WO1994019679A1 - A method and system for sampling and determining the presence of compounds - Google Patents

A method and system for sampling and determining the presence of compounds Download PDF

Info

Publication number
WO1994019679A1
WO1994019679A1 PCT/US1994/001590 US9401590W WO9419679A1 WO 1994019679 A1 WO1994019679 A1 WO 1994019679A1 US 9401590 W US9401590 W US 9401590W WO 9419679 A1 WO9419679 A1 WO 9419679A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
electrical signals
chemiluminescence
radiation
heating
Prior art date
Application number
PCT/US1994/001590
Other languages
French (fr)
Inventor
David R. Rounbehler
David H. Fine
Stephen J. Macdonald
Daniel B. Dennison
Eugene K. Achter
Original Assignee
The Coca-Cola Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Coca-Cola Company filed Critical The Coca-Cola Company
Priority to BR9405736A priority Critical patent/BR9405736A/en
Priority to AU62398/94A priority patent/AU6239894A/en
Priority to EP94909618A priority patent/EP0685066A4/en
Publication of WO1994019679A1 publication Critical patent/WO1994019679A1/en
Priority to NO953247A priority patent/NO953247L/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/3404Sorting according to other particular properties according to properties of containers or receptacles, e.g. rigidity, leaks, fill-level
    • B07C5/3408Sorting according to other particular properties according to properties of containers or receptacles, e.g. rigidity, leaks, fill-level for bottles, jars or other glassware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/46Inspecting cleaned containers for cleanliness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2226Sampling from a closed space, e.g. food package, head space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • G01N21/766Chemiluminescence; Bioluminescence of gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9018Dirt detection in containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2203/00Details of cleaning machines or methods involving the use or presence of liquid or steam
    • B08B2203/005Details of cleaning machines or methods involving the use or presence of liquid or steam the liquid being ozonated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0275Specific separating techniques using chemical sensors, e.g. analysing gasified constituents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N2001/222Other features
    • G01N2001/2223Other features aerosol sampling devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2226Sampling from a closed space, e.g. food package, head space
    • G01N2001/2229Headspace sampling, i.e. vapour over liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N2033/0078Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00 testing material properties on manufactured objects
    • G01N2033/0081Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00 testing material properties on manufactured objects containers; packages; bottles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/113332Automated chemical analysis with conveyance of sample along a test line in a container or rack
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/17Nitrogen containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/20Oxygen containing
    • Y10T436/206664Ozone or peroxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/21Hydrocarbon

Definitions

  • the present invention relates to an inspection system for sampling and determining the presence of certain substances, such as residues of contaminants within containers such as glass or plastic bottles. More specifically, the present invention relates to an improved sampling and analyzing system and method for determining the presence of substances such as residues of contaminants, as in containers such as beverage bottles rapidly moving along a conveyor past a test station in a container sorting system.
  • containers such as beverage bottles rapidly moving along a conveyor past a test station in a container sorting system.
  • Glass containers have the disadvantage of being fragile and, in larger volumes, of being relatively heavy. Accordingly, it is highly desirable to use plastic containers because they are less fragile and lighter than glass containers of the same volume.
  • plastic materials tend to absorb a variety of organic compounds which may later be desorbed into the product thereby potentially adversely affecting the quality of the product packaged in the container. Examples of such organic compounds are nitrogen containing compounds such as ammonia, organic nitrogen compounds, and hydrocarbons including gasoline and various cleaning fluids.
  • the aforementioned application Serial No. 07/890,863 discloses a system and method for detecting the presence of these nitrogen containing and hydrocarbon compounds using a chemiluminescence analyzer.
  • specific substances e.g., contaminants such as nitrogen containing compounds and hydrocarbons
  • the objects of the present invention are fulfilled by providing a method comprising the steps of: collecting a sample; dividing the sample into first and second portions; heating the first portion of the sample to a first temperature; heating the second portion of the sample to a second temperature; mixing the heated first portion of the sample with ozone to cause a chemical reaction therewith in order to generate radiation by chemiluminescence having characteristic wavelengths related to substances in said first portion; mixing the heated second portion of the sample with ozone to cause a chemical reaction therewith in order to generate radiation by chemiluminescence having characteristic wavelengths related to substances in said second portion; selectively detecting radiation emitted by chemiluminescence from the first portion of the sample; selectively detecting radiation emitted by chemiluminescence from the second portion of the sample; said heating and detecting steps being performed in a manner so as to yield a higher level of detected radiation from one of said portions of the sample than the other for at least some of the selected compounds; generating first electrical signals from the radiation selectively detected from the first portion of the
  • heating of the first portion is performed in a first converter having a ceramic heating chamber and heating of the second portion is performed in a second converter having nickel materials in its heating chamber. Therefore, the respective first and second sample portions are oxidized in different chemical environments.
  • the radiation generated by chemiluminescence of the sample in the ceramic converter is passed through a quartz filter and detected.
  • the radiation generated by chemiluminescence of the sample in the nickel converter is passed through a red (infrared) filter and detected.
  • the signal related to radiation passing through the quartz filter is subtracted from the signal related to the radiation passing through the red filter by a computer. The result is compared to certain predetermined threshold criteria to determine the presence or absence of certain nitrogen or hydrocarbon compounds of interest. Appropriate reject signals for a bottle sorting system are generated accordingly.
  • Fig. 1 is a schematic block diagram of the sampling and residue analyzing system disclosed in U.S. application Serial
  • No. 07/890,863 illustrating a plurality of containers moving seriatim along a conveyor system through a test station, reject mechanism and washer station;
  • Fig. 2 is a block diagram also disclosed in U.S. application Serial No. 07/890,863 illustrating a possible implementation of the system of Fig. 1 in a detector system in which the contaminant being detected may be a nitrogen containing compound;
  • Fig. 3 is a schematic diagram of an improved analyzer system according to the present invention.
  • Fig. 4 illustrates graphs of signals detected and processed by the system of Fig. 3 for a sample having nitrogen containing compounds such as NH 3 ;
  • Fig. 5 illustrates graphs of signals detected and processed by the system of Fig. 3 for a sample containing hydrocarbons such as diesel fuel or kerosene
  • Fig. 6 illustrates graphs of signals detected and processed by the system of Fig. 3 for samples containing an unknown contaminant affected in a similar manner by heating in two different converters
  • Fig. 7 illustrates graphs of signals detected and processed by the system of Fig. 3 for samples containing no contaminants of the type detectable by the present invention.
  • a conveyor 10 moving in the direction of arrow A having a plurality of uncapped, open-topped spaced containers C (e.g., plastic beverage bottles of about 1500 c.c. volume) disposed thereon for movement seriatim through a test station 12, reject mechanism 28 and conveyor 32 to a washer system.
  • containers C could be touching each other rather than spaced.
  • the contents of containers C would typically include air, volatiles of residues of contaminants, if any, and volatiles of any products such as beverages which had been in the containers.
  • An air injector 14 which is a source of compressed air is provided with a nozzle 16 spaced from, but aligned with, a container C at test station 12.
  • nozzle 16 is disposed outside of the containers and makes no contact therewith. Nozzle 16 directs compressed air into containers C to displace at least a portion of the contents of the container to thereby emit a sample cloud 18 to a region outside of the container being tested.
  • C0 2 gas could be utilized as the injected fluid.
  • the compressed air or C0 2 gas could be heated to enhance volatility of the compounds being tested.
  • the column of air injected through nozzle 16 into a container C would be typically of the order of about 10 c.c. for bottle speeds of about 200 to 1000 bottles per minute. A rate of 400 bottles per minute is preferable and is compatible with current beverage bottle filling speeds. The desired test rate may vary with the size of the bottles being inspected and filled. Of course the bottles could be stationary or moving slower than 200 bottles per minute and the system would still work. Only about 10 c.c. of the container contents would be displaced to regions outside of the bottle to form sample cloud 18.
  • an evacuator sampler 22 which may comprise a vacuum pump or the like coupled to a sampling tube or conduit 20.
  • the tube is mounted near, and preferably downstream (e.g., about 1/16 inch) of the air injector 14 so as to be in fluid communication with sample cloud 18 adjacent to the opening at the top of containers C.
  • Neither nozzle 16 nor tube 20 contacts the containers C at test station 12; rather both are spaced at positions outside of the containers in close proximity to the openings thereof. This is advantageous in that no physical coupling is required to the containers C, or insertion of probes into the containers, which would impede their rapid movement along conveyor 10 and thus slow down the sampling rate.
  • High speed sampling rates of from about 200 to 1000 bottles per minute are possible with the system and method of the present invention.
  • the conveyor 10 is preferably driven continuously to achieve these rates without stopping or slowing the bottles down at the test station.
  • a bypass line 24 is provided in communication with the evacuator sampler 22 so that a predetermined portion (preferably about 90%) of the sample from cloud 18 entering tube 20 can be diverted through bypass line 24.
  • the remaining sample portion passes to a residue analyzer 26, which determines whether specific substances are present, and then is exhausted.
  • One purpose of diverting a large portion of the sample from cloud 18 is to reduce the amount of sample passing from evacuator sampler 22 to residue analyzer 26 in order to achieve high speed analysis. This is done in order to provide manageable levels of samples to be tested by the residue analyzer 26.
  • Another purpose for diverting a portion of the sample is to be able to substantially remove all of sample cloud 18 by evacuator 22 from the test station area and divert the excess through bypass line 24.
  • the excess portion of the sample passing through bypass line 24 returned to air injector 14 for introduction into the subsequent containers moving along conveyor 10 through nozzle 16.
  • sample cloud 18 could be analyzed in situ without transporting it to a remote analyzer such as 26. It could also be transported to analyzer 26 by blowing rather than sucking.
  • a microprocessor controller 34 including an analog to digital converter is provided for controlling the operation of air injector 14, evacuator sampler 22, residue analyzer 26, a reject mechanism 28 and an optional fan 15.
  • Container sensor 17 including juxtaposed radiation source and photodetector is disposed opposite a reflector (not shown) across conveyor 10. Sensor 17 tells controller 34 when a container arrives at the test station and briefly interrupts the beam of radiation reflected to the photodetector.
  • Optional fan 15 is provided to generate an air blast towards sample cloud 18 and preferably in the direction of movement of containers C to assist in the removal of sample cloud 18 from the vicinity of test station 12 after each container C is sampled.
  • fan 15 is controlled by microprocessor 34 as indicated diagrammatically in Fig. 1.
  • fan 15 is continuously operating for the entire time the rest of the system is operating.
  • a reject mechanism 28 receives a reject signal from microprocessor controller 34 when residue analyzer 26 determines that a particular container C is contaminated with a residue of various undesirable types. Reject mechanism 28 diverts contaminated rejected bottles, as to a conveyor 30, and allows passage of uncontaminated, acceptable bottles to a washer (not shown) on a conveyor 32.
  • An alternative option is to place the bottle test station downstream of the bottle washer in the direction of conveyor travel, or to place an additional test station and sample and residue analyzing system after the washer.
  • the contaminant is a hydrocarbon, such as gasoline which is insoluble in water
  • Certain hydrocarbons may then be sampled by a sampler 22 downstream of the washer, to the exclusion of the dissolved, water-soluble chemicals. Therefore, the detection of such hydrocarbons can be performed without potential interference from other water soluble chemicals if the bottles pass through a washer before testing.
  • a nozzle 16 is provided for generating an air blast which passes into a container (not shown) being inspected.
  • the air passing through nozzle 16 may be heated or unheated, it being advantageous to heat the air for some applications.
  • Juxtaposed to the nozzle 16 is sample inlet tube 20 including a filter 40 at the output thereof for filtering out particles from the sample.
  • Suction is provided to tube 20 from the suction side of pump 82 connected through a detector assembly 27.
  • a portion of the sample (for example, 90-95% of a total sample flow of about 6000 c.c. per minute) , as described in connection with Fig. 1, is diverted through a bypass line 24 by means of connection to the suction side of a pump 46.
  • Pump 46 recirculates the air through an accumulator 48, a normally open blast control valve 50, and back to the air blast output nozzle 16.
  • a backpressure regulator 54 helps control pressure of the air blast through nozzle 16 and vents excess air to exhaust 57.
  • Blast control valve 50 receives control signals through line 50A from microprocessor controller 34 to normally maintain the valve open to permit the flow of air to the nozzle.
  • the detector assembly 27 in the embodiment of Fig. 2 is an analyzer which detects the residue of selected compounds such as nitrogen containing compounds in the containers being inspected by means of a method of chemiluminescence.
  • This type of detector is generally known and includes a chamber for mixing ozone with nitric oxide, or with other compounds which react with ozone, in order to allow them to react, a radiation-transmissive element (with appropriate filter) , and a radiation detector to detect chemiluminescence from the products of reaction.
  • characteristic light emission is given off at predetermined wavelengths such as wavelengths in the range of about 0.6 to 2.8 microns. Selected portions of the emitted radiation of chemiluminescence, and its intensity, can be detected by a photomultiplier tube.
  • nitrogen compounds such as ammonia
  • an oxidant e.g. oxygen in air
  • ambient air is drawn in through intake 60 and air filter 62 to an ozone generator 64.
  • Ozone is generated therein, as by electrical discharge into air, and is output through ozone filter 66 and flow control valve 68 to the detector assembly 27 wherein it is mixed with samples from containers input through intake tube 20, filter 40, flow restrictor 42, and converter 44.
  • the sample from intake tube 20 is passed through a converter 44, such as an electrically-heated nickel tube, in which the temperature is raised to approximately 800°C to 1000° (e.g., about 900°C) before being input to detector assembly 27. Temperatures in the range of 400°C to 1400°C may also be acceptable.
  • NO nitric oxide
  • converter 44 organic compounds derived from heating of gasoline, kerosene, or cleaning residue.
  • a temperature controller 70 supplied with electrical power through a transformer 72 is used to control the temperature of converter 44.
  • the samples in the detector assembly 27 after passage through its chamber are output through an accumulator 85 and pump 82 to an ozone scrubber 56, and to an exhaust output 57 in order to clear the residue detector for the next sample from the next container moving along the conveyor 10 of Fig. 1.
  • an (optional) fan may be employed to help clear any remaining sample cloud from near the sample inlet tube 20.
  • Outputs from detector assembly 27 relating to the results of the tests are output through a preamp 84 to microprocessor 34 which feeds this information in an appropriate manner to a recorder 83.
  • the recorder 83 is preferably a conventional strip recorder, or the like, which displays signal amplitude vs. time of the sample being analyzed.
  • the microprocessor 34 may be programmed to recognize, as a "hit” or the detection of a specific residue, a signal peak from a photodetector of the detector assembly 27 which is present in a predetermined time interval (based on the sensed arrival of a container at the test station) and whose slope and amplitude reach predetermined magnitudes and thereafter maintain such levels for a prescribed duration.
  • the microprocessor controller 34 also has an output to a bottle ejector 28 to reject contaminated bottles and separate them from bottles en route to a washer.
  • a calibration terminal 86 is provided for residue analyzer 27 for adjusting the high voltage supply 26A associated with the detector assembly.
  • a recorder attenuator input terminal 88 connected to the microprocessor controller 34 for adjusting the operation of the recorder.
  • Detector assembly 27 receives electrical power from the high voltage supply 26A.
  • Additional controls include operator panel 90 including a key pad and display section permitting an operator to control the operation of the detector assembly 27 in an appropriate fashion.
  • DC power is supplied to all appropriate components through DC power supply 78 coupled to the output of power supply PS.
  • An optional alarm enunciator 80A is provided for signaling an operator of the presence of a contaminated container.
  • Alarm enunciator 80A is coupled to the output of microprocessor controller 34 via output control line 80C.
  • a malfunction alarm 80B is also coupled to microprocessor controller 34 for receiving fault or malfunction signals such as from pressure switch 58 or vacuum switch 87 when pressures are outside of certain predetermined limits.
  • Other safety devices may be provided such as vacuum gauge 89, and back pressure control valve 54 for ensuring proper operation of the system.
  • Fig. 2 Most components of the entire system of Fig. 2 are preferably enclosed in a rust-proof, stainless steel cabinet
  • the cabinet is cooled by a counter-flow heat exchanger
  • the system illustrated in Figure 2 has a single detector assembly 27 for analyzing the sample evacuated into tube 20 and converter or converter 44. In most instances this system works quite well to detect either hydrocarbons or nitrogen containing compounds. However, sometimes a signal of interest may be hidden, or masked by background NOx (NO or N0 2 ) signals. Also, background signals, particularly during periods of rapid variation in background, may result in an indication that a compound of interest is present even though the compound is absent - i.e., a "false positive". Background NOx could vary due to passage of a fork-lift truck in the plant in the vicinity of the testing apparatus; due to different atmospheres in which some of the bottles to be tested were stored; or due to traffic outside of the plant and other various causes.
  • background NOx could vary due to passage of a fork-lift truck in the plant in the vicinity of the testing apparatus; due to different atmospheres in which some of the bottles to be tested were stored; or due to traffic outside of the plant and other various causes.
  • a preferred embodiment of the present invention includes an improved sample analyzer system, portions of which are illustrated in Fig. 3.
  • the system is similar in many respects to that of Fig. 2; however, converter 44, detector assembly 27, and preamp 84 of the Fig. 2 system are replaced by the components shown in Fig. 3.
  • a sample such as from sample cloud 18 emerging from a container to be inspected is evacuated into sample tube 20 and passes through filter 40 and flow restrictor 42.
  • the sample is then split into two parallel flow lines connected to parallel converters PI, P2.
  • Converter PI is preferably a ceramic converter so that the portion of the sample being heated therein is heated in the presence of ceramic materials.
  • Converter P2 is preferably a nickel converter (formed of or containing nickel) so that the portion of the sample being heated therein is heated in the presence of nickel oxide.
  • the output of container PI is connected to the input of a chemiluminescence detector assembly Dl and the output of the nickel converter P2 is connected to the input of a chemiluminescence detector assembly D2.
  • Chemiluminescence detector assembly Dl is provided with a quartz output filter - e.g., a 0.19 micron cutoff filter - so that radiation of wavelengths greater than 0.19 microns emitted by chemiluminescence within detector assembly Dl passes through the quartz filter to a photomultiplier tube which converts the radiation signal into an electrical signal having a characteristic shape and amplitude for each substance to be detected at characteristic wavelengths for the respective substances.
  • the radiation emitted is generated by the chemical reaction of the sample in the detector with ozone gas supplied thereto in a manner which is well known in the art.
  • detector assembly Dl detects the presence of substances which emit characteristic wavelengths of radiation which will pass through a quartz filter.
  • Detector assembly D2 has an infrared output filter - e.g. a 0.6 micron cut-off filter - which will selectively pass radiation in the infrared (and longer wavelength) region of the spectrum corresponding to various nitrogen containing compounds.
  • an infrared output filter - e.g. a 0.6 micron cut-off filter - which will selectively pass radiation in the infrared (and longer wavelength) region of the spectrum corresponding to various nitrogen containing compounds.
  • a sample from cloud 18 is sucked through sample tube 20, filter 40, and flow restrictor 42 and is split into approximately equal portions to pass into and through the two converters PI, P2 arranged in parallel.
  • Both converters PI and P2 are heated to approximately 900°C.
  • a temperature of 900°C is preferable, however, the system will achieve satisfactory results if the converters are heated to substantially the same temperature in the range of approximately 800°C. to 1400°C.
  • converter PI is a ceramic converter whose reaction chamber is lined with, a material such as aluminum oxide or the like.
  • the other converter P2 is made of or contains nickel, e.g. converter P2 is a nickel alloy tube or a ceramic tube containing a nickel wire coil.
  • Typical dimensions for the converters PI and P2 are approximately 15" long; 0.03-0.2" inside diameter; and typically 1/8" inside diameter, 1/4" outside diameter.
  • Detectors Dl and D2 are coupled to the outlets of the respective converters PI and P2 and to a vacuum in order to draw the sample through the converters and the detectors.
  • the outputs of the detectors Dl and D2 are connected through suitable amplifiers Al and A2 to a microprocessor controller 34, which includes analog to digital converters and is operable to process the electrical signals SI and S2 produced by the detectors Dl and D2 and provide outputs which include individual processed signals and a net signal which results from the subtraction of signals output from the respective detectors - e.g., a net signal (S2-S1) .
  • the flow resistance through converters PI and P2, detectors Dl and D2, and flow lines associated with these components is designed to be relatively equal so that timewise variation of background is the same as measured by detectors Dl and D2.
  • the main flow resistance (and hence flow rate) is set by the flow restrictor 42.
  • Figs. 4-6 show amplitude vs. time graphs of signals output from detectors Dl and D2 for various substances to be detected.
  • Figs. 4-5 show signals with relatively high, time- varying backgrounds. Subtraction of signals produces a result (S2-S1) which is a positive(+) signal for detection of nitrogen compounds, and a negative(-) signal for detection of hydrocarbons, (olefins, are in diesel fuel or kerosene) .
  • the signal is positive for nitrogen containing compound detection (Fig. 4) because, at typical temperatures and flow rates employed, converter PI, which is ceramic, does not produce appreciable amounts of NO in the absence of nickel oxide.
  • the signal (S2-S1) is negative for olefins (Fig.
  • the signal SI of detector Dl is larger than the signal S2 of detector D2 for at least two possible reasons.
  • the first reason is that more signals related to olefin chemiluminescence are produced in the ceramic converter than in the nickel converter, and the second reason is that less of the chemiluminescence radiation produced in detector Dl is filtered out by the quartz filter of detector Dl than by the infrared filter of detector D2.
  • a net negative signal (S2-S1) resulting from the subtraction is an indication of the presence of an olefin contaminant such as diesel fuel or kerosene.
  • the ceramic converter PI apparently "cracks" the diesel fuel or kerosene to produce a double-bonded hydrocarbon, most probably an alkene such as 1-butane or propylene, which chemiluminesces with ozone (O 3 ).
  • an alkene such as 1-butane or propylene
  • ozone O 3
  • the nickel containing converter P2 some of the cracked material burns or reacts to form non-chemiluminescing compounds before as much of the alkene is formed in the nickel containing converter P2 as in the ceramic converter PI.
  • This theory would seem to explain the result that for gasoline which already contains alkenes, the alkenes are apparently unaffected in passing through the converters.
  • the converters are usually not necessary to detect gasoline by chemiluminescence.
  • the net signal (S2-S1) will typically be negative because the quartz filter of Dl attenuates less radiation than the infrared filter of D2.
  • the threshold levels of the individual signals SI and S2 should be analyzed in addition to the net signal (S2- Sl) . See, for example, Fig. 6, in which it can be seen that for certain contaminants it's possible that subtraction of the signals S2 and SI yields a net result of (S2-S1) nearly 0, even though each detector contains signal peaks which occur at a specified time (within a window relative to arrival of containers at the test station) and have a shape and amplitude which satisfy criteria for the presence of a contaminant.
  • the contaminant such as cigarette residue
  • the signals illustrated in Fig. 6 for SI and S2, respectively, indicate such peaks and therefore the system would indicate a hit and produce an appropriate reject signal.
  • the sharp spike-like signals of Fig. 6 and those of Fig. 7 (which are for analysis of a sample illustrated to lack contaminants of the type and quantity to be detected) , though above the threshold level (TL) , lack the necessary shape characteristics to indicate the presence of a contaminant.
  • the microprocessor controller 34 in accordance with the appropriate software provided for the method of the present invention, not only subtracts signal SI from S2 to determine the presence or absence of certain hydrocarbons or nitrogen containing compounds, but may also look at the individual signals SI and S2 to determine how the individual signals compare to the predetermined threshold criteria.
  • the possibilities of various detection logic criteria are indicated in the following table.

Abstract

A system and method are provided for minimizing the effects of background signals in masking signals indicating the presence of substances to be detected such as contaminants in materials moving rapidly along a conveyor. The contaminants detected may include nitrogen containing compounds and hydrocarbons. The system and method of the present invention minimize during detection of the presence or absence of such substances, the number of falsely positive indications of the presence of such substances due to background signals and changes in background signals. The substances detected are divided into first and second sample portions and the respective portions are heated. The first heated portion is mixed with ozone to cause a chemical action therewith in order to generate radiation by chemiluminescence having characteristic weavelengths related to substances in the first portion. The second portion heated is also mixed with ozone to cause a chemical reaction therewith in order to generate radiation by chemiluminescence having characteristic wavelengths related to substances in the second portion. The radiation of the respective first and second portions is selectively detected. The heating and detecting steps are performed in a manner so as to yield a higher level of detected radiation from one of the portions of the sample than the other for at least some of the selected compounds being detected. Electrical signals from the respective first and second portions are generated and compared in order to determine the presence or absence of selected compounds in the sample. Appropriate reject signals for a bottle sorting system are generated accordingly.

Description

A METHOD AND SYSTEM FOR SAMPLING AND DETERMINING THE PRESENCE OF COMPOUNDS
BACKGROUND OF THE INVENTION This application is a continuation-in-part of application Serial Nos. 07/890,863 filed June 1, 1992 and 07/890,864 filed June 1, 1992, both of which are assigned to the same assignee as the present invention.
The present invention relates to an inspection system for sampling and determining the presence of certain substances, such as residues of contaminants within containers such as glass or plastic bottles. More specifically, the present invention relates to an improved sampling and analyzing system and method for determining the presence of substances such as residues of contaminants, as in containers such as beverage bottles rapidly moving along a conveyor past a test station in a container sorting system. In many industries, including the beverage industry, products are packaged in containers which are returned after use, washed and refilled. Typically refillable containers, such as beverage bottles, are made of glass which can be easily cleaned. These containers are washed and then inspected for the presence of foreign matter.
Glass containers have the disadvantage of being fragile and, in larger volumes, of being relatively heavy. Accordingly, it is highly desirable to use plastic containers because they are less fragile and lighter than glass containers of the same volume. However, plastic materials tend to absorb a variety of organic compounds which may later be desorbed into the product thereby potentially adversely affecting the quality of the product packaged in the container. Examples of such organic compounds are nitrogen containing compounds such as ammonia, organic nitrogen compounds, and hydrocarbons including gasoline and various cleaning fluids. The aforementioned application Serial No. 07/890,863 discloses a system and method for detecting the presence of these nitrogen containing and hydrocarbon compounds using a chemiluminescence analyzer. That system and method works quite well, but improvements are desirable to overcome interferences which may occasionally cause difficulties in achieving desired sensitivity and accuracy of detection. Such interferences result from background signals which may mask detection of low levels of certain compounds and whose variation with time may also result in false positives (and thus unwarranted rejection of uncontaminated containers) . Accordingly, a need in the art exists for a chemiluminescence analyzer with improved accuracy and sensitivity.
SUMMARY OF THE INVENTION
Accordingly, it is a primary object of the present invention to provide a method and system for detecting the presence or absence of specific substances - e.g., contaminants such as nitrogen containing compounds and hydrocarbons, in materials as the materials move rapidly along a conveyor with improved accuracy which minimizes the deleterious effects of background signals. It is a particular object of the invention to minimize the effects of background signals in masking signals indicating the presence of such substances to be detected.
It is another particular object of the invention to minimize, during detection of the presence or absence of such substances, the number of falsely positive indications of the presence of such substances due to background signals and changes in background signals.
The objects of the present invention are fulfilled by providing a method comprising the steps of: collecting a sample; dividing the sample into first and second portions; heating the first portion of the sample to a first temperature; heating the second portion of the sample to a second temperature; mixing the heated first portion of the sample with ozone to cause a chemical reaction therewith in order to generate radiation by chemiluminescence having characteristic wavelengths related to substances in said first portion; mixing the heated second portion of the sample with ozone to cause a chemical reaction therewith in order to generate radiation by chemiluminescence having characteristic wavelengths related to substances in said second portion; selectively detecting radiation emitted by chemiluminescence from the first portion of the sample; selectively detecting radiation emitted by chemiluminescence from the second portion of the sample; said heating and detecting steps being performed in a manner so as to yield a higher level of detected radiation from one of said portions of the sample than the other for at least some of the selected compounds; generating first electrical signals from the radiation selectively detected from the first portion of the sample and second electrical signals from the radiation selectively detected from the second portion of the sample; and comparing the first electrical signals with the second electrical signals in order to determine the presence or absence of selected compounds in the sample; said heating, mixing, detecting, and generating, steps for said first portion being performed at essentially the same time as said heating, mixing, detecting, and generating steps for said second portion, and said comparing step being performed in a manner so as to cancel background signals in said portions.
In a preferred embodiment heating of the first portion is performed in a first converter having a ceramic heating chamber and heating of the second portion is performed in a second converter having nickel materials in its heating chamber. Therefore, the respective first and second sample portions are oxidized in different chemical environments. The radiation generated by chemiluminescence of the sample in the ceramic converter is passed through a quartz filter and detected. The radiation generated by chemiluminescence of the sample in the nickel converter is passed through a red (infrared) filter and detected. The signal related to radiation passing through the quartz filter is subtracted from the signal related to the radiation passing through the red filter by a computer. The result is compared to certain predetermined threshold criteria to determine the presence or absence of certain nitrogen or hydrocarbon compounds of interest. Appropriate reject signals for a bottle sorting system are generated accordingly.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus, are not limiting of the present invention and wherein:
Fig. 1 is a schematic block diagram of the sampling and residue analyzing system disclosed in U.S. application Serial
No. 07/890,863 illustrating a plurality of containers moving seriatim along a conveyor system through a test station, reject mechanism and washer station;
Fig. 2 is a block diagram also disclosed in U.S. application Serial No. 07/890,863 illustrating a possible implementation of the system of Fig. 1 in a detector system in which the contaminant being detected may be a nitrogen containing compound;
Fig. 3 is a schematic diagram of an improved analyzer system according to the present invention;
Fig. 4 illustrates graphs of signals detected and processed by the system of Fig. 3 for a sample having nitrogen containing compounds such as NH3;
Fig. 5 illustrates graphs of signals detected and processed by the system of Fig. 3 for a sample containing hydrocarbons such as diesel fuel or kerosene; Fig. 6 illustrates graphs of signals detected and processed by the system of Fig. 3 for samples containing an unknown contaminant affected in a similar manner by heating in two different converters; and Fig. 7 illustrates graphs of signals detected and processed by the system of Fig. 3 for samples containing no contaminants of the type detectable by the present invention.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS The disclosures of the aforementioned applications Serial Nos. 07/890,863 and 07/890,864 are incorporated herein by reference.
With reference to Fig. 1 of parent application Serial No. 07/890,863, there is illustrated a conveyor 10 moving in the direction of arrow A having a plurality of uncapped, open-topped spaced containers C (e.g., plastic beverage bottles of about 1500 c.c. volume) disposed thereon for movement seriatim through a test station 12, reject mechanism 28 and conveyor 32 to a washer system. To achieve higher test rates containers C could be touching each other rather than spaced. The contents of containers C would typically include air, volatiles of residues of contaminants, if any, and volatiles of any products such as beverages which had been in the containers. An air injector 14 which is a source of compressed air is provided with a nozzle 16 spaced from, but aligned with, a container C at test station 12. That is, nozzle 16 is disposed outside of the containers and makes no contact therewith. Nozzle 16 directs compressed air into containers C to displace at least a portion of the contents of the container to thereby emit a sample cloud 18 to a region outside of the container being tested.
As an alternative to compressed air, C02 gas could be utilized as the injected fluid. Also, the compressed air or C02 gas could be heated to enhance volatility of the compounds being tested.
The column of air injected through nozzle 16 into a container C would be typically of the order of about 10 c.c. for bottle speeds of about 200 to 1000 bottles per minute. A rate of 400 bottles per minute is preferable and is compatible with current beverage bottle filling speeds. The desired test rate may vary with the size of the bottles being inspected and filled. Of course the bottles could be stationary or moving slower than 200 bottles per minute and the system would still work. Only about 10 c.c. of the container contents would be displaced to regions outside of the bottle to form sample cloud 18.
Also provided is an evacuator sampler 22 which may comprise a vacuum pump or the like coupled to a sampling tube or conduit 20. The tube is mounted near, and preferably downstream (e.g., about 1/16 inch) of the air injector 14 so as to be in fluid communication with sample cloud 18 adjacent to the opening at the top of containers C. Neither nozzle 16 nor tube 20 contacts the containers C at test station 12; rather both are spaced at positions outside of the containers in close proximity to the openings thereof. This is advantageous in that no physical coupling is required to the containers C, or insertion of probes into the containers, which would impede their rapid movement along conveyor 10 and thus slow down the sampling rate. High speed sampling rates of from about 200 to 1000 bottles per minute are possible with the system and method of the present invention. The conveyor 10 is preferably driven continuously to achieve these rates without stopping or slowing the bottles down at the test station.
A bypass line 24 is provided in communication with the evacuator sampler 22 so that a predetermined portion (preferably about 90%) of the sample from cloud 18 entering tube 20 can be diverted through bypass line 24. The remaining sample portion passes to a residue analyzer 26, which determines whether specific substances are present, and then is exhausted. One purpose of diverting a large portion of the sample from cloud 18 is to reduce the amount of sample passing from evacuator sampler 22 to residue analyzer 26 in order to achieve high speed analysis. This is done in order to provide manageable levels of samples to be tested by the residue analyzer 26. Another purpose for diverting a portion of the sample is to be able to substantially remove all of sample cloud 18 by evacuator 22 from the test station area and divert the excess through bypass line 24. In a preferred embodiment the excess portion of the sample passing through bypass line 24 returned to air injector 14 for introduction into the subsequent containers moving along conveyor 10 through nozzle 16. However, it would also be possible to simply vent bypass line 24 to the atmosphere.
It should be understood that sample cloud 18 could be analyzed in situ without transporting it to a remote analyzer such as 26. It could also be transported to analyzer 26 by blowing rather than sucking.
A microprocessor controller 34 including an analog to digital converter is provided for controlling the operation of air injector 14, evacuator sampler 22, residue analyzer 26, a reject mechanism 28 and an optional fan 15. Container sensor 17 including juxtaposed radiation source and photodetector is disposed opposite a reflector (not shown) across conveyor 10. Sensor 17 tells controller 34 when a container arrives at the test station and briefly interrupts the beam of radiation reflected to the photodetector. Optional fan 15 is provided to generate an air blast towards sample cloud 18 and preferably in the direction of movement of containers C to assist in the removal of sample cloud 18 from the vicinity of test station 12 after each container C is sampled. This clears out the air from the region of the test station so that no lingering residues from an existing sample cloud 18 can contaminate the test station area when successive containers C reach the test station for sampling. Thus, sample carryover between containers is precluded. The duty cycle for operation of fan 15 is controlled by microprocessor 34 as indicated diagrammatically in Fig. 1. Preferably fan 15 is continuously operating for the entire time the rest of the system is operating.
A reject mechanism 28 receives a reject signal from microprocessor controller 34 when residue analyzer 26 determines that a particular container C is contaminated with a residue of various undesirable types. Reject mechanism 28 diverts contaminated rejected bottles, as to a conveyor 30, and allows passage of uncontaminated, acceptable bottles to a washer (not shown) on a conveyor 32.
An alternative option is to place the bottle test station downstream of the bottle washer in the direction of conveyor travel, or to place an additional test station and sample and residue analyzing system after the washer. In fact it may be preferable to position the test station and system after the washer when inspecting bottles for some contaminants. For example, if the contaminant is a hydrocarbon, such as gasoline which is insoluble in water, it is easier to detect residues of hydrocarbons after the bottles have been washed. This is because during the washing process in which the bottles are heated and washed with water, water soluble chemical volatiles are desorbed from the bottles by the heating thereof and then dissolved in the washing water. Certain hydrocarbons, on the other hand, not being water soluble, may then be sampled by a sampler 22 downstream of the washer, to the exclusion of the dissolved, water-soluble chemicals. Therefore, the detection of such hydrocarbons can be performed without potential interference from other water soluble chemicals if the bottles pass through a washer before testing.
Referring to Fig. 2 there is illustrated a specific embodiment of a detector system for use with the sampling and analyzing system of Fig. 1 wherein like reference numerals refer to like parts. The detector system of Fig. 2 is also fully disclosed in parent application Serial No. 07/890,863 filed June 1, 1992. As illustrated, a nozzle 16 is provided for generating an air blast which passes into a container (not shown) being inspected. The air passing through nozzle 16 may be heated or unheated, it being advantageous to heat the air for some applications. Juxtaposed to the nozzle 16 is sample inlet tube 20 including a filter 40 at the output thereof for filtering out particles from the sample. Suction is provided to tube 20 from the suction side of pump 82 connected through a detector assembly 27. A portion of the sample (for example, 90-95% of a total sample flow of about 6000 c.c. per minute) , as described in connection with Fig. 1, is diverted through a bypass line 24 by means of connection to the suction side of a pump 46. Pump 46 recirculates the air through an accumulator 48, a normally open blast control valve 50, and back to the air blast output nozzle 16. A backpressure regulator 54 helps control pressure of the air blast through nozzle 16 and vents excess air to exhaust 57. Blast control valve 50 receives control signals through line 50A from microprocessor controller 34 to normally maintain the valve open to permit the flow of air to the nozzle. Electrical power is provided to pump 46 via line 46A coupled to the output of circuit breaker 76 which is in turn coupled to the output of AC filter 74 and AC power supply PS. The detector assembly 27 in the embodiment of Fig. 2 is an analyzer which detects the residue of selected compounds such as nitrogen containing compounds in the containers being inspected by means of a method of chemiluminescence. This type of detector is generally known and includes a chamber for mixing ozone with nitric oxide, or with other compounds which react with ozone, in order to allow them to react, a radiation-transmissive element (with appropriate filter) , and a radiation detector to detect chemiluminescence from the products of reaction. For example, when NO, produced from heating nitrogen compounds (such as ammonia) in the presence of an oxidant (e.g. oxygen in air) , chemically reacts with the ozone, characteristic light emission is given off at predetermined wavelengths such as wavelengths in the range of about 0.6 to 2.8 microns. Selected portions of the emitted radiation of chemiluminescence, and its intensity, can be detected by a photomultiplier tube.
Accordingly, in the system of Fig. 2 ambient air is drawn in through intake 60 and air filter 62 to an ozone generator 64. Ozone is generated therein, as by electrical discharge into air, and is output through ozone filter 66 and flow control valve 68 to the detector assembly 27 wherein it is mixed with samples from containers input through intake tube 20, filter 40, flow restrictor 42, and converter 44. The sample from intake tube 20 is passed through a converter 44, such as an electrically-heated nickel tube, in which the temperature is raised to approximately 800°C to 1000° (e.g., about 900°C) before being input to detector assembly 27. Temperatures in the range of 400°C to 1400°C may also be acceptable. When nitrogen-containing compounds such as ammonia are so heated, NO (nitric oxide) is produced, and the nitric oxide is supplied to the chamber of the detector assembly 27. Compounds other than NO which may react with 03 and chemiluminescence may also be produced in converter 44 e.g., organic compounds derived from heating of gasoline, kerosene, or cleaning residue.
A temperature controller 70 supplied with electrical power through a transformer 72 is used to control the temperature of converter 44. The samples in the detector assembly 27 after passage through its chamber are output through an accumulator 85 and pump 82 to an ozone scrubber 56, and to an exhaust output 57 in order to clear the residue detector for the next sample from the next container moving along the conveyor 10 of Fig. 1. (As indicated above, an (optional) fan, not shown in Fig. 2, may be employed to help clear any remaining sample cloud from near the sample inlet tube 20.) Outputs from detector assembly 27 relating to the results of the tests are output through a preamp 84 to microprocessor 34 which feeds this information in an appropriate manner to a recorder 83. The recorder 83 is preferably a conventional strip recorder, or the like, which displays signal amplitude vs. time of the sample being analyzed.
The microprocessor 34 may be programmed to recognize, as a "hit" or the detection of a specific residue, a signal peak from a photodetector of the detector assembly 27 which is present in a predetermined time interval (based on the sensed arrival of a container at the test station) and whose slope and amplitude reach predetermined magnitudes and thereafter maintain such levels for a prescribed duration.
The microprocessor controller 34 also has an output to a bottle ejector 28 to reject contaminated bottles and separate them from bottles en route to a washer. A calibration terminal 86 is provided for residue analyzer 27 for adjusting the high voltage supply 26A associated with the detector assembly. Also provided is a recorder attenuator input terminal 88 connected to the microprocessor controller 34 for adjusting the operation of the recorder. Detector assembly 27 receives electrical power from the high voltage supply 26A.
Additional controls include operator panel 90 including a key pad and display section permitting an operator to control the operation of the detector assembly 27 in an appropriate fashion.
DC power is supplied to all appropriate components through DC power supply 78 coupled to the output of power supply PS. An optional alarm enunciator 80A is provided for signaling an operator of the presence of a contaminated container. Alarm enunciator 80A is coupled to the output of microprocessor controller 34 via output control line 80C. A malfunction alarm 80B is also coupled to microprocessor controller 34 for receiving fault or malfunction signals such as from pressure switch 58 or vacuum switch 87 when pressures are outside of certain predetermined limits.
Other safety devices may be provided such as vacuum gauge 89, and back pressure control valve 54 for ensuring proper operation of the system.
Most components of the entire system of Fig. 2 are preferably enclosed in a rust-proof, stainless steel cabinet
92. The cabinet is cooled by a counter-flow heat exchanger
91 having hermetically separated sections 91A and 91B in which counter air flow is provided by appropriate fans.
The system illustrated in Figure 2 has a single detector assembly 27 for analyzing the sample evacuated into tube 20 and converter or converter 44. In most instances this system works quite well to detect either hydrocarbons or nitrogen containing compounds. However, sometimes a signal of interest may be hidden, or masked by background NOx (NO or N02) signals. Also, background signals, particularly during periods of rapid variation in background, may result in an indication that a compound of interest is present even though the compound is absent - i.e., a "false positive". Background NOx could vary due to passage of a fork-lift truck in the plant in the vicinity of the testing apparatus; due to different atmospheres in which some of the bottles to be tested were stored; or due to traffic outside of the plant and other various causes.
In order to avoid false positives and to keep signals of interest from being hidden in background signals, a preferred embodiment of the present invention includes an improved sample analyzer system, portions of which are illustrated in Fig. 3. The system is similar in many respects to that of Fig. 2; however, converter 44, detector assembly 27, and preamp 84 of the Fig. 2 system are replaced by the components shown in Fig. 3.
With reference in detail to Fig. 3, a sample such as from sample cloud 18 emerging from a container to be inspected is evacuated into sample tube 20 and passes through filter 40 and flow restrictor 42. The sample is then split into two parallel flow lines connected to parallel converters PI, P2. Converter PI is preferably a ceramic converter so that the portion of the sample being heated therein is heated in the presence of ceramic materials. Converter P2 is preferably a nickel converter (formed of or containing nickel) so that the portion of the sample being heated therein is heated in the presence of nickel oxide. The output of container PI is connected to the input of a chemiluminescence detector assembly Dl and the output of the nickel converter P2 is connected to the input of a chemiluminescence detector assembly D2. Chemiluminescence detector assembly Dl is provided with a quartz output filter - e.g., a 0.19 micron cutoff filter - so that radiation of wavelengths greater than 0.19 microns emitted by chemiluminescence within detector assembly Dl passes through the quartz filter to a photomultiplier tube which converts the radiation signal into an electrical signal having a characteristic shape and amplitude for each substance to be detected at characteristic wavelengths for the respective substances. The radiation emitted is generated by the chemical reaction of the sample in the detector with ozone gas supplied thereto in a manner which is well known in the art. In other words, detector assembly Dl detects the presence of substances which emit characteristic wavelengths of radiation which will pass through a quartz filter.
Detector assembly D2, on the other hand, has an infrared output filter - e.g. a 0.6 micron cut-off filter - which will selectively pass radiation in the infrared (and longer wavelength) region of the spectrum corresponding to various nitrogen containing compounds.
In operation, a sample from cloud 18 is sucked through sample tube 20, filter 40, and flow restrictor 42 and is split into approximately equal portions to pass into and through the two converters PI, P2 arranged in parallel. Both converters PI and P2 are heated to approximately 900°C. A temperature of 900°C is preferable, however, the system will achieve satisfactory results if the converters are heated to substantially the same temperature in the range of approximately 800°C. to 1400°C.
As stated above, converter PI is a ceramic converter whose reaction chamber is lined with, a material such as aluminum oxide or the like. The other converter P2 is made of or contains nickel, e.g. converter P2 is a nickel alloy tube or a ceramic tube containing a nickel wire coil.
Typical dimensions for the converters PI and P2 are approximately 15" long; 0.03-0.2" inside diameter; and typically 1/8" inside diameter, 1/4" outside diameter.
Detectors Dl and D2 are coupled to the outlets of the respective converters PI and P2 and to a vacuum in order to draw the sample through the converters and the detectors. The outputs of the detectors Dl and D2 are connected through suitable amplifiers Al and A2 to a microprocessor controller 34, which includes analog to digital converters and is operable to process the electrical signals SI and S2 produced by the detectors Dl and D2 and provide outputs which include individual processed signals and a net signal which results from the subtraction of signals output from the respective detectors - e.g., a net signal (S2-S1) .
Preferably, the flow resistance through converters PI and P2, detectors Dl and D2, and flow lines associated with these components is designed to be relatively equal so that timewise variation of background is the same as measured by detectors Dl and D2. The main flow resistance (and hence flow rate) is set by the flow restrictor 42.
Figs. 4-6 show amplitude vs. time graphs of signals output from detectors Dl and D2 for various substances to be detected. Figs. 4-5 show signals with relatively high, time- varying backgrounds. Subtraction of signals produces a result (S2-S1) which is a positive(+) signal for detection of nitrogen compounds, and a negative(-) signal for detection of hydrocarbons, (olefins, are in diesel fuel or kerosene) . The signal is positive for nitrogen containing compound detection (Fig. 4) because, at typical temperatures and flow rates employed, converter PI, which is ceramic, does not produce appreciable amounts of NO in the absence of nickel oxide. The signal (S2-S1) is negative for olefins (Fig. 5) because the signal SI of detector Dl is larger than the signal S2 of detector D2 for at least two possible reasons. The first reason is that more signals related to olefin chemiluminescence are produced in the ceramic converter than in the nickel converter, and the second reason is that less of the chemiluminescence radiation produced in detector Dl is filtered out by the quartz filter of detector Dl than by the infrared filter of detector D2. In any event, a net negative signal (S2-S1) resulting from the subtraction is an indication of the presence of an olefin contaminant such as diesel fuel or kerosene.
Note that the signal (S2-S1) of Fig. 4 might be missed unless subtraction of signals is performed since the high level of background signals of S2 and SI might permit the nitrogen compound signal to hide. Also, the importance of avoiding time shifts in flow through the converters PI, P2 and detectors Dl, D2 is apparent, particularly for analysis under conditions where background levels vary rapidly and would not subtract to zero if time-shifting occurred.
The ceramic converter PI apparently "cracks" the diesel fuel or kerosene to produce a double-bonded hydrocarbon, most probably an alkene such as 1-butane or propylene, which chemiluminesces with ozone (O3). Apparently in the nickel containing converter P2, some of the cracked material burns or reacts to form non-chemiluminescing compounds before as much of the alkene is formed in the nickel containing converter P2 as in the ceramic converter PI. This theory would seem to explain the result that for gasoline which already contains alkenes, the alkenes are apparently unaffected in passing through the converters. In fact, the converters are usually not necessary to detect gasoline by chemiluminescence. For gasoline contaminants the net signal (S2-S1) will typically be negative because the quartz filter of Dl attenuates less radiation than the infrared filter of D2.
In order to avoid missing other foreign substances such as chemicals from a cigarette in a container or sample being analyzed, the threshold levels of the individual signals SI and S2 should be analyzed in addition to the net signal (S2- Sl) . See, for example, Fig. 6, in which it can be seen that for certain contaminants it's possible that subtraction of the signals S2 and SI yields a net result of (S2-S1) nearly 0, even though each detector contains signal peaks which occur at a specified time (within a window relative to arrival of containers at the test station) and have a shape and amplitude which satisfy criteria for the presence of a contaminant. Thus if the peaks of the individual signals SI and S2 are compared to threshold levels TL, the contaminant, such as cigarette residue, may be properly detected. The signals illustrated in Fig. 6 for SI and S2, respectively, indicate such peaks and therefore the system would indicate a hit and produce an appropriate reject signal. The sharp spike-like signals of Fig. 6 and those of Fig. 7 (which are for analysis of a sample illustrated to lack contaminants of the type and quantity to be detected) , though above the threshold level (TL) , lack the necessary shape characteristics to indicate the presence of a contaminant.
Accordingly, the microprocessor controller 34 in accordance with the appropriate software provided for the method of the present invention, not only subtracts signal SI from S2 to determine the presence or absence of certain hydrocarbons or nitrogen containing compounds, but may also look at the individual signals SI and S2 to determine how the individual signals compare to the predetermined threshold criteria. The possibilities of various detection logic criteria are indicated in the following table.
Detection By Net Signal
Drawing
S2-S1 Indicates Presence Of Action Figure
+ (above + threshold) Nitrogen (NHj) Reject Fig.4
- (below - threshold) Diesel Fuel, Kerosene Reject Fig. 5
0 (but S1 and S2 otherwise Cigarette or other Reject Fig.6 show peak of specified Contaminants character)
0 (and S1 or S2 (or both) No Contaminant Accept Fig. 7 lack peak of specified character)
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.

Claims

What is claimed is:
1. A method of detecting selected compounds, including certain nitrogen containing compounds and/or hydrocarbons, in a sample by chemiluminescent gas phase reaction with ozone comprising the steps of: collecting the sample; dividing the sample into first and second portions; heating the first portion of the sample to a first predetermined temperature; heating the second portion of the sample to a second predetermined temperature; mixing the heated first portion of the sample with ozone to cause a chemical reaction therewith in order to generate radiation by chemiluminescence having characteristic wavelengths related to substances in said first portion; mixing the heated second portion of the sample with ozone to cause a chemical reaction therewith in order to generate radiation by chemiluminescence having characteristic wavelengths related to substances in said second portion; selectively detecting radiation emitted by chemiluminescence from the first portion of the sample; selectively detecting radiation emitted by chemiluminescence from the second portion of the sample; said heating and detecting steps being performed in a manner so as to yield a higher level of detected radiation from one of said portions of the sample than the other for at least some of the selected compounds; generating first electrical signals from the radiation selectively detected from the first portion of the sample and second electrical signals from the radiation selectively detected from the second portion of the sample; and comparing the first electrical signals with the second electrical signals in order to determine the presence or absence of selected compounds in the sample.
2. The method of claim 1 wherein said heating steps comprise passing the first portion of the sample through a converter having a heating chamber including ceramic materials and passing the second portion of the sample through a second converter having a heating chamber including nickel materials.
3. The method of claim 1 wherein said heating, mixing, detecting, and generating steps are performed at substantially the same times for said first portion as for said second portion and wherein the step of comparing includes the steps of subtracting the first electrical signals from the second electrical signals so as to cancel background signals in said portions and comparing the net result to first predetermined threshold criteria.
4. The method of claim 3 including the further steps of comparing each of the first and second electrical signals individually with second predetermined threshold criteria.
5. The method of claim 1 wherein said dividing step is performed in a manner to yield substantially equal portions of the sample.
6. The method of claim 1 wherein said heating steps are performed in first and second converters each heated to substantially the same temperature in the range of about 800° to 1000°C.
7. A system for detecting selected compounds, including certain nitrogen containing compounds and/or hydrocarbons, in a sample by chemiluminescent gas phase reaction with ozone comprising: means for collecting the sample; means for dividing the sample into first and second portions; first converter means for heating the first portion of the sample to a first predetermined temperature; second converter means for heating the second portion of the sample to a second predetermined temperature; means for mixing the heated first portion of the sample with ozone to cause a chemical reaction therewith in order to generate radiation by chemiluminescence having characteristic wavelengths related to substances in said first portion; means for mixing the heated second portion of the sample with ozone to cause a chemical reaction therewith in order to generate radiation by chemiluminescence having characteristic wavelengths related to substances in said second portion; means for selectively detecting radiation emitted by chemiluminescence from the first portion of the sample; means for selectively detecting radiation emitted by chemiluminescence from the second portion of the sample; means for generating first electrical signals having amplitudes and durations related to the detected characteristic wavelengths of radiation emitted from the mixed first portion of the sample and second electrical signals having amplitudes and durations related to the detected characteristic wavelengths of radiation emitted from the mixed second portion of the sample; and means for comparing the first electrical signals with the second electrical signals in order to determine the presence or absence of selected compounds in the sample; said heating, mixing, detecting, and generating means being operable to process said first portion at substantially the same relative times as the processing of said second portion thereby to permit cancellation of background signals from said first and second electrical signals by said comparing means.
8. The system of claim 7, wherein the first converter means has a heating chamber including ceramic materials and the second converter has a heating chamber including nickel materials.
9. The system of claim 7 wherein the means for comparing is operable to subtract the first electrical signals from the second electrical signals and to compare the net result to predetermined threshold criteria.
10. The system of claim 9 further including means for comparing each of the first and second electrical signals individually with predetermined threshold criteria.
PCT/US1994/001590 1993-02-22 1994-02-18 A method and system for sampling and determining the presence of compounds WO1994019679A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR9405736A BR9405736A (en) 1993-02-22 1994-02-18 Detection process and system for selected compounds including certain compounds containing nitrogen and / or hydrocarbons in a sample by the gas phase reaction by chemiluminescence with ozone
AU62398/94A AU6239894A (en) 1993-02-22 1994-02-18 A method and system for sampling and determining the presence of compounds
EP94909618A EP0685066A4 (en) 1993-02-22 1994-02-18 A method and system for sampling and determining the presence of compounds.
NO953247A NO953247L (en) 1993-02-22 1995-08-18 Method and apparatus for sampling and determining the presence of certain compounds in containers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/020,804 1993-02-22
US08/020,804 US5470754A (en) 1992-06-01 1993-02-22 Method and system for sampling and determining the presence of compounds

Publications (1)

Publication Number Publication Date
WO1994019679A1 true WO1994019679A1 (en) 1994-09-01

Family

ID=21800665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1994/001590 WO1994019679A1 (en) 1993-02-22 1994-02-18 A method and system for sampling and determining the presence of compounds

Country Status (11)

Country Link
US (3) US5470754A (en)
EP (1) EP0685066A4 (en)
CN (1) CN1109167A (en)
AU (1) AU6239894A (en)
BR (1) BR9405736A (en)
IL (1) IL108714A (en)
NO (1) NO953247L (en)
PE (1) PE9695A1 (en)
TW (1) TW328990B (en)
WO (1) WO1994019679A1 (en)
ZA (1) ZA941201B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007098918A2 (en) * 2006-03-01 2007-09-07 Khs Ag Device for introducing an inspection liquid and/or control liquid into bottles or similar receptacles
WO2022200018A1 (en) * 2021-03-24 2022-09-29 Krones Ag Apparatus and method for cleaning and inspecting containers with gas-analyzing devices

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2280265B (en) * 1993-07-21 1997-06-04 Molecular Light Technology Lim Monitoring of chemical additives
EP0938665B1 (en) * 1996-11-18 2003-05-21 Thermedics Detection Inc. Water container inspection
EP0963552B1 (en) * 1997-02-28 2003-07-09 Extraction Systems, Inc. System for detecting amine and other basic molecular contamination in a gas
US6096267A (en) * 1997-02-28 2000-08-01 Extraction Systems, Inc. System for detecting base contaminants in air
US6071748A (en) 1997-07-16 2000-06-06 Ljl Biosystems, Inc. Light detection device
US6469311B1 (en) 1997-07-16 2002-10-22 Molecular Devices Corporation Detection device for light transmitted from a sensed volume
WO2000006991A2 (en) 1998-07-27 2000-02-10 Ljl Biosystems, Inc. Apparatus and methods for spectroscopic measurements
US6576476B1 (en) 1998-09-02 2003-06-10 Ljl Biosystems, Inc. Chemiluminescence detection method and device
WO2000050877A1 (en) 1999-02-23 2000-08-31 Ljl Biosystems, Inc. Frequency-domain light detection device
US6825921B1 (en) 1999-11-10 2004-11-30 Molecular Devices Corporation Multi-mode light detection system
US6297018B1 (en) 1998-04-17 2001-10-02 Ljl Biosystems, Inc. Methods and apparatus for detecting nucleic acid polymorphisms
US6326605B1 (en) 1998-02-20 2001-12-04 Ljl Biosystems, Inc. Broad range light detection system
AU5667599A (en) 1998-07-27 2000-02-21 Ljl Biosystems, Inc. Apparatus and methods for time-resolved spectroscopic measurements
US6207460B1 (en) 1999-01-14 2001-03-27 Extraction Systems, Inc. Detection of base contaminants in gas samples
JP4015901B2 (en) * 2002-07-31 2007-11-28 株式会社シマノ Spinning reel body
US6930493B2 (en) * 2003-03-14 2005-08-16 Steris Inc. Method and apparatus for monitoring detergent concentration in a decontamination process
US6927582B2 (en) * 2003-03-14 2005-08-09 Steris Inc. Method and apparatus for monitoring the state of a chemical solution for decontamination of chemical and biological warfare agents
US6960921B2 (en) * 2003-03-14 2005-11-01 Steris Inc. Method and apparatus for real time monitoring of metallic cation concentrations in a solution
US6933733B2 (en) * 2003-03-14 2005-08-23 Steris Inc. Method and apparatus for measuring the concentration of hydrogen peroxide in a fluid
US6946852B2 (en) * 2003-03-14 2005-09-20 Steris Inc. Method and apparatus for measuring concentration of a chemical component in a gas mixture
US6844742B2 (en) 2003-03-14 2005-01-18 Steris Inc. Method and apparatus for measuring chemical concentration in a fluid
US6992494B2 (en) * 2003-03-14 2006-01-31 Steris Inc. Method and apparatus for monitoring the purity and/or quality of steam
US6897661B2 (en) * 2003-03-14 2005-05-24 Steris Inc. Method and apparatus for detection of contaminants in a fluid
US6917885B2 (en) * 2003-06-06 2005-07-12 Steris Inc. Method and apparatus for formulating and controlling chemical concentration in a gas mixture
US6909972B2 (en) 2003-06-06 2005-06-21 Steris Inc. Method and apparatus for formulating and controlling chemical concentrations in a solution
US7244395B2 (en) * 2003-09-29 2007-07-17 Petroleum Analyzer Company, Lp Apparatus for trace sulfur detection using UV fluorescence
US7541002B2 (en) * 2004-05-12 2009-06-02 Steris Corporation Apparatus for determining the efficiency of a vaporizer in a decontamination system
US20050276721A1 (en) * 2004-05-25 2005-12-15 Steris Inc. Method and apparatus for controlling the concentration of a sterilant chemical in a fluid
US7431886B2 (en) * 2004-09-24 2008-10-07 Steris Corporation Method of monitoring operational status of sensing devices for determining the concentration of chemical components in a fluid
CN100412530C (en) * 2006-06-09 2008-08-20 山东省科学院海洋仪器仪表研究所 Method for analyzing water body organism kinds by using ozone chemiluminescence spectrum
CN100454005C (en) * 2006-11-03 2009-01-21 山东省科学院海洋仪器仪表研究所 Method for examining deposit or organic matter content in soil by ozone oxidation
DE102008054109A1 (en) * 2008-10-31 2010-05-12 Khs Ag Method and device for identifying objects
DE102011005568A1 (en) * 2011-03-15 2012-09-20 Krones Aktiengesellschaft Plant and process for recycling plastics, preferably PET
DE102011086381A1 (en) * 2011-11-15 2013-05-16 Krones Ag Pulsed blowing away of a contaminated gas cloud
CN102788783B (en) * 2012-08-24 2015-04-01 山东省科学院海洋仪器仪表研究所 Method for detecting organic matter composition by ozone oxidation luminescent method
US9630348B2 (en) 2013-05-13 2017-04-25 Dialogr Systems, Llc Detection in thermoplastics
DE102016212321A1 (en) * 2016-07-06 2018-01-11 Gunther Krieg Apparatus and method for inspecting containers for foreign matter
CN113167732A (en) * 2018-12-12 2021-07-23 株式会社岛津制作所 Sulfur chemiluminescence detector
DE102020206159A1 (en) 2020-05-15 2021-11-18 Gunther Krieg Apparatus and method for examining containers for foreign matter
WO2022076757A1 (en) * 2020-10-07 2022-04-14 Immersion Systems, Inc. Immersion systems & methods for washing & performing other tasks
DE102020215850A1 (en) 2020-12-14 2022-06-15 Unisensor Sensorsysteme Gmbh Device and method for inspecting containers for foreign matter
CN117147532B (en) * 2023-09-06 2024-03-01 武汉怡特环保科技有限公司 Micro-chemiluminescence method nitrogen oxide gas sensor based on Internet of things

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870468A (en) * 1972-06-16 1975-03-11 Beckman Instruments Inc Nitrogen dioxide analysis
US4193963A (en) * 1974-09-20 1980-03-18 Petroleo Brasileiro S.A.-Petrobras Apparatus for the determination of chemical compounds by chemiluminescence with ozone
US4775633A (en) * 1984-04-26 1988-10-04 Thermedics Inc. Detection of hydrazine compounds in gaseous samples by their conversion to nitric oxide-yielding derivatives
US4843016A (en) * 1974-10-07 1989-06-27 Thermedics Inc. Detection system and method
US5096834A (en) * 1988-09-30 1992-03-17 Agency Of Industrial Science And Technology Method for determination of concentration of smoke and apparatus therefor
US5152963A (en) * 1986-08-04 1992-10-06 Wreyford Donald M Total sulfur analyzer system operative on sulfur/nitrogen mixtures
US5255072A (en) * 1987-12-11 1993-10-19 Horiba, Ltd. Apparatus for analyzing fluid by multi-fluid modulation mode

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1198488A (en) * 1966-08-23 1970-07-15 Hans Peter Olof Unger Improvements in or relating to Automated Analysis
US3763877A (en) * 1971-11-12 1973-10-09 Thermo Electron Corp Fluid flow control system
US3845309A (en) * 1973-09-10 1974-10-29 Thermo Electron Corp Fluorescent gas analyzer
DD127602A1 (en) * 1976-09-30 1977-10-05
US4265855A (en) * 1978-11-03 1981-05-05 Electro-Nucleonics, Inc. System for performing immunochemical and other analyses involving phase separation
US4761268A (en) * 1984-04-12 1988-08-02 Fisher Scientific Company Liquid handling
CA1224940A (en) * 1984-07-17 1987-08-04 Neil M. Reid Method of detecting a contraband substance
US4858768A (en) * 1986-08-04 1989-08-22 The Coca-Cola Company Method for discrimination between contaminated and uncontaminated containers
US4830192A (en) * 1986-08-04 1989-05-16 The Coca-Cola Company Methods of discriminating between contaminated and uncontaminated containers
US5551278A (en) * 1987-07-08 1996-09-03 Thermedics Inc. Vapor collector/desorber with non-conductive tube bundle
US4880120A (en) * 1987-09-02 1989-11-14 The Coca-Cola Company Plastic container inspection process
US4909089A (en) * 1988-11-18 1990-03-20 Thermedics Inc. Walk-in inspection apparatus for producing air samples
US4899573A (en) * 1989-02-24 1990-02-13 American Glass Research, Inc. Apparatus and an associated method for leak and volume inspection of containers
US4909090A (en) * 1989-04-24 1990-03-20 Thermedics Inc. Vapor sampling probe
US5108705A (en) * 1990-03-12 1992-04-28 Thermedics Inc. Vapor detection with high speed gas chromatography

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870468A (en) * 1972-06-16 1975-03-11 Beckman Instruments Inc Nitrogen dioxide analysis
US4193963A (en) * 1974-09-20 1980-03-18 Petroleo Brasileiro S.A.-Petrobras Apparatus for the determination of chemical compounds by chemiluminescence with ozone
US4843016A (en) * 1974-10-07 1989-06-27 Thermedics Inc. Detection system and method
US4775633A (en) * 1984-04-26 1988-10-04 Thermedics Inc. Detection of hydrazine compounds in gaseous samples by their conversion to nitric oxide-yielding derivatives
US5152963A (en) * 1986-08-04 1992-10-06 Wreyford Donald M Total sulfur analyzer system operative on sulfur/nitrogen mixtures
US5255072A (en) * 1987-12-11 1993-10-19 Horiba, Ltd. Apparatus for analyzing fluid by multi-fluid modulation mode
US5096834A (en) * 1988-09-30 1992-03-17 Agency Of Industrial Science And Technology Method for determination of concentration of smoke and apparatus therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0685066A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007098918A2 (en) * 2006-03-01 2007-09-07 Khs Ag Device for introducing an inspection liquid and/or control liquid into bottles or similar receptacles
WO2007098918A3 (en) * 2006-03-01 2007-10-25 Khs Ag Device for introducing an inspection liquid and/or control liquid into bottles or similar receptacles
WO2022200018A1 (en) * 2021-03-24 2022-09-29 Krones Ag Apparatus and method for cleaning and inspecting containers with gas-analyzing devices

Also Published As

Publication number Publication date
CN1109167A (en) 1995-09-27
PE9695A1 (en) 1995-04-28
EP0685066A1 (en) 1995-12-06
AU6239894A (en) 1994-09-14
US5470754A (en) 1995-11-28
EP0685066A4 (en) 1996-05-29
US5567623A (en) 1996-10-22
US5561068A (en) 1996-10-01
IL108714A (en) 1996-10-31
ZA941201B (en) 1994-09-19
NO953247D0 (en) 1995-08-18
TW328990B (en) 1998-04-01
IL108714A0 (en) 1994-05-30
BR9405736A (en) 1995-12-05
NO953247L (en) 1995-10-20

Similar Documents

Publication Publication Date Title
US5470754A (en) Method and system for sampling and determining the presence of compounds
US5352611A (en) Method and system for sampling and determining the presence of compounds in containers
US5688693A (en) Method and system for sampling and determining the presence of contaminants in recyclable plastic materials
US5376550A (en) Method and system for sampling and determining the presence of compounds in containers
US6013228A (en) Method and system for sampling and determining the presence of compounds in containers using a pulsed fluorescence detector
US5472882A (en) Method and system for sampling and determining the presence of salts of ammonia and amines in containers
AU672011B2 (en) A method and system for sampling and determining the presence of contaminants in containers
US6130093A (en) Water container inspection
US5418170A (en) Method and system for sampling and determining the presence of salts of ammonia and amines in containers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA HU JP KP NO PL PT RO RU UA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994909618

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1994909618

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1994909618

Country of ref document: EP