WO1995002500A1 - Photo-curing modeling apparatus equipped with offset function of tessellation data, and offset method - Google Patents

Photo-curing modeling apparatus equipped with offset function of tessellation data, and offset method Download PDF

Info

Publication number
WO1995002500A1
WO1995002500A1 PCT/JP1993/000997 JP9300997W WO9502500A1 WO 1995002500 A1 WO1995002500 A1 WO 1995002500A1 JP 9300997 W JP9300997 W JP 9300997W WO 9502500 A1 WO9502500 A1 WO 9502500A1
Authority
WO
WIPO (PCT)
Prior art keywords
tessellation
light irradiation
normal vector
data
calculating
Prior art date
Application number
PCT/JP1993/000997
Other languages
French (fr)
Japanese (ja)
Inventor
Seiji Hayano
Original Assignee
Cmet, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cmet, Inc. filed Critical Cmet, Inc.
Priority to PCT/JP1993/000997 priority Critical patent/WO1995002500A1/en
Publication of WO1995002500A1 publication Critical patent/WO1995002500A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present invention relates to a photocuring molding technique, and more particularly to a technique for improving the shape accuracy of a molded article.
  • Figure 1 is a diagram schematically showing this technology, and illustrates the contents of the telesegmentation that defines the three-dimensional shape indicated by reference numeral 10 that exists in the X-Y-Z coordinate system. are doing.
  • a three-dimensional shape can be approximately represented as a set of tessellations 1, 2, 3,...
  • the position and shape force of each tessellation is defined by the coordinates of the vertex.
  • Figure 1 illustrates the case where each tessellation is a triangle. If each tessellation is a triangle, three vertices belonging to each tessellation, for example, for tessellation 2, the vertices 2 1 2 2
  • the position and the shape force are defined by the coordinates.
  • the coordinates of each vertex are given by (X, y, z) components.
  • a three-dimensional shape 10 is defined by a set of coordinates of the vertices of each tessellation.
  • each tessellation is provided with a normal vector.
  • FIG. 1 shows an example in which the normal vector 24 of the tessellation 2 goes from inside to outside of the shape 10.
  • the normal vector has the regularity that the object force moves from the existing side to the non-existing side. I understand.
  • the normal vector 24 force ⁇ going from outside to inside it turns out that the shape 10 defines a hole, not an object.
  • the three-dimensional shape is defined as a set of data indicating the coordinates of the vertices of each tessellation and the normal vector of each tessellation (this is called tessellation data). become.
  • FIG. 1 shows the case of each triangulation force triangle, it may be defined by a polygon.
  • FIG. 2 is a diagram schematically showing the technology.
  • a liquid resin 25 that cures when irradiated with light a substrate 26 that forms the basis of the molded article, and an irradiation device 20 that can control the light irradiation area are used.
  • the substrate 26 is immersed at a predetermined distance Z from the liquid surface 27 of the liquid resin 25. In this state, the liquid level 27 is irradiated by the irradiation device 20.
  • the irradiation area at this time is defined as the inside of the contour 28 in the lowest section of the three-dimensional shape 10 defined by the tessellation data.
  • the irradiation intensity is set so that the liquid 25 can be cured from the liquid surface 27 to a depth ⁇ . Then, a cured layer 28 a having a contour ⁇ 28 and a thickness ⁇ ⁇ is formed on the substrate 26.
  • the substrate 26 is sunk by ⁇ , and the inside of the contour 29 in the cross section above by ⁇ in the three-dimensional shape 10 is irradiated with light.
  • a hardened layer 29 3 having a thickness ⁇ ⁇ ⁇ corresponding to the contour 29 is formed, and both hardened layers 28 a and 29 a are integrated. .
  • a cured product is formed in the liquid 25, and the cured product has a shape 10 defined by tessellation data.
  • the above example is an example of photo-curing molding technology, and there are various methods such as a method of irradiating light from the bottom and pulling up the substrate, and a method of fixing the substrate and raising the liquid level. Existing.
  • This photo-curing molding technology is extremely useful because the three-dimensional shape defined by Tessellation de can be automatically converted into a tool.
  • the following two points affect the shape accuracy.
  • the contour is traced by a light beam. In this case, as shown in FIG. If the center force is moved along the contour 30, the light beam 31 will be hardened to the outside of the contour 30 by the radius r of the light beam 31, and the object will be more outward than the desired shape. It becomes big.
  • Figure 4 illustrates this. If the shape to be shaped is shown as 40, and it is overhanging to the side at the top, first irradiate the inside of contour 45, then layer the liquid, and then irradiate the inside of contour 44. The process of laminating the liquid later is repeated. As a result, in the portion that protrudes outward, as shown by a hatched portion 46 in the figure, the portion becomes excessively thicker by the hardening depth d.
  • the modeled object is as shown in Fig. 6 (B), which is different from that of Fig. 6 (A).
  • the level 60 irradiation area is determined by the Brillouin product of the level 60 contour and the level 61 contour
  • the level 61 contour will determine the level 60 irradiation area.
  • modeling is performed in the area, the shape indicated by 69 in the figure will be molded. That is, the portion indicated by 68 in the figure is missing.
  • the present invention solves the above problem. It never improves the shape accuracy of the modeled object.
  • the light-curing modeling apparatus inputs tessellation data that defines a three-dimensional shape, calculates contour data for each cross section based on the tessellation data, and converts the contour data into calculated contour data.
  • the three-dimensional shape is formed by controlling the light irradiation area on the basis of the light irradiation area, and as shown schematically in FIG. 7, means 71 for storing tessellation data, and A means 72 for calculating a normal vector at the vertex is provided.
  • the normal vector at a vertex is calculated by synthesizing the normal vector of the tessellation to which the vertex belongs.
  • the vertex 80 shown in FIG. 7 commonly belongs to the six tessellations 81 to 86, and thus the normal vector 8 ON of the vertex 80 is 81 to 86.
  • the orientation is determined according to FIG. In FIG. 8, the Z direction is the light irradiation direction, and ZH is a plane orthogonal to the direction.
  • the direction is along the light irradiation direction, and when the normal vector N points in the upper side of the figure, the direction is opposite.
  • This apparatus uses a direction discriminating means 73 to set the coordinates of the vertex having a normal vector in the direction along the light irradiation direction in the light irradiation direction in the direction opposite to the light irradiation direction, that is, as shown in FIG. Means 74 for offsetting by the curing depth in the direction of ZA.
  • the curing depth d is a depth indicated as d in FIGS. 3 and 4, and is a depth at which curing is performed by scanning with a light beam.
  • the curing force advances to the coordinates before the offset.
  • the offset process is not performed on the vertex in the direction opposite to the direction of normal vector light irradiation of the vertex.
  • a means for calculating a vector component in a plane orthogonal to the light irradiation direction of the normal vector and a coordinate in a plane orthogonal to the light irradiation direction of the vertex are calculated.
  • Means for offsetting by the curing radius in the direction opposite to the direction defined by the vector component are provided.
  • the curing depth is indicated by r in Fig. 3. --Indicates radius. In this case, offset processing is performed for all vertices regardless of the type of vertices.
  • means for storing the tessellation data offset by means 74 and Z or means 78 is provided, and means for calculating the contour for each section based on this data is provided. 6 and means 77 for controlling the light irradiation area based on the contour data calculated by the means 76.
  • Means 74 When the force is applied, the vertex of each tessellation on the surface facing the light irradiation direction is offset in the direction opposite to the light irradiation direction. Therefore, if the irradiation area is controlled based on the offset coordinates, the lower end of the hardened part will match the coordinates before the offset, and the shape of the modeled object will be the shape defined by the tessellation data before the offset. Well approximate. Note that for the surface oriented in the opposite direction to the light irradiation direction, the accuracy reduction described in FIGS. 5 and 6 does not pose a problem, and no offset is required. In addition, when means 78 are provided, the movement trajectory of the light beam is offset to the inside of the contour, and the problem of FIG. 3 is solved.
  • Fig. 1 Diagram illustrating an example and contents of telemetry data
  • FIG. 1 Diagram showing conventional photocuring molding technology
  • Figure 3 Diagram showing the problem of the hardened layer expanding outward in the radial direction
  • Figure 4 Diagram showing the problem of excessive growth of the hardened layer in the light irradiation direction
  • Figure 5 Diagram illustrating the traditional approach to addressing the problem of Figure 4
  • Fig. 7 Diagram schematically showing an example of the present invention
  • Fig. 8 Diagram showing the relationship between the light irradiation direction and the normal vector
  • Figure 11 Diagram illustrating the overall system of one embodiment
  • Figure 1 2 Diagram explaining the operation of the system according to Figure 11
  • FIG. 11 shows a system configuration of a photocuring modeling apparatus incorporating the present invention.
  • reference numeral 110 denotes a memory device for storing memory of the tessellation data before the offset and an area for storing memory of the tessellation data after the offset 1 1 2 It has an area 113 for storing d and r and curing parameters, and an area for storing various control programs.
  • the hardening parameters d and r are shown in Fig. 12, and store the radius r and depth d that are hardened as the laser beam travels. Since the curing radius r and the curing depth d are different depending on the intensity, radius, running speed, and resin used of the laser beam, d and 1 ′′ are stored in the area 113 under various conditions.
  • the control program storage area 114 stores a program for inputting the tessellation data sent from the 3D CAD and storing it in the area 111. By executing this program, the program shown in FIG. Tessellation data is stored in area 1 1 1; f o
  • control program storage area In the control program storage area, a program for executing the following contents is stored.
  • This program extracts the tessellation to which all vertices belong. For example, for vertex 80 in FIG. 7, tessellation 81 to 86 is extracted.
  • the normal vector at the vertex is calculated by vector addition of the normal vector of the tessellation extracted by the program (1).
  • the Z-direction component N z is extracted from the normal vector N calculated by the program (2) (see FIG. 12).
  • the Z direction coincides with the light irradiation direction. If the extracted Z-direction component N z force has a positive value, the normal vector of the vertex is the direction along the light irradiation direction, and if it has a negative value, the normal vector of the vertex is In the opposite direction.
  • the coordinates of the irradiation direction for example, the vertex 21 in FIG. Subtracts d from z 2 1).
  • the offset coordinates indicate coordinates that are offset from the coordinates before the offset by d (hardening depth) in a direction opposite to the light irradiation direction. This offset is not performed for vertices whose Z direction component calculated by program (3) is negative and whose direction is opposite to the light irradiation direction.
  • N xy is a component in the plane xy of the normal vector N
  • N x is an X component of N xy
  • y is a y component of N xy.
  • N x, N y, and N z indicate the magnitude of the vector.
  • N xy is a vector component in a plane (xy plane) orthogonal to the light irradiation direction Z of the normal vector N calculated by the program (2).
  • the shape accuracy is improved both in the xy plane and in the z direction.
  • the offset means in the Z direction does not function even if present, and therefore, the offset means in the Z direction can be omitted.
  • the offset processing of equations (1) and (2) may be omitted.

Abstract

This invention relates to a photo-curing modeling apparatus for modeling a three-dimensional shape by inputting tessellation data defining a three-dimensional shape, calculating a profile data for each section on the basis of the tessellation data and controlling a light irradiation region on the basis of the profile data calculated. This apparatus includes means for storing the tessellation data, means for calculating a normal vector at the apex of each tessellation data, means for judging whether the normal vector calculated has a direction extending along the light irradiation direction or an opposite direction, means for offsetting the coordinates of the apex, which is judged as having the normal vector in the light irradiation direction by the judgement means, in the light irradiating direction, and means for calculating the profile data for each section on the basis of the tessellation data thus offset. The shape before offsetting can be accurately embodied.

Description

明 細 書  Specification
[発明の名称] [Title of Invention]
テセレ一シヨンデータのオフセット機能付光硬化造形装置とオフセッ ト方法 [技術分野]  Light curing molding machine with offset function for tessellation data and offset method [Technical field]
本発明は光硬化造形技術に関するものであり、 特に造形物の形状精度を改善す る技術に関する。  The present invention relates to a photocuring molding technique, and more particularly to a technique for improving the shape accuracy of a molded article.
[背景技術]  [Background technology]
3次元 C A Dや 3次元測定機等の普及に伴 L、、 3次元の形状を定義するデータ を取扱う機会が増加している。 3次元の形状を定義するデ一夕の一つの形式に形 状をテセレーシヨンデータで定義する技術力知られている。 図 1はこの技術を模 式的に示す図であり、 X— Y— Z座標系に存在している符号 1 0で示される 3次 元の形状を定義するテセレ一シヨンデ一夕の内容を例示している。  With the spread of 3D CAD and 3D measuring machines, opportunities to handle data defining L and 3D shapes are increasing. There is a well-known technology for defining a shape using tessellation data in one form of defining a three-dimensional shape. Figure 1 is a diagram schematically showing this technology, and illustrates the contents of the telesegmentation that defines the three-dimensional shape indicated by reference numeral 10 that exists in the X-Y-Z coordinate system. are doing.
—般に 3次元の形状はその表面をモザイク状に区割したテセレーシヨン 1, 2, 3…の集合として近似的に表すことができる。各テセレ一シヨンは頂点の座標に よってその位置と形状力定義される。 図 1は各テセレーシヨンが三角形の場合を 例示しており、各テセレ一シヨンが三角形である場合には、各テセレーシヨンに 属する 3つの頂点、 例えばテセレーシヨン 2については頂点 2 1 , 2 2 , 2 3の 座標によってその位置と形状力定義される。各頂点の座標はそれぞれ (X , y , z ) 成分で与えられる。 このようにして各テセレ一シヨンの頂点の座標の集合に よって 3次元の形状 1 0が定義される。  In general, a three-dimensional shape can be approximately represented as a set of tessellations 1, 2, 3,... The position and shape force of each tessellation is defined by the coordinates of the vertex. Figure 1 illustrates the case where each tessellation is a triangle.If each tessellation is a triangle, three vertices belonging to each tessellation, for example, for tessellation 2, the vertices 2 1 2 2 The position and the shape force are defined by the coordinates. The coordinates of each vertex are given by (X, y, z) components. In this way, a three-dimensional shape 10 is defined by a set of coordinates of the vertices of each tessellation.
頂点の座標の集合によって形状自体は定義される。 しかし定義された形状、 例 えば 1 0が内部が詰った物体であるか、 内部が空の穴であるかはなお定義されて いない。 そこで各テセレーシヨンには法線べクトルが用意されている。 図 1では テセレーシヨン 2の法線べクトル 2 4が形状 1 0の内から外に向かっている例を 示している。 法線べクトルは物体力《存在している側から存在していない側に向か うという規則性を有しており、 これによつて図 1の場台は形状 1 0が物体である ことがわかる。 これに対し、 法線べクトル 2 4力《外から内に向かっていると、 形 状 1 0は物体でなく穴を定めていることがわかる。 以上のことから、 3次元の形状は、 各テセレーシヨンの頂点の座標を示すデ一 夕と各テセレ一シヨンの法線べク トルを示すデータの集合 (これをテセレーショ ンデータという) で定義されることになる。 なお図 1では各テセレ一シヨン力三 角形の場合を示したが、 多角形で定義されることもある。 The shape itself is defined by the set of vertex coordinates. However, it is still undefined whether the defined shape, for example, 10 is a solid object or an empty hole. Therefore, each tessellation is provided with a normal vector. FIG. 1 shows an example in which the normal vector 24 of the tessellation 2 goes from inside to outside of the shape 10. The normal vector has the regularity that the object force moves from the existing side to the non-existing side. I understand. On the other hand, if the normal vector 24 force << going from outside to inside, it turns out that the shape 10 defines a hole, not an object. From the above, the three-dimensional shape is defined as a set of data indicating the coordinates of the vertices of each tessellation and the normal vector of each tessellation (this is called tessellation data). become. Although FIG. 1 shows the case of each triangulation force triangle, it may be defined by a polygon.
3次元の形状がテセレーシヨンデータで定義されていても、 定義された形状を 備えた物が実在していないことがある。 そこでデータで定義されている形状を具 抽物として表すために、 光硬化造形技術が開発されている。 図 2はその技術を模 式的に示す図である。 光硬化造形技術では光の照射を受けると硬化する液状の樹 脂 2 5と、 造形物の基礎となる基板 2 6と、光照射領域が制御可能な照射装置 2 0を利用する。 最初に基板 2 6を液状樹脂 2 5の液面 2 7から所定の距離厶 Zだ け離れたレベルに沈めておく。 この状態で照射装置 2 0で液面 2 7を照射する。 このときの照射領域を、 テセレーシヨンデータで定義される 3次元の形状 1 0の 最下断面における輪郭 2 8の内部とする。 また照射強度は液 2 5を液面 2 7から 深さ Δ Ζまで硬化させ得る強度とする。 すると、 基板 2 6上に輪郭 2 8を有する 厚さ Δ Ζの硬化層 2 8 aが形成される。  Even if a three-dimensional shape is defined in the tessellation data, there is no real thing with the defined shape. Therefore, in order to represent the shape defined by the data as an extractable material, a photo-curing molding technology has been developed. Figure 2 is a diagram schematically showing the technology. In the photo-curing molding technology, a liquid resin 25 that cures when irradiated with light, a substrate 26 that forms the basis of the molded article, and an irradiation device 20 that can control the light irradiation area are used. First, the substrate 26 is immersed at a predetermined distance Z from the liquid surface 27 of the liquid resin 25. In this state, the liquid level 27 is irradiated by the irradiation device 20. The irradiation area at this time is defined as the inside of the contour 28 in the lowest section of the three-dimensional shape 10 defined by the tessellation data. The irradiation intensity is set so that the liquid 25 can be cured from the liquid surface 27 to a depth ΔΖ. Then, a cured layer 28 a having a contour Δ 28 and a thickness Δ Ζ is formed on the substrate 26.
次に、基板 2 6を Δ Ζだけ沈め、 3次元の形状 1 0中 Δ Ζだけ上方の断面にお ける輪郭 2 9の内部を光照射する。 すると、 先に形成された硬化層 2 8 aのうえ に輪郭 2 9に対応する厚さ Δ Ζの硬化層 2 9 3カ《形成され、両硬化層 2 8 a , 2 9 aは一体化する。  Next, the substrate 26 is sunk by ΔΖ, and the inside of the contour 29 in the cross section above by ΔΖ in the three-dimensional shape 10 is irradiated with light. Then, on the previously formed hardened layer 28 a, a hardened layer 29 3 having a thickness Δ 対 応 corresponding to the contour 29 is formed, and both hardened layers 28 a and 29 a are integrated. .
この工程を繰返すことにより、 液 2 5中に硬化物が造形され、 その硬化物はテ セレーシヨンデータで定義される形状 1 0を備えている。  By repeating this process, a cured product is formed in the liquid 25, and the cured product has a shape 10 defined by tessellation data.
なお上述の例は光硬化造形技術の一例であつて、 光を底面から照射して基板を 引上げてゆく方式、 基板を固定しておいて液面を上昇させてゆく方式等種々の方 式が存在している。  The above example is an example of photo-curing molding technology, and there are various methods such as a method of irradiating light from the bottom and pulling up the substrate, and a method of fixing the substrate and raising the liquid level. Existing.
この光硬化造形技術によると、 テセレーシヨンデ一夕で定義される 3次元の形 状を、 自動的に具抽物とできるために、極めて有用である。  This photo-curing molding technology is extremely useful because the three-dimensional shape defined by Tessellation de can be automatically converted into a tool.
光硬化造形技術の場合、 次の 2つの点が形状精度に影響を与える。 光照射領域 を制御するにあたって、光ビームの走査範囲を規制する方式がある。 この方式で は光ビームで輪郭をなぞってゆく。 この場合、 図 3に示すように光ビーム 3 1の 中心力 <輪郭 3 0に沿って移動するようにすると、 光ビーム 3 1の半径 r分だけ輪 郭 3 0よりも外方まで硬化されることになり、 造形物が造形希望形状よりも外方 に大きくなってしまう。 In the case of photocuring molding technology, the following two points affect the shape accuracy. In controlling the light irradiation area, there is a method that regulates the scanning range of the light beam. In this method, the contour is traced by a light beam. In this case, as shown in FIG. If the center force is moved along the contour 30, the light beam 31 will be hardened to the outside of the contour 30 by the radius r of the light beam 31, and the object will be more outward than the desired shape. It becomes big.
この問題を解消するためには、光ビームの移動ラインを物体の内方に光ビーム の半径 r分だけォフセットさせることが有効である。 このよう(こすると硬化物の 輪郭が造形希望形状の輪郭に一致する。  To solve this problem, it is effective to offset the moving line of the light beam inside the object by the radius r of the light beam. In this way, the contour of the cured product matches the contour of the desired shape.
半径 r分だけオフセッ卜してもなお次のような問題が存在する。 図 4はそれを 示すものである。 今造形したい形状が 4 0で示されるように、 上部で側方に張出 している場合、 まず輪郭 4 5の内部を照射した後に液を積層し、 次に輪郭 4 4の 内部を照射した後に液を積層してゆく工程を繰返してゆく。 この結果、 外方に張 出している部分では、 図中ハッチで示す部分 4 6に示すように、 硬化深さ dだけ 余分に厚くなってしまう。  Even when offsetting by the radius r, the following problem still exists. Figure 4 illustrates this. If the shape to be shaped is shown as 40, and it is overhanging to the side at the top, first irradiate the inside of contour 45, then layer the liquid, and then irradiate the inside of contour 44. The process of laminating the liquid later is repeated. As a result, in the portion that protrudes outward, as shown by a hatched portion 46 in the figure, the portion becomes excessively thicker by the hardening depth d.
この問題に対策するための技術が国際公表 WO 9 2 / 0 8 2 0 0に示されてい る。 この技術では照射領域を決定するにあたつて下層の輪郭を利用する技術を示 している。 図 5の例に沿って説明すると、 レベル 5 4での照射領域を決定するに あたって、 レベル 5 4での断面のみならず、 レベル 5 5での断面をも考慮し、両 者のブ一リァン積によって照射領域を決定する。 図 5に例示するケースではレべ ル 5 5での断面領域がレベル 5 4での断面領域に含まれるために、 プーリアン積 はレベル 5 5での断面領域となり、 結局レベル 5 4において張出部は照射されな いことになる。 これによつて図 4に示した余分の硬化部 4 6力《造形されるといつ た問題は防止できる。  Techniques for addressing this problem are shown in International Publication WO92 / 02008. This technique shows a technique that uses the contour of the lower layer to determine the irradiation area. Explaining along the example of Fig. 5, when determining the irradiation area at level 54, not only the cross section at level 54 but also the cross section at level 55 is considered, The irradiation area is determined by the lean product. In the case illustrated in FIG. 5, since the cross-sectional area at level 55 is included in the cross-sectional area at level 54, the pulley product becomes the cross-sectional area at level 55, and eventually the overhang at level 54. Will not be irradiated. As a result, the problem of the extra hardened portion 46 shown in FIG. 4 can be prevented.
[発明の開示]  [Disclosure of the Invention]
今図 6 (A) の 6 7がテセレ一シヨンデータで定義されているとする。 この場合、 従来の技術、 すなわち下層の輪郭を考慮してその上層のレベルの照射領域を決定 すると、 造形物は図 6 (B) に示すものとなり、 図 6 (A) のものと相違する。 例え ばレベル 6 0での輪郭とレベル 6 1での輪郭のブリーアン積によってレベル 6 0 の照射領域を決定すると、 レベル 6 1の輪郭がレベル 6 0の照射領域を決定する ことになり、 この照射領域で造形すると図中 6 9で示す形状のものが造形されて しまう。 すなわち図中 6 8で示す部分が欠落してしまう。 本発明は上記問題を解 決して造形物の形状精度を向上させるものである。 Now, suppose 67 in FIG. 6A is defined by the tessellation data. In this case, if the conventional technology, that is, the irradiation area of the upper layer is determined in consideration of the contour of the lower layer, the modeled object is as shown in Fig. 6 (B), which is different from that of Fig. 6 (A). For example, if the level 60 irradiation area is determined by the Brillouin product of the level 60 contour and the level 61 contour, the level 61 contour will determine the level 60 irradiation area. If modeling is performed in the area, the shape indicated by 69 in the figure will be molded. That is, the portion indicated by 68 in the figure is missing. The present invention solves the above problem. It never improves the shape accuracy of the modeled object.
本発明に係わる光硬化造形装置は、 3次元の形状を定義するテセレ一シヨンデ 一タを入力し、 そのテセレーシヨンデータに基づいて断面毎の輪郭デー夕を算出 し、 算出された輪郭データに基づいて光照射領域を制御して 3次元の形状を造形 するものであり、 図 7に模式的に示されているように、 テセレ一シヨンデータを 記憶しておく手段 7 1と、 各テセレーシヨンの頂点における法線べクトルを算出 する手段 7 2を備えている。  The light-curing modeling apparatus according to the present invention inputs tessellation data that defines a three-dimensional shape, calculates contour data for each cross section based on the tessellation data, and converts the contour data into calculated contour data. The three-dimensional shape is formed by controlling the light irradiation area on the basis of the light irradiation area, and as shown schematically in FIG. 7, means 71 for storing tessellation data, and A means 72 for calculating a normal vector at the vertex is provided.
頂点における法線べクトルは、 その頂点の属するテセレーシヨンの法線べクト ルを合成することで算出される。 例えば図 7に示される頂点 8 0は、 8 1〜8 6 に示される 6個のテセレ一シヨンに共通的に属しており、 従って頂点 8 0の法線 べクトル 8 O Nは 8 1〜8 6の各テセレーシヨンの各法線べクトル 8 1 N〜8 6 Nの合成べクトルとして算出される。  The normal vector at a vertex is calculated by synthesizing the normal vector of the tessellation to which the vertex belongs. For example, the vertex 80 shown in FIG. 7 commonly belongs to the six tessellations 81 to 86, and thus the normal vector 8 ON of the vertex 80 is 81 to 86. Is calculated as a composite vector of each normal vector 81 N to 86 N of each tessellation.
本発明の一つの態様によると、 算出された法線べクトルの向きを判別する手段 According to one aspect of the present invention, means for determining the direction of the calculated normal vector
7 3が付加されている。 向きの判別は図 8に従って実施される。 図 8において Z 方向が光照射方向であり、 Z Hがそれに直交する面である。 そして法線べクトル Nが面 Z Hの図示下側を指向しているときは光照射方向に沿つた向きであり、 図 示上側を指向しているときは反対の向きである。 7 3 is added. The orientation is determined according to FIG. In FIG. 8, the Z direction is the light irradiation direction, and ZH is a plane orthogonal to the direction. When the normal vector N faces the lower side of the plane ZH in the figure, the direction is along the light irradiation direction, and when the normal vector N points in the upper side of the figure, the direction is opposite.
この装置は、 方向判別手段 7 3で光照射方向に沿った向きの法線べクトルを有 する頂点について、 その頂点の光照射方向における座標を光照射方向と反対の向 きに、 すなわち図 8の Z Aの方向に硬化深さだけオフセットする手段 7 4を有し ている。 ここで硬化深さ dとは、 図 3、 図 4中に dとして示されている深さであ り、光ビームの走査によって硬化する深さである。 すなわちオフセットされた座 標で光照射すると、 オフセット前の座標まで硬化力進む関係となっている。 頂点 の法線べクトルカ光照射方向と反対の向きにある頂点については、 オフセット処 理が行なわれない。  This apparatus uses a direction discriminating means 73 to set the coordinates of the vertex having a normal vector in the direction along the light irradiation direction in the light irradiation direction in the direction opposite to the light irradiation direction, that is, as shown in FIG. Means 74 for offsetting by the curing depth in the direction of ZA. Here, the curing depth d is a depth indicated as d in FIGS. 3 and 4, and is a depth at which curing is performed by scanning with a light beam. In other words, when light is irradiated at the offset coordinates, the curing force advances to the coordinates before the offset. The offset process is not performed on the vertex in the direction opposite to the direction of normal vector light irradiation of the vertex.
また本発明の他の一つの態様によると、 法線べクトルの光照射方向に直交する 面内のべクトル成分を算出する手段と、頂点の光照射方向に直交する面内の座標 を算出されたべクトル成分で定められる方向と反対の方向に硬化半径だけオフセ ットする手段 7 8力設けられている。 ここで硬化深さとは、 図 3中 rで示される - - 半径を示している。 なおこの場合は頂点の種類によらないで全部の頂点について オフセッ ト処理する。 According to another aspect of the present invention, a means for calculating a vector component in a plane orthogonal to the light irradiation direction of the normal vector and a coordinate in a plane orthogonal to the light irradiation direction of the vertex are calculated. Means for offsetting by the curing radius in the direction opposite to the direction defined by the vector component are provided. Here, the curing depth is indicated by r in Fig. 3. --Indicates radius. In this case, offset processing is performed for all vertices regardless of the type of vertices.
この発明の場合、手段 7 4及び Zまたは手段 7 8でオフセットされたテセレ一 シヨンデータを記憶しておく手段 7 5力設けられており、 このデータに基づいて 断面毎の輪郭を算出する手段 7 6と、 手段 7 6で算出された輪郭データに基づい て光照射領域を制御する手段 7 7が設けられている。  In the case of the present invention, means for storing the tessellation data offset by means 74 and Z or means 78 is provided, and means for calculating the contour for each section based on this data is provided. 6 and means 77 for controlling the light irradiation area based on the contour data calculated by the means 76.
手段 7 4力付加されていると、 光照射方向を向いた面の各テセレ一シヨンの頂 点が光照射方向と反対の向きにオフセッ卜される。 このためオフセットされた座 標に基づいて照射領域を制御すると、 硬化部の下端がオフセット前の座標と一致 することになり、 造形物の形状がオフセット前のテセレ一シヨンデータで定義さ れる形状によく近似する。 なお光照射方向と反対の向きを指向している面につい ては図 5、 図 6で説明した精度低下が問題とならず、 オフセットの必要はない。 また手段 7 8を備え〔いると、光ビームの移動軌跡が輪郭の内側にオフセット され、 図 3の問題が解消する。  Means 74 When the force is applied, the vertex of each tessellation on the surface facing the light irradiation direction is offset in the direction opposite to the light irradiation direction. Therefore, if the irradiation area is controlled based on the offset coordinates, the lower end of the hardened part will match the coordinates before the offset, and the shape of the modeled object will be the shape defined by the tessellation data before the offset. Well approximate. Note that for the surface oriented in the opposite direction to the light irradiation direction, the accuracy reduction described in FIGS. 5 and 6 does not pose a problem, and no offset is required. In addition, when means 78 are provided, the movement trajectory of the light beam is offset to the inside of the contour, and the problem of FIG. 3 is solved.
以下、 実施例と図面を参照することによつて本発明はよりよく理解されよう。  The present invention will be better understood with reference to the following examples and drawings.
[図面の簡単な説明]  [Brief description of drawings]
図 1 テセレ一シヨンデータの一例と内容を説明する図  Fig. 1 Diagram illustrating an example and contents of telemetry data
図 2 従来の光硬化造形技術を示す図  Figure 2 Diagram showing conventional photocuring molding technology
図 3 硬化層が半径方向外側に拡大する問題を示す図  Figure 3 Diagram showing the problem of the hardened layer expanding outward in the radial direction
図 4 硬化層が光照射方向に過分に成長する問題を示す図  Figure 4 Diagram showing the problem of excessive growth of the hardened layer in the light irradiation direction
図 5 図 4の問題に対処する従来の方法を説明する図  Figure 5 Diagram illustrating the traditional approach to addressing the problem of Figure 4
図 6 図 5の方法によるときの問題を説明する図  Figure 6 Diagram explaining the problem with the method of Figure 5
図 7 本発明の一例を模式的に示す図  Fig. 7 Diagram schematically showing an example of the present invention
図 8 光照射方向と法線ベクトルの関係を示す図  Fig. 8 Diagram showing the relationship between the light irradiation direction and the normal vector
図 9 本発明の作用を説明する図  Figure 9 Diagram explaining the operation of the present invention
図 1 0 本発明の作用を説明する図  Figure 10 Diagram explaining the operation of the present invention
図 1 1 一実施例の全体システムを説明する図  Figure 11 Diagram illustrating the overall system of one embodiment
図 1 2 図 1 1によるシステムの作用を説明する図  Figure 1 2 Diagram explaining the operation of the system according to Figure 11
[発明を実施するための最良の形態] 図 1 1は本発明を組込んだ光硬化造形装置のシステム構成を示している。 図中 1 1 0は言己憶装置であり、 オフセット前のテセレ一シヨンデータを言己憶しておく 領域 1 1 1とオフセット後のテセレーシヨンデータを言己憶しておく領域 1 1 2と 硬化パラメ一夕 d, rを記憶しておく領域 1 1 3と、 各種制御プログラムを記憶 しておく領域を有している。 [Best Mode for Carrying Out the Invention] FIG. 11 shows a system configuration of a photocuring modeling apparatus incorporating the present invention. In the figure, reference numeral 110 denotes a memory device for storing memory of the tessellation data before the offset and an area for storing memory of the tessellation data after the offset 1 1 2 It has an area 113 for storing d and r and curing parameters, and an area for storing various control programs.
硬化パラメータ d, rは図 1 2に示されるものであり、 レーザビームの走行に 伴って硬化されてゆく半径 rと深さ dを記憶している。 硬化半径 rと硬化深さ d は、 レーザビームの強度と半径と走行スピードと使用樹脂等によって異なるため に、 領域 1 1 3には各種条件下での dと 1"カ<記憶されている。  The hardening parameters d and r are shown in Fig. 12, and store the radius r and depth d that are hardened as the laser beam travels. Since the curing radius r and the curing depth d are different depending on the intensity, radius, running speed, and resin used of the laser beam, d and 1 ″ are stored in the area 113 under various conditions.
制御プログラム記憶領域 1 1 4には、 3次元 C A Dから送られるテセレ一ショ ンデータを入力して領域 1 1 1に記憶するプログラムが記憶されており、 このプ ログラムの実行によって、 図 1 2に示すテセレーシヨンデータが領域 1 1 1に記 憶さ; fしる o  The control program storage area 114 stores a program for inputting the tessellation data sent from the 3D CAD and storing it in the area 111. By executing this program, the program shown in FIG. Tessellation data is stored in area 1 1 1; f o
また制御プロダラム記憶領域には下記の内容を実行するプログラムが記憶され ている。  In the control program storage area, a program for executing the following contents is stored.
(1) 頂点を共有するテセレーシヨンの抽出  (1) Extraction of tessellation that shares vertices
このプログラムは全ての頂点について、 その頂点が属するテセレ一シヨンを抽 出する。 例えば図 7の頂点 8 0について、 8 1〜8 6のテセレーシヨンを抽出す 。  This program extracts the tessellation to which all vertices belong. For example, for vertex 80 in FIG. 7, tessellation 81 to 86 is extracted.
(2) 頂点の法線ベクトルの算出  (2) Calculation of the normal vector of the vertex
前記(1) のプログラムで抽出されたテセレーシヨンの法線べクトルをべクトル 加算して、頂点における法線べクトルを算出する。  The normal vector at the vertex is calculated by vector addition of the normal vector of the tessellation extracted by the program (1).
(3) 法線べクトルの向きの判別  (3) Determining the direction of the normal vector
前記 (2) のプログラムで算出された法線ベクトル Nからその Z方向成分 N z を 抽出する (図 1 2参照) 。 ここで Z方向は光照射方向に一致している。 抽出され た Z方向成分 N z 力正の値をもっていれば、 その頂点の法線べクトルは光照射方 向に沿った向きであり、 負の値をもっていれば、 その頂点の法線べクトルは反対 の向きにある。  The Z-direction component N z is extracted from the normal vector N calculated by the program (2) (see FIG. 12). Here, the Z direction coincides with the light irradiation direction. If the extracted Z-direction component N z force has a positive value, the normal vector of the vertex is the direction along the light irradiation direction, and if it has a negative value, the normal vector of the vertex is In the opposite direction.
(4) Z方向のオフセット処理 前記(3) のプログラムで光照射方向に沿った向きの法線べクトルを有している 頂点については図 1 2の式 (3) によって、 照射方向の座標 (例えば図 1の頂点 2 1については z 2 1 ) から dを減ずる。 この結果、 オフセットされた座標は、 ォ フセット前の座標を光照射方向と反対方向に d (硬化深) だけオフセットされた 座標を示すことになる。 プログラム(3) で算出された Z方向成分がマイナスであ つて、光照射方向と反対の向きを有する頂点についてはこのオフセットをしない(4) Offset processing in the Z direction For the vertices having the normal vector in the direction along the light irradiation direction in the program of (3), the coordinates of the irradiation direction (for example, the vertex 21 in FIG. Subtracts d from z 2 1). As a result, the offset coordinates indicate coordinates that are offset from the coordinates before the offset by d (hardening depth) in a direction opposite to the light irradiation direction. This offset is not performed for vertices whose Z direction component calculated by program (3) is negative and whose direction is opposite to the light irradiation direction.
(図 1 2の式 (4) 参照) 。 (See equation (4) in Fig. 12).
(5) X , y面内のオフセット  (5) Offset in X, y plane
このプログラムでは図 1 2の式(1) と(2) に従ってオフセット処理する。 図 1 2中 N x yは法線べクトル Nのうちの面 x— y内の成分であり、 また N xは N x yの X成分、 yは N x yの y成分である。 また式(1) (2)中、 N x, N y , N zは べクトルの大きさを示している。 式(1) (2)において、 N x yはプログラム(2) で 算出された法線べクトル Nの光照射方向 Zに直交する面 (x y面) 内のべクトル 成分であり、 式 (1) (2)を実行すると、頂点の x y面内の座標が、 べクトル N x y と反対方向に硬化半径 rだけオフセットされることになる。 この結果、 図 3に示 した問題点が解消し、 光ビームの外延力輪郭に接した状態となる。 このことは図 1 0によってよく理解される。  In this program, offset processing is performed according to equations (1) and (2) in Fig. 12. In FIG. 12, N xy is a component in the plane xy of the normal vector N, N x is an X component of N xy, and y is a y component of N xy. In equations (1) and (2), N x, N y, and N z indicate the magnitude of the vector. In Equations (1) and (2), N xy is a vector component in a plane (xy plane) orthogonal to the light irradiation direction Z of the normal vector N calculated by the program (2). By executing (2), the coordinates of the vertices in the xy plane will be offset by the hardening radius r in the direction opposite to the vector N xy. As a result, the problem shown in FIG. 3 is solved and the light beam comes into contact with the external force profile. This is better understood by FIG.
さてこのようにしてオフセットされたテセレ一シヨンデ一夕は図 1 1の領域 1 1 2に言己憶される。 そしてそのデ一夕から断面ごとの輪郭力《抽出される。 この結 果図 9に示すように算出された輪郭に沿つて光ビームを走査すると、 それによつ て硬化される外延がオフセット前のテセレ一シヨンデ一夕で定義される形状とよ く近似する結果が得られる。  Now, the tessellations thus offset are remembered in the area 1 12 in FIG. Then, from that moment, the contour force << for each section is extracted. As a result, when the light beam is scanned along the contour calculated as shown in Fig. 9, the extension hardened by the light beam approximates the shape defined by the tessellation before the offset. Is obtained.
このようにして、 本実施例によると、 x y面内でも z方向でも形状精度が改善 されることになる。  Thus, according to this embodiment, the shape accuracy is improved both in the xy plane and in the z direction.
なお図 9に示すような形状、 すなわち上方に向かうほど側方に張出すような形 状を全く造形しない場合には、 全ての頂点力上向きとなる。 このような場合は Z 方向のオフセット手段はあっても機能せず、 従って Z方向のオフセット手段を省 略することができる。 また光ビームの半径が充分に小さく図 1 2の rがほとんど 無視できるときには、 式(1) (2)のオフセット処理を省略してもよい。  If the shape as shown in FIG. 9, that is, the shape that extends to the side as it goes upward, is not formed at all, all the apex forces are upward. In such a case, the offset means in the Z direction does not function even if present, and therefore, the offset means in the Z direction can be omitted. When the radius of the light beam is sufficiently small and r in FIG. 12 can be almost neglected, the offset processing of equations (1) and (2) may be omitted.

Claims

請 求 の 範 囲 The scope of the claims
1. 3次元の形状を定義するテセレーシヨンデータを入力し、 そのテセレ一シ ョンデータに基づいて断面毎の輪郭データを算出し、 算出された輪郭データに基 づいて光照射領域を制御して 3次元の形状を造形する光硬化造形装置であり、 前記テセレ一シヨンデータを記憶しておく手段と、 1. Enter the tessellation data that defines the three-dimensional shape, calculate the contour data for each section based on the tessellation data, and control the light irradiation area based on the calculated contour data. A light-curing modeling apparatus for modeling a three-dimensional shape, and means for storing the tessellation data,
各テセレ一シヨンの頂点における法線べクトルを算出する手段と、  Means for calculating the normal vector at the vertex of each tessellation;
算出された法線べクトルが光照射方向に沿つた向きかその反対の向きかを判別 する手段と、  Means for determining whether the calculated normal vector is directed along the light irradiation direction or the opposite direction;
前記判別手段で光照射方向に沿った向きの法線べクトルを有すると判別された ]¾ の、 光照射方向の座標を光照射方向と反対方向に硬化深だけオフセットする 手段と、  It has been determined that the discriminating means has a normal vector in the direction along the light irradiation direction] ¾, wherein the coordinates of the light irradiation direction are offset by the curing depth in a direction opposite to the light irradiation direction,
オフセットされたテセレーシヨンデータに基づいて断面毎の輪郭デー夕を算出 する手段を備えていることを特徴とする光硬化造形装置。  A photocuring molding apparatus comprising means for calculating contour data for each section based on offset tessellation data.
2. 請求の範囲 1に記載の光硬化造形装置において、 前記法線べクトル算出手 段は、 当該頂点が属する各テセレーシヨンの法線べクトルのべクトル合成によつ て、 頂点における法線べクトルを算出するものであることを特徴とする光硬化造 2. In the light-curing modeling apparatus according to claim 1, the normal vector calculating means calculates a normal vector at a vertex by a vector synthesis of the normal vector of each tessellation to which the vertex belongs. Photocuring, characterized in that it calculates the vector
3. 3次元の形状を定義するテセレ一シヨンデ一夕を入力し、 そのテセレーシ ョンデ一夕に基づいて断面毎の輪郭データを算出し、 算出された輪郭データに基 づいて光照射領域を制御して 3次元の形状を造形する光硬化造形装置であり、 前記テセレーションデータを記憶しておく手段と、 3. Enter the tessellation data that defines the three-dimensional shape, calculate the contour data for each section based on the tessellation data, and control the light irradiation area based on the calculated contour data. A light-curing modeling apparatus for modeling a three-dimensional shape by means of storing the tessellation data;
各テセレ—シヨンの頂点における法線べクトルを算出する手段と、  Means for calculating the normal vector at the vertex of each tessellation;
算出された法線べクトルの光照射方向に直交する面内のべクトル成分を算出す る手段と、  Means for calculating a vector component in a plane orthogonal to the light irradiation direction of the calculated normal vector;
'頂点の光照射方向に直交する面内の座標を、前記算出されたべクトル成分と反 対方向に硬化半径だけオフセッ卜する手段と、  Means for offsetting the coordinates in a plane perpendicular to the light irradiation direction of the vertex by a curing radius in a direction opposite to the calculated vector component;
オフセットされたテセレーシヨンデータに基づいて断面毎の輪郭データを算出 する手段を備えていることを特徴とする光硬化造形装置。 A photocuring molding apparatus comprising means for calculating contour data for each cross section based on offset tessellation data.
4. 請求の範囲 3に記載の光硬化造形装置において、 前記法線べクトル算出手 段は、 当該頂点が属する各テセレーシヨンの法線べクトルのべクトル合成によつ て、 頂点における法線べクトルを算出するものであることを特徴とする光硬化造 形装置。 4. In the light-curing modeling apparatus according to claim 3, the normal vector calculating means calculates a normal vector at the vertex by a vector synthesis of the normal vector of each tessellation to which the vertex belongs. A photo-curing molding apparatus for calculating a vector.
5. 3次元の形状を定義するテセレ一シヨンデータを入力し、 そのテセレ一シ ンデータに基づいて断面毎の輪郭データを算出し、 算出された輪郭データに基 づいて光照射領域を制御して 3次元の形状を造形する光硬化造形装置であり、 前記テセレーシヨンデータを記憶しておく手段と、  5. Enter the tessellation data that defines the three-dimensional shape, calculate the contour data for each section based on the tessellation data, and control the light irradiation area based on the calculated contour data. A light-curing modeling apparatus for modeling a three-dimensional shape, and means for storing the tessellation data,
各テセレ一シヨンの頂点における法線べクトルを算出する手段と、  Means for calculating the normal vector at the vertex of each tessellation;
算出された法線べクトルが光照射方向に沿つた向きかその反対の向きかを判別 する手段と、  Means for determining whether the calculated normal vector is directed along the light irradiation direction or the opposite direction;
前記判別手段で光照射方向に沿った向きの法線べクトルを有すると判別された 頂点の、光照射方向の座標を光照射方向と反対方向に硬化深だけオフセットする 手段と、  Means for offsetting the coordinates of the light irradiation direction of the apex determined to have a normal vector in the direction along the light irradiation direction by the curing means in the direction opposite to the light irradiation direction by the curing depth,
算出された法線べクトルの光照射方向に直交する面内のべクトル成分を算出す る手段と、  Means for calculating a vector component in a plane orthogonal to the light irradiation direction of the calculated normal vector;
頂点の光照射方向に直交する面内の座標を、 前記算出されたべクトル成分と反 対方向に硬化半径だけオフセッ卜する手段と、  Means for offsetting coordinates in a plane perpendicular to the light irradiation direction of the apex by a curing radius in a direction opposite to the calculated vector component,
オフセットされたテセレ一シヨンデータに基づいて断面毎の輪郭データを算出 する手段を備えていることを特徴とする光硬化造形装置。  A photocuring molding apparatus, comprising: means for calculating contour data for each cross section based on offset tesselation data.
6. 請求の範囲 5に記載の光硬化造形装置において、前記法線べクトル算出手 段は、 当該頂点が属する各テセレ一シヨンの法線べクトルのべクトル合成によつ て、 頂点における法線べクトルを算出するものであることを特徴とする光硬化造  6. In the photo-curing modeling apparatus according to claim 5, the normal vector calculating means calculates a normal vector of the vertices by combining vectors of the normal vectors of each tessellation to which the vertex belongs. Photocuring molding characterized by calculating a line vector
7. 光硬化造形方法の光照射領域算出工程に利用されるテセレーションデータ をオフセットして、 光硬化造形方法で造形される造形物の形状をオフセット前の テセレーシヨンデータで定義される形状に近似させる方法であり、 7. Offset the tessellation data used in the light irradiation area calculation process of the light-curing modeling method to change the shape of the molded object formed by the light-curing modeling method to the shape defined by the tessellation data before offset. Is a method of approximation,
各テセレーシヨンの頂点における法線べクトルを算出する工程と、  Calculating a normal vector at the vertex of each tessellation;
算出された法線べクトルカ光照射方向に沿った向きである頂点の、 光照射方向 の座標を光照射方向と反対方向に硬化深だけオフセットする工程と、 Light irradiation direction of the vertex, which is the direction along the calculated normal vector light irradiation direction Offsetting the coordinates of by the curing depth in the direction opposite to the light irradiation direction,
算出された法線べクトルの光照射方向に直交する面内のべクトル成分を算出す る工程と、  Calculating a vector component in a plane perpendicular to the light irradiation direction of the calculated normal vector;
頂点の光照射方向に直交する面内の座標を、 前記算出されたべクトル成分と反 対方向に硬化半径だけオフセットする工程を備えていることを特徴とするテセレ ーシヨンデータのオフセット方法。  A method of offsetting coordinates of a vertex in a plane orthogonal to a light irradiation direction by a curing radius in a direction opposite to the calculated vector component.
PCT/JP1993/000997 1993-07-15 1993-07-15 Photo-curing modeling apparatus equipped with offset function of tessellation data, and offset method WO1995002500A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1993/000997 WO1995002500A1 (en) 1993-07-15 1993-07-15 Photo-curing modeling apparatus equipped with offset function of tessellation data, and offset method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1993/000997 WO1995002500A1 (en) 1993-07-15 1993-07-15 Photo-curing modeling apparatus equipped with offset function of tessellation data, and offset method

Publications (1)

Publication Number Publication Date
WO1995002500A1 true WO1995002500A1 (en) 1995-01-26

Family

ID=14070421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000997 WO1995002500A1 (en) 1993-07-15 1993-07-15 Photo-curing modeling apparatus equipped with offset function of tessellation data, and offset method

Country Status (1)

Country Link
WO (1) WO1995002500A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5999184A (en) * 1990-10-30 1999-12-07 3D Systems, Inc. Simultaneous multiple layer curing in stereolithography

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118222A (en) * 1990-05-02 1992-04-20 Mitsubishi Corp Photo-setting shaping device
JPH04138245A (en) * 1990-09-29 1992-05-12 Sony Corp Forming device for solid shape
JPH04169221A (en) * 1990-11-02 1992-06-17 Mitsubishi Corp High accuracy optical solidifying and shaping apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118222A (en) * 1990-05-02 1992-04-20 Mitsubishi Corp Photo-setting shaping device
JPH04138245A (en) * 1990-09-29 1992-05-12 Sony Corp Forming device for solid shape
JPH04169221A (en) * 1990-11-02 1992-06-17 Mitsubishi Corp High accuracy optical solidifying and shaping apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5999184A (en) * 1990-10-30 1999-12-07 3D Systems, Inc. Simultaneous multiple layer curing in stereolithography
US6366825B1 (en) 1990-10-30 2002-04-02 3D Systems, Inc. Simultaneous multiple layer curing in stereolithography

Similar Documents

Publication Publication Date Title
Reeves et al. Reducing the surface deviation of stereolithography using in‐process techniques
Barari et al. On the surface quality of additive manufactured parts
CN110997217B (en) Lamination condition control device
CN102282561B (en) Collision determination device and collision determination program
US6823230B1 (en) Tool path planning process for component by layered manufacture
CN108422542B (en) BIM-based component production method and device and component production system
Luan et al. Prescriptive modeling and compensation of in-plane shape deformation for 3-D printed freeform products
US20040107019A1 (en) Automated rapid prototyping combining additive and subtractive processes
JP3619191B2 (en) Method for manufacturing stereolithographic articles having regions of different density
JP2004508222A (en) Procedures for rapid assembly and improved surface properties in laminate manufacturing
JP2004025843A (en) Method for forming three-dimensional matter and apparatus therefor
US8175856B2 (en) Method for simulating the gauging of a liquid tank
CN106536164B (en) Stereolithography method including vertical compensation processing and it is adapted for carrying out the equipment and computer program product of the method
Chohan et al. Effect of process parameters of fused deposition modeling and vapour smoothing on surface properties of ABS replicas for biomedical applications
US6308108B1 (en) System for calculating an operating time of a measuring machine
Flutter et al. A machining strategy for toolmaking
WO1995002500A1 (en) Photo-curing modeling apparatus equipped with offset function of tessellation data, and offset method
WO1995012485A1 (en) Method of correcting thickness of excessive curing of photomolded article and apparatus therefor
CN107390642A (en) The deburring cutter block of computer-readable recording medium and the application medium produces lathes
CN107506510B (en) Method and device for producing an object with improved surface properties
CN103782128B (en) Measurement method and device for determining the position of a profile component applied to a shell component
KR19990031821A (en) CAD data generation method by reverse engineering of product
US20010024690A1 (en) Prototype tools and models and method of making same
Singh et al. Experimental investigations for statistically controlled rapid moulding solution of plastics using polyjet printing
CN109094017A (en) Stereo object forming device and method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase