WO1994008731A1 - Method of forming printed circuit assembly - Google Patents

Method of forming printed circuit assembly Download PDF

Info

Publication number
WO1994008731A1
WO1994008731A1 PCT/US1993/009389 US9309389W WO9408731A1 WO 1994008731 A1 WO1994008731 A1 WO 1994008731A1 US 9309389 W US9309389 W US 9309389W WO 9408731 A1 WO9408731 A1 WO 9408731A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
forming
printed circuit
dimensional printed
pattern
Prior art date
Application number
PCT/US1993/009389
Other languages
French (fr)
Inventor
Frank J. Juskey
Anthony B. Suppelsa
Dale W. Dorinski
Original Assignee
Motorola, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola, Inc. filed Critical Motorola, Inc.
Publication of WO1994008731A1 publication Critical patent/WO1994008731A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0023Etching of the substrate by chemical or physical means by exposure and development of a photosensitive insulating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0014Shaping of the substrate, e.g. by moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/24Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32014Structure relative to the bonding area, e.g. bond pad the layer connector being smaller than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09118Moulded substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/30Details of processes not otherwise provided for in H05K2203/01 - H05K2203/17
    • H05K2203/302Bending a rigid substrate; Breaking rigid substrates by bending
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1028Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina by bending, drawing or stretch forming sheet to assume shape of configured lamina while in contact therewith
    • Y10T156/1031Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina by bending, drawing or stretch forming sheet to assume shape of configured lamina while in contact therewith with preshaping of lamina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1043Subsequent to assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49158Manufacturing circuit on or in base with molding of insulated base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49158Manufacturing circuit on or in base with molding of insulated base
    • Y10T29/4916Simultaneous circuit manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49162Manufacturing circuit on or in base by using wire as conductive path

Definitions

  • This invention relates generally to a method of making printed circuit substrates, and more particularly to a method of making three- dimensional printed circuits.
  • a substrate is first formed from a photoactive polymer that is capable of altering its physical state when exposed to a radiant beam. At this point, the substrate is only partially cured. A conductive circuit pattern is then formed on the partially cured substrate. The substrate is then molded to create a three- dimensional structure, and then further cured to cause the photoactive polymer to harden completely.
  • a method of making a radio having a three-dimensional printed circuit board is presented.
  • a three-dimensional printed circuit board is created by forming a substrate by means of stereolithography, the substrate being only partially cured.
  • a conductive circuit pattern is formed on the substrate.
  • the substrate is shaped to provide three-dimensional features by heating and softening it to cause it to assume the shape of a mold form.
  • the substrate is cured further to cause it to harden into the desired shape, and is then populated with components to create a portion of the radio circuitry.
  • FIG. 1 is a schematic of a substrate being fabricated in a stereolithography apparatus in accordance with the present invention.
  • FIG. 2 is a cross-sectional view of a circuit board in accordance with the present invention.
  • FIG. 3 is a cross-sectional view of a three-dimensional circuit board in accordance with the present invention.
  • FIG. 4 is a cross-sectional view of a populated three-dimensional circuit board in accordance with the present invention.
  • FIG. 5 is a schematic of a radio in accordance with the present invention.
  • FIG. 6 is a block diagram of the steps involved in making a three- dimensional printed circuit in accordance with the present invention.
  • the present invention provides a new and improved method of fabricating a three-dimensional circuit by forming successive adjacent layers of that object at the surface of a medium capable of altering its physical state in response to an appropriate synergistic stimulation.
  • the present invention utilizes the principles of stereolithography to create electronic assemblies.
  • Stereolithography is a method for making solid objects by successively forming thin layers of a solid material, one layer on top of the other. The solid material is formed by selectively exposing portions of a liquid or powdered material to a source of energy.
  • the material may be, for example, a metal or plastic powder that is heated to cause melting or fusing of the powder, a chemically reactive material that cures on exposure to a second chemical, or a liquid photopolymer that cures or polymerizes upon exposure to ultraviolet (UV) light.
  • UV ultraviolet
  • Such systems undergo a physical transformation by synergistic stimulation of the material.
  • a UV curable liquid photopolymer is employed.
  • stereolithography systems or methods have been proposed or are currently existing. The most popular of these is a method of curing a liquid photopolymer with ultraviolet light. Suitable techniques for performing stereolithography are disclosed in U.S. Patent Nos. 4,929,402 and 4,999,143, incorporated herein by reference. Other methods include sintering metals or powders using a laser light beam, focused heat, x-ray beams, visible light beams, high energy particles, an electron beam, chemically reacting a material with a jet of a reactant material, or by placing a mask over the surface of the uncured material, the mask having openings corresponding to the physical features of the desired object.
  • the stereolithographic technique is used to form a substrate for a three- dimensional printed circuit assembly.
  • the programmable beam 30 of an ultraviolet laser 10 serves as the energy source, and is moved across the surface 12 of a UV curable liquid material 14 in order to convert selected portions 16 of the liquid to a solid.
  • a solid polymer is thus formed at the surface of the liquid.
  • the UV light beam 30 is controlled by a laser controller or computer 18 and partially cures the photopolymer material in areas corresponding to the computer based model 24 of the substrate 20. It is important to note that in this step, the polymer is only partially cured, and is not completely cured. The chemical reaction that occurs during this stage is often referred to as a 'B-Stage' cure, meaning that the liquid has been partially crosslinked by the light beam to form a solid material, but the solid material must still be cured further.
  • the partially formed substrate 20 is then moved away from the liquid surface 12 by lowering the stage 28 in order to recoat the surface of the substrate with uncured material 14, forming a thin layer 22 of uncured material over the substrate surface.
  • Another solid layer is then created in a manner similar to the first solid layer by again rastering the UV light beam and selectively curing the material. Because each of the layers has a finite thickness and the penetration depth of the laser beam 30 is also finite and controllable, successive layers adhere to the layer immediately beneath to form a solid structure. The process is continued until the desired thickness is reached.
  • the substrate 20 is then removed from the stereolithography apparatus, and a conductive circuit pattern 50 is formed on the substrate.
  • the pattern 50 may be formed by a number of methods, known in the art, such as thin film lithography, electroless plating, plasma flame spraying, screen printing conductive materials (such as inks, pastes, or conductive polymers), applying a decal having conductive runners, or laminating another circuit carrying substrate such as a polyimide flex circuit.
  • Via holes 53 may also be present in the conductive circuit pattern 50.
  • the substrate 20 with the conductive circuit pattern 50 is now ready for the next step, which consists of forming it into the desired three- dimensional shape.
  • a male mold is one that possess the opposite or negative shape as the desired object, and is common in the plastics forming industry.
  • the mold is used as the pattern or template to shape the malleable plastic substrate. Since the substrate formed by the laser beam in the stereolithography apparatus is not yet completely cured, it is easily shaped by heating. For example, the substrate may be placed across the mold and heated in an oven to a temperature sufficient to cause the substrate to soften.
  • Additional impetus to the forming operation may be added by the use of vacuum or air pressure, as in vacuum thermo ⁇ forming techniques. Additionally, another part of a mold may be impressed upon the softened substrate to cause it to conform to the first mold. The reader skilled in the art of thermo-forming will readily appreciate these techniques, and also understand that other methods common in the industry may be applied to form the substrate with suitable efficiency.
  • a latent thermal crosslinking agent in the polymer begins to react with the polymer to cure it. This causes the polymer to harden, and the substrate 20 retains its shape when removed from the mold.
  • the circuit is now ready for the step of assembling components. Referring now to FIG.
  • active or passive components 42 such as integrated circuits, chip resistors, and capacitors may be connected to the conductive circuit pattern 50 via conductive adhesive, solder 53, or wirebonds 40.
  • an additional layer of dielectric material may be formed upon the three-dimensional circuit board with stereolithography techniques. This second layer may serve as an encapsulant, providing protection to the conductive circuit pattern, or it may serve as a foundation upon which another conductive circuit pattern may be formed.
  • the additional conductive circuit pattern is typically formed in a manner similar to that used for the first conductive circuit pattern. Via holes allow this conductive circuit pattern to be electrically connected to the first conductive circuit pattern, because the vias act as plated through holes (or filled vias in the case of conductive inks or pastes). Additional layers of dielectric and conductive circuitry may be continued if desired. These dielectric layers can be used for supporting other mechanical features such as pins or other means of connecting to external parts such as speakers and microphones. This layer can also be used as an exterior wall of the completed substrate.
  • additional components may be added to the assembly after the first or second dielectric layer is completed.
  • a multilevel structure can be formed with components 42 on differing levels.
  • additional dielectric and/or metal layers 60 may also be formed on the opposite side of the substrate to create a two-sided structure as exemplified in FIG. 2.
  • a final curing step may be typically performed by flooding the part with ultraviolet light energy or by further heating the part in an oven in order to effect further polymerization.
  • Techniques for effecting the final cure by immersing the fabricated three-dimensional object under water are found in U.S. Patent No.4,996,010.
  • the three-dimensional circuit board as described herein may find particular use in portable communications applications.
  • the three-dimensional circuit board of the present invention is utilized in a radio 30 comprising any well-known radio, such as portable two-way radios manufactured by Motorola Inc., which may operate in either receive or transmit modes.
  • the radio 30 includes a receiver section 31 and a transmitter section 32 which comprise means for communicating, that is, transmitting or receiving communication signals for the radio.
  • the receiver or transmitter sections are typically mounted on a printed circuit board or substrate, for example a polymer substrate as described in the instant invention.
  • the portable radio 30 receives a communication signal via an antenna 33.
  • a transmit receive (T/R) switch 34 couples the received communication signal to the receiver 31.
  • the receiver 31 receives and demodulates the received communications signal and presents its audio component to a speaker 36. It may be appreciated by one of ordinary skill in the art that other functions not herein described may be provided by any suitable means, including a controller means (not shown), which controls the entire operation of the radio 30.
  • audio messages are coupled from a microphone 37, where they are used to modulate a carrier signal as is well known in the art.
  • the modulated carrier signal is then applied to the antenna 33 through the T/R switch 34 for transmission of the communication signal.
  • the three-dimensional circuit board may be utilized in suitable sections of the transmitter or receiver sections 32 and
  • the partially cured substrate is formed 70 in the stereolithography apparatus.
  • a conductive circuit pattern is added to the substrate 72 using any number of conventional methods.
  • the substrate is formed into the three-dimensional shape by placing it over a mold 74, heating the substrate to soften it 76, and causing the substrate to conform to the shape of the mold 78. 4) The shaped substrate is then hardened 80 by further curing by heat or light to cause the photoreactive polymer to crosslink and harden. 5) The three-dimensional circuit is then populated with components 82 by soldering or other means.
  • An important feature of the present invention resides in the ability to form a three-dimensional conductive circuit by stereolithography.
  • This new and improved method of fabricating a three-dimensional conductive circuit has numerous advantages over conventional techniques.
  • the present invention eliminates the need to produce expensive and costly tooling and allows the designer to work directly with the computer and a stereolithographic device in order to fabricate the desired circuit.
  • the present invention satisfies a long-existing need for an improved method of rapidly, reliably, accurately, and economically fabricating three- dimensional conductive circuits.

Abstract

A method of making a three-dimensional printed circuit assembly is disclosed. A substrate (20) is first formed from a photoactive polymer (14) that is capable of altering its physical state when exposed to a radiant beam (30). At this point, the substrate (20) is only partially cured. A conductive circuit pattern is then formed on the partially cured substrate (20). The substrate (20) is then molded to create a three-dimensional structure, and then further cured to cause the photoactive polymer (14) to harden.

Description

METHOD OF FORMING PRINTED CIRCUIT ASSEMBLY
Cross Reference to Belated Applications
This application is related to U.S. Patent 5,173,220 issued December 22, 1991, by Reiff et al., entitled "Method of Manufacturing a Three- Dimensional Plastic Article," assigned to Motorola Inc.
Technical Field
This invention relates generally to a method of making printed circuit substrates, and more particularly to a method of making three- dimensional printed circuits.
Background
It is common practice in the production of electronic assemblies to first design the assembly and then painstakingly produce a prototype, each step involving considerable time, effort, and expense. The prototype is then revised, and often times the process is repeated until the design has been optimized. After optimization, the next step is production. Since the design time and tooling costs are very high, electronic assemblies are usually practiced only in high-volume production. Alternate cost effective processes are not available for the production of low-volume parts, and these low-volume parts are usually inferior in quality to production parts.
Current technology for three-dimensional circuits requires that a three-dimensional substrate be formed first, then the conductors are formed on the substrate in a photolithography process. Three- dimensional circuits with multilayer conductors or fine lines and spaces incur a high cost. While many have endeavored to manufacture three- dimensional circuits in various ways, each requires expensive custom molds and phototools. Because of the high capital expense and the long lead times required to produce these types of circuits, they are typically limited to those situations where high volumes, long lead times, or high profit margins can justify the complexity. Hence, there continues to be a need in the design and production of three-dimensional circuits for an enhanced capability to rapidly and reliably move from the design stage to a prototype stage, and then to low cost production. Accordingly, those concerned with the production of these types of circuits have long recognized the desirability of a rapid, reliable, and economical method to fabricate complex three-dimensional circuits. The present invention fulfills these needs.
Summary of the Invention
Briefly, according to the invention, there is provided a method of making a three-dimensional printed circuit assembly. A substrate is first formed from a photoactive polymer that is capable of altering its physical state when exposed to a radiant beam. At this point, the substrate is only partially cured. A conductive circuit pattern is then formed on the partially cured substrate. The substrate is then molded to create a three- dimensional structure, and then further cured to cause the photoactive polymer to harden completely.
In an alternate embodiment of the invention, a method of making a radio having a three-dimensional printed circuit board is presented. A three-dimensional printed circuit board is created by forming a substrate by means of stereolithography, the substrate being only partially cured. A conductive circuit pattern is formed on the substrate. The substrate is shaped to provide three-dimensional features by heating and softening it to cause it to assume the shape of a mold form. The substrate is cured further to cause it to harden into the desired shape, and is then populated with components to create a portion of the radio circuitry.
Brief Description of the Drawings FIG. 1 is a schematic of a substrate being fabricated in a stereolithography apparatus in accordance with the present invention.
FIG. 2 is a cross-sectional view of a circuit board in accordance with the present invention.
FIG. 3 is a cross-sectional view of a three-dimensional circuit board in accordance with the present invention. FIG. 4 is a cross-sectional view of a populated three-dimensional circuit board in accordance with the present invention.
FIG. 5 is a schematic of a radio in accordance with the present invention. FIG. 6 is a block diagram of the steps involved in making a three- dimensional printed circuit in accordance with the present invention.
Detailed Description of the Preferred Embodiment
The present invention provides a new and improved method of fabricating a three-dimensional circuit by forming successive adjacent layers of that object at the surface of a medium capable of altering its physical state in response to an appropriate synergistic stimulation. In the preferred embodiment, by way of example and not necessarily by way of limitation, the present invention utilizes the principles of stereolithography to create electronic assemblies. Stereolithography is a method for making solid objects by successively forming thin layers of a solid material, one layer on top of the other. The solid material is formed by selectively exposing portions of a liquid or powdered material to a source of energy. The material may be, for example, a metal or plastic powder that is heated to cause melting or fusing of the powder, a chemically reactive material that cures on exposure to a second chemical, or a liquid photopolymer that cures or polymerizes upon exposure to ultraviolet (UV) light. Such systems undergo a physical transformation by synergistic stimulation of the material. In the preferred embodiment, a UV curable liquid photopolymer is employed.
A number of stereolithography systems or methods have been proposed or are currently existing. The most popular of these is a method of curing a liquid photopolymer with ultraviolet light. Suitable techniques for performing stereolithography are disclosed in U.S. Patent Nos. 4,929,402 and 4,999,143, incorporated herein by reference. Other methods include sintering metals or powders using a laser light beam, focused heat, x-ray beams, visible light beams, high energy particles, an electron beam, chemically reacting a material with a jet of a reactant material, or by placing a mask over the surface of the uncured material, the mask having openings corresponding to the physical features of the desired object. When such a mask is used, a concentrated beam is not required and the surface of the material may then be flooded with the energy source, for example, flooding with ultraviolet light, heat, or a chemical source. Many types of complex three-dimensional forms can be created with the technique of stereolithography. In the present invention, the stereolithographic technique is used to form a substrate for a three- dimensional printed circuit assembly.
Referring now to FIG. 1, the programmable beam 30 of an ultraviolet laser 10 serves as the energy source, and is moved across the surface 12 of a UV curable liquid material 14 in order to convert selected portions 16 of the liquid to a solid. A solid polymer is thus formed at the surface of the liquid. The UV light beam 30 is controlled by a laser controller or computer 18 and partially cures the photopolymer material in areas corresponding to the computer based model 24 of the substrate 20. It is important to note that in this step, the polymer is only partially cured, and is not completely cured. The chemical reaction that occurs during this stage is often referred to as a 'B-Stage' cure, meaning that the liquid has been partially crosslinked by the light beam to form a solid material, but the solid material must still be cured further. The partially formed substrate 20 is then moved away from the liquid surface 12 by lowering the stage 28 in order to recoat the surface of the substrate with uncured material 14, forming a thin layer 22 of uncured material over the substrate surface. Another solid layer is then created in a manner similar to the first solid layer by again rastering the UV light beam and selectively curing the material. Because each of the layers has a finite thickness and the penetration depth of the laser beam 30 is also finite and controllable, successive layers adhere to the layer immediately beneath to form a solid structure. The process is continued until the desired thickness is reached.
Referring now to FIG. 2, the substrate 20 is then removed from the stereolithography apparatus, and a conductive circuit pattern 50 is formed on the substrate. The pattern 50 may be formed by a number of methods, known in the art, such as thin film lithography, electroless plating, plasma flame spraying, screen printing conductive materials (such as inks, pastes, or conductive polymers), applying a decal having conductive runners, or laminating another circuit carrying substrate such as a polyimide flex circuit. In forming the circuit pattern 50, care should be taken to insure that the substrate 20 is not deformed. Via holes 53 may also be present in the conductive circuit pattern 50.
The substrate 20 with the conductive circuit pattern 50 is now ready for the next step, which consists of forming it into the desired three- dimensional shape. This can be accomplished in several ways, the preferred embodiment shown in FIG. 3 being to use a male mold shape 56 to form the substrate 20. A male mold is one that possess the opposite or negative shape as the desired object, and is common in the plastics forming industry. The mold is used as the pattern or template to shape the malleable plastic substrate. Since the substrate formed by the laser beam in the stereolithography apparatus is not yet completely cured, it is easily shaped by heating. For example, the substrate may be placed across the mold and heated in an oven to a temperature sufficient to cause the substrate to soften. Additional impetus to the forming operation may be added by the use of vacuum or air pressure, as in vacuum thermo¬ forming techniques. Additionally, another part of a mold may be impressed upon the softened substrate to cause it to conform to the first mold. The reader skilled in the art of thermo-forming will readily appreciate these techniques, and also understand that other methods common in the industry may be applied to form the substrate with suitable efficiency. As the temperature rises, and the board 20 conforms to the mold 56, a latent thermal crosslinking agent in the polymer begins to react with the polymer to cure it. This causes the polymer to harden, and the substrate 20 retains its shape when removed from the mold. The circuit is now ready for the step of assembling components. Referring now to FIG. 4, active or passive components 42 such as integrated circuits, chip resistors, and capacitors may be connected to the conductive circuit pattern 50 via conductive adhesive, solder 53, or wirebonds 40. If desired, an additional layer of dielectric material may be formed upon the three-dimensional circuit board with stereolithography techniques. This second layer may serve as an encapsulant, providing protection to the conductive circuit pattern, or it may serve as a foundation upon which another conductive circuit pattern may be formed. The additional conductive circuit pattern is typically formed in a manner similar to that used for the first conductive circuit pattern. Via holes allow this conductive circuit pattern to be electrically connected to the first conductive circuit pattern, because the vias act as plated through holes (or filled vias in the case of conductive inks or pastes). Additional layers of dielectric and conductive circuitry may be continued if desired. These dielectric layers can be used for supporting other mechanical features such as pins or other means of connecting to external parts such as speakers and microphones. This layer can also be used as an exterior wall of the completed substrate.
If desired, additional components may be added to the assembly after the first or second dielectric layer is completed. In this way, a multilevel structure can be formed with components 42 on differing levels. A number of variations of the above examples will be readily apparent to the reader, and are considered to be within the spirit of the invention. For example, additional dielectric and/or metal layers 60 may also be formed on the opposite side of the substrate to create a two-sided structure as exemplified in FIG. 2.
Depending upon the type of material utilized, a final curing step may be typically performed by flooding the part with ultraviolet light energy or by further heating the part in an oven in order to effect further polymerization. Techniques for effecting the final cure by immersing the fabricated three-dimensional object under water are found in U.S. Patent No.4,996,010.
In a further embodiment of the invention, the three-dimensional circuit board as described herein may find particular use in portable communications applications. Referring to FIG. 5, the three-dimensional circuit board of the present invention is utilized in a radio 30 comprising any well-known radio, such as portable two-way radios manufactured by Motorola Inc., which may operate in either receive or transmit modes. The radio 30 includes a receiver section 31 and a transmitter section 32 which comprise means for communicating, that is, transmitting or receiving communication signals for the radio. The receiver or transmitter sections are typically mounted on a printed circuit board or substrate, for example a polymer substrate as described in the instant invention.
In the receive mode, the portable radio 30 receives a communication signal via an antenna 33. A transmit receive (T/R) switch 34 couples the received communication signal to the receiver 31. The receiver 31 receives and demodulates the received communications signal and presents its audio component to a speaker 36. It may be appreciated by one of ordinary skill in the art that other functions not herein described may be provided by any suitable means, including a controller means (not shown), which controls the entire operation of the radio 30.
In the transmit mode, audio messages are coupled from a microphone 37, where they are used to modulate a carrier signal as is well known in the art. The modulated carrier signal is then applied to the antenna 33 through the T/R switch 34 for transmission of the communication signal. It may be appreciated that the three-dimensional circuit board, according to the principals of the present invention, may be utilized in suitable sections of the transmitter or receiver sections 32 and
31, respectively. Referring now to FIG. 6 the steps involved in the process of making a three-dimensional printed circuit board according to the present invention are as follows:
1) The partially cured substrate is formed 70 in the stereolithography apparatus. 2) A conductive circuit pattern is added to the substrate 72 using any number of conventional methods.
3) The substrate is formed into the three-dimensional shape by placing it over a mold 74, heating the substrate to soften it 76, and causing the substrate to conform to the shape of the mold 78. 4) The shaped substrate is then hardened 80 by further curing by heat or light to cause the photoreactive polymer to crosslink and harden. 5) The three-dimensional circuit is then populated with components 82 by soldering or other means.
An important feature of the present invention resides in the ability to form a three-dimensional conductive circuit by stereolithography. This new and improved method of fabricating a three-dimensional conductive circuit has numerous advantages over conventional techniques. The present invention eliminates the need to produce expensive and costly tooling and allows the designer to work directly with the computer and a stereolithographic device in order to fabricate the desired circuit. The present invention satisfies a long-existing need for an improved method of rapidly, reliably, accurately, and economically fabricating three- dimensional conductive circuits. It will be apparent from the foregoing that while particular forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and the scope of the invention. Accordingly, it is not intended that the invention be limited except as by the appended claims.
What is claimed is:

Claims

Claims
1. A method of making a three-dimensional printed circuit assembly, comprising the steps of: forming a substrate from a photoactive polymer capable of altering its physical state when exposed to a radiant beam, the substrate being only partially cured; forming a conductive circuit pattern on the substrate; conforming the substrate to create a three-dimensional printed circuit assembly; and curing the three-dimensional printed circuit assembly to cause the photoactive polymer to harden further.
2. The method as described in claim 1, wherein the step of forming a substrate comprises: providing a reservoir of material capable of altering its physical state when exposed to a radiant beam, the material having a designated upper working surface; forming a portion of the substrate by selectively exposing said working surface to the radiant beam, creating a first layer of the substrate; coating the partially formed substrate with a further portion of the material by lowering the partially formed substrate into the material; continuing to form the substrate by selectively exposing said working surface to the radiant beam; and repeating the coating and exposing steps, to form a plurality of successive layers comprising a substrate.
3. The method as described in claim 1, wherein the step of conforming the substrate comprises heating the substrate on a mold form to cause it to soften and assume the shape of the mold form.
4. (once amended) The method as described in claim 1, further comprising populating the three-dimensional printed circuit assembly with components .
5. The method as described in claim 4, wherein the step of curing the three-dimensional printed circuit assembly and the step of populating the three-dimensional printed circuit assembly with components are performed in a single step.
6. The method as described in claim 5, further comprising a final step of further transforming the three-dimensional printed circuit assembly by exposing it to a further source of radiant energy .
7. A method of making a three-dimensional printed circuit assembly, comprising the steps of: forming a substrate by means of stereolithography, the substrate being only partially cured; forming a conductive circuit pattern on the substrate; shaping the substrate to provide three-dimensional features by heating and softening the substrate to conform it to the shape of a mold form, thereby creating a three dimensional printed circuit assembly; curing the shaped substrate to cause it to crosslink; and populating the substrate with components .
8. A method of making a three-dimensional printed circuit, comprising the steps of: forming a substrate by; selectively exposing a working surface of a liquid photopolymer to a radiant beam to partially cure the photopolymer and create a first layer of the substrate; applying a coating of the liquid photopolymer to the first layer of the substrate; selectively exposing the coating to the radiant beam to continue to form the substrate; and repeating the steps of applying a coating and selectively exposing, to form a plurality of successive layers comprising a substrate; forming a conductive circuit pattern on the substrate; shaping the substrate to provide a three-dimensional printed circuit by heating and softening the substrate to cause it to assume the shape of a mold form; and curing the substrate further to cause the partially cured photopolymer to harden in the shape of the mold form.
9. The method as described in claim 8, wherein the step of forming a conductive circuit pattern comprises a method selected from the group consisting of screen printing conductive media onto the substrate, forming a pattern by thin film lithography, forming a pattern by electroless plating, forming a pattern by applying a decal having conductive runners, plasma flame spraying, and laminating a flexible circuit onto the substrate.
10. The method as described in claim 8, wherein the step of forming a conductive circuit pattern comprises a method selected from the group consisting of screen printing conductive media onto the substrate, forming a pattern by thin film lithography, forming a pattern by electroless plating, forming a pattern by applying a decal having conductive runners, plasma flame spraying, and laminating a flexible circuit onto the substrate.
PCT/US1993/009389 1992-10-22 1993-10-01 Method of forming printed circuit assembly WO1994008731A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US964,682 1992-10-22
US07/964,682 US5264061A (en) 1992-10-22 1992-10-22 Method of forming a three-dimensional printed circuit assembly

Publications (1)

Publication Number Publication Date
WO1994008731A1 true WO1994008731A1 (en) 1994-04-28

Family

ID=25508847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1993/009389 WO1994008731A1 (en) 1992-10-22 1993-10-01 Method of forming printed circuit assembly

Country Status (2)

Country Link
US (1) US5264061A (en)
WO (1) WO1994008731A1 (en)

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069444A (en) * 1992-12-16 2000-05-30 Durel Corporation Electroluminescent lamp devices and their manufacture
DE69332780T2 (en) * 1992-12-16 2004-03-04 Durel Corp., Tempe ELECTROLUMINESCENT LAMP DEVICES AND THEIR PRODUCTION
US5554415A (en) 1994-01-18 1996-09-10 Qqc, Inc. Substrate coating techniques, including fabricating materials on a surface of a substrate
US5620754A (en) 1994-01-21 1997-04-15 Qqc, Inc. Method of treating and coating substrates
US5731046A (en) 1994-01-18 1998-03-24 Qqc, Inc. Fabrication of diamond and diamond-like carbon coatings
US5659153A (en) * 1995-03-03 1997-08-19 International Business Machines Corporation Thermoformed three dimensional wiring module
US5987739A (en) 1996-02-05 1999-11-23 Micron Communications, Inc. Method of making a polymer based circuit
US5705117A (en) * 1996-03-01 1998-01-06 Delco Electronics Corporaiton Method of combining metal and ceramic inserts into stereolithography components
US5705012A (en) * 1996-04-22 1998-01-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for molding planar billet of thermally insulative material into predetermined non-planar shape
US5914534A (en) * 1996-05-03 1999-06-22 Ford Motor Company Three-dimensional multi-layer molded electronic device and method for manufacturing same
US5936627A (en) * 1997-02-28 1999-08-10 International Business Machines Corporation Method and system for performing perspective divide operations on three-dimensional graphical object data within a computer system
US6100178A (en) * 1997-02-28 2000-08-08 Ford Motor Company Three-dimensional electronic circuit with multiple conductor layers and method for manufacturing same
US6251211B1 (en) 1998-07-22 2001-06-26 Micron Technology, Inc. Circuitry interconnection method
US6544902B1 (en) * 1999-02-26 2003-04-08 Micron Technology, Inc. Energy beam patterning of protective layers for semiconductor devices
US6524346B1 (en) * 1999-02-26 2003-02-25 Micron Technology, Inc. Stereolithographic method for applying materials to electronic component substrates and resulting structures
US6549821B1 (en) * 1999-02-26 2003-04-15 Micron Technology, Inc. Stereolithographic method and apparatus for packaging electronic components and resulting structures
CA2388046A1 (en) 1999-11-05 2001-05-17 Z Corporation Material systems and methods of three-dimensional printing
DE19964099B4 (en) * 1999-12-31 2006-04-06 Götzen, Reiner, Dipl.-Ing. Method for producing three-dimensionally arranged guide and connection structures for volume and energy flows
US6337122B1 (en) 2000-01-11 2002-01-08 Micron Technology, Inc. Stereolithographically marked semiconductors devices and methods
US6730998B1 (en) * 2000-02-10 2004-05-04 Micron Technology, Inc. Stereolithographic method for fabricating heat sinks, stereolithographically fabricated heat sinks, and semiconductor devices including same
US6740962B1 (en) * 2000-02-24 2004-05-25 Micron Technology, Inc. Tape stiffener, semiconductor device component assemblies including same, and stereolithographic methods for fabricating same
US6468891B2 (en) * 2000-02-24 2002-10-22 Micron Technology, Inc. Stereolithographically fabricated conductive elements, semiconductor device components and assemblies including such conductive elements, and methods
US6529027B1 (en) 2000-03-23 2003-03-04 Micron Technology, Inc. Interposer and methods for fabricating same
US6531335B1 (en) 2000-04-28 2003-03-11 Micron Technology, Inc. Interposers including upwardly protruding dams, semiconductor device assemblies including the interposers, and methods
US7041533B1 (en) * 2000-06-08 2006-05-09 Micron Technology, Inc. Stereolithographic method for fabricating stabilizers for semiconductor devices
US7557452B1 (en) 2000-06-08 2009-07-07 Micron Technology, Inc. Reinforced, self-aligning conductive structures for semiconductor device components and methods for fabricating same
US6506671B1 (en) 2000-06-08 2003-01-14 Micron Technology, Inc. Ring positionable about a periphery of a contact pad, semiconductor device components including same, and methods for positioning the ring around a contact pad
US6326698B1 (en) * 2000-06-08 2001-12-04 Micron Technology, Inc. Semiconductor devices having protective layers thereon through which contact pads are exposed and stereolithographic methods of fabricating such semiconductor devices
US6569753B1 (en) * 2000-06-08 2003-05-27 Micron Technology, Inc. Collar positionable about a periphery of a contact pad and around a conductive structure secured to the contact pads, semiconductor device components including same, and methods for fabricating same
US6461881B1 (en) 2000-06-08 2002-10-08 Micron Technology, Inc. Stereolithographic method and apparatus for fabricating spacers for semiconductor devices and resulting structures
US6875640B1 (en) * 2000-06-08 2005-04-05 Micron Technology, Inc. Stereolithographic methods for forming a protective layer on a semiconductor device substrate and substrates including protective layers so formed
US7138653B1 (en) * 2000-06-08 2006-11-21 Micron Technology, Inc. Structures for stabilizing semiconductor devices relative to test substrates and methods for fabricating the stabilizers
US6611053B2 (en) * 2000-06-08 2003-08-26 Micron Technology, Inc. Protective structure for bond wires
US6482576B1 (en) 2000-08-08 2002-11-19 Micron Technology, Inc. Surface smoothing of stereolithographically formed 3-D objects
US6537482B1 (en) * 2000-08-08 2003-03-25 Micron Technology, Inc. Underfill and encapsulation of carrier substrate-mounted flip-chip components using stereolithography
US6432752B1 (en) * 2000-08-17 2002-08-13 Micron Technology, Inc. Stereolithographic methods for fabricating hermetic semiconductor device packages and semiconductor devices including stereolithographically fabricated hermetic packages
US6544465B1 (en) * 2000-08-18 2003-04-08 Micron Technology, Inc. Method for forming three dimensional structures from liquid with improved surface finish
US6562278B1 (en) * 2000-08-29 2003-05-13 Micron Technology, Inc. Methods of fabricating housing structures and micromachines incorporating such structures
US6607689B1 (en) 2000-08-29 2003-08-19 Micron Technology, Inc. Layer thickness control for stereolithography utilizing variable liquid elevation and laser focal length
US6762502B1 (en) 2000-08-31 2004-07-13 Micron Technology, Inc. Semiconductor device packages including a plurality of layers substantially encapsulating leads thereof
US6951596B2 (en) 2002-01-18 2005-10-04 Avery Dennison Corporation RFID label technique
US20020130444A1 (en) * 2001-03-15 2002-09-19 Gareth Hougham Post cure hardening of siloxane stamps for microcontact printing
US6964749B2 (en) * 2001-06-04 2005-11-15 Polymer Group, Inc. Three-dimensional nonwoven substrate for circuit board
US6782619B2 (en) * 2001-08-17 2004-08-31 Advanced Cochlear Systems, Inc. Method of making high contact density electrode array
US7275925B2 (en) 2001-08-30 2007-10-02 Micron Technology, Inc. Apparatus for stereolithographic processing of components and assemblies
US7323142B2 (en) * 2001-09-07 2008-01-29 Medtronic Minimed, Inc. Sensor substrate and method of fabricating same
TW561102B (en) * 2001-10-22 2003-11-11 Hrl Lab Llc Preparing composites by using resins
US6921860B2 (en) 2003-03-18 2005-07-26 Micron Technology, Inc. Microelectronic component assemblies having exposed contacts
US7094117B2 (en) * 2004-02-27 2006-08-22 Micron Technology, Inc. Electrical contacts with dielectric cores
DE102004020877A1 (en) * 2004-04-28 2005-12-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Chip module and method for producing a chip module
US7547978B2 (en) * 2004-06-14 2009-06-16 Micron Technology, Inc. Underfill and encapsulation of semiconductor assemblies with materials having differing properties
US7235431B2 (en) * 2004-09-02 2007-06-26 Micron Technology, Inc. Methods for packaging a plurality of semiconductor dice using a flowable dielectric material
US7500307B2 (en) 2004-09-22 2009-03-10 Avery Dennison Corporation High-speed RFID circuit placement method
US7623034B2 (en) 2005-04-25 2009-11-24 Avery Dennison Corporation High-speed RFID circuit placement method and device
US7555826B2 (en) * 2005-12-22 2009-07-07 Avery Dennison Corporation Method of manufacturing RFID devices
US7646304B2 (en) * 2006-04-10 2010-01-12 Checkpoint Systems, Inc. Transfer tape strap process
WO2008073297A2 (en) 2006-12-08 2008-06-19 Z Corporation Three dimensional printing material system and method using peroxide cure
US8167999B2 (en) 2007-01-10 2012-05-01 3D Systems, Inc. Three-dimensional printing material system with improved color, article performance, and ease of use
US7968626B2 (en) 2007-02-22 2011-06-28 Z Corporation Three dimensional printing material system and method using plasticizer-assisted sintering
US8161633B2 (en) * 2007-04-03 2012-04-24 Harris Corporation Method of fabricating non-planar circuit board
US20090004368A1 (en) * 2007-06-29 2009-01-01 Weyerhaeuser Co. Systems and methods for curing a deposited layer on a substrate
US20090032289A1 (en) * 2007-07-31 2009-02-05 Nokia Corporation Circuit board having two or more planar sections
US7923298B2 (en) * 2007-09-07 2011-04-12 Micron Technology, Inc. Imager die package and methods of packaging an imager die on a temporary carrier
GB0805021D0 (en) * 2008-03-18 2008-04-16 Renishaw Plc Apparatus and method for electronic circuit manufacture
US8463116B2 (en) * 2008-07-01 2013-06-11 Tap Development Limited Liability Company Systems for curing deposited material using feedback control
EP2781144B1 (en) 2011-11-18 2019-09-18 Honeywell International Inc. Fabrication of three-dimensional printed circuit board structures
US11013835B2 (en) * 2012-02-03 2021-05-25 Board Of Regents, The University Of Texas System Processability of polymeric substrates and related methods
JP5973190B2 (en) 2012-03-06 2016-08-23 タイコエレクトロニクスジャパン合同会社 Three-dimensional laminated wiring board
KR20160023874A (en) * 2013-06-24 2016-03-03 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Printed three-dimensional (3d) functional part and method of making
CN103407296A (en) * 2013-07-29 2013-11-27 南京鼎科纳米技术研究所有限公司 Method for achieving high-melting-point material 3D printing through nanometer ink together with laser melting
CN113370458B (en) 2013-09-27 2023-12-01 塔科图特科有限责任公司 Method for producing an electromechanical structure and device for carrying out the method
KR102301526B1 (en) * 2014-01-14 2021-09-14 다이요 잉키 세이조 가부시키가이샤 Three-dimensional circuit board and solder resist composition used for same
CN104411122B (en) * 2014-05-31 2017-10-20 福州大学 A kind of 3D printing method of multi-layer flexible circuit board
CA2950215A1 (en) 2014-06-23 2015-12-30 Carbon, Inc. Polyurethane resins having multiple mechanisms of hardening for use in producing three-dimensional objects
US9586371B2 (en) 2014-09-02 2017-03-07 Empire Technology Development Llc Method of bonding material layers in an additive manufacturing process
US9398705B2 (en) * 2014-12-02 2016-07-19 Flextronics Ap, Llc. Stretchable printed electronic sheets to electrically connect uneven two dimensional and three dimensional surfaces
WO2016153711A1 (en) * 2015-03-23 2016-09-29 Dow Global Technologies Llc Photocurable compositions for three-dimensional printing
JP7069006B2 (en) 2015-09-04 2022-05-17 カーボン,インコーポレイテッド Cyanate ester double curable resin for laminated modeling
WO2017044381A1 (en) 2015-09-09 2017-03-16 Carbon3D, Inc. Epoxy dual cure resins for additive manufacturing
US10647873B2 (en) 2015-10-30 2020-05-12 Carbon, Inc. Dual cure article of manufacture with portions of differing solubility
WO2017079502A1 (en) 2015-11-05 2017-05-11 Carbon, Inc. Silicone dual cure resins for additive manufacturing
WO2017106341A1 (en) * 2015-12-14 2017-06-22 The Board Of Trustees Of The Leland Stanford Junior University Device fabrication using 3d printing
WO2017112653A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Dual precursor resin systems for additive manufacturing with dual cure resins
US10538031B2 (en) 2015-12-22 2020-01-21 Carbon, Inc. Dual cure additive manufacturing of rigid intermediates that generate semi-rigid, flexible, or elastic final products
WO2017112751A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Blocked silicone dual cure resins for additive manufacturing
US10647054B2 (en) 2015-12-22 2020-05-12 Carbon, Inc. Accelerants for additive manufacturing with dual cure resins
US10501572B2 (en) 2015-12-22 2019-12-10 Carbon, Inc. Cyclic ester dual cure resins for additive manufacturing
JP6944935B2 (en) 2015-12-22 2021-10-06 カーボン,インコーポレイテッド Manufacture of composite products from multiple intermediates by laminated molding using double-cured resin
US10343331B2 (en) 2015-12-22 2019-07-09 Carbon, Inc. Wash liquids for use in additive manufacturing with dual cure resins
US10500786B2 (en) 2016-06-22 2019-12-10 Carbon, Inc. Dual cure resins containing microwave absorbing materials and methods of using the same
JP2018083300A (en) * 2016-11-21 2018-05-31 ローランドディー.ジー.株式会社 Postcure method, and photo-mold method
WO2018165090A1 (en) 2017-03-09 2018-09-13 Carbon, Inc. Tough, high temperature polymers produced by stereolithography
US11312066B2 (en) 2017-03-27 2022-04-26 Carbon, Inc. Method of making three-dimensional objects by additive manufacturing
JP6894015B2 (en) 2017-06-21 2021-06-23 カーボン,インコーポレイテッド Laminated modeling method
US10667396B2 (en) * 2017-08-25 2020-05-26 Tactotek Oy Multilayer structure for hosting electronics and related method of manufacture
US10165689B1 (en) 2017-08-30 2018-12-25 Xerox Corporation Method for forming circuits for three-dimensional parts and devices formed thereby
US11504903B2 (en) 2018-08-28 2022-11-22 Carbon, Inc. 1K alcohol dual cure resins for additive manufacturing
US11588009B2 (en) * 2018-12-12 2023-02-21 Amkor Technology Singapore Holding Pte. Ltd. Semiconductor device having a lid configured as an enclosure and a capacitive structure and method of manufacturing a semiconductor device
US11533809B2 (en) 2019-10-11 2022-12-20 Schlumberger Technology Corporation Three dimensional printed resistor for downhole applications
US11523513B2 (en) * 2019-10-11 2022-12-06 Schlumberger Technology Corporation Passive component adapter for downhole application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929402A (en) * 1984-08-08 1990-05-29 3D Systems, Inc. Method for production of three-dimensional objects by stereolithography
US5008496A (en) * 1988-09-15 1991-04-16 Siemens Aktiengesellschaft Three-dimensional printed circuit board

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999143A (en) * 1988-04-18 1991-03-12 3D Systems, Inc. Methods and apparatus for production of three-dimensional objects by stereolithography
US4996010A (en) * 1988-04-18 1991-02-26 3D Systems, Inc. Methods and apparatus for production of three-dimensional objects by stereolithography
US5173220A (en) * 1991-04-26 1992-12-22 Motorola, Inc. Method of manufacturing a three-dimensional plastic article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929402A (en) * 1984-08-08 1990-05-29 3D Systems, Inc. Method for production of three-dimensional objects by stereolithography
US5008496A (en) * 1988-09-15 1991-04-16 Siemens Aktiengesellschaft Three-dimensional printed circuit board

Also Published As

Publication number Publication date
US5264061A (en) 1993-11-23

Similar Documents

Publication Publication Date Title
US5264061A (en) Method of forming a three-dimensional printed circuit assembly
US5173220A (en) Method of manufacturing a three-dimensional plastic article
JP4486660B2 (en) Method for manufacturing printed circuit board
CA1189019A (en) Radiation stress relieving of sulfone polymer articles
JP4635224B2 (en) Circuit board manufacturing method
JP4555323B2 (en) Multilayer printed circuit board manufacturing method, multilayer printed circuit board, and vacuum printing apparatus
US20090011220A1 (en) Carrier and method for manufacturing printed circuit board
KR100797692B1 (en) Printed Circuit Board and Fabricating Method of the same
US4283243A (en) Use of photosensitive stratum to create through-hole connections in circuit boards
CN101135843A (en) Method of manufacturing a stamper
KR20080104944A (en) Method for manufacturing printed wiring board having potting dam and printed wiring board manufactured according to the method
KR100940169B1 (en) Method for manufacturing a printed circuit board by foriming a hardening resin layer
US9257310B2 (en) Method of manufacturing circuit board and chip package and circuit board manufactured by using the method
KR100302631B1 (en) Manufacturing method for multi-layer pcb
KR100674301B1 (en) Method for printing character of rigid-flexible printed circuit board
KR100925758B1 (en) Method for manufacturing printed circuit board
CN110996567A (en) Manufacturing method of step-type circuit board and circuit board
JP3325903B2 (en) Manufacturing method of wiring board
JP2943767B2 (en) Method for manufacturing multilayer wiring board
JPH05110255A (en) Manufacture of curved-surface multilayer wiring board
JPH09266368A (en) Microwave circuit board manufacturing method
JP2864276B2 (en) Manufacturing method of printed wiring board
AU591956B2 (en) Means for use in manufacturing circuit cards and method for manufacturing the means
JP2000244118A (en) Manufacture of build-up multilayer wiring board
CN112739029A (en) Manufacturing method and control method for manufacturing 3D circuit board based on photocuring

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase