WO1994026790A1 - Support pour catalyseurs, procede pour la fabrication d'un gel precurseur d'un support pour catalyseurs - Google Patents

Support pour catalyseurs, procede pour la fabrication d'un gel precurseur d'un support pour catalyseurs Download PDF

Info

Publication number
WO1994026790A1
WO1994026790A1 PCT/EP1994/001513 EP9401513W WO9426790A1 WO 1994026790 A1 WO1994026790 A1 WO 1994026790A1 EP 9401513 W EP9401513 W EP 9401513W WO 9426790 A1 WO9426790 A1 WO 9426790A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
process according
water
alcoholate
temperature
Prior art date
Application number
PCT/EP1994/001513
Other languages
English (en)
Inventor
Benoît Koch
André Rulmont
Fabienne Wijzen
Original Assignee
Solvay S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay S.A. filed Critical Solvay S.A.
Priority to KR1019950705120A priority Critical patent/KR100319213B1/ko
Priority to PL94311673A priority patent/PL178575B1/pl
Priority to BR9406407A priority patent/BR9406407A/pt
Priority to US08/553,326 priority patent/US5849852A/en
Priority to DE69405100T priority patent/DE69405100T2/de
Priority to AU69271/94A priority patent/AU677340B2/en
Priority to EP94917615A priority patent/EP0700404B1/fr
Priority to JP6524956A priority patent/JPH09500663A/ja
Publication of WO1994026790A1 publication Critical patent/WO1994026790A1/fr
Priority to NO954639A priority patent/NO308218B1/no
Priority to FI955530A priority patent/FI112231B/fi

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • B01J35/615
    • B01J35/617
    • B01J35/638

Definitions

  • the present invention relates to a support for catalysts containing at least two constituents chosen from silica, alumina and aluminum phosphate, in particular a ternary support consisting of silica, alumina and aluminum phosphate.
  • the invention also relates to a process for manufacturing a precursor gel of such a support, containing silica, as well as a process for manufacturing a support from said precursor gel. It further relates to catalysts for the polymerization of olefins containing chromium on such a support, as well as the use of these catalysts in the polymerization of olefins.
  • Patent US-4758544 (CHEVRON RESEARCH COMPANY) describes a support for catalysts composed of alumina, aluminum phosphate and silica having an average pore radius of 10 to 300 ⁇ , a specific surface of 50 to 400 m - ⁇ / g and a pore volume of 0.1 to 1.5 crn-Vg, suitable for the hydrodenitrification of oils.
  • these supports do not simultaneously combine a high specific surface with a high pore volume.
  • these known supports do not make it possible to manufacture chromium-based catalysts for the polymerization of olefins, which exhibit, at the same time, a high catalytic activity, a low period of induction of polymerization and a good response. with hydrogen.
  • they do not make it possible to obtain polyolefins having a modular distribution of molecular weights between a moderately wide distribution and a very wide distribution for a given melt index, and they generally give rise to a significant formation of oligomers.
  • the invention overcomes these drawbacks by providing a new support, of homogeneous and amorphous structure, resistant to crystallization, having simultaneously a high pore volume and a high specific surface, and which, when used as a support for a catalyst based on chromium in the polymerization of olefins, gives this catalyst all of the following advantages:
  • the invention relates to a support for catalyzers containing at least two constituents chosen from silica, alumina and aluminum phosphate; according to the invention, the support has a specific surface of 100 to 800 m - ⁇ / g, a crystallization temperature greater than or equal to 700 ° C. and a pore volume of 1.5 to 4 cm-yd, the specific surface (SS) and the pore volume (VP) corresponding to the following relationship:
  • the specific surface (SS) of the support is measured according to the BET volumetric method of British standard BS 4359/1 (1984);
  • the pore volume (PV) is the sum of the pore volume made up of pores with a radius less than or equal to 75 ⁇ , measured by the nitrogen penetration method (BET) according to the volumetric technique described in the British standard BS 4359/1 (1984), and the pore volume measured by the mercury penetration method using the PORO 2000 type porosimeter sold by CARLO ERBA C0, according to the Belgian standard NBN B 05-202 (1976).
  • the crystallization temperature of the support is determined by subjecting a sample of the support to a heat treatment at different temperatures (500 ° C.,
  • the support is of the binary type containing silica (A) and a constituent (B) chosen from alumina and aluminum phosphate, preferably in a molar percentage (A ) :( B) from (10 to 95) :( 90 to 5).
  • the support is of the ternary type containing silica (X), alumina (Y) and aluminum phosphate (Z), preferably in percentage molar (X) :( Y) :( Z) of (10 to 95) :( 1 to 80) :( 1 to 85).
  • the support contains, in addition to at least two constituents chosen from silica, alumina and aluminum phosphate, titanium, generally in the form of titanium dioxide .
  • the amount of titanium present in the support according to the invention, expressed as a molar percentage of Ti ⁇ 2, is generally at least equal to 0.1% mol, preferably 0.5% mol; the values of at least 1 X mol being the most common.
  • the amount of titanium expressed as a molar percentage of Ti ⁇ 2 does not usually exceed 40 X mol, more particularly not 20 X mol, the values of at most 15 X mol being recommended.
  • the support according to the invention is generally in the form of a powder, the grains of which have a diameter of 20 to 200 ⁇ m.
  • the support according to the invention usually has an apparent specific weight greater than or equal to 50 kg / m - *, in particular 100 g / rn- ⁇ ; it is generally at most equal to 500 kg / m--, typically 300 kg / m-- * .
  • this is measured by free flow according to the following procedure: in a cylindrical container of 50 cm ⁇ capacity, the powder is poured from the support to be analyzed, avoiding to pack it, from a hopper, the lower edge of which is arranged 20 mm above the upper edge of the container. The container filled with the powder is then weighed, the tare is deducted from the recorded weight and the result obtained (expressed in g) is divided by 50.
  • the support according to the invention may optionally contain additional substances. It can for example be traces of elements from groups IA and IIA of the periodic table or metals such as iron. These elements must however be present in limited quantities, not having any influence on the intrinsic properties of the support.
  • the invention also relates to a method of manufacturing a precursor gel of a support according to the invention, as described above, according to which an alcohol, water, a silicon alcoholate and an acid in amounts such that the water / silicon molar ratio is from 2 to 50, an acid solution of an aluminum compound is added to the hydrolysis medium thus obtained, and / or a solution of a source of phosphate ions, and, in a third step, a gelling agent; according to the invention, the first step is carried out at acidic pH and comprises, on the one hand, the addition of water, acid, silicon alcoholate and alcohol, the temperature, during the addition, being less than or equal to 30 ° C, and, on the other hand, a ripening of the hydrolysis medium thus obtained at a temperature at least equal to 20 ° C and below the boiling temperature of medium, so as to substitute at least a portion of the alkoxy groups of the silicon alcoholate with hydroxy groups, without gelation or precipitation of silica occurring.
  • the silicon alcoholate used in the first step can be any compound in which the silicon is linked to at least one alkoxy group, such as a linear, branched or aromatic or aliphatic alkoxy. cyclic, saturated or unsaturated, unsubstituted or substituted.
  • the alkoxy groups usually comprise from 1 to 20 carbon atoms. Silicon alcoholates comprising alkoxy groups of the aliphatic type are especially recommended; those comprising unsubstituted saturated aliphatic alkoxy groups are preferred, such as, for example, methyl, ethyl, n-propyl, iso-propyl, n-butyl and iso-butyl groups.
  • silicon alcoholates are tetraethylate, tetra-methylate and silicon tetra-isopropylate. Very particularly preferred is silicon tetraethylate. It is of course possible to use several silicon alcoo ⁇ lates in the first step of the process according to the invention.
  • the alcohol used in the first step has the function of dissolving the silicon alcoholate.
  • any alcohol which dissolves the silicon alcoholate and which is miscible with water may be suitable. It is thus possible to use an alcohol, the hydrocarbon group of which can be saturated, unsaturated, aromatic or aliphatic, linear or cyclic, unsubstituted or partially or totally substituted. Linear aliphatic alcohols are preferred.
  • ethanol, isopropanol and methanol can be cited. Most particularly preferred is ethanol.
  • An alcohol is preferably used, the hydrocarbon group of which corresponds to that of the alkoxy group of the silicon alcoholate used.
  • the amount of alcohol used in the first step of the process according to the invention must be sufficient to allow complete dissolution of the silicon alcoholate and therefore depends on the silicon alcoholate and the alcohol selected, the solubility of the silicon alcoholate in alcohol and the temperature at which the first step is carried out. In practice, there is no point in using a quantity very much greater than the minimum quantity necessary, since a large excess would result in an unnecessary dilution of the mixture resulting from the first stage, which is to be avoided.
  • R represents a hydrocarbon radical which may be aromatic or aliphatic, saturated or unsaturated, linear, branched or cyclic, which may possibly be different in the four groups (0-R), and x represents a number greater than 0 and less than 4, preferably from 0.1 to 3.9.
  • an amount of water is used such that the molar ratio between this amount of water and the amount of silicon alcoholate used is from 2 to 50.
  • this molar ratio is from 2 to 20, more particularly from 8 to 12, for example approximately 10.
  • the expression “silicon alcoholate hydrolyzed and condensed” is intended to denote the compounds 0- [Si (0H) x _ ⁇ (0-R) 4 _ x ] 2 and [Si (OH) x (0-R) 3 _ x ] -0- [Si (OH) x _ 1 (0-R ) 4 _ x ] as defined above.
  • One of the essential characteristics of the process according to the invention is the combination of operating conditions, in the first hydrolysis step, such that any precipitation or gelling of silica in the hydrolysis medium is avoided.
  • the mixing in the first step is carried out under determined conditions relating to the pH and the temperature of the hydrolysis medium, the molar ratio of the quantities of water and of silicon alcoholate used, and the manner of mix the reagents.
  • the term “hydrolysis medium” is intended to denote the medium obtained after mixing water, acid, silicon alcoholate and alcohol.
  • the pH of the hydrolysis medium is acidic. In general, the pH is less than 3, preferably from 0.5 to 2.5, for example approximately equal to 1.
  • the acid used in the first step can be of mineral or organic nature. It is advantageously chosen from acids miscible with water and the anion of which is easily removable in a subsequent treatment of the precursor gel. It can for example be hydrochloric, nitric, phosphoric or sulfuric acid. Preferably hydrochloric acid or nitric acid is used. Hydrochloric acid is particularly suitable.
  • Several acids can optionally be used in the first step of the process according to the invention. The amount of acid must be sufficient to maintain the acid pH for the duration of the first stage. The amount of acid therefore depends on the degree of acidity of the acid used as well as the other reagents, and on the temperature at which the first step is carried out. There is no point in using too high an amount of acid to avoid having to remove, in a subsequent step of treatment of the precursor gel, the excess acid or its derivatives.
  • the reagents can be mixed by any suitable known means, provided that the temperature during the addition of the reagents is at most equal to 30 ° C. and that no precipitation or gelation of silica occurs.
  • the mixing is carried out by adding a premix comprising water and acid to a premix containing the silicon alcoholate and the alcohol. This can be done by adding the water / acid premix to the alcohol / silicon alcoholate premix.
  • Another method is to add the alcohol / silicon alcoholate premix to the water / acid premix. Good results are obtained by adding one of the premixes drop by drop into the other premix maintained under stirring. Particularly satisfactory results are obtained by adding the water / acid premix, drop by drop and with stirring, to the alcohol / silicon alcoholate premix.
  • the temperature is maintained, during the addition of the reagents, below 30 ° C, preferably below 20 ° C, typically around 10 ⁇ C, temperatures above 0 ° C being recommended; then, the hydrolysis medium is subjected to ripening at a temperature at least equal to 20 ° C. and lower than the boiling point of the medium, for example from 30 to 100 ° C., the temperatures from 40 to 80 ° C. being the most common and those of 50 to 70 ° C being recommended.
  • the ripening of the hydrolysis medium is carried out at a temperature higher than that of the addition of the reactants.
  • the maturing has the function of allowing a gradual hydrolysis and condensation of the silicon alcoholate according to the reactions defined above. All other things remaining equal, the rate of hydrolysis of the alcoholate is all the higher (the number x is all the greater) the longer the duration of ripening.
  • the duration of the ripening must therefore be sufficient for the hydrolysis reaction as described above to take place; however, it must be less than the time required for gelation or precipitation of silica to occur.
  • the optimal duration of ripening depends on the pH of the hydrolysis medium, the nature of the reagents present in the hydrolysis medium and the temperature, and can vary from a few minutes to several tens of hours. In general, the duration does not exceed 24 hours. Preferably, the duration is 0.5 to 3 hours.
  • a titanium alcoholate is also used in the first step.
  • the titanium alcoholate can for example be a compound in which the titanium is linked to at least one alkoxy group, such as a linear, branched or cyclic aromatic or aliphatic alkoxy, saturated or unsaturated, unsubstituted or substituted.
  • the alkoxy groups usually comprise from 1 to 20 carbon atoms.
  • the titanium alcoholate is preferably soluble in the hydrolysis medium. Titanium acetylacetonate is particularly suitable. It is of course possible to use several titanium alcoholates in the first step of the process according to the invention.
  • the titanium alcoholate can optionally be used in the form of a solution in a liquid hydrocarbon. Alcohols are fine.
  • the amount of titanium alcoholate used in this embodiment is generally such that the titanium is present in the precursor gel in a proportion varying from 0.05 to 20% by weight, preferably from 0.1 to 15% by weight, more particularly from 0.5 to 10% by weight of titanium based on the total weight of the solid fraction of the precursor gel.
  • the titanium alcoholate can be used at any time in the first step.
  • the titanium alcoholate can for example be added to the premix comprising water and acid, or to the premix containing silicon alcoholate and alcohol.
  • the titanium alcoholate can be added to the hydrolysis medium obtained after mixing the water, the acid, the silicon alcoholate and the alcohol, before, during or after ripening. Good results are obtained when adding the titanium alcoholate during ripening. It is recommended to add the titanium alcoholate after a first part of the ripening, which advantageously represents from 40 to 60 X, for example about 50 X, of the total duration of the ripening, the second part being carried out after the addition of the titanium alcoholate.
  • This embodiment proves to be particularly advantageous when it is desired to incorporate the titanium into the precursor gel in a high amount, which can range up to 20% by weight of the total weight of the solid fraction of the precursor gel, while avoiding the formation , in a subsequent step, agglomerates of crystalline titanium dioxide in the form "anatase" or "rutile".
  • the aluminum compound used in the second step of the process according to the invention can be any aluminum compound which is soluble in the acid solution used in the second step and which is capable of being gelled under the effect of a gelling agent.
  • inorganic aluminum salts and aluminum alcoholates are especially recommended.
  • the aluminum alcoholates those in which aluminum is linked to at least one alkoxy group are usually used.
  • aluminum alcoholates those containing aliphatic groups are especially recommended; those containing unsubstituted saturated linear aliphatic groups are preferred, such as, for example, methyl, ethyl, n-propyl, iso-propyl, n-butyl and iso-butyl groups.
  • An aluminum alcoholate is preferably used, the alkoxy groups of which contain from 1 to 20 carbon atoms.
  • Aluminum alcoholates the alkoxy group of which corresponds to that of the silicon alcoholate used, are particularly suitable. Satisfactory results are obtained with inorganic aluminum salts.
  • inorganic aluminum salts nitrate and aluminum chloride are particularly preferred.
  • the latter is used, at least partly, in the first step of the process according to the invention, preferably, if necessary, in the alcohol / silicon alcoholate premix.
  • Aluminum alcoholate can also be added at the end of the first stage, after ripening.
  • the source of phosphate ions denotes any compound soluble in the solution used in the second step and capable of forming phosphate ions therein.
  • the inorganic phosphate salts for example the monocalcium phosphate of formula CaH 4 (P0) 2 " the disodium phosphate of formula a2HP0 4 and the tricalcium phosphate of formula Ca3 (P0 4 ) 2
  • the phosphate salt ethers for example ethyl phosphate of formula (C2H5) 3PO] and phosphoric acid.
  • Phosphoric acid is preferably used.
  • the acid solution of the aluminum compound and the solution of the source of phosphate ions used in the second step of the process according to the invention can be prepared by any suitable known means and are preferably miscible with the mixture obtained with the first step of the method according to the invention.
  • the source of phosphate ions is added beforehand to the acid solution of the aluminum compound so as not to be used, in the second step of the process according to invention, that only one solution, acid, simultaneously comprising the aluminum compound and the source of phosphate ions.
  • the acid solution contains only the aluminum compound and is free of source of phosphate ions
  • the acid solution is usually obtained by dissolving the compound d aluminum in an amount of water and / or an alcohol, sufficient to ensure complete dissolution, and by adding an acid to it in an amount sufficient to avoid the formation of aluminum hydroxide, which would immediately precipitate and would therefore no longer participate in the formation of the precursor gel.
  • Water is preferably used to dissolve the aluminum compound.
  • the acid used can be chosen from those which can be used in the first step of the process according to the invention.
  • the acid solution contains only the source of phosphate ions and is free of aluminum compound
  • the acid solution is generally prepared by dissolving the source of phosphate ions in a sufficient amount of water and / or alcohol and preferably without excessive exaggeration for the reasons set out above.
  • the source of phosphate ions gives the solution an acidic character, so that there is no need to add an additional acid to the solution.
  • the solution simultaneously contains the aluminum compound and the source of phosphate ions
  • the acid solution is obtained by dissolving the compound of aluminum and the source of phosphate ions in any order in an amount of water and / or alcohol sufficient but without excessive exaggeration for the reasons set out above.
  • the addition of the acid solution of the aluminum compound and the solution of the source of phosphate ions to the mixture obtained in the first step can for example be carried out by pouring the mixture from the first step in one of the two solutions or in the mixture of these two solutions (the acid solution of the aluminum compound and the solution of the ion source phosphates).
  • the mixture of the two solutions can be added to the mixture resulting from the first step, in which case it is preferred to operate very slowly to prevent the medium thus obtained from heating up, by introducing the mixture of the two solutions drop by drop.
  • the gelling agent used in the third step of the process according to the invention is any compound capable of causing cogelification of the reagents used in the first and second step (the hydrolyzed and condensed silicon alcoholate derived from the first step and defined above, the aluminum compound and / or the source of phosphate ions and optionally the titanium alcoholate) in the form of a mixed oxide of silicon and aluminum and / or phosphorus and optionally titanium.
  • a gelling agent mention may be made of ethylene oxide, ammonium carbonate and ammonium hydroxide. An aqueous solution of ammonium hydroxide is preferably used.
  • the amount of gelling agent used in the third step is preferably sufficient to allow complete gelling of the hydrolyzed and condensed silicon alcoholate defined above, of the aluminum compound and of the phosphate compound present in the medium. cogelling.
  • the term “cogeli ⁇ cation medium” is intended to denote the reaction mixture being gelled in the third step of the process.
  • the coge ⁇ lification medium therefore comprises the medium obtained at the end of the second stage of the process according to the invention (comprising the alcoholate of hydrolyzed and condensed silicon, the aluminum compound and / or the source d 'phosphate ions) and the gelling agent.
  • the amount of gelling agent used is advantageously sufficient to allow complete cogelling of the total mass of hydrolyzed and condensed silicon alcoholate, aluminum compound and source of phosphate ions; She is from preferably slightly more than this sufficient amount.
  • the pH of the cogelling medium is generally greater than or equal to 5, typically greater than or equal to 6; it is usually less than 11, values less than 10 being recommended.
  • the pH is kept constant at a value of 6 to 10, for example 8, throughout the duration of the cogelling.
  • the constancy of the pH can be ensured by any suitable known means, for example by using an inert buffer with respect to the reagents being gelled, or by using an installation allowing a controlled, continuous or continuous feeding, of a compound modifying the pH, in the cogeli ⁇ cation medium.
  • a container containing the gelling agent is preferably used, into which the mixture from the second step and a pH-regulating compound are introduced separately and in a controlled manner. Any acid or basic compound inert to the reagents being gelled can be used as the pH regulating compound.
  • the cogelification medium in the third step of the process according to the invention, it may prove advantageous, depending on the properties of the precursor gel that it is desired to obtain, to thermostatically control the cogelification medium at a temperature lower than or equal to 30 ° C. preferably at a temperature of 0 to 20 ° C.
  • a transition metal chosen from the elements of groups IVB and VB of the periodic table such as zirconium and vanadium, or an element of group IIIA of the periodic table, different from aluminum, such as boron.
  • an organic or inorganic salt or an alcoholate of one of these elements is added to the mixture obtained in the first or in the second step of the process according to the invention, before carrying out the following step.
  • the salt or the alcoholate may be added to the water / acid premix or to the alcohol / silicon alcoholate premix used in the first step of the process according to the invention.
  • the gel from the third step is subjected to maturation.
  • a maturing medium which can be the cogelling medium collected from the third step, possibly with stirring.
  • An inert compound modifying the pH of the ripening medium can be added thereto, for example a basic compound.
  • the gel is first separated from the cogelling medium, for example by centrifugation, and then resuspended in an inert liquid such as water or an alcohol to carry out the maturation.
  • This variant has the advantage of eliminating part of the ionic impurities adsorbed in the gel, originating from the reagents used during the manufacture of the gel.
  • the maturation has the function of prolonging the cogelification and thus modifying the specific surface and the pore volume of the gel. It is usually carried out at a temperature which can vary from ambient temperature to the boiling temperature of the maturing medium. It is preferably carried out at approximately 20 ° C.
  • the duration of maturation depends on the temperature and the properties (specific surface and pore volume) required of the support. It can therefore vary from a few minutes to several tens of hours. The best results are obtained with a duration of at least one hour. For economic considerations, there is no point in extending the maturation beyond 48 hours.
  • Maturation is generally carried out at a pH greater than or equal to 6, preferably from 8 to 10.
  • the process according to the invention makes it possible, by means of a single operating mode, to prepare gels which are precursor of supports for catalysts, containing silicon, aluminum and / or phosphorus in a wide range of concentrations.
  • the method according to the invention makes it possible to cover the entire ternary diagram between the composition of silica, alumina and aluminum phosphate.
  • the appended figure represents this ternary diagram of the phases.
  • the method according to the invention appears to be particularly effective for the manufacture of gels, the dry fraction has its composition located in the hatched part of said ternary phase diagram.
  • the method according to the invention also allows the incorporation into the precursor gel of a transition metal or of an element such as boron.
  • the method according to the invention makes it possible to prepare gels which have a very homogeneous dispersion of the constituents, and which are capable of being transformed into supports for catalysts, having, in combination, a specific surface, a pore volume and a resistance to crystallization. which make them efficient in the polymerization of olefins.
  • the invention therefore also relates to a process for the preparation of a support for catalysts, according to which a precursor gel is prepared by means of the process according to the invention as described above, the gel is washed with water and then with an organic liquid, then it is dried by distillation until a powder is obtained, and the powder is calcined.
  • the gel is subjected to washing, first with water and then with an organic liquid.
  • Washing with water generally consists of suspending the gel in an amount of water sufficient to remove at least part of the impurities contained in the gel, and then removing at least part of this amount of water by any suitable known means, for example by centrifugation or by filtration. It is preferably carried out by centrifugation taking into account the speed of this method. You can of course repeat this washing with water several times.
  • the temperature at which this washing is carried out has little influence on the efficiency of the washing and can therefore vary to a large extent. It is preferably carried out at room temperature.
  • the washed gel is subjected to water, to washing with an organic liquid, for example by dispersing the gel in this organic liquid at room temperature.
  • Washing with organic liquid has the function of eliminating at least part water that permeates the gel.
  • the organic liquid selected must be at least partially miscible with water, inert with respect to the gel but nevertheless capable of wetting the gel. It preferably has a vaporization temperature of less than 120 ° C, typically less than 100 ° C, for example from 70 to 90 ° C.
  • Organic liquids which can be used in this washing are alcohols, ethers or their mixtures. Alcohols are preferred, particularly those comprising from 1 to 4 carbon atoms. Isopropanol works well.
  • this washing can be repeated several times using an organic liquid, and several organic liquids can be used simultaneously.
  • the washed gel is subjected to drying by distillation in order to evaporate the water and the organic liquid which has not been removed previously, until a carrier powder.
  • the distillation can be carried out under atmospheric pressure or under reduced pressure. The operation is preferably carried out at atmospheric pressure.
  • an organic liquid is selected for washing the gel which forms an azeotrope with water, and, during drying, the azeotrope is first distilled up to 1 elimination of at least 95%, preferably at least 98% of the water and part of the organic liquid, and then the residue of the organic liquid still present in the gel.
  • the azeotrope is first distilled up to 1 elimination of at least 95%, preferably at least 98% of the water and part of the organic liquid, and then the residue of the organic liquid still present in the gel.
  • a powder generally containing a moisture content of less than 1% by weight, preferably less than 0.5% by weight, for example less than 0, 2% by weight.
  • a powder is collected from the support, which can optionally be passed through a sieve to separate the grains of undesired size.
  • This powder is subjected to calcination.
  • the calcination has the function of extracting, at high temperature, the organic impurities from the powder. It is generally continued until the weight of the powder remains constant over time, while avoiding crystallization of the powder.
  • the calcination can be carried out in air (preferably in dry air) in a fluidized bed at a temperature below the crystallization temperature of the powder.
  • the temperature is generally from 300 to 1500 ° C, typically from 350 to 1000 ° C, preferably from 400 to 600 ° C
  • the precursor gel obtained in the above-mentioned third step it may prove desirable to subject the precursor gel obtained in the above-mentioned third step, to grinding, then to suspension in a liquid, followed by a spraying the suspension of the precursor gel into droplets.
  • Any dispersant which is inert with respect to the gel for example water, can be used as liquid.
  • the particles collected from the spraying are then successively subjected to washing with water and by means of an organic liquid, to drying by distillation and to calcination, as described above.
  • spraying can be carried out after washing with water.
  • the method according to the invention for preparing a support allows obtaining supports containing mixed oxides of silicon and aluminum and / or phosphorus, having a homogeneous dispersion of the constituents, combining a high specific surface and a pore volume high, and occurring in the amorphous state with a high resistance to crystallization.
  • the support according to the invention finds a particularly advantageous application as a support for catalysts in the polymerization of olefins, the catalyst advantageously consisting of chromium oxide.
  • the supports prepared from a precursor gel further containing titanium obtained according to the particularly advantageous embodiment described above make it possible to obtain catalysts for the manufacture of polyolefins with good mechanical properties.
  • the presence of titanium in the support makes it possible to obtain polyolefins of very variable melt index.
  • the invention therefore also relates to a catalyst for the polymerization of olefins containing chromium on a support according to the invention, defined above.
  • the catalyst according to the invention can be obtained in a manner known per se by impregnating the support powder with an aqueous or organic solution of a chromium compound, followed by drying in an oxidizing atmosphere.
  • a chromium compound chosen from soluble salts such as oxides, acetate, chloride, sulphate, chromate and dichromate in aqueous solution, or such as acetylacetonate in organic solution.
  • the impregnated support is usually activated by heating it at a temperature of 400 to 1000 Q C to convert at least part of the chromium to hexavalent chromium.
  • the catalyst according to the invention can also be obtained by means of a mechanical mixture of the powder of the support with a solid chromium compound, for example chromium acetylacetonate. Then, this mixture can be preactivated at a temperature below the melting temperature of the chromium compound before activating it conventionally as described above.
  • a solid chromium compound for example chromium acetylacetonate
  • the chromium compound can also be incorporated into the powder of the support during the manufacture of the latter or during the manufacture of the precursor gel of this support.
  • it may for example be added, in part or in whole, to the acid solution of the aluminum compound and / or of the source of phosphate ions used in the second step of the process according to the invention.
  • manufacture of a precursor gel so as to coprecipitate the chromium oxide simultaneously with the oxide of silicon, aluminum and / or phosphorus.
  • chromium is generally present in a proportion varying from 0.05 to 10% by weight, preferably from 0.1 to 5% by weight, more particularly from 0.25 to 2% by weight of chromium based on the total weight of the catalyst.
  • the catalyst according to the invention appears to be particularly effective in the polymerization of olefins. Indeed, for this application, the catalyst according to the invention has all of the following advantages:
  • the catalyst according to the invention can be used for the polymerization of olefins containing from 2 to 8 carbon atoms per molecule, and in particular, for the production of ethylene homopolymers or of copolymers of ethylene with one or more comonomers selected from the olefins described above.
  • these comonomers are propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 3- and 4-methyl-1-pentenes and 1-octene.
  • Diolefins comprising from 4 to 18 carbon atoms can also be copolymerized with ethylene.
  • the diolefins are unconjugated aliphatic diolefins such as 4-vinylcyclohexene or alicyclic diolefins having an endocyclic bridge such as dicyclopentadiene, methylene- and ethylidene-norbornene, and conjugated aliphatic diolefins such as 1, 3-butadiene, isoprene and 1,3-pentadiene.
  • the catalyst according to the invention is particularly suitable for the manufacture of homopolymers of ethylene and copolymers containing at least 90%, preferably at least 95% by weight of ethylene.
  • the preferred comonomers are propylene, 1-butene, 1-hexene or 1-octene.
  • the invention therefore also relates to a process for the polymerization of olefins as defined above, using a catalyst according to the invention.
  • the polymerization can be carried out either in solution, in suspension in a hydrocarbon diluent or even in the gas phase. Good results are obtained in suspension polymerizations.
  • the suspension polymerization is carried out in a hydrocarbon diluent such as aliphatic, cycloaliphatic and liquid aromatic hydrocarbons, at a temperature such that at least 80 X (preferably at least 90 X) of the polymer formed is insoluble therein.
  • a hydrocarbon diluent such as aliphatic, cycloaliphatic and liquid aromatic hydrocarbons
  • Preferred diluents are linear alkanes such as n-butane, n-hexane and n-heptane or branched alkanes such as isobutane, isopentane, isooctane and 2,2-dimethylpropane or cycloalkanes such as cyclopentane and cyclohexane or mixtures thereof.
  • the polymerization temperature is generally chosen between 20 and 200 ° C, preferably between 50 and 150 ° C, in particular between 80 and 115 ° C.
  • the ethylene pressure is most often chosen between atmospheric pressure and 5 MPa, preferably between 0.4 and 2 MPa, more particularly between 0.6 and 1.5 MPa.
  • the polymerization can be carried out continuously or batchwise, in a single reactor or in several reactors arranged in series, the polymerization conditions (temperature, possible comonomer content, possible hydrogen content, type of polymerization medium) in a reactor being different from those used in other reactors.
  • Examples 1 to 6 serve to illustrate the invention.
  • precursor gels of support for catalysts were first prepared. These gels were then used to prepare the supports. Then catalysts were applied to these supports. The supported catalysts thus obtained were used to polymerize ethylene.
  • titanium was incorporated into the precursor gel.
  • SS specific surface of the support measured by the nitrogen penetration method according to the volumetric method of the British standard BS 4359/1 (1984).
  • VP pore volume of the support, equal to the sum of the pore volume made up of pores with radius less than or equal to
  • T c crystallization temperature determined by means of the method defined above.
  • FO fraction of polymer oligomers, expressed in grams of oligomers per kilo of polymer and measured by extraction with hexane at the boiling point of hexane.
  • catalytic activity expressed in grams of polymer, obtained per hour and per gram of catalyst used and divided by the partial pressure of the olefin expressed in bar.
  • Tind induction time, expressed in minutes and defined as the time elapsed between the introduction of ethylene and the appearance of a pressure drop characteristic of the start of polymerization.
  • ri ⁇ / ri2 ratio between the dynamic viscosity ( " ⁇ Q)" expressed in dPa.s and measured at a speed gradient of 1 s ---- and at
  • the gel obtained in (c) was subjected to maturation at pH 8, for 2 hours, with gentle stirring and at 60 ° C.
  • the washed gel obtained in (a) was subjected to distillation of the water-isopropanol azeotrope at ambient pressure, then of isopropanol first at ambient pressure and then at pressure. reduced, so as to obtain a powder whose moisture content is less than 1% by weight, c) Calcination
  • the powder obtained in (b) was calcined in a fluidized bed under sweeping dry air, for 4 hours at 500 ° C.
  • a powder was collected from a support whose composition (X molar of silica, alumina and aluminum phosphate), the specific surface, the pore volume and the crystallization temperature are shown in Table I.
  • A1C1 3 .6H 2 0 (g) 30.2 10.1 53.7 74.73 85 X phosphoric acid (g) 14.0 4.8 to 2.74 water (g) 24.5 8.8 - 61.9 hydrochloric acid pH 0.8 (g) - - 50.0 -
  • the washed gel obtained in (a) was subjected to a distillation of the water-isopropanol azeotrope at ambient pressure, then of the isopropanol first at ambient pressure and then at reduced pressure, so as to obtain a powder. with a moisture content of less than 1% by weight.
  • c) Calcination The powder obtained in (b) was calcined in a fluidized bed under dry air sweep, for 4 hours at 500 ° C. A powder was collected from a support whose composition (molar% of silica, alumina and aluminum phosphate), the specific surface, the pore volume and the crystallization temperature are shown in Table III.
  • the support obtained in B was mixed with chromium acetyl acetonate in an amount such that the mixture comprises 0.63 X by weight of chromium. Then, the mixture thus obtained was treated in a fluidized bed at 150 ° C for 2 hours under dry air sweep. Then, it was calcined in the fluidized bed at 700 ° C for 5 hours in dry air, and the catalyst was collected. D. Polymerization of ethylene

Abstract

Support pour catalyseurs, contenant au moins deux constituants choisis parmi la silice, l'alumine et le phosphate d'aluminium, présentant une surface spécifique de 100 à 800 m2/g, une températuer de cristallisation supérieure ou égale à 700 °C, un volume poreux de 1,5 à 4 cm3/g, la surface spécifique (SS) et le volume poreux (VP) répondant à la relation: SS < (VP x 564 - 358). Procédé pour la fabrication d'un tel support, selon lequel on mélange un alcool, de l'eau, un alcoolate de silicium et un acide dans des conditions telles qu'on évite une gélification ou précipitation de silice, on y ajoute une solution acide d'un composé d'aluminium et/ou une solution d'une source d'ions phosphates, on y ajoute un agent gélifiant, on recueille un gel que l'on soumet à un lavage à l'eau et ensuite au moyen d'un liquide organique, puis on sèche le gel jusqu'à l'obtention d'une poudre, et on calcine la poudre. Polymérisation d'oléfines en présence d'un catalyseur contenant du chrome sur un support tel que décrit ci-dessus.

Description

Support pour catalyseurs, procédé pour la fabrication d'un gel précurseur d'un support pour catalyseurs
La présente invention concerne un support pour catalyseurs contenant au moins deux constituants choisis parmi la silice, l'alumine et le phosphate d'aluminium, en particulier un support ternaire constitué de silice, d'alumine et de phosphate d'alu- minium. L'invention concerne également un procédé de fabrication d'un gel précurseur d'un tel support, contenant de la silice, ainsi qu'un procédé pour fabriquer un support à partir dudit gel précurseur. Elle concerne en outre des catalyseurs pour la poly¬ mérisation d'oléfines contenant du chrome sur un tel support, ainsi que l'utilisation de ces catalyseurs dans la polymérisation d'oléfines.
Le brevet US-4758544 (CHEVRON RESEARCH COMPANY) décrit un support pour catalyseurs composé d'alumine, de phosphate d'alu¬ minium et de silice présentant un rayon moyen des pores de 10 à 300 Â, une surface spécifique de 50 à 400 m-^/g et un volume poreux de 0.1 à 1.5 crn-Vg, convenant pour l'hydrodénitrification d'huiles.
Dans le brevet US-3342750 (ESS0), on divulgue la préparation de supports pour catalyseurs, contenant du phosphate d'aluminium et de la silice, dont la surface spécifique est par exemple égale à 403 m-^/g et le volume poreux à 0,77 cm-Vg.
Dans l'exemple IA de la demande de brevet GB-A-2090158 (PHILLIPS PETROLEUM COMPANY), on décrit un procédé de préparation d'un support pour catalyseurs, composé de silice et de phosphate d'aluminium, selon lequel on prépare une solution contenant de l'isopropanol, de l'eau, de l'acide phosphorique, de l'éthylate de silicium et de l'acide sul urique, on y ajoute du nitrate d'aluminium, de l'acide phosphoramideux et du nitrate de chrome, et on y introduit de l'hydroxyde d'ammonium pour effectuer une cogélification. Ces supports connus présentent un degré d'hétérogénéité élevé et cristallisent dès lors très vite lorsqu'ils sont soumis à une calcination à des températures supérieures à 700 °C. D'autre part, ces supports ne combinent pas simultanément une surface spécifique élevée avec un volume poreux élevé. Il en résulte que ces supports connus ne permettent pas de fabriquer des catalyseurs à base de chrome pour la polymérisation d'oléfines, qui présentent, à la fois, une activité catalytique élevée, une période faible d'induction de la polymérisation et une bonne réponse à l'hydrogène. En outre, ils ne permettent pas d'obtenir des polyoléfines ayant une distribution de masses moléculaires modulable entre une distribution moyennement large et une distribution très large pour un indice de fluidité donné, et ils donnent généralement lieu à une formation importante d'oligomères.
L'invention remédie à ces inconvénients en fournissant un support nouveau, de structure homogène et amorphe, résistant à la cristallisation, possédant simultanément un volume poreux élevé et une surface spécifique élevée, et qui, lorsqu'il est mis en oeuvre comme support pour un catalyseur à base de chrome dans la polymérisation d'oléfines, confère à ce catalyseur l'ensemble des avantages suivants :
- une activité catalytique élevée même en l'absence d'un cocata- lyseur, - une période d'induction de la polymérisation faible, voire nulle,
- une bonne réponse à l'hydrogène, ce catalyseur permettant d'obtenir des polyoléfines ayant :
- une distribution des masses moléculaires modulable entre une distribution moyennement large et une distribution très large pour un indice de fluidité donné, et
- une fraction faible en oligomères.
En conséquence, l'invention concerne un support pour cata¬ lyseurs contenant au moins deux constituants choisis parmi la silice, l'alumine et le phosphate d'aluminium; selon l'invention, le support présente une surface spécifique de 100 à 800 m-^/g, une température de cristallisation supérieure ou égale à 700 °C et un volume poreux de 1,5 à 4 cm-vg, la surface spécifique (SS) et le volume poreux (VP) répondant à la relation suivante :
SS < (VP x 564 - 358), dans laquelle SS et VP sont respectivement les valeurs numériques de la surface spécifique exprimée en m- g et du volume poreux exprimé en cm-Vg.
Selon l'invention, la surface spécifique (SS) du support est mesurée selon la méthode volumetrique BET de la norme britannique BS 4359/1 (1984); le volume poreux (VP) est la somme du volume poreux constitué de pores de rayon inférieur ou égal à 75 À, mesuré par la méthode de pénétration à l'azote (BET) selon la technique volumetrique décrite dans la norme britannique BS 4359/1 (1984), et du volume poreux mesuré par la méthode de pénétration au mercure au moyen du porosimètre de type PORO 2000 commercialisé par CARLO ERBA C0, selon la norme belge NBN B 05-202 (1976).
Selon l'invention, la température de cristallisation du support est déterminée en soumettant un échantillon du support à un traitement thermique à différentes températures (500 °C,
700 °C, 800 °C, 950 °C, 1050 °C), et en examinant ensuite, après chaque traitement thermique, cet échantillon par diffraction des rayons X.
Selon une variante avantageuse de l'invention, le support est du type binaire contenant de la silice (A) et un constituant (B) choisi parmi l'alumine et le phosphate d'aluminium, de préfé¬ rence dans un pourcentage molaire (A):(B) de (10 à 95):(90 à 5).
Selon une autre variante de l'invention, que l'on préfère, le support est du type ternaire contenant de la silice (X), de l'alumine (Y) et du phosphate d'aluminium (Z), de préférence en pourcentage molaire (X):(Y):(Z) de (10 à 95):(1 à 80):(1 à 85).
Selon encore une autre variante de l'invention, particuliè¬ rement préférée, le support contient, outre au moins deux constituants choisis parmi la silice, l'alumine et le phosphate d'aluminium, du titane, généralement sous la forme de dioxyde de titane. La quantité de titane présente dans le support selon l'invention, exprimée en pourcentage molaire de Tiθ2, est en général au moins égale à 0,1 % mol, de préférence à 0,5 % mol; les valeurs d'au moins 1 X mol étant les plus courantes. La quantité de titane exprimée en pourcentage molaire de Tiθ2 ne dépasse pas le plus souvent 40 X mol, plus particulièrement pas 20 X mol, les valeurs d'au plus 15 X mol étant recommandées. Le support selon l'invention se présente généralement à l'état d'une poudre dont les grains ont un diamètre de 20 à 200 μm. Le support suivant l'invention présente habituellement un poids spécifique apparent supérieur ou égal à 50 kg/m--*, en particulier à 100 g/rn-^; il est généralement au maximum égal à 500 kg/m--, typiquement à 300 kg/m--*. Dans la définition précé¬ dente du poids spécifique apparent, celui-ci est mesuré par écoulement libre selon le mode opératoire suivant : dans un récipient cylindrique de 50 cm^ de capacité, on verse la poudre du support à analyser en évitant de la tasser, depuis une trémie dont le bord inférieur est disposé 20 mm au-dessus du bord supérieur du récipient. On pèse ensuite le récipient rempli de la poudre, on déduit la tare du poids relevé et on divise le résultat obtenu (exprimé en g) par 50.
En plus de la silice, de l'alumine et/ou du phosphate d'aluminium, et/ou, le cas échéant du titane, le support selon l'invention peut éventuellement contenir des substances addi- tionnelles. Il peut par exemple s'agir de traces d'éléments des groupes IA et IIA du tableau périodique ou de métaux tels que le fer. Ces éléments doivent toutefois être présents en des quantités limitées, n'exerçant pas d'influence sur les propriétés intrinsèques du support. L'invention concerne également un procédé de fabrication d'un gel précurseur d'un support conforme à l'invention, tel que décrit ci-dessus, selon lequel on mélange, dans une première étape, un alcool, de l'eau, un alcoolate de silicium et un acide en des quantités telles que le rapport molaire eau/silicium soit de 2 à 50, on ajoute au milieu d'hydrolyse ainsi obtenu, dans une deuxième étape, une solution acide d'un composé d'aluminium et/ou une solution d'une source d'ions phosphates, et, dans une troisième étape, un agent gélifiant; selon l'invention, la première étape est réalisée à pH acide et comprend, d'une part, l'adjonction de l'eau, de l'acide, de l'alcoolate de silicium et de l'alcool, la température, pendant l'adjonction, étant infé¬ rieure ou égale à 30 °C, et, d'autre part, un mûrissage du milieu d'hydrolyse ainsi obtenu à une température au moins égale à 20 °C et inférieure à la température d'ebullition du milieu, de manière à substituer une partie au moins des groupements alkoxy de l'alcoolate de silicium par des groupements hydroxy, sans qu'il se produise une gélification ou une précipitation de silice.
Dans le procédé selon l'invention, l'alcoolate de silicium mis en oeuvre à la première étape, peut être tout composé dans lequel le silicium est lié à au moins un groupement alkoxy, tel qu'un alkoxy aromatique ou aliphatique linéaire, branché ou cyclique, saturé ou insaturé, non substitué ou substitué. Les groupements alkoxy comprennent habituellement de 1 à 20 atomes de carbone. Les alcoolates de silicium comprenant des groupements alkoxy du type aliphatique sont spécialement recommandés; ceux comprenant des groupements alkoxy du type aliphatique saturé, non substitué sont préférés, tels que, par -exemple, les groupements méthyle, éthyle, n-propyle, iso-propyle, n-butyle et iso-butyle. Les alcoolates de silicium qui conviennent bien sont le tétra- éthylate, le tétra-méthylate et le tétra-isopropylate de silicium. Tout particulièrement préféré est le tétra-éthylate de silicium. On peut bien entendu mettre en oeuvre plusieurs alcoo¬ lates de silicium à la première étape du procédé selon l'invention.
Dans le procédé selon l'invention, l'alcool mis en oeuvre dans la première étape a pour fonction de dissoudre l'alcoolate de silicium. En principe, tout alcool qui solubilise l'alcoolate de silicium et qui est miscible à l'eau, peut convenir. On peut ainsi mettre en oeuvre un alcool dont le groupement hydrocarboné peut être saturé, insaturé, aromatique ou aliphatique, linéaire ou cyclique, non substitué ou substitué partiellement ou tota¬ lement. Les alcools aliphatiques linéaires sont préférés. On peut citer comme exemple l'éthanol, l' isopropanol et le méthanol. Tout particulièrement préféré est l'éthanol. Il va de soi qu'on peut mettre en oeuvre simultanément plusieurs alcools dans la première étape du procédé selon l'invention. On utilise de préférence un alcool dont le groupement hydrocarboné correspond à celui du groupe alkoxy de l'alcoolate de silicium utilisé.
La quantité d'alcool mise en oeuvre dans la première étape du procédé selon l'invention, doit être suffisante pour permettre une dissolution complète de l'alcoolate de silicium et dépend dès lors de l'alcoolate de silicium et de l'alcool sélectionnés, de la solubilité de l'alcoolate de silicium dans l'alcool et de la température à laquelle la première étape est effectuée. En pratique, on n'a pas intérêt à utiliser une quantité très supé¬ rieure à la quantité minimale nécessaire, car un large excès entraînerait une dilution inutile du mélange issu de la première étape, ce qui est à éviter.
La première étape du procédé suivant l'invention a pour objectif (a) d'hydrolyser partiellement l'alcoolate de silicium en présence d'eau et (b) de condenser partiellement l'alcoolate de silicium hydrolyse, selon les réactions suivantes :
(a) Si(0-R)4 + x H20 -> Si(0H)x(0-R)4_x + x R-OH
(b) 2 Si(0H)x(0-R)4_x -> 0-[Si(OH)x_1(0-R)A_x] + H20 ou
2 Si(0H)x(0-R)4_x -> [Si(0H)x(0-R)3_x]-0-[Si(0H)χ_1(0-R)4_x] + R-OH dans lesquelles R représente un radical hydrocarboné pouvant être aromatique ou aliphatique, saturé ou insaturé, linéaire, branché ou cyclique, qui peut éventuellement être différent dans les quatre groupes (0-R) , et x représente un nombre supérieur à 0 et inférieur à 4, de préférence de 0,1 à 3,9. Dans la première étape on utilise une quantité d'eau telle que le rapport molaire entre cette quantité d'eau et la quantité de l'alcoolate de silicium mise en oeuvre soit de 2 à 50. De préférence, ce rapport molaire est de 2 à 20, plus particulièrement de 8 à 12, par exemple environ 10. Par la suite, on entend désigner par l'expression "alcoolate de silicium hydrolyse et condensé" les composés 0-[Si(0H)x_ι(0-R)4_x]2 et [Si(OH)x(0-R)3_x]-0-[Si(OH)x_1(0-R)4_x] tels que définis ci-dessus.
Une des caractéristiques essentielles du procédé selon l'invention est la combinaison de conditions opératoires, à la première étape d'hydrolyse, telles qu'on évite toute précipi¬ tation ou gélification de silice dans le milieu d'hydrolyse. A cet effet, le mélange à la première étape est réalisé dans des conditions déterminées concernant le pH et la température du milieu d'hydrolyse, le rapport molaire des quantités d'eau et d'alcoolate de silicium mises en oeuvre, et la manière de mélanger les réactifs. Par milieu d'hydrolyse, on entend désigner le milieu obtenu après mélange de l'eau, de l'acide, de l'alcoolate de silicium et de l'alcool. A cet effet, dans la première étape du procédé selon l'invention, le pH du milieu d'hydrolyse est acide. En général, le pH est inférieur à 3, de préférence de 0,5 à 2,5, par exemple environ égal à 1. L'acide mis en oeuvre à la première étape peut être de nature minérale ou organique. Il est avantageusement choisi parmi les acides miscibles à l'eau et dont l'anion est facilement éliminable dans un traitement ultérieur du gel précurseur. Il peut par exemple s'agir de l'acide chlorhydrique, nitrique, phosphorique ou sulfurique. On utilise de préférence l'acide chlorhydrique ou l'acide nitrique. L'acide chlorhydrique convient particuliè¬ rement bien. On peut éventuellement mettre en oeuvre plusieurs acides dans la première étape du procédé selon l'invention. La quantité d'acide doit être suffisante pour maintenir le pH acide pendant toute la durée de la première étape. La quantité d'acide dépend dès lors du degré d'acidité de l'acide utilisé ainsi que des autres réactifs, et de la température à laquelle la première étape est réalisée. On n'a pas intérêt à utiliser une quantité trop élevée de l'acide pour éviter de devoir éliminer, dans une étape ultérieure de traitement du gel précurseur, l'excédent d'acide ou de ses dérivés.
Dans la première étape du procédé selon l'invention, il est important de mélanger les réactifs de manière contrôlée afin d'éviter une précipitation ou une gélification de silice et d'éviter que le mélange ne s'échauffe. A cet effet, les réactifs peuvent être mélangés par tout moyen connu adéquat pour autant que la température pendant l'adjonction des réactifs soit au maximum égale à 30 °C et qu'il ne se produise pas de précipi- tation ni de gélification de silice. De préférence, le mélange est réalisé par addition d'un prémélange comprenant l'eau et l'acide à un prémélange contenant l'alcoolate de silicium et l'alcool. Ceci peut être effectué en ajoutant le prémélange eau/acide au prémélange alcool/alcoolate de silicium. Une autre méthode consiste à ajouter le prémélange alcool/alcoolate de silicium au prémélange eau/acide. On obtient de bons résultats en ajoutant l'un des prémélanges goutte à goutte dans l'autre prémélange maintenu sous agitation. On obtient des résultats particulièrement satisfaisants en ajoutant le prémélange eau/acide, goutte à goutte et sous agitation, au prémélange alcool/alcoolate de silicium.
Dans la première étape du procédé selon l'invention, on maintient la température, pendant l'addition des réactifs, inférieure à 30 °C, de préférence inférieure à 20 °C, typiquement environ 10 βC, les températures supérieures à 0 °C étant recom¬ mandées; ensuite, le milieu d'hydrolyse est soumis à un mûrissage à une température au moins égale à 20 °C et inférieure à la température d'ebullition du milieu, par exemple de 30 à 100 °C, les températures de 40 à 80 °C étant les plus courantes et celles de 50 à 70 °C étant recommandées. De préférence, le mûrissage du milieu d'hydrolyse est réalisé à une température supérieure à celle de l'addition des réactifs.
Dans la première étape du procédé selon l'invention, le mûrissage a pour fonction de permettre une hydrolyse et une condensation progressives de l'alcoolate de silicium selon les réactions définies plus haut. Toutes autres choses restant égales, le taux d'hydrolyse de l'alcoolate est d'autant plus élevé (le nombre x est d'autant plus grand) que la durée du mûrissage est grande. La durée du mûrissage doit dès lors être suffisante pour que la réaction d'hydrolyse telle que décrite plus haut ait lieu; elle doit toutefois être inférieure au temps requis pour qu'une gélification ou une précipitation de silice se produise. La durée optimale du mûrissage dépend du pH du milieu d'hydrolyse, de la nature des réactifs présents dans le milieu d'hydrolyse et de la température, et peut varier de quelques minutes à plusieures dizaines d'heures. En général, la durée ne dépasse pas 24 heures. De préférence, la durée est de 0.5 à 3 heures.
Dans un mode de réalisation particulièrement avantageux du procédé selon l'invention, on met en oeuvre en outre, dans la première étape, un alcoolate de titane. L'alcoolate de titane peut par exemple être un composé dans lequel le titane est lié à au moins un groupement alkoxy, tel qu'un alkoxy aromatique ou aliphatique linéaire, branché ou cyclique, saturé ou insaturé, non substitué ou substitué. Les groupements alkoxy comprennent habituellement de 1 à 20 atomes de carbone. L'alcoolate de titane est de préférence soluble dans le milieu d'hydrolyse. L'acétylacétonate de titane convient particulièrement bien. On peut bien entendu mettre en oeuvre plusieurs alcoolates de titane à la première étape du procédé selon l'invention. L'alcoolate de titane peut éventuellement être mis en oeuvre à l'état d'une solution dans un hydrocarbure liquide. Les alcools conviennent bien.
La quantité d'alcoolate de titane mise en oeuvre dans ce mode de réalisation est généralement telle que le titane soit présent dans le gel précurseur en une proportion variant de 0,05 à 20 % en poids, de préférence de 0,1 à 15 % en poids, plus particulièrement de 0,5 à 10 % en poids de titane sur base du poids total de la fraction solide du gel précurseur.
Dans ce mode de réalisation, l'alcoolate de titane peut être mis en oeuvre à tout moment à la première étape. L'alcoolate de titane peut par exemple être ajouté au prémélange comprenant l'eau et l'acide, ou au prémélange contenant l'alcoolate de silicium et l'alcool. En variante, l'alcoolate de titane peut être ajouté au milieu d'hydrolyse obtenu après mélange de l'eau, de l'acide, de l'alcoolate de silicium et de l'alcool, avant, pendant ou après le mûrissage. De bons résultats sont obtenus lorsque l'on ajoute l'alcoolate de titane pendant le mûrissage. On préconise d'ajouter l'alcoolate de titane après une première partie du mûrissage, qui représente avantageusement de 40 à 60 X , par exemple environ 50 X, de la durée totale du mûrissage, la deuxième partie étant effectuée après l'addition de l'alcoolate de titane.
Ce mode de réalisation s'avère spécialement avantageux lorsque l'on souhaite incorporer le titane dans le gel précurseur en une quantité élevée, qui peut aller jusque 20 X en poids du poids total de la fraction solide du gel précurseur, tout en évitant la formation, dans une étape ultérieure, d'agglomérats de dioxyde de titane cristallin sous la forme "anatase" ou "rutile". Le composé d'aluminium mis en oeuvre à la deuxième étape du procédé selon l'invention peut être tout composé d'aluminium qui est soluble dans la solution acide mise en oeuvre à la deuxième étape et qui est susceptible d'être gélifié sous l'effet d'un agent gélifiant. Spécialement recommandés sont les sels inorga¬ niques d'aluminium et les alcoolates d'aluminium. Parmi les alcoolates d'aluminium, on utilise habituellement ceux dans lesquels l'aluminium est lié à au moins un groupement alkoxy. Parmi les alcoolates d'aluminium, ceux contenant des groupements aliphatiques sont spécialement recommandés; ceux contenant des groupements aliphatiques linéaires saturés non substitués sont préférés, tels que, par exemple, les groupements méthyle, éthyle, n-propyle, iso-propyle, n-butyle et iso-butyle. On utilise de préférence un alcoolate d'aluminium dont les groupements alkoxy contiennent de 1 à 20 atomes de carbone.
Les alcoolates d'aluminium dont le groupement alkoxy correspond à celui de l'alcoolate de silicium utilisé, conviennent particuliè¬ rement bien. On obtient des résultats satisfaisants avec les sels inorga¬ niques d'aluminium. Parmi les sels inorganiques d'aluminium, le nitrate et le chlorure d'aluminium sont particulièrement préférés.
Dans une forme d'exécution particulière du procédé selon l'invention, dans laquelle on utilise un alcoolate d'aluminium à titre de composé d'aluminium, on met celui-ci en oeuvre, au moins en partie, à la première étape du procédé selon l'invention, de préférence, le cas échéant, dans le prémélange alcool/alcoolate de silicium. L'alcoolate d'aluminium peut également être ajouté à l'issue de la première étape, après le mûrissage. Dans le procédé selon l'invention, la source d'ions phosphates désigne tout composé soluble dans la solution mise en oeuvre à la deuxième étape et susceptible d'y former des ions phosphates. Spécialement recommandés sont les sels inorganiques phosphatés [par exemple le phosphate monocalcique de formule CaH4(P0 )2» le phosphate disodique de formule a2HP04 et le phosphate tricalcique de formule Ca3(P04)2], les éthers-sels phosphatés [par exemple le phosphate d'éthyle de formule (C2H5)3P0 ] et l'acide phosphorique. On utilise de préférence l'acide phosphorique. La solution acide du composé d'aluminium et la solution de la source d'ions phosphates mise en oeuvre à la deuxième étape du procédé selon l'invention, peuvent être préparées par tout moyen connu adéquat et sont de préférence miscibles avec le mélange obtenu à la première étape du procédé selon l'invention. Dans une forme d'exécution avantageuse du procédé selon l'invention, la source d'ions phosphates est ajoutée au préalable à la solution acide du composé d'aluminium de manière à ne mettre en oeuvre, à la deuxième étape du procédé selon l'invention, qu'une seule solution, acide, comprenant simultanément le composé d'aluminium et la source d'ions phosphates.
Dans une première variante de cette forme d'exécution du procédé selon l'invention, où la solution acide ne contient que le composé d'aluminium et est exempte de source d'ions phosphates, la solution acide est habituellement obtenue par dissolution du composé d'aluminium dans une quantité d'eau et/ou d'un alcool, suffisante pour assurer une dissolution complète, et en y ajoutant un acide en une quantité suffisante pour éviter la formation d'hydroxyde d'aluminium, qui précipiterait immédia¬ tement et ne participerait dès lors plus à la formation du gel précurseur. On utilise de préférence de l'eau pour dissoudre le composé d'aluminium. En pratique, on n'a pas intérêt à utiliser une quantité de solvant (eau ou alcool) supérieure à la quantité minimale nécessaire, car tout excès de solvant impliquerait de l'éliminer lors du traitement ultérieur de séchage du gel. L'acide mis en oeuvre peut être choisi parmi ceux utilisables dans la première étape du procédé selon l'invention.
Dans une deuxième variante de cette forme d'exécution du procédé selon l'invention, où la solution acide ne contient que la source d'ions phosphates et est exempte de composé d'alu¬ minium, la solution acide est généralement préparée en dissolvant la source d'ions phosphates dans une quantité d'eau et/ou d'alcool suffisante et de préférence sans excès exagéré pour les motifs exposés ci-dessus. Dans cette deuxième variante, la source d'ions phosphates confère un caractère acide à la solution, de sorte qu'il est inutile d'ajouter un acide supplé- mentaire à la solution.
Dans une troisième variante de cette forme d'exécution du procédé selon l'invention, qui est préférée, la solution contient simultanément le composé d'aluminium et la source d'ions phosphates, et la solution acide est obtenue par dissolution du composé d'aluminium et de la source d'ions phosphates dans un ordre quelconque dans une quantité d'eau et/ou d'alcool suffi¬ sante mais sans excès exagéré pour les motifs exposés ci-dessus. Dans cette variante préférée, il peut s'avérer inutile d'y ajouter en outre un acide, à condition que la source d'ions phosphates confère à la solution une acidité suffisante pour éviter la formation d'hydroxyde d'aluminium.
Il va de soi que l'on peut mettre en oeuvre simultanément, à la deuxième étape, plusieurs composés d'aluminium et/ou plusieurs sources d'ions phosphates. Dans la deuxième étape du procédé selon l'invention, l'addition de la solution acide du composé d'aluminium et de la solution de la source d'ions phosphates au mélange obtenu à la première étape peut par exemple être effectuée en versant le mélange issu de la première étape dans une des deux solutions ou dans le mélange de ces deux solutions (la solution acide du composé d'aluminium et la solution de la source d'ions phosphates). En variante, le mélange des deux solutions peut être ajoutée au mélange issu de la première étape, dans quel cas on préfère opérer de manière très lente pour éviter que le milieu ainsi obtenu s'échauffe, en introduisant le mélange des deux solutions goutte à goutte dans le milieu, sous une forte agitation, le milieu étant thermostatisé à une température inférieure à 30 PC, typiquement inférieure ou égale à 20 °C, par exemple comprise entre 0 et 10 °C pendant toute la durée de l'ajout. L'agent gélifiant mis en oeuvre à la troisième étape du procédé selon l'invention, est tout composé susceptible de provoquer une cogelification des réactifs mis en oeuvre à la première et la deuxième étape (l'alcoolate de silicium hydrolyse et condensé issu de la première étape et défini plus haut, le composé d'aluminium et/ou la source d'ions phosphates et éventuellement l'alcoolate de titane) sous la forme d'un oxyde mixte de silicium et d'aluminium et/ou de phosphore et éventuellement de titane. On peut citer comme exemple d'agent gélifiant, l'oxyde d'éthylène, le carbonate d'ammonium et l'hydroxyde d'ammonium. On utilise de préférence une solution aqueuse d'hydroxyde d'ammonium.
La quantité d'agent gélifiant mise en oeuvre à la troisième étape est de préférence suffisante pour permettre une gélifi¬ cation complète de l'alcoolate de silicium hydrolyse et condensé défini plus haut, du composé d'aluminium et du composé phosphaté présents dans le milieu de cogelification. Par milieu de cogeli¬ fication, on entend désigner le mélange réactionnel en cours de gélification à la troisième étape du procédé. Le milieu de coge¬ lification comprend dès lors le milieu obtenu à l'issue de la deuxième étape du procédé selon l'invention (comprenant l'alcoo¬ late de silicium hydrolyse et condensé, le composé d'aluminium et/ou la source d'ions phosphates) et l'agent gélifiant. La quantité d'agent gélifiant mise en oeuvre est avantageusement suffisante pour permettre une cogelification complète de la masse totale d'alcoolate de silicium hydrolyse et condensé, de composé d'aluminium et de source d'ions phosphates; elle est de préférence légèrement supérieure à cette quantité suffisante.
Dans la troisième étape du procédé selon l'invention, le pH du milieu de cogelification est généralement supérieur ou égal à 5, typiquement supérieur ou égal à 6; il est habituellement inférieur à 11, les valeurs inférieures à 10 étant recommandées. De préférence, on maintient le pH constant à une valeur de 6 à 10, par exemple 8, pendant toute la durée de la cogelification. La constance du pH peut être assurée par tout moyen connu adéquat, par exemple en utilisant un tampon inerte vis-à-vis des réactifs en cours de gélification, ou en utilisant une instal¬ lation permettant une alimentation contrôlée, continue ou discon¬ tinue, d'un composé modifiant le pH, dans le milieu de cogeli¬ fication. On utilise de préférence un récipient contenant l'agent gélifiant, dans lequel on introduit séparément et de manière contrôlée le mélange issu de la deuxième étape et un composé régulateur de pH. On peut employer comme composé régu¬ lateur de pH, tout composé acide ou basique, inerte vis-à-vis des réactifs en cours de gélification.
Dans la troisième étape du procédé selon l'invention, il peut s'avérer avantageux, selon les propriétés du gel précurseur qu'on souhaite obtenir, de thermostatiser le milieu de cogelifi¬ cation à une température inférieure ou égale à 30 °C, de préfé¬ rence à une température de 0 à 20 °C.
Dans une première forme d'exécution particulièrement avanta- geuse du procédé selon l'invention, on peut en outre incorporer dans le gel précurseur, un métal de transition choisi parmi les éléments des groupes IVB et VB du tableau périodique, tels que le zirconium et le vanadium, ou un élément du groupe IIIA du tableau périodique, différent de l'aluminium, tel que le bore. A cet effet, on ajoute un sel organique ou inorganique ou un alcoolate d'un de ces éléments au mélange obtenu à la première ou à la deuxième étape du procédé selon l'invention, avant d'effectuer l'étape suivante. Le cas échéant, on peut ajouter le sel ou l'alcoolate au prémélange eau/acide ou au prémélange alcoo- 1/alcoolate de silicium mis en oeuvre à la première étape du procédé selon l'invention. Dans une deuxième forme d'exécution du procédé selon l'invention, que l'on préfère, on soumet le gel issu de la troisième étape à une maturation. Celle-ci est réalisée dans un milieu de maturation, qui peut être le milieu de cogelification recueilli de la troisième étape, éventuellement sous agitation. On peut y ajouter un composé inerte modifiant le pH du milieu de maturation, par exemple un composé basique. En variante, le gel est d'abord séparé du milieu de cogelification, par exemple par centrifugation, et ensuite remis en suspension dans un liquide inerte tel que de l'eau ou un alcool pour effectuer la matu¬ ration. Cette variante présente l'avantage d'éliminer une partie des impuretés ioniques adsorbées dans le gel, provenant des réactifs mis en oeuvre lors de la fabrication du gel.
La maturation a pour fonction de prolonger la cogelification et ainsi modifier la surface spécifique et le volume poreux du gel. Elle est habituellement effectuée à une température pouvant varier de la température ambiante jusqu'à la température d'ebul¬ lition du milieu de maturation. On opère de préférence à environ 20 °C. La durée de la maturation dépend de la température et des propriétés (surface spécifique et volume poreux) requises du support. Elle peut dès lors varier de quelques minutes à plusieurs dizaines d'heures. Les meilleurs résultats sont obtenus avec une durée d'au moins une heure. Pour des considé¬ rations d'ordre économique, on n'a pas intérêt à prolonger la maturation au delà de 48 heures.
La maturation est en général effectuée à un pH supérieur ou égal à 6, de préférence de 8 à 10.
Le procédé selon l'invention permet, moyennant un mode opératoire unique, de préparer des gels précurseur de supports pour catalyseurs, contenant du silicium, de l'aluminium et/ou du phosphore dans une large gamme de concentrations. En effet, le procédé selon l'invention permet de parcourir tout le diagramme ternaire entre la composition de la silice, de l'alumine et du phosphate d'aluminium. La figure annexée représente ce diagramme ternaire des phases. Le procédé selon l'invention apparaît particulièrement performant pour la fabrication de gels dont la fraction sèche a sa composition située dans la partie hachurée dudit diagramme ternaire des phases. Le procédé selon l'invention permet également l'incorporation dans le gel précurseur d'un métal de transition ou d'un élément tel que le bore.
Le procédé selon l'invention permet de préparer des gels qui présentent une dispersion des constituants très homogène, et qui sont aptes à être transformés en supports pour catalyseurs, présentant, en combinaison, une surface spécifique, un volume poreux et une résistance à la cristallisation qui les rendent performants dans la polymérisation d'oléfines.
L'invention a dès lors également pour objet un procédé de préparation d'un support pour catalyseurs, selon lequel on prépare un gel précurseur au moyen du procédé conforme à l'invention tel que décrit ci-dessus, on lave le gel à l'eau et ensuite au moyen d'un liquide organique, puis on le sèche par distillation jusqu'à l'obtention d'une poudre, et on calcine la poudre.
Dans le procédé selon l'invention de préparation d'un support, on soumet le gel à un lavage, d'abord à l'eau et ensuite au moyen d'un liquide organique. ' -
Le lavage à l'eau consiste en général à mettre le gel en suspension dans une quantité d'eau suffisante pour éliminer une partie au moins des impuretés contenues dans le gel, et ensuite à éliminer une partie au moins de cette quantité d'eau par tout moyen connu adéquat, par exemple par centrifugation ou par filtration. On opère de préférence par centrifugation compte tenu de la rapidité de cette méthode. On peut bien entendu répéter ce lavage à l'eau plusieurs fois. La température à laquelle ce lavage est effectué a peu d'influence sur l'effica¬ cité du lavage et peut dès lors varier dans une large mesure. On opère de préférence à température ambiante.
Ensuite, on soumet le gel lavé à l'eau, à un lavage au moyen d'un liquide organique, par exemple en dispersant le gel dans ce liquide organique à température ambiante. Le lavage avec le liquide organique a pour fonction d'éliminer une partie au moins de l'eau qui imprègne le gel. Le liquide organique sélectionné doit être au moins partiellement miscible avec l'eau, inerte vis-à-vis du gel mais toutefois capable de mouiller le gel. Il présente préférentiellement une température de vaporisation inférieure à 120 °C, typiquement inférieure à 100 °C, par exemple de 70 à 90 °C. Des liquides organiques utilisables dans ce lavage sont les alcools, les éthers ou leurs mélanges. Les alcools sont préférés, particulièrement ceux comprenant de 1 à 4 atomes de carbone. L'isopropanol convient bien. On peut bien entendu répéter plusieurs fois ce lavage au moyen d'un liquide organique, et mettre en oeuvre simultanément plusieurs liquides organiques. A l'issue du lavage, il est souhaitable de séparer le gel d'une partie au moins de l'eau et du liquide organique utilisé par centrifugation ou par filtration. Dans le procédé selon l'invention de préparation d'un support, on soumet le gel lavé à un séchage par distillation afin d'évaporer l'eau et le liquide organique non éliminés précé¬ demment, jusqu'à l'obtention d'une poudre du support. La distil¬ lation peut être effectuée sous pression atmosphérique ou sous pression réduite. On opère de préférepce à pression atmos¬ phérique.
Dans une variante particulière de cette forme de réalisation, on sélectionne, pour le lavage du gel, un liquide organique qui forme un azéotrope avec l'eau, et, au cours du séchage, on distille d'abord l'azéotrope jusqu'à l'élimination d'au moins 95 X, de préférence au moins 98 X de l'eau et d'une partie du liquide organique, et ensuite le résidu du liquide organique encore présent dans le gel. Dans cette forme de réalisation particulière, selon la quantité d'eau présente dans le gel après le lavage, il est parfois nécessaire d'ajouter une quantité supplémentaire du liquide organique au gel lavé pour permettre une élimination maximale de l'eau sous la forme du mélange azéotropique eau/liquide organique. Dans cette forme de réalisation particulière, on obtient, à l'issue du séchage, une poudre contenant en général une teneur en humidité inférieure à 1 % en poids, de préférence inférieure à 0,5 X en poids, par exemple inférieure à 0,2 % en poids. A l'issue du séchage par distillation, on recueille une poudre du support, que l'on peut éventuellement passer au tamis pour en séparer les grains de taille non souhaitée. On soumet cette poudre à une calcination. La calcination a pour fonction d'extraire, à température élevée, les impuretés organiques de la poudre. Elle est généralement poursuivie jusqu'à ce que le poids de la poudre reste constant au cours du temps, tout en évitant une cristallisation de la poudre. La calcination peut être effectuée sous air (de préférence sous air sec) dans un lit fluidisé à une température inférieure à la température de cristallisation de la poudre. La température est en général de 300 à 1500 °C, typiquement de 350 à 1000 °C, de préférence de 400 à 600 °C
Dans le procédé selon l'invention de préparation d'un support, il peut s'avérer souhaitable de soumettre le gel précurseur obtenu à la troisième étape précitée, à un broyage, ensuite à une mise en suspension dans un liquide, suivie d'une pulvérisation de la suspension du gel précurseur en gouttelettes. On peut utiliser à titre de liquide, tout dispersant inerte vis-à-vis du gel, par exemple de l'eau. Les particules recueillies de la pulvérisation sont ensuite soumises successi¬ vement à un lavage à l'eau et au moyen d'un liquide organique, à un séchage par distillation et à une calcination, tels que décrits ci-avant. En variante, la pulvérisation peut être effectuée après le lavage à l'eau.
Le procédé selon l'invention de préparation d'un support permet l'obtention de supports contenant des oxydes mixtes de silicium et d'aluminium et/ou de phosphore, présentant une dispersion homogène des constituants, combinant une surface spécifique élevée et un volume poreux élevé, et se présentant à l'état amorphe avec une résistance élevée à la cristallisation.
Vu ses caractéristiques physiques et structurales, le support selon l'invention trouve une application particulièrement intéressante comme support pour catalyseurs dans la polyméri- sation d'oléfines, le catalyseur consistant avantageusement en oxyde de chrome. Par ailleurs, les supports préparés à partir d'un gel précurseur contenant en outre du titane obtenu selon le mode de réalisation particulièrement avantageux décrit plus haut, permettent l'obtention de catalyseurs pour la fabrication de polyoléfines de bonnes propriétés mécaniques. En outre, la présence de titane dans le support permet l'obtention de polyoléfines d'indice de fluidité très variable.
L'invention concerne dès lors également un catalyseur pour la polymérisation d'oléfines contenant du chrome sur un support conforme à l'invention, défini plus haut.
Le catalyseur selon l'invention peut être obtenu de manière connue en soi par imprégnation de la poudre de support avec une solution aqueuse ou organique d'un composé du chrome, suivie d'un séchage en atmosphère oxydante. On peut utiliser à cet effet un composé du chrome choisi parmi les sels solubles tels que les oxydes, l'acétate, le chlorure, le sulfate, le chromate et le bichromate en solution aqueuse, ou tel que l'acétylacétonate en solution organique. Après l'imprégnation du support avec le composé du chrome, le support imprégné est habituellement activé en le chauffant à une température de 400 à 1000 QC pour transformer une partie au moins du chrome en chrome hexavalent. Le catalyseur selon l'invention peut également être obtenu au moyen d'un mélange mécanique de la poudre du support avec un composé solide du chrome, par exemple de l'acétylacétonate de chrome. Ensuite, ce mélange peut être préactivé à une tempéra¬ ture inférieure à la température de fusion du composé du chrome avant de l'activer conventionnellement comme décrit ci-dessus.
En variante, le composé du chrome peut également être incorporé à la poudre du support pendant la fabrication de celle-ci ou pendant la fabrication du gel précurseur de ce support. A cet effet, il peut par exemple être ajouté, en partie ou en totalité, à la solution acide du composé d'aluminium et/ou de la source d'ions phosphates mise en oeuvre à la deuxième étape du procédé selon l'invention de fabrication d'un gel précurseur de manière à coprécipiter l'oxyde de chrome simultanément avec l'oxyde de silicium, d'aluminium et/ou de phosphore. On peut également ajouter le composé du chrome au gel précurseur avant ou après le mûrissage de celui-ci.
Dans le catalyseur selon l'invention, le chrome est généra¬ lement présent en proportion variant de 0,05 à 10 % en poids, de préférence de 0,1 à 5 % en poids, plus particulièrement de 0,25 à 2 % en poids de chrome sur base du poids total du catalyseur.
Le catalyseur selon l'invention apparaît particulièrement performant dans la polymérisation d'oléfines. En effet, pour cette application, le catalyseur selon l'invention présente l'ensemble des avantages suivants :
- une activité catalytique élevée même en l'absence d'un cocatalyseur,
- une période d'induction faible, voire nulle,
- une bonne réponse à l'hydrogène; il permet en outre l'obtention de polyoléfines ayant :
- une distribution des masses moléculaires modulable de moyen¬ nement large à très large pour un indice de fluidité donné, et
- une teneur faible en oligomères.
Le catalyseur selon l'invention peut être utilisé pour la polymérisation d'oléfines contenant de 2 à 8 atomes de carbone par molécule, et en particulier, pour la production d'homopoly- mères de l'éthylène ou de copolymères de l'éthylène avec un ou plusieurs comonomères sélectionnés parmi les oléfines décrites ci-dessus. De préférence, ces comonomères sont le propylène, le 1-butène, le 1-pentène, le 3-méthyl-l-butène, le 1-hexène, les 3- et 4- méthyl-1-pentènes et le 1-octène. Des dioléfines comprenant de 4 à 18 atomes de carbone peuvent également être copolymérisées avec l'éthylène. De préférence, les dioléfines sont des dioléfines aliphatiques non conjuguées telles que le 4-vinylcyclohexène ou des dioléfines alicycliques ayant un pont endocyclique telles que le dicyclopentadiène, le méthylène- et l'éthylidène-norbornène, et des dioléfines aliphatiques conjuguées telles que le 1,3-butadiène, l'isoprène et le 1,3-pentadiène. Le catalyseur selon l'invention convient particulièrement bien pour la fabrication d'homopolymères de l'éthylène et de copolymères contenant au moins 90 %, de préférence au moins 95 X en poids d'éthylène. Les comonomères préférés sont le propylène, le 1-butène, le 1-hexène ou le 1-octène.
L'invention concerne dès lors également un procédé pour la polymérisation d'oléfines telles que définies plus haut, mettant en oeuvre un catalyseur conforme à l'invention. Dans le procédé de polymérisation selon l'invention, la polymérisation peut être effectuée indifféremment en solution, en suspension dans un diluant hydrocarboné ou encore en phase gazeuse. On obtient de bons résultats dans les polymérisations en suspension.
La polymérisation en suspension est effectuée dans un diluant hydrocarboné tel que les hydrocarbures aliphatiques, cycloaliphatiques et aromatiques liquides, à une température telle qu'au moins 80 X (de préférence au moins 90 X) du polymère formé y soit insoluble. Les diluants préférés sont les alcanes linéaires tels que le n-butane, le n-hexane et le n-heptane ou les alcanes ramifiés tels que l'isobutane, l'isopentane, l'isooctane et le 2,2-diméthylpropane ou les cycloalcanes tels que le cyclopentane et le cyclohexane ou leurs mélanges. La température de polymérisation est choisie généralement entre 20 et 200 °C, de préférence entre 50 et 150 °C, en particulier entre 80 et 115 °C. La pression d'éthylène est choisie le plus souvent entre la pression atmosphérique et 5 MPa, de préférence entre 0,4 et 2 MPa, plus particulièrement entre 0,6 et 1,5 MPa.
La polymérisation peut être effectuée en continu ou en discontinu, en un seul réacteur ou dans plusieurs réacteurs disposés en série, les conditions de polymérisation (température, teneur éventuelle en comonomère, teneur éventuelle en hydrogène, type de milieu de polymérisation) dans un réacteur étant différentes de celles utilisées dans les autres réacteurs.
Les exemples 1 à 6 dont la description suit, servent à illustrer l'invention. Dans ces exemples on a d'abord préparé des gels précurseurs de supports pour catalyseurs. On a ensuite utilisé ces gels pour préparer les supports. Puis on a appliqué des catalyseurs sur ces supports. On a employé les catalyseurs supportés ainsi obtenus, pour polymériser de l'éthylène. Dans les exemples 5 et 6, du titane a été incorporé dans le gel précurseur.
La signification des symboles utilisés exprimant les grandeurs mentionnées et les méthodes de mesure de ces grandeurs sont explicitées ci-dessous.
SS = surface spécifique du support mesurée par la méthode de pénétration à l'azote selon la méthode volumetrique de la norme britannique BS 4359/1 (1984). VP = volume poreux du support, égal à la somme du volume poreux constitué de pores de rayon inférieur ou égal à
75 À, mesuré par la méthode de pénétration à l'azote selon la méthode volumetrique de la norme britannique BS 4359/1 (1984), et du volume poreux mesuré par la méthode de pénétration au mercure au moyen du porosimètre du type P0R0 2000 commercialisé par CARLO ERBA C0, selon la norme belge NBN B 05-202 (1976). Tc = température de cristallisation déterminée au moyen de la méthode définie plus haut. FO = fraction en oligomères du polymère, exprimée en gramme d'oligomères par kilo de polymère et mesurée par extraction à l'hexane à la température d'ebullition de l'hexane. α = activité catalytique exprimée en grammes de polymère, obtenus par heure et par gramme de catalyseur mis en oeuvre et divisés par la pression partielle de l'oléfine exprimée en bar. Tind = temps d'induction, exprimé en minutes et défini comme étant le temps écoulé entre l'introduction de l'éthylène et l'apparition d'une diminution de pression caractéris- tique du début de la polymérisation.
HLMI ≈ indice de fluidité du polymère fondu à 190 °C, mesuré sous une charge de 21,6 kg et exprimé en g/10 min, suivant la norme ASTM D 1238 (1986). riθ/ri2 = rapport entre la viscosité dynamique ("ΠQ)» exprimée en dPa.s et mesurée à un gradient de vitesse de 1 s---- et à
190 °C, et la viscosité dynamique (ïl2)- exprimée en dPa.s et mesurée à un gradient de vitesse de 100 s-1 et à 190 °C. Exemples 1 à 4 (conformes à l'invention)
A. Préparation d'un gel précurseur a) Première étape
On a ajouté, goutte à goutte, à une solution de tétra- éthylate de silicium et d'ethanol, thermostatisée à 10 βC, une solution d'eau et d'acide chlorhydrique 1 M, de telle manière à obtenir une concentration en H+ de 0,1 M. Les quantités de tétra-éthylate de silicium, d'ethanol, d'eau et d'acide chlorhy¬ drique qui ont été mises en oeuvre, sont présentées dans le tableau I. Ensuite, on a soumis le milieu d'hydrolyse ainsi obtenu à un mûrissage à 60 °C pendant 2 heures, b) Deuxième étape On a préparé une solution aqueuse contenant du chlorure d'aluminium hydraté et de l'acide phosphorique, les quantités mises en oeuvre étant représentées dans le tableau I. Ensuite, on a ajouté la solution ainsi obtenue au milieu d'hydrolyse obtenu en (a), sous agitation vigoureuse et à 10 °C. c) Troisième étape
On a ajouté à 500 g d'une solution -aqueuse d'hydroxyde d'ammonium de pH 8 thermostatisée à 10 °C, le mélange obtenu en (b), en maintenant le pH constant à une valeur de 8, afin d'effectuer une gélification. d) Maturation
On a soumis le gel obtenu en (c) à une maturation à pH 8, pendant 2 heures, sous légère agitation et à 60 °C.
B. Préparation d'un support de catalyseur a) Lavage On a lavé le gel obtenu en A d'abord 3 fois à l'eau, puis 1 fois au moyen d'isopropanol. b) Séchage
On a soumis le gel lavé obtenu en (a) à une distillation de l'azéotrope eau-isopropanol à pression ambiante, puis de l'iso- propanol d'abord à pression ambiante et ensuite à pression réduite, de manière à obtenir une poudre dont la teneur en humidité est inférieure à 1 % en poids, c) Calcination
On a calciné la poudre obtenue en (b) dans un lit fluidisé sous balayage d'air sec, pendant 4 heures à 500 °C. On a recueilli une poudre d'un support dont la composition (X molaire de silice, d'alumine et de phosphate d'aluminium), la surface spécifique, le volume poreux et la température de cristallisation sont représentés dans le tableau I.
Tableau I
Exemple 1 2 3 4
Première étape : quantité mise en oeuvre de : tétra-éthylate de silicium (g) 43,4 60,8 23,2 4,96 éthanol (g) 52,1 70,9 27,8 5,95 eau (g) 23,1 32,5 12,3 2,63 acide chlorhydrique 1 M (g) 15,0 20,7 8,0 1,71
Deuxième étape : - quantité mise en oeuvre de :
A1C13.6H20 (g) 30,2 10,1 53,7 74,73 acide phosphorique de 85 X (g) 14,0 4,8 - 2,74 eau (g) 24,5 8,8 - 61,9 acide chlorhydrique de pH 0,8 (g) - - 50,0 -
Support obtenu : composition : SiÛ2 (% mol) 64,3 91,1 50,0 10,3
AI2O3 ( mol) 2,6 4,6 50,0 76,6
A1P04 ( mol) 33,1 4,3 - 13,1
SS (m2/g) 240 601 422 358
VP (cm3/g) 3,58 2,79 2,46 2,69
Tc (°C) > 1000 > 700 > 1000 > 700 C. Préparation d'un catalyseur
On a mélangé le support obtenu en B avec de l'acétyl¬ acétonate de chrome en une quantité telle que le mélange comprenne 0,7 X en poids de chrome. Puis, on a traité le mélange ainsi obtenu dans un lit fluidise à 150 °C pendant 2 heures sous balayage d'air sec. Ensuite, on l'a calciné dans le lit fluidise à 700 βC pendant 5 heures sous air sec, et on a recueilli le catalyseur.
D. Polymérisation de l'éthylène a) Polymérisation en l'absence d'hydrogène
Dans un autoclave de 3 litres, préalablement séché et muni d'un agitateur, on a introduit 100 mg du catalyseur obtenu en C et 1 litre d'isobutane. La température a été élevée à 99 °C et de l'éthylène a été introduit dans l'autoclave à une pression partielle de 1,09 MPa. La pression d'éthylène et la température ont été maintenues constantes durant le temps nécessaire à la production d'une quantité définie de polyéthylène. Après déga¬ zage, le polymère a été récupéré sous forme de particules, dont les propriétés sont rassemblées dans le tableau II, ainsi que l'activité du catalyseur. b) Polymérisation en présence d'hydrogène
Les mêmes opérations ont été répétées en introduisant en outre de l'hydrogène dans l'autoclave à une pression partielle de 0,44 MPa. Les résultats obtenus sont également repris dans le tableau II.
Tableau II
Exemple 1 2 3 4
a) Sans H α 44045 40660 22724 8970
Tind 0 8 8 0
HLMI 0,6 2,2 < 0,1 < 0,1
FO 8,9 7,1 5,5 9,0 ïX)/tl2 23,6 16,1 - 47,7
b) avec H?
HLMI 2,1 4,2 0,3 0,5
Exemples 5 et 6 (conformes à l'invention) A. Préparation d'un gel précurseur a) Première étape
On a ajouté, goutte à goutte, à une solution de tétra- éthylate de silicium et d'ethanol, thermostatisée à 10 °C, une solution d'eau et d'acide chlorhydrique 1 M, de telle manière à obtenir une concentration en H+ de 0,1 M". Les quantités de tétra-éthylate de silicium, d'ethanol, d'eau et d'acide chlorhydrique qui ont été mises en oeuvre, sont présentées dans le tableau III. Ensuite, on a soumis le milieu d'hydrolyse ainsi obtenu à un mûrissage à 60 °C pendant 1 heure. Puis, on y a ajouté une solution d'acétylacétonate de titane dans l'isopro- panol en une quantité appropriée pour obtenir la teneur en Ti indiquée dans le tableau III. Le mûrissage a été poursuivi pendant encore 1 heure à 60 °C au cours duquel on a maintenu le pH à 1 en y ajoutant une quantité adéquate d'acide chlorhydrique. b) Deuxième étape
On a préparé une solution aqueuse contenant du chlorure d'aluminium hydraté et de l'acide phosphorique, les quantités mises en oeuvre étant représentées dans le tableau III. Ensuite, on a ajouté la solution ainsi obtenue au milieu d'hydrolyse obtenu en (a), sous agitation vigoureuse et à 10 °C. c) Troisième étape
On a ajouté à 500 g d'une solution aqueuse d'hydroxyde d'ammonium de pH 8 thermostatisée à 10 °C, le mélange obtenu en (b), en maintenant le pH constant à une valeur de 8, afin d'effectuer une gélification. d) Maturation
On a soumis le gel obtenu en (c) à une maturation à pH 8, pendant 2 heures, sous légère agitation et à 60 °C. B. Préparation d'un support de catalyseur a) Lavage
On a lavé le gel obtenu en A d'abord 3 fois à l'eau, puis 1 fois au moyen d'isopropanol. b) Séchage
On a soumis le gel lavé obtenu en (a) à une distillation de 1'azéotrope eau-isopropanol à pression ambiante, puis de l'iso¬ propanol d'abord à pression ambiante et ensuite à pression réduite, de manière à obtenir une poudre dont la teneur en humidité est inférieure à 1 % en poids. c) Calcination On a calciné la poudre obtenue en (b) dans un lit fluidise sous balayage d'air sec, pendant 4 heures à 500 °C. On a recueilli une poudre d'un support dont la composition (% molaire de silice, d'alumine et de phosphate d'aluminium), la surface spécifique, le volume poreux et la température de cristallisation sont représentés dans le tableau III.
Tableau III
Exemple 5 6
Première étape : quantité mise en oeuvre de : tétra-éthylate de silicium (g) 33,0 32,3 éthanol (g) 39,6 38,8 eau (g) 17,7 17,5 acide chlorhydrique 1 M (g) 11,0 10,8 acétylacétonate de titane (*) 8,1 16,7
Deuxième étape : quantité mise en oeuvre de :
A1C13.6H20 (g) 38,2 37,5 acide phosphorique de 85 X (g) 18,3 17,9 eau (g) 31,9 31,0
Support obtenu : composition : Si (% en poids) 13,9 13,2
Al (X en poids) 14,0 12,7
P (% en poids) 15,5 15,1
Ti (% en poids) 3,0 6,7
SS (m2/g) 349 300
VP (cm3/g) 4,87 3,88
Tc (°C) > 900 > 700
(*) solution à 75 X dans l'isopropanol C. Préparation d'un catalyseur
On a mélangé le support obtenu en B avec de l'acétyl¬ acétonate de chrome en une quantité telle que le mélange comprenne 0,63 X en poids de chrome. Puis, on a traité le mélange ainsi obtenu dans un lit fluidise à 150 °C pendant 2 heures sous balayage d'air sec. Ensuite, on l'a calciné dans le lit fluidise à 700 °C pendant 5 heures sous air sec, et on a recueilli le catalyseur. D. Polymérisation de l'éthylène
Dans un autoclave de 3 litres, préalablement séché et muni d'un agitateur, on a introduit 100 mg du catalyseur obtenu en C et 1 litre d'isobutane. La température a été élevée à 104 °C et de l'éthylène a été introduit dans l'autoclave à une pression partielle telle qu'indiquée dans le tableau IV. On a éven¬ tuellement introduit en outre de l'hydrogène dans l'autoclave à une pression telle qu'indiquée dans le tableau IV. La pression d'éthylène et la température ont été maintenues constantes durant le temps nécessaire à la production d'une quantité définie de polyéthylène. Après dégazage, le polymère a été récupéré sous forme de particules, dont les propriétés sont rassemblées dans le tableau IV, ainsi que l'activité du catalyseur.
Tableau IV
Exemple 5 6
pression partielle éthylène (MPa) 0,77 0,79 pression partielle H2 (MPa) - 0,29 α 30636 20646
Tind 7 non mesuré
HLMI 32 74
F0 15 non mesuré
*)Q/ *\2 8,24 non mesuré

Claims

R E V E N D I C A T I O N S
1 - Support pour catalyseurs, contenant au moins deux constituants choisis parmi la silice, l'alumine et le phosphate d'aluminium, caractérisé en ce qu'il présente une surface spéci- fique de 100 à 800 m2/g, une température de cristallisation supé¬ rieure ou égale à 700 °C, un volume poreux de 1,5 à 4 cm3/g, la surface spécifique (SS) et le volume poreux (VP) répondant à la relation suivante :
SS < (VP x 564 - 358), dans laquelle SS et VP désignent respectivement les valeurs numé¬ riques de la surface spécifique exprimée en m2/g et du volume poreux exprimé en cm /g.
2 - Support selon la revendication 1 caractérisé en ce qu'il consiste en deux constituants dont l'un est la silice (A) et l'autre (B) l'alumine ou le phosphate d'aluminium, dans un pourcentage molaire (A):(B) de (10 à 95):(90 à 5).
3 - Support selon la revendication 1 caractérisé en ce qu'il contient de la silice (X), de l'alumine (Y) et du phosphate d'aluminium (Z) dans un pourcentage molaire (X):(Y):(Z) de (10 à 95):(1 à 80):(1 à 85).
4 - Support selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il contient en outre du titane en une quantité, exprimée en Tiθ2, de 0,1 à 40 % mol.
5 - Support selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il présente une masse volumique standard de
50 à 500 kg/m3.
6 - Procédé pour la fabrication d'un gel précurseur d'un support pour catalyseurs, selon lequel on mélange, dans une première étape, un alcool, de l'eau, un alcoolate de silicium et un acide en des quantités telles que le rapport molaire eau/silicium soit de 2 à 50, on ajoute au milieu d'hydrolyse ainsi obtenu, dans une deuxième étape, une solution acide d'un composé d'aluminium et/ou une solution d'une source d'ions phosphates, et, dans une troisième étape, un agent gélifiant, caractérisé en ce que la première étape est réalisée à pH acide, et comprend, d'une part, l'adjonction de l'eau, de l'acide, de l'alcoolate de silicium et de l'alcool, la température, pendant l'adjonction, étant inférieure ou égale à 30 °C, et, d'autre part, un mûrissage du milieu d'hydrolyse ainsi obtenu à une température au moins égale à 20 °C et inférieure à la température d'ebullition du milieu, de manière à substituer une partie au moins des groupements alkoxy de l'alcoolate de silicium par des groupements hydroxy, sans qu'il se produise une précipitation ou gélification de silice.
7 - Procédé selon la revendication 6, caractérisé en ce que l'alcoolate de silicium est un alcoolate de silicium aliphatique.
8 - Procédé selon la revendication 7, caractérisé en ce que l'alcoolate de silicium est le tétra-éthylate de silicium.
9 - Procédé selon l'une quelconque des revendications 6 à 8, caractérisé en ce que l'acide mis en oeuvre à la première étape est l'acide chlorhydrique.
10 - Procédé selon l'une quelconque des revendications 6 à 9, caractérisé en ce que, dans la première étape, on met en oeuvre en outre un alcoolate de titane.
11 - Procédé selon la revendication 10, caractérisé en ce que l'alcoolate de titane est ajouté pendant le mûrissage.
12 - Procédé selon la revendication 10 ou 11, caractérisé en ce que l'alcoolate de titane est l'acétylacétonate de titane.
13 - Procédé selon l'une quelconque des revendications 6 à 12, caractérisé en ce que le composé d'aluminium est sélectionné parmi les sels inorganiques d'aluminium et les alcoolates d'aluminium.
14 - Procédé selon la revendication 13, caractérisé en ce que les sels inorganiques d'aluminium sont choisis parmi le nitrate et le chlorure d'aluminium.
15 - Procédé selon l'une quelconque des revendications 6 à
14, caractérisé en ce que la source d'ions phosphates est de l'acide phosphorique.
16 - Procédé selon l'une quelconque des revendications 6 à
15, caractérisé en ce que l'agent gélifiant est une solution aqueuse d'hydroxyde d'ammonium.
17 - Procédé selon l'une quelconque des revendications 6 à 16, caractérisé en ce que, dans la première étape, on réalise le mûrissage à une température de 50 à 70 °C.
18 - Procédé selon l'une quelconque des revendications 6 à
17, caractérisé en ce que la deuxième étape est réalisée à une température inférieure ou égale à 20 °C.
19 - Procédé selon l'une quelconque des revendications 6 à
18, caractérisé en ce que la troisième étape est effectuée dans un milieu de pH constant dont la valeur est de 6 à 10, et à une température inférieure ou égale à 30 °C.
20 - Procédé selon l'une quelconque des revendications 6 à 19, caractérisé en ce qu'on recueille, à l'issue de la troisième étape, un gel que l'on soumet à une maturation.
21 - Procédé selon la revendication 20, caractérisé en ce que la maturation du gel est effectuée à une température pouvant varier de la température ambiante à la température d'ebullition du milieu de maturation, et à un pH supérieur ou égal à 6.
22 - Procédé de préparation d'un support pour catalyseurs selon lequel on prépare un gel précurseur au moyen du procédé conforme à l'une quelconque des revendications 6 à 21, on lave le gel à l'eau et ensuite au moyen d'un liquide organique, puis on le sèche par distillation jusqu'à l'obtention d'une poudre, et on calcine la poudre. 23 - Procédé selon la revendication 22, caractérisé en ce que le liquide organique est sélectionné parmi les alcools.
24 - Procédé selon la revendication 23, caractérisé en ce que le liquide organique est de l'alcool isopropylique.
25 - Procédé selon l'une quelconque des revendications 22 à 24, caractérisé en ce que le séchage est réalisé par distillation d'un mélange azéotropique d'eau et du liquide organique jusqu'à élimination d'au moins 98 X de l'eau et d'une partie du liquide organique, suivie d'une distillation de l'autre partie du liquide organique.
26 - Catalyseur pour la polymérisation d'oléfines contenant du chrome sur un support conforme à l'une quelconque des revendications 1 à 5.
27 - Procédé pour la polymérisation d'oléfines selon lequel on met en oeuvre un catalyseur conforme à la revendication 26.
28 - Procédé selon la revendication 27 appliqué à la polymérisation de l'éthylène.
PCT/EP1994/001513 1993-05-17 1994-05-10 Support pour catalyseurs, procede pour la fabrication d'un gel precurseur d'un support pour catalyseurs WO1994026790A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1019950705120A KR100319213B1 (ko) 1993-05-17 1994-05-10 촉매용지지체,촉매용지지체의전구물질겔의제조방법,촉매용지지체의제조방법,올레핀중합용촉매,이촉매에의한올레핀중합법
PL94311673A PL178575B1 (pl) 1993-05-17 1994-05-10 Nośnik katalizatorów, sposób wytwarzania żelu stanowiącego prekursor nośnika katalizatorów, sposób wytwarzania nośnika katalizatorów, katalizator polimeryzacji olefin i sposób polimeryzacji olefin
BR9406407A BR9406407A (pt) 1993-05-17 1994-05-10 Suporte para catlisadores processos para a fabricação de um gel precursor de um suporte para catalisadores e para a prepparação de um suporte para catalisadores e catalisador e processo para a polimerzação de olefinas
US08/553,326 US5849852A (en) 1993-05-17 1994-05-10 Support for catalysts, process for the manufacture of a precursor gel of a support for catalysts, catalyst for the polymerization of olefins and process for the polymerization of olefins by means of this catalyst
DE69405100T DE69405100T2 (de) 1993-05-17 1994-05-10 Katalysatorträger, verfahren zur herstellung eines katalysatorträgervorläufergels
AU69271/94A AU677340B2 (en) 1993-05-17 1994-05-10 Catalyst support, method for making a precursor gel for a catatyst support
EP94917615A EP0700404B1 (fr) 1993-05-17 1994-05-10 Support pour catalyseurs, procede pour la fabrication d'un gel precurseur d'un support pour catalyseurs
JP6524956A JPH09500663A (ja) 1993-05-17 1994-05-10 触媒用支持体、触媒用支持体の前駆体ゲルの製造方法、触媒用支持体の調製方法、オレフィン重合用触媒及び該触媒によるオレフィンの重合方法
NO954639A NO308218B1 (no) 1993-05-17 1995-11-16 Katalysatorbærer, fremgangsmÕte for fremstilling av en forløpergel for en katalysatorbærer, samt anvendelse av katalysatoren
FI955530A FI112231B (fi) 1993-05-17 1995-11-16 Katalyyttikantaja, menetelmä katalyyttikantajan prekursorigeelin valmistamiseksi

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE9300508A BE1007148A3 (fr) 1993-05-17 1993-05-17 Support pour catalyseurs, procede pour la fabrication d'un gel precurseur d'un support pour catalyseurs, procede de preparation d'un support pour catalyseurs, catalyseur pour la polymerisation d'olefines et procede pour la polymerisation d'olefines au moyen de ce catalyseur.
BE9300508 1993-05-17

Publications (1)

Publication Number Publication Date
WO1994026790A1 true WO1994026790A1 (fr) 1994-11-24

Family

ID=3887055

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP1994/001514 WO1994026791A1 (fr) 1993-05-17 1994-05-10 Procede de preparation d'un support pour catalyseurs, catalyseur pour la polymerisation d'olefines et procede pour la polymerisation d'olefines au moyen de ce catalyseur
PCT/EP1994/001513 WO1994026790A1 (fr) 1993-05-17 1994-05-10 Support pour catalyseurs, procede pour la fabrication d'un gel precurseur d'un support pour catalyseurs

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP1994/001514 WO1994026791A1 (fr) 1993-05-17 1994-05-10 Procede de preparation d'un support pour catalyseurs, catalyseur pour la polymerisation d'olefines et procede pour la polymerisation d'olefines au moyen de ce catalyseur

Country Status (22)

Country Link
US (3) US5849852A (fr)
EP (2) EP0700404B1 (fr)
JP (2) JPH09503234A (fr)
KR (2) KR100327301B1 (fr)
CN (2) CN1048732C (fr)
AT (2) ATE157102T1 (fr)
AU (2) AU677340B2 (fr)
BE (1) BE1007148A3 (fr)
BR (2) BR9406408A (fr)
CA (2) CA2163119A1 (fr)
DE (2) DE69405100T2 (fr)
DK (2) DK0700403T3 (fr)
ES (2) ES2108462T3 (fr)
FI (2) FI112231B (fr)
MX (1) MX9403604A (fr)
MY (2) MY110978A (fr)
NO (2) NO308217B1 (fr)
NZ (2) NZ267088A (fr)
PL (2) PL178487B1 (fr)
RU (2) RU2117675C1 (fr)
TW (2) TW341527B (fr)
WO (2) WO1994026791A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0712868A1 (fr) * 1994-11-16 1996-05-22 SOLVAY (Société Anonyme) Système catalytique pour la polymérisation d'oléfines et procédé de polymérisation d'au moins une oléfine en présence de ce système catalytique
EP0757063A1 (fr) * 1995-07-31 1997-02-05 SOLVAY (Société Anonyme) Procédé de fabrication d'un support pour catalyseurs de polymérisation d'oléfines et procédé de polymérisation d'oléfines
EP0799841A3 (fr) * 1996-04-05 1998-01-07 SOLVAY POLYOLEFINS EUROPE - BELGIUM (Société Anonyme) Polymère d'éthylène et corps creux obtenu de celui-ci
GB2315430A (en) * 1996-07-19 1998-02-04 Samsung Electronics Co Ltd Mixed oxide catalyst support
GB2315685A (en) * 1996-07-31 1998-02-11 Samsung Electronics Co Ltd Making aluminosilicates
EP0906922A2 (fr) * 1995-04-28 1999-04-07 SOLVAY POLYOLEFINS EUROPE - BELGIUM (Société Anonyme) Procédé de polymérisation d'oléfines
EP0962469A1 (fr) * 1998-06-05 1999-12-08 Fina Research S.A. Catalyseur de chrome sur support silice-aluminophosphate, traité avec du titane
EP0962468A1 (fr) * 1998-06-05 1999-12-08 Fina Research S.A. Catalyseurs pour la production de polyéthylène et leur utilisation
US6331599B1 (en) 1996-10-25 2001-12-18 Solvay Pololefins Europe-Belcium Copolymer of ethylene and of at least one alpha-olefin and method for obtaining same

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1007148A3 (fr) * 1993-05-17 1995-04-11 Solvay Support pour catalyseurs, procede pour la fabrication d'un gel precurseur d'un support pour catalyseurs, procede de preparation d'un support pour catalyseurs, catalyseur pour la polymerisation d'olefines et procede pour la polymerisation d'olefines au moyen de ce catalyseur.
DE19641141A1 (de) 1996-10-05 1998-04-16 Rwe Dea Ag Verfahren zur Herstellung von dispergierbaren Alumosilikaten
US7125532B2 (en) 1996-10-05 2006-10-24 Sasol Germany Gmbh Process for the manufacture of dispersible alumino-silicates
DE19641142A1 (de) * 1996-10-05 1998-04-16 Rewe Dea Ag Fu Verfahren zur Herstellung von dispergierbaren Alumosilikaten
BE1012219A3 (fr) 1998-10-05 2000-07-04 Solvay Catalyseur destine a la polymerisation des olefines, procede pour sa fabrication et utilisation.
DE19914752A1 (de) * 1999-03-31 2000-10-05 Elenac Gmbh Verfahren zur diskontinuierlichen, thermischen Behandlung von Katalysatormaterial
CN1868583B (zh) * 1999-12-30 2013-06-05 菲利浦石油公司 有机金属催化剂组合物
CN1267191C (zh) * 1999-12-30 2006-08-02 菲利浦石油公司 有机金属催化剂组合物
US6696388B2 (en) * 2000-01-24 2004-02-24 E. I. Du Pont De Nemours And Company Gel catalysts and process for preparing thereof
DE60123621T3 (de) * 2000-07-24 2010-07-01 Sasol Technology (Proprietary) Ltd. Verfahren zur herstellung von kohlenwasserstoffen aus einem synthesegas
US6933258B2 (en) * 2000-12-19 2005-08-23 Univation Technologies, L.L.C. Catalyst composition and methods for its preparation and use in a polymerization process
US6805371B2 (en) * 2001-09-14 2004-10-19 Magic Wheels, Inc Two-speed wheel assembly for manual wheelchairs, with a quick-release mounting capability
US7381778B2 (en) 2002-06-06 2008-06-03 Exxonmobil Chemical Patents Inc. Method of preparing a treated support
US7022378B2 (en) * 2002-08-30 2006-04-04 Cree, Inc. Nitrogen passivation of interface states in SiO2/SiC structures
AU2003302033A1 (en) 2002-10-15 2004-06-15 Exxonmobil Chemical Patents Inc. Multiple catalyst system for olefin polymerization and polymers produced therefrom
US7223822B2 (en) 2002-10-15 2007-05-29 Exxonmobil Chemical Patents Inc. Multiple catalyst and reactor system for olefin polymerization and polymers produced therefrom
US6902664B2 (en) * 2002-11-08 2005-06-07 Chevron U.S.A. Inc. Extremely low acidity USY and homogeneous, amorphous silica-alumina hydrocracking catalyst and process
US6860986B2 (en) * 2002-11-08 2005-03-01 Chevron U.S.A. Inc. Extremely low acidity ultrastable Y zeolite catalyst composition and process
US6995112B2 (en) * 2002-11-08 2006-02-07 Chevron U.S.A. Inc. Highly homogeneous amorphous silica-alumina catalyst composition
US6872685B2 (en) 2002-11-08 2005-03-29 Chevron U.S.A. Inc. Method for preparing a highly homogeneous amorphous silica-alumina composition
EP1611169B1 (fr) 2003-03-21 2010-06-02 Dow Global Technologies Inc. Procede de polymerisation d'olefines avec controle de la morphologie
US7087301B2 (en) * 2003-08-06 2006-08-08 Fina Technology, Inc. Bicomponent fibers of syndiotactic polypropylene
US7244689B2 (en) * 2003-11-17 2007-07-17 Corning Incorporated Method of producing alumina-silica catalyst supports
US7348293B2 (en) * 2003-12-05 2008-03-25 Chevron U.S.A. Inc. Homogeneous modified-alumina Fischer-Tropsch catalyst supports
US7410926B2 (en) * 2003-12-30 2008-08-12 Univation Technologies, Llc Polymerization process using a supported, treated catalyst system
US20050182210A1 (en) 2004-02-17 2005-08-18 Natarajan Muruganandam De-foaming spray dried catalyst slurries
BRPI0508173B1 (pt) 2004-03-17 2016-03-15 Dow Global Technologies Inc copolímeros em multibloco, polímero, copolímero, um derivado funcional, mistura homogênea de polímero, processo para a preparação de um copolímero em multibloco contendo propileno e processo para preparar um copolímero em multibloco contendo 4-metil-1-penteno
BRPI0508161B1 (pt) 2004-03-17 2015-11-17 Dow Global Technologies Inc Composição, processo para preparar um homopolímero em multibloco de alto peso molecular e processo para preparar um copolímero em multibloco de alto peso molecular”
SG151301A1 (en) 2004-03-17 2009-04-30 Dow Global Technologies Inc Catalyst composition comprising shuttling agent for ethylene multi- block copolymer formation
ATE504349T1 (de) 2004-06-16 2011-04-15 Dow Global Technologies Inc Verfahren zur auswahl von polymerisationsmodifikatoren
KR101195320B1 (ko) * 2004-08-09 2012-10-29 다우 글로벌 테크놀로지스 엘엘씨 중합체를 제조하기 위한 지지된비스(하이드록시아릴아릴옥시) 촉매
WO2006049700A1 (fr) * 2004-10-27 2006-05-11 Exxonmobil Chemical Patents Inc. Procede de preparation d'un support traite
WO2006049699A1 (fr) 2004-10-29 2006-05-11 Exxonmobil Chemical Patents Inc Compose catalytique contenant un ligand tridente divalent
US7241850B2 (en) * 2004-12-15 2007-07-10 Fina Technology, Inc. Polypropylene having improved clarity and articles prepared therefrom
EP1833939B1 (fr) 2004-12-21 2011-03-16 Dow Global Technologies Inc. Compositions adhésives à base de polypropylène
US9410009B2 (en) 2005-03-17 2016-08-09 Dow Global Technologies Llc Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation
EP1861439B1 (fr) 2005-03-17 2013-01-30 Dow Global Technologies LLC Composition catalytique contentant un agent navette pour formation tactique/atactique de copolymeres multiblocs
WO2006101595A1 (fr) 2005-03-17 2006-09-28 Dow Global Technologies Inc. Composition catalytique comprenant un agent navette pour la formation d'un copolymere multiblocs a regions irregulieres
US20060240733A1 (en) * 2005-04-25 2006-10-26 Fina Technology, Inc. Fibers and fabrics prepared from blends of homopolymers and copolymers
US7220806B2 (en) * 2005-04-29 2007-05-22 Fina Technology, Inc. Process for increasing ethylene incorporation into random copolymers
US7645834B2 (en) * 2005-04-29 2010-01-12 Fina Technologies, Inc. Catalyst system for production of polyolefins
US20060247394A1 (en) * 2005-04-29 2006-11-02 Fina Technology, Inc. Process for increasing ethylene incorporation into random copolymers
US7081285B1 (en) 2005-04-29 2006-07-25 Fina Technology, Inc. Polyethylene useful for blown films and blow molding
US7138474B1 (en) 2005-05-03 2006-11-21 Fina Technology, Inc. End use articles derived from polypropylene homopolymers and random copolymers
US7282546B2 (en) * 2005-06-22 2007-10-16 Fina Technology, Inc. Cocatalysts for reduction of production problems in metallocene-catalyzed polymerizations
SG165384A1 (en) 2005-09-15 2010-10-28 Dow Global Technologies Inc Control of polymer architecture and molecular weight distribution via multi-centered shuttling agent
RU2008110052A (ru) * 2005-09-15 2009-09-20 Дау Глобал Текнолоджиз Инк. (Us) Олефиновые блок-сополимеры, получаемые каталитически с использованием полимеризуемого челночного агента
US8153243B2 (en) 2005-12-09 2012-04-10 Dow Global Technologies Llc Interpolymers suitable for multilayer films
US8071701B2 (en) 2005-12-16 2011-12-06 Dow Global Technologies Llc Polydentate heteroatom ligand containing metal complexes, catalysts and methods of making and using the same
EP1803747A1 (fr) 2005-12-30 2007-07-04 Borealis Technology Oy Catalyseur de polymérisation à surface modifiée pour réduire la formation de gels dans des films
US7683002B2 (en) 2006-04-04 2010-03-23 Fina Technology, Inc. Transition metal catalyst and formation thereof
US20070299222A1 (en) 2006-04-04 2007-12-27 Fina Technology, Inc. Transition metal catalysts and formation thereof
EP2024403B1 (fr) * 2006-05-17 2014-09-17 Dow Global Technologies LLC Procédé de polymérisation en solution de polyoléfines et polymère correspondant
CA2680181A1 (fr) * 2007-03-07 2008-09-12 Dow Global Technologies Inc. Complexe de metal de transition supporte attache
ITMI20070878A1 (it) 2007-05-02 2008-11-03 Dow Global Technologies Inc Processo per la polimerizzazine di polimeri tattici con l'uso di catalizzatori chirali
ITMI20070877A1 (it) 2007-05-02 2008-11-03 Dow Global Technologies Inc Processo per la produzione di copolimeri a blocchi multipli con l'utilizzo di solventi polari
JP5480148B2 (ja) 2007-10-16 2014-04-23 中国石化揚子石油化工有限公司 マグネシウム化合物担持非メタロセン触媒およびその製造
KR101207294B1 (ko) 2007-10-16 2012-12-03 시노펙 양지 페트로케미컬 컴퍼니 엘티디. 담지된 비-메탈로센 촉매 및 이의 제조방법
CN101918463B (zh) * 2007-11-19 2012-09-05 陶氏环球技术有限责任公司 长链支化丙烯-α-烯烃共聚物
US9334342B2 (en) 2008-10-01 2016-05-10 Fina Technology, Inc. Polypropylene for reduced plate out in polymer article production processes
RU2515900C2 (ru) 2008-12-18 2014-05-20 Юнивейшн Текнолоджиз, Ллк Способ обработки зародышевого слоя реакции полимеризации
EP2411424A2 (fr) 2009-03-06 2012-02-01 Dow Global Technologies LLC Catalyseurs, procédés de fabrication de catalyseurs, procédés de fabrication de compositions de polyoléfines et compositions de polyoléfines
KR101688253B1 (ko) 2009-07-29 2016-12-20 다우 글로벌 테크놀로지스 엘엘씨 이중- 또는 다중-헤드 사슬 이동제 및 그의 블록 공중합체의 제조에서의 용도
WO2011016992A2 (fr) 2009-07-29 2011-02-10 Dow Global Technologies Inc. Agents de transfert (réversible) de chaînes polymères
US8859696B2 (en) 2009-10-19 2014-10-14 Sasol Technology (Pty) Limited Oligomerisation of olefinic compounds with reduced polymer formation
US8981023B2 (en) 2009-10-26 2015-03-17 China Petroleum & Chemical Corp. Supported nonmetallocene catalyst, preparation and use thereof
JP5670460B2 (ja) 2009-10-26 2015-02-18 中国石油化工股▲ふん▼有限公司 担持型非メタロセン触媒、その製造方法およびその使用
JP5670466B2 (ja) 2009-11-13 2015-02-18 中国石油化工股▲ふん▼有限公司 担持型非メタロセン触媒、その製造方法およびその使用
EP2500364B1 (fr) 2009-11-13 2020-03-04 China Petroleum & Chemical Corporation Catalyseur non-métallocène supporté, son procédé de préparation et son application
US8278403B2 (en) 2010-07-08 2012-10-02 Fina Technology, Inc. Multi-component catalyst systems and polymerization processes for forming broad composition distribution polymers
US9005355B2 (en) 2010-10-15 2015-04-14 Bunge Amorphic Solutions Llc Coating compositions with anticorrosion properties
EP2646481B1 (fr) 2010-11-30 2015-04-22 Univation Technologies, LLC Composition de catalyseur ayant des caractéristiques d'écoulement améliorées, et ses procédés de fabrication et d'utilisation
RU2587080C2 (ru) 2010-11-30 2016-06-10 Юнивейшн Текнолоджиз, Ллк Способы полимеризации олефинов с использованием экстрагированных карбоксилатов металлов
CN103534279B (zh) 2011-05-13 2016-08-17 尤尼威蒂恩技术有限责任公司 喷雾干燥的催化剂组合物及使用其的聚合方法
WO2013109787A1 (fr) * 2012-01-17 2013-07-25 Laine Richard M Glycoxy silanes comme source de silice et précipité de silicate
BR112015016824B1 (pt) 2013-01-14 2020-10-06 Univation Technologies, Llc. Método para produzir um sistema catalítico e processo de polimerização
JP2016506979A (ja) 2013-01-30 2016-03-07 ユニベーション・テクノロジーズ・エルエルシー 改善した流動を有する触媒組成物を作製するためのプロセス
US20150129460A1 (en) * 2013-11-14 2015-05-14 Indian Oil Corporation Limited Thermal cracking additive compositions for reduction of coke yield in delayed coking process
RU2677897C2 (ru) 2014-04-02 2019-01-22 ЮНИВЕЙШН ТЕКНОЛОДЖИЗ, ЭлЭлСи Композиции обеспечения непрерывности и способы изготовления и использования таковых
CN107428875B (zh) 2015-03-10 2021-02-26 尤尼威蒂恩技术有限责任公司 喷雾干燥催化剂组合物、制备方法以及在烯烃聚合工艺中的用途
US10252967B2 (en) 2015-04-20 2019-04-09 Univation Technologies, Llc Bridged bi-aromatic ligands and transition metal compounds prepared therefrom
ES2741625T3 (es) 2015-04-20 2020-02-11 Univation Tech Llc Ligandos bi-aromáticos con puente y catalizadores de polimerización de olefinas preparados a partir de los mismos
CN107531840B (zh) 2015-04-27 2022-11-18 尤尼威蒂恩技术有限责任公司 具有改进流动特性的负载型催化剂组合物及其制备
EP3356374A1 (fr) 2015-09-30 2018-08-08 Dow Global Technologies LLC Compositions multitêtes ou à double tête utiles dans le transfert de chaîne et leur procédé de préparation
EP3419492A2 (fr) 2016-02-26 2019-01-02 3M Innovative Properties Company Article de récurage grand public comportant une couche texturée sans solvant et son procédé de fabrication
KR102464765B1 (ko) 2016-09-30 2022-11-09 다우 글로벌 테크놀로지스 엘엘씨 사슬 이동에 유용한 다중 또는 이중 헤드 조성물의 제조 방법
US11174329B2 (en) 2016-09-30 2021-11-16 Dow Global Technologies Llc Multi- or dual-headed compositions useful for chain shuttling and process to prepare the same
CN109952324B (zh) 2016-09-30 2023-06-09 陶氏环球技术有限责任公司 适用于链梭移的封端多头或双头组合物和其制备方法
US11267914B2 (en) 2016-12-29 2022-03-08 Chevron Phillips Chemical Company Lp Methods of preparing a catalyst
US10654953B2 (en) * 2016-12-29 2020-05-19 Chevron Phillips Chemical Company Lp Methods of preparing a catalyst
US20200369803A1 (en) 2016-12-29 2020-11-26 Chevron Phillips Chemical Company Lp Methods of Preparing a Catalyst
CN107459593B (zh) * 2017-08-18 2023-04-18 中国石油天然气股份有限公司吉林石化分公司 具有过小湿胶颗粒回收装置的氯磺化聚乙烯湿法凝聚后处理系统
CA3125275A1 (fr) 2018-12-28 2020-07-02 Dow Global Technologies Llc Compositions durcissables comprenant des polyolefines insaturees
KR20210121028A (ko) 2018-12-28 2021-10-07 다우 글로벌 테크놀로지스 엘엘씨 유기금속 사슬 이동제
BR112021012786A2 (pt) 2018-12-28 2021-09-14 Dow Global Technologies Llc Formulação curável
EP3902808A1 (fr) 2018-12-28 2021-11-03 Dow Global Technologies LLC Compositions durcissables comprenant des polyoléfines insaturées
CN113454130A (zh) 2018-12-28 2021-09-28 陶氏环球技术有限责任公司 遥爪聚烯烃和用于制备遥爪聚烯烃的方法
CN114146724B (zh) * 2021-12-01 2024-01-30 南宁师范大学 改性zsm-5分子筛的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2154764A1 (de) * 1970-11-05 1972-05-25 Zirconal Processes Ltd Aus Siliziumdioxid und Metalloxiden bestehende gemischte Gele sowie Verfahren zu ihrer Herstellung
FR2315997A1 (fr) * 1975-07-02 1977-01-28 Exxon Research Engineering Co Procede de preparation d'un support de catalyseur a base d'alumine et phosphate d'aluminium
GB2090158A (en) * 1980-12-31 1982-07-07 Phillips Petroleum Co Silica-phosphate chromium containing olefin polymerization catalysts
EP0283815A1 (fr) * 1987-03-11 1988-09-28 Phillips Petroleum Company Alumine modifiée par de la silice

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2886512A (en) * 1955-08-30 1959-05-12 Grace W R & Co Process for preparing a silica-alumina gel catalyst and a hydrocarbon cracking process using said catalyst
US3342750A (en) * 1965-04-01 1967-09-19 Exxon Research Engineering Co Compositions containing stable aluminum phosphate gel and methods of making and using same
NL7707961A (nl) * 1977-07-18 1979-01-22 Stamicarbon Werkwijze ter bereiding van poreus, zuiver siliciumdioxyde.
US4444963A (en) * 1980-12-31 1984-04-24 Phillips Petroleum Company Polymerization process using catalysts comprising chromium on silica/phosphate support
US4717708A (en) * 1983-12-27 1988-01-05 Stauffer Chemical Company Inorganic oxide aerogels and their preparation
US4806513A (en) * 1984-05-29 1989-02-21 Phillips Petroleum Company Silicon and fluorine-treated alumina containing a chromium catalyst and method of producing same
US4758544A (en) * 1985-07-17 1988-07-19 Chevron Research Company Catalyst composition and hydroprocessing of oils using same
IT1219692B (it) * 1988-05-06 1990-05-24 Eniricerche Spa Gel di silice e allumina cataliticamente attivo e procedimento per la sua preparazione
BE1007148A3 (fr) * 1993-05-17 1995-04-11 Solvay Support pour catalyseurs, procede pour la fabrication d'un gel precurseur d'un support pour catalyseurs, procede de preparation d'un support pour catalyseurs, catalyseur pour la polymerisation d'olefines et procede pour la polymerisation d'olefines au moyen de ce catalyseur.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2154764A1 (de) * 1970-11-05 1972-05-25 Zirconal Processes Ltd Aus Siliziumdioxid und Metalloxiden bestehende gemischte Gele sowie Verfahren zu ihrer Herstellung
FR2315997A1 (fr) * 1975-07-02 1977-01-28 Exxon Research Engineering Co Procede de preparation d'un support de catalyseur a base d'alumine et phosphate d'aluminium
GB2090158A (en) * 1980-12-31 1982-07-07 Phillips Petroleum Co Silica-phosphate chromium containing olefin polymerization catalysts
EP0055864A2 (fr) * 1980-12-31 1982-07-14 Phillips Petroleum Company Catalyseur et son utilisation pour la polymérisation d'oléfines
EP0283815A1 (fr) * 1987-03-11 1988-09-28 Phillips Petroleum Company Alumine modifiée par de la silice

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1008916A3 (fr) * 1994-11-16 1996-10-01 Solvay Systeme catalytique pour la polymerisation d'olefines et procede de polymerisation d'au moins une olefine en presence de ce systeme catalytique.
EP0712868A1 (fr) * 1994-11-16 1996-05-22 SOLVAY (Société Anonyme) Système catalytique pour la polymérisation d'oléfines et procédé de polymérisation d'au moins une oléfine en présence de ce système catalytique
US5863854A (en) * 1994-11-16 1999-01-26 Solvay Polyolefins Europe-Belgium (Societe Anonyme) Catalyst system for olefin polymerization and process for the polymerization of at least one olefin in the presence of this catalyst system
EP0906922A2 (fr) * 1995-04-28 1999-04-07 SOLVAY POLYOLEFINS EUROPE - BELGIUM (Société Anonyme) Procédé de polymérisation d'oléfines
CN1127525C (zh) * 1995-04-28 2003-11-12 索尔维聚烯烃欧州-比利时公司 乙烯聚合物及其制备方法
US6335411B1 (en) * 1995-04-28 2002-01-01 Solvay Polyolefins Europe -Belgium Ethylene polymer and processes for obtaining it
US6291602B1 (en) 1995-04-28 2001-09-18 Solvay Polyolefins Europe - Belgium Ethylene polymer and processes for obtaining it
US6201078B1 (en) 1995-04-28 2001-03-13 Solvay Polyolefins Europe-Belgium Ethylene polymer and processes for obtaining it
EP0906922A3 (fr) * 1995-04-28 1999-05-19 SOLVAY POLYOLEFINS EUROPE - BELGIUM (Société Anonyme) Procédé de polymérisation d'oléfines
US5925589A (en) * 1995-07-31 1999-07-20 Solvay (Societe Anonyme) Process for the manufacture of a support for olefin polymerization catalysts and process for the polymerization of olefins
EP0757063A1 (fr) * 1995-07-31 1997-02-05 SOLVAY (Société Anonyme) Procédé de fabrication d'un support pour catalyseurs de polymérisation d'oléfines et procédé de polymérisation d'oléfines
BE1009497A3 (fr) * 1995-07-31 1997-04-01 Solvay Procede de fabrication d'un support pour catalyseurs de polymerisation d'olefines et procede de polymerisation d'olefines.
EP0799841A3 (fr) * 1996-04-05 1998-01-07 SOLVAY POLYOLEFINS EUROPE - BELGIUM (Société Anonyme) Polymère d'éthylène et corps creux obtenu de celui-ci
US6077922A (en) * 1996-04-05 2000-06-20 Solvay Polyolefins Europe-Belgium (Societe Anonyme) Hollow bodies made of ethylene polymer and method of making same
GB2315430A (en) * 1996-07-19 1998-02-04 Samsung Electronics Co Ltd Mixed oxide catalyst support
GB2315430B (en) * 1996-07-19 1999-04-07 Samsung Electronics Co Ltd Method of making a porous composite oxide
GB2315685A (en) * 1996-07-31 1998-02-11 Samsung Electronics Co Ltd Making aluminosilicates
GB2315685B (en) * 1996-07-31 1999-05-12 Samsung Electronics Co Ltd Method of making a porous composite oxide
US6331599B1 (en) 1996-10-25 2001-12-18 Solvay Pololefins Europe-Belcium Copolymer of ethylene and of at least one alpha-olefin and method for obtaining same
US6225253B1 (en) 1998-06-05 2001-05-01 Fina Technology, Inc. Titanated chromium/silica-aluminophosphate catalyst
WO1999064473A1 (fr) * 1998-06-05 1999-12-16 Fina Research S.A. Catalyseurs pour produire du polyethylene, et leur utilisation
US6300272B1 (en) 1998-06-05 2001-10-09 Fina Research, S.A. Catalysts for polyethylene production and use thereof
WO1999064474A1 (fr) * 1998-06-05 1999-12-16 Fina Research S.A. Catalyseur a base de chrome modifie au titane et supporte sur silice-aluminophosphate
EP0962468A1 (fr) * 1998-06-05 1999-12-08 Fina Research S.A. Catalyseurs pour la production de polyéthylène et leur utilisation
US6423663B2 (en) 1998-06-05 2002-07-23 Fina Research, S.A. Titanated chromium/silica-aluminophosphate catalyst
US6482901B1 (en) 1998-06-05 2002-11-19 Fina Research, S.A. Titanated chromium/silica-aluminophosphate catalyst
EP0962469A1 (fr) * 1998-06-05 1999-12-08 Fina Research S.A. Catalyseur de chrome sur support silice-aluminophosphate, traité avec du titane

Also Published As

Publication number Publication date
AU677340B2 (en) 1997-04-17
JPH09500663A (ja) 1997-01-21
EP0700404A1 (fr) 1996-03-13
MY110978A (en) 1999-07-31
CA2162915A1 (fr) 1994-11-24
MY111095A (en) 1999-08-30
BE1007148A3 (fr) 1995-04-11
CN1126480A (zh) 1996-07-10
AU6843594A (en) 1994-12-12
EP0700403B1 (fr) 1997-08-20
WO1994026791A1 (fr) 1994-11-24
CN1048732C (zh) 2000-01-26
NO308217B1 (no) 2000-08-14
DE69405100T2 (de) 1998-03-12
RU2117675C1 (ru) 1998-08-20
ES2108462T3 (es) 1997-12-16
NZ267088A (en) 1996-10-28
CN1050366C (zh) 2000-03-15
NZ266777A (en) 1996-08-27
TW341527B (en) 1998-10-01
AU696784B2 (en) 1998-09-17
EP0700404B1 (fr) 1997-08-20
KR100327301B1 (ko) 2002-07-12
FI112231B (fi) 2003-11-14
ES2108457T3 (es) 1997-12-16
MX9403604A (es) 1995-01-31
NO954638D0 (no) 1995-11-16
PL311673A1 (en) 1996-03-04
FI955530A (fi) 1996-01-12
AU6927194A (en) 1994-12-12
KR960702482A (ko) 1996-04-27
FI955531A0 (fi) 1995-11-16
NO954639D0 (no) 1995-11-16
US6074980A (en) 2000-06-13
US5849852A (en) 1998-12-15
NO954638L (no) 1996-01-16
ATE157101T1 (de) 1997-09-15
CN1126479A (zh) 1996-07-10
DK0700403T3 (da) 1998-04-06
FI955531A (fi) 1996-01-12
US5834572A (en) 1998-11-10
EP0700403A1 (fr) 1996-03-13
TW349959B (en) 1999-01-11
FI955530A0 (fi) 1995-11-16
RU2117676C1 (ru) 1998-08-20
JPH09503234A (ja) 1997-03-31
KR960702483A (ko) 1996-04-27
DE69405099T2 (de) 1998-03-05
DK0700404T3 (da) 1998-03-30
NO954639L (no) 1996-01-16
PL178575B1 (pl) 2000-05-31
PL311674A1 (en) 1996-03-04
NO308218B1 (no) 2000-08-14
KR100319213B1 (ko) 2002-04-22
PL178487B1 (pl) 2000-05-31
CA2163119A1 (fr) 1994-11-24
ATE157102T1 (de) 1997-09-15
DE69405099D1 (de) 1997-09-25
BR9406407A (pt) 1995-12-19
BR9406408A (pt) 1995-12-19
DE69405100D1 (de) 1997-09-25

Similar Documents

Publication Publication Date Title
WO1994026790A1 (fr) Support pour catalyseurs, procede pour la fabrication d&#39;un gel precurseur d&#39;un support pour catalyseurs
EP0739909B1 (fr) Polymère d&#39;éthylène et procédés pour son obtention
SU1145915A3 (ru) Способ получени катализатора дл полимеризации этилена
EP0073703A1 (fr) Composition d&#39;alumine pour le revêtement d&#39;un support de catalyseur son procédé de préparation et le support de catalyseur obtenu
US5183792A (en) Catalyst for making polyethylene
CA2056791C (fr) Particules de chlorure de magnesium a structure polyedre, composante catalytique supportee sur ces particules, procedes de fabrication de ces produits et des polyolefines obtenuesa partir de cette composante catalytique
US5599762A (en) Use of glycol ether compounds for the production of polyolefin catalysts and supports
FR2480756A1 (fr) Procede de production d&#39;un support de catalyseur a base d&#39;oxyde de zirconium et de silice
JPS5956411A (ja) エチレンとアルファ−オレフィンとの共重合体の製造方法
BE1008916A3 (fr) Systeme catalytique pour la polymerisation d&#39;olefines et procede de polymerisation d&#39;au moins une olefine en presence de ce systeme catalytique.
EP0757063B1 (fr) Procédé de fabrication d&#39;un support pour catalyseurs de polymérisation d&#39;oléfines et procédé de polymérisation d&#39;oléfines
EP0563111A1 (fr) Procede de preparation d&#39;un constituant catalytique de polymerisation, constituant catalytique de polymerisation ainsi prepare et son utilisation.
US4874737A (en) Silicate-modified magnesium alkoxide polymerization catalysts
FR2618785A1 (fr) Procede de preparation d&#39;un catalyseur de polymerisation de l&#39;ethylene et procede de polymerisation de l&#39;ethylene utilisant ce catalyseur
CN117843450A (zh) 一种新型乙氧基镁载体及其Ziegler-Natta催化剂制备方法
FR2553302A1 (fr) Procede pour la preparation d&#39;oxydes refractaires modifies et leur utilisation dans des procedes d&#39;hydroconversion
Smith et al. Alkoxymagnesium halide supports for heterogeneous Ziegler-Natta polymerization catalysts
FR3118038A1 (fr) procédé de polymérisation de l’éthylène en phase gazeuse
EP0799841A2 (fr) Polymère d&#39;éthylène et corps creux obtenu de celui-ci
FR2501695A1 (fr) Procede et catalyseur pour la polymerisation d&#39;alpha-olefines

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 94192639.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR BY CA CN CZ FI HU JP KP KR KZ LK LV MG MN MW NO NZ PL RO RU SD SK UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994917615

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 267088

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2163119

Country of ref document: CA

Ref document number: 955530

Country of ref document: FI

WWE Wipo information: entry into national phase

Ref document number: 08553326

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994917615

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994917615

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 955530

Country of ref document: FI