliminates the need for complicated operations such as absorption of LDL or plasminogen and selection of a cell line that produces an antibody that does not cross-react with LDL and plasminogen. Labor, time and cost This has the advantage that it can be obtained without taking any action.
  • the peptide of the present invention selected from the amino acid sequence of the lipoprotein (a) and the immunogen for antibody production of the antibody against the lipoprotein (a) do not require a complicated and skillful purification operation from a biological sample. It has the advantage that it can be stored stably for a long time.
  • the lipoprotein (a) measurement method of the present invention is a measurement method capable of accurately measuring the lipoprotein (a) concentration without measuring LDL and plasminogen in a sample.
  • the antibody against apolipoprotein (a) of the present invention is an antibody that specifically recognizes apolipoprotein (a) without causing a cross-reaction with lipoprotein (a) and plasminogen. Therefore, there is no need for complicated operations such as an operation for absorbing lipoprotein (a) or plasminogen and an operation for selecting a cell line that produces an antibody that does not cross-react with lipoprotein (a) and plasminogen. Compared to antibodies against apolipoprotein (a), it has the advantage that it can be obtained with less labor, time and cost.
  • the peptide of the present invention selected from the amino acid sequence of the apolipoprotein (a) and the immunogen for antibody production of the antibody against the apolipoprotein (a) do not require a complicated and skillful purification operation from a biological sample, It has the advantage that it can be stored stably for a long time.
  • the method for measuring apolipoprotein (a) of the present invention is a measurement method capable of accurately quantifying apolipoprotein (a) concentration without measuring lipoprotein (a) and plasminogen in a sample. is there. Sequence listing

Description

' 明 細 書
リポタンパク質 (a) 及びアポリポタンパク質 (a) より選択されたアミノ酸配 列を含むペプチド、 これらのアミノ酸配列を認識する抗体、 並びにこれらの抗体 を用いる測定法 技術分野
本発明は、 動脈硬化症の危険因子であり臨床的に意義があるリボタンパク質 (a) の構成成分であるアポリポタンパク質 (a) より選択されたペプチド、 リ ポタンパク質 (a) として若しくはアポリポタンパク質 (a) として又はそれら の構成部分よりなるぺプチドについて認識する抗体を産生するための免疫原、 リ ポタンパク質 (a) として若しくはアポリポタンパク質 (a) として又はそれら の構成部分よりなるぺプチドについて認識する抗体、 そしてこれらの抗体を用い るリポタンパク質 (a) 又はアポリポタンパク質 (a) の測定法に関する。 背景技術
リポタンパク質 (a) ( l i po p r o t e i n (a) 、 L p (a) ) は、 1 963年ベルクにより i3—リポタンパク質の変異型として初めて報告された L . B e r , Acta Patho l . Mi cr ob i o l . i> c a n d . , 59, 369 - 382 ( 1963 ) ] 。 その後種々の検討の結果、 リポタンパク 質 (a) は、 通常生体内でコレステロールエステルの輸送を主な役割とする低密 度リポタンパク質 (LDL) とリポタンパク質 (a) に特有なタンパク質である アポリポタンパク質 (a) ( a p o 1 i p o p r o t e i n (a) 、 a p o (a) 、 アポ (a) ) からなり、 LDLのタンパク質部分であるアポリポタンパ ク質 B— 100とアポリポタンパク質 (a) との間でジスルフイ ド結合により結 合した物質であることが判明した (図 36参照) 。
そして、 アポリポタンパク質 (a) はプラスミノーゲンのクリングル 4と呼ば れる構造と相同性の高い部分を最大 37個持ち、 次いでプラスミノ一ゲンのクリ ングル 5構造と相同性の高い部分、 そしてプラスミノーゲンと相同性の高い部位 を有するセリンプロテアーゼ構造部分から構成されている。 なお、 この 37個の クリングルのうち 28個は完全な繰り返し構造となっている。
また、 リポタンパク質 (a) にはイソ型 (フエノ夕イブ) が存在することが報 告され [G. Ute rmann e t a 1. , J. C l i n. I nve s t., 80 , 458 - 465 ( 1 987) , H. G. Kr a f t e t a 1. , A r t e r i o s c l e r o s i s , 8., 2 1 2 - 2 1 6 ( 1 988) , G . Ut e rmann e t a 1. , Hum. Ge ne t. , 78, 41一 46 ( 1 988) ] 、 これはアポリポタンパク質 (a) のクリングル 4相当 部分の繰り返し数の違いによるものと考えられており [V. N. T r i e u e t a l . , J . B i o l . C h em. , 266 , 5480 - 5485
( 1 99 1 ) ] 、 S D S電気泳動法と免疫プロッ ト法を用いた分画により、 F型、 B型、 S 1型、 S 2型、 S 3型、 S 4型及び 0型が認められた 〔G. Ut e rmann e t a l . , J. C l i n. I nv e s t. , 80, 458-465 (1987) ] 。
臨床的には狭心症や心筋梗塞をはじめとする虚血性心疾患患者でリポタンパク 質 (a) 値が高値のものが多いということが分かり 〔G. Dah l en e t a l . , Ac t a Me d. S c and. , (S u p 1. ) 531 , 1 - 29
( 1972) , K. Be r g e t a l . , C l i n. Genet. , 16, 347 - 352 ( 1 979 ) , G. M. K o s t n e r e t a 1. , Athe r o s c l e r o s i s, 38, 51 -61 (1981 ) ] 、 そしてリ ポタンパク質 (a) は、 コレステロール、 LDL—コレステロール、 HDL—コ レステロ一ル等の虚血性心疾患の既知の危険因子とは相関を示さず、 動脈硬化 症、 虚血性心疾患の独立した新規な危険因子であることが報告された [C. Ehnho l m e t a l . , B i o ch im. B i ophy s. Ac t a, 236, 431 -439 ( 1971 ) , H. Schr i ewe r e t a 1. , J. C l i n. C h em. C l i n. B i o chem. , 22 , 591 - 596
( 1984) ] 。
1 987年、 イートンら [D. L. Ea t on e t a 1. , P r o c. N a t l . A c a d. S c i . U . S . A. , 84 , 3224 - 3228
( 1 987 ) ] は生化学的手法によ り、 次いでマク リーンら [ J . W. M c L e a n e t a 1. , N a t u r e , 3 30, 1 3 2 - 1 3 7
( 1987) ] は cDN A塩基配列よりアポリポタンパク質 (a) のアミノ酸配 列を決定した。
これによりアポリポタンパク質 (a) はその分子構造の大部分が、 線溶系に働 くプラスミノ一ゲン分子と相同性の高い部分から構成されていることが判明し た。 ―
このことはリポタンパク質 (a) 及びアポリポタンパク質 (a) が、 動脈硬 ィ匕、 リポタンパク質、 血液凝固線溶系を同一視点で考えるうえでの重要な鍵とな ることを示唆するものである。 - また、 リポタンパク質 (a) が動脈硬化症の危険因子としてだけではなく、 糖 尿病性腎症あるいは PTC A (経皮的冠動脈内腔拡張術) 術後再狭窄をおこした 人で高値を示す傾向があるということや、 C R Pのような急性反応性夕ンパク質 と同様の挙動を示すという報告もあり、 血液等の生体中のリポタンパク質 (a) 及びアポリポタンパク質 (a) を測定することは臨床的に重要な意義を持つもの となってきており、 リポタンパク質 (a) 及びアポリポタンパク質 (a) を正確 に測定できる方法が望まれている。
リポタンパク質 (a) の測定は、 単純免疫拡散法、 ロケッ 卜免疫電気泳動法、 免疫比濁法、 ラテックス比濁法、 ラジオィムノアッセィ (R I A) [J. J. A 1 b e r s e t a 1. , J . L i i d R e s. , 1 8, 33 1 -
338 ( 1 977) ] 、 及び酵素免疫測定法 (E I A、 E L I S A) [A. Abe e t a l . , C l i n. Ch i m. Ac t a, 1 77, 31 -40 ( 1 988) 〗 等の免疫学的測定法により行われているが、 リポタンパク質
(a) を免疫原として動物に免疫して得られる抗体をこれらの免疫学的測定法に そのまま使用すると、 リポタンパク質 (a) はその分子中に LDLを含みそして ブラスミノーゲンと相同性の高い部分を持っため、 生体試料に含まれる LDしゃ ブラスミノ一ゲンとも反応してしまい、 L D Lやブラスミノ一ゲンをも測りこん でしまうので、 正確なリポタンパク質 (a) の測定値を得ることができない。 そこで、 リポタンパク質 (a) から LDL部分を除いたアポリポタンパク質
(a) を免疫原として用いてリポタンパク質 (a) に対する抗血清 (ポリクロー ナル抗体) を作製するという方法が報告されているが 〔G. M. F 1 e s s e t a l . , J . B i o l . C h em. , 26 1 , 87 1 2 - 87 1 8
( 1986) , G. Ute rmann e t a l . , J. B i o l . Chem . , 265, 981— 986 ( 1990) ] 、 この方法により得られた抗血清
(ポリクローナル抗体) は LDLとは交叉反応を起こさないものの、 アポリポタ ンパク質 (a) はプラスミノーゲンと相同性の高い部分を持っために、 この抗血 清 (ポリクローナル抗体) はプラスミノ一ゲンとは交叉反応性を有する。
そのため、 この抗血清 (ポリクロ一ナル抗体) はヒトブラスミノ一ゲンで吸収 操作を行いブラスミノーゲンと反応する抗体を除去するという煩雑な操作を行わ なければ使用できない。
また、 アポリポタンパク質 (a) を特異的に測定する場合、 つまりリポタンパ ク質 (a) 内のジスルフィ ド結合が切れた状態のアポリポタンパク質 (a) を測 定する場合には、 アポリポタンパク質 (a) を免疫原として調製した抗血清 (ポ リクローナル抗体) を前記の免疫学的測定法に適用する方法が考えられる。 しかし、 アポリポタンパク質 (a) を免疫原として調製した抗血清 (ポリクロ ーナル抗体) は、 リポタンパク質 (a) とも反応してしまうので、 ヒトプラスミ ノーゲンによる吸収操作に加えてリポタンパク質 (a) で吸収操作を行い、 リポ タンパク質 (a) と反応する抗体を除去する必要があるが、 これは煩雑であると ともに、 収率が低くなるため抗血清 (ポリクロ一ナル抗体) を多量に得ることは 難しいという欠点がある。
そして、 このような操作によって調製されたリポタンパク質 (a) 又はアポリ ポタンパク質 (a) に対する抗血清及びポリクローナル抗体はロッ ト差が非常に 大きく、 同一条件でリポタンパク質 (a) 又はアポリポタンパク質 (a) の測定 を行った場合には、 抗血清又はポリクロ一ナル抗体のロッ 卜によって測定値に差 が生じてしまうため、 口ッ トごとに測定条件を設定し直す必要がある。
また、 リポタンパク質 (a) 又はアポリポタンパク質 (a) を免疫原として、 これらに対するモノクローナル抗体を調製し、 LDL及びプラスミノ一ゲンと反 応しない抗体産生細胞を選択する方法もあるが 〔D. L. E a t o n e t a 1. , C l i n. Chem. , 36, 192 - 197 (1990) , M. A. L a f f e r ty e t a l . , J. L i p i d. Re s. , 32 , 277- 292 ( 1991 ) 〗 、 このような場合、 得られた抗体産生細胞株のうち、 リポ タンパク質 (a) に特異的であって LDL及びプラスミノ一ゲンと交叉反応をお こさないという条件、 あるいはアポリポタンパク質 (a) に特異的であってリポ タンパク質 (a) 及びプラスミノ一ゲンと交叉反応をおこさないという条件を満 足する抗体の産生細胞株は、 数が少なく効率が悪く、 非常に多数の抗体産生細胞 株からこのような抗体の産生細胞株を選択することは、 多くの労力と時間を要す るものである。
更に、 これらの抗血清、 ポリクロ一ナル抗体、 又はモノクローナル抗体を得る ための免疫原としてのリポタンパク質 (a) 又はアポリポタンパク質 (a) は、 生体試料より精製しなければ得られず、 その精製の操作は熟練を要し煩雑であ る。
そして、 この免疫原であるリポタンパク質 (a) 及びアポリポタンパク質 (a) は安定性があまりよくなく、 煩雑な操作を経て精製しても長期間保存する ことが難しいという難点を有する。
また、 抗体産生用の免疫原として用いるため、 リポタンパク質 (a) から LDL部分を除いてアポリポタンパク質 (a) を調製する際には、 その処理の過 程においてアポリポタンパク質 (a) が変性してしまい、 ネイティブなアポリポ タンパク質 (a) ではなくなっている可能性力高い。
よって、 これらの従来のリポタンパク質 (a) 又はアポリポタンパク質 (a) に対する抗体、 あるいはこれらの抗体を産生するための免疫原においては、 上記 のような複雑な吸収操作、 ロッ ト間差補正操作、 抗体産生細胞株選択の操作、 'C して免疫原精製の操作等が必要であり、 手間、 時間、 コストがかかるという問題 を有している。 発明の開示
上記のような現状に鑑みて本発明者らは、 得られる抗体自身が L D L及びブラ スミノ一ゲンと交叉反応を起こさず、 そのため、 LDL又はプラスミノ一ゲンに 対する吸収操作、 LDLそしてプラスミノーゲンと交叉反応のない抗体の産生細 胞株の選択操作、 ロッ ト間差補正操作、 そして免疫原精製の操作等の煩雑な操作 を必要とせず、 従来のもの ·方法に比べ手間、 時間、 コストがかからずに得られ る、 リポタンパク質 (a) を特異的に認識する抗体、 これらの抗体を産生するた めの免疫原、 これらの抗体を用いるリポタンパク質 (a) の測定法、 そしてリポ タンパク質 (a) のアミノ酸配列より選択されたペプチドの開発を課題とし、 鋭 意研究を行った。
また、 本発明者らは、 得られる抗体自身がリポタンパク質 (a) 及びプラスミ ノ一ゲンと交叉反応を起こさず、 そのため、 リポタンパク質 (a) 又はプラスミ ノーゲンに対する吸収操作、 リポタンパク質 (a) そしてプラスミノーゲンと交 叉反応のない抗体の産生細胞株の選択操作、 ロッ ト間差補正操作、 そして免疫原 精製の操作等の煩雑な操作を必要とせず、 従来のもの '方法に比べ手間、 時間、 コストがかからずに得られる、 アポリポタンパク質 (a) を特異的に認識する抗 体、 これらの抗体を産生するための免疫原、 これらの抗体を用いるァポリポタン パク質 (a) の測定法、 そしてアポリポタンパク質 (a) のアミノ酸配列より選 択されたぺプチドの開発を課題とし、 鋭意研究を行った。
その結果、 本発明者らは本発明を完成するに至った。
〔 1 ] 発明の概要
本発明は、 以下の発明を包含する。
( 1 ) リポタンパク質 (a) のアミノ酸配列より選択された配列表の配列番号 1 又は配列番号 2で示されるァミノ酸配列の一部又は全体を含む、 50以内のアミ ノ酸から構成されるペプチド。
(2) アポリポタンパク質 (a) のアミノ酸配列より選択された配列表の配列番 号 3で示されるァミノ酸配列の一部又は全体を含む、 50以内のアミ _ノ酸から構 成されるペプチド。 ―
(3) 配列表の配列番号 1で示されるアミノ酸配列の一部又は全体を含む、 50 以内のアミノ酸から構成されるペプチドよりなる、 リポタンパク質 (a) に対す- る抗体を産生するための免疫原。
(4) 免疫原が、 配列表の配列番号 1で示されるアミノ酸配列の一部又は全体を 含む 50以内のアミノ酸から構成されるべプチドと担体とが結合したものであ る、 前記 (3) に記載の免疫原。
(5) 配列表の配列番号 2で示されるアミノ酸配列の一部又は全体を含む、 50 以内のアミノ酸から構成されるペプチドよりなる、 リポタンパク質 (a) に対す る抗体を産生するための免疫原。.
(6) 免疫原が、 配列表の配列番号 2で示されるアミノ酸配列の一部又は全体を 含む 50以内のアミノ酸から構成されるペプチドと担体とが結合したものであ る、 前記 (5) に記載の免疫原。
(7) 配列表の配列番号 3で示されるアミノ酸配列の一部又は全体を含む、 50 以内のアミノ酸から構成されるペプチドよりなる、 アポリポタンパク質 (a) に 対する抗体を産生するための免疫原。
(8) 免疫原が、 配列表の配列番号 3で示されるアミノ酸配列の一部又は全体を 含む 50以内のアミノ酸から構成されるべプチドと担体とが結合したものであ る、 前記 (7) に記載の免疫原。
( 9 ) 配列表の配列番号 1で示されるアミノ酸配列の一部又は全体を特異的に認 識するリポタンパク質 (a) に対するポリクロ一ナル抗体。
(10) 配列表の配列番号 1で示されるアミノ酸配列の一部が、 配列表の配列番号 4で示されるアミノ酸配列であることを特徴とする前記 (9) に記載のポリクロ —ナル抗体。
(11) 前記 (3) に記載の免疫原より得られることを特徴とする前記 (9) に記 載のポリクローナル抗体。
(12) 配列表の配列番号 2で示されるアミノ酸配列の一部又は全体を特異的に認 識するリポタンパク質 (a) に対する抗体。
(13) 配列表の配列番号 2で示されるァミノ酸配列の一部が、 配列表の配列番号 5で示されるアミノ酸配列であることを特徴とする前記 (12) に記載の抗体。
(14) 前記 (5) に記載の免疫原より得られることを特徴とする前記 (12) に記 載の抗体。
(15) モノクローナル抗体である前記 (12) 、 (13) 又は (14) に記載の抗体。
(16) 配列表の配列番号 3で示されるアミノ酸配列の一部又は全体を特異的に認 識するアポリポタンパク質 (a) に対する抗体。 J
(17) 配列表の配列番号 3で示されるアミノ酸配列の一部力 配列表の配列番号 6で示されるアミノ酸配列であることを特徴とする前記 (16) に記載の抗体。
(18) 前記 (7) に記載の免疫原より得られることを特徴とする前記 (16) に記 載の抗体。
(19) モノクローナル抗体である前記 (16) 、 (17) 又は (18) に記載の抗体。 (20) 前記 (9) ないし (15) のいずれかに記載の少なくとも 1種類の抗体を用 いることを特徴とするリポタンパク質 (a) の測定法。
(21) 前記 (16) ないし (19) のいずれかに記載の少なくとも 1種類の抗体を用 いることを特徴とするアポリポタンパク質 (a) の測定法。
[2] ^ ί' .:,択されたアミノ酸配列及びペプチド
本発明において、 リポタンパク質 (a) のアミノ酸配列より選択されたァミノ 酸配列とは、 リポタンパク質 (a) としての特異性を持ち、 かつ LDL及びブラ スミノ一ゲンとは相同性が小さいという特徴を有するァミノ酸配列を、 リポタン パク質 (a) のアミノ酸配列より選び出したものである。
このような特徴を有するァミノ酸配列及びそのアミノ酸配列の一部又は全体を 含むペプチドは、 リポタンパク質 (a) が持つ特異的な抗原性と同様の抗原性を 示し、 かつ LDLやブラスミノーゲンの抗原性は持たず、 つまりリポタンパク質 (a) を特異的に認識する抗体を産生させることができる免疫原性を有してお り、 またリポタンパク質 (a) に対する抗体と特異的に結合することができ、 よって、 リポタンパク質 (a) を特異的に認識する抗体の決定に役立ち、 リポ夕 ンパク質 (a) を特異的に認識する抗体を産生するための免疫原として、 またリ ポタンパク質 (a) を免疫学的測定法により測定する時の標準物質として、 そし てリポタンパク質 (a) を特異的に認識する抗体をァフィ二ティ一クロマトグラ フィ一により精製する場合のリガンドとして用いる等有用なものである。
また、 本発明において、 アポリポタンパク質 (a) のアミノ酸配列より選択さ れたアミノ酸配列とは、 アポリポタンパク質 (a) としての特異性を持ち、 かつ ブラスミノ一ゲンとは相同性が小さいものであって、 そして、 リポタンパク質 (a) としての抗原性は持たないという特徴を有するアミノ酸配列を、 アポリポ タンパク質 (a) のアミノ酸配列より選び出したものである c
このような特徴を有するァミノ酸配列及びそのァミノ酸配列の一部又は全体を ドは、 アポリポタンパク質 (a) が持つ特異的な抗原性と同様の抗原 性を示し、 かつリポタンパク質 (a) やプラスミノーゲンの抗原性は持たず、 つ まりアポリポタンパク質 (a) を特異的に認識する抗体を産生させることができ る免疫原性を有しており、 またアポリポタンパク質 (a) に対する抗体と特異的 に結合するこどができ、 よって、 アポリポタンパク質 (a) を特異的に認識する 抗体の決定に役立ち、 アポリポタンパク質 (a) を特異的に認識する抗体を産生 するための免疫原として、 またアポリポタンパク質 (a) を免疫学的測定法によ り測定する時の標準物質として、 そしてアポリポタンパク質 (a) を特異的に認 識する抗体をァフィ二ティ一クロマトグラフィーにより精製する場合のリガンド として用いる等有用なものである。
さて、 本発明における ( 1 ) リポタンパク質 (a) としての特異性を持つ、 (2) LDL及びブラスミノーゲンとは相同性が小さい、 という 2つの条件を満 たすアミノ酸配列をリポタンパク質 (a) のアミノ酸配列より選択することにお いて、 LDLの関与を排除するためにアポリポタンパク質 (a) のアミノ酸配列 を対象とする必要がある。
また、 本発明における ( 1 ) アポリポタンパク質 (a) としての特異性を持 つ、 (2) リポタンパク質 (a) 及びブラスミノ一ゲンとしての抗原性を持たな い、 という 2つの条件を満たすアミノ酸配列もアポリポタンパク質 (a) のアミ ノ酸配列より選択する。
そして、 このようなアミノ酸配列は、 アポリポタンパク質 (a) 中になるベく 多く繰り返されているアミノ酸配列より選択することが望ましい。 なぜなら、 こ のようなァミノ酸配列を含むぺプチドを抗体産生用免疫原として用いた時に得ら れる抗体は、 リポタンパク質 (a) あるいはアポリポタンパク質 (a) に多数結 合すると予想されるので、 リポタンパク質 (a) あるいはアポリポタンパク質 (a) の測定に有利であり、 またリポタンパク質 (a) あるいはアポリポタンパ ク質 (a) の種々のイソ型に対応できる可能性力5'高いからである。
このようなアミノ酸配列をアポリポタンパク質 (a) の 4, 529個のアミノ 酸よりなる配列から選択する。
ここで選択したアミノ酸配列をいくつかのセグメントに分けて検討をする。 夕ンパク質の立体構造の面から見た場合、 抗体産生用免疫原等におけるその物 質の抗原性を特異的に表すアミノ酸配列としては、 親水性が高くタンパク質分子 表面に存在する可能性が高く、 特殊な立体構造中に含まれず、 そして空間的ゆら ぎが大きく柔軟な構造に属する部分のアミノ酸配列が適していると考えられる。 よって、 このような見地からそれぞれのセグメン卜の性質の推定を行う。
ホップらの方法 [T. P. Ho pp e t a l . , P r o c. N a t l . Ac ad. S c i . U. S. A. , 7_8, 3824-3828 (1981 ) ] 及 びパ一力一らの方法 [P ar ke r e t a l . , B i o chemi s tr , 2_5, 5425-5432 (1986) ] により各アミノ酸残基の親水性の高 さの推定を行う。
また、 ガーニヤ一らの方法 [Gar n i e r e t a 1. , J . M o 1. B i o l . , 120, 97- 120 ( 1987) ] により各アミノ酸残基につい て特殊な立体構造に属するかどうかの推定を行う。 - そして、 力一ブラスらの方法 [Kar p l us e t a 1. , N a t u r w i s s ens cha f t en, 72 , 212- 213 ( 1985) ] により各ァ ミノ酸残基について空間的ゆらぎの大きい柔軟な構造に属するかどうかの推定を 行う。
更に、 スキャナ一により示されたアポリポタンパク質 (a) のアミノ酸残基の α -ヘリックス構造の取りやすさの推定、 及び 13構造の取りやすさの推定の結果 [ A. M. S c anu L i popr o te i n { a ) , Ac ademi c Pr e s s, San D i e go, 1990, p. 53〜74. ] を参考とする こともできる。
ここで得られた結果より、 前記のような条件を満たすァミノ酸配列を有するセ グメントを選択する。 そして、 本発明におけるリポタンパク質 (a ) のアミノ酸配列より選択された アミノ酸配列としては、 この選択したセグメントのアミノ酸配列とプラスミノ一 ゲンのァミノ酸配列を詳細に比較して相同性が小さぃァミノ酸配列を選び、 この うちリポタンパク質 (a ) に対する抗体を産生するための免疫原としての適性を 持つアミノ酸配列を採用する。
本発明における配列表の配列番号 1又は配列番号 2で示されるアミノ酸配列は 前記のようにして選択することにより得られる。
また、 本発明におけるアポリポタンパク質 (a ) のアミノ酸配列より選択され たァミノ酸配列としては、 前記の選択したセグメントのァミノ酸配列とプラスミ ノ一ゲンのアミノ酸配列を詳細に比較して相同性が小さいァミノ酸配列を選択す る。
そして次の段階として、 これらのアミノ酸配列のリポタンパク質 (a ) として の抗原性を検討するために、 これらのアミノ酸配列を含むぺプチドを抗体産生用 免疫原として抗体を調製し、 得られた抗体とリポタンパク質 (a ) との反応性を ウェスタンプロッ ト法等で確認する。 また、 この抗体とアポリポタンパク質 ( a ) との反応性をウェスタンブロッ ト法等で確認する。
ここで得られた知見に基づき、 リポタンパク質 (a ) と反応しない抗体の免疫 原に含まれるアミノ酸配列を、 リポタンパク質 (a ) としての抗原性を持たない アミノ酸配列として選択する。
このようにして選択されたアミノ酸配列を本発明におけるアポリボタンパク質 ( a ) のアミノ酸配列より選択されたアミノ酸配列として採用する。
本発明における配列表の配列番号 3で示されるァミノ酸配列は前記のようにし て選択することにより得られる。
本発明における、 リポタンパク質 (a ) のアミノ酸配列より選択された配列表 の配列番号 1又は配列番号 2で示されるアミノ酸配列の一部又は全体を含む、 5 0以内のアミノ酸から構成されるペプチドは、 ( 1 ) リポタンパク質 (a ) と しての特異性を有する、 (2) LDL及びプラスミノ一ゲンとは相同性が小さ レ、、 という 2つの条件を満たすものであって、 リポタンパク質 (a) に特異的な 抗原性を示しながら L D Lやプラスミノ一ゲンの抗原性は示さず、 リポタンパク 質 (a) を特異的に認識する抗体の決定、 そのような抗体を産生するための免疫 原、 リポタンパク質 (a) 測定時の標準物質、 そしてリポタンパク質 (a) を特 異的に認識する抗体を精製する場合のリガンド等として有用なものである。 また、 本発明における、 アポリポタンパク質 (a) のアミノ酸配列より選択さ れた配列表の配列番号 3で示されるアミノ酸配列の一部又は全体を含む、 50以 内のアミノ酸から構成されるペプチドは、 (1 ) アポリポタンパク質 (a) とし ての特異性を有する、 (2) リポタンパク質 (a) 及びプラスミノーゲンとして の抗原性を持たない、 という 2つの条件を満たすものであって、 アポリポタンパ ク質 (a) に特異的な抗原性を示しながらリポタンパク質 (a) やプラスミノ一 ゲンの抗原性は示さず、 アポリポタンパク質 (a) を特異的に認識する抗体の決 定、 そのような抗体を産生するための免疫原、 アポリポタンパク質 (a) 測定時 の標準物質、 そしてアポリポタンパク質 (a) を特異的に認識する抗体を精製す る場合のリガンド等として有用なものである。
本発明の、 リポタンパク質 (a) のアミノ酸配列より選択された配列表の配列 番号 1又は配列番号 2で示されるアミノ酸配列の一部又は全体を含む、 50以内 のアミノ酸から構成されるペプチド、 及びアポリポタンパク質 (a) のアミノ酸 配列より選択された配列表の配列番号 3で示されるァミノ酸配列の一部又は全体 を含む、 50以内のアミノ酸から構成されるペプチドにおいて、 アミノ酸配列の 一部とは、 配列番号 1、 配列番号 2又は配列番号 3で示されるアミノ酸配列中の 任意の連続したアミノ酸の配列のことであるが、 3個のアミノ酸からなるアミノ 酸配列を抗体は認識できるとの報告 [F. Hude c z e t a 1. , J. I mmuno l . Me tho ds, 147, 201 - 210 (1992) ] があ るので、 配列番号 1、 配列番号 2又は配列番号 3で示されるアミノ酸配列中の任 意の連続した 3以上のァミノ酸の配列であることが好ましい。
そして、 配列表の配列番号 1又は配列番号 2で示されるァミノ酸配列の一部又 は全体を含む、 5 0以内のアミノ酸から構成されるペプチドとは、 配列番号 1又 は配列番号 2で示されるアミノ酸配列の一部又は全体よりなるぺプチドに加え て、 そのべプチドの N末端側又は C末端側又は N末端側と C末端側の両方に更に ァミノ酸又はべプチドが結合したものも含むということを意味する。 ここで結合 するアミノ酸又はべプチドは、 L D Lやブラスミノ一ゲンと相同性の高いアミノ 酸配列を含まなければ特に制限されるものではない。 但し、 アミノ酸数が增ぇぺ プチドが大きくなると、 L D Lやプラスミノ一ゲンとの相同性が生じてくる可能 性があり、 また立体構造が複雑となり特殊な立体構造を取る可能性があるので、 本発明のぺプチドは 5 0以内のアミノ酸から構成されるのが好ましく、 アミノ酸 数が 3 0以内であればより好ましい。
更に、 配列表の配列番号 3で示されるアミノ酸配列の一部又は全体を含む、 5〇以内のアミノ酸から構成されるべプチドとは、 配列番号 3で示されるァミノ 酸配列の一部又は全体よりなるぺプチドに加えて、 そのべプチドの N末端側又は C末端側又は N末端側と C末端側の両方に更にァミノ酸又はべプチドが結合した ものも含むということを意味する。 ここで結合するアミノ酸又はペプチドは、 ブ ラスミノ一ゲンや、 リポタンパク質 (a ) としての抗原性を有するアミノ酸配列 と相同性の高いアミノ酸配列を含まなければ特に制限されるものではない。 但 し、 アミノ酸数が增ぇペプチドが大きくなると、 プラスミノーゲンとの相同性や リポタンパク質 (a ) としての抗原性が生じてくる可能性があり、 また立体構造 が複雑となり特殊な立体構造を取る可能性があるので、 本発明のぺプチドは 5 0 以内のアミノ酸から構成されるのが好ましく、 ァミノ酸数が 3 0以内であればよ り好ましい。
本発明における、 リポタンパク質 ( a ) のアミノ酸配列より選択された配列表 の配列番号 1又は配列番号 2で示されるァミノ酸配列の一部又は全体を含む、 5 0以内のアミノ酸から構成されるペプチド、 及びアポリポタンパク質 (a ) の ァミノ酸配列より選択された配列表の配列番号 3で示されるァミノ酸配列の一部 又は全体を含む、 5 0以内のアミノ酸から構成されるペプチドは、 液相法及び固 相法等のぺプチド合成の方法により合成することができ、 またぺブチド自動合成 装置を用いてもよく、 日本生化学会編 「生化学実験講座 1 タンパク質の化学
I V」 , 東京化学同人, 1 9 7 5 . 、 泉屋ら 「ペプチド合成の基礎と実験」 , 丸善, 1 9 8 5 . 、 日本生化学会編 「続生化学実験講座 2 タンパク質の化学 下」 , 東京化学同人, 1 9 8 7 . 等に記載された方法に従い合成することができ る。
そして、 これらのペプチドは対応する配列を持つ D N Aより組換え D N A技術 を用いて調製してもよく、 日本生化学会編 「続生化学実験講座 1 遺伝子研究法 I」 ' 東京化学同人, 1 9 8 6 . 、 日本生化学会編 「続生化学実験講一座 1 遺伝 子研究法 I I」 , 東京化学同人, 1 9 8 6 . 、 日本生化学会編 「続生化学実験講 座 1 遺伝子研究法 I I I」 , 東京化学同人, 1 9 8 7 . 等を参照して調製を行 えばよい。 - [ 3 ] 抗体産生用免疫原
本発明の、 配列表の配列番号 1又は配列番号 2で示されるァミノ酸配列の一部 又は全体を含む、 5 0以内のアミノ酸から構成されるペプチドよりなる、 リポタ ンパク質 (a ) に対する抗体を産生するための免疫原において、 配列表の配列番 号 1又は配列番号 2で示されるアミノ酸配列の一部又は全体を含む、 5 0以内の アミノ酸から構成されるペプチドとは、 前記の本発明の、 リポタンパク質 (a ) のァミノ酸配列より選択された配列表の配列番号 1又は配列番号 2で示されるァ ミノ酸配列の一部又は全体を含む、 5 0以内のアミノ酸から構成されるべプチド よりなるものである。
この本発明の、 配列表の配列番号 1又は配列番号 2で示されるァミノ酸配列の 一部又は全体を含む、 5 0以内のアミノ酸から構成されるペプチドよりなる、 リ ポタンパク質 (a ) に対する抗体を産生するための免疫原により、 ( 1 ) リポタ ンパク質 ( a ) を特異的に認識する、 (2 ) L D L及びプラスミノーゲンと交叉 反応を起こさない、 という 2つの条件を満たす抗体を得ることができる。
また、 本発明の、 配列表の配列番号 3で示されるアミノ酸配列の一部又は全体 を含む、 5 0以内のアミノ酸から構成されるペプチドよりなる、 アポリポタンパ ク質 (a ) に対する抗体を産生するための免疫原において、 配列表の配列番号 3 で示されるァミノ酸配列の一部又は全体を含む、 5 0以内のアミノ酸から構成さ れるペプチドとは、 前記の本発明の、 アポリポタンパク質 (a ) のアミノ酸配列 より選択された配列表の配列番号 3で示されるァミノ酸配列の一部又は全体を含 む、 5 0以内のアミノ酸から構成されるべプチドよりなるものである。
この本発明の、 配列表の配列番号 3で示されるァミノ酸配列の一部又は全体を 含む、 5 0以内のアミノ酸から構成されるペプチドよりなる、 ァポリポタンパク 質 (a ) に対する抗体を産生するための免疫原により、 ( 1 ) ァポリポタンパク 質 (a ) を特異的に認識する、 (2 ) リポタンパク質 (a ) 及びプラスミノーゲ ンとは交叉反応を起こさない、 という 2つの条件を満たす抗体を得ることができ る。
本発明における、 配列表の配列番号 1又は配列番号 2で示されるァミノ酸配列 の一部又は全体を含む、 5 0以内のアミノ酸から構成されるべプチドよりなる、 リポタンパク質 (a ) に対する抗体を産生するための免疫原、 及び配列表の配列 番号 3で示されるァミノ酸配列の一部又は全体を含む、 5 0以内のァミノ酸から 構成されるペプチドよりなる、 アポリポタンパク質 (a ) に対する抗体を産生す るための免疫原は、 これらのぺプチドそのものを抗体産生用免疫原として動物に 免疫してもよいし、 これらのペプチドと担体 (キャリア) を結合させたものを抗 体産生用免疫原として動物に免疫してもよい。
なお、 免疫原が低分子物質の場合には、 担体と結合したものを免疫するのがー 般的であるものの、 アミノ酸数 5のべプチドを免疫原としてこれに対する特異抗 体を産生させたとの報告 〔木山ら 「日本薬学会第 1 1 2年会講演要旨集 3」 , 1992, p. 122. ] もあるので、 担体を使用することは必須ではない。 担体を使用する場合には、 スカシガイのへモシァニン (KLH) 、 ゥシ血清ァ ルブミン (B SA) 、 ヒト血清アルブミン、 二ヮ卜リ血清アルブミン、 ポリ一 L 一リジン、 ポリアラニルリジン、 ジパルミチルリジン、 破傷風トキソイ ド又は多 糖類等の担体として公知なものを用いることができる。
そして、 本発明のこれらのペプチドと担体の結合法は、 グルタルアルデヒド 法、 1—ェチル—3— (3—ジメチルアミノブ口ピル) カルポジイミ ド法、 マレ ィミ ドベンゾィル—N—ヒドロキシサクシニミ ドエステル法、 N—サクシミジル - 3 - (2 -ピリジルジチォ) プロピオン酸法、 ビスジァゾ化べンジジン法又は ジパルミチルリジン法等の公知の結合法を用いることができる。
また、 ニトロセルロース粒子、 ポリビニルピロリ ドン又はリボソーム等の担体 に前記のぺプチドを吸着させたものを抗体産生用免疫原とすることもできる。 なお、 本発明の、 配列表の配列番号 1又は配列番号 2で示されるアミノ酸配列 の一部又は全体を含む、 50以内のアミノ酸から構成されるべプチドよりなる、 リポタンパク質 (a) に対する抗体を産生するための免疫原、 及び配列表の配列 番号 3で示されるァミノ酸配列の一部又は全体を含む、 50以内のアミノ酸から 構成されるペプチドよりなる、 アポリポタンパク質 (a) に対する抗体を産生す るための免疫原は、 分子量が小さいこともあって安定であり、 長期間保存可能な ものである。
[4] 抗体
本発明における、 配列表の配列番号 1で示されるアミノ酸配列の一部又は全体 を特異的に認識するリポタンパク質 (a) に対するポリクローナル抗体、 及び配 列表の配列番号 2で示されるアミノ酸配列の一部又は全体を特異的に認識するリ ポタンパク質 (a) に対する抗体は、 LDL及びプラスミノ一ゲンと交叉反応を 起こさず、 リポタンパク質 (a) を特異的に認識する抗体として用いることがで きる。
前記リポタンパク質 (a ) に対するポリクロ一ナル抗体及び抗体は、 リポタン パク質 (a ) 中のこれらのアミノ酸配列の一部又は全体に対して特異的に親和性 を持つものであり、 換言すれば特異的に結合性を有するものである。
そして、 本発明の前記リポタンパク質 (a ) に対するポリクローナル抗体及び 抗体は、 リポタンパク質 (a ) と特異的に結合できる力、 配列表の配列番号 1又 は配列番号 2で示されるァミノ酸配列の一部又は全体をそれぞれ含むぺプチドあ るいはタンパク質とも特異的に結合することができるものである。
なお、 ここでのアミノ酸配列の一部とは、 抗体が立体構造的に抗原の抗原決定 基 (ェピ卜一ブ) を認識することより考えれば、 これらのアミノ酸配列中の一次 構造上隣接したァミノ酸配列に限定されるものではなく、 これらのァミノ酸配列 中の任意の 3以上のアミノ酸を意味するものとすべきである。
更に、 本発明の前記リポタンパク質 (a ) に対するポリクロ一ナル抗体及び抗 体において、 これらのアミノ酸配列をブラスミノ一ゲンとの相同性の低さという 面から絞りこんで得られるァミノ酸配列としては、 配列表の配列番号 1のァミノ 酸配列に対しては配列番号 4のァミノ酸配列が、 そして配列番号 2のアミノ酸配 列に対しては配列番号 5のァミノ酸配列が、 それぞれ挙げられる。
また、 本発明における、 配列表の配列番号 3で示されるアミノ酸配列の一部又 は全体を特異的に認識するアポリポタンパク質 (a ) に対する抗体は、 リポタン パク質 (a ) 及びブラスミノ一ゲンと交叉反応を起こさず、 アポリポタンパク質 ( a ) を特異的に認識する抗体として用いることができる。
なお、 本発明の配列表の配列番号 3で示されるアミノ酸配列の一部又は全体を 特異的に認識するアポリポタンパク質 (a ) に対する抗体が、 ァポリポタンパク 質 (a ) をその分子内に含むリポタンパク質 (a ) とは結合せず、 リポタンパク 質 (a ) 内のジスルフィ ド結合が切れた状態のアポリポタンパク質 (a ) を特異 的に認識し結合する理由は、 現在のところは確かなことは言えないが、 立体構造 の違いによるものではないかと推測される。
この配列表の配列番号 3で示されるァミノ酸配列の一部又は全体を特異的に認 識するアポリポタンパク質 (a ) に対する抗体は、 アポリポタンパク質 (a ) 中 のこれらのァミノ酸配列の一部又は全体に対して特異的に親和性を持つものであ り、 換言すれば特異的に結合性を有するものである。
そして、 本発明の配列表の配列番号 3で示されるァミノ酸配列の一部又は全体 を特異的に認識するアポリポタンパク質 (a ) に対する抗体は、 アポリポタンパ ク質 (a ) と特異的に結合できるが、 配列表の配列番号 3で示されるアミノ酸配 列の一部又は全体をそれぞれ含むぺプチドあるいは夕ンパク質とも特異的に結合 することができるものである。
なお、 ここでのアミノ酸配列の一部とは、 抗体が立体構造的に抗原の抗原決定 基 (ェピ卜一ブ) を認識することより考えれば、 これらのアミノ酸配 中の一次 構造上隣接したアミノ酸配列に限定されるものではなく、 これらのァミノ酸配列 中の任意の 3以上のアミノ酸を意味するものとすべきである。
更に、 本発明の配列表の配列番号 3で示されるァミノ酸配列の一部又は全体を - 特異的に認識するアポリポタンパク質 (a ) に対する抗体において、 このアミノ 酸配列をプラスミノーゲンとの相同性の低さという面から絞りこんで得られるァ ミノ酸配列としては、 配列番号 6のァミノ酸配列が挙げられる。
本発明の、 配列表の配列番号 1で示されるアミノ酸配列の一部又は全体を特異 的に認識するリポタンパク質 (a ) に対するポリクローナル抗体、 及び配列表の 配列番号 2で示されるアミノ酸配列の一部又は全体を特異的に認識するリボタン パク質 (a ) に対する抗体は、 それぞれ、 配列表の配列番号 1又は配列番号 2で 示されるアミノ酸配列の一部又は全体を含む、 5 0以内のアミノ酸から構成され るペプチドよりなる、 リポタンパク質 (a ) に対する抗体を産生するための免疫 原を動物に免疫することにより得ることができる。
また、 本発明の、 配列表の配列番号 3で示されるアミノ酸配列の一部又は全体 を特異的に認識するアポリポタンパク質 (a) に対する抗体は、 配列表の配列番 号 3で示されるァミノ酸配列の一部又は全体を含む、 50以内のアミノ酸から構 成されるペプチドよりなる、 アポリポタンパク質 (a) に対する抗体を産生する ための免疫原を動物に免疫することにより得ることができる。
本発明の配列表の配列番号 1で示されるァミノ酸配列の一部又は全体を特異的 に認識するリポタンパク質 (a) に対するポリクローナル抗体は、 ポリクロ一ナ ル抗体そのもの、 又はポリクロ一ナル抗体よりなる抗血清のいずれのタイプのも のでもよく、 またこれらの抗体のフラグメント (Fab、 F (ab')2、 Fab' 等) も 含むものである。
また、 本発明の、 配列表の配列番号 2で示されるアミノ酸配列の一部又は全体 を特異的に認識するリポタンパク質 (a) に対する抗体、 及び配列表の配列番号 3で示されるァミノ酸配列の一部又は全体を特異的に認識するアポリボタンパク 質 (a) に対する抗体は、 ポリクロ一ナル抗体、 ポリクロ一ナル抗体よりなる抗 血清、 又はモノクローナル抗体のいずれのタイプのものでもよく、 またこれらの 抗体のフラグメント (Fab、 F (ab')2、 Fab' 等) も含むものである。
ポリクローナル抗体及び抗血清は以下の操作により調製することができる。 まず、 前記の配列表の配列番号 1、 配列番号 2又は配列番号 3で示されるァミ ノ酸配列の一部又は全体を含む、 50以内のアミノ酸から構成されるペプチドよ りなる抗体産生用免疫原 (担体は使用してもよいし、 使用しなくてもよい) を哺 乳動物 (マウス、 ゥサギ、 ラッ ト、 ヒッジ、 ャギ、 ゥマ等) 又は鳥類 (ニヮトリ 等) に免疫する。
抗体産生用免疫原の免疫量は免疫動物の種類、 免疫注射部位等により適宜決め られるものであるが、 例えば、 マウスの場合には約 5〜10週齢のマウス一匹当 たり一回につき 0 · 1 a g~5m g, 好ましくは 50 g〜 1 m gの前記ぺプチ ドを含む量の抗体産生用免疫原を免疫注射する。 また、 ゥサギの場合はゥサギ一 匹当たり一回につき 10 μ g〜数十 mgの前記ペプチドを含む量の抗体産生用免 疫原を免疫注射するのが好ましい。
なお、 抗体産生用免疫原はアジュバントを添加混合して免疫注射をすることが 好ましい。 アジュバン卜としては、 フロイン卜完全アジュバント、 フロイント不 完全アジュバント、 水酸化アルミニウムアジュバント又は百日咳菌アジュバン卜 等の公知なものを用いることができる。
免疫注射は、 皮下、 静脈内、 腹腔内又は背部等の部位に行えばよい。
初回免疫後、 2〜 3週間間隔で皮下、 静脈内、 腹腔内又は背部等の部位に抗体 産生用免疫原を追加免疫注射する。 この場合も抗体産生用免疫原はアジュバン卜 を添加混合して追加免疫注射をすることが好ましい。
初回免疫の後、 免疫動物の血清中の抗体価の測定を E L I S A法等により繰り 返し行い、 抗体価がプラトーに達したら全採血を行い、 血清を分離して抗血清を 得る。
この抗血清を、 硫酸アンモニゥム、 硫酸ナトリウム等による塩析法、 イオン交 換クロマトグラフィー、 ゲル濾過法、 又はァフィ二ティークロマトグラフィー等 の方法、 あるいはこれらの方法を組み合わせて抗体の精製を行い、 本発明におけ るポリクロ一ナル抗体を得ることができる。
なお、 抗体産生用免疫原に担体としてヒト血清アルブミン又は B S Aを用いた 場合は、 得られた抗体あるいは抗血清中にヒ卜血清アルブミンと交叉反応を起こ す抗体が含まれる可能性があるので、 このような抗体の除去処理を行うことが好 ましい。 この除去処理方法としては、 担体として用いたヒト血清アルブミン又は B S Aを、 得られた抗体あるいは抗血清の溶液中に添加して生成した凝集物を取 り除く力、 担体として用いたヒ卜血清アルブミン又は B S Aを不溶化担体に固相 ィヒしてァフィ二ティ一クロマトグラフィーにより除去する方法等を用いることが できる。
次に、 モノクローナル抗体の調製法について以下説明を行う。
モノクローナル抗体は、 ケラーらの細胞融合法 〔G . K o e h l e r e t a 1. , N a ur e, 256, 495-497 (1975) ] によるハイブリ ドーマ、 又はエブスタン一バーウイルス等のウィルスによる腫瘍化細胞等の抗体 産生細胞により得ることができる。
細胞融合法によるモノクローナル抗体の調製は、 以下の操作により行うことが できる。
まず、 前記の配列表の配列番号 2又は配列番号 3で示されるァミノ酸配列の一 部又は全体を含む、 50以内のアミノ酸から構成されるべプチドよりなる抗体産 生用免疫原を哺乳動物 (マウス、 ヌードマウス、 ラッ ト等、 例えば近交系マウス の BALBZc) 又は鳥類 (ニヮトリ等) に免疫する。 抗体産生用免疫原の免疫 量は、 免疫動物の種類、 免疫注射部位等により適宜決められるものであるが、 例 えば、 マウスの場合には一匹当たり一回につき 0. 1 g〜5m gの前記べプチ ドを含む量の抗体産生用免疫原を免疫注射するのが好ましい。
なお、 抗体産生用免疫原はアジュバントを添加混合して免疫注射をすることが 好ましい。 アジュバントとしては、 フロイント完全アジュバント、 フロイント不 完全アジュバント、 水酸化アルミニウムアジュバント又は百日咳菌アジュバント 等の公知なものを用いることができる。
免疫注射は、 皮下、 静脈内、 腹腔内又は背部等の部位に行えばよい。
初回免疫後、 1〜 2週間間隔で皮下、 静脈内、 腹腔内又は背部等の部位に抗体 産生用免疫原を追加免疫注射する。 この追加免疫注射の回数としては 2〜 6回が 一般的である。 この場合も抗体産生用免疫原はアジュバントを添加混合して追加 免疫注射をすることが好ましい。
初回免疫の後、 免疫動物の血清中の抗体価の測定を EL I S A法等により繰 り返し行い、 抗体価がプラ トーに達したら、 抗体産生用免疫原を生理食塩水 (0. 9%塩化ナトリウム水溶液) に溶解したものを静脈内又は腹腔内に注射 し、 最終免疫とする。 この最終免疫の 3~5日後に、 免疫動物の脾細胞、 リンパ 節細胞又は末梢リンパ球等の抗体産生能を有する細胞を取得する。 この免疫動物より得られた抗体産生能を有する細胞と哺乳動物 (マウス、 ヌー ドマウス、 ラッ ト等) の骨髄腫細胞 (ミエ口一マ細胞) とを細胞融合させるので ある力 ミエローマ細胞としてはヒポキサンチン ·グァニン ·ホスホリボシル · トランスフェラ一ゼ (HGPRT) 又はチミジンキナーゼ (TK) 等の酵素を欠 損した細胞株のものが好ましく、 例えば、 BALBZcマウス由来の HGPRT 欠損細胞株である、 P3— X63— Ag8株 (ATCC T I B9) 、 P 3 -X 63— Ag8— U 1株 (癌研究リサーチソースバンク (JCRB) 9085) 、 P3 - NS 1 - 1一 Ag4 - 1株 (JCRB 0009) 、 P3-X63-Ag 8 · 653株 (JCRB 0028) 又は SP2/0 - Ag- 14株 (JCRB
0029) などを用いることができる。
細胞融合は、 各種分子量のポリエチレングリコール (PEG) 、 リボソーム又 はセンダイウィルス (HVJ) 等の融合促進剤を用いて行う力 又は 気融合法 により行うことができる。 ―
ミエ口一マ細胞が H G P R T欠損株又は T K欠損株のものである場合には、 ヒ ポキサンチン ·アミノプテリン ·チミジンを含む選別用培地 (HAT培地) を用 - いることにより、 抗体産生能を有する細胞とミエローマ細胞の融合細胞 (ハイブ リ ドーマ) のみを選択的に培養し、 増殖させることができる。
このようにして得られたハイプリ ドーマの培養上清を EL I S A法やウェス夕 ンブロッ 卜法等の免疫学的測定法により測定することにより、 配列表の配列番号 2で示されるアミノ酸配列の一部又は全体を特異的に認識するリボタンパク質 (a) に対する抗体、 又は配列表の配列番号 3で示されるアミノ酸配列の一部又 は全体を特異的に認識するアポリポタンパク質 (a) に対する抗体を産生するハ イブリ ドーマを選択することができ、 この方法と限界希釈法等の公知のクロ一二 ングの方法を組み合わせて行うことにより、 本発明におけるモノクローナル抗体 の産生細胞株を単離して得ることができる。
このモノクローナル抗体産生細胞株を適当な培地で培養して、 その培養上清か ら本発明のモノクロ一ナル抗体を得ることができるが、 培地としては無血清培地 又は低濃度血清培地等を用いてもよく、 この場合は抗体の精製が容易となる点で 好ましく、 DMEM培地、 RPMI 1640培地又は ASF培地 103等の培地 を用いることができる。
また、 モノクローナル抗体産生細胞株を、 これに適合性がありプリスタン等で あらかじめ刺激した哺乳動物の腹腔内に注入し、 一定期間の後、 腹腔にたまった 腹水より本発明のモノクローナル抗体を得ることもできる。
このようにして得られたモノクローナル抗体は、 硫酸アンモニゥム、 硫酸ナト リウム等による塩析法、 イオン交換クロマトグラフィー、 ゲル濾過法、 又はァフ ィニティークロマトグラフィー等の方法、 あるいはこれらの方法を組み合わせる ことにより、 精製された本発明におけるモノクローナル抗体を得ることができ る。
[5] 測定法
本発明における、 ( 1 ) 配列表の配列番号 1で示されるアミノ酸配列の一部又 は全体を特異的に認識するリポタンパク質 (a) に対するポリクロ一ナル抗体、 (2) 配列表の配列番号 1で示されるアミノ酸配列の一部が、 配列表の配列番号 4で示されるアミノ酸配列であることを特徴とする前記 (1 ) のポリクロ一ナル 抗体、 ( 3 ) 配列表の配列番号 1で示されるァミノ酸配列の一部又は全体を含 む、 50以内のアミノ酸から構成されるペプチドよりなる、 リポタンパク質 (a) に対する抗体を産生するための免疫原より得られることを特徴とする前記 ( 1 ) のポリクローナル抗体、 (4) 配列表の配列番号 2で示されるアミノ酸配 列の一部又は全体を特異的に認識するリポタンパク質 (a) に対する抗体、 (5) 配列表の配列番号 2で示されるアミノ酸配列の一部が、 配列表の配列番号 5で示されるアミノ酸配列であることを特徴とする前記 (4) の抗体、 (6) 配 列表の配列番号 2で示されるアミノ酸配列の一部又は全体を含む、 50以内のァ ミノ酸から構成されるペプチドよりなる、 リポタンパク質 (a) に対する抗体を 産生するための免疫原より得られることを特徴とする前記 (4) の抗体、 (7) モノクローナル抗体である前記 (4) 、 (5) 又は (6) の抗体、 以上 ( 1 ) な いし (7) のいずれかの抗体のうち、 少なくとも 1種類の抗体を用いることを特 徴とするリポタンパク質 (a) の測定法は、 試料中の LDLやプラスミノーゲン を測りこんでしまうことがなく、 リポタンパク質 (a) の濃度を正確に測定する ことができる方法である。
また、 本発明における、 ( 1 ) 配列表の配列番号 3で示されるアミノ酸配列の 一部又は全体を特異的に認識するアポリポタンパク質 (a) に対する抗体、
(2) 配列表の配列番号 3で示されるアミノ酸配列の一部が、 配列表の配列番号 6で示されるアミノ酸配列であることを特徴とする前記 ( 1 ) の抗体、 (3) 配 列表の配列番号 3で示されるァミノ酸配列の一部又は全体を含む、 50以内のァ ミノ酸から構成されるペプチドよりなる、 アポリポタンパク質 (a) に対する抗 体を産生するための免疫原より得られることを特徴とする前記 ( 1 ) の抗体、
(4) モノクローナル抗体である前記 ( 1 ) 、 (2) 又は (3) の抗体、 以上
( 1 ) ないし (4) のいずれかの抗体のうち、 少なくとも 1種類の抗体を用いる ことを特徴とするアポリポタンパク質 (a) の測定法は、 試料中のリポタンパク 質 (a) やプラスミノーゲンを測りこんでしまうことがなく、 ァポリポタンパク 質 (a) の濃度を正確に測定することができる方法である。
これらの *発明の測定法においては、 前記の抗体のうち 1種類の抗体を用いる だけでなく、 複数種類の抗体を組み合わせて用いてもよい。
そして、 本測定法は抗体を用いる測定法、 即ち免疫学的測定法であれば、 いずれの方法においてもその測定法で使用される抗体として、 前記の抗体を用い ることにより、 所期の効果を奏するものであって、 例えば、 酵素免疫測定法
(EL I SA、 E I A) 、 蛍光免疫測定法、 放射免疫測定法 ( R I A) 、 発光免 疫測定法、 酵素抗体法、 蛍光抗体法、 免疫比濁法、 ラテックス凝集反応、 ラテツ クス比濁法、 赤血球凝集反応、 粒子凝集反応又はウェスタンプロッ ト法等により 本測定法は実施される。
本測定法における試料としては、 血液、 血清、 血漿、 尿、 髄液、 唾液、 汗、 腹 水、 羊水、 又は細胞あるいは臓器の抽出液等、 リポタンパク質 (a ) 若しくはァ ポリポタンパク質 (a ) 又はそれらの構成部分が含まれる可能性のある生体試料 であれば対象となる。
本測定法を酵素免疫測定法、 蛍光免疫測定法、 放射免疫測定法又は発光免疫測 定法等の標識抗体を用いた免疫測定法により実施する場合には、 サンドィツチ法 又は競合法により行うこともでき、 サンドィッチ法の場合には固相化抗体及び標 識抗体等直接リポタンパク質 (a ) 又はアポリポタンパク質 (a ) と結合する抗 体のうち少なくとも 1種の抗体が前記の抗体であればよい。
固相担体としては、 ポリスチレン、 ポリカーボネート、 ポリビニルトルエン、 ポリプロピレン、 ポリエチレン、 ポリ塩化ビニル、 ナイロン、 ポリメタクリレー ト、 ラテックス、 ゼラチン、 ァガロース、 セルロース、 セファロ一ス、 ガラス、 金属、 セラミックス、 又は磁性体等の材質よりなるビーズ、 マイクロプレート、 試験管、 スティック、 又は試験片等の形状の固相担体を用いることができる。 固相化抗体は、 固相担体と抗体を物理的吸着法、 化学的結合法又はこれらの併 用等の公知の方法により調製することができる。
標識物質としては、 酵素免疫測定法の場合には、 パーォキシダーゼ (P O D ) 、 アルカリホスファタ一ゼ (A L P ) 、 J3—ガラクトシダ一ゼ、 ゥレア一ゼ、 力 タラ一ゼ、 グルコースォキシダ一ゼ、 乳酸脱水素酵素又はアミラーゼ等を、 蛍光 免疫測定法の場合には、 フルォレセインイソチオシァネート、 テトラメチルロー ダミンィソチオシァネート、 置換ローダミンィソチオシァネート又はジクロ口ト リアジンイソチオシァネート等を、 そして放射免疫測定法の場合には、 トリチウ ム、 ヨウ素 1 2 5又はヨウ素 1 3 1等を用いることができる。 また、 発光免疫測 定法は、 N A D H— F M N H 2 —ルシフヱラーゼ系、 ルミノール一過酸化水素一
P〇 D系、 ァクリジニゥムエステル系又はジ才キセタン化合物系等を用いること ができる。
標識物質と抗体との結合法は、 グルタルアルデヒド法、 マレイミド法、 ピリジ ルジスルフィ ド法又は過ョゥ素酸法等の公知の方法を用いることができる。
測定の操作法は公知の方法 〔日本臨床病理学会編 「臨床病理臨時増刊特集第 5 3号 臨床検査のためのィムノアツセィー技術と応用一」 , 臨床病理刊行会, 1 9 8 3 . , 石川榮治ら編 「酵素免疫測定法」 , 第 3版, 医学書院, 1 9 8 7 . , 北川常廣ら編 「蛋白質核酸酵素別冊 N o . 3 1 酵素免疫測定法」 , 共立出版, 1 9 8 7 . ] により行うことができる。
例えば、 固相化抗体と試料を反応させ、 同時に標識抗体を反応させるか、 又は 洗浄の後に標識抗体を反応させて、 固相化抗体 -リポタンパク質 (a ) —標識抗 体、 又は固相化抗体一アポリポタンパク質 (a ) -標識抗体の複合体を形成させ る。 そして未結合の標識抗体を洗浄分離して、 結合標識抗体量又は未 Ϊ吉合標識抗 体量より試料中のリポタンパク質 (a ) 量、 又はアポリポタンパク質 (a ) 量を 測定することができる。
具体的には、 酵素免疫測定法の場合は標識酵素にその至適条件下で基質を反応 - させ、 その反応生成物の量を光学的方法等により測定する。 蛍光免疫測定法の場 合には蛍光物質標識による蛍光強度を、 放射免疫測定法の場合には放射性物質標 識による放射線量を測定する。 発光免疫測定法の場合は発光反応系による発光量 を測定する。
本測定法を免疫比濁法、 ラテックス凝集反応、 ラテックス比濁法、 赤血球凝集 反応又は粒子凝集反応等の免疫複合体凝集物の生成を、 その透過光や散乱光を光 学的方法により測るか、 目視的に測る測定法により実施する場合には、 溶媒とし てリン酸緩衝液、 グリシン緩衝液、 トリス緩衝液又はグッ ド緩衝液等を用いるこ とができ、 更にポリエチレングリコール等の反応促進剤や非特異的反応抑制剤を 含ませてもよい。
抗体を固相担体に感作させて用いる場合には、 固相担体としては、 ポリスチレ ン、 スチレン一ブタジエン共重合体、 (メタ) アクリル酸エステル類ポリマ一、 ラテックス、 ゼラチン、 リボソーム、 マイクロカプセル、 赤血球、 シリカ、 アル ミナ、 カーボンブラック、 金属化合物、 金属、 セラミックス又は磁性体等の材質 よりなる粒子を使用することができる。
この感作の方法としては、 物理的吸着法、 化学的結合法又はこれらの方法の併 用等の公知の方法を使うことができる。
測定の操作法は公知の方法により行うことができるが、 例えば、 光学的方法に より測定する場合には、 試料と抗体、 又は試料と固相担体に感作させた抗体を反 応させ、 エンドポイント法又はレー卜法により、 透過光や散乱光を測定する。 また、 目視的に測定する場合には、 プレートやマイクロタイタープレート等の 容器中で、 試料と固相担体に感作させた抗体を反応させ、 凝集の状態を目視的に 判定する。
なお、 目視的に測定する代わりにマイクロプレートリーダー等の機器を用いて 測定を行ってもよい。 図面の簡単な説明
図 1は、 ホップらの方法による各ァミノ酸残基の親水性の高さの推定のグラフ である。
図 2は、 パーカーらの方法による各アミノ酸残基の親水性の高さの推定のグラ フである。
図 3は、 ガーニヤ一らの方法による各ァミノ酸残基が特殊な立体構造に属する かの推定のグラフである。
図 4は、 力一ブラスらの方法による各アミノ酸残基が空間的ゆらぎの大きい柔 軟な構造に属するかの推定のグラフである。
図 5は、 実施例 3で得られた合成ペプチドの高速液体クロマトグラフィー ( H P L C ) による分析結果である。 図 6は、 実施例 3で得られた合成ペプチドの質量スぺクトルである。
図 7は、 実施例 4で得られた合成ペプチドの HPLCによる分析結果である。 図 8は、 実施例 4で得られた合成ペプチドの質量スペクトルである。
図 9は、 実施例 5で得られた合成ペプチドの H P L Cによる分析結果である。 図 10は、 実施例 5で得られた合成ペプチドの質量スぺクトルである。
図 1 1は、 実施例 9で得られたリポタンパク質 (a) に対するポリクロ一ナル 抗体の配列表の配列番号 8で示されるペプチドへの反応性を見た EL I SA法の 結果である。
図 12は、 実施例 10で得られたリポタンパク質 (a) に対するポリクロ一ナ ル抗体の配列表の配列番号 9で示されるペプチドへの反応性を見た EL I SA法 の結果である。
図 13は、 実施例 9、 実施例 10で得られたリポタンパク質 (a) に対するポ リクローナル抗体のリポタンパク質 (a) 及び LDLへの反応性を見たウェスタ ンブロッ 卜法における電気泳動のパターンを示す写真である。
図 14は、 実施例 9、 実施例 10で得られたリポタンパク質 (a) に対するポ リクロ一ナル抗体のプラスミノ一ゲンへの反応性を見たウェスタンブロッ 卜法に おける電気泳動のパターンを示す写真である。
図 15は、 実施例 1 1で得られたアポリポタンパク質 (a) に対するポリクロ ーナル抗体の配列表の配列番号 10で示されるぺプチドへの反応性を見た E L I S A法の結果である。
図 16は、 実施例 1 1で得られたアポリポタンパク質 (a) に対するポリクロ —ナル抗体のアポリポタンパク質 (a) への反応性を見たウェスタンブロッ 卜法 における電気泳動のパターンを示す写真である。
図 17は、 実施例 1 1で得られたアポリポタンパク質 (a) に対するポリクロ —ナル抗体のアポリポタンパク質 (a) への反応性を見たウェスタンプロッ ト法 での陰性対照における電気泳動のパターンを示す写真である。 図 18は、 実施例 1 1で得られたアポリポタンパク質 (a) に対するポリクロ —ナル抗体のアポリポタンパク質 (a) への反応性を見たウェスタンブロッ 卜法 での対照における電気泳動のパターンを示す写真である。
図 19は、 実施例 1 1で得られたアポリポタンパク質 (a) に対するポリクロ —ナル抗体のリポタンパク質 (a) への反応性を見たウェスタンブロッ 卜法にお ける電気泳動のパターンを示す写真である。
図 20は、 実施例 9で得られたリポタンパク質 (a) に対するポリクローナル 抗体を用いた免疫比濁法によるリポタンパク質 (a) 測定の検量線のグラフであ る。
図 21は、 実施例 10で得られたリポタンパク質 (a) に対するポリクローナ ル抗体を用いた免疫比濁法によるリポタンパク質 (a) 測定の検量線のグラフで ある。
図 22は、 実施例 9で得られたリポタンパク質 (a) に対するポリクロ一ナル 抗体を用いた EL I SA法によるリポタンパク質 (a) 測定の検量線のグラフで ある。
図 23は、 実施例 10で得られたリポタンパク質 (a) に対するポリクロ一ナ ル抗体を用いた EL I SA法によるリポタンパク質 (a) 測定の検量線のグラフ である。
図 24は、 本発明のリポタンパク質 (a) 測定法に対するプラスミノ一ゲンの 影響を見たグラフである。
図 25は、 実施例 1 1で得られたアポリポタンパク質 (a) に対するポリクロ —ナル抗体を用いた EL I S A法によるアポリポタンパク質 (a) 測定の検量線 のグラフである。
図 26は、 実施例 22で得られたリポタンパク質 (a) に対するモノクローナ ル抗体の配列表の配列番号 8、 配列番号 9及び配列番号 10で示されるペプチド への反応性を見た EL I S A法の結果である。 図 27は、 実施例 23で得られたアポリポタンパク質 (a) に対するモノクロ ーナル抗体の配列表の配列番号 8、 配列番号 9及び配列番号 10で示されるぺプ チドへの反応性を見た EL I S A法の結果である。
図 28は、 実施例 23で得られたアポリポタンパク質 (a) に対するモノクロ ーナル抗体のアポリポタンパク質 (a) への反応性を見たウェスタンブロッ ト法 における電気泳動のパターンを示す写真である。
図 29は、 実施例 23で得られたアポリポタンパク質 (a) に対するモノクロ —ナル抗体のアポリポタンパク質 (a) への反応性を見たウエスタンブロッ 卜法 での陰性対照における電気泳動のパターンを示す写真である。
図 30は、 実施例 23で得られたアポリポタンパク質 (a) に対するモノクロ ーナル抗体のアポリポタンパク質 (a) への反応性を見たウエスタンブロッ ト法 での対照における電気泳動のパターンを示す写真である。 ―
図 31は、 実施例 22で得られたリポタンパク質 (a) に対するモノクロ一ナ ル抗体及び実施例 23で得られたアポリポタンパク質 (a) に対するモノクロ一 ナル抗体のリポタンパク質 (a) への反応性を見たウェスタンブロッ 卜法におけ る電気泳動のパターンを示す写真である。
図 32は、 実施例 22で得られたリポタンパク質 (a) に対するモノクロ一ナ ル抗体及び実施例 23で得られたアポリポタンパク質 (a) に対するモノクロ一 ナル抗体の LDLへの反応性を見たウェスタンプロ ト法における電気泳動のパ ターンを示す写真である。
図 33は、 実施例 22で得られたリポタンパク質 (a) に対するモノクローナ ル抗体及び実施例 23で得られたアポリポタンパク質 (a) に対するモノクロ一 ナル抗体のプラスミノーゲンへの反応性を見たウエスタンプロッ ト法における電 気泳動のパターンを示す写真である。
図 34は、 実施例 22で得られたリポタンパク質 (a) に対するモノクロ一ナ ル抗体を用いた EL I SA法によるリポタンパク質 (a) 測定の検量線のグラフ である。
図 35は、 実施例 23で得られたアポリポタンパク質 (a) に対するモノクロ —ナル抗体を用いた EL I S A法によるアポリポタンパク質 (a) 測定の検量線 のグラフである。
図 36は、 リポタンパク質 (a) の構造の概略図である。 発明を実施するための最良の形態
以下、 実施例により本発明をより具体的に詳述するが、 本発明はこの実施例に よって何ら限定されるものではない。
実施例 1 リポタンパク質 (a) よりのアミノ酸配列の選択
リポタンパク質 (a) としての特異性を持ち、 かつ LDL及びブラスミノ一ゲ ンとは相同性が小さいという特徴を有する、 リポタンパク質 (a) の抗原性を特 異的に表すアミノ酸配列を、 リポタンパク質 (a) のアミノ酸配列より選択し た。
( 1 ) リポタンパク質 (a) としての特異性を持ち、 そして LDL及びプラス ミノ一ゲンとは相同性が小さい、 という 2つの条件を満たすアミノ酸配列をリポ タンパク質 (a) のアミノ酸配列より選択することにおいて、 LDLの関与を排 除するためにアポリポタンパク質 (a) のアミノ酸配列を対象とした。
次に、 アポリポタンパク質 (a) の 4, 529個のアミノ酸配列 [J . W. Mc L e an e t a 1. , N a t u r e, 330, 1 32 - 1 37 ( 1987) 3 について、 なるべく多く繰り返されている配列を検討し、 ァポリ ポタンパク質 (a) の N末端より 1 10番目のセリンから 3, 306番目のトレ ォニンまでの配列の中で 28回繰り返されているクリングル構造部分の配列表の 配列番号 7で示された 120個のアミノ酸よりなるアミノ酸配列を選択した。
(2) この配列番号 7で示されたアミノ酸配列の N末端より 3番目のァラニン から 14番目のシスティンまでをセグメント 1、 15番目のチロシンから 35番 目のシスティンまでをセグメント 2、 36番目のグルタミンから 63番目のシス ティンまでをセグメント 3、 64番目のアルギニンから 74番目のシスティンま でをセグメント 4、 75番目のチロシンから 86番目のシスティンまでをセグメ ン卜 5、 87番目のァスパラギンから 91番目のシスティンまでをセグメント 6、 そして 92番目のセリンから 1 1 6番目のグルタミンまでをセグメント 7 と、 システィン残基を主な基準として 7つのセグメントに分けた。
(3) これらの 7つのセグメントの性質を知るため、 配列番号 7で示された 1 20個のアミノ酸配列について種々の検討を行った。
ホップらの方法 [T. P. H O P P e t a l . , P r o c. N a t l . Ac ad. S c i . U. S. A. , ^8, 3824-3828 (1981 ) ] に より各ァミノ酸残基の親水性の高さの推定を行った。 この結果を図 1に示した。 図 1において、 横軸はアミノ酸残基の N末端側からの順番を表しており、 縦軸 は数値が大きい程そのアミノ酸残基の親水性が高く、 数値が小さい程親水性が低 いことを表している。
(4 ) 次に、 パ一カーらの方法 [P ar ke r e t a 1. , B i o c h e m i s t r , 2_5, 5425-5432 (1986) ] によっても各アミノ酸 残基の親水性の高さの推定を行った。 この結果を図 2に示した。
図 2において、 横軸はアミノ酸残基の N末端側からの順番を表し、 縦軸は数値 が大きい程親水性が高いことを表している。
( 5 ) ガ一ニヤ一らの方法 [G ar n i e r e t a 1. , J . M o 1. B i o l . , 120, 97- 120 ( 1987) ] により各アミノ酸残基が特殊 な立体構造に属するかどうかの推定を行った。 この結果を図 3に示した。
図 3において、 横軸はアミノ酸残基の N末端側からの順番を表し、 縦軸は数値 が大きい程そのァミノ酸残基が特殊な立体構造に属しにくいことを表している。
(6) 力一ブラスらの方法 [Kar p l us e t a 1. , N a t u r w i s s en s chaf t en, Ί 2_, 212 - 213 ( 1985) ] により各アミ ノ酸残基が空間的ゆらぎの大きい柔軟な構造に属するかどうかの推定を行った。 この結果を図 4に示した。
図 4において、 横軸はアミノ酸残基の N末端側からの順番を表し、 縦軸は数値 が大きい程そのアミノ酸残基が空間的ゆらぎの大きい柔軟な構造に属しやすいこ とを表している。
(7) そして、 スキャナ一により示された、 配列番号 7のアミノ酸配列中の 各アミノ酸残基における α—へリツクス構造の取りやすさの推定、 及び 0構造 の取りやすさの推定の結果 [A. M. S c an u "L i p o p r o t e i n
(a) , Ac ad em i c P r e s s, S an D i e g o, 1 990, P. 53〜74. ] をも参考とした。
(8) 以上のデータを考察した結果、 セグメント 2は特殊な立体構造である )3 構造を取る可能性が高く、 そしてセグメント 5は疎水性が高いためタンパク質分 子内部に埋没している可能性が高く、 これらの 2つのセグメントのアミノ酸配列 は抗体産生用免疫原等の抗原性を特異的に表すァミノ酸配列としては不適当であ ると考えられた。
また、 セグメン卜 6には糖が結合しているため抗原性を特異的に表すアミノ酸 配列としては適当でなく、 セグメント 3のアミノ酸配列はプラスミノ一ゲ: のァ ミノ酸配列と相同性が高いため用いることはできない。
(9) よって、 本発明における、 リポタンパク質 (a) としての特異性を持 ち、 かつ LD L及びプラスミノ一ゲンとは相同性が小さいという特徴を有する、 リポタンパク質 (a) の抗原性を特異的に表すアミノ酸配列としては、 セグメン 卜 1、 セグメント 4及びセグメント 7から選択するのが好ましく、 プラスミノー ゲンのァミノ酸配列との相同性ができるだけ少なくなるように詳細に検討し、 そ してリポタンパク質 (a) に対する抗体の抗体産生用免疫原としての適性を検討 した結果、 配列表の配列番号 1及び配列番号 2で示されるァミノ酸配列を選択す るに至った。 実施例 2 アポリポタンパク質 (a) よりのアミノ酸配列の選択
アポリポタンパク質 (a) としての特異性を持ち、 かつリポタンパク質 (a) 及びプラスミノーゲンとしての抗原性を持たないという特徴を有する、 アポリポ タンパク質 (a) の抗原性を特異的に表すアミノ酸配列を、 アポリポタンパク質 (a) のアミノ酸配列より選択した。
( 1 ) アポリポタンパク質 ( a ) の 4, 529個のアミノ酸配列 [ J . W . Mc L e a n e t a 1. , N a t u r e, 330, 1 32 - 1 37
( 1987) ] について、 なるべく多く繰り返されている配列を検討し、 ァポリ ポタンパク質 (a) の N末端より 1 10番目のセリンカ ら 3, 306番目の卜レ ォニンまでの配列の中で 28回繰り返されているクリングル構造部分の配列表の 配列番号 7で示された 120個のアミノ酸よりなるアミノ酸配列を選択した。
(2 ) この配列番号 7で示されたアミノ酸配列の N末端より 3番目—のァラニン から 14番目のシスティンまでをセグメント 1、 15番目のチロシンから 35番 目のシスティンまでをセグメン卜 2、 36番目のグルタミンから 63番目のシス ティンまでをセグメント 3、 64番目のアルギニンから 74番目のシスティンま- でをセグメント 4、 75番目のチロシンから 86番目のシスティンまでをセグメ ント 5、 87番目のァスパラギンから 9 1番目のシスティンまでをセグメント 6、 そして 92番目のセリンから 1 1 6番目のグルタミンまでをセグメン卜 7 と、 システィン残基を主な基準として 7つのセグメン卜に分けた。
これらの 7つのセグメントの性質を知るため、 配列番号 7で示された 120個 のアミノ酸配列について種々の検討を行ったが、 この工程は実施例 1の (3) か ら (7) の工程と同様にして行った。
(8) 以上のデータを考察した結果、 セグメント 2は特殊な立体構造である 構造を取る可能性が高く、 そしてセグメント 5は疎水性が高いためタンパク質分 子内部に埋没している可能性が高く、 これらの 2つのセグメントのアミノ酸配列 は抗体産生用免疫原等の抗原性を特異的に表すアミノ酸配列としては不適当であ ると考えられた。
また、 セグメン卜 6には糖力 s結合しているため抗原性を特異的に表すアミノ酸 配列としては適当でなく、 セグメント 3のアミノ酸配列はプラスミノ一ゲンのァ ミノ酸配列と相同性が高いため用いることはできない。
(9) アポリポタンパク質 (a) の抗原性を特異的に表すアミノ酸配列として は、 セグメント 1、 セグメント 4及びセグメント 7から選択するのが好ましく、 プラスミノ一ゲンのァミノ酸配列との相同性ができるだけ少なくなるように詳細 に検討した結果、 配列表の配列番号 1、 配列番号 2及び配列番号 3で示されるァ ミノ酸配列が候補として選択された。
( 10) これらの配列表の配列番号 1、 配列番号 2又は配列番号 3で示される アミノ酸配列を含むペプチドのそれぞれを、 アプライ ドバイオシステムズ社
(App l i e d B i o s y s t ems) のモデル 43 OAぺプチド自動合成 装置 (Mo de l 43 OA pe pt i de s ynthe s i z e r) によ り、 取扱説明書に従って、 t一ブトキシカルボニルアミノ酸固相法で合成した。
( 1 1 ) そして、 これらの合成したペプチドを、 担体であるスカシガイのへモ シァニン (KLH) [カルビオケム社製〕 と結合させて抗体産生用免疫原を調製 し、 8週齢のメスの B ALBZcマウス (日本チャールズリバ一社) に免疫して ポリクローナル抗体を調製した。
( 12) これらのポリクローナル抗体のリポタンパク質 (a) への反応性を、 タイタン · ジュル · リポ蛋白電気泳動キッ ト (ヘレナ研究所社製) 及びノバ ·ブ ロッ 卜 · エレク トロフォレティ ック ' トランスファ一 ' キッ ト (フアルマシア一 エルケ一ビ一社製) を用いてウェスタンプロッ ト法により調べたところ、 配列表 の配列番号 3で示されるアミノ酸配列を含むぺプチドより調製されたポリクロー ナル抗体は、 リポタンパク質 (a) とは反応しないという結果が得られた。
( 13) また、 これらのポリクロ一ナル抗体のアポリポタンパク質 (a) への 反応性を、 4 %SDS—ポリアクリルアミドゲル (テフコ社製) 及びノバ 'プロ ッ ト .エレクトロフォレティック · トランスファ一·キヅ ト (ファルマシァーェ ルケ一ビ一社製) を用いてウェスタンプロッ ト法により調べたところ、 これらの すべての抗体がアポリポタンパク質 (a) と反応することが判明した。
( 14) よって、 本発明における、 アポリポタンパク質 (a) としての特異性 を持ち、 かつリポタンパク質 (a) 及びプラスミノーゲンとしての抗原性を持た ないという特徴を有する、 アポリポタンパク質 (a) の抗原性を特異的に表すァ ミノ酸配列として、 配列表の配列番号 3で示されるアミノ酸配列を選択した。 , 実施例 3 配列表の配列番号 8で示されるペプチドの合成
配列表の配列番号 1で示されるアミノ酸配列を含むぺプチドである配列表の配 列番号 8で示されるぺブチドの合成を行った。
まず、 アプライ ドバイオシステムズ社 (App l i e d B i o s y s tem s) のモデル 43 OAペプチド自動合成装置 (Mo de 1 43 OA pe pt i de s ynthe s i z e r) により、 取扱説明書に従って、 t -ブトキシ カルボニルアミノ酸固相法で当該べプチドの合成を行った。 副反応を抑制する ためスカベンジャーとして、 ジメチルスルファイド、 P—チォクレゾ一ル、 m— クレゾ一ル、 そしてァニソ一ルの存在下でフッ化水素法により樹脂からの合成し たべプチドの脱離を行った。
その後、 ジメチルェ一テルによりスカベンジャーを抽出し、 そして 2 N酢酸に より合成したぺプチドの抽出を行った。
陰イオン交換樹脂であるダウエックス 1一 X2 (D0WEX 1 -X2) によ り陰イオン交換カラムクロマトグラフィ一を行い精製をして、 ォクタデシル (0DS) カラムでの高速液体クロマトグラフィー (HPLC) により、 メイン ピークのパターンの確認を行った。
そして、 エバポレータ一により凍結乾燥をして濃縮を行った後、 HPLCによ り精製を行い分取した。 なお、 この HPLC精製時の装置及び条件は、 山村化学 研究所社の逆相 0 D Sカラム YMC— D— 0 D S - 5 (2 OmmX 30 Omm) を用い、 日本分光工業社の TWI NCLEポンプ及び日本分光工業社の GP - A 40型グラジエンターで 0. 1 %トリフルォロ酢酸 (TFA) 中ァセトニトリル の〇%から 70%のグラジェントを流速 7. Om l/分で行い、 日本分光工業社 製 UV I DEC - 100 V型検出器 (21 Onm、 1. 28AUFS) で検出を 行った。
ここで精製分取した合成べプチドをエバポレーターで凍結乾燥して濃縮した。 得られた合成ペプチドの純度を H PLCで分析した。 装置及び条件は、 山村化 学研究所社の逆相 0D Sカラム YMC— R— 0 DS— 5 (4. 9mmX 300 mm) を用い、 日本分光工業社の TWI NCLEポンプ及び日本分光工業社の GP— A40型グラジエンターで 0. 1 %トリフルォロ酢酸 (丁 FA) 中ァセト 二卜リルの 0%から 70%のグラジェントを流速 1. OmlZ分、 25分間で行 しヽ、 日本分光工業社製 UV I DEC— 100 V型検出器 (210 nm、 1. 28 AUFS) で検出を行った。
この分析の結果を図 5に示した。 図 5において、 PKNOはチャート中のピ一 クの番号、 T IMEは溶出時間、 ARE Aはピーク面積、 CO NCは全ピーク面 積中のそのピーク面積の比率 (即ちパーセント濃度) を表す。
これより得られた合成べプチドの純度が 100%であることが分かる。
また、 得られた合成ペプチドのアミノ酸組成分析をミリポア社 (Mi 1 1 i p o r e) のウォーターズ (Wate r s) ピコ一タグ (P i c o— Tag) アミ ノ酸分析装置により、 取扱説明書に従って行った。 なお、 ペプチド試料の加水分 解は、 1 %フエノールを含む 6N塩酸中 150°Cで 1時間行った。
このアミノ酸分析の結果を表 1に示した。 (塩酸加水分解法ではシスティンは 定量できないので、 分析値は省略した。 ) 合成されたべプチドのアミノ酸残基数
理 論 値 実 測 値
A s x 1 1. 0
G 1 x 1 1. 0
S e r 1 0. 9
G 1 1 1. 0
T h r 1 1. 0
A 1 a 2 2. 0
V a 1 1 1. 1 表 1において、 A s Xはァスパラギン又はァスパラギン酸を表し、 "G l xはグ ルタミン又はグルタミン酸を表す。
これより得られた合成べプチドが、 配列表の配列番号 8で示されるアミノ酸配 列と同一の組成であり、 配列表の配列番号 8で示されるぺプチドであること力確 認された。 なお、 この得られた合成ペプチドの等電点は 2. 9であった。 また、 質量スぺクトルを図 6に示した。
実施例 4 配列表の配列番号 9で示されるぺプチドの合成
配列表の配列番号 2で示されるアミノ酸配列を含むぺプチドである配列表の配 列番号 9で示されるぺプチドの合成を行った。
実施例 3と同様にして、 合成、 精製、 分析を行った。
得られた合成べプチドの純度を H P L Cで分析して得た結果を図 7に示した。 図 7において、 PKN0はチャート中のピークの番号、 T IMEは溶出時間、
ARE Aはピーク面積、 CONCは全ピーク面積中のそのピーク面積の比率 (即 ちパーセン卜濃度) を表す。
これより得られた合成べプチドの純度がほぼ 100%であることが分かる。 また、 得られた合成べプチドのアミノ酸組成分析の結果を表 2に示した c 表 2
Figure imgf000042_0001
表 2において、 G 1 Xはグルタミン又はグルタミン酸を表す。
これより得られた合成べプチド力 配列表の配列番号 9で示されるアミノ酸配 列と同一の組成であり、 配列表の配列番号 9で示されるぺプチドであることが確 認された。 なお、 この得られた合成ペプチドの等電点は 4であった。 また、 質量 スぺクトルを図 8に示した。
実施例 5 配列表の配列番号 10で示されるぺプチドの合成
配列表の配列番号 3で示されるァミノ酸配列を含むぺプチドである配列表の配 列番号 10で示されるペプチドの合成を行った。
実施例 3と同様にして、 合成、 精製、 分析を行った。
得られた合成ぺブチドの純度を H P L Cで分析して得た結果を図 9に示した。 図 9において、 PKN0はチャート中のピークの番号、 T IMEは溶出時間、
ARE Aはピーク面積、 CO NCは全ピーク面積中のそのピーク面積の比率 (即 ちパーセント濃度) を表す。
これより得られた合成べプチドの純度がほぼ 100%であることが分かる。 また、 得られた合成ペプチドのアミノ酸組成分析の結果を表 3に示した。 .. 表 3
Figure imgf000043_0001
表 3において、 A s Xはァスパラギン又はァスパラギン酸を表す。
これより得られた合成ペプチドが、 配列表の配列番号 10で示されるアミノ酸 配列と同一の組成であり、 配列表の配列番号 10で示されるペプチドであること が確認された。 なお、 この得られた合成ペプチドの等電点は 5であった。 また、 質量スぺクトルを図 10に示した。
実施例 6 配列表の配列番号 8で示されるペプチドと結合した担体よりなる 抗体産生用免疫原の調製
担体であるスカシガイのへモシァニン (KLH) [カルビオケム社製] 又はゥ シ血清アルブミン (BSA) 〖生化学工業社製] 1 Omgを 1 OmMリン酸二水 素カリウム—リン酸水素二カリウム緩衝液 (PH7. 0) に溶解し、 これに N, N—ジメチルホルムアミドに溶解している 2. 5%マレイミドベンゾィルー N— ヒドロキシサクシニミドエステル (MBS) 〔ピア一ス社製] 溶液 150 u lを 加え室温で攪拌しながら 30分間反応させた。
これを 4 °C中に置いてある 1 OmMリン酸ニ水素力リウム―リン酸水素二力リ ゥム緩衝液 (PH7. 0) で平衡化しておいたゲル濾過カラムであるセフアデッ クス G— 25 (Se phadex G- 25) カラム 〔フアルマシア一エルケ一 ビー社製] にかけ、 280 nmにおける吸光度でモニタ一して、 MB S—担体結 合成分を分取した。
この MB S—担体結合成分をリン酸三ナトリウムで pH 7. 0に調整し、 これ に実施例 3で合成した配列表の配列番号 8で示されるぺプチドを添加混合して 150分間反応させた。
反応後、 水に対して 3回透析した後、 凍結乾燥を行って、 配列表の配列番号 8 で示されるぺブチドと結合した担体よりなる抗体産生用免疫原を得た。
なお、 担体が KLHの場合の収率は 89%であり、 担体が BS Aの場合の収率 は 67%であった。
また、 この抗体産生用免疫原中の配列表の配列番号 8で示されるぺプチドの害 lj 合 (重量比) は、 担体が KLHの場合で 33%、 担体が B S Aの場合で 27%で めった。
実施例 7 配列表の配列番号 9で示されるぺプチドと結合した担体よりなる 抗体産生用免疫原の調製
実施例 6と同様にして調製を行い、 実施例 4で合成したペプチドより、 配列表 の配列番号 9で示されるぺプチドと結合した担体よりなる抗体産生用免疫原を得 た。
なお、 担体が KLHの場合の収率は 73%であり、 担体が BS Aの場合の収率 は 64%であった。
また、 この抗体産生用免疫原中の配列表の配列番号 9で示されるぺプチドの割 合 (重量比) は、 担体が KLHの場合で 23%、 担体が B S Aの場合で 25%で めつ 7こ
実施例 8 配列表の配列番号 10で示されるペプチドと結合した担体よりな る抗体産生用免疫原の調製
実施例 6と同様にして調製を行い、 実施例 5で合成したペプチドより、 配列表 の配列番号 10で示されるぺプチドと結合した担体よりなる抗体産生用免疫原を 得た。 なお、 担体が KLHの場合の収率は 75%であり、 担体が BS Aの場合の収率 は 52%であった。
また、 この抗体産生用免疫原中の配列表の配列番号 10で示されるペプチドの 割合 (重量比) は、 担体が KLHの場合で 30%、 担体が B S Aの場合で 21 % であった。
実施例 9 配列表の配列番号 1で示されるアミノ酸配列を特異的に認識する リポタンパク質 (a) に対するマウスポリクロ一ナル抗体の調製
実施例 6で得た抗体産生用免疫原 (担体が KLHのもの) を360 /1111 になるように生理食塩水 (0. 9%塩化ナトリウム水溶液) で溶解し、 これをフ ロイント完全アジュバントと等量ずつ混合してェマルジヨンとして、 8週齢のメ スの BALB cマウス (日本チャールズリバ一社) の腹部皮下に 0. 5m lを 免疫注射した。 ―
初回免疫から 2週間後に、 前記の抗体産生用免疫原を 180 g/m 1になる ように生理食塩水で溶解し、 フロイン卜不完全アジュバントと等量ずつ混合して ェマルジヨンとして、 その 0. 5m 1により追加免疫注射を行った。 この追加免一 疫注射は 2週間おきに行った。
免疫動物であるこのマウスの血清中の抗体価を酵素免疫測定法 (EL I SA、 E I A) にて 1週間ごとに測定した。
この EL I SA法は、 実施例 6で得た抗体産生用免疫原 (担体が B SAのも の) をマイクロプレートに固相化し、 これに免疫動物の血清を加えて反応させ、 洗浄後更にパ一ォキシダ一ゼ (POD) 標識抗マウス I gG抗体を加えて反応を 行わせ、 そして洗浄した後、 過酸化水素と 2, 2' —アジノービス (3—ェチル ベンズチアゾリンー 6—スルホン酸) [ABTS] を含んだ発色液を加えて発色 させて、 E I Aプレートリーダー (バイオラッ ド社製) にて 415 nmの吸光度 を測定して抗体価を求めるという操作法により行った。
追加免疫注射を 5回行った後に、 抗体価がブラトーに達したと認められたの で、 全採血を行い血清を分離して 1. 2m lの抗血清を得た。
この抗血清を 10, OOO r. p. m. で 30分間遠心分離を行い不溶物を除 去した後、 温度 20°Cで抗血清 1 m 1当り 0. 18 gの硫酸ナトリウムにより塩 析を行った。
ここで得られた免疫グロブリンの沈澱画分をできるだけ少量の 17. 5mMリ ン酸ニ水素ナトリウム—リン酸水素ニナトリウム緩衝液 (P H6. 3) に溶解し た後、 この 17. 5 mMリン酸二水素ナトリウム—リン酸水素ニナトリウム緩衝 液 (pH6. 3) により十分に透析を行った。
透析後、 1 7. 5 mMリン酸二水素ナトリウム-リン酸水素ニナトリウム緩衝 液 (pH 6. 3) で平衡化しておいた D EAE—セルロースイオン交換カラム (セルバ社製) に通し素通り画分を分取することにより、 配列表の配列番号 1で 示されるアミノ酸配列を特異的に認識するリポタンパク質 (a) に対するマウス ポリクローナル抗体を得た。
なお、 この得られた抗体の量はタンパク質量で 1. Omgであった。
参考例 1 実施例 9で得られたリポタンパク質 (a) に対するポリクローナ ル抗体の配列表の配列番号 8で示されるペプチドへの反応性
実施例 9で得られたリポタンパク質 (a) に対するポリクロ一ナル抗体の、 配 列表の配列番号 1で示されるアミノ酸配列を含むぺプチドである配列表の配列番 号 8で示されるぺプチドへの反応性を EL I S A法で確かめた。
( 1 ) 実施例 6で得られた抗体産生用免疫原 (担体が BSAのもの) を 5 w g m 1になるように生理食塩水 (0. 9%塩化ナトリウム水溶液) に溶解し、 こ れを 96ゥエル—マイクロブレー卜 (ヌンク社製) に 1ゥエル当り 100 1ず つ加え、 37°Cで 2時間静置してペプチドの固相化を行った。
(2) このマイクロプレートを洗浄液 (0. 05%ツイ一ン 20 (Twe en 20 ) を含むリン酸緩衝生理食塩水 ( 5. 59 mMリン酸水素ニナトリウム、 1. 47 mMリン酸二水素カリウム、 137mM塩化ナトリウム、 2. 68mM 塩化カリウム (PH 7. 2 ) ) ) で洗浄した後、 1 %B S Aを含む 1 OmMリン 酸二水素カリウム一リン酸水素二カリウム緩衝液 (PH 7. 2) を 1ゥエル当り 300 μ 1ずつ加えて、 37°Cで 2時間静置してブロッキングを行い、 その後再 び洗浄液で洗浄した。
(3) これに、 60 gZm 1になるように 3%B S Aを含むリン酸緩衝生理 食塩水で溶解した実施例 9で得られたリポタンパク質 (a) に対するポリクロ一 ナル抗体を、 3 %B S Aを含むリン酸緩衝生理食塩水で 2倍から 2, 048倍ま で倍希釈をして希釈系列をつく り、 それぞれを 1ゥエル当り 100 1ずつ加 え、 37 °Cで 2時間静置して反応を行わせ、 その後洗浄液で洗浄した。
(4) また対照として、 3 %BS Aを含むリン酸緩衝生理食塩水で 200倍に 希釈した免疫をしていないマウスの血清を、 3%BSAを含むリン酸緩衝生理食 塩水で 2倍から 2, 048倍まで倍希釈をして希釈系列をつく り、 これらを
(2 ) のマイクロプレートに 1ゥエル当り 1 O O 1ずつ加え、 37°Cで 2時間 静置して反応を行わせ、 その後洗浄液で洗浄した。
(5) パ一ォキシダ一ゼ (PO D) 標識抗マウス I gG抗体 (アマシャム社 製) を 3 %B S Aを含むリン酸緩衝生理食塩水で 2, 000倍に希釈した後、
(3 ) 及び (4) のマイクロプレートに 1ゥエル当り 100 u 1ずつ加え、 37 で 2時間静置して反応を行わせた。
(6) これを洗浄液で洗浄した後、 パーォキシダーゼ反応液 (3mM o—フ ェニレンジアミンを含む 5 OmMリン酸水素ニナトリウム一 24 mMクェン酸緩 衝液の 1 m 1に対して 2 w 1の 1. 7%過酸化水素を使用直前に添加したもの) を 1ゥエル当り 100 u 1ずつ加え、 室温で反応させた。 15分後に 1ゥエル当 り 50 u 1の 6 N硫酸を加えて反応を停止させた。
(7) これを E I Aプレートリーダ一 (バイオラッ ド社製) にて 492 nmに おける吸光度の測定を行つた。
この測定の結果を図 1 1に示した。 この結果より、 実施例 9で得られたリポタンパク質 (a ) に対するポリクロ一 ナル抗体が、 配列表の配列番号 1で示されるァミノ酸配列を含むぺプチドである 配列表の配列番号 8で示されるぺプチドを特異的に認識して結合することが確か められた。
実施例 1 0 配列表の配列番号 2で示されるアミノ酸配列を特異的に認識す るリポタンパク質 (a ) に対するマウスポリクロ一ナル抗体の調製
実施例 7で得た抗体産生用免疫原 (担体が K L Hのもの) を初回免疫時には 5 0 0 u g /m 1になるように生理食塩水で溶解したことと、 追加免疫時には 2 5 0 a g /m 1になるように生理食塩水で溶解したこと、 そして実施例 7で得 た抗体産生用免疫原 (担体が B S Aのもの) を固相化して抗体価の測定を行うこ と以外は実施例 9と同様にして抗体の調製を行い、 配列表の配列番号 2で示され るアミノ酸配列を特異的に認識するリポタンパク質 (a ) に対するマウスポリク 口一ナル抗体を得た。
なお、 この得られた抗体の量はタンパク質量で 1 . l m であった。
参考例 2 実施例 1 0で得られたリポタンパク質 (a ) に対するポリクロ一 ナル抗体の配列表の配列番号 9で示されるぺプチドへの反応性
実施例 1 0で得られたリポタンパク質 (a ) に対するポリクローナル抗体の、 配列表の配列番号 2で示されるアミノ酸配列を含むぺプチドである配列表の配列 番号 9で示されるぺプチドへの反応性を E L I S A法で確かめた。
実施例 9で得られたリポタンパク質 (a ) に対するポリクローナル抗体に代え て、 同濃度の実施例 1 0で得られたリポタンパク質 (a ) に対するポリクローナ ル抗体を用いることと、 実施例 6で得た抗体産生用免疫原に代えて、 同濃度の実 施例 7で得た抗体産生用免疫原 (担体が B S Aのもの) をマイクロプレートに固 相化すること以外は、 参考例 1と同様にして測定を行った。
この測定の結果を図 1 2に示した。
この結果より、 実施例 1 0で得られたリポタンパク質 (a ) に対するポリクロ —ナル抗体が、 配列表の配列番号 2で示されるアミノ酸配列を含むぺプチドであ る配列表の配列番号 9で示されるぺプチドを特異的に認識して結合すること力確 かめられた。
参考例 3 実施例 9及び実施例 10で得られたリポタンパク質 (a) に対す るポリクローナル抗体のリポタンパク質 (a) 及び LDLへの反応性
実施例 9及び実施例 10で得られたリポタンパク質 (a) に対するポリクロー ナル抗体それぞれのリポタンパク質 (a) 及び LDLへの反応性をウェスタンブ 口ッ ト法により確かめた。
( 1 ) リポタンパク質 (a) 濃度が高いヒト血清を、 超遠心分離を行い比重が 1. 05以上かつ 1. 12以下の部分を分取し、 更にリジンーセファロ一ス 4B ァフィ二ティ一クロマトグラフィー (フアルマシア一エルケ一ビー社製) にかけ て精製リポタンパク質 (a) を得た。 ―
(2) LD L濃度が高いヒト血清を、 超遠心分離を行い比重が 1. 006以上 かつ 1. 063以下の部分を分取し、 抗リポタンパク質 (a) 抗体 (ィムノ社 製) をリガンドとして結合させたァフィ二ティ一クロマトグラフィーにかけて素 通り画分を分取して、 精製 LDLを得た。
(3 ) これらのリポタンパク質 (a) 及び LDLを、 それぞれ 0. SmgZ m 1になるように生理食塩水 (0. 9%塩化ナトリウム水溶液) に溶解し、 これ らの 2 1を試料としてタイタン ·ジエル · リポ蛋白電気泳動キッ 卜 (ヘレナ研 究所社製) を用いて電気泳動を行った。 なお、 支持体はァガロースゲルであり、 泳動緩衝液はバルピタール緩衝液 (PH8. 8) を使用して、 電圧 90 Vで 75 分間通電して行った。
(4) 転写はノバ 'ブロッ ト 'エレクトロフォレティック ' トランスファ一 ' キッ ト (フアルマシア一エルケ一ビー社製) を用いて、 その使用説明書に従い、 ドライ方式で行った。
(5) 転写用装置上に置いた (3) のァガロースゲルの上に、 9 cmx 9 cm のニトロセルロース膜 (バイオラッ ド社製) を重ね、 48mMトリス、 39mM グリシン、 0. 0375% (W/V) ドデシル硫酸ナトリウム (SDS) 、 20 % (V/V) メタノールよりなる転写用緩衝液を用いて、 電流 65mAで 2時間 転写を行った。
(6) 転写を行ったニトロセルロース膜を、 1 %BSAを含むリン酸緩衝生理 食塩水 (5. 59 mMリン酸水素ニナトリウム、 1. 47 mMリン酸二水素カリ ゥム、 137mM塩化ナトリウム、 2. 68 mM塩化カリウム (pH7. 2) ) 20 m 1に 4 °Cで 1晚浸漬して、 ブロッキングを行つた。
(7) 次にこれを洗浄液 (0. 05%ツイ一ン 20 (Twe en20) を含む リン酸緩衝生理食塩水) 2 Om l中で 10分間振とう洗浄を行った。 この操作を 3回行った。
(8) 実施例 9及び実施例 10で得られたリポタンパク質 (a) に対するポリ クロ一ナル抗体それぞれを、 20 m 1のリン酸緩衝生理食塩水に 80 μ gずつ溶 解し、 この 2種類の溶液に (7) の操作を行ったニトロセルロース膜それぞれを 室温で 2時間浸漬して反応させた。
(9) なお対照として、 実施例 9及び実施例 10で得られたリポタンパク質 (a) に対するポリクローナル抗体の代わりに、 同濃度のヒッジ抗リポタンパク 質 (a) 抗体 (ィムノ社製) と、 LDLの構成成分のアポリポタンパク質 B— 100に対する同濃度のャギ抗アポリポタンパク質 B抗体 (ィンターナショナル ェンザィム社製) の混合物を用いて、 前記 (8) の操作を行った。
また、 (7) で得られたニトロセルロース膜に、 実施例 9及び実施例 10で得 られたポリクロ一ナル抗体、 ヒッジ抗リポタンパク質 (a) 抗体並びにャギ抗ァ ポリポタンパク質 B抗体のいずれも作用させないものを陰性対照として用意し た。
( 10) 前記 (8) 又は (9) の操作を行ったニトロセルロース膜を洗浄液 20m lで 10分間振とう洗浄を行った。 これを 3回行った。 ( 1 1 ) 次にパーォキシダ一ゼ標識抗マウス I gG抗体 (ダコ社製) 、 バーオ キシダーゼ標識抗ヒッジ I gG抗体 (ダコ社製) 及びパーォキシダ一ゼ標識抗ャ ギ I gG抗体 (ダコ社製) を 3 %BS Aを含むリン酸緩衝生理食塩水で 500倍 希釈をして 20 m 1の溶液を調製し、 これにニトロセルロース膜を室温で 2時間 浸漬して反応させた。
( 12) このニトロセルロース膜を洗浄液 20mlで 10分間振とう洗浄を行 つた。 これを 3回行った。
( 13) 0. 025%3, 3' ージァミノべンジジン四塩酸塩及び 0. 01 % 過酸化水素を含むリン酸緩衝生理食塩水 2 Omlに室温で 15分間 (12) の二 トロセルロース膜を浸漬して発色させた。
このウェスタンブロッ ト法の結果を図 13に示した。
図 1 3において、 Pは対照、 Nは陰性対照、 そして 1、 2はそれぞれ実施例 9、 実施例 10で得られたリポタンパク質 (a) に対するポリクローナル抗体を 作用させたものであって、 おのおのの左側部分にリポタンパク質 (a) カ^ 右側 部分に LD Lが転写されている。
これより、 実施例 9及び実施例 10で得られたリポタンパク質 (a) に対する ポリクロ一ナル抗体は、 市販の抗リポタンパク質 (a) 抗体と同じ位置に発色を 示し、 かつ市販の抗アポリポ夕ンパク質 B抗体で発色を示す位置には発色を認め ないことから、 特異的にリポタンパク質 (a) と結合し、 そして LDLとは結合 しないことが確かめられた。
また、 実施例 9及び実施例 1 0で得られた抗体、 市販の抗リポタンパク質 ( a ) 抗体並びに市販の抗アポリボタンパク質 B抗体を作用させていない陰性対 照に発色が見られないことから、 非特異的な発色が起きていないことが示され た。
参考例 4 実施例 9及び実施例 10で得られたリポタンパク質 (a) に対す るポリクローナル抗体のプラスミノ一ゲンへの反応性 実施例 9及び実施例 10で得られたリポタンパク質 (a) に対するポリクロー ナル抗体それぞれのプラスミノ一ゲンへの反応性をウェスタンブロッ ト法により 確かめた。
( 1 ) プラスミノーゲン濃度が高いヒ ト血漿を、 超遠心分離を行い比重が 1. 21以上の部分を分取し、 リジンーセファロース 4Bァフィ二ティ一クロマ トグラフィ一 (フアルマシア一エルケービ一社製) にかけ、 更に抗リポタンパク 質 (a) 抗体 (ィムノ社製) をリガンドとして結合させたァフィ二ティークロマ トグラフィ一にかけて素通り画分を分取し、 精製プラスミノーゲンを得た。
(2 ) 1. 0 m g Zm 1になるように生理食塩水 ( 0. 9 %塩化ナトリゥム水 溶液) で溶解したブラスミノ一ゲンの 10 1を試料として電気泳動を行った。 なお、 支持体は 3〜 1 2 %S D Sポリアクリルアミ ドゲルで、 泳動緩衝液は 0. 1 %S D Sを含む 25mMトリスー 0. 19 Mグリシン緩衝液を使用して、 電流 20 m Aで 120分間通電して行つた。
(3) 転写はノバ ·ブロッ ト ·エレクトロフォレティック · トランスファ一 · キッ ト (フアルマシア—エルケ一ビ一社製) を用いて、 その使用説明書に従い、 ドライ方式で行った。
(4) 転写用装置上に置いた (2) の 3〜12%SDSポリアクリルアミドゲ ルの上に、 9 cm X 9 cmのニトロセルロース膜 (バイオラッド社製) を重ね、 48mMトリス、 39 mMグリシン、 0. 0375% (W/V) ドデシル硫酸ナ トリウム (SDS) 、 20% (V/V) メタノールよりなる転写用緩衝液を用い て、 電流 65 m Aで 2時間転写を行つた。
これ以降の操作は参考例 3の (6) 以降の工程と同様にして行った。 但し、 参 考例 3の (9) では対照としてヒッジ抗リポタンパク質 (a) 抗体とャギ抗アポ リボタンパク質 B抗体の混合物を用いているが、 本参考例では同濃度のャギ抗プ ラスミノ一ゲン抗体 (医学生物学研究所社製) を用いた。
このウェスタンブロッ ト法の結果を図 14に示した。 図 14において、 Pは対照、 Nは陰性対照、 そして 1、 2はそれぞれ実施 9、 実施例 10で得られたリポタンパク質 (a) に対するポリクロ一ナル抗体を 作用させたものである。
これより、 実施例 9及び実施例 10で得られたリポタンパク質 (a) に対する ポリクローナル抗体は、 市販の抗ブラスミノーゲン抗体で発色を示す位置に発色 を認めないことから、 ブラスミノーゲンとは結合しないことが確かめられた。 また、 実施例 9及び実施例 10で得られたリポタンパク質 (a) に対するポリ クローナル抗体等を作用させていない陰性対照に発色が見られないことから、 非 特異的な発色が起きていないことが示された。
実施例 1 1 配列表の配列番号 3で示されるアミノ酸配列を特異的に認識す るアポリポタンパク質 (a) に対するマウスポリクロ一ナル抗体の調製
実施例 8で得た抗体産生用免疫原 (担体が KLHのもの) を初回免疫時には 400 w g/m 1になるように生理食塩水で溶解したことと、 追加免疫時には 200 ii g/m lになるように生理食塩水で溶解したこと、 そして実施例 8で得 た抗体産生用免疫原 (担体が BS Aのもの) を固相化して抗体価の測定を行うこ と以外は実施例 9と同様にして抗体の調製を行い、 配列表の配列番号 3で示され るアミノ酸配列を特異的に認識するアポリポタンパク質 (a) に対するマウスポ リクローナル抗体を得た。
なお、 この得られた抗体の量はタンパク質量で 1. Omgであった。
参考例 5 実施例 1 1で得られたアポリポタンパク質 (a) に対するポリク 口一ナル抗体の配列表の配列番号 10で示されるぺプチドへの反応性
実施例 1 1で得られたアポリポタンパク質 (a) に対するポリクローナル抗体 の、 配列表の配列番号 3で示されるアミノ酸配列を含むぺプチドである配列表の 配列番号 10で示されるペプチドへの反応性を EL I S A法で確かめた。
実施例 9で得られたリポタンパク質 (a) に対するポリクロ一ナル抗体に代え て、 同濃度の実施例 1 1で得られたアポリポタンパク質 (a) に対するポリクロ —ナル抗体を用いることと、 実施例 6で得た抗体産生用免疫原に代えて、 同濃度 の実施例 8で得た抗体産生用免疫原 (担体が B S Aのもの) をマイクロプレート に固相化すること以外は、 参考例 1と同様にして測定を行った。
この測定の結果を図 1 5に示した。
この結果より、 実施例 1 1で得られたアポリポタンパク質 (a) に対するポリ クローナル抗体が、 配列表の配列番号 3で示されるアミノ酸配列を含むぺプチド である配列表の配列番号 1 0で示されるぺプチドを特異的に認識して結合するこ とが確かめられた。
参考例 6 実施例 1 1で得られたアポリポタンパク質 (a) に対するポリク ローナル抗体のアポリポタンパク質 (a) への反応性
実施例 1 1で得られたアポリポタンパク質 (a) に対するポリクロ一ナル抗体 のアポリポタンパク質 (a) への反応性をウェスタンブロッ 卜法により確かめ た。
( 1 ) リポタンパク質 (a) 濃度が高い 4種類のヒト血清について、 超遠心分 離を行い比重が 1. 05以上かつ 1. 1 2以下の部分を分取し、 更にリジンーセ ファロ一ス 4 Bァフィ二ティークロマトグラフィー (フアルマシア一エルケ一ビ —社製) にかけて 4種類の精製リポタンパク質 (a) を得た。
更に、 この 4種類の精製リポタンパク質 (a) に I mMジチオスレィ トールを 加えて処理した後、 再度超遠心分離を行い比重が 1. 2 1以上の部分を分取する ことにより低密度リポタンパク質 (LD L) 部分を除去し、 精製アポリポタンパ ク質 (a) を得た。
( 2 ) この 4種類の精製アポリポタンパク質 (a) それぞれを 0. 5m gZ m 1になるように試料緩衝液 ( 1 OmM卜リス、 1 %ドデシル硫酸ナ卜リゥム
( S OS) (pH 6. 80) ) に溶解し、 この 2 1を試料として 4%S D Sポ リアクリルアミドゲル (テフコ社製) を用いて S D Sポリアクリルアミドゲル電 気泳動を行った。 なお、 陰極側緩衝液として 40mMトリス、 40mMホウ酸、 0. 1 %ドデシル硫酸ナトリウム (SDS) よりなる緩衝液 ( p H 8. 64) 、 陽極側緩衝液として 0. 43M卜リス緩衝液 (pH9. 18) を用いて電流 20 m Aで 75分間通電して行つた。
(3) 転写はノバ 'プロッ ト 'エレクトロフォレティック ' トランスファ一 · キッ ト (フアルマシア一エルケ一ビー社製) を用いて、 その使用説明書に従い、 ドライ方式で行った。
(4) 転写用装置上に置いた (2) の 4%SDSポリアクリルアミドゲルの上 に、 9 cm X 9 cmのニトロセルロース膜 (バイオラッ ド社製) を重ね、 48 mM卜 リス、 39 mMグリシン、 0. 0375% (W/V) S D S、 20%
(V/V) メタノールよりなる転写用緩衝液を用いて、 電流 65mAで 2時間転 写を行った。
(5) 転写を行ったニトロセルロース膜を、 1 %B S Aを含むリン酸緩衝生理 食塩水 (5. 59 mMリン酸水素ニナトリウム、 1. 47 mMリン酸二水素カリ ゥム、 137mM塩化ナトリウム、 2. 68 mM塩化カリウム (pH7. 2) ) 2 Om 1に 4°Cで 1晚浸漬して、 ブロッキングを行った。
(6) 次にこれを洗浄液 (0. 05%ツイ一ン 20 (Twe en20) を含む リン酸緩衝生理食塩水) 20m l中で 10分間振とう洗浄を行った。 この操作を 3回行った。
(7) 実施例 1 1で得られたアポリポタンパク質 (a) に対するポリク ϋ—ナ ル抗体を 2 Om lのリン酸緩衝生理食塩水に 80 W g溶解し、 この溶液に (6) の操作を行ったニトロセルロース膜を室温で 2時間浸漬して反応させた。
(8) なお対照として、 実施例 1 1で得られたアポリポタンパク質 (a) に対 するポリクロ一ナル抗体の代わりに、 同濃度のアポリポタンパク質 (a) と反応 するヒッジ抗リポタンパク質 (a) 抗体 (ィムノ社製) を用いて、 前記 (7) の 操作を行った。 また、 (6) で得られたニトロセルロース膜に、 実施例 1 1で得 られたアポリポタンパク質 (a) に対するポリクロ一ナル抗体及びヒッジ抗リポ タンパク質 (a) 抗体のいずれも作用させないものを陰性対照として用意した。
(9) 前記 (7) 又は (8) の操作を行ったニトロセルロース膜を洗浄液 2〇 !!11で10分間振とう洗浄を行った。 これを 3回行った。
( 10) 次にパーォキシダーゼ標識抗マウス I gG抗体 (ダコ社製) 及びパー ォキシダ―ゼ標識抗ヒッジ I g G抗体 (ダコ社製) を 3%BSAを含むリン酸緩 衝生理食塩水で 500倍希釈をして 20 m 1の溶液を調製し、 これにニトロセル ロース膜を室温で 2時間浸漬して反応させた。
( 1 1 ) このニトロセルロース膜を洗浄液 2 Om 1で 10分間振とう洗浄を行 つた。 これを 3回行った。
( 12) 0. 025 3 , 3' ージァミノべンジジン四塩酸塩及び 0. 01 % 過酸化水素を含むリン酸緩衝生理食塩水 20 m 1に室温で 15分間 ( 1 1 ) の二 トロセルロース膜を浸漬して発色させた。
( 13) なお、 本ウェスタンプロッ ト法のバンドを確認する目安として、 精製 アポリポタンパク質 B— 100 (自家調製) 、 ャギ抗アポリポタンパク質 B抗体 (インタ一ナショナルェンザィム社製) 及びパーォキシダ一ゼ標識抗ャギ I gG 抗体 (ダコ社製) を用いて前記と同様の操作によりウェスタンプロッ ト法を行 レ、、 アポリポタンパク質 B— 100のバンドを得た。
これらのウェスタンブロッ ト法の結果を図 16、 図 17及び図 18に示した。 図 16は、 実施例 1 1で得られたアポリポタンパク質 (a) に対するポリクロ —ナル抗体を作用させたものである。
図 16において、 1ないし 4は 4種類のヒ卜血清由来の精製アポリポタンパク 質 (a) それぞれを泳動したものであり、 Bは泳動位置の目安としてアポリポタ ンパク質 B— 100の位置を示すものである。
なお、 このアポリポタンパク質 B— 100のバンドの位置との関係から 〔G. Ut e rmann e t a 1. , J . C l i n. I n v e s t. , 80 , 458-465 ( 1987) ] 、 1のバンドはァポリポタンパク質 (a) のイソ 型の F型と B型を、 2のバンドは S 4型と F型を、 3のバンドは S 4型と S 3型 を、 4のバンドは S 4型と S 2型をそれぞれ示すことがわかる。
図 17は陰性対照のものであり、 ここで 1ないし 4は 4種類のヒト血清由来の 精製アポリポタンパク質 (a) それぞれを泳動させたものである。
図 18は対照としてアポリポタンパク質 (a) と反応する抗リポタンパク質 (a) 抗体を作用させたものであり、 試料として前記の 1のバンドの血清由来の 精製アポリポタンパク質 (a) を用いた。 また、 Bは目安としてアポリポタンパ ク質 B— 100の位置を示すものである。
図 1 6及び図 18によると、 実施例 1 1で得られたアポリポタンパク質 (a) に対するポリクローナル抗体は、 アポリポタンパク質 (a) と反応する抗リボタ ンパク質 (a) 抗体と同じ位置に発色を示すことから、 特異的にアポリポタンパ ク質 (a) と結合することが確かめられた。 ―
また、 図 16において、 実施例 1 1で得られたアポリポタンパク質 (a) に対 するポリクロ一ナル抗体は、 アポリポタンパク質 (a) の種々のイソ型と反応す ることが確認された。 一 そして、 図 17において、 実施例 1 1で得られたアポリポタンパク質 (a) に 対するポリクローナル抗体及び抗リポタンパク質 (a) 抗体を作用させていない 陰性対照に発色が見られないことから、 非特異的な発色が起きていないことが示 された。
参考例 7 実施例 1 1で得られたアポリポタンパク質 (a) に対するポリク 口一ナル抗体のリポタンパク質 (a) への反応性
実施例 1 1で得られたアポリポタンパク質 (a) に対するポリクローナル抗体 のリポタンパク質 (a) への反応性をウェスタンプロッ ト法により確かめた。 ( 1 ) リポタンパク質 (a) 濃度が高いヒト血清を、 超遠心分離を行い比重が 1. 05以上かつ 1. 12以下の部分を分取し、 更にリジンーセファロース 4B ァフィ二ティ一クロマトグラフィー (フアルマシア一エルケ一ビー社製) にかけ て精製リポタンパク質 (a) を得た。
(2) この精製リポタンパク質 (a) を 0. 5mgZm 1になるように生理食 塩水 (0. 9%塩化ナトリウム水溶液) に溶解し、 この 2 1を試料としてタイ タン · ジュル · リポ蛋白電気泳動キッ ト (ヘレナ研究所社製) を用いて電気泳動 を行った。 なお、 支持体はァガロースゲルであり、 泳動緩衝液はバルピタール緩 衝液 (Ρ Η8· 8) を使用して、 電圧 90Vで 75分間通電して行った。
(3) 転写はノバ ·ブロッ ト 'エレクトロフォレティック · トランスファー · キッ ト (フアルマシア一エルケ一ビー社製) を用いて、 その使用説明書に従い、 ドライ方式で行った。
(4) 転写用装置上に置いた (2) のァガロースゲルの上に、 9 cmX 9 cm のニトロセルロース膜 (バイオラッ ド社製) を重ね、 48mMトリス、 39mM グリシン、 0. 0375% (W/V) SDS、 20% (V/V) メタノールより なる転写用緩衝液を用いて、 電流 65mAで 2時間転写を行った。
これ以降の操作は、 参考例 6の (5) から ( 1 2) の工程と同様にして行つ た。
このウェスタンブロッ 卜法の結果を図 19に示した。
図 19において、 Pは対照、 Nは陰性対照、 そして Sは実施例 1 1で得られた アポリポタンパク質 (a) に対するポリクローナル抗体を作用させたものであ る。
図 19における対照及び陰性対照との比較より、 実施例 1 1で得られたァポリ ポタンパク質 (a) に対するポリクローナル抗体は、 リポタンパク質 (a) とは 反応しないことが確かめられた。
参考例 8 実施例 1 1で得られたアポリポタンパク質 (a) に対するポリク 口一ナル抗体のブラスミノーゲンへの反応性
実施例 1 1で得られたアポリポタンパク質 (a) に対するポリクロ一ナル抗体 のブラスミノーゲンへの反応性をウェスタンプロッ ト法により確かめた。 実施例 9及び実施例 10で得られたリポタンパク質 (a) に対するポリクロー ナル抗体に代えて、 実施例 1 1で得られたアポリポタンパク質 (a) に対するポ リク口一ナル抗体を用いること以外は、 参考例 4と同様にして操作を行った。 この結果、 実施例 1 1で得られたアポリポタンパク質 (a) に対するポリクロ —ナル抗体は、 市販の抗プラスミノ一ゲン抗体で発色を示す位置に発色を認めな いことから、 プラスミノーゲンとは結合しないことが確かめられた。
また、 実施例 1 1で得られたアポリポタンパク質 (a) に対するポリクローナ ル抗体等を作用させていない陰性対照に発色が見られないことから、 非特異的な 発色が起きていないことが示された。
実施例 1 2 配列表の配列番号 1で示されるアミノ酸配列を特異的に認識す るリポタンパク質 (a) に対するゥサギポリクロ一ナル抗体の調製
実施例 6で得た抗体産生用免疫原 (担体が KLHのもの) を 1. 6mgZm l になるように生理食塩水 (0. 9%塩化ナトリウム水溶液) で溶解し、 これをフ 口イント完全アジュバントと等量ずつ混合してェマルジヨンとして、 その 1 m 1 を 3力月齢のゥサギ (日本白色種) の背部皮下に 20箇所以上免疫注射を行つ た。
初回免疫から 2週間後に、 前記の抗体産生用免疫原を 0. 8mgZm lになる ように生理食塩水で溶解し、 フロイント不完全ァジュバントと等量ずつ混合して ェマルジヨンとして、 その 1 m 1により追加免疫注射を行った。 この追加免疫注 射は 2週間おきに行った。
免疫動物であるこのゥサギの血清中の抗体価を、 酵素免疫測定法 (EL I SA 、 E I A) にて 1週間ごとに測定した。 この EL I S A法は、 実施例 6で得た抗 体産生用免疫原 (担体が BS Aのもの) をマイクロプレートに固相化し、 これに 免疫動物の血清を加えて反応させ、 洗浄後更にパーォキシダーゼ (POD) 標識 抗ゥサギ I gG抗体を加えて反応を行わせ、 そして洗浄した後、 過酸化水素と 2 , 2 ' 一アジノービス (3—ェチルベンズチアゾリンー 6—スルホン酸) [AB T S] を含んだ発色液を加えて発色させて、 E I Aプレー卜リーダー ィオラッ ド社製) にて 415 nmの吸光度を測定して抗体価を求めるという操作 法により行った。
追加免疫注射を 5回行った後に、 抗体価がブラトーに達したと認められたの で、 全採血を行い血清を分離して 82m 1の抗血清を得た。
この抗血清を 10, O OO r. p. m. で 30分間遠心分離を行い不溶物を除 去した後、 温度 20°Cで抗血清 1 m 1当り 0. 18 gの硫酸ナトリウムにより 塩析を行った。 ここで得られた免疫グロプリンの沈澱画分をできるだけ少量の 1 7. 5mMリン酸ニ水素ナトリウム—リン酸水素ニナトリゥム緩衝液 (P H 6. 3) に溶解した後、 この 17. 5mMリン酸二水素ナトリウム一リン酸水素 ニナトリウム緩衝液 (pH6. 3) により十分に透析を行った。
透析後、 17. 5 mMリン酸二水素ナトリウム—リン酸水素ニナトリウム緩衝 液 (pH6. 3) で平衡化しておいた D EAE—セルロースイオン交換カラム
(セルバ社製) に通し素通り画分を分取することにより、 配列表の配列番号 1で 示されるアミノ酸配列を特異的に認識するリポタンパク質 (a) に対するゥサギ ポリクロ一ナル抗体を得た。
なお、 この得られた抗体の量はタンパク質量で 0. 74 gであった。
実施例 13 配列表の配列番号 2で示されるァミノ酸配列を特異的に認識す るリポタンパク質 (a) に対するゥサギポリクロ一ナル抗体の調製
実施例 7で得た抗体産生用免疫原 (担体が KLHのもの) を初回免疫時には 2. 2 m g/m 1になるように生理食塩水で溶解したことと、 追加免疫時には 1. l m gZm lになるように生理食塩水で溶解したこと、 そして実施例 7で得 た抗体産生用免疫原 (担体が BS Aのもの) を固相化して抗体価の測定を行うこ と以外は実施例 12と同様にして抗体の調製を行い、 配列表の配列番号 2で示さ れるアミノ酸配列を特異的に認識するリポタンパク質 (a) に対するゥサギポリ クローナル抗体を得た。 なお、 この得られた抗体の量はタンパク質量で 0. 78 であった。
実施例 14 配列表の配列番号 3で示されるアミノ酸配列を特異的に認識す るアポリポタンパク質 (a) に対するゥサギポリクロ一ナル抗体の調製
実施例 8で得た抗体産生用免疫原 (担体が KLHのもの) を初回免疫時には 1. 7mg/m lになるように生理食塩水で溶解したことと、 追加免疫時には 0. 9 mg/mlになるように生理食塩水で溶解したこと、 そして実施例 8で得 た抗体産生用免疫原 (担体が BS Aのもの) を固相化して抗体価の測定を行うこ と以外は実施例 12と同様にして抗体の調製を行い、 配列表の配列番号 3で示さ れるアミノ酸配列を特異的に認識するアポリポタンパク質 (a) に対するゥサギ ポリクロ一ナル抗体を得た。
なお、 この得られた抗体の量はタンパク質量で 0. 71 であった。
実施例 15 免疫比濁法によるリポタンパク質 ( a ) 測定法 一
実施例 9で得られたリポタンパク質 (a) に対するポリクロ一ナル抗体を用い て免疫比濁法によるリポタンパク質 (a) 測定系を確立した。
( 1 ) 測定に用いた試薬は、 試薬 1として 300mM塩化ナトリウム、 5 (W/W) ポリエチレングリコール 6000を含む 4 OmMトリス塩酸緩衝液 (pH7. 0) 、 試薬 2として 6mg/ m 1の実施例 9で得られたリポタンパク 質 (a) に対するポリクロ一ナル抗体を含むリン酸緩衝生理食塩水 (5. 59m Mリン酸水素ニナトリウム、 1. 47 mMリン酸二水素カリウム、 137mM塩 ィヒナトリウム、 2. 68 mM塩化カリウム (pH7. 2) ) 、 をそれぞれ調製し た。
(2) 試料は、 リポタンパク質 (a) 濃度が 77. OmgZd 1の血清を生理 食塩水 (0. 9%塩化ナトリウム水溶液) で 3段階に希釈して、 リポタンパク質
(a) 濃度が 25. 7mgZd l、 51. 3mg/d l、 77. OmgZd lの 3種類の試料を用意した。
( 3 ) 測定は、 エフ ' ホフマン ' ラ ' ロシュ社 (F. H o f f mann. La. Ro c he) のコーバス · ミラ (COBAS M I R A) 自動分析装置を 使用して、 3 w 1の試料と 300 u 1の試薬 1を混合して 37 °Cで 5分間加温 後、 20 μ 1の試薬 2を添加混合して 37°Cで 5分間反応させた後、 340nm における吸光度の測定を行った。
3種類の試料を測定して得た検量線を図 20に示した。
これより、 本測定法においては検量線が原点を通る直線であることがわかり、 本発明のリポタンパク質 (a) 測定法によりリポタンパク質 (a) を定量的に測 定できることが確かめられた。
実施例 16 免疫比濁法によるリポタンパク質 ( a ) 測定法
実施例 10で得られたリポタンパク質 (a) に対するポリクローナル抗体を用 いて免疫比濁法によるリポタンパク質 (a) 測定系を確立した。
実施例 1 5 ( 1 ) の試薬 2の成分として実施例 9で得られたリポタンパク質 (a) に対するポリクロ一ナル抗体に代えて、 同濃度の実施例 10で得られたリ ポタンパク質 (a) に対するポリクロ一ナル抗体を用いること以外は、 実施例 15と同様にして測定を行った。
3種類の試料を測定して得た検量線を図 21に示した。
これより、 本測定法においては検量線が原点を通る直線であることがわかり、 本発明のリポタンパク質 (a) 測定法によりリポタンパク質 (a) を定量的に測 定できることが確かめられた。
実施例 17 EL I SA法によるリポタンパク質 (a) 測定法
実施例 9で得られたリポタンパク質 (a) に対するポリクローナル抗体を用い て EL I SA法によるリポタンパク質 (a) 測定系を確立した。
( 1 ) 50 w g/m 1の抗リポタンパク質 (a) 抗体 (ィンタ一ナショナルェ ンザィム社製) を 96ゥエルーマイクロプレート (ヌンク社製) に 1ゥエル当り l O O iit lずつ加え、 37°Cで 2時間静置して抗リポタンパク質 (a) 抗体の固 相化を行った (固相化抗体) 。 ( 2 ) このマイクロプレー卜を洗浄液 (0. 05%ツイ一ン 20 (Twee n
20) を含むリン酸緩衝生理食塩水 (5. 59 mMリン酸水素ニナトリウム、
1. 47 mMリン酸二水素カリウム、 137mM塩化ナトリウム、 2. 68mM 塩化カリウム (PH7. 2) ) ) で洗浄した後、 1 %B S Aを含む 1 OmMリン 酸二水素カリウム一リン酸水素二カリウム緩衝液 (pH7. 2) を 1ゥエル当り
300 α 1ずつ加えて、 37°Cで 2時間静置してプロッキングを行い、 その後再 び洗浄液で洗浄した。
(3) リポタンパク質 (a) 濃度が 1 O Om g/d 1の血清を生理食塩水 (0. 9%塩化ナトリウム水溶液) で 5段階に希釈して、 リポタンパク質 (a) 濃度が20111 1、 40mg/d l、 6 Om g/d 1 , 8 Om g/d 1 , 1 O OmgZd lの 5種類の試料を用意した。
(4) 前記の 5種類の試料を生理食塩水で 500倍に希釈した後、 (2) で調 製したマイクロプレー卜に 1ゥエル当り 100 1ずつ分注し、 37°Cで 2時間 静置して抗原抗体反応を行わせた。
(5) これを洗浄液で洗浄した後、 50 gZm lになるように 3%BSAを 含むリン酸緩衝生理食塩水で溶解した実施例 9で得られたリポタンパク質 (a) に対するポリクロ一ナル抗体を、 1ゥエル当り 100 u 1ずつ加え、 37°Cで 2 時間静置して反応を行わせ (一次抗体) 、 その後洗浄液で洗浄した。
(6) バーオキシダ一ゼ (POD) 標識抗マウス I gG抗体 (アマシャム社 製) を 3%B S Aを含むリン酸緩衝生理食塩水で 2, 000倍に希釈した後、
(5) のマイクロプレートに 1ゥエル当り 100 1ずつ加え、 37°Cで 2時間 静置して反応を行わせた (二次抗体) 。
(7) これを洗浄液で洗浄した後、 パ一ォキシダーゼ反応液 (3mM 。一つ ェニレンジアミンを含む 5 OmMリン酸水素ニナトリゥムー 24mMクェン酸緩 衝液の 1 m 1に対して 2 u 1の 1. 7%過酸化水素を使用直前に添加したもの) を iゥエル当り 100 u 1ずつ加え、 室温で反応させた。 15分後に 1ゥエル当 り 50 μ 1の 6 Ν硫酸を加えて反応を停止させた。
(8) これを E I Αマイクロプレー卜 リーダー (バイオラッ ド社製) にて 492 nmにおける吸光度の測定を行った。
5種類の試料を測定して得た検量線を図 22に示した。
これより、 本発明のリポタンパク質 (a) 測定法によりリポタンパク質 (a) を定量的に測定できることが確かめられた。
実施例 18 EL I SA法によるリポタンパク質 (a) 測定法
実施例 10で得られたリポタンパク質 (a) に対するポリクロ一ナル抗体を用 いて EL I SA法によるリポタンパク質 (a) 測定系を確立した。
実施例 1 7 (5) の実施例 9で得られたリポタンパク質 (a) に対するポリク ローナル抗体に代えて、 同濃度の実施例 10で得られたリポタンパク質 (a) に 対するポリクローナル抗体を用いること以外は、 実施例 17と同様にして測定を 行った。
5種類の試料を測定して得た検量線を図 23に示した。
これより、 本発明のリポタンパク質 (a) 測定法によりリポタンパク質 (a) を定量的に測定できることが確かめられた。
実施例 19 リポタンパク質 ( a ) 測定値の比較
本発明の実施例 10で得られたリポタンパク質 (a) に対するポリクローナル 抗体を用いたリポタンパク質 (a) 測定法 (EL I SA法) と、 A社製リポタン パク質 (a) 測定試薬 (EL I SA法) 及び B社製リポタンパク質 (a) 測定試 薬 (免疫比濁法) とで測定値の比較を行った。
3種類の血清よりなる試料 1、 試料 2、 そして試料 3について、 本発明の実施 例 10で得られたリポタンパク質 (a) に対するポリクローナル抗体を用いた リポタンパク質 ( a) 測定法 (E L I SA法) により測定を行った。 なお、 EL I S A法の操作は実施例 17と同様にして行った。
また、 A社製リポタンパク質 (a) 測定試薬及び B社製リポタンパク質 (a) 測定試薬による 3種類の試料の測定の操作は、 使用説明書に従って行った c これらの測定の結果を表 4にまとめた。
表 4
Figure imgf000065_0001
(単位は mgZd l ) これより、 本発明のリポタンパク質 (a) 測定法によるリポタンパク質 (a) 測定値が、 既存の測定法による測定値と同じ値を示すことがわかり、 本発明のリ
'質 (a) 測定法は臨床検査の実用上問題がないことが確かめられた。 参考例 9 本発明のリポタンパク質 (a) 測定法に対するブラスミノ一ゲン 本発明のリポタンパク質 (a) 測定法に対するプラスミノーゲンの影響を見る ため、 4種類の一次抗体 (A - 1、 A— 2、 B、 C) を用意して以下の検討を ί つた。
( 1 ) 固相化抗体として、 ャギ抗プラスミノーゲン抗体 (医学生物学研究所社 製) をマイクロブレートに固相化したものを用意した。
(2) 一次抗体として、 Α— 1では実施例 9で得られたリポタンパク質 (a) に対するポリクローナル抗体、 A— 2では実施例 10で得られたリポ夕ンパク質
(a) に対するポリクロ一ナル抗体、 Bではプラスミノーゲンとは結合するがリ ポタンパク質 (a) とは結合しないマウスモノクローナル抗体 (プラスミノ一ゲ ンのクリングル 1、 クリングル 2及びクリングル 3部分に特異的に結合する抗 体) 〔自家製] 、 Cではリポタンパク質 (a) を免疫原として得たマウスポリク 口一ナル抗体でプラスミノーゲンによる吸収操作を行っていないもの (自家 製) 、 の 4種類の抗体を用意した。
(3) 二次抗体として、 パ一ォキシダ一ゼ標識抗マウス I gG抗体 (アマシャ ム社製) を用意した。
(4) 試料としては、 44mg/d l、 88mg/d l、 132mg/d l、
1 76m g/d 1 , 22 Omg/d 1の 5種類の精製ブラスミノ一ゲン (自家 製) 試料を調製し、 測定時にそれぞれを生理食塩水 (0. 9%塩ィヒナトリウム水 溶液) で 3, 000倍希釈して測定に使用した。
(5) 前記の 5種類の試料を、 前記 ( 1 ) の固相化抗体、 (2) の 4種類の一 次抗体、 そして (3) の二次抗体を用いて EL I SA法により測定を行った。 な お、 測定の操作は実施例 17と同様にして行った。
5種類のプラスミノ一ゲン試料を測定して得た結果を図 24に示した。
これより、 一次抗体として、 プラスミノーゲンとのみ結合する抗体 (B) を用 いた測定系、 及びリポタンパク質 (a) を免疫原として得た抗体 (C) を用いた 測定系ではプラスミノーゲンを測りこんでしまっていることがわかる。
これに対して、 一次抗体として実施例 9又は実施例 10で得られたリポタンパ ク質 (a) に対するポリクロ一ナル抗体 (A— 1、 A— 2) を用いた本発明のリ ポタンパク質 (a) 測定系は、 プラスミノーゲンを全く測りこまないことがわか る。
よって本発明のリポタンパク質 (a) 測定法は、 試料中のブラスミノ一ゲンの 影響を受けずに、 リポタンパク質 (a) の濃度を正しく定量することができる方 法であることが確かめられた。
実施例 20 EL I S A法によるアポリポタンパク質 (a) 測定法 実施例 1 1で得られたアポリポタンパク質 (a) に対するポリクローナル抗体 を用いて EL I S A法によるアポリポタンパク質 (a) 測定系を確立した。 ( 1 ) アポリポタンパク質 (a) とも反応する抗リポタンパク質 (a) 抗体 (ィンタ一ナショナルェンザィム社製) にペプシン処理を施し F (ab')2とした 後、 1 5 w g/m 1のこの抗体フラグメントを 96ゥエルーマイクロプレート (ヌンク社製) に 1ゥエル当り 100 1ずつ加え、 37°Cで 2時間静置して抗 リポタンパク質 (a) 抗体フラグメントの固相化を行った (固相化抗体) 。 (2 ) このマイクロプレートを洗浄液 (0. 05%ツイ一ン 20 (Twe e n
20 ) を含むリン酸緩衝生理食塩水 ( 5. 59 mMリン酸水素ニナトリウム、 1. 47 mMリン酸二水素カリウム、 137mM塩化ナトリウム、 2. 68mM 塩化カリウム (PH7. 2) ) ) で洗浄した後、 1 %B S Aを含む 1 OmMリン 酸二水素力リウムーリン酸水素二力リウム緩衝液 (ρΗ 7. 2) を 1ゥエル当り
300 1ずつ加えて、 37°Cで 2時間静置してブロッキングを行い、 その後再 び洗浄液で洗浄した。
(3) リポタンパク質 (a) 濃度が高いヒト血清について、 超遠心分離を行い 比重が 1. 05以上かつ 1. 12以下の部分を分取し、 更にリジン—セファロ一 ス 4Bァフィ二ティークロマトグラフィー (フアルマシア一エルケ一ビー社製) にかけて精製リポタンパク質 (a) を得た。
更に、 この精製リポタンパク質 (a) に 1 mMジチオスレィ トールを加えて処 理した後、 再度超遠心分離を行い比重が 1. 21以上の部分を分取することによ り LDL部分を除去し、 これを精製アポリポタンパク質 (a) とした。
この精製アポリポタンパク質 (a) を生理食塩水 (0. 9%塩化ナトリウム水 溶液) で希釈して 4 Omg/d 1とした後、 生理食塩水で 4段階に希釈して、 ァ ポリポタンパク質 (a) 濃度が 1 Omg//d 1、 2 Om g/d 1、 3 Om g/ d l、 4 Om g "d 1の 4種類の試料を用意した。
(4) 前記の 4種類の試料を試料希釈液 (1 OmM卜リス、 0. 9 %塩化ナト リウム、 1 %B SA (PH8. 0) ) で 100倍に希釈した後、 (2) で調製し たマイクロブレートに 1ゥエル当り 10◦ u 1ずつ分注し、 37 °Cで 2時間静置 して抗原抗体反応を行わせた。
(5) これを洗浄液で洗浄した後、 50 gZm 1になるように 3%B S Aを 含むリン酸緩衝生理食塩水で溶解した実施例 1 1で得られたアポリボタンパク質 (a) に対するポリクロ一ナル抗体を、 1ゥエル当り 100 μ 1ずつ加え、 37 °Cで 2時間静置して反応を行わせ (一次抗体) 、 その後洗浄液で洗浄した。
以下の操作は、 実施例 17の (6) から (8) の工程と同様にして、 測定を行 つた。
4種類の試料を測定して得た検量線を図 25に示した。
これより、 本発明のアポリポタンパク質 (a) 測定法によりアポリ.ポタンパク 質 (a) を定量的に測定できることが確かめられた。
実施例 2 1 アポリボタンパク質 (a) 測定法における血清試料の影響 実施例 1 1で得られたアポリポタンパク質 (a) に対するポリクロ一ナル抗体 を用いたアポリポタンパク質 (a) 測定法 (EL I SA法) において、 血清試料 の影響を受けないことを添加回収試験により確認した。
( 1 ) 3種類の血清 (A, B, C) を用意し、 これをベースに以下の試料を調 製した。
① 3種類の血清 (A, B, C) 0. 9m lに対して生理食塩水 (0. 9 %塩ィヒ ナトリウム水溶液) 0. 1mlをそれぞれ添加混合した 3種類の試料。
② 3種類の血清 (A, B, C) 0. 9m lに対して、 生理食塩水で 100 m g Zd 1とした実施例 20で得た精製アポリポタンパク質 (a) 0. 1m lをそれ ぞれ添加混合することにより、 ①で調製した 3種類の血清試料のァポリポタンパ ク質 (a) 濃度を 1 OmgZd 1増加させた 3種類の試料。
③ 実施例 20で得た精製ァボリポタンパク質 (a) を生理食塩水で希釈して 10 m g Z d 1とした試料。
(2) 前記の 7種類の試料について、 実施例 20の EL I SA法によるアポリ ポタンパク質 (a) 測定法により測定を行い、 それぞれの試料の吸光度値を求め た。 この結果を表 5にまとめた。 表 5
Figure imgf000069_0001
これより、 本発明のアポリポタンパク質 (a) 測定法では、一血清試料の測定で もほぼ理論値どおりの測定値が得られることが判明した。
よって、 本発明のアポリポタンパク質 (a) 測定法は、 血清試料による非特異 的反応等の影響を受けずに、 血清試料中のアポリポタンパク質 (a) を正確に測 定できる方法であることがわかり、 臨床検査の実用上問題がないことが確かめら れた。
実施例 22 配列表の配列番号 2で示されるァミノ酸配列を特異的に認識す るリポタンパク質 (a) に対するマウスモノクローナル抗体の調製
〔 1 ] 動物への免疫
( 1 ) 実施例 7で得た抗体産生用免疫原 (担体が KLHのもの) を 500 g Zm 1になるように生理食塩水 (0. 9%塩化ナトリウム水溶液) で溶解し、 こ れをフ口イン卜完全アジュバン卜と等量ずつ混合してェマルジヨンとして、 8週 齢のメスの B ALBZcマウス (日本チャールズリバ一社) の腹部皮下に 0. 5 m 1を免疫注射した。
(2) 初回免疫から 2週間後に、 前記の抗体産生用免疫原を 250 gZm 1 になるように生理食塩水で溶解し、 フロイン卜不完全アジュバン卜と等量ずつ混 合してェマルジヨンとして、 その 0. 5m 1により追加免疫注射を行った。 この追加免疫注射は 2週間おきに行つた。
(3 ) 免疫動物であるこのマウスの血清中の抗体価を、 酵素免疫測定法 (EL I SA、 E I A) にて、 初回免疫から 6週間目より 1週間ごとに測定し た。 この EL I SA法は、 実施例 7で得た抗体産生用免疫原 (担体が BSAのも の) をマイクロプレートに固相化し、 これに免疫動物の血清を加えて反応させ、 洗浄後更にパ一ォキシダ一ゼ (POD) 標識抗マウス I gG抗体を加えて反応を 行わせ、 そして洗浄した後、 過酸化水素と 2, 2' 一アジノービス (3—ェチル ベンズチアゾリンー 6—スルホン酸) [ABTS] を含んだ発色液を加えて発色 させて、 E I Aプレートリーダ一 (バイオラッ ド社製) にて 41 5 nmの吸光度 を測定して抗体価を求めるという操作法により行った。
(4) 初回免疫から 16週間目以降、 抗体価がプラト一に達したと認められた ので、 この免疫動物であるマウスの腹部皮下に、 生理食塩水で 800 μ gZm 1 とした実施例 7で得た抗体産生用免疫原 (担体が KLHのもの) の 0. 5m lを 注射した。
その後 3日目に、 この免疫動物のマウスより脾臓を取得した。
[ 2 ] 骨髄腫細胞の増殖
B AL BZcマウス由来のヒポキサンチン ·グァニン ·ホスホリボシル · トラ ンスフヱラーゼ欠損の骨髄腫細胞株である P3— X63— Ag8 - U 1株 (癌研 究リサーチソースバンク 9085) を、 胎生ゥシ血清を 10%含有しグルタミ ン、 ペニシリン及びストレプトマイシンを補った RPM I 1640組織培養培地 (バイオセル社製) で増殖を行った。
これは、 この骨髄腫細胞を細胞培養用中型ボトル (ヌンク社製、 200m l
6 S 容) 内で、 ボトルの底面の約 8割を細胞が占めるまで増殖させた。 なお、 細胞数 は、 トリパン青染料排除法及び血球計で計数を行った。
[3] 細胞融合
(1) 前記の免疫動物のマウスから取得した脾臓を、 ステンレススチールメッ シュ # 200を使用して充分にほぐし、 血清を含まない RPMI 1640培地液 で洗浄しながら濾過した。
その後、 200 gで遠心分離を行い、 脾臓細胞を分離した。
更に、 再度血清を含まない RPMI 1640培地液で 3回脾臓細胞を洗浄し た。
( 2 ) この脾臓細胞と前記の増殖させた P3 - X63 - Ag8 -し' 1株骨髄腫 細胞を 5対 1の割合で混合した後、 遠心分離を行った。
混合した細胞を、 ポリエチレングリコール 1500 (PEG 1500、 ベ一リ ンガ一マンハイム社製) を 50%含む RPMI 1640培地液にゆつく りと懸濁 した。
そして、 最終的にポリエチレングリコール濃度が 5%となるように、 これを RPMI 1640培地液で徐々に希釈した。
(3) これより細胞を遠心分離で分離し、 5%のハイプリ ドーマクローニング ファクター (オリゲン社製) を含んだ S—クローン培地 (三光純薬社) よりなる 増殖培地に徐々に分散させた。
そして、 平底の 96穴マイクロタイタープレート (ヌンク社製) のゥエルに、 1ゥエル当たり 106 個 100 1の細胞数の細胞を植え、 5 %の二酸化炭素 中 37°Cで培養した。
(4) 細胞融合後 1日目に、 各ゥエルに 100 1の HAT培地 (前記の増殖 培地に 0. O lmMヒポキサンチン、 1. 6uMチミジン及び 0. 04uMアミ ノブテリンとなるようにそれぞれを補充したもの、 いずれも東京化成社製) を加 えた。 その後 3日間は、 毎日、 約半分の HAT培地を新しい HAT培地と交換し、 更 にその後は、 2〜3日毎に同様の交換を行った。
(5) 細胞は、 顕微鏡で観察を行った。
ハイプリ ドーマ (融合細胞) のクローンは 10曰以後より出現し、 14日以降 に配列表の配列番号 2で示されるアミノ酸配列を認識する抗体の産生を検査する ため、 ゥエルの上澄み液を E L I SA法でスクリーニングした。 なお、 この EL I S A法の操作は、 参考例 2と同様にして行った。
(6) 抗体産生検査陽性のゥエルは、 24穴のゥエルがあるプレートに拡げて 培養し、 細胞密度が高くなるに従い、 小型ボトル、 中型ボトルとスケールを大き くして培養した。
(7) そして、 ハイプリ ドーマは HT培地 (アミノプテリン及びハイプリ ドー マクローニングファクターを含まない HAT培地) で培養、 保持した。
( 8 ) 配列表の配列番号 2で示されるァミ ノ酸配列を認識する抗体の産生を EL I S A法により参考例 2と同様にして調べたところ、 配列表の配列番号 2で 示されるァミノ酸配列を含むペプチドである実施例 7で得た抗体産生用免疫原
(担体が B S Aのもの) と結合し、 BS Aとは結合しない抗体を産生する 4個の ハイプリ ドーマを確認した。
[4] ハイブリ ドーマサブクローニング
( 1 ) 前記の 4個のハイプリ ドーマを、 限界希釈法にてサブクローニングし た。
これらのハイプリ ドーマの細胞数を、 トリパン青染料排除法及び血球計により 計数を行った。
そして、 これらのハイプリ ドーマを、 100 1の HT培地当たり、 0. 5個 の生育細胞数の割合と 1個の生育細胞数の割合の 2種類の割合で懸濁し、 96穴 の平底マイクロプレー卜の 1ゥエル当たり 100 1ずつ分注した。
これを、 2~3日毎に培地を交換して、 ハイプリ ドーマを増殖させた。 (2) 2週間後、 顕微鏡下で各ゥエルのコロニー数を調べ、 そして配列表の配 列番号 2で示されるァミノ酸配列を含むぺプチドである実施例 7で得た抗体産生 用免疫原 (担体が BS Aのもの) と結合し、 BS Aとは結合しない抗体を産生す るゥエルを前記と同様にして EL I S A法で調べた。
1ゥエル中に 1コロニーが存在し、 そしてこのような抗体を産生するゥエルを 4個得た。
(3) これを、 24穴のブレー卜に移し、 細胞生育が良好となるまで 2週間培 養を行った。
(4) 次に、 これらのハイプリ ドーマが産生する抗体のリポタンパク質 (a) との反応性をウエスタンブロッ ト法で調べた。
操作は、 LDLへの反応性は確かめないことと、 実施例 9及び実施例 10で得 られたリポタンパク質 (a) に対するポリクロ一ナル抗体に代えて イブリ ドー マの培養上清を用いる他は、 参考例 3と同様にして行った。 一
この結果、 1個のハイプリ ドーマが、 配列表の配列番号 2で示されるアミノ酸 配列を特異的に認識するリポタンパク質 (a) に対する抗体を産生する細胞株で一 あることが判明した。
(5) このハイプリ ドーマを、 再度前記 ( 1 ) 及び (2) と同様にしてクロー ニングを行い、 それぞれのゥエルについて抗体の産生を調べたところ、 1ゥエル 中に 1コロニーのハイプリ ドーマが存在し、 そして配列表の配列番号 2で示され るァミノ酸配列を含むぺプチドである実施例 7で得た抗体産生用免疫原 (担体が B SAのもの) と結合し、 B S Aとは結合しない抗体を産生するものを全部で 40クローン得た。
(6) これらのハイプリ ドーマのクローンが産生する抗体のリポタンパク質 (a) との反応性を、 再度前記 (4) と同様にしてウェスタンプロッ ト法で調べ た。
これより、 これら全てのハイプリ ドーマのクローン力、 配列表の配列番号 2で 示されるアミノ酸配列を特異的に認識するリポタンパク質 (a) に対する抗体を 産生する細胞であることが確かめられた。
( 7 ) これを本発明の配列表の配列番号 2で示されるアミノ酸配列の一部又は 全体を特異的に認識するリポタンパク質 (a) に対するモノクローナル抗体を産 生するハイプリ ドーマ細胞株 [243G7E7F 10株] とした。
このハイプリ ドーマ細胞株 [243 G7E7F 10株] は、 通商産業省工業技 術院生命工学工業技術研究所に FERM BP— 4379として平成 5年 8月 4 日付けにて寄託されている。
[5] モノクローナル抗体の産生
( 1 ) 得られたリポタンパク質 (a) に対するモノクローナル抗体産生細胞株 を、 中型ボトル (ヌンク社製) の中で、 底面の約 8割を細胞が占めるまで HT培 地中で培養を行った。
(2) その後、 これらのハイプリ ドーマを搔き取り、 そして 200 g、 5分間 の遠心分離を行い集めた。
次に、 これを血清を含まない R PM I 1 640培地液で 3回洗浄した後、 2 m lの RPM I 1640培地液に懸濁した。
(3) 前もって 2, 6, 1 0, 14—テトラメチルペン夕デカンで処置して おいたォスの B AL BZcマウス (日本チャールズリバ一社) の腹腔に、 前記
(2) で得たハイプリ ドーマ懸濁液 lm lを注射した。
注射から 2週間以内に腹部の膨張が認められなかった場合には、 再度これを繰 り返し行った。
(4) このマウスの腹部の膨張が認められたときに腹水を採取した。
これを 200 g、 5分間の遠心分離にかけ、 リポタンパク質 (a) に対するモ ノクローナル抗体を含む上澄み液をハイブリ ドーマから分離して取得した。
[6] モノクローナル抗体の精製
( 1 ) リポタンパク質 (a) に対するモノクローナル抗体を含む上澄み液の 10m lに、 22°Cで硫酸ナトリウム 1. 8 gを撹袢しながら加え、 硫酸ナトリ ゥムが完全に溶けてから更に 1時間撹拌を続けて塩析を行った。
(2) これを 22 °Cで遠心分離 (7000 g, 15分間) を行い、 上澄み液と 分離して得た沈澱を、 3 OmM塩化ナ卜リゥムを含む 4 OmMリン酸ナトリゥム 緩衝液 (PH8. 0) 2m lに溶解した。
(3) 次に、 これを 3 OmM塩化ナトリウムを含む 4 OmMリン酸ナトリウム 緩衝液 (P H8. 0) に対して充分に透析した後、 1000 gで 20分間遠心分 離し不溶性のものを除去した。
(4) これを 3 OmM塩化ナトリゥムを含む 4 OmMリン酸ナ卜リウム緩衝液 (pH8. 0) で平衡化しておいた D EAE—セルロースイオン交換カラム (セ ルバ社製) 〖l x 10 cm] に流速 0. Am i,分で通して、 溶出液を 2 m 1ず つ集めた。
(5) 免疫グロブリン G (I gG) が溶出液の素通り画分に含まれていること を 280 nmの吸光度より確認し、 これを集めて 2m 1に濃縮した。
(6) 更に、 これをプロテイン A—セファロース CL— 4Bァフィ二ティーク 口マトグラフィ一 (フアルマシア一エルケ一ビ一社製) にかけて精製を行い、 配 列表の配列番号 2で示されるアミノ酸配列を特異的に認識するリポタンパク質
(a) に対するマウスモノクローナル抗体を得た。
なお、 この得られたモノクローナル抗体の量はタンパク質量で 15m gであつ た。
また、 ここで得たリポタンパク質 (a) に対するモノクローナル抗体の抗体ク ラスとサブタイプは、 市販の特異抗マウス免疫グロブリン抗血清 (ダコ社製) を 用いたォクタ口ニイ免疫拡散法により I gGt 、 ん鎖と決定した。
参考例 10 実施例 22で得られたリポタンパク質 ( a ) に対するモノクロ ーナル抗体の配列表の配列番号 8、 配列番号 9及び配列番号 10で示されるぺブ チドへの反応性 実施例 22で得られたリポタンパク質 (a) に対するモノクローナル抗体の、 配列表の配列番号 1、 配列番号 2及び配列番号 3で示されるアミノ酸配列をそれ ぞれ含むペプチドである配列表の配列番号 8、 配列番号 9及び配列番号 10で示 されるぺプチドへの反応性を EL I S A法で確かめた。
( 1 ) 実施例 6で得られた抗体産生用免疫原 (担体が BS Aのもの) 、 実施例 7で得られた抗体産生用免疫原 (担体が BS Aのもの) 及び実施例 8で得られた 抗体産生用免疫原 (担体が BSAのもの) それぞれを 5 gZm 1になるように 生理食塩水 (0. 9%塩化ナトリウム水溶液) に溶解し、 これらを 96ゥエルー マイクロプレー卜 (ヌンク社製) に 1ゥエル当り 100 u 1ずつ加え、 37°Cで 2時間静置してぺプチドの固相化を行った。
(2) このマイクロプレートを洗浄液 (0. 05%ツイ一ン 20 (Twe e n 20 ) を含むリン酸緩衝生理食塩水 ( 5. 59 mMリン酸水素ニナトリウム、 1. 47 mMリン酸二水素カリウム、 137mM塩化ナトリウム、 2. 68mM 塩化カリウム (PH 7. 2) ) ) で洗浄した後、 1 %B S Aを含む 1 OmMリン 酸二水素カリウム—リン酸水素二カリウム緩衝液 (pH 7. 2) を 1ゥエル当り 300 u 1ずつ加えて、 37°Cで 2時間静置してプロッキングを行い、 その後再 び洗浄液で洗浄した。
(3) 実施例 22で得られたリポタンパク質 (a) に対するモノクロ一ナル抗 体を 3%B S Aを含むリン酸緩衝生理食塩水で希釈して、 0. l / g/m l、 0. 5 gZm l、 1. O gZml及び 5. 0 g/m 1の 4種類の抗体濃度 の試料を調製した。 このそれぞれを 1ゥエル当り 1 O O 1ずつ加え、 37°Cで 2時間静置して反応を行わせ、 その後洗浄液で洗浄した。
(4) また対照として、 3 %BS Aを含むリン酸緩衝生理食塩水を (2) のマ イクロブレートに 1ゥエル当り 100 1ずつ加え、 37 °Cで 2時間静置して反 応を行わせ、 その後洗浄液で洗浄した。
(5) パーォキシダ一ゼ (POD) 標識抗マウス I gG抗体 (アマシャム社 製) を 3 %B S Aを含むリン酸緩衝生理食塩水で 2, 000倍に希釈した後、 (3) 及び (4) のマイクロプレートに 1ゥエル当り 100 μ 1ずつ加え、 37 。じで 2時間静置して反応を行わせた。
(6) これを洗浄液で洗浄した後、 パ一ォキシダーゼ反応液 (3mM o—フ ェニレンジアミンを含む 5 OmMリン酸水素ニナトリゥムー 24mMクェン酸緩 衝液の 1 m 1に対して 2 1の 1. 7%過酸化水素を使用直前に添加したもの) を 1ゥエル当り 100 w 1ずつ加え、 室温で反応させた。 15分後に 1ゥエル当 り 50 1の 6 N硫酸を加えて反応を停止させた。
(7) これを E I Aプレートリーダー (バイオラッド社製) にて 492 nmに おける吸光度の測定を行った。
この測定の結果を図 26に示した。 なおここでは、 各試料の吸光度から対照の 吸光度を引いたものを図に示した。 ―
図 26において、 1、 2及び 3はそれぞれ実施例 6で得られた抗体産生用免疫 原、 実施例 7で得られた抗体産生用免疫原及び実施例 8で得られた抗体産生用免 疫原に対しての測定値 (吸光度) を示す。 - この結果より、 実施例 22で得られたリポタンパク質 (a) に対するモノクロ ーナル抗体は、 配列表の配列番号 1及び配列番号 3で示されるアミノ酸配列をそ れぞれ含むぺプチドである配列表の配列番号 8及び配列番号 10で示されるぺブ チドとは結合せず、 配列表の配列番号 2で示されるァミノ酸配列を含むぺプチド である配列表の配列番号 9で示されるぺプチドを特異的に認識して結合すること が確かめられた。
実施例 23 配列表の配列番号 3で示されるァミノ酸配列を特異的に認識す るアポリポタンパク質 (a) に対するマウスモノクローナル抗体の調製
[ 1 ] 動物への免疫
( 1 ) 実施例 8で得た抗体産生用免疫原 (担体が KLHのもの) を 400 j g 1になるように生理食塩水 (0. 9%塩化ナトリウム水溶液) で溶解し、 こ れをフロイント完全アジュバントと等量ずつ混合してェマルジョンとして、 8週 齢のメスの B ALBZcマウス (日本チャールズリバ一社) の腹部皮下に 0. 5 m 1を免疫注射した。
(2) 初回免疫から 2週間後に、 前記の抗体産生用免疫原を 200 /i g/m l になるように生理食塩水で溶解し、 フロイント不完全アジュバントと等量ずつ混 合してェマルジヨンとして、 その 0. 5m 1により追加免疫注射を行った。 この追加免疫注射は 2週間おきに行った。
(3 ) 免疫動物であるこのマウスの血清中の抗体価を、 酵素免疫測定法 (EL I SA、 E I A) にて、 初回免疫から 6週間目より 1週間ごとに測定し た。 この EL I SA法は、 実施例 8で得た抗体産生用免疫原 (担体が BSAのも の) をマイクロプレートに固相化し、 これに免疫動物の血清を加えて反応させ、 洗浄後更にパ一ォキシダーゼ (POD) 標識抗マウス I gG抗体を加えて反応を 行わせ、 そして洗浄した後、 過酸化水素と 2, 2' —アジノービス (3—ェチル ベンズチアゾリンー 6—スルホン酸) [ABTS] を含んだ発色液を加えて発色 させて、 E I Aプレートリーダー (バイオラッ ド社製) にて 415 nmの吸光度 を測定して抗体価を求めるという操作法により行つた。
(4) 初回免^から 18週間目以降、 抗体価がプラトーに達したと認められた ので、 この免疫動物であるマウスの腹部皮下に、 生理食塩水で 800 /LL gZm l とした実施例 8で得た抗体産生用免疫原 (担体が KLHのもの) の 0. 5m lを 注射した。
その後 3日目に、 この免疫動物のマウスより脾臓を取得した。
[2] 骨髄腫細胞の増殖
B ALB/cマウス由来のヒポキサンチン ·グァニン ·ホスホリボシル · トラ ンスフヱラーゼ欠損の骨髄腫細胞株である P3— X63 - Ag8 - U 1株 (癌研 究リサーチソースバンク 9085) を、 胎生ゥシ血清を 10%含有しグルタミ ン、 ペニシリン及びストレプトマイシンを補った RPMI 1640組織培養培地 (バイオセル社製) で增殖を行った。
これは、 この骨髄腫細胞を細胞培養用中型ボトル (ヌンク社製、 200m l 容) 内で、 ボトルの底面の約 8割を細胞が占めるまで増殖させた。 なお、 細胞数 は、 卜リパン青染料排除法及び血球計で計数を行った。
[3] 細胞融合
( 1 ) 前記の免疫動物のマウスから取得した脾臓を、 ステンレススチールメッ シュ # 200を使用して充分にほぐし、 血清を含まない RPM I 1640培地液 で洗浄しながら濾過した。
その後、 200 gで遠心分離を行い、 脾臓細胞を分離した。
更に、 再度血清を含まない RPM I 1 640培地液で 3回脾臓細胞を洗浄し た。
(2) この脾臓細胞と前記の増殖させた P3 - X63—Ag8— U 1株骨髄腫 細胞を 5対 1の割合で混合した後、 遠心分離を行った。
混合した細胞を、 ポリエチレングリコール 1500 ( P E G 1500、 ベ一リ ンガーマンハイム社製) を 50%含む R PM 1 1640培地液にゆつく りと懸濁 した。
そして、 最終的にポリエチレングリコール濃度が 5%となるように、 これを R PM I 1 640培地液で徐々に希釈した。
(3) これより細胞を遠心分離で分離し、 5%のハイブリ ド一マクローユング ファクター (オリゲン社製) を含んだ S—クローン培地 (三光純薬社) よりなる 増殖培地に徐々に分散させた。
そして、 平底の 96穴マイクロタイタープレート (ヌンク社製) のゥエルに、 1ゥエル当たり 106 個 Z100 u 1の細胞数の細胞を植え、 5%の二酸化炭素 中 37 °Cで培養した。
(4) 細胞融合後 1日目に、 各ゥエルに 100 1の HAT培地 (前記の增殖 培地に 0. O l mMヒポキサンチン、 1. 6 uMチミジン及び0. 04uMアミ ノプテリンとなるようにそれぞれを補充したもの、 いずれも東京化成社製) を加 えた。
その後 3日間は、 毎日、 約半分の HAT培地を新しい HAT培地と交換し、 更 にその後は、 2〜3日毎に同様の交換を行った。
(5) 細胞は、 顕微鏡で観察を行った。
ハイプリ ドーマ (融合細胞) のクローンは 10日以後より出現し、 14日以降 に配列表の配列番号 3で示されるアミノ酸配列を認識する抗体の産生を検査する ため、 ゥエルの上澄み液を E L I S A法でスクリーニングした。 なお、 この EL I S A法の操作は、 参考例 5と同様にして行った。
(6) 抗体産生検査陽性のゥエルは、 24穴のゥエルがあるプレートに拡げて 培養し、 細胞密度が高くなるに従い、 小型ボトル、 中型ボトルとスケールを大き くして培養した。
(7) そして、 ハイプリ ドーマは HT培地 (アミノブテリン及びハイプリ ド一 マクロ一ユングファクターを含まない HAT培地) で培養、 保持した。
( 8 ) 配列表の配列番号 3で示されるァミノ酸配列を認識する抗体の産生を EL I SA法により参考例 5と同様にして調べたところ、 配列表の配列番号 3で 示されるアミノ酸配列を含むペプチドである実施例 8で得た抗体産生用免疫原
(担体が B S Aのもの) と結合し、 BS Aとは結合しない抗体を産生する 4個の ハイプリ ドーマを確認した。
[4] ハイブリ ドーマサブクローニング
( 1 ) 前記の 4個のハイプリ ドーマを、 限界希釈法にてサブクローニングし た。
これらのハイプリ ドーマの細胞数を、 トリパン青染料排除法及び血球計により 計数を行った。
そして、 これらのハイブリ ド一マを、 100 1の HT培地当たり、 0. 5個 の生育細胞数の割合と 1個の生育細胞数の割合の 2種類の割合で懸濁し、 96穴 の平底マイクロプレー卜の 1ゥエル当たり 100 u 1ずつ分注した。
これを、 2〜3日毎に培地を交換して、 ハイプリ ドーマを増殖させた。
(2) 2週間後、 顕微鏡下で各ゥエルのコロニー数を調べ、 そして配列表の配 列番号 3で示されるアミノ酸配列を含むぺプチドである実施例 8で得た抗体産生 用免疫原 (担体が BS Aのもの) と結合し、 BS Aとは結合しない抗体を産生す るゥエルを前記と同様にして EL I SA法で調べた。
1ゥエル中に 1コロニーが存在し、 そしてこのような抗体を産生するゥエルを 4個得た。
(3) これを、 24穴のプレートに移し、 細胞生育が良好となるまで 2週間培 養を行った。
(4) 次に、 これらのハイプリ ドーマが産生する抗体のアポリポタンパク質 ( a ) との反応性をウェスタンプロッ ト法で調べた。 ―
操作は、 参考例 6の (2) で 1種類の精製アポリポタンパク質 (a) のみを泳 動させることと、 実施例 1 1で得られたアポリポタンパク質 (a) に対するポリ クロ一ナル抗体に代えてハイプリ ドーマの培養上清を用いる他は、 参考例 6と 様にして行った。
この結果、 1個のハイプリ ドーマが、 配列表の配列番号 3で示されるアミノ酸 配列を特異的に認識するアポリポタンパク質 (a) に対する抗体を産生する細胞 株であることが判明した。
(5) このハイプリ ドーマを、 再度前記 ( 1 ) 及び (2) と同様にしてクロ一 ユングを行い、 それぞれのゥエルについて抗体の産生を調べたところ、 1ゥエル 中に 1コロニーのハイプリ ドーマが存在し、 そして配列表の配列番号 3で示され るァミノ酸配列を含むぺプチドである実施例 8で得た抗体産生用免疫原 (担体が
B SAのもの) と結合し、 B S Aとは結合しない抗体を産生するものを全部で
1 5クローン得た。
(6) これらのハイプリ ドーマのクローンが産生する抗体のァポリポタンパク 質 (a) との反応性を、 再度前記 (4) と同様にしてウェスタンプロッ ト法で調 ベた。
これより、 これら全てのハイブリ ド一マのクローンカ^ 配列表の配列番号 3で 示されるアミノ酸配列を特異的に認識するアポリポタンパク質 (a) に対する抗 体を産生する細胞であることが確かめられた。
( 7 ) これを本発明の配列表の配列番号 3で示されるァミノ酸配列の一部又は 全体を特異的に認識するアポリポタンパク質 (a) に対するモノクローナル抗体 を産生するハイプリ ドーマ細胞株 〔161 E2H6株] とした。
このハイプリ ドーマ細胞株 〖 161 E2H6株] は、 通商産業省工業技術院生 命工学工業技術研究所に FERM BP— 4378として平成 5年 8月 4日付け にて寄託されている。
〔5〕 モノクローナル抗体の産生
( 1 ) 得られたアポリポタンパク質 (a) に対するモノクローナル抗体産生細 胞株を、 中型ボトル (ヌンク社製) の中で、 底面の約 8割を細胞が占めるまで HT培地中で培養を行った。
(2) その後、 これらのハイブリ ド一マを搔き取り、 そして 200 g、 5分間 の遠心分離を行い集めた。
次に、 これを血清を含まない RPM I 1640培地液で 3回洗浄した後、 2 m lの RPM I 1640培地液に懸濁した。
(3) 前もって 2, 6, 10, 14ーテトラメチルペンタデカンで処置して おいたォスの B ALB/cマウス (日本チャールズリバ一社) の腹腔に、 前記
(2) で得たハイプリ ドーマ懸濁液 lm lを注射した。
注射から 2週間以内に腹部の膨張が認められなかった場合には、 再度これを繰 り返し行った。
(4) このマウスの腹部の膨張が認められたときに腹水を採取した。
これを 200 g、 5分間の遠心分離にかけ、 アポリポタンパク質 (a) に対す るモノクローナル抗体を含む上澄み液をハイプリ ドーマから分離して取得した。
[6] モノクローナル抗体の精製
( 1 ) アポリポタンパク質 (a) に対するモノクローナル抗体を含む上澄み液 の 10m lに、 22°Cで硫酸ナトリウム 1. 8 gを撹拌しながら加え、 硫酸ナト リゥムが完全に溶けてから更に 1時間撹拌を続けて塩析を行った。
(2) これを 22°Cで遠心分離 (7000 g, 15分間) を行い、 上澄み液と 分離して得た沈澱を、 3 OmM塩化ナトリウムを含む 4 OmMリン酸ナトリウム 緩衝液 (PH8. 0) 2m lに溶解した。
(3) 次に、 これを 3 OmM塩化ナトリウムを含む 4 OmMリン酸ナトリウム 緩衝液 (PH8. 0) に対して充分に透析した後、 1000 gで 20分間遠心分 離し不溶性のものを除去した。
(4) これを 3 OmM塩化ナ卜リゥムを含む 4 OmMリン酸ナトリゥム緩衝液 (pH 8. 0) で平衡化しておいた DEAE—セルロースイオン交換カラム (セ ルバ社製) [ l x l O cm] に流速 0. 4ml/分で通して、 溶出液を 2 m 1ず つ集めた。
(5) 免疫グロブリン G (I gG) が溶出液の素通り画分に含まれていること を 280 nmの吸光度より確認し、 これを集めて 2 m 1に濃縮した。
(6) 更に、 これをプロテイン A—セファロ一ス CL— 4Bァフィ二ティーク ロマ卜グラフィ一 (フアルマシア一エルケ一ビー社製) にかけて精製を行い、 配 列表の配列番号 3で示されるァミノ酸配列を特異的に認識するァポリポタンパク 質 (a) に対するマウスモノクローナル抗体を得た。
なお、 この得られたモノクローナル抗体の量はタンパク質量で 1 Omgであつ た。
また、 ここで得たアポリポタンパク質 (a) に対するモノクローナル抗体の抗 体クラスとサブタイプは、 市販の特異抗マウス免疫グロブリン抗血清 (ダコ社 製) を用いたォクタ口ニイ免疫拡散法により I gG! 、 ん鎖と決定した。 参考例 1 1 実施例 2 3で得られたアポリポタンパク質 (a ) に対するモノ クローナル抗体の配列表の配列番号 8、 配列番号 9及び配列番号 1 0で示される ぺプチドへの反応性
実施例 2 3で得られたアポリポタンパク質 (a ) に対するモノクローナル抗体 の、 配列表の配列番号 1、 配列番号 2及び配列番号 3で示されるアミノ酸配列を それぞれ含むペプチドである配列表の配列番号 8、 配列番号 9及び配列番号 1 0 で示されるペプチドへの反応性を E L I S A法で確かめた。
実施例 2 2で得られたリポタンパク質 (a ) に対するモノクローナル抗体に代 えて、 実施例 2 3で得られたアポリポタンパク質 (a ) に対するモノクロ一ナ ル抗体を用いることと、 この抗体の試料濃度を 5 . 0 g /m 1 , 1 0 ju g / m 1、 5 0 u g /m 1及び 1 0 0 /m 1とすること以外は、 参考例 1 0と同 様にして測定を行った。
この測定の結果を図 2 7に示した。 なおここでは、 各試料の吸光度から対照の 吸光度を引いたものを図に示した。
図 2 7において、 1、 2及び 3はそれぞれ実施例 6で得られた抗体産生用免疫 原、 実施例 Ίで得られた抗体産生用免疫原及び実施例 8で得られた抗体産生用免 疫原に対しての測定値 (吸光度) を示す。
この結果より、 実施例 2 3で得られたアポリポタンパク質 (a ) に対するモノ ク口一ナル抗体は、 配列表の配列番号 1及び配列番号 2で示されるァミノ酸配列 をそれぞれ含むぺプチドである配列表の配列番号 8及び配列番号 9で示されるぺ プチドとは結合せず、 配列表の配列番号 3で示されるアミノ酸配列を含むぺプチ ドである配列表の配列番号 1 0で示されるぺプチドを特異的に認識して結合する ことが確かめられた。
参考例 1 2 実施例 2 3で得られたアポリポタンパク質 (a ) に対するモノ クロ一ナル抗体のアポリポタンパク質 (a ) への反応性
実施例 2 3で得られたアポリポタンパク質 (a ) に対するモノクローナル抗体 のアポリポタンパク質 (a) への反応性をウェスタンプロッ ト法により確かめ た。
操作は、 泳動を行うヒ卜血清由来の精製アポリポタンパク質 (a) の数が 5種 類であることと、'実施例 1 1で得られたアポリポタンパク質 (a) に対するポリ クロ一ナル抗体に代えて、 実施例 23で得られたアポリポタンパク質 (a) に対 するモノクローナル抗体を用いる他は、 参考例 6と同様にして行った。
このウェスタンブロッ 卜法の結果を図 28、 図 29及び図 30に示した。 図 28は、 実施例 23で得られたアポリポタンパク質 (a) に対するモノクロ —ナル抗体を作用させたものである。
図 28において、 1ないし 5は 5種類のヒト血清由来の精製アポリポタンパク 質 (a) それぞれを泳動したものであり、 Bは泳動位置の目安としてアポリポ夕 ンパク質 B— 100の位置を示すものである。 ―
なお、 このアポリポタンパク質 B— 100のバンドの位置との関係から 〔G. Ut e rmann e t a 1. , J . C l i n. I n v e s t . , 80—, 458 - 465 ( 1 987) ] 、 1ないし 5のバンドはアポリポタンパク (a) のイソ型の F型、 B型、 S 1型、 S2型、 S 3型及び S 4型を示している ことがわかる。
図 29は陰性対照のものであり、 ここで 1ないし 5は 5種類のヒト血清由来の 精製アポリポタンパク質 (a) それぞれを泳動させたものである。 また、 Rは目 安として、 前記 1のバンドの血清由来の精製アポリポタンパク質 (a) の泳動位 置を示すものである。
図 30は対照としてアポリポタンパク質 (a) と反応する抗リポタンパク質 (a) 抗体を作用させたものであり、 試料として前記の 1のバンドの血清由来の 精製アポリポタンパク質 (a) を用いた。 また、 Bは目安としてアポリポタンパ ク質 B - 100の泳動位置を示すものである。
図 28及び図 30によると、 実施例 23で得られたアポリポタンパク質 (s) に対するモノクローナル抗体は、 アポリポタンパク質 (a) と反応する抗リポ夕 ンパク質 (a) 抗体と同じ位置に発色を示すことから、 特異的にアポリポタンパ ク質 (a) と結合することが確かめられた。
また、 図 28において、 実施例 23で得られたアポリポタンパク質 (a) に対 するモノクローナル抗体は、 アポリポタンパク質 (a) の種々のイソ型と反応す ることが確認された。
そして、 図 29において、 実施例 23で得られたアポリポタンパク質 (a) に 対するモノクローナル抗体及びアポリポタンパク質 (a) と反応する抗リポタン パク質 (a) 抗体を作用させていない陰性対照に発色が見られないことから、 非 特異的な発色が起きていないことが示された。
参考例 1 3 実施例 22で得られたリポタンパク質 (a) に対するモノクロ —ナル抗体及び実施例 23で得られたアポリポタンパク質 (a) に対するモノク ローナル抗体のリポタンパク質 (a) への反応性
実施例 22で得られたリポタンパク質 (a) に対するモノクローナル抗体及び 実施例 23で得られたアポリポタンパク質 (a) に対するモノクローナル抗体の リポタンパク質 (a) への反応性をウェスタンプロッ ト法により確かめた。 操作は、 実施例 1 1で得られたアポリポタンパク質 (a) に対するポリクロー ナル抗体に代えて、 実施例 22で得られたリポタンパク質 (a) に対するモノク 口一ナル抗体及び実施例 23で得られたアポリポタンパク質 (a) に対するモノ クローナル抗体をそれぞれ用いる他は、 参考例 7と同様にして行った。
このウェスタンブロッ 卜法の結果を図 3 1に示した。
図 3 1において、 Pは対照、 Nは陰性対照、 2は実施例 22で得られたリポタ ンパク質 (a) に対するモノクローナル抗体を作用させたもの、 そして 3は実施 例 23で得られたアポリポタンパク質 (a) に対するモノクローナル抗体を作用 させたものである。
図 3 1における対照との比較より、 実施例 2 2で得られたリポタンパク質 (a) に対するモノクローナル抗体は、 市販の抗リポタンパク質 (a) 抗体と问 じ位置に発色を示すことから、 特異的にリポタンパク質 (a) と結合することが 確かめられた。
また、 実施例 23で得られたアポリポタンパク質 (a) に対するモノクローナ ル抗体は、 市販の抗リポタンパク質 (a) 抗体で発色を示す位置には発色を認め ないことから、 リポタンパク質 (a) とは結合しないことが確かめられた。
更に、 実施例 22で得られた抗体、 実施例 23で得られた抗体及び市販の抗リ ポタンパク質 (a) 抗体を作用させていない陰性対照に発色が見られないことか ら、 非特異的な発色が起きていないことが示された。
参考例 14 実施例 22で得られたリポタンパク質 (a) に対するモノクロ ーナル抗体及び実施例 23で得られたアポリポタンパク質 (a) に対するモノク ローナル抗体の L D Lへの反応性
実施例 22で得られたリポタンパク質 (a) に対するモノクローナル抗体及び 実施例 23で得られたアポリポタンパク質 (a) に対するモノクローナル抗体そ れぞれの LDLへの反応性をウェスタンプロッ ト法により確かめた。
( 1 ) LD L濃度が高いヒト血清を、 超遠心分離を行い比重が 1. 006以上 かつ 1. 063以下の部分を分取し、 抗リポタンパク質 (a) 抗体 (ィムノ社 製) をリガンドとして結合させたァフィ二ティ一クロマトグラフィーにかけて素 通り画分を分取して、 精製 LDLを得た。
(2) この LDLを 0. 5m gZm 1になるように生理食塩水 (0. 9 %塩ィヒ ナトリウム水溶液) に溶解し、 この 2 1を試料としてタイタン · ジヱル · リポ 蛋白電気泳動キッ 卜 (ヘレナ研究所社製) を用いて電気泳動を行った。 なお、 支 持体はァガロースゲルであり、 泳動緩衝液はバルピタール緩衝液 (pH8. 8) を使用して、 電圧 90Vで 75分間通電して行った。
(3 ) 転写はノバ 'ブロッ ト 'エレクトロフォレティック ' トランスファ一 ' キッ ト (フアルマシア一エルケービ一社製) を用いて、 その使用説明書に従い、 ドライ方式で行った。
(4) 転写用装置上に置いた (2) のァガロースゲルの上に、 9 cmx 9 cm のニトロセルロース膜 (バイオラッ ド社製) を重ね、 48mMトリス、 39mM グリシン、 0. 0375% (W/V) ドデシル硫酸ナトリウム (SDS) 、 20 % (V/V) メタノールよりなる転写用緩衝液を用いて、 電流 65mAで 2時間 転写を つた。
(5) 転写を行ったニトロセルロース膜を、 1 %B S Aを含むリン酸緩衝生理 食塩水 (5. 59 mMリン酸水素ニナトリウム、 1. 47mMリン酸二水素カリ ゥム、 137mM塩化ナトリウム、 2. 68mM塩化カリウム (pH7. 2) ) 2 Om 1に 4°Cで 1晚浸漬して、 プロッキングを行った。
(6) 次にこれを洗浄液 (0. 05%ツイーン 20 (Twe e n 20) を含む リン酸緩衝生理食塩水) 20m l中で 10分間振とう洗浄を行った。 この操作を 3回行った。
(7) 実施例 22で得られたリポタンパク質 (a) に対するモノクロ一ナル抗 体及び実施例 23で得られたアポリポタンパク質 (a) に対するモノクローナル 抗体のそれぞれを、 2 Om 1のリン酸緩衝生理食塩水に 80 u gずつ溶解し、 こ の 2種類の溶液に (6) の操作を行ったニトロセルロース膜それぞれを室温で 2 時間浸漬して反応させた。
(8) なお対照として、 実施例 22で得られたリポタンパク質 (a) に対する モノクローナル抗体及び実施例 23で得られたアポリポタンパク質 (a) に対す るモノクローナル抗体の代わりに、 LDLの構成成分のアポリポタンパク質 B— 100に対する同濃度のャギ抗アポリポタンパク質 B抗体 (インタ一ナショナル ェンザィム社製) を用いて、 前記 (7) の操作を行った。
また、 (6) で得られたニトロセルロース膜に、 実施例 22で得られたリポタ ンパク質 (a) に対するモノクローナル抗体及び実施例 23で得られたアポリポ タンパク質 (a) に対するモノクローナル抗体並びにャギ抗アポリポタンパク質 B抗体のいずれも作用させないものを陰性対照として用意した。
(9) 前記 (7) 又は (8) の操作を行ったニトロセルロース膜を洗浄液 20 m 1で 10分間振とう洗浄を行った。 これを 3回行った。
( 10) 次にパーォキシダ一ゼ標識抗マウス I gG抗体 (ダコ社製) 及びパー ォキシダ一ゼ標識抗ャギ I gG抗体 (ダコ社製) を 3%BSAを含むリン酸緩衝 生理食塩水で 500倍希釈をして 20m lの溶液を調製し、 これにニトロセル口 一ス膜を室温で 2時間浸漬して反応させた。
( 1 1 ) このニトロセルロース膜を洗浄液 2 Om lで 10分間振とう洗浄を行 つた。 これを 3回行った。
( 1 2) 0. 025%3, 3 ' ージァミノべンジジン四塩酸塩及び 0. 01 % 過酸化水素を含むリン酸緩衝生理食塩水 2 Om 1に室温で 15分間 ( 1 1 ) の二 トロセルロース膜を浸漬して発色させた。 ―
このウェスタンブロッ ト法の結果を図 32に示した。 一
図 32において、 Pは対照、 Nは陰性対照、 2は実施例 22で得られたリポタ ンパク質 (a) に対するモノクローナル抗体を作用させたもの、 そして 3は実;^ 例 23で得られたアポリポタンパク質 (a) に対するモノクローナル抗体を作用 させたものである。
図 32における対照との比較より、 実施例 22で得られたリポタンパク質 (a) に対するモノクロ一ナル抗体及び実施例 23で得られたァポリポタンパク 質 (a) に対するモノクローナル抗体それぞれは、 市販の抗ァポリポタンパク質 B抗体で発色を示す位置には発色を認めないことから、 LDLとは結合しないこ とが確かめられた。
更に、 実施例 22で得られたモノクローナル抗体、 実施例 23で得られたモノ クロ一ナル抗体及び市販の抗ァポリポタンパク質 B抗体を作用させていない陰性 対照に発色が見られないこヒから、 非特異的な発色が起きていないことが示され た。 参考例 1 5 実施例 22で得られたリポタンパク質 (a) に対するモノクロ —ナル抗体及び実施例 23で得られたアポリポタンパク質 (a) に対するモノク ローナル抗体のプラスミノ一ゲンへの反応性
実施例 22で得られたリポタンパク質 (a) に対するモノクローナル抗体及び 実施例 23で得られたアポリポタンパク質 (a) に対するモノクローナル抗体そ れぞれのプラスミノ一ゲンへの反応性をウェスタンプロッ ト法により確かめた。 操作は、 実施例 9及び実施例 10で得られたリポタンパク質 (a) に対するポ リク口一ナル抗体に代えて、 実施例 22で得られたリポタンパク質 (a) に対す るモノクローナル抗体及び実施例 23で得られたアポリポタンパク質 (a) に対 するモノクローナル抗体をそれぞれ用いる他は、 参考例 4と同様にして行った。 このウェスタンブロッ ト法の結果を図 33に示した。
図 33において、 Pは対照、 Nは陰性対照、 2は実施例 22で得られたリポタ ンパク質 (a) に対するモノクローナル抗体を作用させたもの、 そして 3は実施 例 23で得られたアポリポタンパク質 (a) に対するモノクローナル抗体を作用 させたものである。
これより、 実施例 22で得られたリポタンパク質 (a) に対するモノクロ一ナ ル抗体及び実施例 23で得られたアポリポタンパク質 (a) に対するモノクロ一 ナル抗体は、 市販の抗プラスミノーゲン抗体で発色を示す位置に発色を示さない ことから、 ブラスミノ一ゲンとは結合しないことが確かめられた。
また、 実施例 22で得られたモノクローナル抗体及び実施例 23で得られたモ ノクローナル抗体等を作用させていない陰性対照に発色が見られないことから、 非特異的な発色が起きていないことが示された。
実施例 24 EL I SA法に.よるリポタンパク質 (a) 測定法
実施例 22で得られたリポタンパク質 (a) に対するモノクローナル抗体を用 いて EL I S A法によるリポタンパク質 (a) 測定系を確立した。
実施例 1 7 (5) の実施例 9で得られたリポタンパク質 (a) に対するポリク 口一ナル抗体に代えて、 同濃度の実施例 22で得られたリポタンパク質 (a) に 対するモノクローナル抗体を用いること以外は、 実施例 17と同様にして測定を 行った。
5種類の試料を測定して得た検量線を図 34に示した。
これより、 本発明のリポタンパク質 (a) 測定法によりリポタンパク質 (a) を定量的に測定できることが確かめられた。
実施例 25 リポタンパク質 ( a ) 測定値の比較
本発明の実施例 22で得られたリポタンパク質 (a) に対するモノクローナル 抗体を用いたリポタンパク質 (a) 測定法 (EL I SA法) と A社製リポタンパ ク質 (a) 測定試薬 (EL I SA法) とで測定値の比較を行った。
1 0種類の血清よりなる試料 1ないし試料 10について、 本発明の実施例 22 で得られたリポタンパク質 (a) に対するモノクローナル抗体を用いたリポタン パク質 (a) 測定法 (EL I SA法) により測定を行った。 なお、 EL I SA法 の操作は実施例 17と同様にして行った。
また、 A社製リポタンパク質 (a) 測定試薬による 10種類の試料の測定の操 作は、 使用説明書に従って行った。
これらの測定の結果を表 6にまとめた。
6
Figure imgf000092_0001
(単位は m g/d 1 )
これより、 本発明のリポタンパク質 (a) 測定法によるリポタンパク質 (a) 測定値が、 既存の測定法による測定値と同じ値を示すことがわかり、 本発明のリ ポタンパク質 (a) 測定法は臨床検査の実用上問題がないことが確かめられた。
実施例 26 EL I S A法によるアポリポタンパク質 (a) 測定法 実施例 23で得られたアポリポタンパク質 (a) に対するモノクローナル抗体 を用いて EL I SA法によるアポリポタンパク質 (a) 測定系を確立した。 操作は、 実施例 1 1で得られたアポリポタンパク質 (a) に対するポリクロ一 ナル抗体に代えて、 実施例 23で得られたアポリポタンパク質 (a) に対するモ ノクロ一ナル抗体を用いることと、 アポリポタンパク質 (a) 濃度が 1 OmgZ d l、 2 Om g/d 1 , 30mg/d l、 40mg/d l、 50mg/d lの 5 種類の試料を使用することの他は、 実施例 20と同様にして測定を行った。
5種類の試料を測定して得た検量線を図 35に示した。 これより、 本発明のアポリポタンパク質 (a) 測定法によりアポリポタンパク 質 (a) を定量的に測定できること力 S確かめられた。
実施例 27 アポリポタンパク質 (a) 測定法における血清試料の影響 実施例 23で得られたアポリポタンパク質 (a) に対するモノクローナル抗体 を用いたアポリポタンパク質 (a) 測定法 (ELI SA法) において、 血清試料 の影響を受けないことを添加回収試験により確認した。
(1) 3種類の血清 (A, B, C) を用意し、 これをベースに以下の試料を調 製した。
① 3種類の血清 (A, B, C) 0. 9mlに対して生理食塩水 (0. 9 %塩化 ナトリウム水溶液) 0. 1mlをそれぞれ添加混合した 3種類の試料。
② 3種類の血清 (A, B, C) 0. 9mlに対して、 生理食塩水で 100 m g d 1とした実施例 20で得た精製アポリポタンパク質 (a) 0. —1mlをそれ ぞれ添加混合することにより、 ①で調製した 3種類の血清試料のアポリポタンパ ク質 (a) 濃度を 1 OmgZd 1増加させた 3種類の試料。
③ 実施例 20で得た精製アポリポタンパク質 (a) を生理食塩水で希釈し"^ 1〇m gZd 1とした試料。
(2) 前記の 7種類の試料について、 実施例 26の EL I S A法によるアポリ ポタンパク質 (a) 測定法により測定を行い、 それぞれの試料の吸光度値を求め た。 この結果を表 7にまとめた。
7
Figure imgf000094_0001
これより、 本発明のアポリポタンパク質 (a) 測定法では、 血清試料の測定で もほぼ理論値どおりの測定値が得られることが判明した。
よって、 本発明のアポリポタンパク質 (a) 測定法は、 血清試料による非特異 的反応等の影響を受けずに、 血清試料中のアポリポタンパク質 (a) を正確に測 定できる方法であることがわかり、 臨床検査の実用上問題がないことが確かめら れた。 産業上の利用可能性
本発明のリポタンパク質 (a) に対する抗体は、 LDL及びプラスミノーゲン と交叉反応を起こさず特異的にリポタンパク質 (a) を認識する抗体である。 よ つて、 LDL又はプラスミノ一ゲンに対する吸収操作、 そして LDL及びブラス ミノーゲンと交叉反応のない抗体の産生細胞株の選択操作等の煩雑な操作を必要 とせず、 従来のリポタンパク質 (a) に対する抗体に比べ手間、 時間、 コストが かからずに得られるという利点を有するものである。
そして、 本発明のリポタンパク質 (a) のアミノ酸配列より選択されたべプチ ド及びリポタンパク質 (a) に対する抗体の抗体産生用免疫原は、 煩雑で熟練を 要する生体試料よりの精製操作が不要であり、 かつ長期間安定に保存することが できるという長所を持つものである。
更に、 本発明のリポタンパク質 (a) 測定法は、 試料中の LDL及びプラスミ ノ一ゲンを測りこんでしまうことがなく、 正確なリポタンパク質 (a) 濃度を定 量できる測定法である。
また、 本発明のアポリポタンパク質 (a) に対する抗体は、 リポタンパク質 (a) 及びブラスミノ一ゲンと交叉反応を起こさず特異的にアポリポタンパク質 (a) を認識する抗体である。 よって、 リポタンパク質 (a) 又はプラスミノー ゲンに対する吸収操作、 そしてリポタンパク質 (a) 及びブラスミノーゲンと交 叉反応のない抗体の産生細胞株の選択操作等の煩雑な操作を必要とせず、 従来の アポリポタンパク質 (a) に対する抗体に比べ手間、 時間、 コストがかからずに 得られるという利点を有するものである。
そして、 本発明のアポリポタンパク質 (a) のアミノ酸配列より選択されたべ プチド及びアポリポタンパク質 (a) に対する抗体の抗体産生用免疫原は、 煩雑 で熟練を要する生体試料よりの精製操作が不要であり、 かつ長期間安定に保存す ることができるという長所を持つものである。
更に、 本発明のアポリポタンパク質 (a) 測定法は、 試料中のリポタンパク質 (a) 及びプラスミノ一ゲンを測りこんでしまうことがなく、 正確なアポリポタ ンパク質 (a) 濃度を定量できる測定法である。 配列表
配列番号: 1
配列の長さ : 8
配列の型:アミノ酸
トポロジー:不明
配列の種類:ぺブチド
配列: .
Ser Asp Ala Glu Gly Thr Ala Val
1 5
配列番号: 2
配列の長さ : 1 2
配列の型:アミノ酸
トポロジー:不明
配列の種類:ぺプチド
配列:
Glu Ala Pro Ser Glu Gin Ala Pro Thr Glu Gin Arg
1 5 10 配列番号: 3
配列の長さ : 9
配列の型:アミノ酸
トポロジー:不明
配列の種類:ぺプチド
配列:
Arg Asn Pro Asp Ala Val Ala Ala Pro
1 5 配列番号: 4
配列の長さ : 6
配列の型:アミノ酸
トポロジー:不明
配列の種類:ぺプチド 配列:
Asp Ala Glu Gly Thr Ala 1 5 配列番号: 5
配列の長さ : 7
配列の型:アミノ酸
トポロジー:不明
配列の種類:ぺブチド 配列:
Gin Ala Pro Thr Glu Gin Arg
1 5 配列番号: 6
配列の長さ : 5
配列の型:アミノ酸
トポロジー:不明
配列の種類:ぺプチド 配列:
Ala Val Ala Ala Pro
1 5 配列番号: Ί
配列の長さ : 1 2 0
配列の型: アミノ酸
トポロジー:不明
配列の種類: タンパク質
配列:
Glu Gin Ala Pro Thr Glu Gin Arg Pro Gly Val Gin Glu Cys Tyr His
1 5 10 15
Gly Asn Gly Gin Ser Tyr Arg Gly Thr Tyr Ser Thr Thr Val Thr Gly
20 25 30
Arg Thr Cys Gin Ala Trp Ser Ser Met Thr Pro His Ser His Ser Arg
35 40 45
Thr Pro Glu Tyr Tyr Pro Asn Ala Gly Leu lie Met Asn Tyr Cys Arg
50 55 60
Asn Pro Asp Ala Val Ala Ala Pro Tyr Cys Tyr Thr Arg Asp Pro Gly 65 70 75 80
Val Ar Trp Glu Tyr Cys Asn Leu Thr Gin Cys Ser Asp Ala idu Gly
85 90 95
Thr Ala Val Ala Pro Pro Thr Val Thr Pro Val Pro Ser Leu Glu Ala
100 105 110
Pro Ser Glu Gin Ala Pro Thr Glu
115 120 配列番号: 8
配列の長さ : 9
配列の型:アミノ酸
トポロジー:不明
配列の種類:ぺプチド
配列:
Cys Ser Asp Ala Glu Gly Thr Ala Val
1 5
配列番号: 9
配列の長さ : 1 3
配列の型:アミノ酸
トポロジー:不明
配列の種類:ぺブチド
配列:
Cys Glu Ala Pro Ser Glu Gin Ala Pro Thr Glu Gin Arg
1 5 10
配列番号: 1 0
配列の長さ : 1 0
配列の型:アミノ酸
トポロジー:不明
配列の種類:ペプチド
配列:
Cys Arg Asn Pro Asp Ala Val Ala Ala Pro
1 5 10

Claims

請 求 の 範 囲
1 . リポタンパク質 (a ) のアミノ酸配列より選択された配列表の配列番号 1で 示されるァミノ酸配列の一部又は全体を含む、 5 0以内のアミノ酸から構成され るぺプチド。
2 . リポタンパク質 (a ) のアミノ酸配列より選択された配列表の配列番号 2で 示されるアミノ酸配列の一部又は全体を含む、 5 0以内のアミノ酸から構成され るぺブチド。
3 . アポリポタンパク質 (a ) のアミノ酸配列より選択された配列表の配列番号 3で示されるアミノ酸配列の一部又は全体を含む、 5 0以内のアミノ酸から構成 されるペプチド。
4 . 配列表の配列番号 1で示されるアミノ酸配列の一部又は全体を含む、 5 0以 内のアミノ酸から構成されるペプチドよりなる、 リポタンパク質 (a ) に対する 抗体を産生するための免疫原。
5 . 免疫原が、 配列表の配列番号 1で示されるアミノ酸配列の一部又は全体を含 む 5 0以内のアミノ酸から構成されるべプチドと担体とが結合したものである、 請求の範囲第 4項記載の免疫原。
6 . 配列表の配列番号 2で示されるアミノ酸配列の一部又は全体を含む、 5 0以 内のアミノ酸から構成されるペプチドよりなる、 リポタンパク質 ( a ) に対する 抗体を産生するための免疫原。
7 . 免疫原が、 配列表の配列番号 2で示されるアミノ酸配列の一部又は全体を含 む 5 0以内のアミノ酸から構成されるべプチドと担体とが結合したものである、 請求の範囲第 6項記載の免疫原。
8 . 配列表の配列番号 3で示されるアミノ酸配列の一部又は全体を含む、 5 0以 内のアミノ酸から構成されるペプチドよりなる、 アポリポタンパク質 (a ) に対 する抗体を産生するための免疫原。
9 . 免疫原が、 配列表の配列番号 3で示されるアミノ酸配列の一部又は全体を含 む 5 0以内のアミノ酸から構成されるべプチドと担体と力 s'結合したものである、 請求の範囲第 8項記載の免疫原。
10. 配列表の配列番号 1で示されるアミノ酸配列の一部又は全体を特異的に認識 するリポタンパク質 (a ) に対するポリクローナル抗体。
11. 配列表の配列番号 1で示されるアミノ酸配列の一部が、 配列表の配列番号 4 で示されるァミノ酸配列であることを特徴とする請求の範囲第 10項記載のポリク 口一ナル抗体。
12. 請求の範囲第 4項記載の免疫原より得られることを特徴とする請求の範囲第 10項記載のポリクローナル抗体。
13. 配列表の配列番号 2で示されるァミノ酸配列の一部又は全体を特異的に認識 するリポタンパク質 (a ) に対する抗体。
14. 配列表の配列番号 2で示されるアミノ酸配列の一部が、 E列表の配列番号 5 で示されるアミノ酸配列であることを特徴とする請求の範囲第 13項記載の抗体。
15. 請求の範囲第 6項記載の免疫原より得られることを特徴とする請求の範囲^ 13項記載の抗体。
16. モノクローナル抗体である請求の範囲第 13項ないし第 15項のいずれか 1項に 記載の抗体。
17. 配列表の配列番号 3で示されるアミノ酸配列の一部又は全体を特異的に認識 するアポリポタンパク質 (a ) に対する抗体。
18. 配列表の配列番号 3で示されるアミノ酸配列の一部が、 配列表の配列番号 6 で示されるァミノ酸配列であることを特徴とする請求の範囲第 17項記載の抗体。
19. 請求の範囲第 8項記載の免疫原より得られることを特徴とする請求の範囲第 17項記載の抗体。
20. モノクローナル抗体である請求の範囲第 17項ないし第 19項のいずれか 1項に 記載の抗体。
21. 請求の範囲第 10項ないし第 15項のいずれか 1項に記載の少なくとも 1種類の 抗体を用いることを特徴とするリポタンパク質 (a) の測定法。
22. 請求の範囲第 16項記載の抗体を用いることを特徴とするリポタンパク質 (a) の測定法。
23. 請求の範囲第 17項ないし第 19項のいずれか 1項に記載の少なくとも 1種類の 抗体を用いることを特徴とするアポリポタンパク質 (a) の測定法。
24. 請求の範囲第 20項記載の抗体を用いることを特徴とするアポリボタンパク質 (a) の測定法。
PCT/JP1993/001142 1992-08-14 1993-08-12 PEPTIDES CONTAINING RESPECTIVE AMINO ACID SEQUENCES SELECTED FROM AMONG THOSE OF LIPOPROTEIN(a) AND APOLIPOPROTEIN(a), ANTIBODIES RESPECTIVELY RECOGNIZING THESE AMINO ACID SEQUENCES, AND METHOD OF ASSAYING WITH THESE ANTIBODIES WO1994004563A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/211,747 US5733549A (en) 1992-08-14 1993-08-12 Peptides including amino acid sequences selected from lipoprotein (a) and apolipoprotein (a), antibodies recognizing these amino acid sequences, and methods of determination using these antibodies
EP94908101A EP0621284A4 (en) 1992-08-14 1993-08-12 PEPTIDES CONTAINING SELECTED RESPECTIVE AMINO ACID SELECTED FROM LIPOPROTEIN (a) AND APOLIPOPROTEIN (a), ANTIBODIES RECOGNIZING THESE AMINO ACID SEQUENCES AND ANALYSIS METHOD USING THE SAME.
AU47614/93A AU672028B2 (en) 1992-08-14 1993-08-12 Peptides containing respective amino acid sequences selected from among those of lipoprotein(a) and apolipoprotein(a), antibodies respectively recognizing these amino acid sequences, and method of assaying with these antibodies

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP4/237621 1992-08-14
JP23762192 1992-08-14
JP4/322237 1992-11-09
JP32223792 1992-11-09

Publications (1)

Publication Number Publication Date
WO1994004563A1 true WO1994004563A1 (en) 1994-03-03

Family

ID=26533285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001142 WO1994004563A1 (en) 1992-08-14 1993-08-12 PEPTIDES CONTAINING RESPECTIVE AMINO ACID SEQUENCES SELECTED FROM AMONG THOSE OF LIPOPROTEIN(a) AND APOLIPOPROTEIN(a), ANTIBODIES RESPECTIVELY RECOGNIZING THESE AMINO ACID SEQUENCES, AND METHOD OF ASSAYING WITH THESE ANTIBODIES

Country Status (4)

Country Link
US (1) US5733549A (ja)
EP (1) EP0621284A4 (ja)
AU (1) AU672028B2 (ja)
WO (1) WO1994004563A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009363A1 (fr) * 1993-09-29 1995-04-06 Yamasa Corporation Procede de titrage de lipoproteine oxydee et applications de ce procede
US5486476A (en) * 1993-02-09 1996-01-23 Boehringer Mannheim Gmbh Lipoprotein (a) peptides and their use
AU683508B2 (en) * 1993-12-21 1997-11-13 Akzo Nobel N.V. Immunoreactive peptides of APO(a)
JP2002539458A (ja) * 1999-03-16 2002-11-19 セレックス, インコーポレイテッド 唾液中のapoaおよびapob、ならびにそれらの比を検出するための方法およびデバイス
JP2014060968A (ja) * 2012-09-21 2014-04-10 Anges Mg Inc アポリポプロテイン(a)の特異的エピトープを含むDNAワクチン

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783400A (en) * 1990-04-27 1998-07-21 Genzyme Corporation Method for the isolation of lipoprotein allowing for the subsequent quantification of its mass and cholesterol content
AU672028B2 (en) * 1992-08-14 1996-09-19 Shino-Test Corporation Peptides containing respective amino acid sequences selected from among those of lipoprotein(a) and apolipoprotein(a), antibodies respectively recognizing these amino acid sequences, and method of assaying with these antibodies
AU7728596A (en) * 1995-11-09 1997-05-29 Arch Development Corporation Isolation of apo(a), compositions, and methods of use
WO1997021099A1 (en) * 1995-12-05 1997-06-12 Entremed, Inc. Method of diagnosis and treatment of atherosclerosis using anti-cholesterol antibodies
US6210906B1 (en) 1998-01-20 2001-04-03 Abbott Laboratories Specific antibodies to kringle 5 of apo(a) and methods of use therefor
CA2319129A1 (en) * 1998-01-30 1999-08-05 Human Genome Sciences, Inc. 67 human secreted proteins
DE19960500A1 (de) * 1999-12-15 2001-07-12 Giesing Michael Antikörper und Verfahren zu ihrer Herstellung, deren Verwendung sowie Immunisierungscocktails, Immunoassay-Sets und Peptide
US7144862B2 (en) 2000-08-24 2006-12-05 The Regents Of The University Of California Orally administered peptides to ameliorate atherosclerosis
US7199102B2 (en) * 2000-08-24 2007-04-03 The Regents Of The University Of California Orally administered peptides synergize statin activity
US7166578B2 (en) 2000-08-24 2007-01-23 The Regents Of The University Of California Orally administered peptides synergize statin activity
US8568766B2 (en) * 2000-08-24 2013-10-29 Gattadahalli M. Anantharamaiah Peptides and peptide mimetics to treat pathologies associated with eye disease
US7723303B2 (en) * 2000-08-24 2010-05-25 The Regents Of The University Of California Peptides and peptide mimetics to treat pathologies characterized by an inflammatory response
US6664230B1 (en) 2000-08-24 2003-12-16 The Regents Of The University Of California Orally administered peptides to ameliorate atherosclerosis
US7148197B2 (en) * 2000-08-24 2006-12-12 The Regents Of The University Of California Orally administered small peptides synergize statin activity
BR0115257A (pt) * 2000-11-10 2003-08-12 Proteopharma Aps Análogos de apolipoproteìna
US7217785B2 (en) * 2001-05-09 2007-05-15 The Regents Of The University Of California Cysteine-containing peptides having antioxidant properties
US6930085B2 (en) * 2002-04-05 2005-08-16 The Regents Of The University Of California G-type peptides to ameliorate atherosclerosis
GR1004477B (el) * 2002-04-23 2004-03-08 Ευσταθιος Γκονος Μεθοδος και κιτ ποσοτικης μετρησης της απολιποπρωτεινης j/clusterin στον ορο του αιματος
CA2549529A1 (en) * 2003-12-15 2005-06-30 The Regents Of The University Of California Helical synthetic peptides that stimulate cellular cholesterol efflux
JP2008513479A (ja) * 2004-09-16 2008-05-01 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア アテローム性動脈硬化症および他の病理を改善するためのg型ペプチドおよび他の薬剤
CA2595067A1 (en) 2004-12-06 2006-06-15 The Regents Of The University Of California Methods for improving the structure and function of arterioles
AU2006242651B2 (en) * 2005-04-29 2013-05-16 The Regents Of The University Of California Peptides and peptide mimetics to treat pathologies characterized by an inflammatory response
US20080293639A1 (en) * 2005-04-29 2008-11-27 The Regents Of The University Of California Peptides and peptide mimetics to treat pathologies characterized by an inflammatory response
JP2010538005A (ja) * 2007-08-28 2010-12-09 ユーエービー リサーチ ファウンデーション 合成アポリポ蛋白質e模倣ポリペプチドおよび使用方法
JP2010537638A (ja) 2007-08-28 2010-12-09 ユーエービー リサーチ ファウンデーション 合成アポリポ蛋白質e模倣ポリペプチドおよび使用方法
JP7081923B2 (ja) 2014-07-31 2022-06-07 ユーエイビー リサーチ ファンデーション アポe模倣ペプチド及び血漿コレステロールを取り除くためのより高い効果

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4970144A (en) * 1984-12-31 1990-11-13 International Genetic Engineering Peptide fragments of human apolipoprotein, type-specific antibodies and methods of use
WO1986004144A1 (en) * 1984-12-31 1986-07-17 International Genetic Engineering, Inc. Peptide fragments of human apolipoprotein, type-specific antibodies and methods of use
SE448324B (sv) * 1985-09-27 1987-02-09 Pharmacia Ab Sett vid immunkemisk bestemning av lipoproteiner och apolipoproteiner
US4839343A (en) * 1987-03-13 1989-06-13 Debiopharm, S.A. Preparation containing hexatriacontapeptides and methods of use
ATE152244T1 (de) * 1987-10-13 1997-05-15 Terrapin Tech Inc Verfahren zur herstellung von imunodiagnose- mitteln
SE8705139D0 (sv) * 1987-12-23 1987-12-23 Trion Forskning & Utveckling Forfarande for framstellning av ett stort antal peptidanaloger och nya peptidanaloger
ATE121197T1 (de) * 1988-01-19 1995-04-15 Pasteur Institut Immunometrisches verfahren zum nachweis von lipoprotein-teilchen, anti-lp(a) monoklonale antikörper und ihre anwendung zur diagnose von atherosklerose.
EP0330506A3 (en) * 1988-02-26 1990-06-20 Dana Farber Cancer Institute Vla proteins
US4945040A (en) * 1988-02-29 1990-07-31 Arch Development Corporation Immunoassay for lipoprotein(a)
AU3149289A (en) * 1988-03-18 1989-09-21 Rockefeller University, The Method and agent for inhibiting the binding of human polymorphonuclear leukocytes to endothelium and compositions therefor
DE68926427T2 (de) * 1988-03-25 1996-12-05 Univ Rockefeller Vom streptococcus m-protein abgeleitete synthetische peptide und damit hergestellte impfstoffe
CA2003316A1 (en) * 1988-11-18 1990-05-18 John F. Oram Hdl-binding proteins
JPH05507276A (ja) * 1990-05-03 1993-10-21 ニュー・イングランド・ディーコネス・ホスピタル・コーポレイション 動脈造影用合成ペプチド類
AU9088891A (en) * 1990-11-29 1992-06-25 John E. Carbaugh Diagnostic and therapeutic compositions and methods for lipoprotein(a)
JP3018110B2 (ja) * 1991-03-25 2000-03-13 第一化学薬品株式会社 モノクローナル抗体
AU672028B2 (en) * 1992-08-14 1996-09-19 Shino-Test Corporation Peptides containing respective amino acid sequences selected from among those of lipoprotein(a) and apolipoprotein(a), antibodies respectively recognizing these amino acid sequences, and method of assaying with these antibodies
JPH06113880A (ja) * 1992-09-30 1994-04-26 Chemo Sero Therapeut Res Inst モノクローナル抗体及びこれを用いたリポプロティンスモールaの測定方法
DE59409345D1 (de) * 1993-02-09 2000-06-21 Roche Diagnostics Gmbh Lipoprotein (a)-Peptide und deren Verwendung
ATE193021T1 (de) * 1993-02-09 2000-06-15 Roche Diagnostics Gmbh Lipoprotein (a)-peptide und deren verwendung

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Biochem. J., Vol. 288, No. 1 (1992), GI CHEN et al., "Studies on epitopes on low-density lipoprotein modified by 4-hydroxynonenal. Biochemical characterization and determination", pp. 249-254. *
Nature (London), Vol. 330, No. 6144 (1987), JOHN W. McLEAN et al., "cDNA sequence of human apolipoprotein (a) is homologous to plasminogen", pp. 132-137. *
See also references of EP0621284A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486476A (en) * 1993-02-09 1996-01-23 Boehringer Mannheim Gmbh Lipoprotein (a) peptides and their use
WO1995009363A1 (fr) * 1993-09-29 1995-04-06 Yamasa Corporation Procede de titrage de lipoproteine oxydee et applications de ce procede
AU683508B2 (en) * 1993-12-21 1997-11-13 Akzo Nobel N.V. Immunoreactive peptides of APO(a)
JP2002539458A (ja) * 1999-03-16 2002-11-19 セレックス, インコーポレイテッド 唾液中のapoaおよびapob、ならびにそれらの比を検出するための方法およびデバイス
JP2014060968A (ja) * 2012-09-21 2014-04-10 Anges Mg Inc アポリポプロテイン(a)の特異的エピトープを含むDNAワクチン

Also Published As

Publication number Publication date
EP0621284A4 (en) 1996-06-12
US5733549A (en) 1998-03-31
AU672028B2 (en) 1996-09-19
EP0621284A1 (en) 1994-10-26
AU4761493A (en) 1994-03-15

Similar Documents

Publication Publication Date Title
WO1994004563A1 (en) PEPTIDES CONTAINING RESPECTIVE AMINO ACID SEQUENCES SELECTED FROM AMONG THOSE OF LIPOPROTEIN(a) AND APOLIPOPROTEIN(a), ANTIBODIES RESPECTIVELY RECOGNIZING THESE AMINO ACID SEQUENCES, AND METHOD OF ASSAYING WITH THESE ANTIBODIES
JP5382570B2 (ja) ヒトhmgb1と特異的に結合する鳥類由来の抗体、ヒトhmgb1の免疫学的測定方法及びヒトhmgb1の免疫学的測定試薬
US9347954B2 (en) Antibody capable of binding to specific region of periostin, and method of measuring periostin using the same
JP4823465B2 (ja) ヒトhmg−1に特異的に結合する抗体並びにこの抗体を用いるヒトhmg−1の免疫学的測定方法及び免疫学的測定試薬
JPH0967398A (ja) 血清アミロイドaを認識するモノクローナル抗体
JP2959837B2 (ja) 癌関連ハプトグロビン
JPH04503006A (ja) 血液凝固XIIa因子βモノクローナル抗体およびイムノアッセイ
JPWO2020067396A1 (ja) 糖化ヘモグロビン(%)の測定方法
WO1999018435A1 (fr) Procede d'analyse de l'annexine v dans l'urine et utilisation
JP5055598B2 (ja) ヒトhmg−1に特異的に結合する抗体を用いるヒトhmg−1の免疫学的測定方法及び免疫学的測定試薬
JP2012082210A (ja) Adamts13活性検定用抗体及び活性検定方法
EP0812859B1 (en) ANTIFACTOR Xa-TISSUE FACTOR PATHWAY INHIBITOR COMPLEX MONOCLONAL ANTIBODY AND USE OF THE SAME
KR960008672B1 (ko) 심방 나트륨이뇨성 폴리펩티드를 인지하는 단일클론성 항체
WO2014147873A1 (ja) Hmgb1の分解産物と特異的に結合する抗体、並びにhmgb1の分解産物の測定方法及び測定試薬
JPH10226700A (ja) Miaの検出のためのイムノアッセイ
JP5852433B2 (ja) ソルチリンによる動脈硬化の判定方法
JP3713585B2 (ja) 変性又は修飾リポタンパク質(a)に結合する抗体及びこの抗体を用いる測定法
JP5280916B2 (ja) 抗ラットオステオカルシンモノクローナル抗体
JPH0667319B2 (ja) Anpのc端側を認識するモノクローナル抗体
JP4028925B2 (ja) モノクローナル抗体
JP2000069963A (ja) アポリポプロテインe4特異モノクローナル抗体
Nunomura et al. Characterization of mouse monoclonal antibodies to human protein 4.1 R FERM domain: epitope mapping and application to FERM domain binding to red blood cell inside-out vesicles
JP2021063020A (ja) Hmgb1の分解産物に結合する抗体、hmgb1分解産物の測定方法及びhmgb1分解産物の測定試薬
JP2005502711A (ja) Aa4rpアッセイのための組成物および方法
JPH0346116B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1994908101

Country of ref document: EP

Ref document number: 08211747

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994908101

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1996 730525

Country of ref document: US

Date of ref document: 19961011

Kind code of ref document: A

WWW Wipo information: withdrawn in national office

Ref document number: 1994908101

Country of ref document: EP