WO1994008706A1 - Microporous silica membrane, utilisation and fabrication thereof - Google Patents

Microporous silica membrane, utilisation and fabrication thereof Download PDF

Info

Publication number
WO1994008706A1
WO1994008706A1 PCT/ES1993/000087 ES9300087W WO9408706A1 WO 1994008706 A1 WO1994008706 A1 WO 1994008706A1 ES 9300087 W ES9300087 W ES 9300087W WO 9408706 A1 WO9408706 A1 WO 9408706A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
microporous
microporous silica
silica
sio
Prior art date
Application number
PCT/ES1993/000087
Other languages
Spanish (es)
French (fr)
Inventor
Mª José MUÑOZ-AGUADO
Miguel Gregorkiewitz
Original Assignee
Consejo Superior Investigaciones Cientificas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior Investigaciones Cientificas filed Critical Consejo Superior Investigaciones Cientificas
Priority to AU51784/93A priority Critical patent/AU5178493A/en
Publication of WO1994008706A1 publication Critical patent/WO1994008706A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0048Inorganic membrane manufacture by sol-gel transition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0046Inorganic membrane manufacture by slurry techniques, e.g. die or slip-casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • B01D2325/0231Dense layers being placed on the outer side of the cross-section

Definitions

  • Microporous silica membranes their use and manufacture
  • the membranes are used today as a "filter” for the separation of mixtures such as microfiltration, ultrafiltration, electrodialysis, dialysis, gas separation and reverse osmosis, and as partitions for compartmentalization in combustion cells, ionoselective electrodes , chemical sensors, slowed dosage of drugs, etc.
  • An ideal membrane would be based on a material that, with a precisely defined chemical composition and pore size, was permoselective specifically for a species or group of particles and impermeable for the remaining components of the mixture, and that at the same time it was possible to prepare film form with minimum thicknesses to optimize the flow.
  • Inorganic membranes have chemical and thermal properties that make them indispensable in many existing processes, and highly desirable for the development of new technologies [A Crull, lc]. However, so far only few inorganic materials in membrane form and with well defined porosity are achieved. These include alumina membranes that exist with pore diameters from a few ⁇ m to a minimum of 30-50 A [BE Yoldas. A Transparent porous alumina. Amer Ceram Soc. Bull. (1975) 54: 286-288; BE Yoldas. Alumina gels that form porous transparent Al 2 O 3 . J. Mater. Sci. (1975) 10: 1856-1860].
  • silica membrane promises, therefore, essentially smaller pores (micropores of 5 ⁇ 0 ⁇ 20 A) which would allow the introduction of inorganic materials in the field of separation at the molecular level (gas separation, reverse osmosis, etc. .).
  • an organic precursor such as Si (OC 2 H 5 ) 4 [A Kaiser, H Schmidt.
  • Patents of this type include the following:
  • the membrane object of the present invention is a purely inorganic composition material based essentially on silica (SiO 2 ) with a microporous structure, that is, with pore diameters of less than 2 nm, It consists of silica particles of the same radius, between 1 and 10 nm, which are linked to each other by siloxane bridges forming continuous barriers without cracks as partitions inside or as films on the surface of mesoporous supports.
  • This membrane is achieved by polycondensation of silica from exclusively inorganic precursors, avoiding structural indefinitions as well as the possible destructive effects that the organic remains could introduce, either during the drying step in the preparation of the membrane, or in its subsequent use at high temperatures.
  • the membranes obtained are purely inorganic and have microporos of defined size, which gives them high selectivity in separations at the molecular level (use as molecular sieves).
  • the microporous silica membrane is composed of silicon dioxide SiO 2 with varying amounts of water H 2 O, between 5 and 15% by weight, and mono-, di-, and trivalent cations as minor components. Its structure is amorphous in X-ray diffraction and is based on isometric SiO 2 particles inside which SiO 4 tetrahedra are found that share all their vertices with neighboring tetrahedra so that each oxygen is shared by two tetrahedra giving rise to a framework three-dimensional In the particle surface, finishing said fabric, are Si - O - Si - OH and Si - OM where M is a cation mono-, di-, or trivalent.
  • the proportion of silicon tetrahedra on the surface and inside the framework determined by high-resolution nuclear magnetic resonance spectroscopy for the core of 29 Si, is inversely proportional to the radius of the particle that can vary between 1 and 20 nm
  • Said SiO 2 particles are packed in the membrane, leaving micropores whose size is essentially defined by the particle size and can go down to diameters below 20 ⁇ with a porosity of up to 50% and a specific surface area of up to 800 m 2 -g " ⁇ determined by the BET interpretation of nitrogen adsorption-desorption isotherms.
  • the particles there are strong bonds based on chemical bonds, especially Si-O-Si siloxane type, which confer high chemical and thermal stability.
  • the microporous structure supports the attack with acids of concentrations of up to 4 molar, the treatment with organic solvents and temperatures up to 550-600 ° C, without losing its properties.
  • microporous silica forms permoselective barriers that, to increase their mechanical stability, are attached to a porous support (with pore diameter about 10 times or greater than those of silica) or by filling the porous volume as microporous partitions. of the support, or deposited as such a microporous membrane on one of the surfaces of the support.
  • the silica active membrane itself can also be manufactured in multilayer morphology, making the successive layers applied on the support present increasingly smaller pore diameters.
  • the barriers thus formed are continuous, without cracks or interruptions in the same silica or between it and the support, showing a virtually total absence of capillary flow of the Hagen-Poiseuille type.
  • membranes show a thermally activated transport with selectivity in the separation of mixtures such as oxygen and nitrogen gas, typical of a molecular sieve.
  • the pores are hydrophilic and said membrane has a fixed negative charge, which may be of interest for separations and processes where water is one of the constituents of the mixture as occurs, for example, in reverse osmosis.
  • these groups are replaced by more bulky, organic or inorganic ones, using conventional techniques, lower pore sizes can be achieved or the fixed electrostatic charge of the membrane can be defined, resulting in improved performance or new applications, especially in reverse osmosis or electrodialysis.
  • the microporous membrane is obtained from a commercially concentrated solution of soluble silicate, preferably sodium (of the order of 6 M in SiO 2 and with a SiO 2 / Na 2 O ratio of about 3.3), from which the silica, either by gelation by the addition of a mineral acid or by flocculation by the saline effect that is produced by adding a salt of a di or trivalent cation.
  • soluble silicate preferably sodium (of the order of 6 M in SiO 2 and with a SiO 2 / Na 2 O ratio of about 3.3)
  • the first is preferable in the case where the membrane is going to cover the surface of the porous support, the second in the case in which the silica formed is going to plug the macropores of the support with a microporous filler.
  • a mineral acid preferably hydrochloric acid
  • a solution of soluble silicate in predetermined amounts to achieve a final SiO 2 content on the order of 0.1 to 10% by weight.
  • the final pH is related to the pore size that is desired to be obtained in the layer that is much higher the higher the pH as can be seen in Table I.
  • the final silica content in the formed sun has an impact on gelation time and depends on the support and the morphology of the membrane to be obtained.
  • SiO 2 concentrations between 0.5 and 4% lead to layers with thicknesses of the order of 0.1 to 3 ⁇ m that gel at times, inversely proportional to the concentration, between 24 h and 5 min.
  • the tube is rotated on its horizontal axis at low revolutions (preferably 8 rpm) inside an airtight enclosure to maintain moisture until the sun has gelled, an operation that usually lasts less than 24 h.
  • drying is carried out, which is carried out in two steps, first at a temperature below 60 ° C for a time between 4 and 24 h, and then, in an oven, at more than 105 ° C, for more than 2 h.
  • This sequence of operations is repeated using gels more diluted in SiO 2 or lower final pH to obtain the different layers to be obtained, in order to achieve, on the one hand, that the transition between the particle size of the support and the membrane is gradual, thus reducing tensions in the subsequent stages of drying and, on the other hand, to prevent the following deposits from diffusing into the ceramic, by formation of a silica barrier obtained from the deposit of the first suns with a minimum gelation time, greater concentration and larger particle size.
  • the deposits of the different soles can be succeeded without going through the drying stage, to avoid fractures that would form in a deposit too thick. Only after the last deposit is the washing and drying as described.
  • soluble silicate preferably sodium (of the order of 6 M in SiO 2 and with a SiO 2 / Na 2 O ratio of about 3.3), as such or diluted to 1:10 with water , with which the support is filled, for example a tube, as in the previous variant but the solution remains in it between 5 seconds and 10 minutes.
  • Drying is then carried out, which is carried out in two steps, first at a temperature below 60 ° C for a time between 4 and 24 h, and then, in an oven, at more than 105 ° C, for more 2 h.
  • microporous silica partition that fills the windows or channels of the support.
  • Example 1 The support used is a ZrO 2 tube supplied by the company Societé Ceramiques Techniques, 30 mm long and 10 mm 0 exl and 7 mm 0 jn, with an average pore size of 100 nm.
  • the tube used as a support [1] is placed on top of another [2] of the same diameter but with the lacquered inner surface and it rests on a surface [3] so that it is closed at that end as shown in figure 1. Both tubes are filled with the sun so that when the two tubes are lifted together from the surface, the sun drains through the inner wall of the lacquered tube, and the tubes can now be separated.
  • the deposit is made in both directions, inverting the tube [1], and the sun keeps in contact with the support only the time necessary to fill the tube and then empty it.
  • the support is introduced into a rotating system (figure 2) where it is rotated, in a horizontal position at 8 r.p.m. for 24 h so that the sun is distributed homogeneously over the entire surface of the support, until gelation occurs.
  • a rotating system (figure 2) where it is rotated, in a horizontal position at 8 r.p.m. for 24 h so that the sun is distributed homogeneously over the entire surface of the support, until gelation occurs.
  • the supports are covered to maintain a humid atmosphere in order to avoid a rapid evaporation of the solvent that would cause the appearance of fractures.
  • next steps are, the washing of Cl " , until with AgNO 3 they are not detected; the treatment with acetone for the replacement of water and the drying that is carried out in two stages first at room temperature for 5 h and then in the stove to 120 ° C, for 24 hours, an operation that is repeated for each of the tanks.
  • the ceramic tube is filled with silicate and held for four minutes, then the solution is removed and when there are no left drops on the inner walls of the tube, it is filled with a solution of a salt of a metal, eg Cl 3 Fe 0.5M, being in this case in contact with the embedded support for 10 minutes, after which the Cl solution is removed 3
  • a salt of a metal eg Cl 3 Fe 0.5M
  • the support When the tube is filled, with sodium silicate or with the salt solution, the support must be kept completely full throughout the process, since during it the solutions diffuse into the support.
  • Figure 1 Diagram of the mounting of the support tube for inner film formation [1] Support tube [2] Complementary tube of the same internal diameter as [1] (non-porous or with 'lacquered inner surface) [3] Support and closure.
  • Figure 2 Experimental gelation device [1] Bell for maintaining humidity [2] Motor with variable speed between 0 and 30 rpm [3] Spindle [4] Tube support head

Abstract

The invention relates to a new microporous membrane having a purely inorganic composition based essentially on isometric silica particles with an acurately defined size distribution. The material has a high chemical and thermal stability and has, deposited as internal partition walls or ultrafine films on a surface of ceramic supports, molecular sieve properties. The membrane may be fabricated according to one of the following two processes: a) from sols obtained by acidification of a soluble silicate with a mineral acid, producing an asymmetric multilayer membrane when depositing said sols on a ceramic support, and b) by floculation of silica in the inside of a ceramic support, when contacting the support impregnated with a soluble silicate with a solution of a bivalent or trivalent metal salt, thereby producing a microporous partition wall by filling the porous volume of the support with microporous silica.

Description

TítuloTitle
Membranas microporosas de sílice, su utilización y fabricaciónMicroporous silica membranes, their use and manufacture
Campo de la técnicaTechnical field
Membranas inorgánicas de sílice.Inorganic silica membranes.
Procedimientos de separación que utilizan membranas semipermeables (B01D612).Separation procedures using semipermeable membranes (B01D612).
Separación de gases o vapores por difusión (B01D53)Separation of gases or vapors by diffusion (B01D53)
IntroducciónIntroduction
En respuesta a los problemas medioambientales y la limitación de los recursos naturales, se observa, empezando con la llamada crisis energética en el 1972, una creciente importancia de los procesos alternativos basados en membranas que, debido a su mayor especificidad y menor consumo energético, se introdujeron tanto para cumplir funciones nuevas como para sustituir tecnologías más antiguas allá donde éstas hayan resultado obsoletas. Desde su consolidación en los primeros años de la década de los ochenta, el mercado de membranas sigue actualmente creciendo con un incremento anual de =20% y una cada vez mayor diversificación en las aplicaciones específicas [A Crull. Prospects for the inorganic membrane business. Key Engineering Materials (1991) 61 & 62: 279-288.].In response to environmental problems and the limitation of natural resources, it is observed, beginning with the so-called energy crisis in 1972, a growing importance of alternative membrane-based processes that, due to their greater specificity and lower energy consumption, are they introduced both to fulfill new functions and to replace older technologies where they have been obsolete. Since its consolidation in the early years of the 1980s, the membrane market is still growing with an annual increase of = 20% and an increasing diversification in specific applications [A Crull. Prospects for the inorganic membrane business. Key Engineering Materials (1991) 61 & 62: 279-288.].
Las membranas se utilizan hoy en día a modo de "filtro" para la separación de mezclas como en la microfiltración, ultrafiltración, electrodiálisis, diálisis, separación de gases y osmosis inversa, y a modo de tabiques para la compartimentación en celdas de combustión, electrodos ionoselectivos, sensores químicos, dosificación ralentizada de fármacos, etc.The membranes are used today as a "filter" for the separation of mixtures such as microfiltration, ultrafiltration, electrodialysis, dialysis, gas separation and reverse osmosis, and as partitions for compartmentalization in combustion cells, ionoselective electrodes , chemical sensors, slowed dosage of drugs, etc.
Una membrana ideal estaría basada en un material que, con una composición química y tamaño de poros exactamente definidos, fuese permoselectiva específicamente para una especie o grupo de partículas e impermeable para los restantes componentes de la mezcla, y que al mismo tiempo fuese posible preparar en forma de película con espesores mínimos para optimizar el flujo. Estado de la técnicaAn ideal membrane would be based on a material that, with a precisely defined chemical composition and pore size, was permoselective specifically for a species or group of particles and impermeable for the remaining components of the mixture, and that at the same time it was possible to prepare film form with minimum thicknesses to optimize the flow. State of the art
Las membranas inorgánicas tienen propiedades químicas y térmicas que las hacen indispensables en muchos procesos existentes, y altamente deseables para el desarrollo de nuevas tecnologías [A Crull, l.c.]. Sin embargo, hasta ahora sólo se consiguen pocos materiales inorgánicos en forma de membrana y con porosidad bien definida. Entre ellos figuran las membranas de alúmina que existen con diámetros de poros desde algunos μm hasta un mínimo de 30-50 A [B E Yoldas. A Transparent porous alumina. Amer. Ceram. Soc. Bull. (1975) 54: 286-288; B E Yoldas. Alumina gels that form porous transparent Al2O3. J. Mater. Sci. (1975) 10: 1856-1860]. Este tipo de membranas tiene una elevada porosidad («50% [B E Yoldas, l.c.; A F M Lenaars, K Keizer, A J Burggraaf. The prepara¬ ron and characterization of alumina membranes with ultrafine pores. Parí 1. Microstructural investigations on non-supported membranes. J. Mater. Sci. (1984) 19: 1077-1088]) y flujos aceptables que dependen del tamaño de poro y espesor y dan valores, p.e. para agua en una membrana de 2 μm de espesor y con diámetro de poros de 60 A, de =3 μl-cm -s [L Cot, C Guizard, A Larbot. Novel ceramic material for liquid separation process: present and prospective applications in microfiltration and ultrafiltration. Industrial Ceramics (1988) 8: 143-148]. Su selectividad, sin embargo, se limita al campo de la ultrafiltración y micro- filtración (50 A - 2 μm), ya que no fue posible [A F M Lenaars et al, l.c.] fabricar membranas de Al2O3 con poros de diámetro menor de 30 A. Resultados similares se han obtenido también para membranas de ZrO2 y TiO2 [A Larbot, J A Alary, C Guizard, J P Fabre, N Idrissi, L Cot. Strati sottili di ceramici ottenuti con la técnica sol-gel (membrane inorganiche) per la filtrazione di liquidi. Ceramurgia (1988) 18: 216-218] sin que se haya rebasado el límite inferior de 30 A para los diámetros de poro.Inorganic membranes have chemical and thermal properties that make them indispensable in many existing processes, and highly desirable for the development of new technologies [A Crull, lc]. However, so far only few inorganic materials in membrane form and with well defined porosity are achieved. These include alumina membranes that exist with pore diameters from a few μm to a minimum of 30-50 A [BE Yoldas. A Transparent porous alumina. Amer Ceram Soc. Bull. (1975) 54: 286-288; BE Yoldas. Alumina gels that form porous transparent Al 2 O 3 . J. Mater. Sci. (1975) 10: 1856-1860]. This type of membrane has a high porosity («50% [BE Yoldas, lc; AFM Lenaars, K Keizer, AJ Burggraaf. The preparation and characterization of alumina membranes with ultrafine pores. Pari 1. Microstructural investigations on non-supported membranes J. Mater. Sci. (1984) 19: 1077-1088]) and acceptable flows that depend on the pore size and thickness and give values, eg for water in a membrane of 2 μm thickness and with pore diameter of 60 A, of = 3 μl-cm -s [L Cot, C Guizard, A Larbot. Novel ceramic material for liquid separation process: present and prospective applications in microfiltration and ultrafiltration. Industrial Ceramics (1988) 8: 143-148]. Its selectivity, however, is limited to the field of ultrafiltration and micro filtration (50 A - 2 μm), since it was not possible [AFM Lenaars et al, lc] to manufacture Al 2 O 3 membranes with pores of smaller diameter of 30 A. Similar results have also been obtained for ZrO 2 and TiO 2 membranes [A Larbot, JA Alary, C Guizard, JP Fabre, N Idrissi, L Cot. Strati sottili di ceramici ottenuti with the sol-gel technique (membrane inorganiche) per la filtrazione di liquidi. Ceramurgia (1988) 18: 216-218] without exceeding the lower limit of 30 A for pore diameters.
Por otro lado se sabe que el tamaño de poro aumenta inversamente con la superficie específica. Uno de los materiales de mayor superficie específica es la sílice, SiO2, con hasta 700 m2/g [R.K. Iler. The Chemistry of Silica. Ed. John Wiley & Sons 1979. 866 pag.]. Una membrana de sílice promete, por lo tanto, poros esencialmente más pequeños (microporos de 5 < 0 < 20 A) lo que permitiría la introducción de materiales inorgánicos en el campo de la separación a nivel molecular (separación de gases, osmosis inversa, etc.). Hasta ahora, los intentos de fabricar membranas de sílice se basaron en la policon- densación de un precursor orgánico como Si(OC2H5)4 [A Kaiser, H Schmidt. Generation of SiO2 membranes from alkoxysilanes on porous supports. J Non-Cryst. Solids (1984) 63: 261-271.] o de soluciones de sílice neutralizadas y mezcladas con aditivos orgánicos [A Larbot, A Julbe, C Guizard, L Cot. Silica membranes by the sol-gel process. J. Membrane Science (1989) 44: 289-293], pero sin conseguir membranas microporosas, libres de fracturas y de espesor fino.On the other hand it is known that the pore size increases inversely with the specific surface. One of the materials with the largest specific surface area is silica, SiO 2 , with up to 700 m 2 / g [RK Iler. The Chemistry of Silica. Ed. John Wiley & Sons 1979. 866 pag.]. A silica membrane promises, therefore, essentially smaller pores (micropores of 5 <0 <20 A) which would allow the introduction of inorganic materials in the field of separation at the molecular level (gas separation, reverse osmosis, etc. .). Until now, attempts to make silica membranes have been based on the polycondensation of an organic precursor such as Si (OC 2 H 5 ) 4 [A Kaiser, H Schmidt. Generation of SiO 2 membranes from alkoxysilanes on porous supports. J Non-Cryst. Solids (1984) 63: 261-271.] Or of neutralized silica solutions mixed with organic additives [A Larbot, A Julbe, C Guizard, L Cot. Silica membranes by the sol-gel process. J. Membrane Science (1989) 44: 289-293], but without obtaining microporous membranes, free of fractures and of fine thickness.
Entre las patentes de este tipo cabe destacar las siguientes:Patents of this type include the following:
- EP 0 094 060 (16-11-83), prioridad DE 3217047 820506 "Membranas constitui¬ das por heteropolicondensados de ácido silícico, proceso para su fabricación y utilización".- EP 0 094 060 (16-11-83), priority DE 3217047 820506 "Membranes constituted by heteropolycondensates of silicic acid, process for their manufacture and use".
- JP 03127615 (30-5-91) "Manufacture of porous composite for e.g. filtration membrane comprises filling comunicating pores of inorganic material with gel by sol-gel reaction".- JP 03127615 (30-5-91) "Manufacture of porous composite for e.g. filtration membrane comprises filling communicating pores of inorganic material with gel by sol-gel reaction".
EP 0 332 789 (17-3-88), "Membrane de filtration et procede de fabrication"EP 0 332 789 (17-3-88), "Membrane de filtration et proceed de fabrication"
EP 0 248 748 (9-12-87), prioridad FR 8607920 "Procedes de fabrication de mem¬ branes minerales et poudre d'oxydes mixtes de titane et de silicium"EP 0 248 748 (9-12-87), priority FR 8607920 "You come from the manufacture of mineral et poudre d'oxydes mixtes de titane et de silicium"
Breve descripción de la invenciónBrief Description of the Invention
A diferencia de las membranas conocidas hasta ahora, la membrana objeto de la presente invención es un material de composición puramente inorgánica basada esencial¬ mente en sílice (SiO2) con una estructura microporosa, es decir, de diámetros de poros inferiores a 2 nm, constituida por partículas de sílice de un mismo radio, comprendido entre 1 y 10 nm, que se encuentran enlazadas entre sí por puentes siloxano formando barreras continuas y sin grietas como tabiques en el interior o como películas en la superficie de soportes mesoporosos. Esta membrana se consigue mediante policondensación de sílice a partir de precur¬ sores exclusivamente inorgánicos, evitándose las indefiniciones estructurales así como los posibles efectos destructivos que los restos orgánicos pudieran introducir, bien durante el paso de secado en la preparación de la membrana, o bien en su posterior empleo a elevadas temperaturas.Unlike the membranes known so far, the membrane object of the present invention is a purely inorganic composition material based essentially on silica (SiO 2 ) with a microporous structure, that is, with pore diameters of less than 2 nm, It consists of silica particles of the same radius, between 1 and 10 nm, which are linked to each other by siloxane bridges forming continuous barriers without cracks as partitions inside or as films on the surface of mesoporous supports. This membrane is achieved by polycondensation of silica from exclusively inorganic precursors, avoiding structural indefinitions as well as the possible destructive effects that the organic remains could introduce, either during the drying step in the preparation of the membrane, or in its subsequent use at high temperatures.
La estructura con distribución del tamaño de poros bien definida, y con una morfo¬ logía sin fracturas lo más delgada posible, se consigue mediante el riguroso control de:The structure with well-defined pore size distribution, and with a morphology without fractures as thin as possible, is achieved through the rigorous control of:
a) La policondensación variando pH, concentración y tiempo de gelificación de los soles, b) la formación del gel encima o en el interior de un soporte cerámico, c) el secado y, d) el ajuste a la estructura del soporte eventualmente repitiendo el depósito variando el tamaño de partícula del gel.a) Polycondensation by varying pH, concentration and gelation time of the suns, b) gel formation on or inside a ceramic support, c) drying and, d) adjustment to the structure of the support eventually repeating the deposit varying the particle size of the gel.
Las membranas obtenidas son puramente inorgánicas y tienen microporós de tamaño definido, lo que les confiere elevada selectividad en separaciones a nivel molecular (utiliza¬ ción como tamices moleculares).The membranes obtained are purely inorganic and have microporos of defined size, which gives them high selectivity in separations at the molecular level (use as molecular sieves).
Descripción detallada de la invenciónDetailed description of the invention
La descripción detallada de la invención se hará dividiendo esta en las tres partes para las que se solicita la protección: la membrana objeto de la invención, su utilización como tamiz molecular y la manera de obtenerla.The detailed description of the invention will be done by dividing this into the three parts for which protection is requested: the membrane object of the invention, its use as a molecular sieve and the way to obtain it.
Descripción de la membranaMembrane description
La membrana microporosa de sílice está compuesta de dióxido de silicio SiO2 con variables cantidades de agua H2O, entre un 5 y un 15 % en peso, y cationes mono-, di-, y trivalentes como componentes menores. Su estructura es amorfa en difracción de rayos X y está basada en partículas isométricas de SiO2 en cuyo interior se encuentran tetraedros de SiO4 que comparten todos sus vértices con tetraedros vecinos de manera que cada oxígeno está compartido por dos tetraedros dando lugar a un entramado tridimensional. En la superficie de las partículas, acabando dicho entramado, se encuentran grupos Si — O , Si — OH y Si — OM, donde M es un catión mono-, di-, o trivalente. La proporción de los tetraedros de silicio en la superficie y en el interior del entramado, determinada por espec¬ troscopia de resonancia magnética nuclear de alta resolución para el núcleo de 29Si, es inversamente proporcional al radio de la partícula que puede variar entre 1 y 20 nm.The microporous silica membrane is composed of silicon dioxide SiO 2 with varying amounts of water H 2 O, between 5 and 15% by weight, and mono-, di-, and trivalent cations as minor components. Its structure is amorphous in X-ray diffraction and is based on isometric SiO 2 particles inside which SiO 4 tetrahedra are found that share all their vertices with neighboring tetrahedra so that each oxygen is shared by two tetrahedra giving rise to a framework three-dimensional In the particle surface, finishing said fabric, are Si - O - Si - OH and Si - OM where M is a cation mono-, di-, or trivalent. The proportion of silicon tetrahedra on the surface and inside the framework, determined by high-resolution nuclear magnetic resonance spectroscopy for the core of 29 Si, is inversely proportional to the radius of the particle that can vary between 1 and 20 nm
Dichas partículas de SiO2 están empaquetadas en la membrana, dejando microporos cuyo tamaño está esencialmente definido por la dimensión de la partícula y puede bajar hasta diámetros inferiores a 20 Á con una porosidad de hasta un 50 % y una superficie específica de hasta 800 m2-g"\ determinada mediante la interpretación BET de las isotermas de adsorción-desorción de nitrógeno. Entre las partículas existen uniones fuertes basadas en enlaces químicos sobre todo de tipo siloxano Si-O-Si, que confieren una elevada estabili¬ dad química y térmica a la membrana; la estructura microporosa soporta el ataque con ácidos de concentraciones de hasta 4 molar, el tratamiento con solventes orgánicos y temperaturas hasta 550-600°C, sin perder sus propiedades.Said SiO 2 particles are packed in the membrane, leaving micropores whose size is essentially defined by the particle size and can go down to diameters below 20 Á with a porosity of up to 50% and a specific surface area of up to 800 m 2 -g " \ determined by the BET interpretation of nitrogen adsorption-desorption isotherms. Among the particles there are strong bonds based on chemical bonds, especially Si-O-Si siloxane type, which confer high chemical and thermal stability. to the membrane; the microporous structure supports the attack with acids of concentrations of up to 4 molar, the treatment with organic solvents and temperatures up to 550-600 ° C, without losing its properties.
Morfológicamente, dicha sílice microporosa forma barreras permoselectívas que, para aumentar su estabilidad mecánica, se presentan unidas a un soporte poroso (con diámetro de los poros unas 10 veces o más mayores que los de la sílice) o bien llenando como tabiques microporosos el volumen poroso del soporte, o bien depositada como tal membrana microporosa en una de las superficies del soporte.Morphologically, said microporous silica forms permoselective barriers that, to increase their mechanical stability, are attached to a porous support (with pore diameter about 10 times or greater than those of silica) or by filling the porous volume as microporous partitions. of the support, or deposited as such a microporous membrane on one of the surfaces of the support.
Cuando la sílice se deposita sobre el soporte, su conjunto tiene una morfología asimétrica de multicapa que permite espesores mínimos para la capa activa microporosa sin perjuicio para su estabilidad mecánica. Para aumentar este efecto, a su vez la propia membrana activa de sílice puede fabricarse también en morfología de multicapa, haciendo que las capas sucesivas que se aplican sobre el soporte presenten diámetros de poro cada vez mas pequeños. Las barreras así formadas (tanto en relleno como en capa) son continuas, sin grietas ni interrupciones en la misma sílice o entre ésta y el soporte, mostrando una ausencia prácticamente total de flujo capilar de tipo Hagen-Poiseuille. Utilización de las membranasWhen the silica is deposited on the support, its assembly has an asymmetric multilayer morphology that allows minimum thicknesses for the microporous active layer without prejudice to its mechanical stability. To increase this effect, in turn the silica active membrane itself can also be manufactured in multilayer morphology, making the successive layers applied on the support present increasingly smaller pore diameters. The barriers thus formed (both in fill and in layer) are continuous, without cracks or interruptions in the same silica or between it and the support, showing a virtually total absence of capillary flow of the Hagen-Poiseuille type. Membrane use
Estas membranas muestran un transporte térmicamente activado con selectividad en la separación de mezclas tales como las de oxígeno y nitrógeno gaseosos, típico de un tamiz molecular.These membranes show a thermally activated transport with selectivity in the separation of mixtures such as oxygen and nitrogen gas, typical of a molecular sieve.
El mecanismo, según el cual tiene lugar la difusión de gases, es intermedio entre difusión de Knudsen y difusión de Einstein-Smoluchowski, lo que da lugar a una elevada selectividad química, que a su vez le confiere un gran interés para ciertas aplicaciones, tales como la separación de gases, la osmosis inversa e hiperfiltración, la electrodiálisis o como sensor químico.The mechanism, according to which the diffusion of gases takes place, is intermediate between diffusion of Knudsen and diffusion of Einstein-Smoluchowski, which gives rise to a high chemical selectivity, which in turn gives it great interest for certain applications, such such as gas separation, reverse osmosis and hyperfiltration, electrodialysis or as a chemical sensor.
Al contener la membrana grupos Si — OH, Si — O o Si — OM en sus paredes, los poros son de carácter hidrófilo y dicha membrana tiene carga fija negativa, lo que puede tener interés para separaciones y procesos donde el agua sea uno de los constituyentes de la mezcla como ocurre, por ejemplo, en la osmosis inversa. Además, si se sustituyen estos grupos por otros más voluminosos, orgánicos o inorgánicos, utilizando técnicas convencio¬ nales, se puede conseguir tamaños inferiores de poro o definir la carga electrostática fija de la membrana, dando lugar a prestaciones mejoradas o nuevas aplicaciones, sobre todo en osmosis inversa o electrodiálisis.When the membrane contains Si-OH, Si-O - or Si-OM groups in its walls, the pores are hydrophilic and said membrane has a fixed negative charge, which may be of interest for separations and processes where water is one of the constituents of the mixture as occurs, for example, in reverse osmosis. In addition, if these groups are replaced by more bulky, organic or inorganic ones, using conventional techniques, lower pore sizes can be achieved or the fixed electrostatic charge of the membrane can be defined, resulting in improved performance or new applications, especially in reverse osmosis or electrodialysis.
Procedimiento de obtenciónObtaining procedure
Esencialmente, la membrana microporosa se obtiene partiendo de una solución comercial concentrada de silicato soluble, preferentemente sódico (del orden de 6 M en SiO2 y con una relación SiO2/Na2O de alrededor de 3.3), de la cual se separa la sílice, bien por gelificación por la adición de un ácido mineral o por floculación por el efecto salino que se produce al añadir una sal de un catión di o trivalente. La primera es preferible en el caso en que la membrana va a recubrir la superficie del soporte poroso, la segunda en el caso en que la sílice formada va a taponar los macroporos del soporte con un relleno microporoso.Essentially, the microporous membrane is obtained from a commercially concentrated solution of soluble silicate, preferably sodium (of the order of 6 M in SiO 2 and with a SiO 2 / Na 2 O ratio of about 3.3), from which the silica, either by gelation by the addition of a mineral acid or by flocculation by the saline effect that is produced by adding a salt of a di or trivalent cation. The first is preferable in the case where the membrane is going to cover the surface of the porous support, the second in the case in which the silica formed is going to plug the macropores of the support with a microporous filler.
Formación de película superficial por gelificación. A un recipiente de volumen apropiado, dotado de un dispositivo para producir una agitación vigorosa, con un determi- nado volumen de agua, se añade un ácido mineral, preferentemente ácido clorhídrico, estableciendo un pH final entre 0 y 9, aunque normalmente es suficiente entre 1 y 8, y una solución de silicato soluble en cantidades predeterminadas para conseguir un contenido final en SiO2 del orden de un 0.1 a un 10 % en peso.Surface film formation by gelation. To a container of appropriate volume, provided with a device to produce vigorous agitation, with a detergent With a large volume of water, a mineral acid, preferably hydrochloric acid, is added, establishing a final pH between 0 and 9, although usually 1 to 8 is sufficient, and a solution of soluble silicate in predetermined amounts to achieve a final SiO 2 content on the order of 0.1 to 10% by weight.
El pH final está relacionado con el tamaño de poro que se desea obtener en la capa que es tanto mayor cuanto mayor sea el pH como puede verse en la Tabla I.The final pH is related to the pore size that is desired to be obtained in the layer that is much higher the higher the pH as can be seen in Table I.
El contenido final de sílice en el sol formado repercute sobre todo en el tiempo de gelificación y depende del soporte y de la morfología de la membrana a obtener. En el caso de soportes de ZrO2, que tienen un diámetro de poro de 100 nm, y utilizando técnicas de deposición del tipo dip-coating (recubrimiento por inmersión), concentraciones de SiO2 entre el 0.5 y 4 % conducen a capas con espesores del orden de 0.1 a 3 μm que gelifican en tiempos, inversamente proporcionales a la concentración, entre 24 h y 5 min.The final silica content in the formed sun has an impact on gelation time and depends on the support and the morphology of the membrane to be obtained. In the case of ZrO 2 supports, which have a pore diameter of 100 nm, and using deposition techniques of the dip-coating type (immersion coating), SiO 2 concentrations between 0.5 and 4% lead to layers with thicknesses of the order of 0.1 to 3 μm that gel at times, inversely proportional to the concentration, between 24 h and 5 min.
Figure imgf000009_0001
Figure imgf000009_0001
(El diámetro de partícula se ha medido por difracción de neutrones y el diámetro de poro por BET) Cuando el diámetro de poro del soporte es del orden de 100 veces mayor que el que se va a obtener en la última capa, se procede según la siguiente secuencia de operaciones:(The particle diameter has been measured by neutron diffraction and the pore diameter by BET) When the pore diameter of the support is of the order of 100 times greater than that which is to be obtained in the last layer, it proceeds according to the following sequence of operations:
a.) El sol se deposita sobre el soporte cerámico. En el caso de que el soporte sea tubular [1] se suplementa éste con otro tubo [2] del mismo diámetro interior cegado en su parte inferior [3] como se muestra en la figura 1 y se carga por su parte superior con el sol obtenido.a.) The sun is deposited on the ceramic support. In the event that the support is tubular [1] it is supplemented with another tube [2] of the same inner diameter blinded in its lower part [3] as shown in Figure 1 and is charged by the top with the sun obtained.
b Inmediatamente se descarga el sol retirando la pieza inferior [3] y, cuando ha escurrido todo el sol, se retira el tubo supletorio [2] evitándose así que se formenb The sun is immediately discharged by removing the lower part [3] and, when all the sun has drained, the extra tube [2] is removed, thus preventing them from forming
"lágrimas" en el extremo inferior del tubo que, resultando en un mayor espesor del depósito, darían lugar a la formación de grietas en el secado."tears" at the lower end of the tube which, resulting in a greater thickness of the deposit, would result in the formation of cracks in drying.
Cj) El tubo se hace girar sobre su eje horizontal a bajas revoluciones (preferiblemen- te 8 r.p.m.) dentro de un recinto hermético para mantener la humedad hasta que ha gelificado el sol, operación que suele durar menos de 24 h.C j ) The tube is rotated on its horizontal axis at low revolutions (preferably 8 rpm) inside an airtight enclosure to maintain moisture until the sun has gelled, an operation that usually lasts less than 24 h.
dj Después se lava con agua para eliminar el anión del ácido empleado y después se trata con un solvente de baja tensión superficial, tal como acetona, para evitar la ruptura de la película por creación de tensiones capilares que son tanto mayores cuanto mayor es la tensión superficial del solvente empleado.dj Then it is washed with water to remove the anion of the acid used and then treated with a solvent of low surface tension, such as acetone, to prevent the breakage of the film by creating capillary tensions that are both greater the higher the tension surface of the solvent used.
e A continuación se procede al secado, que se realiza en dos pasos, primero a una temperatura menor de 60 °C durante un tiempo comprendido entre 4 y 24 h y, luego, en estufa, a más de 105 °C, durante más de 2 h.e Next, drying is carried out, which is carried out in two steps, first at a temperature below 60 ° C for a time between 4 and 24 h, and then, in an oven, at more than 105 ° C, for more than 2 h.
Esta secuencia de operaciones se repite empleando geles más diluidos en SiO2 ó pH final más bajo para obtener las diferentes capas que se quiera obtener, con el fin de conse¬ guir, por una parte, que la transición entre el tamaño de partícula del soporte y la membrana sea gradual, disminuyendo así las tensiones en las posteriores etapas de secado y, por otra parte, para evitar que los siguientes depósitos difundan hacia el interior de la cerámica, por formación de una barrera de sílice obtenida a partir del depósito de los primeros soles con un tiempo de gelificación mínima, mayor concentración y mayor tamaño de partícula.This sequence of operations is repeated using gels more diluted in SiO 2 or lower final pH to obtain the different layers to be obtained, in order to achieve, on the one hand, that the transition between the particle size of the support and the membrane is gradual, thus reducing tensions in the subsequent stages of drying and, on the other hand, to prevent the following deposits from diffusing into the ceramic, by formation of a silica barrier obtained from the deposit of the first suns with a minimum gelation time, greater concentration and larger particle size.
Cuando el tamaño de poro del soporte es del orden de 10 veces el tamaño de poro más fino que se desea obtener, los depósitos de los diferentes soles se pueden suceder sin pasar por la etapa de secado, para evitar las fracturas que se formarían en un depósito demasiado grueso. Sólo después del último depósito se procede al lavado y secado como se ha descrito.When the pore size of the support is of the order of 10 times the finest pore size that it is desired to obtain, the deposits of the different soles can be succeeded without going through the drying stage, to avoid fractures that would form in a deposit too thick. Only after the last deposit is the washing and drying as described.
Relleno de los poros del soporte por el método de floculación. Cuando el depósito de la sílice microporosa se realiza por floculación en el interior de un soporte cerámico, se procede de la siguiente manera para cargarlo total o parcialmente, es decir para rellenar todos los poros o sólo la parte más próxima a la superficie, lo cual depende del tiempo de permanencia, como se indica a continuación en a2, del sol en contacto con el soporte:Filling the pores of the support by the flocculation method. When the deposition of the microporous silica is carried out by flocculation inside a ceramic support, proceed as follows to fully or partially load it, that is, to fill all the pores or only the part closest to the surface, which It depends on the residence time, as indicated below in a 2 , of the sun in contact with the support:
a2) Se parte de la solución comercial de silicato soluble, preferentemente sódico (del orden de 6 M en SiO2 y con una relación SiO2/Na2O de alrededor de 3.3), como tal o diluida hasta 1:10 con agua, con la que se llena el soporte, por ejemplo un tubo, como en la variante anterior pero permaneciendo la solución en él entre 5 segundos y 10 minutos.a 2 ) Start from the commercial solution of soluble silicate, preferably sodium (of the order of 6 M in SiO 2 and with a SiO 2 / Na 2 O ratio of about 3.3), as such or diluted to 1:10 with water , with which the support is filled, for example a tube, as in the previous variant but the solution remains in it between 5 seconds and 10 minutes.
b2) Se descarga la solución retirando la pieza inferior [3] (figura 1) y, cuando ha escurrido toda, se retira el tubo supletorio [2] evitándose así que se formen "lágri¬ mas" en el extremo inferior del tubo que darían lugar a inhomogeneidades en el depósito microporoso.b 2 ) The solution is discharged by removing the lower part [3] (figure 1) and, when all has drained, the extra tube [2] is removed, thus preventing "tears" from forming at the lower end of the tube they would lead to inhomogeneities in the microporous deposit.
c2) Se carga ahora con una solución entre 0.1 a 2 M de una sal de catión di o trivalente, permaneciendo la solución en el interior del soporte entre 1 segundo y 30 minutos. d2) Se descarga la solución salina retirando, nuevamente, la pieza inferior [3] y, cuando ha escurrido toda, se retira el tubo supletorio [2] evitándose inhomogenei¬ dades en el depósito microporoso.c 2 ) It is now loaded with a solution between 0.1 to 2 M of a di or trivalent cation salt, the solution remaining inside the support for 1 second to 30 minutes. d 2 ) The saline solution is discharged by removing, again, the lower part [3] and, when all has drained, the supplementary tube [2] is removed avoiding inhomogeneities in the microporous reservoir.
e2) Después se lava, primero con un ácido mineral para eliminar los productos de la hidrólisis y, después, con agua para eliminar el ácido empleado y después se trata con un solvente de baja tensión superficial, tal como acetona, para evitar la ruptura del depósito por creación de tensiones que son tanto mayores cuanto mayor es la tensión superficial del solvente empleado.e 2 ) Then wash, first with a mineral acid to remove hydrolysis products and then with water to remove the acid used and then treated with a solvent of low surface tension, such as acetone, to prevent breakage of the deposit due to the creation of tensions that are much greater, the greater the surface tension of the solvent used.
f2) A continuación se procede al secado, que se realiza en dos pasos, primero a una temperatura menor de 60 °C durante un tiempo comprendido entre 4 y 24 h y, luego, en estufa, a más de 105 °C, durante más de 2 h.f 2 ) Drying is then carried out, which is carried out in two steps, first at a temperature below 60 ° C for a time between 4 and 24 h, and then, in an oven, at more than 105 ° C, for more 2 h.
Al final se obtiene un tabique microporoso de sílice que llena las ventanas o canales del soporte.At the end you get a microporous silica partition that fills the windows or channels of the support.
EjemplosExamples
Ejemplo 1 El soporte empleado es un tubo de ZrO2 suministrado por la firma Societé Cerami- ques Techniques de 30 mm de longitud y 10 mm 0exl y 7 mm 0jn que presenta un tamaño de poro medio de 100 nm.Example 1 The support used is a ZrO 2 tube supplied by the company Societé Ceramiques Techniques, 30 mm long and 10 mm 0 exl and 7 mm 0 jn, with an average pore size of 100 nm.
Se parte de una solución de silicato soluble comercial con una relación en peso de SiO2/Na2O igual a 3.3 y una concentración molar de SiO2 igual a 6; se diluye con agua para alcanzar una concentración de SiO2 igual o menor de un 3 % y se acidifica, bajo agitación vigorosa, con C1H 2N, hasta alcanzar el valor de pH necesario de acuerdo con el tamaño de poro deseado (ver Tabla I).It is based on a commercial soluble silicate solution with a weight ratio of SiO 2 / Na 2 O equal to 3.3 and a molar concentration of SiO 2 equal to 6; it is diluted with water to reach a concentration of SiO 2 equal to or less than 3% and acidified, under vigorous stirring, with C1H 2N, until reaching the necessary pH value according to the desired pore size (see Table I) .
Una vez obtenido el sol, inmediatamente después de su formación, se deposita sobre el soporte cerámico en una o varias capas según la morfología deseada. Para el depósito de los soles, el tubo que se utiliza como soporte [1] se coloca encima de otro [2] del mismo diámetro pero con la superficie interior lacada y éste se apoya sobre una superficie [3] de tal forma que quede cerrado en ese extremo como se muestra en la figura 1. Ambos tubos se rellenan con el sol de forma que al levantar los dos tubos conjuntamente de la superficie, el sol escurre por la pared interior del tubo lacado, pudién¬ dose ahora separar los tubos. El depósito se realiza en ambos sentidos, invirtiendo el tubo [1], y el sol se mantiene en contacto con el soporte sólo el tiempo necesario para llenar el tubo y luego vaciarlo.Once the sun is obtained, immediately after its formation, it is deposited on the ceramic support in one or several layers according to the desired morphology. For the deposit of the suns, the tube used as a support [1] is placed on top of another [2] of the same diameter but with the lacquered inner surface and it rests on a surface [3] so that it is closed at that end as shown in figure 1. Both tubes are filled with the sun so that when the two tubes are lifted together from the surface, the sun drains through the inner wall of the lacquered tube, and the tubes can now be separated. The deposit is made in both directions, inverting the tube [1], and the sun keeps in contact with the support only the time necessary to fill the tube and then empty it.
Después el soporte se introduce en un sistema giratorio (figura 2) donde se hace girar, en posición horizontal a 8 r.p.m. durante 24 h para que el sol se distribuya de forma homogénea sobre la totalidad de la superficie del soporte, hasta que se produzca la gelifica¬ ción.Then the support is introduced into a rotating system (figure 2) where it is rotated, in a horizontal position at 8 r.p.m. for 24 h so that the sun is distributed homogeneously over the entire surface of the support, until gelation occurs.
En el rotor los soportes se tapan para mantener una atmósfera húmeda con el fin de evitar una rápida evaporación del solvente que provocaría la aparición de fracturas.In the rotor the supports are covered to maintain a humid atmosphere in order to avoid a rapid evaporation of the solvent that would cause the appearance of fractures.
Los siguientes pasos son, el lavado de Cl", hasta que con AgNO3 no se detecten; el tratamiento con acetona para la sustitución del agua y el secado que se realiza en dos etapas primero a temperatura ambiente durante 5 h y después en la estufa a 120 °C, durante 24h. Operación que se repite para cada uno de los depósitos.The next steps are, the washing of Cl " , until with AgNO 3 they are not detected; the treatment with acetone for the replacement of water and the drying that is carried out in two stages first at room temperature for 5 h and then in the stove to 120 ° C, for 24 hours, an operation that is repeated for each of the tanks.
Sobre el soporte de ZrO2 se depositan seis soles, los dos primeros a pH 7 con concentraciones de sílice decrecientes, y los cuatro últimos a pH 3 también con concentra- ciones decrecientes, (porque a este pH la sílice se obtiene con el tamaño de poro más pequeño: rp = 10 Á), tal como se indica en la Tabla II.Six soles are deposited on the ZrO 2 support, the first two at pH 7 with decreasing silica concentrations, and the last four at pH 3 also with decreasing concentrations, (because at this pH the silica is obtained with the size of smallest pore: r p = 10 Á), as indicated in Table II.
EjemploExample
El mismo tipo de soporte cerámico (ZrO2 de la firma S.C.T. con 0p=lOO nm) se embebe con la solución comercial de silicato sódico (SiO2/Na2O 3.3, [SiO2]=6M) que, en este caso, se diluye previamente al 50% con agua. El tubo cerámico se llena con el silicato y se mantiene así durante cuatro minutos, después se retira la solución y cuando no quedan gotas en las paredes interiores del tubo, se llena con una solución de una sal de un metal, p.e. Cl3Fe 0.5M, estando en este caso en contacto con el soporte embebido durante 10 minutos, transcurridos los cuales se retira la solución de Cl3Fe.The same type of ceramic support (ZrO 2 from SCT with 0 p = 10 nm) is embedded with the commercial solution of sodium silicate (SiO 2 / Na 2 O 3.3, [SiO 2 ] = 6M) which, in this case , it is previously diluted to 50% with water. The ceramic tube is filled with silicate and held for four minutes, then the solution is removed and when there are no left drops on the inner walls of the tube, it is filled with a solution of a salt of a metal, eg Cl 3 Fe 0.5M, being in this case in contact with the embedded support for 10 minutes, after which the Cl solution is removed 3 Faith
Figure imgf000014_0001
Figure imgf000014_0001
Cuando se realiza el llenado del tubo, con silicato sódico o con la solución de la sal, hay que mantener el soporte totalmente lleno en todo el proceso, ya que durante el mismo las soluciones difunden hacia el interior del soporte.When the tube is filled, with sodium silicate or with the salt solution, the support must be kept completely full throughout the process, since during it the solutions diffuse into the support.
Una vez retirada la solución de la sal se lava con C1H 4M para eliminar el hidróxido del metal, en este caso Fe(OH)3. Luego se lava de Cl (hasta que la prueba con AgNO3 fuese negativa), se trata con acetona y se seca igual que en el ejemplo 1.Once the solution is removed from the salt, it is washed with 4M C1H to remove the hydroxide from the metal, in this case Fe (OH) 3 . It is then washed with Cl - (until the AgNO 3 test is negative), treated with acetone and dried as in Example 1.
Descripción de las figurasDescription of the figures
Figura 1 Esquema del montaje del tubo soporte para formación de película interior [1] Tubo soporte [2] Tubo complementario de igual diámetro interior que [1] (no poroso o con ' superficie interior lacada) [3] Soporte y cierre. Figura 2 Dispositivo experimental de gelificación [1] Campana para mantener la humedad [2] Motor de velocidad variable entre 0 y 30 r.p.m. [3] Eje de giro [4] Cabezal de soporte de tubosFigure 1 Diagram of the mounting of the support tube for inner film formation [1] Support tube [2] Complementary tube of the same internal diameter as [1] (non-porous or with 'lacquered inner surface) [3] Support and closure. Figure 2 Experimental gelation device [1] Bell for maintaining humidity [2] Motor with variable speed between 0 and 30 rpm [3] Spindle [4] Tube support head
[5] Tubo [6] Base [5] Tube [6] Base

Claims

REIVINDICACIONES
1. Membranas microporosas de sílice consistente en un material de composición pura- mente inorgánica basada esencialmente en sílice (SiO2) caracterizadas por su estructura microporosa con poros de diámetros inferiores a 2 nm, constituida por partículas de sílice de un mismo radio, comprendido entre 1 y 10 nm, que se encuentran enlazadas entre sí por puentes siloxano formando barreras continuas y sin grietas como tabiques en el interior de soportes mesoporosos o como películas en la superficie de los mismos.1. Microporous silica membranes consisting of a material of purely inorganic composition based essentially on silica (SiO 2 ) characterized by its microporous structure with pores of diameters smaller than 2 nm, consisting of silica particles of the same radius, between 1 and 10 nm, which are linked to each other by siloxane bridges forming continuous barriers without cracks as partitions inside mesoporous supports or as films on their surface.
2. Membranas microporosas de sílice, según la reivindicación 1, caracterizadas porque la membrana está compuesta de dióxido de silicio SiO2 con variables cantidades de agua H2O, entre un 5 y un 15 %, y cationes mono-, di-, y trivalentes como componentes menores.2. Microporous silica membranes according to claim 1, characterized in that the membrane is composed of silicon dioxide SiO 2 with varying amounts of water H 2 O, between 5 and 15%, and mono-, di-, and cations trivalent as minor components.
3. Membranas microporosas de sílice, según las reivindicaciones 1 y 2, caracterizadas porque su estructura es amorfa y está basada en partículas isométricas de SiO, en cuyo interior se encuentran tetraedros de SiO4 que comparten todos sus vértices con tetraedros vecinos de manera que cada oxígeno está compartido por dos tetraedros dando lugar a un entramado tridimensional; en la superficie de las partículas, acabando dicho entramado, se encuentran grupos Si — O , Si — OH y Si — OM, donde M es un catión mono-, di-, o trivalente.3. Microporous silica membranes, according to claims 1 and 2, characterized in that their structure is amorphous and is based on isometric SiO particles, inside which SiO 4 tetrahedra are found that share all their vertices with neighboring tetrahedra so that each Oxygen is shared by two tetrahedra giving rise to a three-dimensional framework; on the surface of the particles, finishing said fabric, are Si - O - Si - OH and Si - OM where M is a cation mono-, di-, or trivalent.
4. Membranas microporosas de sílice, según las reivindicaciones 1 a 3, caracterizadas porque la dimensión de los poros es inferior a 20 A con una porosidad de hasta un 50 % y una superficie específica de hasta 800 πr-g-1, y con una distribución de tamaño de poros uniforme.4. Microporous silica membranes according to claims 1 to 3, characterized in that the pore dimension is less than 20 A with a porosity of up to 50% and a specific surface area of up to 800 πr-g -1 , and with a uniform pore size distribution.
5. Membranas microporosas de sílice, según las reivindicaciones 1 a 4, caracterizadas porque soportan el ataque con ácidos de concentraciones de hasta 4 molar, el tratamiento con solventes orgánicos y temperaturas hasta 550-600°C, sin perder sus propiedades. 5. Microporous silica membranes according to claims 1 to 4, characterized in that they support the attack with acids of concentrations up to 4 molar, the treatment with organic solvents and temperatures up to 550-600 ° C, without losing their properties.
6. Membranas microporosas de sílice, según las reivindicaciones 1 a 5, caracterizadas porque su conjunto tiene una morfología asimétrica de multicapa que permite espesores mínimos para la capa activa microporosa sin perjuicio para su estabilidad mecánica.6. Microporous silica membranes according to claims 1 to 5, characterized in that their assembly has an asymmetric multilayer morphology that allows minimum thicknesses for the microporous active layer without prejudice to its mechanical stability.
7. Utilización de membranas microporosas de sílice, según las reivindicaciones 1 a 6, caracterizadas por su aplicación en la separación de gases, en la osmosis inversa e hiperfil- tración (por el carácter hidrófilo de sus poros y tener dicha membrana carga fija negativa), en la electrodiálisis o como sensor químico, debido a su comportamiento típico de un tamiz molecular que da lugar a una elevada selectividad química.7. Use of microporous silica membranes, according to claims 1 to 6, characterized by their application in the separation of gases, in reverse osmosis and hyperfiltration (by the hydrophilic character of their pores and having said membrane fixed negative charge) , in electrodialysis or as a chemical sensor, due to its typical behavior of a molecular sieve that results in high chemical selectivity.
8. Procedimiento de obtención de membranas microporosas de sílice, según las reivindi¬ caciones 1 a 7, caracterizado por la policondensación de sílice a partir de precursores exclusivamente inorgánicos, fundamentalmente un silicato soluble tal como el silicato sódico, mediante la adición de un ácido inorgánico o una sal de un catión di o trivalente. En el caso de la obtención en forma de una película superficial, se parte preferiblemente de un sol obtenido diluyendo la solución de silicato soluble comercial a un contenido de SiO2 de menos de un 10 % en peso, y acidificando con un ácido mineral, preferentemente ácido clorhídrico, para conseguir el pH final entre 0 y 9; en el caso de que la sílice se quiere obtener en el interior del soporte cerámico se procede a impregnar éste con el silicato y después se coagula impregnando el soporte con una solución de una sal de un catión di o trivalente.8. Method for obtaining microporous silica membranes, according to claims 1 to 7, characterized by polycondensation of silica from exclusively inorganic precursors, essentially a soluble silicate such as sodium silicate, by the addition of an inorganic acid or a salt of a di or trivalent cation. In the case of obtaining in the form of a surface film, it is preferably started from a sol obtained by diluting the commercial soluble silicate solution to a SiO 2 content of less than 10% by weight, and acidifying with a mineral acid, preferably hydrochloric acid, to achieve the final pH between 0 and 9; in the case that the silica is to be obtained inside the ceramic support, it is impregnated with the silicate and then coagulated by impregnating the support with a solution of a salt of a di or trivalent cation.
9. Procedimiento de obtención de membranas microporosas de sílice, según la reivindi¬ cación 8, caracterizado porque, para la formación de multicapas, en cada una de ellas, se emplea un sol obtenido con menor pH ó contenido de SiO2 que el empleado en la capa anterior.9. Method for obtaining microporous silica membranes, according to claim 8, characterized in that, for the formation of multilayers, in each of them, a sol obtained with a lower pH or SiO 2 content than the one used in the previous layer
10. Procedimiento de obtención de membranas microporosas de sílice, según las reivindicaciones 8 y 9, caracterizado porque, cuando el diámetro de poro del soporte es del orden de 100 veces mayor que el que se va a obtener en la última capa, se procede, para formar cada capa, según la siguiente secuencia de operaciones: a) depósito del sol sobre el soporte; b) escurrido inmediato evitando la formación de "lágrimas" en el extremo; c) gelificación en ambiente húmedo rotando horizontalmente el tubo; d) lavado con agua hasta eliminación del anión del ácido empleado y después con un disolvente de baja tensión superficial tal como la acetona y e) secado, que se realiza en dos pasos, primero a una temperatura menor de 60 °C durante un tiempo comprendido entre 4 y 24 h y, luego, en estufa, a más de 105 °C, durante más de 2 h.10. Procedure for obtaining microporous silica membranes, according to claims 8 and 9, characterized in that, when the pore diameter of the support is of the order of 100 times greater than that which is to be obtained in the last layer, it is proceed, to form each layer, according to the following sequence of operations: a) deposit of the sun on the support; b) drained immediately avoiding the formation of "tears" at the end; c) gelation in a humid environment by rotating the tube horizontally; d) washing with water until removal of the anion from the acid used and then with a solvent of low surface tension such as acetone and e) drying, which is carried out in two steps, first at a temperature below 60 ° C for a time between 4 and 24 h, then, in an oven, at more than 105 ° C, for more than 2 h.
11. Procedimiento de obtención de membranas microporosas de sílice, según las reivindicaciones 8 a 10, caracterizado porque, cuando el tamaño de poro del soporte es del orden de 10 veces el tamaño de poro más fino que se desea obtener, los depósitos de los diferentes soles se pueden suceder según la reivindicación 10 pero sin pasar por la etapa de secado hasta después del último depósito en el que si se procede al lavado y secado.11. Method for obtaining microporous silica membranes according to claims 8 to 10, characterized in that, when the pore size of the support is of the order of 10 times the finest pore size to be obtained, the deposits of the different soles can be succeeded according to claim 10 but without going through the drying stage until after the last deposit in which if washing and drying proceeds.
12. Procedimiento de obtención de membranas microporosas de sílice, según las reivindicación 8, caracterizado porque, cuando el depósito de la sílice microporosa se realiza por floculación en el interior de un soporte cerámico se procede según los siguientes pasos: a) Llenado con solución comercial de silicato soluble como tal o diluida hasta 1:10; b) descarga del silicato una vez se ha embebido en el espesor deseado; c) carga con una solución, entre 0.1 a 2 M, de una sal de catión di o trivalente, permaneciendo la solución en el interior del soporte entre 1 segundo y 30 minutos; d) descarga de la solución salina; e) eliminación de los productos de hidrólisis por lavado ácido y del ácido por lavado con agua y lavado final con acetona u otro disolvente de baja tensión superficial y f) secado según las especificaciones del apartado e) de la reivindicación 10. 12. Method for obtaining microporous silica membranes, according to claim 8, characterized in that, when the deposition of the microporous silica is carried out by flocculation inside a ceramic support, proceed according to the following steps: a) Filling with commercial solution soluble silicate as such or diluted to 1:10; b) discharge of the silicate once it has been embedded in the desired thickness; c) loading with a solution, between 0.1 to 2 M, of a di or trivalent cation salt, the solution remaining inside the support between 1 second and 30 minutes; d) discharge of the saline solution; e) removal of the hydrolysis products by acid washing and acid by washing with water and final washing with acetone or other solvent of low surface tension and f) drying according to the specifications of section e) of claim 10.
PCT/ES1993/000087 1992-10-22 1993-10-21 Microporous silica membrane, utilisation and fabrication thereof WO1994008706A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU51784/93A AU5178493A (en) 1992-10-22 1993-10-21 Microporous silica membrane, utilisation and fabrication thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES09202115A ES2056016B1 (en) 1992-10-22 1992-10-22 SILICONE MICROPOROUS MEMBRANES, THEIR USE AND MANUFACTURE.
ESP9202115 1992-10-22

Publications (1)

Publication Number Publication Date
WO1994008706A1 true WO1994008706A1 (en) 1994-04-28

Family

ID=8278527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1993/000087 WO1994008706A1 (en) 1992-10-22 1993-10-21 Microporous silica membrane, utilisation and fabrication thereof

Country Status (3)

Country Link
AU (1) AU5178493A (en)
ES (1) ES2056016B1 (en)
WO (1) WO1994008706A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3421833A1 (en) * 1984-06-13 1985-12-19 Battelle-Institut E.V., 6000 Frankfurt Membrane for separating off gases from gas mixtures and process for the production thereof
US4902442A (en) * 1988-10-24 1990-02-20 The Dow Chemical Company Stabilized mixtures of colloidal silica and soluble silicate and a method of producing porous silica compositions therefrom
US4902307A (en) * 1988-11-18 1990-02-20 California Institute Of Technology Synthesis of SiO2 membrane on porous support and method of use of same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9000417A (en) * 1990-02-21 1991-09-16 Tno INORGANIC MEMBRANES AND METHOD FOR MANUFACTURING INORGANIC MEMBRANES.
GB9022837D0 (en) * 1990-10-19 1990-12-05 British Petroleum Co Plc Deposition process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3421833A1 (en) * 1984-06-13 1985-12-19 Battelle-Institut E.V., 6000 Frankfurt Membrane for separating off gases from gas mixtures and process for the production thereof
US4902442A (en) * 1988-10-24 1990-02-20 The Dow Chemical Company Stabilized mixtures of colloidal silica and soluble silicate and a method of producing porous silica compositions therefrom
US4902307A (en) * 1988-11-18 1990-02-20 California Institute Of Technology Synthesis of SiO2 membrane on porous support and method of use of same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 115, no. 4, 29 July 1991, Columbus, Ohio, US; abstract no. 34111v, M.ZAHARESCU: "inorganic membranes obtained by the sol-gel method" page 295; *
REV.ROUM.CHIM., vol. 35, no. 7-9, 1990, pages 909 - 914 *

Also Published As

Publication number Publication date
ES2056016A1 (en) 1994-09-01
ES2056016B1 (en) 1995-03-01
AU5178493A (en) 1994-05-09

Similar Documents

Publication Publication Date Title
US5770275A (en) Molecular sieving silica membrane fabrication process
Larbot et al. Silica membranes by the sol-gel process
US5935646A (en) Molecular sieving silica membrane fabrication process
ES2345488T3 (en) CERAMIC NANOFILTRATION MEMBRANE FOR USE IN ORGANIC SOLVENTS AND PROCEDURE FOR MANUFACTURING.
CA2666279C (en) Method of manufacturing ceramic porous membrane and method of manufacturing ceramic filter
JP5676448B2 (en) Preparation method of inorganic membrane
CN106823850B (en) A kind of regulation method in gantry organosilicon membrane aperture
JP2020532487A (en) Supporting zeolite film, and methods for manufacturing
US4980062A (en) Inorganic membrane
Okubo et al. Preparation of a sol-gel derived thin membrane on a porous ceramic hollow fiber by the filtration technique
Chu et al. Microporous silica membranes deposited on porous supports by filtration
JP2004002160A (en) Method for coating zeolite crystal, substrate coated therewith, production method for zeolite membrane, zeolite membrane, and separation method using the membrane
Yazawa et al. Preparation of water and alkali durable porous glass membrane coated on porous alumina tubing by sol-gel method
KR20180029909A (en) Method of preparing for silica aerogel and silica aerogel prepared by the same
US9725571B2 (en) Method of making nanoporous structures
Essien et al. Highly porous silica network prepared from sodium metasilicate
WO1994008706A1 (en) Microporous silica membrane, utilisation and fabrication thereof
JP2001276586A (en) Gas separation membrane and its production method
JPH0788227B2 (en) Glass body manufacturing method and apparatus
JP3297542B2 (en) Laminated inorganic separator
Xu et al. Synthesis of a ZSM-5/NaA hybrid zeolite membrane using kaolin as a modification layer
US9938637B2 (en) Production method of zeolite film in which one axis is completely vertically oriented, using steam under synthetic gel-free condition
Yu et al. Preparation of pocket shaped microfiltration membranes with binary porous structures
JP2015521576A (en) Substrate having at least one surface partially or entirely flat and use thereof
Ayral et al. Silica membranes-basic principles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA