WO1994021189A2 - Verfahren zur bildgebenden darstellung einer partie des menschlichen körpers - Google Patents

Verfahren zur bildgebenden darstellung einer partie des menschlichen körpers Download PDF

Info

Publication number
WO1994021189A2
WO1994021189A2 PCT/DE1994/000301 DE9400301W WO9421189A2 WO 1994021189 A2 WO1994021189 A2 WO 1994021189A2 DE 9400301 W DE9400301 W DE 9400301W WO 9421189 A2 WO9421189 A2 WO 9421189A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
echo
radiation
primary radiation
plate
Prior art date
Application number
PCT/DE1994/000301
Other languages
English (en)
French (fr)
Other versions
WO1994021189A3 (de
Inventor
Kari Richter
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP6520519A priority Critical patent/JP3014453B2/ja
Priority to US08/530,364 priority patent/US5840022A/en
Publication of WO1994021189A2 publication Critical patent/WO1994021189A2/de
Publication of WO1994021189A3 publication Critical patent/WO1994021189A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0091Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/43Detecting, measuring or recording for evaluating the reproductive systems
    • A61B5/4306Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
    • A61B5/4312Breast evaluation or disorder diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/502Clinical applications involving diagnosis of breast, i.e. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5247Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from an ionising-radiation diagnostic technique and a non-ionising radiation diagnostic technique, e.g. X-ray and ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0825Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the breast, e.g. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4209Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • A61B5/015By temperature mapping of body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4417Constructional features of apparatus for radiation diagnosis related to combined acquisition of different diagnostic modalities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4416Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to combined acquisition of different diagnostic modalities, e.g. combination of ultrasound and X-ray acquisitions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/915Ultrasound mammography

Definitions

  • the invention relates to a method of the type specified in the preamble of claim 1 and a device for carrying out the method.
  • Such imaging methods are increasingly being used as series examinations of parts of the body in cancer prevention.
  • X-ray mammography is an established method and is performed in most cases by displaying the breast in two planes that are perpendicular to each other.
  • Ultrasound examinations represent a safe mammographic examination method and even very dense glandular tissue (mastopathy) is not a problem, since the tumors in dense glandular tissue can be visualized well by sonography.
  • X-ray mammography is not meaningful, since the tumors are then difficult or impossible to visualize.
  • Direction of radiation differ from each other. This makes it easier to derive information relating to the shape and surface structure of a recognized inhomogeneity, since shadows and the like are eliminated.
  • a disadvantage of this method is that the body part to be examined must be examined from two opposite spatial directions, so that the transducer either has to be moved accordingly often or two transducers are required from the outset.
  • the invention is based on the object of specifying a method of the type mentioned at the outset or a corresponding device for carrying out this method, with which the information which can be extracted from the ultrasound image for ultrasound examinations gains significance as a series examinations in cancer screening (screening) and a simpler one Evaluation also made possible by less experienced investigators.
  • the invention is based on the knowledge that the joint use of two complementary imaging methods which, with the breast fixed, enables the direct or indirect geometric superimposition of the imaging information to achieve a significant gain in information which is in particular greater than the sum the information to be taken separately from the two methods.
  • a cumulative effect which arises is important here, which is based on the fact that an incomplete geometric structure for the human observer gains many times more clarity even by adding a few additional elements.
  • methods based on ultrasound echoes and X-ray radiation are complementary, i.e. complementary methods in such a way that tissue anomalies, which are not clearly reproduced by the one method, emerge all the better in the other method.
  • the imaging representations thus complement one another to form an image that almost completely reproduces the malignant areas, this superimposition also referring to the representation of individual geometric elements or structures of the image reproduction .
  • the different imaging methods can be activated in different stages, so that precise discrimination can take place in each case.
  • the further signal is a signal triggered by means of X-ray radiation, thermographically and / or by means of transillumination, the signal triggered by means of X-ray radiation being recorded directly digitally or subsequently digitized from an X-ray image obtained in a conventional manner.
  • the receiver plate for a shadowing method can be combined with a reflector surface for an imaging method working by echo effect.
  • additional information representative of a high tumor probability can be provided by means of logical linking and / or superimposition of the further signal with that from the Echo information derived signal characterizing a high tumor probability, in particular by additive or multiplicative linkage can be obtained.
  • the regions that are particularly relevant for the evaluation of the examination are thereby clearly emphasized.
  • the primary radiation of the echo-emitting signal is emitted onto the object to be examined, in particular continuously or in an essentially equidistant sequence, as parallel primary radiation onto the object to be examined, the primary radiation transmitter being mechanically driven and / or several spatially distributed primary radiation transmitters in an arrangement according to Art of an array can also be operated simultaneously in succession.
  • the object is located between the primary radiation transmitter / echo signal receiver and a reference surface which is oriented perpendicular to the spatial direction of the primary radiation and which reflects the primary radiation as an echo signal more strongly than other regions of the body tissue located in the display field, and
  • the mean or expected transit time and / or amplitude of an echo signal received by the primary radiation transmitter / echo receiver and reflected by the reference surface of the primary radiation passing through the object is determined or recorded, the transit time and / or amplitude of a receiver received by the primary radiation transmitter / echo signal receiver of the reference surface reflected echo signal of the primary radiation traversing the object are determined, the deviation of the transit time and / or amplitude of this recorded reflecting the reference surface en echo signal at runtime of the reference echo signal or at the reference amplitude forms a measure of the tumor probability in the region of the spatial direction of the spread of this echo signal.
  • a maximum of gain closed representation of enabling imaging information is determined or recorded, the transit time and / or amplitude of a receiver received by the primary
  • areas of the image representation can be generated with common evaluation for adjacent echoes of recorded points, so that a complete representation of the reference plane is made possible with maximum use of the recorded signal information.
  • the method according to the invention can also be used for spatial imaging imaging in the manner of computer tomography, namely if the body part to be examined is emitted from a directional area covering the body part from primary radiation onto the body part to be examined from spatial directions which are connected continuously or in an essentially equidistant sequence becomes.
  • the technical design of a device for carrying out the method according to the invention in each case has the corresponding radiation sources or radiation receivers which form signal converters, and a signal processor with associated program memory and signal connections to the signal converters.
  • the object is arranged between a plate-shaped element which is essentially transparent to the wave radiation and the reference surface reflecting the echo signals, the element and the reference surface being directed parallel to one another.
  • the element which is permeable to the wave radiation and the reflecting reference surface are connected to one another by means of an axial adjusting device.
  • the object to be examined and surrounded by a coupling medium is thus, after it has been introduced between the reference surface and the element, which are also provided with the coupling medium, clamped in a fixed manner by actuating the adjusting device, so that relatively large areas of the The element or the reference surface can be touched directly on the object, thereby ensuring good coupling between the object and the element or reference surface in a simple manner. Since the thickness of the areas to be traversed by the ultrasound signal are thus defined, the transmitter / receiver can be selected with suitable focusing from the outset, so that time losses due to incorrect measurements are avoided.
  • the coupling medium surrounding the object is preferably in a flexible container, the shape of which can be adapted to the shape of the object.
  • the container is made of a material which is permeable to the wave radiation and the coupling medium is such that the speed of sound and / or absorption of the wave radiation in the coupling medium is essentially the same as that of the wave radiation in the body tissue of the object to be examined. This also enables those areas of the object to be examined whose surface is not in direct contact with the transparent element or the reflecting reference surface.
  • the ultrasound transmitter / receiver can be locked in a carriage on the outer surface of the plate-shaped element which is permeable to the wave radiation and is arranged so as to be translationally movable that the object to be examined with a reflective reference surface on the other side is either simple can be scanned manually or in a motor-driven manner at certain points in time in a grid pattern.
  • the required movement sequences are simplified or can be dispensed with entirely.
  • this can itself form the contact surface.
  • the control is done by scanning using a corresponding electronic circuit.
  • the element which is permeable to the wave radiation and the reflecting reference surface when examining a human body part are each form-matched in their connection areas adjoining the adjacent body parts, and in particular with a concave-shaped Aus ⁇ provided with the connection edge.
  • a preferred way of evaluating the information obtained consists in a computer-calculated three-dimensional representation of the ultrasound-reflecting reference surface on a monitor, so that the size of the area of the object to be examined, in which a tumor is present with a high probability, is simultaneously surveyed can be. This makes it possible to simultaneously display the characteristic information in a single image, which can be aligned in different views by the corresponding graphic control means of the computer.
  • tissue areas belonging to the conspicuous areas of the reference surface By selecting the representation of the tissue areas belonging to the conspicuous areas of the reference surface, a more detailed diagnosis can be made in each case. Under Interesting tissue areas can be reproduced separately so that a more precise assessment is possible.
  • FIG. 1 shows the preferred embodiment of the device according to the invention for carrying out the method according to the invention in section
  • FIG. 2 shows the device according to FIG. 1 in a perspective view
  • FIGS. 3a to 3d show schematic views of tissue inhomogeneities when irradiated in a sectional view
  • FIGS. 4a to 4d show different echo signal profiles 3a to 3d
  • FIG. 5 shows a three-dimensional representation of the ultrasound-reflecting base in the ultrasound image with a tumor present in the object to be examined
  • FIG. 6 shows a block diagram of a processor system for signal processing in the context of the method according to the invention .
  • two plane-parallel elements a plate 6 and an element 7 are provided, which essentially separate the object 1 to be examined in two limit aligned levels.
  • the element 7 is designed to be transparent to ultrasound waves, while the plate 6 reflects ultrasound waves.
  • Plate 6 and element 7 are connected to one another by means of an axial adjusting device 8.
  • the distance between the element 7 and the plate 6 can be adjusted individually by means of adjusting elements 9 and 10.
  • x forms the direction of penetration of the ultrasound signals and thus the t-axis for the ultrasound echoes received successively in time.
  • the y-axis forms a first "movement" axis when recording the signal and thus the second coordinate for the representation of a sectional image.
  • the z axis then represents the secondary movement axis of the signal recordings and thus enables the generation of a three-dimensional image.
  • the "movement” does not have to be done mechanically, but can be carried out when using transmitter / receiver arrays with linear or areal extension by electronic scanning.
  • the primary wave transmitter / echo signal receiver 2 is arranged in a carriage 12, which in this preferred embodiment of the device is also connected to crossbars 11 of the adjusting device 8, along the longitudinal axis of the carriage 12 so as to be movable but also lockable.
  • the carriage 12 can in turn be displaced along the longitudinal axis of the cross bars 11.
  • the primary wave transmitter / echo signal receiver 2, which rests on the outside of the element 7, can travel over the entire plane surface of the element 7 for scanning the object 1 to be examined by means of the slide 12.
  • the respective position, i.e. H. the spatial direction of the primary wave transmitter / echo signal receiver 2 can be set either manually or stepper motor driven or by means of the electronic scanning means.
  • the edge 13 or 14 of the plate 6 or of the element 7 abutting the human body is anatomically rounded, i. H. in particular concave.
  • This preferred exemplary embodiment is mechanically particularly simple because an examination object 1 having any shape can be surrounded at any time by a flexible, sealed container 15 containing a coupling medium 17 and permeable to the (wave) radiation used is.
  • the container 15 is to be filled or emptied via a filler neck 16.
  • the coupling medium only has to be applied to the plate 6 and to the element 7 in order to ensure that the wave radiation can be easily transmitted.
  • the reflecting plate 6 simultaneously forms the receiving device for a further signal which is effective in a parallel spatial direction or is connected to such a receiving device or forms a receptacle for one of the ⁇ type receiving device.
  • the examination method consists in the X-ray exposure or digital radiography of the object in an identical position. As a result, further information relating to the inhomogeneity found can be obtained, while at the same time advantageously reducing the X-ray exposure in comparison to the pure X-ray images from two different spatial directions that are common today.
  • An x-ray tube 20 can then temporarily replace the ultrasound transmission and reception device 2.
  • the x-ray radiation is indicated by the beam 21, which shines through the object 1 and reaches the x-ray film 22, which is arranged in a cassette 23.
  • the upper cover surface of the cassette 23 is identical to the plate 6, which serves as a reflection surface for the ultrasound examination.
  • the thermosensitive surface for a thermography process is located on the top of the plate 6 and is indicated by a dashed line 24.
  • the object 1 to be examined is fixed by means of the adjusting device 8 to 10 and the primary radiation emitted by the primary wave transmitter / echo signal receiver 2 3 are reflected by the plate 6 after crossing the object 1 as echo signals 4 and recorded by the primary wave transmitter / echo signal receiver 2.
  • the transit times and the amplitudes of the echo signals 4 are registered by the evaluation device connected to the primary wave transmitter / echo signal receiver 2 for the different spatial directions 5 of the primary radiation 3 emitted.
  • the coupling medium 17 is in particular set such that its attenuation or influence for the imaging radiation corresponds to the properties of normal body tissue, so that it appears neutral in the image display.
  • the further signal can also be a signal triggered thermographically or by means of transmission, the illumination source coinciding with the source 20 in the latter case.
  • the signal triggered by means of X-ray radiation can be directly digitally recorded or subsequently - preferably by scanning - digitized from an X-ray image obtained in a conventional manner.
  • FIGS. 3a to 3d and 4a to 4d will now be used to discuss in more detail the signal curves that arise for the various inhomogeneities and the resulting curves.
  • FIGS. 3a to 3d various inhomogeneities when irradiated with ultrasound (in the x direction) are shown, on which the method according to the invention is to be illustrated.
  • the degree of blackening of the representation forming a measure of the number or intensity of the echoes obtained.
  • FIGS. 3a to 3d below the ultrasound image, the signal 25 obtained by the additional imaging method is shown in a sectional representation in a horizontal extension. It is indicated schematically how blackening occurs as a sign of malignant tissue in the area of a corresponding abnormality in the ultrasound signal.
  • the representation can only be schematic.
  • electronic post-treatment of the signals is assumed here, an inversion being carried out compared to the representation on an X-ray film. In any case, this can only be a basic illustration.
  • FIG. 3a A tumor-free object containing fat tissue F and glandular body DK is shown in FIG. 3a.
  • the fat tissue F has a lower echo density than the gland body DK, the ultrasound reflecting plate P having the highest echo density.
  • FIG. 3b shows an object having a malignant tumor T.
  • the malignant tumor appears almost echo-empty and with a bilateral marginal shadow behind the tumor.
  • FIG. 3c shows an object with a malignant tumor T.
  • the malignant tumor appears almost echo-empty but, in contrast to FIG. 3b, has a central central shadow behind the tumor.
  • FIG. 3d shows an object having a benign cyst Z.
  • the cyst Z like most cysts, appears without echoes and with central sound amplification behind the cyst.
  • FIGS. 4a to 4d t-axis corresponding to the x-direction
  • the different echo signal curves resulting from FIGS. 3a to 3d are each additionally reproduced.
  • the additional image components of an imaging method working on the basis of radiation do not appear in these representations.
  • the additional imaging method therefore contains no "depth information" since it is based on radiography.
  • the same applies, however, to the further signals "plate displacement" and “plate erasure” which result from the ultrasound examination and which likewise do not contain any spatial information.
  • FIG. 4a shows the echo signal curve of the reference primary radiation 3 'which crosses the tumor-free object containing fat tissue F and glandular body DK.
  • the changes in the echo amplitude A are recorded with time t and therefore also with the increasing distance from the primary radiation transmitter / echo signal receiver.
  • the fat tissue F has a smaller amplitude than the glandular body DK, the range of the highest amplitude values Pa indicating the position of the ultrasound reflecting plate.
  • FIG. 4b shows the echo signal curve of a primary radiation 3 crossing the malignant tumor T.
  • the amplitude in the area of the tumor T and the bilateral marginal shadow is significantly lower than that of the surrounding fatty tissue F.
  • the transit time Lb up to the range of the increased amplitude values Pb of the plate compared to the transit time La of the echo signal FIG. 4a has shortened and that on the other hand the increased amplitude values Pb are lower than the increased amplitude values Pa of the echo signal curve according to FIG. 4a.
  • the shortening of the running time presents itself as an apparent plate deformation.
  • FIG. 4c shows the echo signal curve of a primary radiation 3 crossing the malignant tumor T.
  • the amplitude in the region of the tumor T is significantly lower than that of the surrounding fatty tissue F and the central central shadow has an amplitude that is reduced compared to the amplitude in front of the tumor T.
  • the transit time Lc has been reduced to the range of the increased amplitude values Pc of the plate compared to the transit time La of the echo signal according to FIG. 4a and that on the other hand the increased amplitude values Pc are lower than that increased amplitude values Pa of the echo signal curve according to FIG. 4a.
  • 4d shows the echo signal curve of a primary radiation 3 crossing the benign cyst.
  • the amplitude in the area of the cyst Z is essentially zero and the central sound amplification can be seen behind the cyst Z with an increased amplitude compared to the amplitude in front of the cyst Z.
  • the transit time Ld up to the area of the increased amplitude values Pd of the plate 6 has shortened compared to the echo signal curve as shown in FIG. 4a, but that the increased amplitude values Pd essentially continue to increase the increased amplitudes ⁇ exceed the values Pa of the echo signal curve according to FIG. 4a.
  • a three-dimensional image can be created by linking the determined echo signal profiles by superimposing them.
  • the ultrasound image of the reflecting plate 6 is shown three-dimensionally in FIG.
  • the spatial contour of the area in which inhomogeneity is to be expected with a high probability can thus be reproduced in a pictorial manner.
  • malignant findings usually have irregular marginal contours, while benign findings have smooth marginal contours.
  • the inhomogeneity causing a disturbance is immediately accessible for viewing, so that a more detailed characterization is possible.
  • the ultrasound reflecting plate 6 is shown when there is a malignant tumor in the object to be examined.
  • the irregular nature of the contour of the distorted area of the plate 6 can be clearly seen.
  • the representation is supplemented by a second diagram, which originates from the second imaging method.
  • This is a representation obtained by means of X-ray radiation. It can be seen from the nature of the edge contour that it is highly likely to be a malignant finding.
  • a spatially limited area of the examined body part can be determined in which the malignant finding can be found with a high probability.
  • the ultrasound echoes S] _ recorded by an ultrasound receiving unit 40 are written into a memory 42 as digitized amplitude signals which, for example, shift registers for receiving the form digitized signals.
  • Another receiving unit 41 serves to receive a further spatially correlated imaging signal derived from the organ to be examined, which signal will be described in more detail below.
  • the signal is the digitized amplitude values of the received echo, the reception being started after an output signal has been received from a time delay device 44, which in turn has been activated by a timer 45 which detects the time at which the
  • Ultrasound signals determined.
  • the returning signal is thus recorded in the memory 42 in response to each ultrasound signal pulse emitted, the digitized representation in the x direction (depth of penetration) corresponding to that of FIGS. 4 and 5.
  • the sound receiving unit 40 is positioned in different positions with respect to the organ to be examined using a device for line-by-line linear displacement in the y direction (cf. FIG. 3), which can preferably also be automated.
  • a line-by-line scanning for layer-by-layer representation of the organ to be examined or the body part to be examined is thus possible.
  • the line-by-line scanning can also be carried out by simultaneously recording an entire line by means of a corresponding array of ultrasound transmitters / receivers.
  • the exemplary embodiment shown in FIG. 6 represents the evaluation circuit for the signals recorded successively within a spatial plane, that is to say for a two-dimensional area.
  • an ultrasound transmitter-receiver is required, which emits signals simultaneously for a complete line, while one for three-dimensional acquisition
  • Another imaging signal characteristic of the point in question in the x, y plane which is emitted by the signal pickup 41 and held in a memory 51, is optionally processed in a second processing unit 52 to give the total signal as the output signal of the first connection. work unit 50 added. This signal is then also carried in the signal corresponding to one point of the representation in the y, z plane.
  • This signal is stored in a memory 54, this memory being organized in a matrix-like manner and recording the entire echo signal (x-axis information) including the aforementioned additional signals for a y-scan line.
  • the overall signal obtained for a point on the y-axis is now correlated with further signals that were recorded at an earlier point in time.
  • These are preferably signals adjacent in the z direction, so that information about the tumor probability for a layer of the tissue under consideration is obtained from the superimposition of the local depth echoes (x direction), the local echo shift, the local signal of a further imaging method and the corresponding adjacent signals in the z direction is obtained, which are compared with the current signal or correlated in some other way. This means that changes in the signal compared to neighboring signals can also be included in the locally recorded signal.
  • the embodiment of the invention is not limited to the preferred exemplary embodiment specified above. Rather, a number of variants are conceivable which make use of the solution shown, even in the case of fundamentally different designs.

Abstract

Verfahren zur bildgebenden Darstellung einer Partie des menschlichen Körpers, insbesondere der weiblichen Brustdrüse, mittels Echosignalen einer auf das Objekt gerichteten Ultraschallstrahlung, wobei die Auswertung von durch einen Echosignalempfänger zeitabhängig empfangenen Echosignalen jeweils auf einer in der Raumrichtung der Primärstrahlung gerichteten Objektachse erfolgt und die Intensität der Echosignale bildgebend ausgewertet wird, wobei bei der bildgebenden Auswertung das Echosignal mit einem weiteren in der entsprechenden Raumrichtung bei fixiert gehaltenem Objekt aufgenommenen bildgebenden Signal einer anderen Signalquelle in räumlicher Zuordnung zusammengefaßt und ausgewertet wird und im Falle der weiblichen Brustdrüse diese zwischen zwei im wesentlichen parallel gerichteten Platten fixiert ist.

Description

Verfahren zur bildgebenden Darstellung einer Partie des menschlichen Körpers
Die Erfindung betrifft ein Verfahren der im Oberbegriff des Anspruchs 1 angegebenen Art sowie eine Vorrichtung zur Durch¬ führung des Verfahrens.
Derartige bildgebende Verfahren werden zunehmend als Reihen¬ untersuchungen von Körperpartien bei der Krebsvorsorge einge- setzt.
Die regelmäßige Vorsorgeuntersuchung der weiblichen Brust¬ drüse zur Früherkennung von Brustkrebs ist deswegen sehr erstrebenswert, weil diese Erkrankung, die in den industri- alisierten Ländern die häufigste Krebsart bei Frauen dar¬ stellt, ein großes epidemiologisches Gewicht hat, und eine Früherkennung der Krankheit in der Regel Heilung bedeutet. Die Röntgen-Mammographie ist hierbei eine etablierte Methode und wird in den meisten Fällen durch Darstellung der Brust in zwei senkrecht zueinander gerichteten Ebenen durchgeführt.
Ultraschalluntersuchungen stellen eine gefahrlose mammogra- phische Untersuchungsmethode dar und selbst sehr dichtes Drüsengewebe (Mastopathie) bilden kein Problem, da die Tumoren in dichtem Drüsengewebe sonographisch gut darstellbar sind. Bei Patienten mit einer Mastopathie oder mit Endo- prothesen im Brustbereich ist die Röntgen-Mammographie da¬ gegen nicht aussagefähig, da die Tumoren dann nicht oder nur schlecht darstellbar sind.
Bei einem aus der US 45 09 368 bekannten Ultraschall-Tomo¬ graphen werden reflektorisch und tranεmissorisch gewonnene Signale einander überlagert. Diese Anordnung ermöglicht zwar gegenüber den übrigen bekannten Lösungen einen Informations- gewinn - dieser führte jedoch nicht dazu, daß nach diesem Verfahren arbeitende Geräte in nennenswerter Zahl in die Praxis Eingang fanden. Hindernd dabei ist, daß das Gerät im Aufbau relativ kompliziert ist und daß mehrere Schallsender und Schallempfänger benötigt werden, wodurch das Gerät auf¬ wendig in der Anschaffung und auch in der Handhabung nicht einfach ist.
Weiterhin ist aus der DE 40 37 387 AI ein Verfahren bekannt, bei dem die erhaltenen Echowerte für übereinstimmende Raum- punkte aus einander entgegengesetzten Einstrahlrichtungen einander überlagert werden, so daß schließlich Signalanteile nur für diejenigen Raumpunkte verbleiben, welche je nach
Strahlungsrichtung voneinander abweichen. Dadurch lassen sich Informationen bezüglich der Form und der Oberflächenstruktur einer erkannten Inhomogenität besser ableiten, da Schall- schatten und dergleichen eliminiert werden. Nachteilig bei diesem Verfahren ist aber weiterhin, daß die zu untersuchende Körperpartie von zwei entgegengesetzten Raumrichtungen aus untersucht werden muß, so daß der Schallkopf entweder ent¬ sprechend oft umgesetzt werden muß oder aber von vornherein zwei Schallköpfe benötigt werden.
Die eingeführten allein auf Ultraschall basierenden Verfahren lieferten bisher keine Ergebnisse, welche für sich auch in Reihenuntersuchungen genügend zuverlässige Aussagen ermögli¬ chen würden.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Gattung bzw. eine entsprechende Vorrich¬ tung zur Durchführung dieses Verfahrens anzugeben, mit dem die aus dem Ultraschallbild entnehmbare Information für Ultraschalluntersuchungen als Reihenuntersuchungen bei der Krebsvorsorge (Screening) an Aussagekraft gewinnt und eine einfachere Auswertung auch durch weniger erfahrene Unter- suchungspersonen ermöglicht.
Diese Aufgabe wird mit den kennzeichnenden Merkmalen der An¬ sprüche 1 bzw. 9 gelöst. Der Erfindung liegt die Erkenntnis zugrunde, daß durch den gemeinsamen Einsatz zweier sich ergänzender bildgebender Ver¬ fahren, welche bei fixierter Brust die unmittelbare oder mittelbare geometrische Überlagerung der bildgebenden Infor- mationen ermöglichen, ein wesentlicher Informationsgewinn erzielbar ist, der insbesondere größer ist als die Summe der aus den beiden Verfahren getrennt zu entnehmenden Informa¬ tionen. Hierbei ist ein sich einstellender kumulativer Effekt wesentlich, welcher darauf beruht, daß eine unvollständige geometrische Struktur für den menschlichen Betrachter bereits durch Hinzufügung weniger zusätzlicher Elemente um ein Viel¬ faches an Deutlichkeit gewinnt.
Bevorzugt stellen auf Ultraschallechos und auf Röntgendurch- Strahlung basierende Verfahren sich ergänzende, d.h. komple¬ mentäre Verfahren in der Weise dar, daß Gewebeanomalien, welche durch das eine Verfahren nicht deutlich wiedergegeben werden, in dem anderen Verfahren um so besser hervortreten. Bei direkter Überlagerung der am fixierten Objekt aufgenomme- nen Bilder ergänzen sich damit die bildgebenden Darstellungen zu einem die malignen Bereiche nahezu vollständig wiederge¬ benden Bild, wobei sich diese Überlagerung auch auf die Dar¬ stellung jeweils einzelner geometrischer Elemente oder Struk¬ turen der Bildwiedergabe bezieht.
Als besonders vorteilhaft hat sich hierbei herausgestellt, daß die Belastung durch Röntgenstrahlung nur noch für die Er¬ zeugung einer Bildebene erforderlich ist und damit nicht mehr - wie bisher in der Röntgen-Mammographie - zwei Röntgenbilder aus unterschiedlichen Richtungen angefertigt werden müssen.
Durch die Kombination der verschiedenen Untersuchungsmethoden bei ein und derselben Position der zu untersuchenden Brust sind auch schon deswegen - im Gegensatz zu früheren Verfahren - eindeutigere Ergebnisse möglich, weil bisher die mit den verschiedenen Verfahren gewonnenen Bildgeometrien - wegen der unterschiedlichen Organposition bzw. -formation in den ver- schiedenen Aufnahmerichtungen - einander nicht zuzuordnen waren. Demgegenüber lieferten die beiden Verfahren bisher - auch wenn sie gemeinsam angewendet wurden, unterschiedliche nicht unmittelbar gemeinsam und zusammenfassend auszuwertende Ergebnisse.
Von Bedeutung für das erfindungsgemäße Verfahren ist auch, daß hier Bildelemente aus räumlichen Verfahren (Ultraschall) mit solchen informationsmäßig zusammengefügt werden, welche durch Schattenbildung bei Durchstrahlung gewonnen werden. Das Ultraschallverfahren ermöglicht dabei die Tiefenortung von Befunden, welche durch die schattenbildenden Verfahren ledig¬ lich zweidimensional lokalisiert wurden.
Bei vorteilhaften Weiterbildungen der Erfindung sind die unterschiedlichen bildgebenden Verfahren in verschiedenen Stufen zuschaltbar, so daß jeweils eine genaue Diskrimination erfolgen kann.
Insbesondere handelt es sich bei dem weiteren Signal um ein mittels Röntgenstrahlung, thermographisch und/oder mittels Transillumination ausgelöstes Signal, wobei das mittels Röntgenstrahlung ausgelöste Signal unmittelbar digital auf¬ gezeichnet oder aus einer auf übliche Weise erhaltenen Rönt- genaufnahme nachträglich digitalisiert wird.
Wenn die Signalquellen - gleichzeitig oder zeitlich aufein¬ anderfolgend - in räumlicher Koordination auf derselben Seite des Objekts angeordnet sind, kann in bevorzugter Weise die Empfängerplatte für ein schattengebendes Verfahren mit einer Reflektorfläche für ein mittels Echowirkung arbeitendes bild¬ gebendes Verfahren kombiniert werden.
Bei einer anderen bevorzugten Weiterbildung des Verfahrens kann eine zusätzliche für eine hohe Tumorwahrscheiniichkeit repräsentative Information mittels logischer Verknüpfung und/oder Überlagerung des weiteren Signals mit dem aus der Echoinformation abgeleiteten, für eine hohe Tumorwahrschein¬ lichkeit kennzeichnenden Signal, insbesondere durch additive oder multiplikative Verknüpfung erhalten werden. Dadurch wer¬ den die für die Auswertung der Untersuchung besonders rele- vante Bezirke deutlich hervorgehoben.
Die Primärstrahlung des echogebenden Signals wird auf das zu untersuchende Objekt insbesondere kontinuierlich oder in im wesentlichen äquidistanter Folge anschließenden parallelen als Primärstrahlung auf das zu untersuchende Objekt abge¬ geben, wobei der Primärstrahlensender mechanisch angetrieben ist und/oder mehrere räumlich verteilte Primärstrahlensender in einer Anordnung nach Art eines Arrays scannend zeitlich nacheinander auch simultan betrieben werden.
Wenn sich - gemäß einer anderen bevorzugten Ausführung des erfindungsgemäßen Verfahrens das Objekt zwischen dem Primär- strahlensender/Echosignalempfänger und einer senkrecht zur Raumrichtung der Primärstrahlung ausgerichteten, die Primär- Strahlung als Echosignal stärker als andere im Darstellungs¬ feld befindliche Bereiche des Körpergewebes reflektierenden Referenzfläche befindet und die mittlere oder zu erwartende Laufzeit und/oder Amplitude eines vom Primärstrahlensender/ Echosingalempfänger empfangenen von der Referenzfläche re- flektierten Echosignals der das Objekt durchquerenden Pri¬ märstrahlung ermittelt oder festgehalten wird, kann die Laufzeit und/oder Amplitude eines vom Primärstrahlensender/ Echosignalempf nger empfangenen von der Referenzfläche re¬ flektierten Echosignals der das Objekt durchquerenden Pri- märstrahlung ermittelt werden, wobei dann die Abweichung der Laufzeit und/oder Amplitude dieses aufgenommenen von der Referenzfläche reflektierten Echosignals zur Laufzeit des Referenz-Echosignals bzw. zur Referenzamplitude ein Maß für die Tumorwahrscheinlichkeit im Bereich der Raumrichtung der Ausbreitung dieses Echosignals bildet. Auf diese Weise läßt sich aus den überlagerten Signalen ein Maximum an eine ge- schlossene Darstellung ermöglichender bildgebender Infor¬ mation gewinnen.
Besonders vorteilhaft bei den vorstehend beschriebenen Ver- fahren ist insbesondere, daß die erhaltenen Bilddaten keiner geometrischen Korrektur bedürfen, da sie sich ohne weiteres linear zu einer Gesamtdarstellung überlagern lassen.
In allgemeiner Form lassen sich dabei Bereiche der Bilddar- Stellung unter gemeinsamer Auswertung für einander benach¬ barte Punkte aufgenommene Echos erzeugen, so daß eine voll¬ ständige Darstellung der Referenzebene unter maximaler Aus¬ nutzung der aufgenommenen Signalinformation ermöglicht ist.
Günstig ist dabei weiterhin, wenn die Punkte oder Bereiche zu einer zwei- oder dreidimensionalen graphischen Darstellung - insbesondere Falschfarbendarstellung - überlagert werden.
Das erfindungsgemäße Verfahren läßt sich auch für eine räum- lieh bildgebende Darstellung nach Art der Computertomographie verwenden, wenn nämlich auf dem zu untersuchenden Körperteil aus kontinuierlich oder in im wesentlichen äquidistanter Folge aneinanderanschließenden Raumrichtungen von einer den Körperteil flächendeckenden Bahn aus Primärstrahlung auf den zu untersuchenden Körperteil abgegeben wird.
Die technische Ausführung einer Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens weist dabei jeweils die ent¬ sprechenden, Signalwandler bildenden Strahlungsquellen bzw. Strahlungsempfänger auf sowie einen Signalprozessor mit zuge¬ hörigem Programmspeicher und Signalverbindungen zu den Signalwandlern.
Da die Wellenstrahlung die relevante Körperpartie, d. h. das zu untersuchende Objekt, zeitlich nacheinander abtastet und insoweit eine stabile Lagerung insbesondere beweglicher Ob¬ jekte günstig ist, ist bei der bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung das Objekt zwischen einem für die Wellenstrahlung im wesentlichen durchlässigen, plat- tenförmigen Element und der die Echosignale reflektierenden Referenzfläche angeordnet, wobei das Element und die Refe- renzflache parallel zueinander gerichtet sind.
Weil die zu untersuchenden Objekte unterschiedliche Formen aufweisen können, sind das für die Wellenstrahlung durch¬ lässige Element und die reflektierende Referenzfläche mittels einer axialen Verstelleinrichtung miteinander verbunden. Das zu untersuchende und von einem Kopplungsmedium umgebene Ob¬ jekt wird somit nach seiner Einbringung zwischen der Refe¬ renzfläche und dem Element, die ebenfalls mit dem Kopplungs- edium versehen sind, durch Betätigung der Verstelleinrich- tung fixierend eingeklemmt, so daß relativ große Bereiche des Objekts das Element bzw. die Referenzfläche unmittelbar be¬ rührbar und dadurch auf einfache Weise eine gute Kopplung zwischen Objekt und Element bzw. Referenzfläche gewährlei¬ sten. Da die Dicke der vom Ultraschallsignal zu durchqueren- den Bereiche damit definiert sind, lassen sich von vorn herein Sender/Empfänger mit geeigneter Fokussierung aus¬ wählen, so daß Zeitverluste durch Fehlmessungen vermieden sind.
Das das Objekt umgebende Kopplungsmedium befindet sich vor¬ zugsweise in einem flexiblen Behälter, dessen Form sich an die Form des Objekts anpassen läßt. Der Behälter ist aus einem für die Wellenstrahlung durchlässigen Material und das Kopplungsmedium ist derart, daß die Schallgeschwindigkeit und/oder Absorption der Wellenstrahlung im Kopplungsmedium im wesentlichen derjenigen der Wellenstrahlung im Körpergewebe des zu untersuchenden Objekts gleicht. Dadurch können auch diejenigen Bereiche des Objekts untersucht werden, deren Oberfläche nicht in unmittelbarer Berührung mit dem durch- lässigen Element oder der reflektierenden Referenzfläche stehen. Bei einer bevorzugten Ausführung der erfindungsgemäßen Vor¬ richtung ist der Ultraschallsender/Empfänger in einem Schlitten an der Außenfläche des für die Wellenstrahlung durchlässigen plattenförmigen Elements anliegend arretierbar und derart translatorisch beweglich angeordnet, daß das zu untersuchende Objekt mit jenseitiger reflektierender Re¬ ferenzfläche auf einfache Weise entweder manuell oder mo¬ torgetrieben punktweise zeitlich nacheinander rasterförmig abtastbar ist. Im Falle einer linien- oder flächenförmigen Array-Anordnung vereinfachen sich die erforderlichen Bewe¬ gungsabläufe bzw. können ganz entfallen. Bei einer Ausführung als flächenförmiges Array kann dieses selbst die An¬ druckfläche bilden. Die Ansteuerung erfolgt dabei scannend mittels einer entsprechenden elektronischen Schaltung.
Insbesondere sind das für die Wellenstrahlung durchlässige Element und die reflektierende Referenzfläche bei der Unter¬ suchung eines menschlichen Körperteils, und vorzugsweise der weiblichen Brustdrüse, jeweils in ihren an den benachbarten Körperpartien anliegenden Anschlußbereiche dieser formange¬ paßt, und insbesondere mit einer eine konkav geformte Aus¬ nehmung aufweisende Anschlußkante versehen.
Eine bevorzugte Art der Auswertung der erhaltenen Informa- tionen besteht in einer computerberechneten dreidimensionalen Darstellung der ultraschallreflektierenden Referenzfläche auf einem Monitor, so daß die Größe des Bereichs des zu unter¬ suchenden Objekts, in dem ein Tumor mit großer Wahrschein¬ lichkeit vorhanden ist, gleichzeitig überblickt werden kann. Damit ist die simultane Darstellung der charakteristischen Informationen in einem einzigen Bild möglich, welches durch die entsprechenden graphischen Steuerungsmittel des Computers in unterschiedlichen Ansichten ausrichtbar ist.
Durch Auswahl der Darstellung der zu den auffälligen Be¬ reichen der Referenzfläche gehörigen (zugeordneten) Gewebe¬ bereiche kann jeweils eine nähere Diagnose erfolgen. Unter Ausschnittsvergrößerung (Zoom) lassen sich dabei interessie¬ rende Gewebebezirke getrennt wiedergeben, so daß eine ge¬ nauere Beurteilung möglich ist.
Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet bzw. werden nachstehend zusam¬ men mit der Beschreibung der bevorzugten Ausführung der Er¬ findung anhand der Figuren näher dargestellt. Es zeigen:
FIG 1 die bevorzugte Ausführungsform der erfindungsgemäßen Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens im Schnitt, FIG 2 die Vorrichtung gemäß FIG 1 in perspektivischer Dar¬ stellung, FIG 3a bis 3d schematische Ansichten von GewebeInhomogeni¬ täten bei Durchstrahlung in Schnittdarstellung, FIG 4a bis 4d verschiedene Echosignalverläufe zu den An¬ sichten gemäß FIG 3a bis 3d, FIG 5 eine dreidimensionale Darstellung der ultraschallre- flektierenden Unterlage im Ultraschallbild bei vor¬ handenem Tumor im zu untersuchenden Objekt sowie FIG 6 ein Blockschaltbild eines Prozessorsystems zur Signal¬ verarbeitung im Rahmen des erfindungsgemäßen Ver¬ fahrens.
Bei der in FIG 1 in Seitenansicht und FIG 2 perspektivisch dargestellten bevorzugten Ausführungsform der erfindungsge¬ mäßen Vorrichtung sind zwei planparallele Elemente, eine Platte 6 und ein Element 7 vorgesehen, welche das zu unter- suchende Objekt 1 in zwei in im wesentlichen parallel zuein¬ ander ausgerichteten Ebenen begrenzen. Dabei ist das Element 7 für Ultraschallwellen durchlässig ausgebildet, während die Platte 6 Ultraschallwellen reflektiert. Platte 6 und Element 7 sind mittels einer axialen Versteileinrichtung 8 miteinan- der verbunden. Mittels Verstellelemente 9 und 10 läßt sich der Abstand zwischen dem Element 7 und der Platte 6 indivi¬ duell einstellen. Für die nachfolgende Beschreibung sollen folgende räumliche Richtungen gelten: x bildet die Eindring¬ richtung der Ultraschallsignale und damit die t-Achse für die zeitlich nacheinander empfangenen Ultraschallechos. Die y- Achse bildet eine erste "Bewegungs-"achse bei der Signalauf- nähme und damit die zweite Koordinate für die Darstellung eines Schnittbildes. Die z-Achse stellt dann die sekundäre Bewegungsachse der Signalaufnähme dar und ermöglicht somit die Erzeugung eines dreidimensionalen Bildes. Die "Bewegung" braucht dabei aber nicht mechanisch zu erfolgen, sondern kann bei der Verwendung von Sender-/Empfänger-Arrays mit linien- oder flächenhafter Erstreckung durch elektronisches Scannen vorgenommen werden.
Der Primärwellensender/Echosignalempfänger 2 ist in einem Schlitten 12, der bei dieser bevorzugten Ausführungsform der Vorrichtung ebenfalls mit Querstäben 11 der Verstelleinrich- tung 8 verbunden ist, entlang der Längsachse des Schlittens 12 beweglich aber auch arretierbar angeordnet. Der Schlitten 12 ist wiederum entlang der Längsachse der Querstäbe 11 ver- schiebbar. Der Primärwellensender/Echosignalempfänger 2, der an der Außenseite des Elements 7 anliegt kann mittels des Schlittens 12 die gesamte Planfläche des Elements 7 zum Scannen des zu untersuchenden Objekts 1 überfahren. Dabei kann die jeweilige Position, d. h. die Raumrichtung des Primärwellensenders/Echosignalempfängers 2 entweder manuell oder schrittmotorgetrieben bzw. mittels der elektronischen Scanmittel eingestellt werden.
Die am menschlichen Körper anliegende Kante 13 bzw. 14 der Platte 6 bzw. des Elements 7 ist anatomisch verrundet, d. h. insbesondere konkav ausgebildet.
Dieses bevorzugte Ausführungsbeispiel ist deshalb mechanisch besonders einfach, weil ein eine beliebige Form aufweisendes Untersuchungsobjekt 1 von einem ein Kopplungsmedium 17 ent¬ haltenden flexiblen und für die verwendete (Wellen)Strahlung durchlässigen abgedichteten Behälter 15 jederzeit umgebbar ist. Der Behälter 15 ist über einen Füllstutzen 16 zu füllen bzw. zu entleeren. Zusätzlich muß dabei das Kopplungsmedium lediglich auf die Platte 6 und auf das Element 7 aufgetragen werden, um zu gewährleisten, daß die Wellenstrahlungen gut übertragbar sind.
Bei dem dargestellten Ausführungsbeispiel der Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens bildet die re¬ flektierende Platte 6 gleichzeitig die eine Empfangsvorrich- tung für ein weiteres in paralleler Raumrichtung wirksames bildendes Signal oder ist mit einer derartigen Empfangsvor¬ richtung verbunden bzw. bildet eine Aufnahme für eine der¬ artige Empfangsvorrichtung.
Die Untersuchungsmethode besteht in der Röntgenexposition bzw. digitalen Radiographie des Objekts in identischer Po¬ sition. Dadurch können weitere Informationen bezüglich der aufgefundenen Inhomogenität gewonnen werden bei gleichzei¬ tiger vorteilhafter Verringerung der Röntgenbelastung im Vergleich zu den heute üblichen reinen Röntgenaufnahmen aus zwei unterschiedlichen Raumrichtungen. Dabei kann dann eine Röntgenröhre 20 zeitweise an die Stelle der Ultraschallsende- und Empfangsvorrichtung 2 treten.
Die Röntgenstrahlung ist angedeutet durch das Strahlenbündel 21, welches das Objekt 1 durchstrahlt und den Röntgenfilm 22 erreicht, der in einer Cassette 23 angeordnet ist. Dabei ist insbesondere die obere Deckfläche der Cassette 23 identisch mit der Platte 6, welche als Reflexionsfläche für die Ultra- schalluntersuchung dient. Bei einer angedeuteten alternativen Ausführungsform befindet sich die thermosensitive Fläche für ein Thermografieverfahren an der Oberseite der Platte 6 und ist durch eine gestrichelte Linie 24 angedeutet.
Dabei wird das zu untersuchende Objekt 1 mittels der Ver¬ steileinrichtung 8 bis 10 fixiert und die vom Primärwellen- sender/Echosignalempfänger 2 ausgestrahlten Primärstrahlungen 3 werden von der Platte 6 nach Durchquerung des Objekts 1 als Echosignale 4 reflektiert und vom Primärwellensender/Echo- signalempfänger 2 aufgenommen. Die Laufzeiten und die Ampli¬ tuden der Echosignale 4 werden dabei von der mit dem Primär- wellensender/Echosignalempfänger 2 verbundenen Auswertungs- vorrichtung für die unterschiedlichen Raumrichtungen 5 der abgegebenen Primärstrahlungen 3 registriert.
In derselben Position des Objekts wird anschließend (oder ge- gebenenfalls auch gleichzeitig) mittels des zweiten bildge¬ benden Untersuchungsverfahrens eine der ersten überlagerte Bilddarstellung erzeugt, welche die aufgenommenen geometri¬ schen Daten in identischer Position ergänzt. Das Koppelmedium 17 ist dabei insbesondere so eingestellt, daß es in seiner Dämpfung oder Beeinflussung für die bildgebende Strahlung den Eigenschaften normalen Körpergewebes entspricht, so daß es bei der Bilddarstellung neutral erscheint.
Bei dem weiteren Signal kann es sich außer um Röntgenstrah- lung auch um ein thermographisch oder mittels TransIllumina¬ tion ausgelöstes Signal handeln, wobei im letztgenannten Fall die Beleuchtungsquelle mit der Quelle 20 zusammenfällt.
Insbesondere kann das mittels Röntgenstrahlung ausgelöste Signal unmittelbar digital aufgezeichnet oder aus einer auf übliche Weise erhaltenen Röntgenaufnahme nachträglich - vor¬ zugsweise durch Scannen - digitalisiert werden.
Anhand der Figuren 3a bis 3d und 4a bis 4d sollen nunmehr die für die verschiedenen an Grenzen von Inhomogenitäten ent¬ stehenden und die sich daraus ergebenden Signalverläufe näher diskutiert werden.
In den Schnittdarstellungen gemäß Figuren 3a bis 3d sind ver- schiedene Inhomogenitäten bei Durchstrahlung mit Ultraschall (in x-Richtung) wiedergegeben, an denen das erfindungsgemäße Verfahren verdeutlicht werden soll. In Pfeilrichtung ist je- weils die Raumrichtung der Primärstrahlung angegeben, wobei der Schwärzungsgrad der Darstellung ein Maß für die Anzahl bzw. die Intensität der erhaltenen Echos bildet. Dabei ist in den Figuren 3a bis 3d jeweils unterhalb des Ultraschallbildes das durch das zusätzliche bildgebende Verfahren erhaltene Signal 25 in einer Schnittdarstellung in horizontaler Er¬ streckung wiedergegeben. Es ist dabei schematisch angedeutet, wie jeweils eine Schwärzung als Anzeichen für malignes Gewebe im Bereich einer entsprechenden Auffälligkeit im Ultraschall- signal entsteht. Die Darstellung kann dabei allerdings nur schematisch sein. Insbesondere wird hier von einer elektro¬ nischen Nachbehandlung der Signale ausgegangen, wobei gegen¬ über der Darstellung auf einem Röntgenfilm eine Invertierung vorgenommen wurde. In jedem Fall kann es sich hier nur um eine Prinzipdarstellung handeln.
In FIG 3a ist ein tumorfreies, Fettgewebe F und Drüsenkörper DK enthaltendes Objekt dargestellt. Das Fettgewebe F weist eine geringere Echodensität als der Drüsenkörper DK auf, wo- bei die ultraschallreflektierende Platte P die höchste Echo¬ densität aufweist.
In FIG 3b ist ein einen malignen Tumor T aufweisendes Objekt dargestellt. Der maligne Tumor erscheint fast echoleer und mit einem bilateralen Randschatten hinter dem Tumor.
In FIG 3c ist ein einen malignen Tumor T aufweisendes Objekt dargestellt. Der maligne Tumor erscheint fast echoleer aber weist im Gegensatz zu FIG 3b einen mittleren Zentralschatten hinter dem Tumor auf.
In FIG 3d ist ein eine benigne Zyste Z aufweisendes Objekt dargestellt. Die Zyste Z erscheint, wie die meisten Zysten ohne Echos und mit einer zentralen Schallverstärkung hinter der Zyste. In den Figuren 4a bis 4d (t-Achse entsprechend der x-Rich- tung) sind die verschiedenen sich aus den Figuren 3a bis 3d ergebenden Echosignalverläufe jeweils zusätzlich wiederge¬ geben. Die zusätzlichen Bildanteile eines aufgrund von Durch- Strahlung arbeitenden bildgebenen Verfahrens treten in diesen Darstellungen nicht auf. Das zusätzliche bildgebende Ver¬ fahren enthält damit keine "Tiefeninformation", da es auf Durchstrahlung basiert. Dasselbe gilt aber auch für die weiteren aus der Ultraschalluntersuchung herrührenden Signale "Plattenverschiebung" und "Plattenauslöschung" , welche eben¬ falls keine räumliche Information enthalten.
In FIG 4a ist der Echosignalverlauf der Referenzprimärstrah¬ lung 3' dargestellt, die das tumorfreie, Fettgewebe F und Drüsenkörper DK enthaltende Objekt durchquert. Dabei werden die Veränderungen in der Echoamplitude A mit der Zeit t und daher auch mit der zunehmenden Entfernung zum Primärstrahlen- sender/Echosignalempfänger aufgezeichnet. Das Fettgewebe F weist dabei eine geringere Amplitude als die Drüsenkörper DK auf, wobei der Bereich der höchsten Amplitudenwerte Pa die Position der ultraschallreflektierenden Platte anzeigt.
In der FIG 4b ist der Echosignalverlauf einer den malignen Tumor T durchquerenden Primärstrahlung 3 dargestellt. Dabei ist die Amplitude im Bereich des Tumors T und des bilateralen Randschattens wesentlich geringer als die des umgebenden Fettgewebes F. Ersichtlich ist dabei weiterhin, daß sich einerseits die Laufzeit Lb bis zum Bereich der erhöhten Amplitudenwerte Pb der Platte im Vergleich zur Laufzeit La des Echosignals gemäß FIG 4a verkürzt hat und daß anderer¬ seits die erhöhten Amplitudenwerte Pb geringer sind als die erhöhten Amplitudenwerte Pa des Echosignalsverlaufs gemäß FIG 4a. Die LaufZeitverkürzung stellt sich dabei als scheinbare Plattendeformation dar.
In der FIG 4c ist der Echosignalverlauf einer den malignen Tumor T durchquerenden Primärstrahlung 3 dargestellt. Dabei ist die Amplitude im Bereich des Tumors T wesentlich geringer als die des umgebenden Fettgewebes F und der mittlere Zentralschatten weist eine gegenüber der Amplitude vor dem Tumor T verringerte Amplitude auf. Ersichtlich ist dabei in gleicher Weise wie bereits bei FIG 4b, daß sich einerseits die Laufzeit Lc bis zum Bereich der erhöhten Amplitudenwerte Pc der Platte im Vergleich zur Laufzeit La des Echosignals gemäß FIG 4a verkürzt hat und daß andererseits die erhöhten Amplitudenwerte Pc geringer sind als die erhöhten Amplitu- denwerte Pa des Echosignalverlaufs gemäß FIG 4a.
In der FIG 4d ist der Echosignalverlauf einer die benigne Zyste durchquerende Primärstrahlung 3 dargestellt. Die Ampli¬ tude im Bereich der Zyste Z ist im wesentlichen gleich Null und die zentrale Schallverstärkung ist mit einer gegenüber der Amplitude vor der Zyste Z erhöhten Amplitude hinter der Zyste Z zu sehen. Ersichtlich ist hierbei aber ebenfalls, daß sich die Laufzeit Ld bis zum Bereich der erhöhten Amplituden¬ werte Pd der Platte 6 im Vergleich zum Echosignalverlauf ge- maß FIG 4a zwar verkürzt hat, aber daß die erhöhten Amplitu¬ denwerte Pd weiterhin im wesentlichen die erhöhten Amplitu¬ denwerte Pa des Echosignalsverlaufs gemäß FIG 4a übertreffen.
Durch das wiederholte Scannen des Objekts in weiteren zu der ersten Ebene senkrecht gerichteten Ebenen, läßt sich bei einem hier nicht dargestellten weiteren Ausführungsbeispiel über eine Verknüpfung der ermittelten Echosignalverläufe durch Überlagerung ein dreidimensionales Bild erstellen.
Um eine die Laufzeit des Echosignals verkürzende benigne von einer malignen Inhomogenität noch besser unterscheiden zu können, ist das Ultraschallbild der reflektierenden Platte 6 in FIG 5 dreidimensional dargestellt. Damit kann die räum¬ liche Kontur des Bereichs in der eine Inhomogenität mit hoher Wahrscheinlichkeit zu erwarten ist, bildlich wiedergegeben werden. Hiermit wird die Beschaffenheit der Randkontur des verzerrten Bereichs der reflektierenden Platte 6 ersichtlich, welches eine Aussage über die Beschaffenheit der Randkontur der Inhomogenität ermöglicht. Studien haben ergeben, daß maligne Befunde meist unregelmäßige Randkonturen auf, während benigne Befunde glatte Randkonturen aufweisen. Weiterhin ist durch Abruf des parallel zur Schallausbreitungsrichtung ge¬ richteten Primärbildes die eine Störung verursachende In¬ homogenität unmittelbar der Betrachtung zugänglich, so daß eine nähere Charakterisierung möglich ist.
Bei der dreidimensionalen Darstellung gemäß FIG 5 ist die ultraschallreflektierende Platte 6 bei vorhandenem malignen Tumor im zu untersuchenden Objekt gezeigt. Dabei ist die un¬ regelmäßige Beschaffenheit der Kontur des verzerrt darge¬ stellten Bereichs der Platte 6 deutlich zu erkennen. Auch in dieser Figur wird die Darstellung durch ein zweites Diagramm, welches von dem zweiten bildgebenden Verfahren herrührt, er¬ gänzt. Hierbei handelt es sich wiederum um eine mittels Rönt¬ genstrahlung erhaltene Darstellung. Dabei ist es anhand der Beschaffenheit der Randkontur ersichtlich, daß es sich mit hoher Wahrscheinlichkeit um einen malignen Befund handelt. Weiterhin kann durch die Projektion des verzerrt dargestell¬ ten Bereichs in Richtung des oberen wellendurchlässigen Ele¬ ments ein räumlich begrenzter Bereich der untersuchten Kör¬ perpartie ermittelt werden, in dem der maligner Befund mit hoher Wahrscheinlichkeit anzutreffen ist.
Bei dem in FIG 6 in Form eines Blockschaltbildes wiederge¬ gebenen prinzipiellen Aufbau einer Auswertungsvorrichtung für das erfindungsgemäße Verfahren werden die von einer Ultra- schall-Empfangseinheit 40 aufgenommenen Ultraschallechos S]_ als digitalisierte Amplitudensignale in einen Speicher 42 eingeschrieben, welche beispielsweise Schieberegister zur Aufnahme der digitalisierten Signale bilden. Eine weitere Empfangseinheit 41 dient zum Empfang eines weiteren räumlich korrelierten von dem zu untersuchenden Organ abgeleiteten bildgebenden Signal, welches weiter unten näher beschrieben werden soll. Bei dem in dem Schieberegister vorhandenen Signal handelt es sich um die digitalisierten Amplitudenwerte des empfangenen Echos, wobei der Empfang gestartet wird, nachdem ein Ausgangssignal von einer Zeitverzögerungseinrich¬ tung 44 erhalten wurde, die ihrerseits durch einen Zeitgeber 45 aktiviert wurde, der den Zeitpunkt der Aussendung der
Ultraschallsignale bestimmt. Damit wird auf jeden abgegebenen Ultraschall-Singalimpuls hin das zurücklaufende Signal im Speicher 42 festgehalten, wobei die digitalisierte Repräsen¬ tation in x-Richtung (Eindringtiefe) derjenigen der Figuren 4 und 5 entspricht.
Die Schallempfangseinheit 40 wird mit einer Vorrichtung zur zeilenweisen linearen Verschiebung in y-Richtung (vergleiche FIG 3) , welche bevorzugt auch automatisiert ausgebildet sein kann, in unterschiedlichen Positionen in bezug auf das zu untersuchende Organ positioniert. Damit ist eine zeilenweise Abtastung zur schichtweisen Darstellung des zu untersuchenden Organs oder der zu untersuchenden Körperpartie möglich. Bei einer - hier nicht dargestellten - Variante der Erfindung kann die zeilenweise Abtastung auch durch simultane Aufnahme jeweils einer ganzen Zeile mittels eines entsprechenden Arrays von Ultraschallsendern/-empfängern erfolgen.
Das in FIG 6 dargestellte Auεführungsbeispiel repräsentiert die Auswertungsschaltung für die nacheinander innerhalb einer räumlichen Ebene aufgenommenen Signale, also für einen zwei- dimensionalen Bereich. Für eine simultane zweidimensionale Erfassung ist ein Ultraschall-Sender-Empfänger erforderlich, der Signale gleichzeitig für eine vollständige Zeile abgibt, während für eine dreidimensionale Erfassung eine derartige
Anordnung für jede weitere zu erfassende Schicht entsprechend zu vervielfachen wäre. Dies führt zu einer flächenartigen Array-Anordnung für die Ultraschall-Sender/Empfänger.
Da hierbei jedoch infolge einer ebenfalls scannenden Abta¬ stung der ohne mechanische Bewegung aufgenommenen Signale deren Weiterverarbeitung letztlich wieder nacheinander vor- 00
Figure imgf000020_0001
in einfacher Weise durch Festhalten des Wertes der Echover¬ schiebung bzw. Echominderung in einer dafür vorgesehenen zu¬ sätzlichen Speicherzelle erfolgen.
Ein weiteres für den betreffenden Punkt in der x,y-Ebene charakteristisches bildgebendes Signal, das von dem Signal¬ aufnehmer 41 abgegeben und in einem Speicher 51 festgehalten ist, wird gegebenenfalls in einer zweiten Verarbeitungsein¬ heit 52 dem Gesamtsignal als Ausgangssignal der ersten Ver- arbeitungseinheit 50 hinzugefügt. Dieses Signal wird dann ebenfalls in dem jeweils einem Punkt der Darstellung in der y,z-Ebene entsprechenden Signal mitgeführt.
Dieses Signal wird in einem Speicher 54 abgelegt, wobei dieser Speicher matrixartig organisiert ist und das gesamte Echosignal (x-Achsen-Information) einschließlich der vorge¬ nannten Zusatzsignale für eine y-Abtastungszeile aufnimmt.
In einer dritten Verarbeitungseinheit 55 wird das für einen Punkt der y-Achse erhaltene Gesamtsignal nunmehr mit weiteren Signalen korreliert, die zu einem früheren Zeitpunkt aufge¬ nommen worden sind. Hierbei handelt es sich bevorzugt um in z-Richtung benachbarte Signale, so daß Aussage über die Tu- morwahrscheinlichkeit für eine Schicht des betrachteten Ge- webes aus der Überlagerung der lokalen Tiefenechos (x-Rich- tung) , der lokalen Echoverschiebung, dem lokalen Signal eines weiteren bildgebenden Verfahrens und den entsprechenden be¬ nachbarten Signalen in z-Richtung erhalten wird, welche mit dem aktuellen Signal verglichen oder in sonstiger Weise kor- reliert werden. Damit können in das lokal aufgenommene Signal auch Signaländerungen im Vergleich zu benachbarten Signalen eingehen.
Durch die weitere Signalaufn hme unter Verschiebung in z- Richtung werden weitere - entsprechend verarbeitete -
Schichtbilder erhalten, welche in weiteren (nur beispiels¬ weise dargestellt) Speichern 56 bis 58 abgelegt werden, so daß mit dem zusammengefaßten Inhalt dieser Speicher ein räumliches Bild erhalten wird, welches insgesamt ausgewertet werden kann. Dabei bildet die Korrelation der Inhalte benach¬ barter Speicherplätze in z-Richtung ebenfalls eine Möglich- keit die erhaltene Information noch zu verbessern, wie es bereits am Beispiel der dritten Verarbeitungseinheit 55 ge¬ zeigt wurde. Entsprechend kann auch eine Korrelation von aus unterschiedlichen räumlichen Richtungen aufgenommenen Bilder erfolgen, wobei allerdings im Falle der Untersuchung der weiblichen Brust für die Signalermittlung aus unterschied¬ lichen Raumrichtungen deren räumliche Arretierung Voraus¬ setzung ist.
Die Erfindung beschränkt sich in ihrer Ausführung nicht auf das vorstehend angegebene bevorzugte Ausführungsbeispiel. Vielmehr ist eine Anzahl von Varianten denkbar, welche von der dargestellten Lösung auch bei grundsätzlich anders ge¬ arteten Ausführungen Gebrauch macht.

Claims

Patentansprüche
1. Verfahren zur bildgebenden Darstellung einer Partie des menschlichen Körpers, insbesondere der weiblichen Brustdrüse, mittels Echosignalen einer auf das Objekt gerichteten Ultra¬ schallstrahlung, wobei die Auswertung von durch einen Echo¬ signalempfanger empfangenen Echosignalen jeweils auf einer in der Raumrichtung der Primärstrahlung gerichteten Objektachse erfolgt und die Intensität der Echosignale bildgebend ausge- wertet wird, d a d u r c h g e k e n n z e i c h ¬ n e t , daß bei der bildgebenden Auswertung das Echosignal mit einem weiteren in der entsprechenden Raumrichtung bei fixiert gehaltenem Objekt aufgenommenen bildgebenden Signal einer anderen Signalquelle in räumlicher Zuordnung zusammen- gefaßt aus ausgewertet wird, wobei im Falle der weiblichen Brustdrüse diese zwischen zwei im wesentlichen parallel ge¬ richteten Platten fixiert ist.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n - z e i c h n e t , daß es sich bei dem weiteren Signal um ein mittels Röntgenstrahlung, thermografisch und/oder mittels Transillumination ausgelöstes Signal handelt.
3. Verfahren nach Anspruch 2, d a d u r c h g e k e n n - z e i c h n e t , daß das mittels Röntgenstrahlung ausge¬ löste Signal unmittelbar digital aufgezeichnet oder aus einer auf übliche Weise erhaltenen Röntgenaufnahme nachträglich digitalisiert wird.
4. Verfahren nach einem der vorangehenden Ansprüche, d a ¬ d u r c h g e k e n n z e i c h n e t , daß die Signal¬ quellen - gleichzeitig oder zeitlich aufeinanderfolgend - in räumlicher Koordination auf derselben Seite des Objekts angeordnet sind.
5. Verfahren nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß eine zu- sätzliche für eine hohe Tumorwahrscheinlichkeit repräsen¬ tative Information mittels logischer Verknüpfung und/oder Überlagerung des weiteren Signals mit dem aus der Echoin¬ formation abgeleiteten, für eine hohe Tumorwahrscheinlichkeit kennzeichnenden Signal, insbesondere durch additive oder multiplikative Verknüpfung erhalten wird.
6. Verfahren nach einem der vorangehenden Ansprüche, d a ¬ d u r c h g e k e n n z e i c h n e t , daß auf die Körperpartie als zu untersuchendes Objekt (1) kontinuierlich oder in im wesentlichen äquidistanter Folge anschließenden - insbesondere parallelen - Raumrichtungen (5) aus Primär¬ strahlung (3) auf das zu untersuchende Objekt (1) abgegeben wird, wobei der Primärstrahlensender mechanisch angetrieben ist und/oder mehrere räumlich verteilte Primärstrahlensender - insbesondere in einer Anordnung nach Art eines Arrays - scannend zeitlich nacheinander oder auch simultan betrieben werden.
7. Verfahren nach einem der vorangehenden Ansprüche, d a ¬ d u r c h g e k e n n z e i c h n e t , daß die für mehrere Raumrichtungen (5) ermittelten Bildelemente zu einer gemeinsamen räumlichen Darstellung überlagert werden.
8. Verfahren nach einem der vorangehenden Ansprüche, d a ¬ d u r c h g e k e n n z e i c h n e t , daß sich das Objekt (1) zwischen dem Primärstrahlensender/Echosignalemp¬ f nger (2) und einer senkrecht zur Raumrichtung (5) der Primärstrahlung (3) ausgerichteten die Primärstrahlung (3) als Echosignal (4) stärker als andere im Darstellungsfeld befindliche Bereiche des Körpergewebes reflektierenden Re¬ ferenzfläche (6) befindet, daß die mittlere oder zu erwar¬ tende Laufzeit und/oder Amplitude eines vom Primärstrahlen- sender/Echosignalempfänger (2) empfangenen von der Referenz- fläche (6) reflektierten Echosignals (41) der das Objekt (1) durchquerenden Primärstrahlung (3') als Referenzsignal er¬ mittelt oder vorgegeben wird und daß die Laufzeit und/oder Amplitude eines vom Primärstrahlensender/Echosignalempfänger (2) empfangenen von der Referenzfläche (6) reflektierten Echosignals (4) der das Objekt (1) durchquerende Primär¬ strahlung (3) ermittelt wird, wobei die Abweichung der Lauf- zeit und/oder Amplitude dieses aufgenommenen von der Re¬ ferenzfläche (6) reflektierten Echosignal (4) zur Laufzeit bzw. Amplitude des Referenzsignals (41) ein Maß für die Tumorwahrscheinlichkeit im Bereich der Raumrichtung der Aus¬ breitung dieses Echosignals (4) bildet.
9. Vorrichtung zur Durchführung des Verfahrens nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n ¬ z e i c h n e t , daß das räumlich fixierte Objekt (1) zwischen einem für die Wellenstrahlung im wesentlichen durch- lässigen, insbesondere ersten plattenförmigen Element (7) und einem zweiten plattenförmigen Element (6) angeordnet ist.
10. Vorrichtung nach Anspruch 9, d a d u r c h g e ¬ k e n n z e i c h n e t , daß der Primärstrahlensender/- empfänger (2) bzw. die Quelle des sonstigen bildgebenden
Signals dem strahlendurchlässigen Elements (7) in geeigneter Entfernung benachbart angeordnet ist und dabei insbesondere bei einer Anordnung nach Art eines Arrays Teil des ersten plattenförmigen Elements selbst ist und/oder dem zweiten plattenförmigen Element ein Empfänger für das weitere bild¬ gebende Signal benachbart angeordnet ist.
11. Vorrichtung nach Anspruch 10, d a d u r c h g e ¬ k e n n z e i c h n e t , daß der Empfänger für das weitere bildgebende Signal im Falle der Verwendung von Röntgenstrah¬ lung in Form der Cassette für den Röntgenfilm oder eines elektronischen Targets bei digitaler Aufzeichnung das zweite plattenför ige Element bildet.
12. Vorrichtung nach einem der Ansprüche 9 bis 11, d a ¬ d u r c h g e k e n n z e i c h n e t , daß das zweite plattenförmige Element die Echosignale (4) reflektierende Referenzfläche (6) bildet.
13. Vorrichtung nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß das strahlendurchlässige, erste plattenförmige Element (7) und das zweite plattenförmige Element (6) mittels einer axialen mechanischen wirkenden Versteileinrichtung (8) miteinander verbunden sind, wobei der Abstand zwischen dem ersten und dem zweiten plattenförmigen Element (6 und 7) mittels Verstell¬ elementen (9 und 10) einstellbar ist und damit eine geome¬ trische Bezugsgröße bilden kann, wobei insbesondere ein Be¬ hälter (15) aus einem, insbesondere flexiblen, und für die Wellenstrahlung durchlässigen Material das mittels der Ver- Stelleinrichtung (8) räumlich fixierten Objekt (1) umgibt, wobei der Behälter (15) mit einem Kopplungsmedium (16) ge¬ füllt ist.
14. Vorrichtung nach Anspruch 13, d a d u r c h g e- k e n n z e i c h n e t , daß das Kopplungsmedium (16) derart beschaffen ist, daß die Schallgeschwindigkeit der Wellenstrahlung im Kopplungsmedium (16) im wesentlichen derjenigen der Wellenstrahlung im Körpergewebe des zu un¬ tersuchenden Objekts (1) , und im Falle der Verwendung von Röntgenstrahlung in seinen Absorptionseigenschaften im we¬ sentlichen denjenigen des zu untersuchenden Gewebes, ent¬ spricht.
15. Vorrichtung nach einem der Ansprüche 9 bis 14, d a - d u r c h g e k e n n z e i c h n e t , daß der Pri- märstrahlensender/Signalempfänger (2) zur Abtastung der Planfläche des Objekts (1) translatorisch oder drehbar auf einer vorgegebenen Bahn beweglich bzw. in einer vorgegebenen Position arretierbar an der Außenseite des strahlendurch- lässigen Elements (7) angeordnet ist.
16. Vorrichtung nach einem der Ansprüche 9 bis 15, d a ¬ d u r c h g e k e n n z e i c h n e t , daß der Pri¬ märstrahlensender/Echosignalempfanger (2) auf einem Schlitten
(12), der ebenfalls mit der Versteileinrichtung (8) verbunden ist, entlang der Längsachse des Schlittens (12) beweglich aber auch arretierbar angeordnet ist.
17. Vorrichtung nach einem der Ansprüche 16, d a d u r c h g e k e n n z e i c h n e t , daß die Position des Pri är- strahlensenders/Echosignalempfängers (2) oder die des den Primärstrahlensender/Echsignalempfänger (2) aufweisenden Schlittens (12) mit einem Schrittmotor, gegebenenfalls selbsttätig, einstellbar ist.
18. Vorrichtung nach einem der Ansprüche 9 bis 17, d a - u r c h g e k e n n z e i c h n e t , daß das strah¬ lendurchlässige Element (7) und das zweite plattenförmige Element (6) zur Untersuchung der menschlichen Körperpartie und insbesondere der weiblichen Brustdrüse, jeweils in seinem bzw. in ihrem in der Umgebung des zu untersuchenden Körper¬ teils an einer an der menschlichen Körperpartie dichtend anliegenden Anschlußbereich dieser formangepaßt oder unter Einschaltung eines für die Strahlung transparenten Koppel- mediums (17), und insbesondere mit einer eine konkav geformte Ausnehmung aufweisende Anschlußkante (13 bzw. 14) versehen ausgestaltet ist.
19. Vorrichtung nach einem der Ansprüche 9 bis 18, g e- k e n n e i c h n e t , d u r c h Signalwandler als Primärstrahlensender/Signalempfänger (40,41) sowie einen Prozessor mit zugehörigem Programmspeicher und Signalver¬ bindungen zu den Signalwandlern.
PCT/DE1994/000301 1993-03-22 1994-03-18 Verfahren zur bildgebenden darstellung einer partie des menschlichen körpers WO1994021189A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6520519A JP3014453B2 (ja) 1993-03-22 1994-03-18 生体部位の画像生成表示装置
US08/530,364 US5840022A (en) 1993-03-22 1994-03-18 Method for imaging display of a part of the human body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4309597.6 1993-03-22
DE4309597A DE4309597A1 (de) 1993-03-22 1993-03-22 Verfahren zur bildgebenden Darstellung einer Partie des menschlichen Körpers

Publications (2)

Publication Number Publication Date
WO1994021189A2 true WO1994021189A2 (de) 1994-09-29
WO1994021189A3 WO1994021189A3 (de) 1994-11-10

Family

ID=6483750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/000301 WO1994021189A2 (de) 1993-03-22 1994-03-18 Verfahren zur bildgebenden darstellung einer partie des menschlichen körpers

Country Status (4)

Country Link
US (1) US5840022A (de)
JP (2) JP3014453B2 (de)
DE (1) DE4309597A1 (de)
WO (1) WO1994021189A2 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011627A1 (en) * 1993-10-29 1995-05-04 Neovision Corporation Methods and apparatus for performing sonomammography and enhanced x-ray imaging
US5479927A (en) * 1993-10-29 1996-01-02 Neovision Corporation Methods and apparatus for performing sonomammography and enhanced x-ray imaging
WO1996039939A1 (en) * 1995-06-07 1996-12-19 Neovision Corporation Methods and apparatus for correlating ultrasonic image data and radiographic image data
US7313260B2 (en) 2000-11-24 2007-12-25 U-Systems, Inc. Controlling thick-slice viewing of breast ultrasound data
US7556602B2 (en) 2000-11-24 2009-07-07 U-Systems, Inc. Breast cancer screening with adjunctive ultrasound mammography
US8644908B2 (en) 2004-07-30 2014-02-04 Hologic Inc Imaging device for fused mammography with independently moveable imaging systems of different modalities
US9861342B2 (en) 2000-11-24 2018-01-09 U-Systems, Inc. Adjunctive ultrasound processing and display for breast cancer screening
CN111914392A (zh) * 2020-06-23 2020-11-10 上海联影医疗科技有限公司 X射线成像设备和x射线图像的建模方法、装置

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5662109A (en) * 1990-12-14 1997-09-02 Hutson; William H. Method and system for multi-dimensional imaging and analysis for early detection of diseased tissue
US5983123A (en) 1993-10-29 1999-11-09 United States Surgical Corporation Methods and apparatus for performing ultrasound and enhanced X-ray imaging
FR2733142A1 (fr) * 1995-04-19 1996-10-25 Ge Medical Syst Sa Procede et dispositif d'imagerie d'elastographie ultrasonore et appareil de mammographie comprenant ce dispositif.
US5776062A (en) * 1996-10-15 1998-07-07 Fischer Imaging Corporation Enhanced breast imaging/biopsy system employing targeted ultrasound
DE19745400C1 (de) * 1997-10-14 1999-04-15 Siemens Ag Vorrichtung zur Ultraschalltherapie einer weiblichen Brust
WO1999056623A1 (de) 1998-05-05 1999-11-11 Kari Richter Medizinische kompressionsvorrichtung
WO2000009014A1 (de) 1998-08-17 2000-02-24 Kari Richter Kombinierte ultraschall-röntgengeräte
DE19837264A1 (de) * 1998-08-17 2000-03-09 Kari Richter Kombiniertes Ultraschall-Röntgen-Untersuchungsgerät
US6574499B1 (en) * 1998-11-25 2003-06-03 Xdata Corporation Mammography method and apparatus
US6396940B1 (en) * 1999-05-27 2002-05-28 Litton Systems, Inc. Optical correlator based automated pathologic region of interest selector for integrated 3D ultrasound and digital mammography
US6421454B1 (en) * 1999-05-27 2002-07-16 Litton Systems, Inc. Optical correlator assisted detection of calcifications for breast biopsy
US6212421B1 (en) * 1999-09-03 2001-04-03 Lockheed Martin Energy Research Corp. Method and apparatus of spectro-acoustically enhanced ultrasonic detection for diagnostics
US20030013972A1 (en) * 2001-05-29 2003-01-16 Makin Inder Raj. S. Treatment of lung lesions using ultrasound
US7846096B2 (en) 2001-05-29 2010-12-07 Ethicon Endo-Surgery, Inc. Method for monitoring of medical treatment using pulse-echo ultrasound
DE10137186A1 (de) * 2001-07-31 2003-02-20 Mohammed Ashfaq Verfahren und Applikator für die Spiral-Computer-Tomographie mit Ultraschall in der Medizin
US20030149364A1 (en) * 2002-02-01 2003-08-07 Ajay Kapur Methods, system and apparatus for digital imaging
US6724856B2 (en) * 2002-04-15 2004-04-20 General Electric Company Reprojection and backprojection methods and algorithms for implementation thereof
US20030194050A1 (en) * 2002-04-15 2003-10-16 General Electric Company Multi modality X-ray and nuclear medicine mammography imaging system and method
US6707878B2 (en) 2002-04-15 2004-03-16 General Electric Company Generalized filtered back-projection reconstruction in digital tomosynthesis
US7218766B2 (en) * 2002-04-15 2007-05-15 General Electric Company Computer aided detection (CAD) for 3D digital mammography
US7783089B2 (en) 2002-04-15 2010-08-24 General Electric Company Method and apparatus for providing mammographic image metrics to a clinician
US6882700B2 (en) * 2002-04-15 2005-04-19 General Electric Company Tomosynthesis X-ray mammogram system and method with automatic drive system
US6748047B2 (en) * 2002-05-15 2004-06-08 General Electric Company Scatter correction method for non-stationary X-ray acquisitions
US6682484B1 (en) 2002-07-12 2004-01-27 Koninklijke Philips Electronics N.V. Compression plate for diagnostic breast imaging
US6749570B2 (en) * 2002-08-23 2004-06-15 Acuson Corporation Ultrasound method and apparatus for imaging breast
US7963918B2 (en) * 2003-01-17 2011-06-21 Hee-Boong Park Apparatus for ultrasonic examination of deformable object
US7806827B2 (en) * 2003-03-11 2010-10-05 General Electric Company Ultrasound breast screening device
US20050089205A1 (en) * 2003-10-23 2005-04-28 Ajay Kapur Systems and methods for viewing an abnormality in different kinds of images
US7313259B2 (en) * 2003-11-26 2007-12-25 General Electric Company Method, system and computer program product for multi-modality registration using virtual cursors
US20050245826A1 (en) * 2004-03-23 2005-11-03 Gervais Chetley Livingston C Apparatus for imaging human tissue
US7806839B2 (en) 2004-06-14 2010-10-05 Ethicon Endo-Surgery, Inc. System and method for ultrasound therapy using grating lobes
US20050288581A1 (en) * 2004-06-29 2005-12-29 Ajay Kapur Acoustic coupling gel for combined mammography and ultrasound image acquisition and methods thereof
SE0601068L (sv) * 2006-05-12 2007-11-13 Xcounter Ab Multimodalitets röntgenavbildning
JP5269430B2 (ja) * 2008-02-13 2013-08-21 株式会社東芝 超音波診断装置
JP5296414B2 (ja) * 2008-05-21 2013-09-25 富士フイルム株式会社 医用撮像装置
US20120143083A1 (en) * 2010-12-01 2012-06-07 Andrew Kwai Devices and methods for improving the usability of stereotactic imaging for performing a breast biopsy
JP2014000280A (ja) * 2012-06-20 2014-01-09 Hitoshi Ishida 画像処理装置。
KR101380788B1 (ko) * 2012-10-19 2014-04-04 한국과학기술연구원 펄스파를 이용한 폐암 진단 장치 및 폐암 진단 방법
US9855014B2 (en) 2014-12-16 2018-01-02 General Electric Company Compression paddle for use in breast imaging
US9949719B2 (en) 2014-12-16 2018-04-24 General Electric Company Breast imaging method and system
EP3372168B1 (de) * 2017-09-26 2019-11-27 Siemens Healthcare GmbH Röntgen-untersuchungsgerät
JP7198034B2 (ja) * 2018-10-05 2022-12-28 キヤノンメディカルシステムズ株式会社 画像診断装置及び画像診断支援方法
WO2021077384A1 (zh) * 2019-10-25 2021-04-29 汕头市超声仪器研究所股份有限公司 一种声学与光学结合的乳腺检测装置及检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4651744A (en) * 1985-04-04 1987-03-24 Spectrascan, Inc. Soft tissue examination method and apparatus
WO1988008272A1 (en) * 1987-04-21 1988-11-03 The University Court Of The University Of Aberdeen Apparatus for examining a body of living tissues
DE4037387A1 (de) * 1990-11-22 1992-05-27 Kari Dr Richter Verfahren zur bildgebenden darstellung eines objekts
EP0570936A1 (de) * 1992-05-20 1993-11-24 Aloka Co. Ltd. Vorrichtung zur Bestimmung der Eigenschaften von Knochen

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075883A (en) * 1976-08-20 1978-02-28 General Electric Company Ultrasonic fan beam scanner for computerized time-of-flight tomography
JPS55145461A (en) * 1979-04-27 1980-11-13 Nec Corp Digital signal/noise ratio monitoring device
DE3019436A1 (de) * 1980-05-21 1981-11-26 SIEMENS AG AAAAA, 1000 Berlin und 8000 München Verfahren zur verarbeitung von ultraschall-echosignalen von sowohl gerichtet reflektierenden als auch ungerichtet streuenden objektiven, insbesondere zur ultraschall-bildverarbeitung auf dem gebiet der stoff- oder gewebsuntersuchung
JPS5769850A (en) * 1980-10-17 1982-04-28 Fujitsu Ltd Diagnostic device
FI64282C (fi) * 1981-06-04 1983-11-10 Instrumentarium Oy Diagnosapparatur foer bestaemmande av vaevnadernas struktur oc sammansaettning
US4509368A (en) * 1981-06-22 1985-04-09 The Commonwealth Of Australia Ultrasound tomography
JPS5832432A (ja) * 1981-08-21 1983-02-25 Toshiba Corp 半導体装置の製造方法
WO1983002053A1 (en) * 1981-12-14 1983-06-23 Kossoff, George Apparatus for ultrasonic examination of deformable objects
JPS5945112A (ja) * 1982-09-07 1984-03-13 Sekisui Jushi Co Ltd 合成樹脂管のスリ−ブ成形方法及び装置
FR2545349B1 (fr) * 1983-05-04 1986-09-26 Duret Francois Procede de saisie de la forme d'organes humains ou d'anomalies pathologiques et dispositif pour sa mise en oeuvre
JPS60190853A (ja) * 1984-03-10 1985-09-28 Yoshinori Hayakawa 超音波測定装置
DE3426398C1 (de) * 1984-07-18 1987-11-12 Dornier System Gmbh, 7990 Friedrichshafen Vorrichtung zum räumlichen Orten und Positionieren von Konkrementen
FI80796C (fi) * 1988-09-12 1990-07-10 Instrumentarium Oy Arrangemang foer materialundersoekning.
US5099846A (en) * 1988-12-23 1992-03-31 Hardy Tyrone L Method and apparatus for video presentation from a variety of scanner imaging sources
DE4021102A1 (de) * 1989-07-14 1991-01-17 Siemens Ag Medinzinische diagnostikanlage
US5361767A (en) * 1993-01-25 1994-11-08 Igor Yukov Tissue characterization method and apparatus
US5474072A (en) * 1993-10-29 1995-12-12 Neovision Corporation Methods and apparatus for performing sonomammography

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4651744A (en) * 1985-04-04 1987-03-24 Spectrascan, Inc. Soft tissue examination method and apparatus
WO1988008272A1 (en) * 1987-04-21 1988-11-03 The University Court Of The University Of Aberdeen Apparatus for examining a body of living tissues
DE4037387A1 (de) * 1990-11-22 1992-05-27 Kari Dr Richter Verfahren zur bildgebenden darstellung eines objekts
EP0570936A1 (de) * 1992-05-20 1993-11-24 Aloka Co. Ltd. Vorrichtung zur Bestimmung der Eigenschaften von Knochen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AMERICAN JOURNAL OF ROENGENOLOGY, Nr.140, Mai 1983, NEW ORLEANS (US) Seiten 843 - 845 E. A. SICKLES ET AL 'breast Cancer Detection with Sonography and Mammography' *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011627A1 (en) * 1993-10-29 1995-05-04 Neovision Corporation Methods and apparatus for performing sonomammography and enhanced x-ray imaging
US5479927A (en) * 1993-10-29 1996-01-02 Neovision Corporation Methods and apparatus for performing sonomammography and enhanced x-ray imaging
WO1996039939A1 (en) * 1995-06-07 1996-12-19 Neovision Corporation Methods and apparatus for correlating ultrasonic image data and radiographic image data
US5640956A (en) * 1995-06-07 1997-06-24 Neovision Corporation Methods and apparatus for correlating ultrasonic image data and radiographic image data
US7313260B2 (en) 2000-11-24 2007-12-25 U-Systems, Inc. Controlling thick-slice viewing of breast ultrasound data
US7556602B2 (en) 2000-11-24 2009-07-07 U-Systems, Inc. Breast cancer screening with adjunctive ultrasound mammography
US9861342B2 (en) 2000-11-24 2018-01-09 U-Systems, Inc. Adjunctive ultrasound processing and display for breast cancer screening
US8644908B2 (en) 2004-07-30 2014-02-04 Hologic Inc Imaging device for fused mammography with independently moveable imaging systems of different modalities
CN111914392A (zh) * 2020-06-23 2020-11-10 上海联影医疗科技有限公司 X射线成像设备和x射线图像的建模方法、装置

Also Published As

Publication number Publication date
JP3014453B2 (ja) 2000-02-28
JPH11123192A (ja) 1999-05-11
DE4309597A1 (de) 1994-09-29
JPH08504642A (ja) 1996-05-21
WO1994021189A3 (de) 1994-11-10
US5840022A (en) 1998-11-24

Similar Documents

Publication Publication Date Title
WO1994021189A2 (de) Verfahren zur bildgebenden darstellung einer partie des menschlichen körpers
WO1994022374A2 (de) Verfahren zur bildgebenden darstellung mittels echosignalen
DE69730053T2 (de) Verfahren zur abbildung eines körpers mittels abtastung durch eine laser-bilderzeugungs-vorrichtung
DE3743883C3 (de) Medizinische Ultraschall-Behandlungsvorrichtung
DE2619231C2 (de) Verfahren und Vorrichtung zur Ultraschallprüfung
DE19819801B4 (de) Verfahren und Einrichtung zur dreidimensionalen Ultraschall-Bildgebung unter Verwendung eines Wandlerarrays mit gleichförmiger Erhebungsbündelweite
DE4344312C2 (de) Dreidimensionales Ultraschall-Abbildungssystem
DE69831138T2 (de) System zur darstellung eines zweidimensionalen ultraschallbildes in einer dreidimensionalen bildbetrachtungsumgebung
DE10255856B4 (de) Verfahren und medizinisches Abbildungssystem
DE69233207T2 (de) Verfahren und gerät zur bildverarbeitung.
DE19818226C1 (de) Vorrichtung zur Untersuchung weiblicher Mammae mittels Ultraschall und Verfahren zur Reduzierung von Artefakten eines Ultraschallbildes
DE102004043793A1 (de) System und Verfahren zur Visualisierung einer Abnormalität in unterschiedlichen Arten von Bildern
DE112006003039T5 (de) Verfahren und Anordnung zur Röntgenbildgebung
DE4419551A1 (de) Hochauflösendes und kontrastreiches Ultraschallmammografie-System mit Herzmonitor und Grenzgruppenabtaster zur elektronischen Abtastung
DE2737109A1 (de) Ultraschall-faecherstrahl-abtastgeraet fuer laufzeit-tomographie mit rechnerauswertung
DE112012004744T5 (de) Fotoakustische Tomografie des Brustgewebes unter Verwendung eines hemisphärischen Arrays und einer planaren Abtastung
WO2002030288A1 (de) Ultraschalltomograph
DE102005037806A1 (de) Verfahren und Vorrichtung zur Vergrösserung des Sichtfelds bei der Ultraschallbildgebung
DE2507177A1 (de) Bewegliche ultraschallwandleranordnung
DE4209394A1 (de) Ultraschallgeraet, sonde fuer ein solches und ultraschall-diagnoseverfahren
DE102009057066A1 (de) Bildgebungsvorrichtung, Strahlentherapiegerät mit einer derartigen Bildgebungsvorrichtung, Verfahren zur Erzeugung eines Bildes und Computerprogrammprodukt
DE4037387A1 (de) Verfahren zur bildgebenden darstellung eines objekts
DE10254908B4 (de) Verfahren zum Herstellen eines Bildes
DE4029829C2 (de)
EP1779327B1 (de) Verfahren und Vorrichtung zur Erzeugung dreidimensionaler tomographischer Bilder eines Objektes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08530364

Country of ref document: US

122 Ep: pct application non-entry in european phase
122 Ep: pct application non-entry in european phase
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA