WO1995007918A2 - Pyrimidine derivatives for labeled binding partners - Google Patents

Pyrimidine derivatives for labeled binding partners Download PDF

Info

Publication number
WO1995007918A2
WO1995007918A2 PCT/US1994/010536 US9410536W WO9507918A2 WO 1995007918 A2 WO1995007918 A2 WO 1995007918A2 US 9410536 W US9410536 W US 9410536W WO 9507918 A2 WO9507918 A2 WO 9507918A2
Authority
WO
WIPO (PCT)
Prior art keywords
ring
carbon atom
compound
separated
heteroatom
Prior art date
Application number
PCT/US1994/010536
Other languages
French (fr)
Other versions
WO1995007918A3 (en
Inventor
Mark D. Matteucci
Robert J. Jones
Kuei-Ying Lin
Original Assignee
Gilead Sciences, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gilead Sciences, Inc. filed Critical Gilead Sciences, Inc.
Priority to AT94929830T priority Critical patent/ATE239752T1/en
Priority to DE69432636T priority patent/DE69432636T2/en
Priority to JP50939395A priority patent/JP4098356B2/en
Priority to EP94929830A priority patent/EP0719272B1/en
Publication of WO1995007918A2 publication Critical patent/WO1995007918A2/en
Publication of WO1995007918A3 publication Critical patent/WO1995007918A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/47One nitrogen atom and one oxygen or sulfur atom, e.g. cytosine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/52Two oxygen atoms
    • C07D239/54Two oxygen atoms as doubly bound oxygen atoms or as unsubstituted hydroxy radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/22Tin compounds
    • C07F7/2208Compounds having tin linked only to carbon, hydrogen and/or halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/073Pyrimidine radicals with 2-deoxyribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • Fluorescent cytosine derivatives are known for use in preparing labeled DNA probes. See Inoue et al., Jpn Kokai JP 62059293, (1987). In addition, fluorescent labeled nucleotides have been employed in DNA sequencing. See Prober et al. ignore "Science” 238:336-341 (1987). l,3-Dihydro-2H-imidazo[4,5-b]-quinolin-2-one derivatives as phosphodiesterase inhibitors are disclosed by Raeymaekers et al. (EP 541,153).
  • a still further object of this invention is to improve the therapeutic efficacy of oligonucleotides.
  • Structural formulas are designated as parenthetical numerals. It will be understood that designation of aromaticity with respect to carbocycles and heterocycles herein includes any highly resonant unsaturated ring structure. Alternatively, placement of double bonds, where indicated, represents one potential structure for the depicted compound but will be understood to include other resonant states of the compound as well as protonated and charged species, only one of which may be shown.
  • R 3 is a protecting group or H
  • R 6 is independently H, Ci - C alkyl, C 2 - C alkenyl, C 2 - C 6 alkynyl, NO2, N(R 3 ) 2 , C ⁇ N or halo, or an R 6 is taken together with an adjacent R 6 to complete a ring containing 5 or 6 ring atoms, and tautomers, solvates and salts thereof; and provided that where a is 0, b is 1, and R 1 is
  • D 2 is independently hydroxyl, blocked hydroxyl, mono, di or triphosphate, or an oligodeoxyribonucleotide otherwise containing only the bases A, G, T and C; and D 3 is H or OH; then Z is not unsubstituted phenyl.
  • D is OH or blocked OH
  • D 1 is an oligonucleotide coupling group or OH
  • R 2 1 is H, OH, F, -O-alkyl ( -C 1 2), -S-alkyl ( - C ⁇ 2 ), OC3H5, or SC 3 H5; n is an integer from 0 to 98; and
  • R 1 is H or a linker group
  • J is an aryl or heteroaryl ring structure comprising 5 or 6 ring atoms wherein the heteroaryl ring comprises a single O ring heteroatom, a single N ring heteroatom, a single S ring heteroatom, a single O and a single N ring heteroatom separated by a carbon atom, a single S and a single N ring heteroatom separated by a carbon atom, or 2 N ring heteroatoms separated by a carbon atom, and wherein the aryl or heteroaryl ring carbon atoms are unsubstituted with other than H or at least 1 nonbridging ring carbon atom is substituted with R6; and
  • R 6 is defined above; and tautomers, salts and solvates thereof.
  • the 2-pyridones are synthesized from the intermediates of structures (3) and (6):
  • A is independently S, O, N or CR 6 ;
  • R 6 is defined above; and R 26 is Ci - C4 alkyl; and tautomers, salts and solvates thereof.
  • Phenoxazines and oxadiazines also are made from novel intermediate (5), as are pyridinopyrrolines, thiazines and oxazines.
  • R 24 is independently halo or Ci - C2 haloalkyl
  • R 23 is a protecting group; and tautomers, salts and solvates thereof.
  • R 1 refers to R 1 groups in which the hydroxyl groups are protected, e.g. by acetyl substitution, and the remaining substituents are defined above.
  • Rl being a linker group or H; optional covalent bonding to polymer is accomplished after the steps shown in the schemes, as is more fully described below.
  • X, a and R 1 are defined above and both R 3 ' groups are cyclized to complete a heteroaryl ring structure comprising 5 or 6 ring atoms wherein the heteroaryl ring comprises a single O ring heteroatom, a single N ring heteroatom, a single S ring heteroatom, a single O and a single N ring heteroatom separated by a carbon atom, a single S and a single N ring heteroatom separated by a carbon atom, 2 N ring heteroatoms separated by a carbon atom, or 3 N ring heteroatoms at least two of which are separated by a carbon atom, and wherein the aryl or heteroaryl ring carbon atoms are unsubstituted with other than H or at least 1 nonbridging ring carbon atom is substituted with R 6 ; and R 6 is defined above.
  • the polycyclic substructure consists of a pyrimidine radical fused to two or more fused heterocyclic or aryl rings.
  • the ring structures fused to the pyrimidine radical comprise the following structures (10) - (17): where (N) indicates the bond to pyrimidinyl N
  • the fused ring structure represented by Z is not critical. Typically Z, taken together with C-C or C-N of the adjacent ring, completes a single-ring aryl or heteroaryl radical containing 5 or 6 ring atoms, although in other embodiments R 6 groups on adjacent ring carbon atoms are taken together to complete an additional ring having 5 or 6 ring atoms, usually phenyl, thereby resulting in a fused bicycle.
  • the heteroatoms are selected from the group consisting of 1-3 N atoms, 1 oxygen atom, 1 S atom, 1 oxygen and 1 N atom separated by at least 1 carbon atom, and 1 N atom and 1 S atom separated by at least 1 carbon atom.
  • R 6 is defined above; A 1 is N or CR 6 ; and G is CH, S, O or NR 4 where R 4 is defined below.
  • Embodiments of structure (20) are structures (23)-(25):
  • R 6 are taken together to complete phenyl, although adjacent R 6 also are taken together to complete a thiazole, imidazole, oxazole, pyridine or pyrimidine ring.
  • the R 6 amino groups are protected against electrophiles using a protecting group (typically base labile) when the polycyclic substructure is to be employed as an intermediate, particularly in those instances where R 1 is a linker intended for use in the preparation of an oligonucleotide.
  • R 1 linker groups are used to covalently bond the polycyclic substructure to the selected binding partner, although it will be understood that this need not be the sole utility for the linker functionality.
  • a group present in.R 1 linkers principally serves as the site for covalent bonding of the polycyclic substructure to a binding partner, typically by incorporation of the polycyclic substructure via the linker residue into a polymeric binding partner by grafting or copolymerization.
  • R 1 linkers also optionally are substituted with groups that ordinarily will not participate in binding to the binding partner, e.g., halo, azido and protected hydroxyl.
  • the linker group will contain from 2 to about 50 atoms. If it contains a cycle the cyclic functionality typically will be an oxygen, sulfur or phosphorus-containing saturated or unsaturated heterocycle having a total of about from 5 to 7 ring atoms and 1 to 3 heteroatoms.
  • the cycle will be a sugar, typically furanose or furanose substituted with phosphate, protected phosphate, hydroxyl or protected hydroxyl.
  • R 1 is an abasic nucleotide residue or such a residue derivatized so as to be capable of incorporation into an oligonucleotide.
  • the R 1 linker frequently comprises an activated group or other group which can react with a polymer or other binding partner to be labeled with the polycyclic substructure.
  • groups described below that are compatible with commonly available oligonucleotide synthetic chemistries are useful.
  • Other examples of reactant groups for covalent labeling are well-known from the diagnostic fields and have heretofore been used commonly to label proteins and oligonucleotide probes, as is more fully discussed below.
  • R 1 is an organic linker group such as alkyl, alkene, alkyne, alkoxyalkyl, alkylthioalkyl, alkoxy, saturated or unsaturated heterocycle and the like which optionally is substituted with at least one group capable of being crosslinked with or incorporated into a polymer, e.g., such groups as hydroxy, amino, carboxyl, vinyl, phosphate or phosphonate.
  • organic linker group such as alkyl, alkene, alkyne, alkoxyalkyl, alkylthioalkyl, alkoxy, saturated or unsaturated heterocycle and the like which optionally is substituted with at least one group capable of being crosslinked with or incorporated into a polymer, e.g., such groups as hydroxy, amino, carboxyl, vinyl, phosphate or phosphonate.
  • linkers include
  • R 7 is independently H or Ci - C4 alkyl
  • R 8 is H or Ci - C4 alkyl, C2 - C4 alkenyl or azidomethyl
  • R 9 is halo, H or OR 2 0 R 10 is O, CH 2 or a covalent bond;
  • R 11 is O, S, CH 2 , CHF or CF 2 ;
  • R 14 is H, halogen, OR 20 , CH3, CH 2 OR 20 , C 3 - C ⁇ acyloxymethyl, or C2 - C 6 acyloxy,
  • R 15 is CH 2 , CHF or O
  • R 16 is CH or S, provided that when R 19 is 0 or S, or R 15 is CH, then R 16 is not S;
  • R 17 is H, OR 20 , halogen, N3, Ci - C 4 alkyl or Ci - C4 alkoxy or is absent when R 16 is S;
  • R 18 is H, OR 20 , halogen, N 3 , Ci - C 4 alkyl or Ci - C 4 alkoxy;
  • R 19 is O, S, CH 2 , CHF or CF 2 ;
  • R 20 is H or a protecting group; ml is independently 0 or an integer from 1 to 4; and E is OH, OR 20 , -P0 2 or -OP(0) 2 .
  • the linker group is HOCH(CHR 13 )CH 2 - or ECH 2 OCH(CHR 13 )CH 2 -.
  • R 1 is substructure (29) above in which D or D 1 are oligonucleotide coupling groups.
  • "Coupling group” as used herein means any group suitable for generating a linkage or phosphodiester substitute linkage between nucleotide bases or their analogues. These coupling groups are conventional and well-known for the preparation of oligonucleotides, and are prepared and used in the same fashion here.
  • each compound comprising substructure (29) will contain two coupling groups: D or D 1 , but with only one D 1 being a coupling group.
  • the coupling groups are used as intermediates in the preparation of 3'-5' 5'-3', 5'-2' and 2'-5' internucleotide linkages in accord with known methods.
  • Suitable coupling groups for phosphodiester linkages include OH, H- phosphonate (Fig. 12-1); (for amidite chemistries) alkylphosphonamidites or phosphoramidites such as beta-cyanoethylphosphoramidite (Fig.
  • a binding partner is any substance that is desired to be detected (analyte) or a substance that non-covalently binds to the analyte. Binding partners are well- known from the immunoassay art and include hapten-antibody pairs such as those exploited in drug immunoassays using EMIT or ELISA technologies. Binding partners are employed analytically in enzymology, where the substrate or the enzyme is labeled. Binding partners also are known from the oligonucleotide hybridization art, including oligonucleotide-nucleic acid binding partners (as in diagnostic probes or therapeutic antisense oligonucleotides) or oligonucleotide-protein binding partners (aptamers). In accordance with this invention, the polycyclic substructure is substituted at R 1 by any binding partner. While the binding partner may be a small molecule such as a drug, hapten, substrate or the like, ordinarily it is a polymer.
  • R 1 is a polymer
  • an R 1 linker group has been subsumed into the polymer structure, either as a monomer unit or by grafting onto pre-existing polymer. Therefore, when R 1 is a polymer it will be understood that the polymer may comprise the residue of a linking group wherein the linker residue originated with a monomeric subunit or was extraneous to the monomeric subunits of the polymer. All that is needed is that the polycyclic substructure be covalently bound to the polymer.
  • the polymer is an oligonucleotide analogue in which either or both of the sugar or phosphodiester subunits have been substituted by groups that continue to permit base pairing by the polycyclic substructure but which have other desirable characteristics which are not shared with native substituents, e.g., those which mask the negative charges of the phosphodiester linkages or replace the phosphodiester linkage with another group.
  • the site of polymer substitution by the structure (1) poly cycle is not critical. In general, any reactive group on the polymer is satisfactory when it is desired to graft the linker-substituted polycyclic substructure onto a pre-existing polymer.
  • the 1' position of ribose or deoxyribose is satisfactory as the site of substitution of an oligonucleotide by the polycyclic substructure. Suitable sites will be known to the artisan, particularly in those instances where the polycyclic substructure is intended to substitute for other fluorescent labels heretofore employed.
  • Oligomers are polymers containing at least 2 nucleotides or nucleotide analogues, at least one of which comprises a polycyclic substructure of this invention.
  • at least one polycyclic substructure is covalently linked to a nucleotide base, or to the same or a different polycyclic substructure, by an organic moiety that is sufficiently flexible to permit the bases and substructure(s) to hybridize to complementary bases.
  • This linkage may be a conventional phosphodiester linkage in which a nucleotide analogue containing the polycyclic substructure (where R 1 is deoxyribosyl or ribosyl) is incorporated into an oligonucleotide by conventional methods.
  • R 1 is deoxyribosyl or ribosyl
  • other groups are used to replace the phosphodiester linkage or, in some instances, both of the phosphodiester linkage and the sugar group. These replacement groups are termed substitute linkages for the purposes herein.
  • Substitute linkages per se also are known for the replacement of the entire phosphoribosyl linkage of conventional oligonucleotides. These include for example morpholino-carbamates (Stirchak, "NAR” 17:6129, 1989), peptides
  • Table 1 sets forth various examples of suitable substitute linkages for use with the polycyclic nucleotide analogue bases of this invention.
  • the columns designated D (5') and D 1 (3' or 2') describe the substructure (29) substituents used to produce the X 1 linkage of structure (8), shown in the right column, using methods known per se in the art and described in U.S.S.N. 07/892,902 and other citations above.
  • the starting materials in Table 1, or those used to prepare the starting materials of Table 1, generally possess structure (1) in which R 1 is ribose or a ribose analogue comprising a 5' hydroxyl group and a 3' or hydroxyl group, prepared as described herein or in the citations, with the polycyclic base being substituted for the bases used in the citations. Sequentially useful starting materials are designated by an arrow. Bracketed monomers are reacted to form dinucleotide analogues having the X 1 substitute linkage. The reactions are repeated or ganged with phosphodiester linkages in order to produce trimers, tetramers or larger oligomers, including up to about 98 bases. Bl means a blocking group.
  • blocking group refers to a substituent other than H that is conventionally attached to oligomers or nucleotide monomers, either as a protecting group, a coupling group for synthesis, PO 3 - 2 , or other conventional conjugate such as a solid support.
  • blocking group is not intended to be construed solely as a nucleotide protecting group, but also includes, for example, coupling groups such as hydrogen phosphonate, phosphoramidite and others as set forth above.
  • blocking groups are species of the genus of "protecting groups” which as used herein means any group capable of preventing the O-atom or N- atom to which it is attached from participating in a reaction involving an intermediate compound of structure (1) or otherwise forming an undesired covalent bond.
  • protecting groups for O- and N-atoms in nucleotide monomers or nucleoside monomers are described and methods for their introduction are conventionally known in the art.
  • Protecting groups also are useful to prevent reactions and bonding at carboxylic acids, thiols and the like as will be appreciated by those skilled in the art.
  • oligomers of this invention contain naturally occurring nucleotides or derivatives thereof.
  • the companion nucleotide residues contain pyrimidine nucleotides substituted at the 5 position with a carbon atom which is distally Pi bonded to another atom as for instance 1- alkenyl, 1-alkynyl, heteroaromatic and 1-alkynyl-heteroaromatic groups such as 5-propynyl-cytosine and -uridine nucleotides (see US 92/10115 and U.S. Serial No. 08/050,698).
  • pyrimidine analogs including 6-azacytosine, 6-azathymidine and 5- trifluoromethyluracil described in Cook, D. P., et al, International Publication No. WO 92/02258 can be conveniently incorporated into the invention oligomers.
  • Preferred bases include adenine, guanine, thymine, uracil, cytosine, 5- methylcytosine, 5-(l-propynyl)uracil, 5-(l-propynyl)cytosine, 8-oxo-N 6 - methyladenine, 7-deaza-7-methylguanine, 7-deaza-7-methyladenine and 7- deazaxanthosine.
  • Embodiments of the oligomers of the invention comprise a moiety which is capable of effecting at least one covalent bond between the oligomer and a nucleic acid duplex or strand. Multiple covalent bonds can also be formed by providing a multiplicity of such crosslinking moieties.
  • the covalent bond is preferably to a base residue in the target strand, but can also be made with other portions of the target, including the saccharide or phosphodiester.
  • Preferred crosslinking moieties include acylating and alkylating agents, and, in particular, those positioned relative to the sequence specificity-conferring portion so as to permit reaction with the target location in the strand. Exemplary crosslinking moieties are disclosed and claimed in PCT 91/03680.
  • R 1 is a linker or H
  • R 1 is a linker or H
  • such compounds are prepared from cytosine or cytosin-1-yl linker substituted derivatives as shown in the synthetic schemes of Figs 1 - 10, whereby the starting material is already substituted with R 1 and the subsequent reactions are directed to closing the polycyclic ring.
  • the hydroxyl, amino and any other labile groups of R 1 are protected as required by the schemes.
  • R 1 of the starting material is H and the linker is added after the ring closure steps set forth in the schemes, in the same fashion as has heretofore been employed in the alkylation of pyrimidine bases intended for use as antiviral compounds.
  • Fig. 11 The scheme of Fig. 11 is useful in preparing starting materials for peptide substitute linkages of the sort disclosed in Nielsen et al, op cit., or for preparing carboxyalkyl linkers for cross-linking to, or incorporation into, proteins or polypeptides.
  • a linker-substituted polycyclic substructure is covalently bonded via any conventional cross-linking agent to the polymer.
  • structure (1) compounds in which R 1 is hydroxyl- or amino-substituted alkyl are readily cross-linked to reactive groups present in the molecule to be labeled as noted above.
  • Typical cross-linking agents include succinic anhydride, DCC, EDC, BOP, and glutaraldehyde. Cyanogen bromide activated carbohydrates also are used.
  • the R 1 linker is an alkyl carboxylate, an alkyl amine or an amino acid for incorporation into peptides by in vitro methods.
  • the R 1 polymeric binding partner is an oligonucleotide as depicted in structure (8), and these conveniently are made by copolymerization with a nucleotide analogue substituted with the polycyclic substructure.
  • the starting materials for the synthesis of structure (8) generally are compounds of structure (1) in which R 1 is ribose or deoxyribose substituted with appropriate blocking and coupling groups further described above.
  • R 1 is ribosyl or deoxribosyl triphosphate, or a triphosphorylated analogue thereof recognized by DNA polymerase or reverse transcriptase which is then incorporated into an oligonucleotide by template-directed transcription.
  • Oligomers containing methylphosphonate and phosphodiester linkages are readily prepared by solid-phase oligomer synthesis techniques.
  • a description of modifications useful in the synthesis of phosphorothioate linked oligomers are found, for example, in EP 288,163, wherein the oxidation step in solid phase automated synthesis using amidite chemistry can be independently adjusted at any step to obtain the phosphorothioate.
  • Sulfurization is accomplished using reagents such as tetraethylthiuram disulfide, dibenzoyl tetrasulfide, thiophosphoric acid disulfide, 3H-l,2-benzodithiol-3-one 1,1-dioxide and the like as described (Vu, "Tet Lett” 26:3005, 1991; Rao, “Tet Lett” 33:4839, 1992; U.S. Patent 5,151,510; Iyer, "JOC” 55:4693, 1990; Dahl, "Sulfur Reports"
  • the compounds of this invention find uses in the diagnostic, analytic and therapeutic fields, or as intermediates in the preparation of compounds useful in such fields.
  • the linker-substituted compounds of structure (1) are useful as intermediates in the preparation of the labeled biopolymers of structure (1), wherein a biopolymer is rendered fluorescent or otherwise detectably labeled by linkage to the polycyclic substructure. It is most convenient, however, to use the appropriate structure (1) compounds as monomers in the preparation of structure (1) nucleic acids or oligonucleotides.
  • the labeled biopolymers are employed in diagnostic assays or preparative procedures in the same fashion as other fluorophor-labeled biopolymers, e.g. in fluorescence polarization methods, fluorescence activated cell sorting, competitive-type EMIT immunoassays and the like.
  • the polycyclic substructure labeled oligonucleotides are employed in diagnostic or analytic methods in the same fashion as other labeled oligonucleotides.
  • the oligonucleotides are used in hybridization methods in which an antibody capable of binding base-paired structure (1) is used to detect binding of the oligonucleotide to a target nucleic acid sequence.
  • changes in fluorescent character can be assayed as described above.
  • at least 2 polycyclic substructure labeled oligonucleotides are used in a hybridization assay.
  • One oligonucleotide is labeled at its 3' end with a polycyclic substructure containing nucleotide while the other nucleotide is labeled at its 5' end with the same or another polycyclic substructure or with a different fluorophore such as fluorescein or rhodamine capable of energy transfer.
  • the two oligonucleotides recognize a complementary sequence in which the 3' end of the target sequence binds the oligonucleotide bearing the 3'-terminal fluorophore and the adjacent 5' sequence of the target binds to the oligonucleotide bearing the 5' terminal fluorophore.
  • Structure (1) monomers, when triphosphorylated and containing R 1 ribose or deoxyribose derivatives that are chain terminating are useful in methods for fluorescent chain- terminating dideoxynucleotide sequencing in the same general fashion as ddNTPs having other linker-attached fluorophores.
  • oligonucleotides capable of forming high melting duplexes with complementary sequences are useful in numerous processes, including antisense or codeblocking utilities in vivo or in vitro as well as diagnostics.
  • High melting duplexes are those having melting temperatures substantially above the melting temperatures of oligonucleotide or nucleic acid duplexes of the same sequence that contain the ordinary, naturally occurring bases, e.g., adenosine, cytidine, uridine, guanosine, thymidine and the like.
  • ⁇ Tm is measured by comparing control oligonucleotide binding to complementary RNA with the binding of test oligonucleotide to the same RNA, following the method described in Jones et al., "JOC" 58:2983 (1993).
  • ⁇ Tm was calculated against the Tm of a control oligonucleotide containing the same sequence, but with 5-methyl deoxy C in place of the cytidine bases of the test oligonucleotides.
  • the structures of the test polycycles are shown below, as are their designations (e.g., "benzene tricyclic C") for the Tm's shown in the following table ("dR" is deoxyribose).
  • Tm for the tabulated oligonucleotides is obtained by adding 62.5°C to the ⁇ Tm figure.
  • tandem arrangements will contain from 2 to about 10 polycyclic bases, which can be the same or different polycycles but generally are the same polycycle. They also optionally are copolymerized with purine or pyrimidine bases containing known alkynyl substitutions (PCT 92/10115 and USSN 08/050,698), in particular pyrimidine bases substituted at the 5 position with a carbon atom which is bonded to another atom by a Pi bond, or the fluorescent cytosine derivatives of Inoue et al (op cit).
  • the phenothiazine and phenoxazine deoxyriboside compounds have excitation and emission wavelengths of Ex380nM/EM 492nM and Ex360nM/EM450nM, respectively, and are intensely fluorescent. They compounds remain fluorescent upon incorporation into oligonucleotides and are visible intracellularly when bound to target sequences after direct injection in accord with known methods.
  • the test phenoxazine oligonucletides bind to target upon direct injection at an IC50 of 5-10 microM, with a beta-galactosidase control remaining unaffected, and therefore are useful in antisense methods for inhibition of translation of target RNAs.
  • primers will not hybridize and the polymerase will not initiate transcription until the reaction mixture is cooled to a level at which the primer will anneal to the target sequence (usually, about 55°C).
  • the elevated temperature that is chosen for use with the high-melting derivative oligonucleotides is one at which a substantial proportion of the extended primer population (about 10 to 90 mole %) is found dissociated from the target, but sufficient unextended primer is bound to permit extension. Optimally, this is about from 85 to 95°C, ordinarily 92 to 95°C.
  • the optimal temperature is determined empirically by simply selecting a range of temperatures within the melting range of the extended sequence, but within the annealing range of the derivative primers, and measuring the amount of amplification product to achieve satisfactory levels for the diagnostic or preparative processes at hand.
  • the optimal temperature will vary considerably depending upon the derivative bases chosen, whether they are adjacent or separated by other bases, the number of bases in the primers (the highest annealing temperatures are found with primers having greater than about 18 bases or base analogues), the proportions of pyrimidines and purines and the like.
  • the heat stable polymerase useful in this system is for example Taq polymerase or other suitable heat stable enzyme.
  • the amplification and priming reactions are conducted conventionally but at a substantially constant temperature.
  • the oligomers of this invention facilitate PCR or LCR processes
  • the fluorescent properties of the primers also facilitate detection of the extension products.
  • the extension products are readily separated from the imextended primers, e.g.
  • the fluoresence is enhanced by using NTP's comprising the fluorescent substructures of this invention in primer extension so that the fluorescent NTPs are incorporated into the extension products as well.
  • the polycyclic substructure used in the NTP's may be the same or different than the one incorporated into the primers.
  • the nucleoside was rendered anhydrous by pyridine addition and evaporation which was subsequently reacted with 880 mg of dimethoxytrityl chloride in 10 ml of pyridine for 1 h at 20°C.
  • the reaction was quenched with methanol and partitioned into methylene chloride and H2O.
  • the organic phase was concentrated under reduced pressure and purified by flash chroma tography on silica gel eluting with a gradient of isopropanol in methylene chloride (0% — 4%). The yield was 720 mg of DMT-AU.
  • the organic layer was purified by flash column chromatography on silica gel.
  • the isolated product had some impurity and was triturated with ethyl acetate.
  • the yellowish precipitate was filtered off and washed with methylene chloride to yield the title compound.
  • reaction mixture was purified by flash column chromatography on silica gel to afford the desired compound which containing some impurity and was used for the next reaction without further purification.
  • Example 3.D.2. The crude product of Example 3.D.2. (0.3 g) was dissolved in pyridine (10 ml) and reacted with acetic anhydride (3 ml) at room temperature for 3 h. The mixture was quenched with methanol, concentrated and partitioned between methylene chloride and saturated sodium bicarbonate aq. solution. The organic phase was purified by flash column chromatography on silica gel affording the title compound.
  • Example 3.D.4. The compound of Example 3.D.4. was dissolved in pyridine (15 ml) followed by addition of 4,4'-dimethoxytrityl chloride (3.1 g; 9.1 mmol) and DMAP (15 mg). After stirring at room temperature 3 h., the reaction mixture was concentrated, then partitioned between methylene chloride and saturated sodium bicarbonate aq. solution. The organic solution was isolated, dried over MgS ⁇ 4, purified by flash column chromatography on silica gel affording the title compound.
  • the nucleosides (3.F.I., 3.F.2., 3.F.3., 3.F.4.) were converted into their 3' hydrogen phosphonate derivatives and incorporated into oligonucleotides by standard procedures.
  • the reaction mixture was concentrated and the crude product was partitioned between ethyl acetate (EA, 200 ml) and saturated aqueous sodium bicarbonate (SASB, 200 ml).
  • EA ethyl acetate
  • SASB saturated aqueous sodium bicarbonate
  • the organic layer was dried (Na2S ⁇ 4 ) and concentrated on the rotary evaporator.
  • the crude product was purified by flash chromatography on silica gel [20-40-60-80-100% EA/Hexanes]. The product fractions were concentrated, and the product was triturated from EA.

Abstract

Compounds having particular interest as labels and various novel uses in diagnostics and therapeutics are provided which have structure (1), wherein R1 is a binding partner, a linker or H; a and b are 0 or 1, provided that the total of a and b is 0 or 1; A is N or C; X is S, O, -C(O)-, NH or NCH¿2R?6; Y is -C(O)-; Z is taken together with A to form an aryl or heteroaryl ring structure comprising 5 or 6 ring atoms wherein the heteroaryl ring comprises a single O ring heteroatom, a single N ring heteroatom, a single S ring heteroatom, a single O and a single N ring heteroatom separated by a carbon atom, a single S and a single N ring heteroatom separated by a carbon atom, 2 N ring heteroatoms separated by a carbon atom, or 3 N ring heteroatoms at least two of which are separated by a carbon atom, and wherein the aryl or heteroaryl ring carbon atoms are unsubstituted with other than H or at least 1 nonbridging ring carbon atom is substituted with R6 or =O; R6 is independently H, C¿1?-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, NO2, N(R?3)¿2, C N or halo, or an R6 is taken together with an adjacent R6 to complete a ring containing 5 or 6 ring atoms; R3 is a protecting group or H; and tautomers, solvates and salts thereof; and provided that where a is 0, b is 1, and R1 is (α) in which D2 is independently hydroxyl, blocked hydroxyl, mono-, di- or triphosphate, or an oligodeoxyribonucleotide otherwise containing only the bases A, G, T and C; and D3 is H or OH; then Z is not unsubstituted phenyl. Also provided are novel intermediates and methods for the preparation and use of the structure (1) compounds.

Description

PYRIMIDINE DERIVATIVES FOR LABELED BINDING PARTNERS
BACKGROUND OF THE INVENTION
This invention relates to the field of labels, particularly labels for diagnostic use. In particular, it relates to oligonucleotides that are modified to enhance the binding affinity of the oligonucleotides for complementary sequences and that in addition bear a readily detectable characteristic. Sequence specific binding of oligonucleotides both to single stranded RNA and DNA and to duplex DNA is widely known. This phenomenon has been harnessed for a great variety of diagnostic, preparative and therapeutic purposes. Previously, one objective of research in this field has been to increase the affinity of such oligonucleotides for their complementary sequences. For example, Froehler et al. have described oligonucleotides containing 5-substituted pyrimidine bases that substantially increase the Tm for oligonucleotide binding to complementary bases (International Publication No. 92/10115).
Fluorescent cytosine derivatives are known for use in preparing labeled DNA probes. See Inoue et al., Jpn Kokai JP 62059293, (1987). In addition, fluorescent labeled nucleotides have been employed in DNA sequencing. See Prober et al.„ "Science" 238:336-341 (1987). l,3-Dihydro-2H-imidazo[4,5-b]-quinolin-2-one derivatives as phosphodiesterase inhibitors are disclosed by Raeymaekers et al. (EP 541,153).
OBTECTS OF THE INVENTION
An object of this invention is to increase the affinity of oligonucleotides for their complementary sequences.
Another object of this invention is to provide improved detectable labels for use in diagnostic assays. A further object of this invention is to enhance diagnostic assays which employ oligonucleotides.
A still further object of this invention is to improve the therapeutic efficacy of oligonucleotides. These and other objects of the invention will be apparent from consideration of the specification as a whole.
Structural Formulas
Structural formulas are designated as parenthetical numerals. It will be understood that designation of aromaticity with respect to carbocycles and heterocycles herein includes any highly resonant unsaturated ring structure. Alternatively, placement of double bonds, where indicated, represents one potential structure for the depicted compound but will be understood to include other resonant states of the compound as well as protonated and charged species, only one of which may be shown.
SUMMARY OF THE INVENTION
In accordance with the objects, provided herein is a compound having the structure
Figure imgf000004_0001
wherein R1 is a binding partner, a linker or H; a and b are 0 or 1, provided that the total of a and b is 0 or 1; A is N or C;
X is S, O, -C(O)-, NH or NCH2R6;
Y is -C(O)-;
Z is taken together with A to form an aryl or heteroaryl ring structure comprising 5 or 6 ring atoms wherein the heteroaryl ring comprises a single O ring heteroatom, a single N ring heteroatom, a single S ring heteroatom, a single O and a single N ring heteroatom separated by a carbon atom, a single S and a single N ring heteroatom separated by a carbon atom, 2 N ring heteroatoms separated by a carbon atom, or 3 N ring heteroatoms at least two of which are separated by a carbon atom, and wherein the aryl or heteroaryl ring carbon atoms are unsubstituted with other than H or at least 1 nonbridging ring carbon atom is substituted with R^ or =0;
R3 is a protecting group or H;
R6 is independently H, Ci - C alkyl, C2 - C alkenyl, C2 - C6 alkynyl, NO2, N(R3)2, C≡N or halo, or an R6 is taken together with an adjacent R6 to complete a ring containing 5 or 6 ring atoms, and tautomers, solvates and salts thereof; and provided that where a is 0, b is 1, and R1 is
Figure imgf000005_0001
in which D2 is independently hydroxyl, blocked hydroxyl, mono, di or triphosphate, or an oligodeoxyribonucleotide otherwise containing only the bases A, G, T and C; and D3 is H or OH; then Z is not unsubstituted phenyl.
When the binding partner R1 is an oligomer, embodiments of the compounds of this invention have structure (8)
Figure imgf000006_0001
wherein D is OH or blocked OH;
D1 is an oligonucleotide coupling group or OH
X1 is independently a phosphodiester linkage or a phosphodiester substitute linkage bonded to the 2' or 3' position of a furanose ring, and the remaining 2' or 3' position is substituted with R21;
R21 is H, OH, F, -O-alkyl ( -C12), -S-alkyl ( - Cι2), OC3H5, or SC3H5; n is an integer from 0 to 98; and
B is a purine or pyrimidine base or analogue thereof provided that at least one B has the structure
Figure imgf000007_0001
wherein a, b, A, X, Y, Z, and the proviso are the same as for structure (1). The compounds of structure (1) are made through several novel intermediates. The 4-pyridones are obtained from an intermediate having structure (2)
Figure imgf000007_0002
wherein R1 is H or a linker group;
J is an aryl or heteroaryl ring structure comprising 5 or 6 ring atoms wherein the heteroaryl ring comprises a single O ring heteroatom, a single N ring heteroatom, a single S ring heteroatom, a single O and a single N ring heteroatom separated by a carbon atom, a single S and a single N ring heteroatom separated by a carbon atom, or 2 N ring heteroatoms separated by a carbon atom, and wherein the aryl or heteroaryl ring carbon atoms are unsubstituted with other than H or at least 1 nonbridging ring carbon atom is substituted with R6; and
R6 is defined above; and tautomers, salts and solvates thereof.
The 2-pyridones are synthesized from the intermediates of structures (3) and (6):
Figure imgf000008_0001
wherein R1 is H or a linker group; R22 is Ci - C3 alkyl; and J' is an aryl or heteroaryl ring structure comprising 5 or 6 ring atoms wherein the heteroaryl ring comprises a single O ring heteroatom, a single N ring heteroatom, a single S ring heteroatom, a single O and a single N ring heteroatom separated by a carbon atom, a single S and a single N ring heteroatom separated by a carbon atom, or 2 N ring heteroatoms separated by a carbon atom, and wherein the aryl or heteroaryl ring carbon atoms are unsubstituted with other than H or at least 1 nonbridging ring carbon atom is substituted with -C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, NO2, N(R3)2, or halo; R3 is a protecting group or H; and tautomers, solvates and salts thereof.
Figure imgf000009_0001
wherein A is independently S, O, N or CR6;
R6 is defined above; and R26 is Ci - C4 alkyl; and tautomers, salts and solvates thereof.
Phenoxazines and oxadiazines also are made from novel intermediate (5), as are pyridinopyrrolines, thiazines and oxazines.
Figure imgf000009_0002
wherein R1 is H or a linker group;
R24 is independently halo or Ci - C2 haloalkyl; R25 is independently -SH, -OH, =S or =0;
A is independently N or C; and
M, taken together with the radical -A-C(-R25), completes an aryl or heteroaryl ring structure comprising 5 or 6 ring atoms wherein the heteroaryl ring comprises a single O ring heteroatom, a single N ring heteroatom, a single S ring heteroatom, a single O and a single N ring heteroatom separated by a carbon atom, a single S and a single N ring heteroatom separated by a carbon atom, 2 N ring heteroatoms separated by a carbon atom, or 3 N ring heteroatoms at least two of which are separated by a carbon atom, and wherein the aryl or heteroaryl ring carbon atoms are unsubstituted with other than H or at least 1 nonbridging ring carbon atom is substituted with R^; and
R6 is defined above, and tautomers, solvates and salts thereof.
The phenopyrrolines are made by the use of the intermediate of structure (4)
Figure imgf000010_0001
wherein R1 is H or a linker group; J is an aryl or heteroaryl ring structure comprising 5 or 6 ring atoms wherein the heteroaryl ring comprises a single O ring heteroatom, a single N ring heteroatom, a single S ring heteroatom, a single O and a single N ring heteroatom separated by a carbon atom, a single S and a single N ring heteroatom separated by a carbon atom, or 2 N ring heteroatoms separated by a carbon atom, and wherein the aryl or heteroaryl ring carbon atoms are unsubstituted with other than H or at least 1 nonbridging ring carbon atom is substituted with R6; and R6 is defined above;
R23 is a protecting group; and tautomers, salts and solvates thereof. BRIEF DESCRIPTION OF THE DRAWINGS
In the drawings pR1 refers to R1 groups in which the hydroxyl groups are protected, e.g. by acetyl substitution, and the remaining substituents are defined above. Ordinarily, the schemes of Figures 1 - 10 are carried out with Rl being a linker group or H; optional covalent bonding to polymer is accomplished after the steps shown in the schemes, as is more fully described below.
Figs. 1 - 10 depict, respectively, methods for the preparation of compounds of this invention. For convenience, the schemes are named for the entire or partial ring structure fused to the pyrimidinyl radical. Figs. 1 - 10 show methods for the diazine (Fig. 1), triazine (Fig. 2), 2-pyridone (Fig. 3), 4-pyridone (Figs. 4, -2 and 4-3), phenopyrroline (Fig. 5), pyridinopyrroline (Fig. 6), thiazine and oxazine (Fig. 7), phenoxazine (Figs. 8-1 - 8-2), naphthyloxazine (Fig. 9) and oxadiazine (Figs. 10-1 and 10-2) compounds of this invention.
Fig. 11 depicts a scheme for the preparation of a linker-substituted thiazine derivative.
Figs. 12-1 - 12-2 depict synthetic methods for the preparation of oligomers of this invention containing derivatized phosphodiester linkages.
DETAILED DESCRIPTION OF THE INVENTION
Compounds of structure (1) contain two interfunctional portions. The portion of structure (1) other than R1 is referred to as the polycyclic substructure; it is fluorescent and participates in Watson-Crick base-pairing as well as stacking interactions. The remaining portion of the compounds of this invention, R1, represents an H atom, a linking group or a binding partner. The polycyclic substructure, the linking group and the binding partner are successively described below.
Compounds of Structure (1) - Polycyclic Substructure
The polycyclic substructure is a substantially planar fused heteroaryl or aryl functionality that generally serves as a cytosine surrogate for base-pairing and possesses the capability to participate in energy transfer either with other compounds having the polycyclic substructure or with fluorophores or chromogens which do not possess the polycyclic substructure. The polycyclic substructure base-pairs with guanosine, and in general will function as cytosine in hybridizing with nucleic acids or oligonucleotides. In addition, tautomers of the diazine substructure (9) below are capable of functioning as either cytosine analogues (where N* is protonated) or as thymine analogues (where N3 is protonated).
Figure imgf000012_0001
In structure (9), X, a and R1 are defined above and both R3' groups are cyclized to complete a heteroaryl ring structure comprising 5 or 6 ring atoms wherein the heteroaryl ring comprises a single O ring heteroatom, a single N ring heteroatom, a single S ring heteroatom, a single O and a single N ring heteroatom separated by a carbon atom, a single S and a single N ring heteroatom separated by a carbon atom, 2 N ring heteroatoms separated by a carbon atom, or 3 N ring heteroatoms at least two of which are separated by a carbon atom, and wherein the aryl or heteroaryl ring carbon atoms are unsubstituted with other than H or at least 1 nonbridging ring carbon atom is substituted with R6; and R6 is defined above.
The polycyclic substructure consists of a pyrimidine radical fused to two or more fused heterocyclic or aryl rings. Typically, the ring structures fused to the pyrimidine radical comprise the following structures (10) - (17): where (N) indicates the bond to pyrimidinyl N
Figure imgf000013_0001
Diazine Triazine 2-pyridone
Figure imgf000013_0002
4-pyridone pyroline oxazine
Figure imgf000013_0003
thiazine oxadiazine The fused ring structure represented by Z is not critical. Typically Z, taken together with C-C or C-N of the adjacent ring, completes a single-ring aryl or heteroaryl radical containing 5 or 6 ring atoms, although in other embodiments R6 groups on adjacent ring carbon atoms are taken together to complete an additional ring having 5 or 6 ring atoms, usually phenyl, thereby resulting in a fused bicycle. In those embodiments where Z is a heteroaryl radical, the heteroatoms are selected from the group consisting of 1-3 N atoms, 1 oxygen atom, 1 S atom, 1 oxygen and 1 N atom separated by at least 1 carbon atom, and 1 N atom and 1 S atom separated by at least 1 carbon atom. The Z ring structure is either unsubstituted with other than H or at least 1 nonbridging ring carbon atom is substituted with =0 (or its tautomer) or R6.
Ordinarily, Z is one of the following structures (18) - (20):
Figure imgf000014_0001
(18) (19) (20)
wherein R6 is defined above; A1 is N or CR6; and G is CH, S, O or NR4 where R4 is defined below.
An embodiment of structure (19) is structure (21):
Figure imgf000015_0001
(21 )
wherein R4 is H or Ci - Cβ alkyl; and R5 is H, N02 or Q - Cβ alkyl.
An embodiment of structure (18) is structure (22):
Figure imgf000015_0002
(22)
wherein R2 is Ci - C alkyl and R6 is H.
Embodiments of structure (20) are structures (23)-(25):
Figure imgf000016_0001
(23) (24) (25)
wherein A and R6 are defined above. Ordinarily, in the foregoing structures R6 is H, -C6 alkyl (n, s or t), Nθ2,
NH2, CN or halo, or adjacent R6 are taken together to complete phenyl, although adjacent R6 also are taken together to complete a thiazole, imidazole, oxazole, pyridine or pyrimidine ring. The R6 amino groups are protected against electrophiles using a protecting group (typically base labile) when the polycyclic substructure is to be employed as an intermediate, particularly in those instances where R1 is a linker intended for use in the preparation of an oligonucleotide.
Substituent R1 - Linkers
R1 linker groups are used to covalently bond the polycyclic substructure to the selected binding partner, although it will be understood that this need not be the sole utility for the linker functionality. Thus, a group present in.R1 linkers principally serves as the site for covalent bonding of the polycyclic substructure to a binding partner, typically by incorporation of the polycyclic substructure via the linker residue into a polymeric binding partner by grafting or copolymerization.
R1 linkers also optionally are substituted with groups that ordinarily will not participate in binding to the binding partner, e.g., halo, azido and protected hydroxyl. Generally, the linker group will contain from 2 to about 50 atoms. If it contains a cycle the cyclic functionality typically will be an oxygen, sulfur or phosphorus-containing saturated or unsaturated heterocycle having a total of about from 5 to 7 ring atoms and 1 to 3 heteroatoms. For the most part, the cycle will be a sugar, typically furanose or furanose substituted with phosphate, protected phosphate, hydroxyl or protected hydroxyl. Ordinarily, R1 is an abasic nucleotide residue or such a residue derivatized so as to be capable of incorporation into an oligonucleotide. Thus, the R1 linker frequently comprises an activated group or other group which can react with a polymer or other binding partner to be labeled with the polycyclic substructure. For example, groups described below that are compatible with commonly available oligonucleotide synthetic chemistries are useful. Other examples of reactant groups for covalent labeling are well-known from the diagnostic fields and have heretofore been used commonly to label proteins and oligonucleotide probes, as is more fully discussed below.
In one embodiment, R1 is an organic linker group such as alkyl, alkene, alkyne, alkoxyalkyl, alkylthioalkyl, alkoxy, saturated or unsaturated heterocycle and the like which optionally is substituted with at least one group capable of being crosslinked with or incorporated into a polymer, e.g., such groups as hydroxy, amino, carboxyl, vinyl, phosphate or phosphonate. Typical examples of such linkers include
E-CHR7-Rll.(CH2)mι-C(R8)((CH )mι(R9))-(CH2)mι-R10-(CH2)mι-, E-Q-C6H4-CH2-, E-CHR -0-CHR -0-CHR7-,
E-CHR7-(CHR13)-mι-CHR14-RlO-,
H(CH2)mιCH(COOR 0)(CH2)mι-
Figure imgf000017_0001
wherein D is an oligonucleotide coupling group;
D1 is independently F, H, O-alkyl, S-alkyl or an oligonucleotide coupling group, but only one D1 is a coupling group; Q is -C(R12)2-CH2-,C(Rl2)2-0-, -CR12=CR12-, or -C≡C-;
R7 is independently H or Ci - C4 alkyl;
R8 is H or Ci - C4 alkyl, C2 - C4 alkenyl or azidomethyl;
R9 is halo, H or OR20 R10 is O, CH2 or a covalent bond;
R11 is O, S, CH2, CHF or CF2;
R12 is independently H or halogen;
R13 is H, halogen, OR20, CH3, CH2OR2° or C3 - C6 acyloxyalkyl ;
R14 is H, halogen, OR20, CH3, CH2OR20, C3 - Cβ acyloxymethyl, or C2 - C6 acyloxy,
R15 is CH2, CHF or O;
R16 is CH or S, provided that when R19 is 0 or S, or R15 is CH, then R16 is not S;
R17 is H, OR20, halogen, N3, Ci - C4 alkyl or Ci - C4 alkoxy or is absent when R16 is S;
R18 is H, OR20, halogen, N3, Ci - C4 alkyl or Ci - C4 alkoxy;
R19 is O, S, CH2, CHF or CF2;
R20 is H or a protecting group; ml is independently 0 or an integer from 1 to 4; and E is OH, OR20, -P02 or -OP(0)2.
In some embodiments of this invention the linker group is HOCH(CHR13)CH2- or ECH2OCH(CHR13)CH2-. In embodiments of the invention where the compound of structure (1) is to be used as a monomer in the preparation of oligonucleotides, R1 is substructure (29) above in which D or D1 are oligonucleotide coupling groups. "Coupling group" as used herein means any group suitable for generating a linkage or phosphodiester substitute linkage between nucleotide bases or their analogues. These coupling groups are conventional and well-known for the preparation of oligonucleotides, and are prepared and used in the same fashion here. They may be configured as the beta anomers as denoted in substructure (29) or as the alpha anomers. In general, each compound comprising substructure (29) will contain two coupling groups: D or D1, but with only one D1 being a coupling group. The coupling groups are used as intermediates in the preparation of 3'-5' 5'-3', 5'-2' and 2'-5' internucleotide linkages in accord with known methods. Suitable coupling groups for phosphodiester linkages include OH, H- phosphonate (Fig. 12-1); (for amidite chemistries) alkylphosphonamidites or phosphoramidites such as beta-cyanoethylphosphoramidite (Fig. 12-2 and 12-3), N, N-diisopropylamino-beta-cyanoethoxyphosphine, N,N-diisopropylamino- methoxyphosphine, N,N-diethylamino-methoxyphosphine, N,N-diethylamino- beta-cyanoethoxyphosphine, N-morpholino-beta-cyanoethoxyphosphine, N- morpholino methoxyphosphine, bis-morpholino-phosphine, N,N- dimethylamino-beta-cyanoethylmercapto-phosphine, N,N-dimethylamino-2,4- dichlorobenzylmercapto-phosphine, and bis(N,N-diisopropylamino)-phosphine; and (for triester chemistries) 2-, or 4-chlorophenyl phosphate, 2,4-dichlorophenyl phosphate, or 2,4-dibromophenyl phosphate. See for example U.S. patents 4,725,677; 4,415,732; 4,458,066; and 4,959,463; and PCT 92/07864. If Dl is a coupling group then D typically will be hydroxyl blocked with a group suitable for ensuring that the monomer is added to the oligomer rather than dimerizing. Such groups are well known and include DMT, MMT, FMOC (9- fluorenylmethoxycarbonyl), PAC (phenoxyacetyl), a silyl ether such as TBDMS (t- butyldiphenylsilyl) and TMS (trimethylsilyl). Obviously, the opposite will apply when one desires to synthesize an oligomer in the opposite direction (5'→3'). Ordinarily, D is DMT, D1 is located on the 3' carbon, the remaining D1 is H and the D1 groups are in the alpha anomer conformation.
Substituent R1 - Binding Partner
A binding partner is any substance that is desired to be detected (analyte) or a substance that non-covalently binds to the analyte. Binding partners are well- known from the immunoassay art and include hapten-antibody pairs such as those exploited in drug immunoassays using EMIT or ELISA technologies. Binding partners are employed analytically in enzymology, where the substrate or the enzyme is labeled. Binding partners also are known from the oligonucleotide hybridization art, including oligonucleotide-nucleic acid binding partners (as in diagnostic probes or therapeutic antisense oligonucleotides) or oligonucleotide-protein binding partners (aptamers). In accordance with this invention, the polycyclic substructure is substituted at R1 by any binding partner. While the binding partner may be a small molecule such as a drug, hapten, substrate or the like, ordinarily it is a polymer.
Compounds of structure (1) wherein R1 is a polymer are an important feature of this invention. For the most part, when R1 is a polymer an R1 linker group has been subsumed into the polymer structure, either as a monomer unit or by grafting onto pre-existing polymer. Therefore, when R1 is a polymer it will be understood that the polymer may comprise the residue of a linking group wherein the linker residue originated with a monomeric subunit or was extraneous to the monomeric subunits of the polymer. All that is needed is that the polycyclic substructure be covalently bound to the polymer.
The nature of the polymer is not critical. Typically R1 polymers include a biopolymer such as an oligonucleotide, protein (including antibodies, enzymes, cell membrane proteins, glycoproteins, glycolipids, lipoproteins and nucleoproteins), peptide, nucleic acid, or glycan or other polysaccharide or carbohydrate. In certain embodiments the polymer is an oligonucleotide analogue in which either or both of the sugar or phosphodiester subunits have been substituted by groups that continue to permit base pairing by the polycyclic substructure but which have other desirable characteristics which are not shared with native substituents, e.g., those which mask the negative charges of the phosphodiester linkages or replace the phosphodiester linkage with another group. The site of polymer substitution by the structure (1) poly cycle is not critical. In general, any reactive group on the polymer is satisfactory when it is desired to graft the linker-substituted polycyclic substructure onto a pre-existing polymer. Obviously, the site of the substitution should not be in a location in which the polycyclic substructure will interfere with the intended function for the polymer, e.g. enzyme active site, antibody CDR, and the like as will be understood by the artisan. An amino acid side chain such as that of lysine, glutamic acid, serine, asparagine and the like will be satisfactory for grafting to protein R1, as will alpha amino groups, provided that the amino acids in question do not participate in the binding partner or ligand/substrate interaction involved in the assay in which the labeled protein is to be used. The same reasoning is used to select a binding site or sites on other analytes such as sugars, glycans, lipids, and the like. For example, the 1' position of ribose or deoxyribose is satisfactory as the site of substitution of an oligonucleotide by the polycyclic substructure. Suitable sites will be known to the artisan, particularly in those instances where the polycyclic substructure is intended to substitute for other fluorescent labels heretofore employed.
The degree of substitution by the polycyclic base of this invention is not critical. One skilled in the art will choose the reaction conditions such that the resulting labeled polymer will be substituted with sufficient molar proportion of polycyclic substructure to facilitate its use in the desired analytical, therapeutic or preparative procedure. This is accomplished by preparing the labeled polymers under a variety of heretofore conventional conditions, e.g., the time, temperature or duration of the labeling reaction, to yield a matrix of multiply- labeled polymers. These then are screened for suitability in the intended application. Molar ratios of about from 1:1 to 10:1 label to polymer generally are suitable. Where the labeled polymer is prepared by monomer incorporation, the resulting polymer may contain about from 1% to 100% polycyclic substructure substitution. In this embodiment each polycyclic base of this invention is considered a monomer unit (even though the polymer may have been assembled from intermediate synthons containing 2 or more inventive polycyclic substructures per synthon).
Oligomers are polymers containing at least 2 nucleotides or nucleotide analogues, at least one of which comprises a polycyclic substructure of this invention. In most embodiments of this invention at least one polycyclic substructure is covalently linked to a nucleotide base, or to the same or a different polycyclic substructure, by an organic moiety that is sufficiently flexible to permit the bases and substructure(s) to hybridize to complementary bases. This linkage may be a conventional phosphodiester linkage in which a nucleotide analogue containing the polycyclic substructure (where R1 is deoxyribosyl or ribosyl) is incorporated into an oligonucleotide by conventional methods. Alternatively, other groups are used to replace the phosphodiester linkage or, in some instances, both of the phosphodiester linkage and the sugar group. These replacement groups are termed substitute linkages for the purposes herein.
Substitute linkages are well-known from the prior literature. They include for example phosphorodithioates (Marshal, "Science" 259:1564, 1993), phosphorothioates and alkylphosphonates (Kibler-Herzog, "Nucleic Acids
Research" [hereafter "NAR"] 19:2979, 1991; PCT 92/01020; EP 288,163; Fig. 12-1), phosphoroamidates (Froehler, "NAR" 16:4831, 1988), phosphotriesters (Marcus- Sekura, "NAR" 15:5749, 1987), boranophosphates (Sood, "J. Am. Chem. Soc." [hereafter JACS] 112:9000, 1991), 3'-0-5'-S-phosphorothioates (Mag, "NAR" 19:1437, 1991), 3'-S-5'-0-phosphorothioates (Kyle, "Biochemistry" 31:3012, 1992), 3'-CH2-5'-0-phosphonates (Heinemann, "NAR" 19:427, 1991), 3'-NH-5'-0- phosphonates (Mag, "Tet. Ltt." 33:7323, 1992), sulfonates and sulfonamides (Reynolds, "J. Org. Chem." [hereafter "JOC"] 57:2983, 1992), sulfones (Huie, "JOC" 57:4519, 1992), sulfoxides (Huang, "JOC" 56:3869, 1991), sulfides (Schneider, "Tet Ltt." 30:335, 1989), sulfamates, ketals and formacetals (Matteucci, "JACS" 113:7767, 1991, PCT 92/03385 and PCT 90/06110), 3'-thioformacetals (Jones, "JOC" 58:2983, 1993), 5'-S-thioethers (Kawai, "Nucleosides Nucleotides" 10:1485, 1991), carbonates (Gait, "J. Chem. Soc. Perkin Trans 1" 1389, 1979), carbamates (Stirchak "JOC" 52:4202, 1987), hydroxylamines (Vasseur, "JACS" 114:4006, 1992), methylamine (methylimines) and methyleneoxy (methylimino) (Debart, "Bioorg. Med. Chem. Lett." 2:1479, 1992) and amino (PCT 91/06855). Also of interest are hydrazino and siloxane (U.S. Patent 5,214,134) linkages.
Substitute linkages per se also are known for the replacement of the entire phosphoribosyl linkage of conventional oligonucleotides. These include for example morpholino-carbamates (Stirchak, "NAR" 17:6129, 1989), peptides
(Nielsen et al., "Science" 254:1497, 1991; U.S.S.N. 07/892,902 and 07/894, 397), and riboacetal linkages (PCT 92/10793).
Additional disclosure of substitute linkages is found in PCT 91/08213, 90/15065, 91/15500, 92/20702, 92/20822, 92/20823, 92/04294, 89/12060 and 91/03680; Mertes, "J. Med. Chem." 12:154, 1969; Mungall, "JOC" 42:703, 1977; Wang, "Tet Lett" 32:7385, 1991; Stirchak, "NAR" 17:6129, 1989; Hewitt, "Nucleosides and Nucleotides" 11:1661, 1992; and U.S. patents 5,034,506 and 5,142,047.
The phosphodiester or substitute linkages herein are used to bond the 2' or 3' carbon atoms of ribose or ribose analogues to the 5' carbon atoms of the adjacent ribose or ribose analogue. Ordinarily, the linkages in oligonucleotides are used to bond the 3' atom of the 5' terminal oligonucleotide to the 5' carbon atom of the next 3'-adjacent nucleotide or its analogue.
Table 1 below sets forth various examples of suitable substitute linkages for use with the polycyclic nucleotide analogue bases of this invention. The columns designated D (5') and D1 (3' or 2') describe the substructure (29) substituents used to produce the X1 linkage of structure (8), shown in the right column, using methods known per se in the art and described in U.S.S.N. 07/892,902 and other citations above. The starting materials in Table 1, or those used to prepare the starting materials of Table 1, generally possess structure (1) in which R1 is ribose or a ribose analogue comprising a 5' hydroxyl group and a 3' or hydroxyl group, prepared as described herein or in the citations, with the polycyclic base being substituted for the bases used in the citations. Sequentially useful starting materials are designated by an arrow. Bracketed monomers are reacted to form dinucleotide analogues having the X1 substitute linkage. The reactions are repeated or ganged with phosphodiester linkages in order to produce trimers, tetramers or larger oligomers, including up to about 98 bases. Bl means a blocking group. As used herein, "blocking group" refers to a substituent other than H that is conventionally attached to oligomers or nucleotide monomers, either as a protecting group, a coupling group for synthesis, PO3-2, or other conventional conjugate such as a solid support. As used herein, "blocking group" is not intended to be construed solely as a nucleotide protecting group, but also includes, for example, coupling groups such as hydrogen phosphonate, phosphoramidite and others as set forth above. Accordingly, blocking groups are species of the genus of "protecting groups" which as used herein means any group capable of preventing the O-atom or N- atom to which it is attached from participating in a reaction involving an intermediate compound of structure (1) or otherwise forming an undesired covalent bond. Such protecting groups for O- and N-atoms in nucleotide monomers or nucleoside monomers are described and methods for their introduction are conventionally known in the art. Protecting groups also are useful to prevent reactions and bonding at carboxylic acids, thiols and the like as will be appreciated by those skilled in the art.
Figure imgf000025_0001
Figure imgf000026_0001
The oligomers of this invention contain naturally occurring nucleotides or derivatives thereof. In some oligonucleotide embodiments the companion nucleotide residues contain pyrimidine nucleotides substituted at the 5 position with a carbon atom which is distally Pi bonded to another atom as for instance 1- alkenyl, 1-alkynyl, heteroaromatic and 1-alkynyl-heteroaromatic groups such as 5-propynyl-cytosine and -uridine nucleotides (see US 92/10115 and U.S. Serial No. 08/050,698). Other analogs of native bases for use herein include alkylated purines or pyrimidines, acylated purines or pyrimidines, or other analogues of purine or pyrimidine bases and their aza and deaza analogues. These include, for example N4,N -ethanocytosine, 7-deazaxanthosine, 7-deazaguanosine, 8-oxo- N6-methyladenine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5- fluorouracil, 5-bromouracil, 5-carboxymethylaminomethyl-2-thiouracil, 5- carboxymethylaminomethyl uracil, inosine, N6-isopentenyl-adenine, 1- methyladenine, 2-methylguanine, 5-methylcytosine, N6-methyladenine, 7- methylguanine, 5-methylaminomethyl uracil, 5-methoxy aminomethyl-2- thiouracil, 5-methoxyuracil, pseudouracil, 5-methyl-2-thiouracil, 2-thiouracil, 4- thiouracil, 5-(l-propynyl)-4-thiouracil, 5-(l-propynyl)-2-thiouracil, 5-(l-propynyl)- 2-thiocytosine, 2-thiothymidine, and 2,6-diaminopurine. In addition to these base analogs, pyrimidine analogs including 6-azacytosine, 6-azathymidine and 5- trifluoromethyluracil described in Cook, D. P., et al, International Publication No. WO 92/02258 can be conveniently incorporated into the invention oligomers. Preferred bases include adenine, guanine, thymine, uracil, cytosine, 5- methylcytosine, 5-(l-propynyl)uracil, 5-(l-propynyl)cytosine, 8-oxo-N6- methyladenine, 7-deaza-7-methylguanine, 7-deaza-7-methyladenine and 7- deazaxanthosine.
Embodiments of the oligomers of the invention comprise a moiety which is capable of effecting at least one covalent bond between the oligomer and a nucleic acid duplex or strand. Multiple covalent bonds can also be formed by providing a multiplicity of such crosslinking moieties. The covalent bond is preferably to a base residue in the target strand, but can also be made with other portions of the target, including the saccharide or phosphodiester. Preferred crosslinking moieties include acylating and alkylating agents, and, in particular, those positioned relative to the sequence specificity-conferring portion so as to permit reaction with the target location in the strand. Exemplary crosslinking moieties are disclosed and claimed in PCT 91/03680. See also Praseuth ("P.N.A.S. USA" 85:1349, 1988), Fedorova ("FEBS" 228:273, 1988), Meyer ("J. Am. Chem. Soc" 111:8517, 1989), Lee ("Biochemistry" 27:3197, 1988), Home ("J. Am. Chem. Soc." 112:2435, 1990), Shaw ("J. Am. Chem. Soc." 113:7765, 1991). Oligomers of inverted polarity also fall within the scope of this invention. "Inverted polarity" means that the oligomer contains tandem sequences which have opposite polarity, i.e., one having polarity 5'→3' followed by another with polarity 3'→5', or vice versa. These sequences thus are joined by linkages which can be thought of as effectively a 3'-3' internucleoside junction (however the linkage is accomplished), or effectively a 5'-5' internucleoside junction. For a further description of suitable methods for making such oligomers see PCT 92/10115. Compositions of "parallel-stranded DNA" designed to form hairpins secured with AT linkages using either a 3'-3' inversion or a 5'-5' inversion have been synthesized by van de Sande ("Science" 241:551, 1988). In addition, oligomers which contain 3'-3' linkages have been described (Home, op cit; and Froehler "Biochemistry" 31:1603, 1992). These oligomers are useful as binding partners for double stranded nucleic acids to form triple helix (or triplex) complexes as a means for inhibition of the expression of target gene expression (PCT 89/05769 and 91/09321).
Methods for Synthesis
The compounds of structure (1) where R1 is a linker or H are prepared by methods known in the art per se and as more fully described below. Typically, such compounds are prepared from cytosine or cytosin-1-yl linker substituted derivatives as shown in the synthetic schemes of Figs 1 - 10, whereby the starting material is already substituted with R1 and the subsequent reactions are directed to closing the polycyclic ring. In these embodiments the hydroxyl, amino and any other labile groups of R1 are protected as required by the schemes. In another approach, R1 of the starting material is H and the linker is added after the ring closure steps set forth in the schemes, in the same fashion as has heretofore been employed in the alkylation of pyrimidine bases intended for use as antiviral compounds. For example, conventional procedures exist for alkylating pyrimidine bases with an appropriate organophosphorus synthon having a preformed R1 substructure. These chemistries are well-known previously for the preparation of acyclic and cyclic nucleosides, nucleotides and nucleotide phosphonate analogues. They are readily adapted for use with the schemes described herein for preparation of compounds of structure (1) wherein R1 is a linker or H. The scheme of Fig. 6 is preferred for fused pyrroline compounds in which the ring immediately fused to the pyrimidinyl radical is an N-containing heterocycle; if this ring is aryl, the Fig. 5 scheme is preferred.
The scheme of Fig. 11 is useful in preparing starting materials for peptide substitute linkages of the sort disclosed in Nielsen et al, op cit., or for preparing carboxyalkyl linkers for cross-linking to, or incorporation into, proteins or polypeptides.
In those embodiments in which R1 is a binding partner such as a polymer the compounds of this invention are synthesized by covalently crosslinking the linker modified polycyclic base of this invention to the binding partner, or (where the binding partner is a polymer) by incorporating into the polymer a monomer unit which is substituted by the polycyclic base of this invention.
In the first embodiment (polymer grafting) a linker-substituted polycyclic substructure is covalently bonded via any conventional cross-linking agent to the polymer. Most conveniently, structure (1) compounds in which R1 is hydroxyl- or amino-substituted alkyl are readily cross-linked to reactive groups present in the molecule to be labeled as noted above. Typical cross-linking agents include succinic anhydride, DCC, EDC, BOP, and glutaraldehyde. Cyanogen bromide activated carbohydrates also are used. The cross-linking agents are used to bond the linker-substituted polycycle to the polymer in the same fashion as polymers heretofore have been cross-linked to ligands, e.g., to hydroxyl or amino-bearing moieties. An example of a suitable method is described per se in Cook et al., U.S. patent 5,218,105. This method is readily applied to covalently bond an amino-substituted R1 linker to the 5' terminus of an oligonucleotide. In the second embodiment (copolymerization) the linker is capable of functioning as a monomer for copolymerization with other monomer units that may or may not be substituted with the polycyclic substructure of structure (1). In some embodiments, the R1 linker is an alkyl carboxylate, an alkyl amine or an amino acid for incorporation into peptides by in vitro methods. However, in the typical embodiment the R1 polymeric binding partner is an oligonucleotide as depicted in structure (8), and these conveniently are made by copolymerization with a nucleotide analogue substituted with the polycyclic substructure. The starting materials for the synthesis of structure (8) generally are compounds of structure (1) in which R1 is ribose or deoxyribose substituted with appropriate blocking and coupling groups further described above. Suitable starting monomers for oligonucleotides having substitute linkages are set forth in Table 1, and they are prepared in the same fashion as other nucleotide analogue bases described in the literature. Similarly, conventional phosphodiester linkages are prepared from nucleotide analogues containing coupling groups D and D1 described above. The compounds of this invention then are incorporated into the desired oligonucleotide by known methods of in vitro synthesis described in the referenced methods. Alternatively, polycylic substructure-substituted nucleotide triphosphates may be incorporated into oligonucleotides as cytosine analogues by DNA polymerase or reverse transcriptase in vivo or in vitro (see Ward, U.S. Patent 4,711,955). In this case, R1 is ribosyl or deoxribosyl triphosphate, or a triphosphorylated analogue thereof recognized by DNA polymerase or reverse transcriptase which is then incorporated into an oligonucleotide by template-directed transcription.
Synthesis of oligomers containing about 3 or more nucleotide residues is preferably accomplished using synthons such as dimers (which contain substitute or diester linkages) or trimers (each carrying a terminal coupling group suitable for use with amidite, H-phosphonate or triester chemistries.) The synthon is then linked to the oligomer or another synthon via a phosphodiester or phosphorous-containing substitute linkage.
Oligomers containing methylphosphonate and phosphodiester linkages are readily prepared by solid-phase oligomer synthesis techniques. A description of modifications useful in the synthesis of phosphorothioate linked oligomers are found, for example, in EP 288,163, wherein the oxidation step in solid phase automated synthesis using amidite chemistry can be independently adjusted at any step to obtain the phosphorothioate. An alternate method for synthesis of oligomers with phosphorothioate linkages, via hydrogen phosphonate chemistry, has also been described (Froehler "NAR" 14:5399, 1986). Sulfurization is accomplished using reagents such as tetraethylthiuram disulfide, dibenzoyl tetrasulfide, thiophosphoric acid disulfide, 3H-l,2-benzodithiol-3-one 1,1-dioxide and the like as described (Vu, "Tet Lett" 26:3005, 1991; Rao, "Tet Lett" 33:4839, 1992; U.S. Patent 5,151,510; Iyer, "JOC" 55:4693, 1990; Dahl, "Sulfur Reports"
11:167, 1991). These sulfurization reagents are used with either phosphoramidite or hydrogen-phosphonate chemistries. Synthesis of phosphorothioate oligomers having controlled stereochemistry is used to generate stereoregular invention oligomers as described (EP 506,242). Thionomethyl phosphonate is prepared with methylphosphonamidite followed by sulfurization as described (Roelen, "Tet Lett" 33:2357, 1992) or with the sulfurization reagents described above. Uses for the Compounds of this Invention
The compounds of this invention find uses in the diagnostic, analytic and therapeutic fields, or as intermediates in the preparation of compounds useful in such fields.
The linker-substituted compounds of structure (1) are useful as intermediates in the preparation of the labeled biopolymers of structure (1), wherein a biopolymer is rendered fluorescent or otherwise detectably labeled by linkage to the polycyclic substructure. It is most convenient, however, to use the appropriate structure (1) compounds as monomers in the preparation of structure (1) nucleic acids or oligonucleotides. The labeled biopolymers are employed in diagnostic assays or preparative procedures in the same fashion as other fluorophor-labeled biopolymers, e.g. in fluorescence polarization methods, fluorescence activated cell sorting, competitive-type EMIT immunoassays and the like.
The monomers are of particular use in preparing oligonucleotides for diagnostic or therapeutic use. Since oligonucleotides having 2 or more adjacent nucleotides or nucleotide analogues bearing the polycyclic substructure exhibit greatly increased Tm, such oligonucleotides are particularly useful in therapeutic or diagnostic utilities where highly stable duplex hybridization structures are desired. Since these oligonucleotides are fluorescent, changes in the oligonucleotide fluorescence can be followed as the oligonucleotide binds to complementary nucleic acid or oligonucleotide sequences. These changes are detectable as modifications in energy transfer, e.g., fluorescence quenching or shifts in activation or emission wavelength(s).
The polycyclic substructure labeled oligonucleotides are employed in diagnostic or analytic methods in the same fashion as other labeled oligonucleotides. For example, the oligonucleotides are used in hybridization methods in which an antibody capable of binding base-paired structure (1) is used to detect binding of the oligonucleotide to a target nucleic acid sequence. In addition, changes in fluorescent character can be assayed as described above. Following the general method of EP 70,685, at least 2 polycyclic substructure labeled oligonucleotides are used in a hybridization assay. One oligonucleotide is labeled at its 3' end with a polycyclic substructure containing nucleotide while the other nucleotide is labeled at its 5' end with the same or another polycyclic substructure or with a different fluorophore such as fluorescein or rhodamine capable of energy transfer. The two oligonucleotides recognize a complementary sequence in which the 3' end of the target sequence binds the oligonucleotide bearing the 3'-terminal fluorophore and the adjacent 5' sequence of the target binds to the oligonucleotide bearing the 5' terminal fluorophore. Binding is assayed by measuring a change in fluorescence of either or both of the oligomers when they bind in tandem according to the illustrated model. In other embodiments only a single labeled oligonucleotide is employed in the hybridization method. The oligonucleotides of this invention thus are useful in solution phase hybridization diagnostics, i.e., it is not necessary to perform a phase separation in order to detect labeled oligonucleotide binding.
Structure (1) monomers, when triphosphorylated and containing R1 ribose or deoxyribose derivatives that are chain terminating (e.g. where R17, R18 and both D1 are not hydroxyl), are useful in methods for fluorescent chain- terminating dideoxynucleotide sequencing in the same general fashion as ddNTPs having other linker-attached fluorophores.
Since the compounds of structure (1) are capable of participating in Watson-Crick base pairing they will bind to nucleic acids and therefore are useful in detecting the presence of nucleic acids containing guanosine. Structure (1) oligonucleotides capable of forming high melting duplexes with complementary sequences are useful in numerous processes, including antisense or codeblocking utilities in vivo or in vitro as well as diagnostics. High melting duplexes are those having melting temperatures substantially above the melting temperatures of oligonucleotide or nucleic acid duplexes of the same sequence that contain the ordinary, naturally occurring bases, e.g., adenosine, cytidine, uridine, guanosine, thymidine and the like. "Substantially above" means that the derivative oligonucleotide, when hybridized with its complementary sequence, will not dissociate from the duplex until the temperature is raised from about 2 to 40°C, ordinarily about 8 to 40°C, above the dissociation temperature of the same oligonucleotide having the analogous normal A, C, U, G or T bases, but to no greater temperature than about 95°C. This is known as the Δ Tm. Ordinarily, Δ Tm is measured by comparing control oligonucleotide binding to complementary RNA with the binding of test oligonucleotide to the same RNA, following the method described in Jones et al., "JOC" 58:2983 (1993). The ability of the compounds of this invention to form high melting duplexes is shown in the following data. The polycyclic cytidine derivatives of this invention were incorporated into two test 15mer oligonucleotides by conventional phosphodiester chemistry. The test sequence is complementary to the sequence of "compound 26" RNA described in Jones et al., "JOC" op cit. In one test oligonucleotide ("homo-3"), 3 of the designated polycycles were inserted into the olignucleotide in tandem, i.e., as XXX (the C triplet in the test oligo). In the other ("alt-3"), the 3 polycycles were not adjacent but instead were separated by from 1 to 5 bases (the nonadjacent cytidine bases in the test oligo). The remainder of the bases were C and T as deduced from the reference sequence. A comparison oligonucleotide containing a 5-propyne deoxy C triplet (analogous to the homo-3 oligonucleotide containing the bases of this invention, "5-Propyne dC (homoC)") was prepared and tested in the same assay system. Δ Tm was calculated against the Tm of a control oligonucleotide containing the same sequence, but with 5-methyl deoxy C in place of the cytidine bases of the test oligonucleotides. The structures of the test polycycles are shown below, as are their designations (e.g., "benzene tricyclic C") for the Tm's shown in the following table ("dR" is deoxyribose).
Figure imgf000034_0001
Benzene Tricyclic Cytidine 2-Pyridine Tricyclic Cytidine
Figure imgf000034_0002
Phenothiazine Tricyclic Phenoxazine Tricyclic Cytidine Cytidine
Table π Tricyclic Cytidine Derivatives for Enhanced RNA Affinity
Cytidine Modification
5-Propyne dC (homo-3)
Benzene Tricyclic dC (homo-3)
Benzene Tricyclic dC (alt-3) 2-Pyridine Tricyclic dC (homo-3)
2-Pyridine Tricyclic dC (alt-3)
Phenathiazine Tricyclic dC (homo-
Phenathiazine Tricyclic dC (alt-3)
Phenoxazine Tricyclic dC (homo-3) Phenoxazine di-methyl Tricyclic d (homo-3)*
Phenoxazine Tricyclic dC (alt-3)
Figure imgf000035_0001
Tm for the tabulated oligonucleotides is obtained by adding 62.5°C to the Δ Tm figure.
* Example F.3.
This data demonstrates the enhancement in melting point afforded by the oligonucleotides of this invention, particularly those having tandem arrangements of the novel bases. In general, such tandem arrangements will contain from 2 to about 10 polycyclic bases, which can be the same or different polycycles but generally are the same polycycle. They also optionally are copolymerized with purine or pyrimidine bases containing known alkynyl substitutions (PCT 92/10115 and USSN 08/050,698), in particular pyrimidine bases substituted at the 5 position with a carbon atom which is bonded to another atom by a Pi bond, or the fluorescent cytosine derivatives of Inoue et al (op cit).
The phenothiazine and phenoxazine deoxyriboside compounds have excitation and emission wavelengths of Ex380nM/EM 492nM and Ex360nM/EM450nM, respectively, and are intensely fluorescent. They compounds remain fluorescent upon incorporation into oligonucleotides and are visible intracellularly when bound to target sequences after direct injection in accord with known methods. The test phenoxazine oligonucletides bind to target upon direct injection at an IC50 of 5-10 microM, with a beta-galactosidase control remaining unaffected, and therefore are useful in antisense methods for inhibition of translation of target RNAs.
The compounds of this invention, or other oligonucleotides capable of forming high melting duplexes (e.g. the Pi bonded bases discussed above), are useful in improved methods for polymerase chain reaction ("PCR") or ligase chain reaction ("LCR") amplification and detection of nucleic acids. In one embodiment, the high melting oligonucleotides are used as one or both primers in classical PCR or as probes in LCR. Particularly in PCR processes, the elevated melting temperature of duplexes with high melting primers avoids the need to thermally cycle the reaction because at these elevated temperatures (about 68 to 95°C, preferably greater than about 75°C; the derivative primer will continue in at least some proportion to anneal to the target but extension product will not. Ordinary primers will not hybridize and the polymerase will not initiate transcription until the reaction mixture is cooled to a level at which the primer will anneal to the target sequence (usually, about 55°C). The elevated temperature that is chosen for use with the high-melting derivative oligonucleotides (a temperature suitable for all of annealing, extension and melting) is one at which a substantial proportion of the extended primer population (about 10 to 90 mole %) is found dissociated from the target, but sufficient unextended primer is bound to permit extension. Optimally, this is about from 85 to 95°C, ordinarily 92 to 95°C. Alternatively, the optimal temperature is determined empirically by simply selecting a range of temperatures within the melting range of the extended sequence, but within the annealing range of the derivative primers, and measuring the amount of amplification product to achieve satisfactory levels for the diagnostic or preparative processes at hand.
It will be understood that the optimal temperature will vary considerably depending upon the derivative bases chosen, whether they are adjacent or separated by other bases, the number of bases in the primers (the highest annealing temperatures are found with primers having greater than about 18 bases or base analogues), the proportions of pyrimidines and purines and the like. The heat stable polymerase useful in this system is for example Taq polymerase or other suitable heat stable enzyme. Thus, whatever the optimum temperature chosen, the amplification and priming reactions are conducted conventionally but at a substantially constant temperature. Not only do the oligomers of this invention facilitate PCR or LCR processes, the fluorescent properties of the primers also facilitate detection of the extension products. The extension products are readily separated from the imextended primers, e.g. on the basis of molecular weight, and detected by their fluorescence, thereby avoiding staining with agents such as ethidium bromide. In some embodiments, the fluoresence is enhanced by using NTP's comprising the fluorescent substructures of this invention in primer extension so that the fluorescent NTPs are incorporated into the extension products as well. The polycyclic substructure used in the NTP's may be the same or different than the one incorporated into the primers.
All citations are hereby cited as background. The following examples are illustrative and do not limit the scope of this invention.
Example 1 Representative Application of the Scheme of Fig. 5
A. 5-(2-N-tert-butoxycarbonyl aniline) 5,-dimethoxytrityl-2,- deoxyuridine (DMT-AU).
The synthesis of N-(tert-butoxycarbonyl)-2-(trimethylstannyl) aniline
(BocSnA) was as reported in Salituro and McDonald, J. Org. Chem. 53, 6138-6139,
1988.
1.5 g of 5-iodo-2'-deoxyuridine, 5 g of BocSnA and 50 mg of palladium dichloride bistriphenyl phosphine were dissolved in 5 ml DMF and sealed under N2. The reaction was heated for 16 h at 50°C. The reaction was cooled, diluted with EtOH, 1 ml of triethylamine was added and filtered through Celite. The clear solution was then concentrated under reduced pressure and flash chromatographed on silica gel with a gradient of methanol in methylene chloride (0% — 10%). Upon concentration the nucleoside was rendered anhydrous by pyridine addition and evaporation which was subsequently reacted with 880 mg of dimethoxytrityl chloride in 10 ml of pyridine for 1 h at 20°C. The reaction was quenched with methanol and partitioned into methylene chloride and H2O. The organic phase was concentrated under reduced pressure and purified by flash chroma tography on silica gel eluting with a gradient of isopropanol in methylene chloride (0% — 4%). The yield was 720 mg of DMT-AU.
B. Dimethoxytrityl benzopyrimidine polycyclic nucleoside 700 mg of DMT-AU was treated with 3 ml of trimethylsilyldimethyl amine in 3 ml CH3CN for 2 h at 20°C followed by evaporation at reduced pressures redissolving in CH3CN and reevaporation 2 times. The residue was then dissolved in 7 ml CH3CN and 0.67 ml of triethylamine, 11 mg of 4- dimethylaminopyridine and 420 mg of mesitylenesulfonylchloride were added under N2 and stirred for 4 h at 20°C. 0.72 ml of 1,8 diazabicyclo [5.4.0] undec-7- ene was added and stirred 30' at 20°C followed by 0.015 ml of H2O and stirring for 1 h. Workup consisted of partitioning between methylene chloride and 0.5 M aqueous dibasic sodium phosphate. Evaporation under reduced pressure of the organic phase followed by silica gel chromatography using an isopropanol gradient in methylene chloride (0% — 5%) yielded 300 mg of tricyclic nucleoside. The nucleoside was converted into its 3' hydrogen phosphonate derivative and incorporated into oligonucleotides by standard procedures (see Jones, et. al., J. Org. Chem. 58, 2983-2991, 1993.)
Example 2 Representative Application of the Scheme of Fig. 6
A. 2-Fluoro-3-trimethylstannyl-pyridine (FSnP)
Metalation of 2-fluoropyridine was performed as described in Estel, Marsais and Queguiner, J. Org. Chem. 53, 2740-2744, 1988. The lithium anion was quenched with 1 eq. of trimethyl tin chloride in THF (1 M) at -78°C and stirred for 30', quenched with 1 M sodium bicarbonate and extracted with ethyl acetate. Upon Na Sθ4 drying and evaporation under reduced pressure the resulting oil was used without further purification.
B. Deoxy cytidine-5-(3-(2-fluoropyridine))-5'dimethoxytrityl-2'- deoxycytidine (DMT-FPdC)
500 mg of 5-Iodo-2'-deoxycytidine was heated at 100°C in 4 ml DMF and 2 ml DMF dimethyl acetal. After 2 h. the reaction was cooled and concentrated under reduced pressure. The residue was dissolved in 4 ml DMF, 2 ml FSnP and palladium chloride bistriphenylphosphine was added under N2 and heated for 16 h. at 50°C. The reaction cooled and 4 ml of ammonia-saturated methanol was added and stirred for 4 h. at 20°C. The reaction was concentrated under reduced pressure and precipitated into anhydrous ethyl ether. The precipitate was dried and dissolved in pyridine, evaporated under reduced pressure and redissolved in 4 ml pyridine. 400 mg of dimethoxytritylchloride was added and after 30 minutes at 20°C, the reaction was quenched with MeOH, extracted with methylene chloride and H2O. The organic layer was concentrated and purified by flash chromatography on silica gel using a methanol gradient in methylenechloride (5—10%).
C. Dimethoxytrityl-2-pyridine Polycyclic Nucleoside
0.3 ml of dry diisopropylamine was combined with 4 ml dry THF under N2 and cooled to 0°C 1.2 ml of 1.7 M butyllithium in THF was added dropwise and the reaction was stirred for 5 min. 200 mg of DMT-FPdC in 10 ml of dry THF was then added dropwise. After 1 h. at 0°C the reaction was quenched with 1M sodium bicarbonate and extracted with ethyl acetate. The organic layer dried with Na Sθ4 and was concentrated under reduced pressure and purified by flash chromatography on silica gel using a gradient of methanol (5 — 10%) in methylene chloride. After concentration under reduced pressure the compound was converted to H-phosphonate derivative by standard procedures (see Jones, et. al., "JOC" 58, 2983-2991, 1993.)
Example 3 Representative Application of the Scheme of Figs. 8-1 and 8-2
A. S'.S'-Diacetyl-S-bromo-Σ'-deoxyuridine
5-Bromo-2'-deoxyuridine (7.3 g ; 23.7 mmol) was dissolved in pyridine (30 ml) and treated with acetic anhydride (10 g; 95 mmol) at room temperature for 3 h. The reaction was quenched with methanol and concentrated. The residue was partitioned between CH2C12 and saturated NaHCθ3 aq. solution. The organic layer was separated, dried over MgSθ4, then concentrated to give the title compound quantitatively.
B.1. 5-Bromo-3'.5'-diacetyl-N4-(2-hydroxyphenyl)-2'-deoxy cytidine
To a solution of 3', 5'-diacetyl-5-bromo-2'-deoxyuridine (8.5 g; 21.7 mmol), methylene chloride (100 ml), triethylamine (8.8 g; 87 mmol) and DMAP (0.13 g) was added 2-mesitylsulfonyl chloride (9.5 g; 43.4 mmol). After stirring at room temperature for 18 h. DBU (6.6 g; 43.5 mmol) and 2-aminophenol (9.5 g; 87 mmol) were added and the solution was stirred for 1 hr. The reaction mixture was concentrated and the residue was partitioned between ethyl acetate and saturated sodium bicarbonate aq. solution. The organic layer was purified by flash column chromatography on silica gel to yield the title compound.
B.2. 5-Bromo-3'.5'-diacetyl-N4-(2-hydroxy-m-nitrophenyl)-2'- deoxy cytidine
To a solution of 3', 5'-diacetyl-5-bromo-2'-deoxyuridine (4.8 g; 12 mmol), methylene chloride (50 ml), triethylamine (5.0 g; 50 mmol) and DMAP (0.10 g) was added 2-mesitylsulfonyl chloride (5.2 g; 24 mmol). After stirring at room temperature for 4 h., DBU (3.6 g; 24 mmol) and 2-amino-4-nitrophenol (7.4 g; 48 mmol) were added and the solution was stirred for 3 h. The reaction mixture was concentrated and the residue was partitioned between ethyl acetate and saturated sodium bicarbonate. The organic layer was purified by flash column chromatography on silica gel. The isolated product had some impurity and was triturated with ethyl acetate. The yellowish precipitate was filtered off and washed with methylene chloride to yield the title compound.
B.3. S-Bromo-^S'-diacetyl-N^tt-hydroxy-S.S-dimethylphenyD-r- deoxycytidine
The title compound was synthesized by the way of synthesis of compound
3.B.I. except that the reaction used 2-amino-4,6-dimethylphenol in place of 2- amino-4-nitrophenol. The reaction mixture was purified by flash column chromatography on silica gel to afford the desired compound which containing some impurity and was used for the next reaction without further purification.
B.4. 5-Bromo-3',5'-diacetyl-N4-r2-(3-hydroxynaphthyl)1-2'-deoxycytidine
To a solution of 3',5'-diacetyl-5-bromo-2'-deoxyuridine (4.0 g; 10 mmol), methylene chloride (50 ml), triethylamine (4.0 g; 40 mmol) and DMAP (0.1 g) was added 2-mesitylsulfonyl chloride (4.4 g; 20 mmol). After stirring at room temperature for 6 h. DBU (3.0 g; 20 mmol) and 3-amino-2-naphthol (6.4 g; 40 mmol) were added and the solution was stirred for 4 h. at room temperature. The reaction mixture was concentrated, the residue was dissolved in ethyl acetate and washed with saturated sodium bicarbonate aq. solution, but the title compound was precipitated from solution. The precipitates were filtered off and washed thoroughly with ethyl acetate, then methylene chloride, and dried. A small quantity of title compound also was obtained from the filtrate.
CI. 5-Bromo-N4-(2-hydroxyphenyl)-2'-deoxy cytidine 5-Bromo-3',5'-diacetyl-N4-(2-hydroxyphenyl)-2'-deoxycytidine (Ex.3.B.) (4.3 g; 8.9 mmol) was treated with saturated ammonium in methanol at room temperature for 3 h. and concentrated to dryness. The residue was triturated with methylene chloride /hexane (1/1). The off-white solid was filtered off, washed thoroughly with methylene chloride /hexane and dried. C.2. 5-Bromo-N4-(2-hydroxy-m-nitrophenyl)-2'-deoxy cytidine
The title compound was prepared from compound 3.B.2. by the way of synthesis of compound 3.C.I.
C.3. 5-Bromo-N4-(2-hydroxy-3.5-dimethylphenyl)-2'-deoxycytidine
The crude compound of 3.C.2. was treated with 100 ml of saturated NH3 in methanol at room temperature for 5 h. then concentrated to dryness. The residue was partitioned between methylene chloride and saturated sodium bicarbonate aq. solution. The organic phase was isolated, dried and purified by flash column chromatography on silica gel affording the title compound.
C.4. 5-Bromo-N4-r2-(3-hydroxynaphthyl)1-2'-deoxycytidine
The compound produced in example 3.B.4. (3.1 g; 5.8 mmol) was treated with saturated NH3 in methanol (150 ml) at room temperature for 6 h. The reaction mixture was concentrated and the residue was triturated with methylene chloride/ethyl acetate. The precipitate was filtered off, washed thoroughly with methylene chloride, dried, yielding 2.5 g, 96%.
D.l. 2'-Deoxyphenoxazine Tricyclic dC
Potassium fluoride (4.3 g; 75 mmol) was added to an ethanol solution (150 ml) of the compound prepared in example 3.C.I. (3.0 g; 7.5 mmol). The resulting solution was refluxed for 3 days. The solution was cooled to room temperature, some precipitate was filtered off and the filtrate was concentrated to dryness and used for Example 3.F.I. without further purification.
D.2. 2'-Deoxy-p-nitrophenoxazine Tricyclic dC
A solution of the compound of Example 3.C.2. (2.4 g; 5.4 mmol), potassium fluoride (3.1 g; 54 mmol), ethanol (100 ml) and DMSO (30 ml) was placed in a bomb and reacted at 120°C for 3 days. The reaction mixture was concentrated and purified by flash column chromatography on silica gel. The crude product was used for Example 3.E. without further purification.
D.3. 2'-Deoxy-2,4-dimethylphenoxazine Tricyclic dC The title compound was synthesized by the same procedure as in Example 3.D.I., except that the dimethylphenyl compound of Example 3.C.3. was used as starting material.
D.4. Σ'-Deoxy-naphthoxazene Tricyclic dC
The compound of example 3.C.4. (2.4 g; 5.3 mmol) and potassium fluoride (3.1 g; 53 mmol) were refluxed in ethanol (100 ml) for 4 days. The reaction mixture was cooled to room temperature and concentrated to dryness, yielding the title compound.
E. 3',5'-Diacetyl-2'-deoxy-p-nitrophenoxazine Tricyclic dC
The crude product of Example 3.D.2. (0.3 g) was dissolved in pyridine (10 ml) and reacted with acetic anhydride (3 ml) at room temperature for 3 h. The mixture was quenched with methanol, concentrated and partitioned between methylene chloride and saturated sodium bicarbonate aq. solution. The organic phase was purified by flash column chromatography on silica gel affording the title compound.
F.l. 5'-Q-Dimethoxytrityl-2'-deoxyphenoxazine Tricyclic dC The crude product of Example 3.D.I. was dissolved in pyridine (35 ml) and treated with 4,4'-dimethoxytrityl chloride (5 g; 14.7 mmol) at room temperature for 1.5 h, concentrated. The residue was dissolved in methylene chloride and washed with saturated sodium bicarbonate aq. solution. The organic phase was isolated, dried, concentrated, then purified by flash column chromatography on silica gel to yield the title compound. The nucleoside was converted into its 3' hydrogen phosphonate derivative and incorporated into oligonucleotides by standard procedures.
F.2. 5'-Q-Dimethoxytrityl-2'-deoxy-4-nitrophenoxazine Tricyclic dC The compound of Example 3.E. (0.27 g; 0.608 mmol) was treated with saturated NH3 in methanol (20 ml) at room temperature for 4 h, then concentrated. The residue was dissolved in pyridine (10 ml) followed by addition of 4,4'-dimethoxytrityl chloride (0.25 g; 0.73 mmol). After stirring at room temperature for 3 h., the reaction mixture was concentrated, then partitioned between methylene chloride and saturated sodium bicarbonate aq. solution. The organic phase was dried and purified by flash column chromatography on silica gel, affording the title compound.
F.3. 5'-0-Dimethoxytrityl-2'-deoxy-2.4-dimethylphenoxazine Tricyclic dC The compound of Example 3.D.3 ( 0.3 g; 0.87 mmol) was dissolved in pyridine (5 ml) followed by addition of 4,4'-dimethoxytrityl chloride (0.4 g; 1.2 mmol) and DMAP (10 mg). The reaction mixture was stirred at room temperature for 2 h., concentrated, then partitioned between methylene chloride and saturated sodium bicarbonate aq. solution. The organic phase was isolated, dried and purified by flash column chromatography on silica gel affording the title compound. Unreacted compound (85 mg) was recovered from aq. solution.
F.4. 5'-0-Dimethoxytrityl-2'-deoxy-2-naphthoxazene Tricyclic dC
The compound of Example 3.D.4. was dissolved in pyridine (15 ml) followed by addition of 4,4'-dimethoxytrityl chloride (3.1 g; 9.1 mmol) and DMAP (15 mg). After stirring at room temperature 3 h., the reaction mixture was concentrated, then partitioned between methylene chloride and saturated sodium bicarbonate aq. solution. The organic solution was isolated, dried over MgSθ4, purified by flash column chromatography on silica gel affording the title compound.
G. 5'-0-Dimethoxytrityl-2'-deoxy-phenoxazine Tricyclic dC
The nucleosides (3.F.I., 3.F.2., 3.F.3., 3.F.4.) were converted into their 3' hydrogen phosphonate derivatives and incorporated into oligonucleotides by standard procedures.
Example 4 Representative Application of the Scheme of Fig.7
A.l. 5-Iodo-3',5'-diacetyl-N -(2-mercaptophenyl)-2'-deoxycytidine
To a solution of 3',5'-diacetyl-5-iodo-2'-deoxyuridine (2.19 g, 5.00 mmol) acetonitrile (ACN, 75 ml), triethylamine (TEA, 6.96 ml, 50.0 mmol) and DMAP (0.15 g, 1.25 mmol) was added mesitylsulfonyl chloride (2.19 g, 10.0 mmol). After stirring at ambient temperature for 18h, DBU (2.14 ml, 10.0 mmol) and 2- aminothiophenol was added (2.14 g, 20.0 mmol) and the solution was stirred for 1 h. The reaction mixture was concentrated and the crude product was partitioned between ethyl acetate (EA, 200 ml) and saturated aqueous sodium bicarbonate (SASB, 200 ml). The organic layer was dried (Na2Sθ4) and concentrated on the rotary evaporator. The crude product was purified by flash chromatography on silica gel [1-5% 2-propanol/dichloromethane (DCM)] to deliver the product. IH NMR (CDCI3) δ 2.10 (s, 3H), 2.15 (m, IH, 2.17 (s, 3H, 2.77 (ddd, IH, J=2.2, 5.2, 15.1 FIz), 4.14 (bs, IH), 4.35 (m, 3H), 5.20 (m, IH), 6.13 (t, IH, J = 6.5 Hz), 6.78 (m, 2H), 7.30 (m, 2H) , 8.05 (s, IH).
A.2. 5-Bromo-3,.5'-diacetyl-N4-(2-hydroxyphenyl)-2'-deoxy cytidine
To a solution of 3',5'-diacetyl-5-bromo-2'-deoxyuridine (1.79 g, 5.00 mmol) acetonitrile (ACN, 75 ml), triethylamine (TEA, 6.96 ml, 50.0 mmol) and DMAP (0.15 g, 1.25 mmol) was added mesitylsulfonyl chloride (2.19 g, 10.0 mmol). After stirring at ambient temperature for 1 h, DBU (2.14 ml, 10.0 mmol) and 2- aminophenol were added (2.18 g, 20.0 mmol) and the solution was stirred for 1 h. The reaction mixture was concentrated and the crude product was partitioned between ethyl acetate (EA, 200 ml) and saturated aqueous sodium bicarbonate (SASB, 200 ml). The organic layer was dried (Na2Sθ4) and concentrated on the rotary evaporator. The crude product was purified by flash chromatography on silica gel [20-40-60-80-100% EA/Hexanes]. The product fractions were concentrated, and the product was triturated from EA.
B. 2'-Deoxyphenothiazine
A solution of diacetate from Step A (600 mg, 1.10 mmol), potassium tert- butoxide (1.0 M in THF, 2.20 ml, 2.20 mmol) and abs. ethanol (25 ml) was heated at reflux for 0.5 h. The solution was allowed to cool to ambient temperature and treated with acetic acid (0.5 ml). The solution was concentrated; toluene (50 ml) was added, and the solution was again concentrated. The crude product was purified by flash chromatography on silica gel (2-10% Methanol (ME)/DCM) to afford the phenothiazine. !H NMR (dόDMSO) δ 2.02 (m, IH), 2.11 (m, IH), 3.56 (dq, 2H, J = 3.5, 12.0 Hz), 3.77 (m, IH), 4.19 (m, IH), 6.06 (t, IH, J = 6.3 Hz), 6.92 (m, 2H), 7.06 (m, 2H), 7.82 (s, IH).
These compounds were dimethoxytritylated C and phosphitylated D by standard procedures.
C 5'-Q-DMT-2'-deoxyphenothiazine (from Fig. 7) lH NMR (d6 DMSO) δ 2.17 (m, 2H), 3.14 (dd, IH, J=1.6, 9.7 Hz), 3.23
(dd, IH, J=4.6, 10.4 Hz), 3.74 (s, 6H), 3.91 (m, IH), 4.26 (m, IH), 5.31 (d, IH, J=4.4 Hz), 6.09 (t, IH, J=6.4 Hz), 6.91 (m, 4H), 7.07 (m, IH), 7.20-7.41 (m, 12H), 7.59 (s, IH), 10.46 (s, IH).
S'-O-DMT-S'-H-phosphonate-Σ'-deoxyphenothiazine, tri ethyl ammonium salt
IH NMR (d6 DMSO) δ 1.15 (t, 9H, J=7.23 Hz), 2.23 (m, IH), 2.36 (m, IH), 3.00 (q, 6H, J=7.2 Hz), 3.15 (dd, IH, J=2.0, 9.95 Hz), 3.27 (dd, J=4.4, 10.5 Hz), 3.72 (s, 6H), 4.08 (m, IH), 4.70 (m, IH), 6.09 (t, IH, J=6.4 Hz), 6.60 (d, IH, J=584 Hz), 6.92 (m, 4H), 7.06 (m, IH), 7.20-7.41 (m, 12H), 7.57 (s, IH), 10.5 (bs, IH), 10.6 (bs, IH). 1pNMR (d6 DMSO) 0.45 (dd, JA=8.6 Hz, J=P.H=584
Hz).
The claims hereafter are to be construed to exclude any subject matter that, at the date of this invention, would not have been patentable under applicable statutory and judicial authority.

Claims

We Claim:
1. A compound having the structure:
Figure imgf000047_0001
wherein R1 is a binding partner, a linker or H; a and b independently are 0 or 1, provided that the total of a and b is 0 or 1; A is independently N or C; X is independently S, O, -C(O)-, NH or NCH2R6; Y is -C(O)-; Z is taken together with A to form an aryl or heteroaryl ring structure comprising 5 or 6 ring atoms wherein the heteroaryl ring comprises a single O ring heteroatom, a single N ring heteroatom, a single S ring heteroatom, a single O and a single N ring heteroatom separated by a carbon atom, a single S and a single N ring heteroatom separated by a carbon atom, 2 N ring heteroatoms separated by a carbon atom, or 3 N ring heteroatoms at least two of which are separated by a carbon atom, and wherein the aryl or heteroaryl ring carbon atoms are unsubstituted with other than H or at least 1 nonbridging ring carbon atom is substituted with R6 or =0;
R6 is independently H, Ci - C alkyl, C2 - C alkenyl, C2 - Cβ alkynyl, N02, N(R3)2, C≡N or halo, or an R6 is taken together with an adjacent R6 to complete a ring containing 5 or 6 ring atoms;, R3 is a protecting group or H; and tautomers, solvates and salts thereof; and provided that where a is 0, b is 1, and R1 is
Figure imgf000048_0001
in which D2 is independently hydroxyl, blocked hydroxyl, mono, di or triphosphate, or an oligodeoxyribonucleotide otherwise containing only the bases A, G, T and C; and D3 is H or OH; then Z is not unsubstituted phenyl.
2. The compound of claim 1 wherein Z is an aryl ring substituted with C2-C6 alkenyl, C2-C6 alkynyl, N02, N(R3)2, C≡N, or halo and R1 is
Figure imgf000048_0002
(29) D is an oligonucleotide coupling group; D1 is independently F, H, O-alkyl, S-alkyl or an oligonucleotide coupling group, but only one D1 is an coupling group.
The compound of claim 1 wherein Z is
Figure imgf000049_0001
(18) (19) (20)
A1 is N or CR6; and
G is CH, S, O or NR4; and
R4 is H or O - C6 alkyl.
4. The compound of claim 3 wherein adjacent R6 are taken together to complete a phenyl, thiazole, imidazole, oxazole, pyridine or pyrimidine ring.
5. The compound of claim 3 wherein G is S, O or NR4.
6. The compound of claim 1 wherein b is 0.
7. The compound of claim 1 wherein a is 1 and X is O.
8. The compound of claim 1 wherein b is 1 and a is 0.
9. The compound of claim 1 wherein A is C.
10. The compound of claim 1 wherein A is N.
11. The compound of claim 1 wherein Z together with CH-A completes an aryl ring containing 6 ring atoms or a heteroaryl ring containing 1 ring N atom, 2 ring N atoms, 1 ring oxygen atom, 1 ring nitrogen and 1 ring sulfur atom separated by at least 1 carbon atom, and 3 ring N atoms, two of which are separated by at least 1 carbon atom. 12. The compound of claim 11 wherein Z together with CH-A completes a heteroaryl ring containing 5 ring atoms, one of which is N.
13. The compound of claim 1 wherein A is C, b is 0, a is 1, and X is O, C(O) or S.
14. The compound of claim 1 wherein a and b are both 0.
15. The compound of claim 1 wherein A is N, b is 0, a is 1 and X is O.
16. The compound of claim 1 wherein a is 0, b is 1 and Y is C(O).
17. A compound having the structure
Figure imgf000050_0001
wherein R1 is H or a linker group; J is an aryl or heteroaryl ring structure comprising 5 or 6 ring atoms wherein the heteroaryl ring comprises a single O ring heteroatom, a single N ring heteroatom, a single S ring heteroatom, a single O and a single N ring heteroatom separated by a carbon atom, a single S and a single N ring heteroatom separated by a carbon atom, or 2 N ring heteroatoms separated by a carbon atom, and wherein the aryl or heteroaryl ring carbon atoms are unsubstituted with other than H or at least 1 nonbridging ring carbon atom is substituted with R^;
R6 is independently H, Ci - Cβ alkyl, C2 - C6 alkenyl, C2 - Cβ alkynyl, N02,
N(R3)2, C≡N or halo, or an R6 is taken together with an adjacent R6 to complete a ring containing 5 or 6 ring atoms; and tautomers, salts and solvates thereof.
18. A compound having the structure
Figure imgf000051_0001
wherein R1 is H or a linker group;
R22 is C1 - C3 alkyl;
J' is an aryl or heteroaryl ring structure comprising 5 or 6 ring atoms wherein the heteroaryl ring comprises a single O ring heteroatom, a single N ring heteroatom, a single S ring heteroatom, a single O and a single N ring heteroatom separated by a carbon atom, a single S and a single N ring heteroatom separated by a carbon atom, or 2 N ring heteroatoms separated by a carbon atom, and wherein the aryl or heteroaryl ring carbon atoms are unsubstituted with other than H or at least 1 nonbridging ring carbon atom is substituted with R6;
R6 is independently C C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, N02, N(R3)2, or halo, or an R6 is taken together with an adjacent R6 to complete a ring containing 5 or 6 ring atoms; and
R3 is a protecting group or H; and tautomers, solvates and salts thereof.
19. A compound having the structure
Figure imgf000052_0001
wherein R1 is H or a linker group; J is an aryl or heteroaryl ring structure comprising 5 or 6 ring atoms wherein the heteroaryl ring comprises a single O ring heteroatom, a single N ring heteroatom, a single S ring heteroatom, a single O and a single N ring heteroatom separated by a carbon atom, a single S and a single N ring heteroatom separated by a carbon atom, or 2 N ring heteroatoms separated by a carbon atom, and wherein the aryl or heteroaryl ring carbon atoms are unsubstituted with other than H or at least 1 nonbridging ring carbon atom is substituted with R6;
R6 is independently H, Q - C6 alkyl, C2 - Cβ alkenyl, C2 - Cβ alkynyl, N02, N(R3)2, C≡N or halo, or an R6 is taken together with an adjacent R6 to complete a ring containing 5 or 6 ring atoms;
R23 is a protecting group;
R3 is a protecting group or H; and tautomers, salts and solvates thereof.
20. A compound having the structure
Figure imgf000053_0001
wherein R1 is H or a linker group; R24 is independently halo or Ci - C2 haloalkyl;
R 5 is independently -SH, -OH, =S or =0;
A is independently N or C; and
M, taken together with the radical -A-C(-R25), completes an aryl or heteroaryl ring structure comprising 5 or 6 ring atoms wherein the heteroaryl ring comprises a single O ring heteroatom, a single N ring heteroatom, a single S ring heteroatom, a single O and a single N ring heteroatom separated by a carbon atom, a single S and a single N ring heteroatom separated by a carbon atom, 2 N ring heteroatoms separated by a carbon atom, or 3 N ring heteroatoms at least two of which are separated by a carbon atom, and wherein the aryl or heteroaryl ring carbon atoms are unsubstituted with other than H or at least 1 nonbridging ring carbon atom is substituted with R^;
R6 is independently H, - Cβ alkyl, C2 - Cβ alkenyl, C2 - Cβ alkynyl, N02,
N(R )2, C≡N or halo, or an R6 is taken together with an adjacent R6 to complete a ring containing 5 or 6 ring atoms; and R3 is a protecting group or H; and tautomers, solvates and salts thereof. 21. A compound having the structure
Figure imgf000054_0001
wherein A is independently S, O, N or CR6;
R6 is independently H, Ci - Cβ alkyl, C2 - CO alkenyl, C - C6 alkynyl, N02, N(R3)2, C≡N or halo, or an R6 is taken together with an adjacent R6 to complete a ring containing 5 or 6 ring atoms;
R26 is Ci - C3 alkyl; and
R3 is a protecting group or H; and tautomers, salts and solvates thereof.
22. A compound of claim 1 having the structure
Figure imgf000055_0001
wherein D is OH or blocked OH;
D1 is an oligonucleotide coupling group or OH;
X1 is independently a phosphodiester linkage or a phosphodiester substitute linkage bonded to the 2' or 3' position of a furanose ring, and the remaining 2' or 3' position is substituted with R21;
R21 is H, OH, F, -O-alkyl (Q - Ci2), -S-alkyl (Q - Q2), OC3H5, or SC3H5; n is an integer from 0 to 98; and
B is a purine or pyrimidine base or analogue thereof provided that at least one B has the substructure
Figure imgf000056_0001
wherein a and b are 0 or 1 provided that the total of a and b is 0 or 1; A is N or C;
X is S, O, -C(O)-, NH or NCH2R6; Y is -C(O)-;
Z is taken together with A to form an aryl or heteroaryl ring structure comprising 5 or 6 ring atoms wherein the heteroaryl ring comprises a single O ring heteroatom, a single N ring heteroatom, a single S ring heteroatom, a single O and a single N ring heteroatom separated by a carbon atom, a single S and a single N ring heteroatom separated by a carbon atom, 2 N ring heteroatoms separated by a carbon atom, or 3 N ring heteroatoms at least two of which are separated by a carbon atom, and wherein the aryl or heteroaryl ring carbon atoms are unsubstituted with other than H or at least 1 nonbridging ring carbon atom is substituted with R*> or =0;
R6 is independently H, Ci - C6 alkyl, C2 - CO alkenyl, C2 - Cβ alkynyl, N02, N(R3)2, C≡N or halo, or an R6 is taken together with an adjacent R6 to complete a ring containing 5 or 6 ring atoms; R3 is a protecting group or H; and tautomers, solvates and salts thereof; and provided that where a is 0, b is 1, and R1 is
Figure imgf000057_0001
in which D2 is independently hydroxyl, blocked hydroxyl, mono, di or triphosphate, or an oligodeoxyribonucleotide otherwise containing only the bases A, G, T and C; and
D3 is H or OH; then Z is not unsubstituted phenyl.
23. The compound of claim 22 wherein X1 is -P(S)(0)-, -P(0)(0)-, -P(Me)(0)-, or -P(Me)(S)-.
24. The compound of claim 22 wherein Z is
Figure imgf000057_0002
(18) (19) (20)
Al is N or CR6; G is CH, S, O or NR4; and R4 is H or O - C6 alkyl; and the tautomers, solvates and salts thereof. 25. The compound of claim 22 wherein adjacent R6 are taken together to form phenyl, thiazole, imidazole, oxazole, pyridine or pyrimidine radicals.
26. The compound of claim 22 wherein adjacent B groups have substructure (30).
27. The compound of claim 22 wherein a single B group having substructure (30) is located at the 5' or 3' end of the oligomer.
28. A method comprising contacting a nucleic acid with the compound of claim 22.
29. The compound of claim 22 wherein Z is an aryl ring substituted with C2- Cβ alkenyl, C2-Cβ alkynyl, N02, N(R3)2, C≡N, or halo.
30. A method comprising contacting a target nucleic acid sequence with an oligonucleotide substantially complementary to the target sequence, the oligonucleotide comprising at least one base analogue capable of increasing the Tm of a duplex of the oligonucleotide and the target to about 85 to 95°C, heating the duplex to about from 85 to 95°C, and contacting the duplex with a DNA polymerase.
PCT/US1994/010536 1993-09-17 1994-09-16 Pyrimidine derivatives for labeled binding partners WO1995007918A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT94929830T ATE239752T1 (en) 1993-09-17 1994-09-16 PYRIMIDINE DERIVATIVES AS LABELED BINDING PARTNERS
DE69432636T DE69432636T2 (en) 1993-09-17 1994-09-16 PYRIMID DERIVATIVES AS MARKED BINDING PARTNERS
JP50939395A JP4098356B2 (en) 1993-09-17 1994-09-16 Pyrimidine derivatives for labeled binding partners
EP94929830A EP0719272B1 (en) 1993-09-17 1994-09-16 Pyrimidine derivatives for labeled binding partners

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/123,505 US5502177A (en) 1993-09-17 1993-09-17 Pyrimidine derivatives for labeled binding partners
US08/123,505 1993-09-17

Publications (2)

Publication Number Publication Date
WO1995007918A2 true WO1995007918A2 (en) 1995-03-23
WO1995007918A3 WO1995007918A3 (en) 1995-08-03

Family

ID=22409069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1994/010536 WO1995007918A2 (en) 1993-09-17 1994-09-16 Pyrimidine derivatives for labeled binding partners

Country Status (6)

Country Link
US (5) US5502177A (en)
EP (1) EP0719272B1 (en)
JP (1) JP4098356B2 (en)
AT (1) ATE239752T1 (en)
DE (1) DE69432636T2 (en)
WO (1) WO1995007918A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999024452A2 (en) * 1997-11-07 1999-05-20 Isis Pharmaceuticals, Inc. Pyrimidine derivatives for labeled binding partners
US6153745A (en) * 1995-09-22 2000-11-28 Amersham Pharmacia Biotech Uk Limited Relating to mutagenesis of nucleic acids
US7070933B2 (en) 2001-09-28 2006-07-04 Gen-Probe Incorporated Inversion probes
US8569331B2 (en) 2010-11-01 2013-10-29 Arqule, Inc. Substituted benzo[f]lmidazo[1,2-d]pyrido[2,3-b][1,4]diazepine compounds
USRE44779E1 (en) 1997-03-07 2014-02-25 Santaris Pharma A/S Bicyclonucleoside and oligonucleotide analogues
US11447519B2 (en) 2016-11-10 2022-09-20 San Diego State University Research Foundation Compounds for fluorescence sensing of duplex formation

Families Citing this family (854)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335434B1 (en) 1998-06-16 2002-01-01 Isis Pharmaceuticals, Inc., Nucleosidic and non-nucleosidic folate conjugates
US8153602B1 (en) 1991-11-19 2012-04-10 Isis Pharmaceuticals, Inc. Composition and methods for the pulmonary delivery of nucleic acids
US5433081A (en) * 1993-01-22 1995-07-18 Major; Thomas O. Refrigerant recovery and purification method and apparatus with oil adsorbent separator
DE69433036T2 (en) 1993-09-03 2004-05-27 Isis Pharmaceuticals, Inc., Carlsbad AMINODERIVATIZED NUCLEOSIDES AND OLIGONUCLEOSIDES
US5502177A (en) * 1993-09-17 1996-03-26 Gilead Sciences, Inc. Pyrimidine derivatives for labeled binding partners
US6420549B1 (en) 1995-06-06 2002-07-16 Isis Pharmaceuticals, Inc. Oligonucleotide analogs having modified dimers
US5854033A (en) 1995-11-21 1998-12-29 Yale University Rolling circle replication reporter systems
US20070275921A1 (en) * 1996-06-06 2007-11-29 Isis Pharmaceuticals, Inc. Oligomeric Compounds That Facilitate Risc Loading
US20040147022A1 (en) * 1996-06-06 2004-07-29 Baker Brenda F. 2'-methoxy substituted oligomeric compounds and compositions for use in gene modulations
US20030044941A1 (en) 1996-06-06 2003-03-06 Crooke Stanley T. Human RNase III and compositions and uses thereof
US20040171031A1 (en) * 1996-06-06 2004-09-02 Baker Brenda F. Sugar surrogate-containing oligomeric compounds and compositions for use in gene modulation
US20050119470A1 (en) * 1996-06-06 2005-06-02 Muthiah Manoharan Conjugated oligomeric compounds and their use in gene modulation
US7812149B2 (en) * 1996-06-06 2010-10-12 Isis Pharmaceuticals, Inc. 2′-Fluoro substituted oligomeric compounds and compositions for use in gene modulations
US9096636B2 (en) 1996-06-06 2015-08-04 Isis Pharmaceuticals, Inc. Chimeric oligomeric compounds and their use in gene modulation
WO2005121371A2 (en) * 2004-06-03 2005-12-22 Isis Pharmaceuticals, Inc. Double strand compositions comprising differentially modified strands for use in gene modulation
US20050053976A1 (en) * 1996-06-06 2005-03-10 Baker Brenda F. Chimeric oligomeric compounds and their use in gene modulation
US5898031A (en) * 1996-06-06 1999-04-27 Isis Pharmaceuticals, Inc. Oligoribonucleotides for cleaving RNA
US20040203024A1 (en) * 1996-06-06 2004-10-14 Baker Brenda F. Modified oligonucleotides for use in RNA interference
US20040033973A1 (en) * 2002-08-16 2004-02-19 Muthiah Manoharan Compounds and oligomeric compounds comprising novel nucleobases
US6111085A (en) * 1996-09-13 2000-08-29 Isis Pharmaceuticals, Inc. Carbamate-derivatized nucleosides and oligonucleosides
US6617422B1 (en) 1997-05-23 2003-09-09 Peter Nielsen Peptide nucleic acid monomers and oligomers
AU731909B2 (en) 1997-07-01 2001-04-05 Isis Pharmaceuticals, Inc. Compositions and methods for the delivery of oligonucleotides via the alimentary canal
US7572582B2 (en) * 1997-09-12 2009-08-11 Exiqon A/S Oligonucleotide analogues
US6007992A (en) * 1997-11-10 1999-12-28 Gilead Sciences, Inc. Pyrimidine derivatives for labeled binding partners
US6028183A (en) 1997-11-07 2000-02-22 Gilead Sciences, Inc. Pyrimidine derivatives and oligonucleotides containing same
US20040186071A1 (en) * 1998-04-13 2004-09-23 Bennett C. Frank Antisense modulation of CD40 expression
US7321828B2 (en) 1998-04-13 2008-01-22 Isis Pharmaceuticals, Inc. System of components for preparing oligonucleotides
AU745880B2 (en) * 1998-05-21 2002-04-11 Isis Pharmaceuticals, Inc. Compositions and methods for non-parenteral delivery of oligonucleotides
JP2002515514A (en) * 1998-05-21 2002-05-28 アイシス・ファーマシューティカルス・インコーポレーテッド Compositions and methods for local delivery of oligonucleotides
WO2000001393A2 (en) * 1998-07-02 2000-01-13 The Trustees Of Columbia University In The City Of New York OLIGONUCLEOTIDE INHIBITORS OF bcl-xL
US6867294B1 (en) 1998-07-14 2005-03-15 Isis Pharmaceuticals, Inc. Gapped oligomers having site specific chiral phosphorothioate internucleoside linkages
US6225293B1 (en) 1998-09-02 2001-05-01 Isis Pharmaceuticals, Inc. Methods and compounds for tracking the biodistribution of macromolecule-carrier combinations
US6077709A (en) 1998-09-29 2000-06-20 Isis Pharmaceuticals Inc. Antisense modulation of Survivin expression
US6300320B1 (en) 1999-01-05 2001-10-09 Isis Pharmaceuticals, Inc. Modulation of c-jun using inhibitors of protein kinase C
US6127124A (en) * 1999-01-20 2000-10-03 Isis Pharmaceuticals, Inc. Fluorescence based nuclease assay
US7098192B2 (en) 1999-04-08 2006-08-29 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of STAT3 expression
US6656730B1 (en) 1999-06-15 2003-12-02 Isis Pharmaceuticals, Inc. Oligonucleotides conjugated to protein-binding drugs
US6147200A (en) * 1999-08-19 2000-11-14 Isis Pharmaceuticals, Inc. 2'-O-acetamido modified monomers and oligomers
US20040081959A9 (en) * 1999-12-08 2004-04-29 Epoch Biosciences, Inc. Fluorescent quenching detection reagents and methods
US6727356B1 (en) 1999-12-08 2004-04-27 Epoch Pharmaceuticals, Inc. Fluorescent quenching detection reagents and methods
US20020055479A1 (en) 2000-01-18 2002-05-09 Cowsert Lex M. Antisense modulation of PTP1B expression
US6261840B1 (en) 2000-01-18 2001-07-17 Isis Pharmaceuticals, Inc. Antisense modulation of PTP1B expression
US20030176385A1 (en) * 2000-02-15 2003-09-18 Jingfang Ju Antisense modulation of protein expression
US6680172B1 (en) 2000-05-16 2004-01-20 Regents Of The University Of Michigan Treatments and markers for cancers of the central nervous system
US20060166227A1 (en) * 2000-06-20 2006-07-27 Stephen Kingsmore Protein expression profiling
US6323009B1 (en) * 2000-06-28 2001-11-27 Molecular Staging, Inc. Multiply-primed amplification of nucleic acid sequences
US8568766B2 (en) 2000-08-24 2013-10-29 Gattadahalli M. Anantharamaiah Peptides and peptide mimetics to treat pathologies associated with eye disease
WO2002030465A2 (en) 2000-10-12 2002-04-18 University Of Rochester Compositions that inhibit proliferation of cancer cells
US7767802B2 (en) 2001-01-09 2010-08-03 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of anti-apoptotic genes
US7226739B2 (en) 2001-03-02 2007-06-05 Isis Pharmaceuticals, Inc Methods for rapid detection and identification of bioagents in epidemiological and forensic investigations
US7666588B2 (en) 2001-03-02 2010-02-23 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA and characterization of mitochondrial DNA heteroplasmy
US20030027135A1 (en) 2001-03-02 2003-02-06 Ecker David J. Method for rapid detection and identification of bioagents
US20040121311A1 (en) * 2002-12-06 2004-06-24 Ecker David J. Methods for rapid detection and identification of bioagents in livestock
US20040121310A1 (en) * 2002-12-18 2004-06-24 Ecker David J. Methods for rapid detection and identification of bioagents in forensic studies
US20040121314A1 (en) * 2002-12-06 2004-06-24 Ecker David J. Methods for rapid detection and identification of bioagents in containers
US7718354B2 (en) * 2001-03-02 2010-05-18 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
ATE434936T1 (en) 2001-03-14 2009-07-15 Myriad Genetics Inc TSG101-GAG INTERACTION AND THEIR USE
US7803915B2 (en) * 2001-06-20 2010-09-28 Genentech, Inc. Antibody compositions for the diagnosis and treatment of tumor
US20050107595A1 (en) * 2001-06-20 2005-05-19 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
DK2000545T3 (en) 2001-06-20 2011-11-28 Genentech Inc Compositions and methods for diagnosis and treatment of lung tumor
CA2451643C (en) 2001-06-21 2012-11-13 Isis Pharmaceuticals, Inc. Antisense modulation of superoxide dismutase 1, soluble expression
US7217510B2 (en) * 2001-06-26 2007-05-15 Isis Pharmaceuticals, Inc. Methods for providing bacterial bioagent characterizing information
US8073627B2 (en) 2001-06-26 2011-12-06 Ibis Biosciences, Inc. System for indentification of pathogens
US7425545B2 (en) 2001-07-25 2008-09-16 Isis Pharmaceuticals, Inc. Modulation of C-reactive protein expression
US6964950B2 (en) 2001-07-25 2005-11-15 Isis Pharmaceuticals, Inc. Antisense modulation of C-reactive protein expression
US20030096772A1 (en) 2001-07-30 2003-05-22 Crooke Rosanne M. Antisense modulation of acyl CoA cholesterol acyltransferase-2 expression
US7407943B2 (en) 2001-08-01 2008-08-05 Isis Pharmaceuticals, Inc. Antisense modulation of apolipoprotein B expression
US7227014B2 (en) 2001-08-07 2007-06-05 Isis Pharmaceuticals, Inc. Antisense modulation of apolipoprotein (a) expression
EP2174953A1 (en) 2001-09-18 2010-04-14 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
NZ566396A (en) 2001-10-09 2009-07-31 Isis Pharmaceuticals Inc Antisense modulation of insulin-like growth factor binding protein 5 expressions
US6750019B2 (en) 2001-10-09 2004-06-15 Isis Pharmaceuticals, Inc. Antisense modulation of insulin-like growth factor binding protein 5 expression
US6965025B2 (en) 2001-12-10 2005-11-15 Isis Pharmaceuticals, Inc. Antisense modulation of connective tissue growth factor expression
AU2002367318B2 (en) 2002-01-02 2007-07-12 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
US7553619B2 (en) * 2002-02-08 2009-06-30 Qiagen Gmbh Detection method using dissociated rolling circle amplification
US20030180712A1 (en) 2002-03-20 2003-09-25 Biostratum Ab Inhibition of the beta3 subunit of L-type Ca2+ channels
WO2003100035A2 (en) * 2002-04-01 2003-12-04 Isis Pharmaceuticals, Inc. Method for rapid detection and identification of viral bioagents
US7169916B2 (en) * 2002-04-01 2007-01-30 Isis Pharmaceuticals, Inc. Chloral-free DCA in oligonucleotide synthesis
JP2005536190A (en) 2002-04-16 2005-12-02 ジェネンテック・インコーポレーテッド Compositions and methods for tumor diagnosis and treatment
US7199107B2 (en) 2002-05-23 2007-04-03 Isis Pharmaceuticals, Inc. Antisense modulation of kinesin-like 1 expression
US20040092470A1 (en) * 2002-06-18 2004-05-13 Leonard Sherry A. Dry powder oligonucleotide formualtion, preparation and its uses
EP2116604A1 (en) 2002-08-05 2009-11-11 University of Rochester Protein transducing domain/deaminase chimeric proteins, related compounds, and uses thereof
EP2322535A3 (en) 2002-09-20 2011-09-28 Yale University Riboswitches, methods for their use, and compositions for use with riboswitches
JP4694201B2 (en) * 2002-09-20 2011-06-08 インテグレイテッド ディーエヌエイ テクノロジーズ インコーポレイテッド Anthraquinone quenching dyes, their production and use
US7229976B2 (en) 2002-09-26 2007-06-12 Isis Pharmaceuticals, Inc. Modulation of forkhead box O1A expression
EP1560597A4 (en) * 2002-10-29 2007-06-27 Pharmacia Corp Differentially expressed genes involved in cancer, the polypeptides encoded thereby, and methods of using the same
US9150605B2 (en) 2002-11-05 2015-10-06 Isis Pharmaceuticals, Inc. Compositions comprising alternating 2′-modified nucleosides for use in gene modulation
AU2003287505A1 (en) 2002-11-05 2004-06-03 Isis Pharmaceuticals, Inc. Chimeric oligomeric compounds and their use in gene modulation
US9150606B2 (en) * 2002-11-05 2015-10-06 Isis Pharmaceuticals, Inc. Compositions comprising alternating 2'-modified nucleosides for use in gene modulation
AU2003290598A1 (en) * 2002-11-05 2004-06-03 Isis Pharmaceuticals, Inc. Modified oligonucleotides for use in rna interference
ES2420914T3 (en) 2002-11-13 2013-08-27 Genzyme Corporation Antisense modulation of apolipoprotein B expression
CA2505801A1 (en) 2002-11-13 2004-05-27 Rosanne Crooke Antisense modulation of apolipoprotein b expression
CA2506127C (en) 2002-11-15 2013-07-09 Morphotek, Inc. Methods of generating high-production of antibodies from hybridomas created by in vitro immunization
US8007804B2 (en) 2002-11-15 2011-08-30 Musc Foundation For Research Development Complement receptor 2 targeted complement modulators
EP2410332A1 (en) 2002-11-21 2012-01-25 The University Of Utah Method for identifying purinergic modulators of the olfactory system
US7144999B2 (en) 2002-11-23 2006-12-05 Isis Pharmaceuticals, Inc. Modulation of hypoxia-inducible factor 1 alpha expression
JP2006516193A (en) 2002-12-06 2006-06-29 アイシス・ファーマシューティカルス・インコーポレーテッド Rapid identification of pathogens in humans and animals
US20040121315A1 (en) * 2002-12-18 2004-06-24 Ecker David J. Secondary structure defining database and methods for determining identity and geographic origin of an unknown bioagent in containers thereby
US20040122857A1 (en) * 2002-12-18 2004-06-24 Ecker David J. Secondary structure defining database and methods for determining identity and geographic origin of an unknown bioagent in forensic studies thereby
US20040121312A1 (en) * 2002-12-18 2004-06-24 Ecker David J. Methods for rapid detection and identification of the absence of bioagents
WO2004058987A2 (en) 2002-12-20 2004-07-15 Qiagen Gmbh Nucleic acid amplification
US9487823B2 (en) * 2002-12-20 2016-11-08 Qiagen Gmbh Nucleic acid amplification
US6977153B2 (en) * 2002-12-31 2005-12-20 Qiagen Gmbh Rolling circle amplification of RNA
US7468356B2 (en) 2003-02-11 2008-12-23 Antisense Therapeutics Ltd. Modulation of insulin like growth factor I receptor expression
US7002006B2 (en) * 2003-02-12 2006-02-21 Isis Pharmaceuticals, Inc. Protection of nucleosides
US7803781B2 (en) 2003-02-28 2010-09-28 Isis Pharmaceuticals, Inc. Modulation of growth hormone receptor expression and insulin-like growth factor expression
US20040185559A1 (en) 2003-03-21 2004-09-23 Isis Pharmaceuticals Inc. Modulation of diacylglycerol acyltransferase 1 expression
US8043834B2 (en) 2003-03-31 2011-10-25 Qiagen Gmbh Universal reagents for rolling circle amplification and methods of use
US20040198640A1 (en) * 2003-04-02 2004-10-07 Dharmacon, Inc. Stabilized polynucleotides for use in RNA interference
US7598227B2 (en) 2003-04-16 2009-10-06 Isis Pharmaceuticals Inc. Modulation of apolipoprotein C-III expression
US8046171B2 (en) * 2003-04-18 2011-10-25 Ibis Biosciences, Inc. Methods and apparatus for genetic evaluation
US8057993B2 (en) 2003-04-26 2011-11-15 Ibis Biosciences, Inc. Methods for identification of coronaviruses
US7399853B2 (en) 2003-04-28 2008-07-15 Isis Pharmaceuticals Modulation of glucagon receptor expression
US8158354B2 (en) 2003-05-13 2012-04-17 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US7964343B2 (en) * 2003-05-13 2011-06-21 Ibis Biosciences, Inc. Method for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US7276599B2 (en) * 2003-06-02 2007-10-02 Isis Pharmaceuticals, Inc. Oligonucleotide synthesis with alternative solvents
WO2005002507A2 (en) 2003-06-03 2005-01-13 Isis Pharmaceuticals, Inc. Modulation of survivin expression
US7786290B2 (en) 2003-06-13 2010-08-31 Alnylam Pharmaceuticals, Inc. Double-stranded ribonucleic acid with increased effectiveness in an organism
EP1636342A4 (en) * 2003-06-20 2008-10-08 Isis Pharmaceuticals Inc Oligomeric compounds for use in gene modulation
CA2533701A1 (en) 2003-07-31 2005-02-17 Isis Pharmaceuticals, Inc. Oligomeric compounds and compositions for use in modulation of small non-coding rnas
US7825235B2 (en) 2003-08-18 2010-11-02 Isis Pharmaceuticals, Inc. Modulation of diacylglycerol acyltransferase 2 expression
PT1660057E (en) 2003-08-27 2012-08-02 Ophthotech Corp Combination therapy for the treatment of ocular neovascular disorders
US20050053981A1 (en) * 2003-09-09 2005-03-10 Swayze Eric E. Gapped oligomeric compounds having linked bicyclic sugar moieties at the termini
US20100035239A1 (en) * 2003-09-11 2010-02-11 Isis Pharmaceuticals, Inc. Compositions for use in identification of bacteria
US20060240412A1 (en) * 2003-09-11 2006-10-26 Hall Thomas A Compositions for use in identification of adenoviruses
US8546082B2 (en) 2003-09-11 2013-10-01 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8097416B2 (en) 2003-09-11 2012-01-17 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US20080138808A1 (en) * 2003-09-11 2008-06-12 Hall Thomas A Methods for identification of sepsis-causing bacteria
US20120122101A1 (en) * 2003-09-11 2012-05-17 Rangarajan Sampath Compositions for use in identification of bacteria
NZ545134A (en) 2003-09-18 2009-06-26 Lilly Co Eli Modulation of eIF4E expression
AU2004274021B2 (en) * 2003-09-18 2009-08-13 Isis Pharmaceuticals, Inc. 4'-thionucleosides and oligomeric compounds
EP1678194B1 (en) 2003-10-10 2013-06-26 Alchemia Oncology Pty Limited The modulation of hyaluronan synthesis and degradation in the treatment of disease
US20050191653A1 (en) 2003-11-03 2005-09-01 Freier Susan M. Modulation of SGLT2 expression
US7439341B2 (en) 2003-11-14 2008-10-21 Integrated Dna Technologies, Inc. Fluorescence quenching azo dyes, their methods of preparation and use
ES2493016T3 (en) 2003-11-17 2014-09-11 Genentech, Inc. Compositions comprising antibodies against CD79b conjugated to a growth inhibitory agent or a cytotoxic agent and methods for the treatment of tumors of hematopoietic origin
US8163895B2 (en) 2003-12-05 2012-04-24 Ibis Biosciences, Inc. Compositions for use in identification of orthopoxviruses
JP2007520222A (en) 2004-01-20 2007-07-26 アイシス ファーマシューティカルズ インコーポレイテッド Regulation of glucocorticoid receptor expression
US8778900B2 (en) * 2004-01-22 2014-07-15 Isis Pharmaceuticals, Inc. Modulation of eIF4E-BP1 expression
US7468431B2 (en) * 2004-01-22 2008-12-23 Isis Pharmaceuticals, Inc. Modulation of eIF4E-BP2 expression
ATE447024T1 (en) * 2004-02-06 2009-11-15 Dharmacon Inc STABILIZED RNAS AS TRANSFECTION CONTROLS AND SILENCING REAGENTS
US20090280567A1 (en) * 2004-02-06 2009-11-12 Dharmacon, Inc. Stabilized sirnas as transfection controls and silencing reagents
US7666592B2 (en) 2004-02-18 2010-02-23 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
US8119336B2 (en) 2004-03-03 2012-02-21 Ibis Biosciences, Inc. Compositions for use in identification of alphaviruses
US8569474B2 (en) * 2004-03-09 2013-10-29 Isis Pharmaceuticals, Inc. Double stranded constructs comprising one or more short strands hybridized to a longer strand
US8790919B2 (en) 2004-03-15 2014-07-29 Isis Pharmaceuticals, Inc. Compositions and methods for optimizing cleavage of RNA by RNase H
KR101147147B1 (en) * 2004-04-01 2012-05-25 머크 샤프 앤드 돔 코포레이션 Modified polynucleotides for reducing off-target effects in rna interference
US20050244869A1 (en) * 2004-04-05 2005-11-03 Brown-Driver Vickie L Modulation of transthyretin expression
EP2540734B1 (en) 2004-04-05 2016-03-30 Alnylam Pharmaceuticals, Inc. Process and reagents for oligonucleotide synthesis and purification
US20050260755A1 (en) * 2004-04-06 2005-11-24 Isis Pharmaceuticals, Inc. Sequential delivery of oligomeric compounds
EP1750776A2 (en) 2004-04-30 2007-02-14 Alnylam Pharmaceuticals Inc. Oligonucleotides comprising a c5-modified pyrimidine
DK1773872T3 (en) 2004-05-21 2017-05-08 Uab Res Found VARIABLE Lymphocyte Receptors, Associated Polypeptides and Nucleic Acids, and Uses thereof
JP4810533B2 (en) 2004-05-24 2011-11-09 アイビス バイオサイエンシズ インコーポレイティッド Mass spectrometry using selective ion filtration by digital thresholding.
US20050266411A1 (en) * 2004-05-25 2005-12-01 Hofstadler Steven A Methods for rapid forensic analysis of mitochondrial DNA
US8394947B2 (en) * 2004-06-03 2013-03-12 Isis Pharmaceuticals, Inc. Positionally modified siRNA constructs
AU2004320622B2 (en) * 2004-06-03 2012-06-14 Isis Pharmaceuticals, Inc. Chimeric gapped oligomeric compositions
US7811753B2 (en) 2004-07-14 2010-10-12 Ibis Biosciences, Inc. Methods for repairing degraded DNA
US7427675B2 (en) 2004-08-23 2008-09-23 Isis Pharmaceuticals, Inc. Compounds and methods for the characterization of oligonucleotides
US7884086B2 (en) * 2004-09-08 2011-02-08 Isis Pharmaceuticals, Inc. Conjugates for use in hepatocyte free uptake assays
WO2006032144A1 (en) * 2004-09-23 2006-03-30 Arc Pharmaceuticals, Inc. Pharmaceutical compositions and methods relating to inhibiting fibrous adhesions or inflammatory disease using fucans from various echinoderm sources
US7923207B2 (en) 2004-11-22 2011-04-12 Dharmacon, Inc. Apparatus and system having dry gene silencing pools
US7935811B2 (en) * 2004-11-22 2011-05-03 Dharmacon, Inc. Apparatus and system having dry gene silencing compositions
US20060166234A1 (en) * 2004-11-22 2006-07-27 Barbara Robertson Apparatus and system having dry control gene silencing compositions
CA2600184A1 (en) 2005-03-03 2006-09-08 Isis Pharmaceuticals, Inc. Compositions for use in identification of adventitious viruses
US8084207B2 (en) * 2005-03-03 2011-12-27 Ibis Bioscience, Inc. Compositions for use in identification of papillomavirus
AU2006223498A1 (en) 2005-03-10 2006-09-21 Genentech, Inc. Methods and compositions for modulating vascular integrity
US7476733B2 (en) * 2005-03-25 2009-01-13 The United States Of America As Represented By The Department Of Health And Human Services Development of a real-time PCR assay for detection of pneumococcal DNA and diagnosis of pneumococccal disease
US20060223777A1 (en) * 2005-03-29 2006-10-05 Dharmacon, Inc. Highly functional short hairpin RNA
EP1863908B1 (en) * 2005-04-01 2010-11-17 Qiagen GmbH Reverse transcription and amplification of rna with simultaneous degradation of dna
AU2006251637B2 (en) * 2005-05-20 2012-06-14 Integrated Dna Technologies, Inc. Compounds and methods for labeling oligonucleotides
JP5329949B2 (en) 2005-05-31 2013-10-30 エコーレ ポリテクニーク フェデラーレ デ ローザンヌ Triblock copolymers for cytoplasmic delivery of gene-based drugs
US8252756B2 (en) 2005-06-14 2012-08-28 Northwestern University Nucleic acid functionalized nanoparticles for therapeutic applications
US8026084B2 (en) * 2005-07-21 2011-09-27 Ibis Biosciences, Inc. Methods for rapid identification and quantitation of nucleic acid variants
EP1929012B1 (en) 2005-08-11 2010-10-06 Synthetic Genomics, Inc. Method for in vitro recombination
AU2006281569A1 (en) 2005-08-17 2007-02-22 Medexis S.A. Composition and method for determination of CK19 expression
WO2007027775A2 (en) 2005-08-29 2007-03-08 Isis Pharmaceuticals, Inc. Methods for use in modulating mir-122a
DE102005042073B4 (en) * 2005-08-31 2010-11-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. fiber laser
EP1762627A1 (en) 2005-09-09 2007-03-14 Qiagen GmbH Method for the activation of a nucleic acid for performing a polymerase reaction
EA200800868A1 (en) 2005-09-19 2008-10-30 ДЖОНСОН ЭНД ДЖОНСОН ФАРМАСЬЮТИКАЛ РИСЕРЧ ЭНД ДИВЕЛОПМЕНТ, Эл. Эл. Си. MODULATION OF THE GLUCOCORTICOID RECEPTOR EXPRESSION
EP2096170B1 (en) 2005-09-19 2011-08-10 Isis Pharmaceuticals, Inc. Modulation of glucagon receptor expression
EP2189522A1 (en) 2005-10-14 2010-05-26 MUSC Foundation For Research Development Targeting PAX2 for the induction of DEFB1-mediated tumor immunity and cancer therapy
US8080534B2 (en) 2005-10-14 2011-12-20 Phigenix, Inc Targeting PAX2 for the treatment of breast cancer
EP2325315B1 (en) 2005-10-28 2014-05-07 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of huntingtin gene
WO2007056331A2 (en) 2005-11-09 2007-05-18 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of factor v leiden mutant gene
EP1966377A2 (en) 2005-11-21 2008-09-10 Isis Pharmaceuticals, Inc. Modulation of eif4e-bp2 expression
JP2009524411A (en) * 2005-12-21 2009-07-02 イェール ユニバーシティー Methods and compositions related to the regulation of riboswitches
US8288354B2 (en) 2005-12-28 2012-10-16 The Scripps Research Institute Natural antisense and non-coding RNA transcripts as drug targets
JP5213723B2 (en) 2006-01-27 2013-06-19 アイシス ファーマシューティカルズ, インコーポレーテッド Oligomer compounds and compositions for use in modulating microRNA
US7569686B1 (en) 2006-01-27 2009-08-04 Isis Pharmaceuticals, Inc. Compounds and methods for synthesis of bicyclic nucleic acid analogs
JP5342881B2 (en) 2006-01-27 2013-11-13 アイシス ファーマシューティカルズ, インコーポレーテッド 6-modified bicyclic nucleic acid analogues
CA2873833A1 (en) 2006-03-31 2007-10-11 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of eg5 gene
WO2007125173A2 (en) * 2006-05-03 2007-11-08 Baltic Technology Development, Ltd. Antisense agents combining strongly bound base - modified oligonucleotide and artificial nuclease
DE102006020885A1 (en) * 2006-05-05 2007-11-08 Qiagen Gmbh Inserting a tag sequence into a nucleic acid comprises using an anchor oligonucleotide comprising a hybridizing anchor sequence and a nonhybridizing tag-template sequence
WO2007134014A2 (en) * 2006-05-05 2007-11-22 Isis Pharmaceuticals, Inc. Compounds and methods for modulating expression of gcgr
US7666854B2 (en) * 2006-05-11 2010-02-23 Isis Pharmaceuticals, Inc. Bis-modified bicyclic nucleic acid analogs
ES2389737T3 (en) * 2006-05-11 2012-10-31 Isis Pharmaceuticals, Inc. 5 'modified bicyclic nucleic acid analogs
US7812150B2 (en) 2006-05-19 2010-10-12 Alnylam Pharmaceuticals, Inc. RNAi modulation of Aha and therapeutic uses thereof
US7888498B2 (en) 2006-05-22 2011-02-15 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of IKK-B gene
WO2007137301A2 (en) * 2006-05-23 2007-11-29 Isis Pharmaceuticals, Inc. Modulation of chrebp expression
WO2008097328A2 (en) * 2006-06-23 2008-08-14 Northwestern University Asymmetric functionalized nanoparticles and methods of use
US8198253B2 (en) 2006-07-19 2012-06-12 Isis Pharmaceuticals, Inc. Compositions and their uses directed to HBXIP
EP2061799A4 (en) * 2006-09-11 2010-12-22 Univ Yale Methods and compositions for the use of lysine riboswitches
CA2663029C (en) * 2006-09-14 2016-07-19 Ibis Biosciences, Inc. Targeted whole genome amplification method for identification of pathogens
WO2008036825A2 (en) * 2006-09-22 2008-03-27 Dharmacon, Inc. Duplex oligonucleotide complexes and methods for gene silencing by rna interference
WO2008042156A1 (en) * 2006-09-28 2008-04-10 Northwestern University Maximizing oligonucleotide loading on gold nanoparticle
CA2665536C (en) 2006-10-05 2016-02-16 Massachusetts Institute Of Technology Multifunctional encoded particles for high-throughput analysis
EP2104516B1 (en) 2006-11-01 2015-01-07 University of Rochester Methods and compositions related to the structure and function of apobec3g
CA2672297A1 (en) 2006-12-11 2008-06-19 University Of Utah Research Foundation Compositions and methods for treating pathologic angiogenesis and vascular permeability
EP2913341A1 (en) 2006-12-22 2015-09-02 University of Utah Research Foundation Method of detecting ocular diseases and pathologic conditions and treatment of same
CA2691066C (en) 2007-02-09 2018-07-31 Northwestern University Particles for detecting intracellular targets
JP5680304B2 (en) * 2007-02-23 2015-03-04 アイビス バイオサイエンシズ インコーポレイティッド Rapid forensic DNA analysis
AU2008227458A1 (en) 2007-03-22 2008-09-25 Yale University Methods and compositions related to riboswitches that control alternative splicing
US20100204266A1 (en) * 2007-03-23 2010-08-12 Ibis Biosciences, INC Compositions for use in identification of mixed populations of bioagents
AP3018A (en) 2007-03-29 2014-10-31 Alnylam Pharmaceuticals Inc Compositions and methods for inhibiting expressionof a gene from the ebola
WO2008156987A2 (en) 2007-05-29 2008-12-24 Yale University Riboswitches and methods and compositions for use of and with riboswitches
US20100221821A1 (en) * 2007-05-29 2010-09-02 Yale University Methods and compositions related to riboswitches that control alternative splicing and rna processing
EP2826863B1 (en) 2007-05-30 2017-08-23 Northwestern University Nucleic acid functionalized nanoparticles for therapeutic applications
CA2688321A1 (en) 2007-05-30 2008-12-11 Isis Pharmaceuticals, Inc. N-substituted-aminomethylene bridged bicyclic nucleic acid analogs
WO2008151023A2 (en) 2007-06-01 2008-12-11 Ibis Biosciences, Inc. Methods and compositions for multiple displacement amplification of nucleic acids
US7807372B2 (en) * 2007-06-04 2010-10-05 Northwestern University Screening sequence selectivity of oligonucleotide-binding molecules using nanoparticle based colorimetric assay
WO2008154401A2 (en) 2007-06-08 2008-12-18 Isis Pharmaceuticals, Inc. Carbocyclic bicyclic nucleic acid analogs
US8278283B2 (en) * 2007-07-05 2012-10-02 Isis Pharmaceuticals, Inc. 6-disubstituted or unsaturated bicyclic nucleic acid analogs
AU2008286771B2 (en) 2007-08-15 2013-08-15 Isis Pharmaceuticals, Inc. Tetrahydropyran nucleic acid analogs
WO2009032693A2 (en) * 2007-08-28 2009-03-12 Uab Research Foundation Synthetic apolipoprotein e mimicking polypeptides and methods of use
WO2009032702A2 (en) 2007-08-28 2009-03-12 Uab Research Foundation Synthetic apolipoprotein e mimicking polypeptides and methods of use
US8445217B2 (en) 2007-09-20 2013-05-21 Vanderbilt University Free solution measurement of molecular interactions by backscattering interferometry
WO2009039442A1 (en) * 2007-09-21 2009-03-26 California Institute Of Technology Nfia in glial fate determination, glioma therapy and astrocytoma treatment
US20110152346A1 (en) * 2007-11-05 2011-06-23 Baltic Technology Development Ltd. Use of Oligonucleotides with Modified Bases in Hybridization of Nucleic Acids
USRE47320E1 (en) 2007-11-20 2019-03-26 Ionis Pharmaceuticals, Inc. Modulation of CD40 expression
US7871985B2 (en) 2007-12-10 2011-01-18 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of factor VII gene
US7845686B2 (en) * 2007-12-17 2010-12-07 S & B Technical Products, Inc. Restrained pipe joining system for plastic pipe
EP3100718B1 (en) 2008-01-02 2019-11-27 Arbutus Biopharma Corporation Improved compositions and methods for the delivery of nucleic acids
EP2265627A2 (en) * 2008-02-07 2010-12-29 Isis Pharmaceuticals, Inc. Bicyclic cyclohexitol nucleic acid analogs
US8188060B2 (en) 2008-02-11 2012-05-29 Dharmacon, Inc. Duplex oligonucleotides with enhanced functionality in gene regulation
WO2009102427A2 (en) 2008-02-11 2009-08-20 Rxi Pharmaceuticals Corp. Modified rnai polynucleotides and uses thereof
CN102014932B (en) 2008-03-05 2015-11-25 阿尔尼拉姆医药品有限公司 For suppressing compositions and the method for Eg5 and VEGF gene expression
WO2009117589A1 (en) * 2008-03-21 2009-09-24 Isis Pharmaceuticals, Inc. Oligomeric compounds comprising tricyclic nucleosides and methods for their use
WO2009124295A2 (en) 2008-04-04 2009-10-08 Isis Pharmaceuticals, Inc. Oligomeric compounds comprising bicyclic nucleosides and having reduced toxicity
EP2285819B1 (en) * 2008-04-04 2013-10-16 Isis Pharmaceuticals, Inc. Oligomeric compounds comprising neutrally linked terminal bicyclic nucleosides
MX2010011508A (en) 2008-04-18 2011-05-03 Baxter Int Microsphere-based composition for preventing and/or reversing new-onset autoimmune diabetes.
EP2280995A2 (en) * 2008-04-29 2011-02-09 Wyeth LLC Methods for treating inflammation
US8815818B2 (en) 2008-07-18 2014-08-26 Rxi Pharmaceuticals Corporation Phagocytic cell delivery of RNAI
US20110237646A1 (en) * 2008-08-07 2011-09-29 Isis Pharmaceuticals, Inc. Modulation of transthyretin expression for the treatment of cns related disorders
EP3081648A1 (en) 2008-08-25 2016-10-19 Excaliard Pharmaceuticals, Inc. Antisense oligonucleotides directed against connective tissue growth factor and uses thereof
EP2331690B1 (en) 2008-09-02 2016-01-13 Alnylam Pharmaceuticals Inc. Compositions and methods for inhibiting expression of mutant egfr gene
US8550694B2 (en) 2008-09-16 2013-10-08 Ibis Biosciences, Inc. Mixing cartridges, mixing stations, and related kits, systems, and methods
WO2010033625A1 (en) 2008-09-16 2010-03-25 Ibis Biosciences, Inc. Microplate handling systems and related computer program products and methods
WO2010033627A2 (en) 2008-09-16 2010-03-25 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US10138485B2 (en) 2008-09-22 2018-11-27 Rxi Pharmaceuticals Corporation Neutral nanotransporters
US8604192B2 (en) * 2008-09-24 2013-12-10 Isis Pharmaceuticals, Inc. Cyclohexenyl nucleic acids analogs
US8501805B2 (en) * 2008-09-24 2013-08-06 Isis Pharmaceuticals, Inc. Substituted alpha-L-bicyclic nucleosides
EP2334793B1 (en) 2008-09-25 2016-04-06 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of serum amyloid a gene
ES2475065T3 (en) 2008-10-09 2014-07-10 Tekmira Pharmaceuticals Corporation Enhanced amino acids and methods for nucleic acid administration
AU2009305636A1 (en) 2008-10-15 2010-04-22 Ionis Pharmaceuticals, Inc. Modulation of Factor 11 expression
NZ592867A (en) 2008-10-20 2013-05-31 Alnylam Pharmaceuticals Inc Compositions and methods for inhibiting expression of transthyretin
AU2009308217B2 (en) 2008-10-24 2016-01-21 Ionis Pharmaceuticals, Inc. 5' and 2' bis-substituted nucleosides and oligomeric compounds prepared therefrom
WO2010048585A2 (en) 2008-10-24 2010-04-29 Isis Pharmaceuticals, Inc. Oligomeric compounds and methods
US9074211B2 (en) 2008-11-19 2015-07-07 Rxi Pharmaceuticals Corporation Inhibition of MAP4K4 through RNAI
CA2744207C (en) 2008-11-24 2019-05-28 Northwestern University Polyvalent rna-nanoparticle compositions
EP2370451B1 (en) 2008-12-02 2016-11-16 Wave Life Sciences Japan, Inc. Method for the synthesis of phosphorus atom modified nucleic acids
CN102317458B (en) 2008-12-04 2018-01-02 库尔纳公司 Pass through treatment of the suppression of erythropoietin(EPO) (EPO) natural antisense transcript to EPO relevant diseases
CA2745811C (en) 2008-12-04 2021-07-13 Joseph Collard Treatment of tumor suppressor gene related diseases by inhibition of natural antisense transcript to the gene
KR101749352B1 (en) 2008-12-04 2017-06-20 큐알엔에이, 인크. Treatment of sirtuin 1(sirt1) related diseases by inhibition of natural antisense transcript to sirtuin 1
EP3225281A1 (en) 2008-12-10 2017-10-04 Alnylam Pharmaceuticals, Inc. Gnaq targeted dsrna compositions and methods for inhibiting expression
WO2010080616A1 (en) 2008-12-19 2010-07-15 Abbott Laboratories Molecular assay for diagnosis of malaria
EP2358905A1 (en) * 2008-12-19 2011-08-24 Abbott Laboratories Diagnostic test for mutations in codons 12-13 of human k-ras
WO2010078536A1 (en) 2009-01-05 2010-07-08 Rxi Pharmaceuticals Corporation Inhibition of pcsk9 through rnai
US20100184844A1 (en) * 2009-01-08 2010-07-22 Northwestern University Inhibition of Bacterial Protein Production by Polyvalent Oligonucleotide Modified Nanoparticle Conjugates
US20100233270A1 (en) * 2009-01-08 2010-09-16 Northwestern University Delivery of Oligonucleotide-Functionalized Nanoparticles
KR101546673B1 (en) * 2009-01-15 2015-08-25 삼성전자주식회사 Toner for electrophotographic and process for preparing the same
CA2750820A1 (en) 2009-01-27 2010-08-05 Qiagen Gaithersburg Thermophilic helicase dependent amplification technology with endpoint homogenous fluorescent detection
AU2010208035B2 (en) 2009-01-29 2016-06-23 Arbutus Biopharma Corporation Improved lipid formulation for the delivery of nucleic acids
US9745574B2 (en) 2009-02-04 2017-08-29 Rxi Pharmaceuticals Corporation RNA duplexes with single stranded phosphorothioate nucleotide regions for additional functionality
WO2010091308A2 (en) 2009-02-06 2010-08-12 Isis Pharmaceuticals, Inc. Oligomeric compounds and methods
US8536320B2 (en) 2009-02-06 2013-09-17 Isis Pharmaceuticals, Inc. Tetrahydropyran nucleic acid analogs
KR101805199B1 (en) 2009-02-12 2017-12-05 큐알엔에이, 인크. Treatment of glial cell derived neurotrophic factor (gdnf) related diseases by inhibition of natural antisense transcript to gdnf
EP3009150B1 (en) 2009-02-12 2019-11-13 CuRNA, Inc. Treatment of brain derived neurotrophic factor (bdnf) related diseases by inhibition of natural antisense transcript to bdnf
US8158936B2 (en) * 2009-02-12 2012-04-17 Ibis Biosciences, Inc. Ionization probe assemblies
US20120041051A1 (en) 2009-02-26 2012-02-16 Kevin Fitzgerald Compositions And Methods For Inhibiting Expression Of MIG-12 Gene
US20110319317A1 (en) 2009-03-04 2011-12-29 Opko Curna, Llc Treatment of sirtuin 1 (sirt1) related diseases by inhibition of natural antisense transcript to sirt1
AU2010223967B2 (en) 2009-03-12 2015-07-30 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of Eg5 and VEGF genes
WO2010107733A2 (en) 2009-03-16 2010-09-23 Curna, Inc. Treatment of nuclear factor (erythroid-derived 2)-like 2 (nrf2) related diseases by inhibition of natural antisense transcript to nrf2
EP2408920B1 (en) 2009-03-17 2017-03-08 CuRNA, Inc. Treatment of delta-like 1 homolog (dlk1) related diseases by inhibition of natural antisense transcript to dlk1
US9393564B2 (en) 2009-03-30 2016-07-19 Ibis Biosciences, Inc. Bioagent detection systems, devices, and methods
KR20120022938A (en) 2009-04-15 2012-03-12 노오쓰웨스턴 유니버시티 Delivery of oligonucleotide-functionalized nanoparticles
EP3248618A1 (en) 2009-04-22 2017-11-29 Massachusetts Institute Of Technology Innate immune suppression enables repeated delivery of long rna molecules
ES2661787T3 (en) 2009-05-01 2018-04-04 Curna, Inc. Treatment of hemoglobin-related diseases (hbf / hbg) by inhibition of natural antisense transcript for hbf / hbg
CA3045126A1 (en) 2009-05-05 2010-11-11 Arbutus Biopharma Corporation Methods of delivering oligonucleotides to immune cells
NZ596186A (en) 2009-05-05 2014-03-28 Alnylam Pharmaceuticals Inc Lipid compositions
KR101722541B1 (en) 2009-05-06 2017-04-04 큐알엔에이, 인크. Treatment of tristetraproline(ttp) related diseases by inhibition of natural antisense transcript to ttp
CN103223177B (en) 2009-05-06 2016-08-10 库尔纳公司 By suppression therapy lipid transfer and the metabolic gene relevant disease of the natural antisense transcript for lipid transfer and metabolic gene
WO2010132665A1 (en) 2009-05-15 2010-11-18 Yale University Gemm riboswitches, structure-based compound design with gemm riboswitches, and methods and compositions for use of and with gemm riboswitches
CN102575251B (en) 2009-05-18 2018-12-04 库尔纳公司 The relevant disease of the reprogramming factor is treated by inhibiting the natural antisense transcript for the reprogramming factor
KR101703695B1 (en) 2009-05-22 2017-02-08 큐알엔에이, 인크. Treatment of transcription factor e3 (tfe3) and insulin receptor substrate 2 (irs2) related diseases by inhibition of natural antisense transcript to tfe3
EP2435571B1 (en) 2009-05-28 2016-12-14 CuRNA, Inc. Treatment of antiviral gene related diseases by inhibition of natural antisense transcript to an antiviral gene
KR101766408B1 (en) 2009-06-10 2017-08-10 알닐람 파마슈티칼스 인코포레이티드 Improved lipid formulation
EP2443238B1 (en) 2009-06-16 2017-03-22 CuRNA, Inc. Treatment of paraoxonase 1 (pon1) related diseases by inhibition of natural antisense transcript to pon1
JP5944311B2 (en) 2009-06-16 2016-07-05 クルナ・インコーポレーテッド Treatment of collagen gene-related diseases by suppression of natural antisense transcripts against collagen genes
CN102597238B (en) 2009-06-24 2016-06-29 库尔纳公司 The relevant disease of TNFR2 is treated by suppressing for the natural antisense transcript of tumor necrosis factor receptor 2 (TNFR2)
WO2010151674A2 (en) 2009-06-26 2010-12-29 Curna, Inc. Treatment of down syndrome gene related diseases by inhibition of natural antisense transcript to a down syndrome gene
SG177564A1 (en) 2009-07-06 2012-02-28 Ontorii Inc Novel nucleic acid prodrugs and methods of use thereof
US9194877B2 (en) 2009-07-17 2015-11-24 Ibis Biosciences, Inc. Systems for bioagent indentification
WO2011008971A1 (en) * 2009-07-17 2011-01-20 Ibis Biosciences, Inc. Lift and mount apparatus
WO2011014811A1 (en) 2009-07-31 2011-02-03 Ibis Biosciences, Inc. Capture primers and capture sequence linked solid supports for molecular diagnostic tests
JP6128848B2 (en) 2009-08-05 2017-05-17 クルナ・インコーポレーテッド Treatment of insulin gene (INS) -related diseases by suppression of natural antisense transcripts against the insulin gene (INS)
WO2011017521A2 (en) 2009-08-06 2011-02-10 Isis Pharmaceuticals, Inc. Bicyclic cyclohexose nucleic acid analogs
EP2464336A4 (en) 2009-08-14 2013-11-20 Alnylam Pharmaceuticals Inc Lipid formulated compositions and methods for inhibiting expression of a gene from the ebola virus
WO2011022420A1 (en) 2009-08-17 2011-02-24 Yale University Methylation biomarkers and methods of use
WO2011031482A2 (en) 2009-08-25 2011-03-17 Curna, Inc. Treatment of 'iq motif containing gtpase activating protein' (iqgap) related diseases by inhibition of natural antisense transcript to iqgap
CA2772715C (en) 2009-09-02 2019-03-26 Genentech, Inc. Mutant smoothened and methods of using the same
US20110091882A1 (en) * 2009-10-02 2011-04-21 Ibis Biosciences, Inc. Determination of methylation status of polynucleotides
ES2628739T3 (en) * 2009-10-15 2017-08-03 Ibis Biosciences, Inc. Multiple displacement amplification
KR20120099435A (en) * 2009-10-16 2012-09-10 립-엑스 파마슈티칼즈, 인크. Antimicrobial compounds and methods of making and using the same
EA023350B1 (en) 2009-10-16 2016-05-31 Мелинта Терапьютикс, Инк. Antimicrobial compounds, methods of making and using the same
MX2012004341A (en) 2009-10-16 2012-10-05 Rib X Pharmaceuticals Inc Antimicrobial compounds and methods of making and using the same.
CN102711826B (en) 2009-10-22 2017-03-29 霍夫曼-拉罗奇有限公司 For the method and composition that the HEPSIN for regulating and controlling macrophage-stimulating albumen is activated
WO2011056687A2 (en) 2009-10-27 2011-05-12 Swift Biosciences, Inc. Polynucleotide primers and probes
CA2779099C (en) 2009-10-30 2021-08-10 Northwestern University Templated nanoconjugates
US20130084565A1 (en) 2009-11-03 2013-04-04 University Of Virginia Patent Foundation Versatile, visible method for detecting polymeric analytes
AU2010321576A1 (en) 2009-11-23 2012-06-07 Swift Biosciences, Inc. Devices to extend single stranded target molecules
CA2781887C (en) 2009-11-30 2018-03-27 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
WO2011084455A2 (en) 2009-12-16 2011-07-14 Opko Curna, Llc. Treatment of membrane bound transcription factor peptidase, site 1 (mbtps1) related diseases by inhibition of natural antisense transcript to mbtps1
KR101793753B1 (en) 2009-12-23 2017-11-03 큐알엔에이, 인크. Treatment of uncoupling protein 2 (ucp2) related diseases by inhibition of natural antisense transcript to ucp2
CN102869776B (en) 2009-12-23 2017-06-23 库尔纳公司 HGF relevant diseases are treated by suppressing the natural antisense transcript of HGF (HGF)
EP2519633B1 (en) 2009-12-29 2017-10-25 CuRNA, Inc. Treatment of nuclear respiratory factor 1 (nrf1) related diseases by inhibition of natural antisense transcript to nrf1
WO2011090741A2 (en) 2009-12-29 2011-07-28 Opko Curna, Llc TREATMENT OF TUMOR PROTEIN 63 (p63) RELATED DISEASES BY INHIBITION OF NATURAL ANTISENSE TRANSCRIPT TO p63
NO2521784T3 (en) 2010-01-04 2018-05-05
US8912157B2 (en) 2010-01-06 2014-12-16 Curna, Inc. Treatment of pancreatic developmental gene related diseases by inhibition of natural antisense transcript to a pancreatic developmental gene
DK2524039T3 (en) 2010-01-11 2018-03-12 Curna Inc TREATMENT OF GENDER HORMON-BINDING GLOBULIN (SHBG) RELATED DISEASES BY INHIBITION OF NATURAL ANTISENCE TRANSCRIPTS TO SHBG
US8779118B2 (en) 2010-01-11 2014-07-15 Isis Pharmaceuticals, Inc. Base modified bicyclic nucleosides and oligomeric compounds prepared therefrom
EP2524042A2 (en) 2010-01-12 2012-11-21 Yale University Structured rna motifs and compounds and methods for their use
WO2011091390A2 (en) 2010-01-25 2011-07-28 Opko Curna, Llc Treatment of rnase h1 related diseases by inhibition of natural antisense transcript to rnase h1
US20130028889A1 (en) 2010-02-04 2013-01-31 Ico Therapeutics Inc. Dosing regimens for treating and preventing ocular disorders using c-raf antisense
WO2011103528A2 (en) 2010-02-22 2011-08-25 Opko Curna Llc Treatment of pyrroline-5-carboxylate reductase 1 (pycr1) related diseases by inhibition of natural antisense transcript to pycr1
WO2011105900A2 (en) 2010-02-23 2011-09-01 Academisch Ziekenhuis Bij De Universiteit Van Amsterdam Antagonists of complement component 8-alpha (c8-alpha) and uses thereof
EP2538981B1 (en) 2010-02-23 2017-12-20 F. Hoffmann-La Roche AG Compositions and methods for the diagnosis and treatment of tumor
WO2011105902A2 (en) 2010-02-23 2011-09-01 Academisch Ziekenhuis Bij De Universiteit Van Amsterdam Antagonists of complement component 8-beta (c8-beta) and uses thereof
WO2011105901A2 (en) 2010-02-23 2011-09-01 Academisch Ziekenhuis Bij De Universiteit Van Amsterdam Antagonists of complement component 9 (c9) and uses thereof
WO2011112516A1 (en) 2010-03-08 2011-09-15 Ico Therapeutics Inc. Treating and preventing hepatitis c virus infection using c-raf kinase antisense oligonucleotides
US20130101512A1 (en) 2010-03-12 2013-04-25 Chad A. Mirkin Crosslinked polynucleotide structure
WO2011112732A2 (en) 2010-03-12 2011-09-15 The Brigham And Women's Hospital, Inc. Methods of treating vascular inflammatory disorders
WO2011115817A1 (en) 2010-03-16 2011-09-22 Isis Pharmaceuticals, Inc. Methods of preparing 2'-o-substituted purine nucleosides
US9193752B2 (en) 2010-03-17 2015-11-24 Isis Pharmaceuticals, Inc. 5′-substituted bicyclic nucleosides and oligomeric compounds prepared therefrom
JP6060071B2 (en) 2010-03-24 2017-01-11 アールエックスアイ ファーマシューティカルズ コーポレーション RNA interference in skin and fibrosis applications
US9095504B2 (en) 2010-03-24 2015-08-04 Rxi Pharmaceuticals Corporation RNA interference in ocular indications
EP2550000A4 (en) 2010-03-24 2014-03-26 Advirna Inc Reduced size self-delivering rnai compounds
WO2011120049A1 (en) * 2010-03-26 2011-09-29 Integrated Dna Technologies, Inc. Methods for enhancing nucleic acid hybridization
US9506057B2 (en) 2010-03-26 2016-11-29 Integrated Dna Technologies, Inc. Modifications for antisense compounds
US8889350B2 (en) 2010-03-26 2014-11-18 Swift Biosciences, Inc. Methods and compositions for isolating polynucleotides
ES2893199T3 (en) 2010-03-29 2022-02-08 Alnylam Pharmaceuticals Inc dsRNA therapy for transthyretin (TTR)-related ocular amyloidosis
US9044494B2 (en) 2010-04-09 2015-06-02 Curna, Inc. Treatment of fibroblast growth factor 21 (FGF21) related diseases by inhibition of natural antisense transcript to FGF21
WO2011133695A2 (en) 2010-04-20 2011-10-27 Swift Biosciences, Inc. Materials and methods for nucleic acid fractionation by solid phase entrapment and enzyme-mediated detachment
US10913767B2 (en) 2010-04-22 2021-02-09 Alnylam Pharmaceuticals, Inc. Oligonucleotides comprising acyclic and abasic nucleosides and analogs
US20130260460A1 (en) 2010-04-22 2013-10-03 Isis Pharmaceuticals Inc Conformationally restricted dinucleotide monomers and oligonucleotides
KR101869570B1 (en) 2010-04-28 2018-06-20 아이오니스 파마수티컬즈, 인코포레이티드 Modified nucleosides and oligomeric compounds prepared therefrom
EP2625186B1 (en) 2010-04-28 2016-07-27 Ionis Pharmaceuticals, Inc. 5' modified nucleosides and oligomeric compounds prepared therefrom
WO2011139695A2 (en) 2010-04-28 2011-11-10 Isis Pharmaceuticals, Inc. Modified 5' diphosphate nucleosides and oligomeric compounds prepared therefrom
WO2011139911A2 (en) 2010-04-29 2011-11-10 Isis Pharmaceuticals, Inc. Lipid formulated single stranded rna
WO2011139917A1 (en) 2010-04-29 2011-11-10 Isis Pharmaceuticals, Inc. Modulation of transthyretin expression
MA34291B1 (en) 2010-05-03 2013-06-01 Genentech Inc COMPOSITIONS AND METHODS FOR DIAGNOSING AND TREATING A TUMOR
EP2566966A4 (en) 2010-05-03 2013-12-11 Curna Inc Treatment of sirtuin (sirt) related diseases by inhibition of natural antisense transcript to a sirtuin (sirt)
TWI586356B (en) 2010-05-14 2017-06-11 可娜公司 Treatment of par4 related diseases by inhibition of natural antisense transcript to par4
CA2799207C (en) 2010-05-26 2019-03-26 Curna, Inc. Treatment of atonal homolog 1 (atoh1) related diseases by inhibition of natural antisense transcript to atoh1
US20130203045A1 (en) 2010-05-26 2013-08-08 University Of Virginia Patent Foundation Method for detecting nucleic acids based on aggregate formation
WO2011150227A1 (en) 2010-05-26 2011-12-01 Qiagen Gaithersburg, Inc. Quantitative helicase assay
WO2011153323A2 (en) 2010-06-02 2011-12-08 Alnylam Pharmaceuticals, Inc. Compositions and methods directed to treating liver fibrosis
WO2011156278A1 (en) 2010-06-07 2011-12-15 Isis Pharmaceuticals, Inc. Bicyclic nucleosides and oligomeric compounds prepared therefrom
CA2802049C (en) 2010-06-07 2018-07-10 Firefly Bioworks, Inc. Scanning multifunctional particles
EP2580228B1 (en) 2010-06-08 2016-03-23 Ionis Pharmaceuticals, Inc. Substituted 2'-amino and 2'-thio-bicyclic nucleosides and oligomeric compounds prepared therefrom
US9638632B2 (en) 2010-06-11 2017-05-02 Vanderbilt University Multiplexed interferometric detection system and method
WO2011159836A2 (en) 2010-06-15 2011-12-22 Isis Pharmaceuticals, Inc. Compounds and methods for modulating interaction between proteins and target nucleic acids
WO2011163466A1 (en) 2010-06-23 2011-12-29 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Regulation of skin pigmentation by neuregulin-1 (nrg-1)
US8980860B2 (en) 2010-07-14 2015-03-17 Curna, Inc. Treatment of discs large homolog (DLG) related diseases by inhibition of natural antisense transcript to DLG
WO2012012467A2 (en) 2010-07-19 2012-01-26 Isis Pharmaceuticals, Inc. Modulation of nuclear-retained rna
US20130143955A1 (en) 2010-08-09 2013-06-06 Yale University Cyclic di-GMP-II Riboswitches, Motifs, and Compounds, and Methods for Their Use
WO2012033848A1 (en) 2010-09-07 2012-03-15 Integrated Dna Technologies, Inc. Modifications for antisense compounds
JP5868324B2 (en) 2010-09-24 2016-02-24 株式会社Wave Life Sciences Japan Asymmetric auxiliary group
US8481680B2 (en) 2010-10-05 2013-07-09 Genentech, Inc. Mutant smoothened and methods of using the same
US8993533B2 (en) 2010-10-06 2015-03-31 Curna, Inc. Treatment of sialidase 4 (NEU4) related diseases by inhibition of natural antisense transcript to NEU4
US20140031250A1 (en) 2010-10-07 2014-01-30 David Tsai Ting Biomarkers of Cancer
US8648053B2 (en) 2010-10-20 2014-02-11 Rosalind Franklin University Of Medicine And Science Antisense oligonucleotides that target a cryptic splice site in Ush1c as a therapeutic for Usher syndrome
CA2815212A1 (en) 2010-10-22 2012-04-26 Curna, Inc. Treatment of alpha-l-iduronidase (idua) related diseases by inhibition of natural antisense transcript to idua
CN103201387B (en) 2010-10-27 2018-02-02 库尔纳公司 IFRD1 relevant diseases are treated by suppressing the natural antisense transcript of interferon correlative development regulatory factor 1 (IFRD1)
CN110123830A (en) 2010-11-09 2019-08-16 阿尔尼拉姆医药品有限公司 Composition and method for inhibiting the lipid of the expression of Eg5 and VEGF gene to prepare
EP3260540A1 (en) 2010-11-12 2017-12-27 The General Hospital Corporation Polycomb-associated non-coding rnas
EP2640853B1 (en) 2010-11-17 2018-12-26 Ionis Pharmaceuticals, Inc. Modulation of alpha synuclein expression
WO2012071238A2 (en) 2010-11-23 2012-05-31 Opko Curna Llc Treatment of nanog related diseases by inhibition of natural antisense transcript to nanog
US9150926B2 (en) 2010-12-06 2015-10-06 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Diagnosis and treatment of adrenocortical tumors using human microRNA-483
WO2012078967A2 (en) 2010-12-10 2012-06-14 Alnylam Pharmaceuticals, Inc. Compositions and methods for increasing erythropoietin (epo) production
WO2012079046A2 (en) 2010-12-10 2012-06-14 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of klf-1 and bcl11a genes
WO2012097261A2 (en) 2011-01-14 2012-07-19 The General Hospital Corporation Methods targeting mir-128 for regulating cholesterol/lipid metabolism
SI2670411T1 (en) 2011-02-02 2019-06-28 Excaliard Pharmaceuticals, Inc. Antisense compounds targeting connective tissue growth factor (ctgf) for use in a method of treating keloids or hypertrophic scars
EP2670404B1 (en) 2011-02-02 2018-08-29 The Trustees of Princeton University Sirtuin modulators as virus production modulators
WO2012109157A2 (en) 2011-02-07 2012-08-16 The Governing Council Of The University Of Toronto Bioprobes and methods of use thereof
EP3467109A1 (en) 2011-02-08 2019-04-10 Ionis Pharmaceuticals, Inc. Oligomeric compounds comprising bicyclic nucleotides and uses thereof
US9562853B2 (en) 2011-02-22 2017-02-07 Vanderbilt University Nonaqueous backscattering interferometric methods
SG193923A1 (en) 2011-03-29 2013-11-29 Alnylam Pharmaceuticals Inc Compositions and methods for inhibiting expression of tmprss6 gene
WO2012138453A1 (en) 2011-04-03 2012-10-11 The General Hospital Corporation Efficient protein expression in vivo using modified rna (mod-rna)
US20140186844A1 (en) 2011-04-26 2014-07-03 Swift Biosciences, Inc. Polynucleotide primers and probes
WO2012151289A2 (en) 2011-05-02 2012-11-08 University Of Virginia Patent Foundation Method and system to detect aggregate formation on a substrate
WO2012151324A1 (en) 2011-05-02 2012-11-08 Isis Pharmaceuticals, Inc. Antisense compounds targeting genes associated with usher syndrome
WO2012151268A1 (en) 2011-05-02 2012-11-08 University Of Virginia Patent Foundation Method and system for high throughput optical and label free detection of analytes
WO2012170347A1 (en) 2011-06-09 2012-12-13 Isis Pharmaceuticals, Inc. Bicyclic nucleosides and oligomeric compounds prepared therefrom
RU2620980C2 (en) 2011-06-09 2017-05-30 Курна, Инк. Treatment of diseases associated with frataxin (fxn), by inhibiting natural antisense fxn transcript
CN112111492A (en) 2011-06-21 2020-12-22 阿尔尼拉姆医药品有限公司 Compositions and methods for inhibiting expression of apolipoprotein C-III (APOC3) gene
WO2012177949A2 (en) 2011-06-21 2012-12-27 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibition of expression of protein c (proc) genes
KR102395085B1 (en) 2011-06-21 2022-05-09 알닐람 파마슈티칼스 인코포레이티드 Angiopoietin-like 3(angptl3) irna compostions and methods of use thereof
WO2012178033A2 (en) 2011-06-23 2012-12-27 Alnylam Pharmaceuticals, Inc. Serpina1 sirnas: compositions of matter and methods of treatment
US9222093B2 (en) 2011-06-30 2015-12-29 The University Of Hong Kong Two-way, portable riboswitch mediated gene expression control device
RU2014105311A (en) 2011-07-19 2015-08-27 Уэйв Лайф Сайенсес Пте. Лтд. METHODS FOR SYNTHESIS OF FUNCTIONALIZED NUCLEIC ACIDS
EP2739735A2 (en) 2011-08-01 2014-06-11 Alnylam Pharmaceuticals, Inc. Method for improving the success rate of hematopoietic stem cell transplants
EP2742136B1 (en) 2011-08-11 2017-09-27 Ionis Pharmaceuticals, Inc. Gapped oligomeric compounds comprising 5'-modified deoxyribonucleosides in the gap and uses thereof
DK2751270T3 (en) 2011-08-29 2018-10-29 Ionis Pharmaceuticals Inc OLIGOMER-CONJUGATE COMPLEXES AND THEIR USE
EP2751269B1 (en) 2011-08-29 2016-03-23 Ionis Pharmaceuticals, Inc. Methods and compounds useful in conditions related to repeat expansion
EP2756080B1 (en) 2011-09-14 2019-02-20 Translate Bio MA, Inc. Multimeric oligonucleotide compounds
EP2755692B1 (en) 2011-09-14 2020-11-25 Northwestern University Nanoconjugates able to cross the blood-brain barrier
US9580713B2 (en) 2011-09-17 2017-02-28 Yale University Fluoride-responsive riboswitches, fluoride transporters, and methods of use
EP2766482B1 (en) 2011-10-11 2016-12-07 The Brigham and Women's Hospital, Inc. Micrornas in neurodegenerative disorders
ES2687951T3 (en) 2011-10-14 2018-10-30 F. Hoffmann-La Roche Ag Anti-HtrA1 antibodies and procedures for use
US9243291B1 (en) 2011-12-01 2016-01-26 Isis Pharmaceuticals, Inc. Methods of predicting toxicity
EP2790736B1 (en) 2011-12-12 2018-01-31 Oncoimmunin, Inc. In vivo delivery of oligonucleotides
WO2013101935A1 (en) 2011-12-27 2013-07-04 Ibis Biosciences, Inc. Bioagent detection oligonucleotides
WO2013106770A1 (en) 2012-01-11 2013-07-18 Isis Pharmaceuticals, Inc. Compositions and methods for modulation of ikbkap splicing
CN108611398A (en) 2012-01-13 2018-10-02 Data生物有限公司 Genotyping is carried out by new-generation sequencing
SG11201405669XA (en) 2012-03-13 2014-10-30 Swift Biosciences Inc Methods and compositions for size-controlled homopolymer tailing of substrate polynucleotides by a nucleic acid polymerase
JP2015511494A (en) 2012-03-15 2015-04-20 キュアナ,インク. Treatment of BDNF-related diseases by inhibition of natural antisense transcripts against brain-derived neurotrophic factor (BDNF)
WO2013138662A1 (en) 2012-03-16 2013-09-19 4S3 Bioscience, Inc. Antisense conjugates for decreasing expression of dmpk
AU2013202595B2 (en) 2012-03-30 2016-04-21 Biogen Ma Inc. Methods for modulating Tau expression for reducing seizure and modifying a neurodegenerative syndrome
WO2013154799A1 (en) 2012-04-09 2013-10-17 Isis Pharmaceuticals, Inc. Tricyclic nucleosides and oligomeric compounds prepared therefrom
EP2850092B1 (en) 2012-04-09 2017-03-01 Ionis Pharmaceuticals, Inc. Tricyclic nucleic acid analogs
US9133461B2 (en) 2012-04-10 2015-09-15 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the ALAS1 gene
JP2015518485A (en) 2012-04-20 2015-07-02 アプタミアール セラピューティクス インコーポレイテッド Thermogenic miRNA regulator
EP2839006B1 (en) 2012-04-20 2018-01-03 Ionis Pharmaceuticals, Inc. Oligomeric compounds comprising bicyclic nucleotides and uses thereof
US9127274B2 (en) 2012-04-26 2015-09-08 Alnylam Pharmaceuticals, Inc. Serpinc1 iRNA compositions and methods of use thereof
EP2841572B1 (en) 2012-04-27 2019-06-19 Duke University Genetic correction of mutated genes
US9273949B2 (en) 2012-05-11 2016-03-01 Vanderbilt University Backscattering interferometric methods
EA201492123A1 (en) 2012-05-16 2015-10-30 Рана Терапьютикс, Инк. COMPOSITIONS AND METHODS FOR MODULATING THE EXPRESSION OF THE SMN GENES FAMILY
AU2013262663A1 (en) 2012-05-16 2015-01-22 The General Hospital Corporation D/B/A Massachusetts General Hospital Compositions and methods for modulating gene expression
US9574193B2 (en) 2012-05-17 2017-02-21 Ionis Pharmaceuticals, Inc. Methods and compositions for modulating apolipoprotein (a) expression
US20160002624A1 (en) 2012-05-17 2016-01-07 Isis Pharmaceuticals, Inc. Antisense oligonucleotide compositions
US9828602B2 (en) 2012-06-01 2017-11-28 Ionis Pharmaceuticals, Inc. Antisense compounds targeting genes associated with fibronectin
US9487780B2 (en) 2012-06-01 2016-11-08 Ionis Pharmaceuticals, Inc. Antisense compounds targeting genes associated with fibronectin
WO2013184209A1 (en) 2012-06-04 2013-12-12 Ludwig Institute For Cancer Research Ltd. Mif for use in methods of treating subjects with a neurodegenerative disorder
WO2013185097A1 (en) 2012-06-08 2013-12-12 The Regents Of The University Of Michigan Ultrasound-triggerable agents for tissue engineering
SG11201500243WA (en) 2012-07-13 2015-04-29 Shin Nippon Biomedical Lab Ltd Chiral nucleic acid adjuvant
US9982257B2 (en) 2012-07-13 2018-05-29 Wave Life Sciences Ltd. Chiral control
SG11201500239VA (en) 2012-07-13 2015-03-30 Wave Life Sciences Japan Asymmetric auxiliary group
US20140038182A1 (en) 2012-07-17 2014-02-06 Dna Logix, Inc. Cooperative primers, probes, and applications thereof
WO2014022852A1 (en) 2012-08-03 2014-02-06 Aptamir Therapeutics, Inc. Cell-specific delivery of mirna modulators for the treatment of obesity and related disorders
CN104736551B (en) 2012-08-15 2017-07-28 Ionis制药公司 The method for preparing oligomeric compounds using improved end-blocking scheme
CA2884245C (en) 2012-09-06 2023-03-14 The University Of Chicago Antisense polynucleotides to induce exon skipping and methods of treating dystrophies
US9695418B2 (en) 2012-10-11 2017-07-04 Ionis Pharmaceuticals, Inc. Oligomeric compounds comprising bicyclic nucleosides and uses thereof
DK2906256T3 (en) 2012-10-12 2018-11-19 Ionis Pharmaceuticals Inc SELECTIVE ANTISENSE COMPOUNDS AND APPLICATIONS THEREOF
EP4144845A1 (en) 2012-10-12 2023-03-08 Ionis Pharmaceuticals, Inc. Antisense compounds and uses thereof
US9029335B2 (en) 2012-10-16 2015-05-12 Isis Pharmaceuticals, Inc. Substituted 2′-thio-bicyclic nucleosides and oligomeric compounds prepared therefrom
EP2914621B1 (en) 2012-11-05 2023-06-07 Foundation Medicine, Inc. Novel ntrk1 fusion molecules and uses thereof
US9695475B2 (en) 2012-12-11 2017-07-04 Ionis Pharmaceuticals, Inc. Competitive modulation of microRNAs
CA3150658A1 (en) 2013-01-18 2014-07-24 Foundation Medicine, Inc. Methods of treating cholangiocarcinoma
WO2014121287A2 (en) 2013-02-04 2014-08-07 Isis Pharmaceuticals, Inc. Selective antisense compounds and uses thereof
WO2014130922A1 (en) 2013-02-25 2014-08-28 Trustees Of Boston University Compositions and methods for treating fungal infections
ES2708650T3 (en) 2013-03-14 2019-04-10 Andes Biotechnologies Global Inc Antisense oligonucleotides for the treatment of tumor stem cells
KR102605775B1 (en) 2013-03-14 2023-11-29 알닐람 파마슈티칼스 인코포레이티드 Complement component c5 irna compositions and methods of use thereof
BR112015022621A2 (en) 2013-03-14 2017-10-31 Andes Biotechnologies S A methods for detection and treatment of multiple myeloma
KR20150130430A (en) 2013-03-14 2015-11-23 아이시스 파마수티컬즈 인코포레이티드 Compositions and methods for modulating tau expression
US9347095B2 (en) 2013-03-15 2016-05-24 Bio-Rad Laboratories, Inc. Digital assays for mutation detection
EP2978446B1 (en) 2013-03-27 2020-03-04 The General Hospital Corporation Anti-cd33 antibody for use in treating alzheimer's disease
WO2014165825A2 (en) 2013-04-04 2014-10-09 President And Fellows Of Harvard College Therapeutic uses of genome editing with crispr/cas systems
WO2015012916A2 (en) 2013-04-23 2015-01-29 Northwestern University Metal-ligand coordination polymer nanoparticles and methods for making
SG10201906382QA (en) 2013-05-01 2019-08-27 Ionis Pharmaceuticals Inc Compositions and methods for modulating hbv and ttr expression
TWI727917B (en) 2013-05-22 2021-05-21 美商阿尼拉製藥公司 TMPRSS6 iRNA COMPOSITIONS AND METHODS OF USE THEREOF
RS57418B1 (en) 2013-05-22 2018-09-28 Alnylam Pharmaceuticals Inc Serpina1 irna compositions and methods of use thereof
WO2014197835A2 (en) 2013-06-06 2014-12-11 The General Hospital Corporation Methods and compositions for the treatment of cancer
AU2014280847B2 (en) 2013-06-13 2019-07-04 Antisense Therapeutics Ltd Combination therapy
CA2916252A1 (en) 2013-06-21 2014-12-24 Isis Pharmaceuticals, Inc. Compositions and methods for modulation of target nucleic acids
EP3022176B8 (en) 2013-07-15 2019-12-25 The Regents of the University of California Azacyclic constrained analogs of fty720
TWI657819B (en) 2013-07-19 2019-05-01 美商Ionis製藥公司 Compositions for modulating tau expression
US10435430B2 (en) 2013-07-31 2019-10-08 Ionis Pharmaceuticals, Inc. Methods and compounds useful in conditions related to repeat expansion
GB201313897D0 (en) * 2013-08-02 2013-09-18 Maersk Olie & Gas Conformance control in enhanced oil recovery
ES2773547T3 (en) 2013-08-08 2020-07-13 Scripps Research Inst An in vitro nucleic acid site specific enzymatic labeling procedure by incorporating unnatural nucleotides
TW201536329A (en) 2013-08-09 2015-10-01 Isis Pharmaceuticals Inc Compounds and methods for modulation of dystrophia myotonica-protein kinase (DMPK) expression
MX2016003046A (en) 2013-09-09 2016-09-08 Melinta Therapeutics Inc Antimicrobial compounds and methods of making and using the same.
CN106103442A (en) 2013-09-09 2016-11-09 梅琳塔治疗公司 Its method of Antimicrobe compound and preparation and use
WO2015042447A1 (en) 2013-09-20 2015-03-26 Isis Pharmaceuticals, Inc. Targeted therapeutic nucleosides and their use
CN105793423A (en) 2013-10-02 2016-07-20 阿尔尼拉姆医药品有限公司 Compositions and methods for inhibiting expression of the LECT2 gene
JP6613227B2 (en) 2013-10-04 2019-11-27 アルナイラム ファーマシューティカルズ, インコーポレイテッド Composition and method for inhibiting the expression of ALAS1 gene
WO2015054451A1 (en) 2013-10-09 2015-04-16 The United States Of America As Represented By The Secretary Department Of Health And Human Services Detection of hepatitis delta virus (hdv) for the diagnosis and treatment of sjögren's syndrome and lymphoma
US11162096B2 (en) 2013-10-14 2021-11-02 Ionis Pharmaceuticals, Inc Methods for modulating expression of C9ORF72 antisense transcript
CN105899679A (en) 2013-10-21 2016-08-24 通用医疗公司 Methods relating to circulating tumor cell clusters and the treatment of cancer
WO2015066708A1 (en) 2013-11-04 2015-05-07 Northwestern University Quantification and spatio-temporal tracking of a target using a spherical nucleic acid (sna)
US10752940B2 (en) 2013-11-08 2020-08-25 Ionis Pharmaceuticals, Inc. Compounds and methods for detecting oligonucleotides
ES2797679T3 (en) 2013-12-02 2020-12-03 Ionis Pharmaceuticals Inc Antisense compounds and their uses
US10934550B2 (en) 2013-12-02 2021-03-02 Phio Pharmaceuticals Corp. Immunotherapy of cancer
WO2015126502A2 (en) 2013-12-03 2015-08-27 Northwestern University Liposomal particles, methods of making same and uses thereof
CA2844640A1 (en) 2013-12-06 2015-06-06 The University Of British Columbia Method for treatment of castration-resistant prostate cancer
US10385388B2 (en) 2013-12-06 2019-08-20 Swift Biosciences, Inc. Cleavable competitor polynucleotides
IL282401B (en) 2013-12-12 2022-08-01 Alnylam Pharmaceuticals Inc Complement component irna compositions and methods of use thereof
CN111729090A (en) 2013-12-20 2020-10-02 通用医疗公司 Methods and assays relating to circulating tumor cells
US10149905B2 (en) 2014-01-15 2018-12-11 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant having antitumor effect and antitumor agent
JPWO2015108046A1 (en) 2014-01-15 2017-03-23 株式会社新日本科学 Chiral nucleic acid adjuvant and antiallergic agent having antiallergic action
JPWO2015108047A1 (en) 2014-01-15 2017-03-23 株式会社新日本科学 Chiral nucleic acid adjuvant having immunity induction activity and immunity induction activator
DK3094728T3 (en) 2014-01-16 2022-05-16 Wave Life Sciences Ltd KIRALT DESIGN
EP3102197B1 (en) 2014-02-04 2018-08-29 Genentech, Inc. Mutant smoothened and methods of using the same
WO2015123264A1 (en) 2014-02-11 2015-08-20 Alnylam Pharmaceuticals, Inc. Ketohexokinase (khk) irna compositions and methods of use thereof
EP3119789B1 (en) 2014-03-17 2020-04-22 Ionis Pharmaceuticals, Inc. Bicyclic carbocyclic nucleosides and oligomeric compounds prepared therefrom
RU2019130898A (en) 2014-03-19 2019-11-11 Ионис Фармасьютикалз, Инк. COMPOSITIONS FOR MODULATION OF ATAXIN 2 EXPRESSION
US10006027B2 (en) 2014-03-19 2018-06-26 Ionis Pharmaceuticals, Inc. Methods for modulating Ataxin 2 expression
RU2704619C2 (en) 2014-04-01 2019-10-30 Биоген Ма Инк. Compositions for modulating expression of sod-1
EP3943607A1 (en) 2014-04-09 2022-01-26 The Scripps Research Institute Import of unnatural or modified nucleoside triphosphates into cells via nucleic acid triphosphate transporters
US10221416B2 (en) 2014-04-24 2019-03-05 Ionis Pharmaceuticals, Inc. Oligomeric compounds comprising alpha-beta-constrained nucleic acid
DK3137476T3 (en) 2014-04-28 2019-11-18 Ionis Pharmaceuticals Inc LINKER-MODIFIED OLIGOMER COMPOUNDS
US11279934B2 (en) 2014-04-28 2022-03-22 Phio Pharmaceuticals Corp. Methods for treating cancer using nucleic acids targeting MDM2 or MYCN
SI3137605T1 (en) 2014-05-01 2021-02-26 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating angiopoietin-like 3 expression
EP3137604B1 (en) 2014-05-01 2020-07-15 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating growth hormone receptor expression
SG11201608502TA (en) 2014-05-01 2016-11-29 Ionis Pharmaceuticals Inc Compositions and methods for modulating complement factor b expression
WO2015175510A1 (en) 2014-05-12 2015-11-19 Alnylam Pharmaceuticals, Inc. Methods and compositions for treating a serpinc1-associated disorder
EA201692370A1 (en) 2014-05-22 2017-03-31 Элнилэм Фармасьютикалз, Инк. COMPOSITIONS of mRNA ANGIOTENZINOGENA (AGT) AND METHODS OF THEIR USE
US10570169B2 (en) 2014-05-22 2020-02-25 Ionis Pharmaceuticals, Inc. Conjugated antisense compounds and their use
BR112016028211A2 (en) 2014-06-02 2017-10-24 Childrens Medical Center methods and compositions for immunomodulation
CN106661580B (en) 2014-06-10 2022-02-15 鹿特丹伊拉斯谟大学医疗中心 Antisense oligonucleotides for treating pompe disease
CN106414738A (en) 2014-06-24 2017-02-15 雅培分子公司 Detection of single nucleotide polymorphisms in human kras
EP3161159B1 (en) 2014-06-25 2020-08-05 The General Hospital Corporation Targeting human satellite ii (hsatii)
US9951327B1 (en) 2014-07-17 2018-04-24 Integrated Dna Technologies, Inc. Efficient and rapid method for assembling and cloning double-stranded DNA fragments
MX2017001432A (en) 2014-07-31 2017-05-09 Uab Res Found Apoe mimetic peptides and higher potency to clear plasma cholesterol.
CA2958431A1 (en) 2014-08-19 2016-02-25 Northwestern University Protein/oligonucleotide core-shell nanoparticle therapeutics
CN107074767A (en) 2014-08-20 2017-08-18 西北大学 Unlimited coordination polymer nano particle-nucleic acid conjugate of the bio-compatible adjusted for antisense gene
CN107106704A (en) 2014-08-29 2017-08-29 儿童医疗中心有限公司 Method and composition for treating cancer
WO2016033424A1 (en) 2014-08-29 2016-03-03 Genzyme Corporation Methods for the prevention and treatment of major adverse cardiovascular events using compounds that modulate apolipoprotein b
WO2016033326A2 (en) 2014-08-29 2016-03-03 Alnylam Pharmaceuticals, Inc. Methods of treating transthyretin (ttr) mediated amyloidosis
KR102506169B1 (en) 2014-09-05 2023-03-08 피오 파마슈티칼스 코프. Methods for treating aging and skin disorders using nucleic acids targeting tyr or mmp1
EP3191591A1 (en) 2014-09-12 2017-07-19 Alnylam Pharmaceuticals, Inc. Polynucleotide agents targeting complement component c5 and methods of use thereof
EP3198012B1 (en) 2014-09-26 2019-09-04 University of Massachusetts Rna-modulating agents
JOP20200115A1 (en) 2014-10-10 2017-06-16 Alnylam Pharmaceuticals Inc Compositions And Methods For Inhibition Of HAO1 (Hydroxyacid Oxidase 1 (Glycolate Oxidase)) Gene Expression
EP3207138B1 (en) 2014-10-17 2020-07-15 Alnylam Pharmaceuticals, Inc. Polynucleotide agents targeting aminolevulinic acid synthase-1 (alas1) and uses thereof
EP3212794B1 (en) 2014-10-30 2021-04-07 Genzyme Corporation Polynucleotide agents targeting serpinc1 (at3) and methods of use thereof
JOP20200092A1 (en) 2014-11-10 2017-06-16 Alnylam Pharmaceuticals Inc HEPATITIS B VIRUS (HBV) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
WO2016077540A1 (en) 2014-11-12 2016-05-19 Ionis Pharmaceuticals, Inc. Compounds and methods for the modulation of comp
CN107250362B (en) 2014-11-17 2021-10-22 阿尔尼拉姆医药品有限公司 Apolipoprotein C3(APOC3) iRNA compositions and methods of use thereof
CN107106493A (en) 2014-11-21 2017-08-29 西北大学 The sequence-specific cellular uptake of spherical nucleic acid nano particle conjugate
EP3229842B1 (en) 2014-12-08 2022-07-06 The Board of Regents of The University of Texas System Lipocationic polymers and uses thereof
JP6997623B2 (en) 2014-12-12 2022-02-04 エム. ウルフ、トッド Compositions and Methods for Editing Intracellular Nucleic Acids Utilizing Oligonucleotides
US9688707B2 (en) 2014-12-30 2017-06-27 Ionis Pharmaceuticals, Inc. Bicyclic morpholino compounds and oligomeric compounds prepared therefrom
WO2016112132A1 (en) 2015-01-06 2016-07-14 Ionis Pharmaceuticals, Inc. Compositions for modulating expression of c9orf72 antisense transcript
WO2016115490A1 (en) 2015-01-16 2016-07-21 Ionis Pharmaceuticals, Inc. Compounds and methods for modulation of dux4
JP2018506715A (en) 2015-01-23 2018-03-08 ヴァンダービルト ユニバーシティー Robust interferometer and method of use
EP3256487A4 (en) 2015-02-09 2018-07-18 Duke University Compositions and methods for epigenome editing
CA2976445A1 (en) 2015-02-13 2016-08-18 Alnylam Pharmaceuticals, Inc. Patatin-like phospholipase domain containing 3 (pnpla3) irna compositions and methods of use thereof
EP3262173A2 (en) 2015-02-23 2018-01-03 Crispr Therapeutics AG Materials and methods for treatment of human genetic diseases including hemoglobinopathies
US11129844B2 (en) 2015-03-03 2021-09-28 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating MECP2 expression
EA201792006A1 (en) 2015-03-11 2018-04-30 Мелинта Терапьютикс, Инк. ANTIMICROBIAL COMPOUNDS AND METHODS FOR THEIR PRODUCTION AND THEIR APPLICATION
MX2017012407A (en) 2015-03-27 2018-03-07 Harvard College Modified t cells and methods of making and using the same.
WO2016164463A1 (en) 2015-04-07 2016-10-13 The General Hospital Corporation Methods for reactivating genes on the inactive x chromosome
PL3283500T3 (en) 2015-04-08 2021-05-31 The University Of Chicago Compositions and methods for correcting limb girdle muscular dystrophy type 2c using exon skipping
WO2016164746A1 (en) 2015-04-08 2016-10-13 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the lect2 gene
WO2016167780A1 (en) 2015-04-16 2016-10-20 Ionis Pharmaceuticals, Inc. Compositions for modulating expression of c9orf72 antisense transcript
EP3307316A1 (en) 2015-06-12 2018-04-18 Alnylam Pharmaceuticals, Inc. Complement component c5 irna compositions and methods of use thereof
WO2016205323A1 (en) 2015-06-18 2016-12-22 Alnylam Pharmaceuticals, Inc. Polynucleotde agents targeting hydroxyacid oxidase (glycolate oxidase, hao1) and methods of use thereof
WO2016209862A1 (en) 2015-06-23 2016-12-29 Alnylam Pharmaceuticals, Inc. Glucokinase (gck) irna compositions and methods of use thereof
CN108139375A (en) 2015-06-26 2018-06-08 贝斯以色列女执事医疗中心股份有限公司 Target the cancer therapy for inhibiting the four transmembrane proteins 33 (TSPAN33) in cell derived from marrow sample
EP3314027A4 (en) 2015-06-29 2019-07-03 Caris Science, Inc. Therapeutic oligonucleotides
EP3313989A4 (en) 2015-06-29 2018-12-05 Ionis Pharmaceuticals, Inc. Modified crispr rna and modified single crispr rna and uses thereof
US10808247B2 (en) 2015-07-06 2020-10-20 Phio Pharmaceuticals Corp. Methods for treating neurological disorders using a synergistic small molecule and nucleic acids therapeutic approach
CA2991598A1 (en) 2015-07-06 2017-01-12 Rxi Pharmaceuticals Corporation Nucleic acid molecules targeting superoxide dismutase 1 (sod1)
US10494632B2 (en) 2015-07-10 2019-12-03 Alnylam Pharmaceuticals, Inc. Insulin-like growth factor binding protein, acid labile subunit (IGFALS) compositions and methods of use thereof
MY192997A (en) 2015-07-10 2022-09-20 Ionis Pharmaceuticals Inc Modulators of diacyglycerol acyltransferase 2 (dgat2)
MA43072A (en) 2015-07-22 2018-05-30 Wave Life Sciences Ltd COMPOSITIONS OF OLIGONUCLEOTIDES AND RELATED PROCESSES
CA2993652A1 (en) 2015-07-28 2017-02-02 Caris Science, Inc. Targeted oligonucleotides
WO2017021961A1 (en) 2015-08-04 2017-02-09 Yeda Research And Development Co. Ltd. Methods of screening for riboswitches and attenuators
CN114525280A (en) 2015-09-02 2022-05-24 阿尔尼拉姆医药品有限公司 iRNA compositions of programmed cell death 1 ligand 1(PD-L1) and methods of use thereof
CN108271360B (en) 2015-09-14 2023-01-24 得克萨斯州大学系统董事会 Lipophilic cationic dendritic polymer and use thereof
AU2016339053A1 (en) 2015-09-24 2018-04-12 Crispr Therapeutics Ag Novel family of RNA-programmable endonucleases and their uses in genome editing and other applications
RU2018113709A (en) 2015-09-24 2019-10-30 Айонис Фармасьютикалз, Инк. KRAS EXPRESSION MODULATORS
CA2999177A1 (en) 2015-09-24 2017-03-30 The Regents Of The University Of California Synthetic sphingolipid-like molecules, drugs, methods of their synthesis and methods of treatment
WO2017053781A1 (en) 2015-09-25 2017-03-30 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating ataxin 3 expression
WO2017058672A1 (en) 2015-09-29 2017-04-06 The Regents Of The University Of Michigan Office Of Technology Transfer Biodegradable hydrogel for tissue expansion
EP4089175A1 (en) 2015-10-13 2022-11-16 Duke University Genome engineering with type i crispr systems in eukaryotic cells
JP2018531037A (en) 2015-10-19 2018-10-25 アールエックスアイ ファーマシューティカルズ コーポレーション Reduced size self-delivering nucleic acid compounds targeting long non-coding RNAs
EP3368063B1 (en) 2015-10-28 2023-09-06 Vertex Pharmaceuticals Inc. Materials and methods for treatment of duchenne muscular dystrophy
SI3368578T1 (en) 2015-10-30 2021-08-31 F. Hoffmann-La Roche Ag Anti-htra1 antibodies and methods of use thereof
WO2017075670A1 (en) 2015-11-05 2017-05-11 Children's Hospital Los Angeles "mobilizing leukemia cells"
PE20181180A1 (en) 2015-11-06 2018-07-20 Ionis Pharmaceuticals Inc MODULATE THE EXPRESSION OF APOLIPOPROTEIN (a)
BR112018008971A2 (en) 2015-11-06 2018-11-27 Crispr Therapeutics Ag Materials and Methods for Treatment of Type 1a Glycogen Storage Disease
US20190046555A1 (en) 2015-11-06 2019-02-14 Ionis Pharmaceuticals, Inc. Conjugated antisense compounds for use in therapy
AU2016355178B9 (en) 2015-11-19 2019-05-30 Massachusetts Institute Of Technology Lymphocyte antigen CD5-like (CD5L)-interleukin 12B (p40) heterodimers in immunity
EP3967758A1 (en) 2015-12-01 2022-03-16 CRISPR Therapeutics AG Materials and methods for treatment of alpha-1 antitrypsin deficiency
WO2017096395A1 (en) 2015-12-04 2017-06-08 Ionis Pharmaceuticals, Inc. Methods of treating breast cancer
AU2015416656B2 (en) 2015-12-07 2023-02-23 Erasmus University Medical Center Rotterdam Enzymatic replacement therapy and antisense therapy for Pompe disease
US11761007B2 (en) 2015-12-18 2023-09-19 The Scripps Research Institute Production of unnatural nucleotides using a CRISPR/Cas9 system
AU2016376191A1 (en) 2015-12-23 2018-07-12 Crispr Therapeutics Ag Materials and methods for treatment of amyotrophic lateral sclerosis and/or frontal temporal lobular degeneration
AU2017205462A1 (en) 2016-01-05 2018-06-07 Ionis Pharmaceuticals, Inc. Methods for reducing LRRK2 expression
WO2017132483A1 (en) 2016-01-29 2017-08-03 Vanderbilt University Free-solution response function interferometry
WO2017134529A1 (en) 2016-02-02 2017-08-10 Crispr Therapeutics Ag Materials and methods for treatment of severe combined immunodeficiency (scid) or omenn syndrome
AU2017213826A1 (en) 2016-02-04 2018-08-23 Curis, Inc. Mutant smoothened and methods of using the same
US20190112353A1 (en) 2016-02-18 2019-04-18 Crispr Therapeutics Ag Materials and methods for treatment of severe combined immunodeficiency (scid) or omenn syndrome
JP7033072B2 (en) 2016-02-25 2022-03-09 ザ ブリガム アンド ウィメンズ ホスピタル インコーポレイテッド Treatment for fibrosis targeting SMOC2
CA3016592A1 (en) 2016-03-04 2017-09-08 Rhode Island Hospital Targeting microrna for cancer treatment
US11136577B2 (en) 2016-03-09 2021-10-05 Ionis Pharmaceuticals, Inc. Methods and compositions for inhibiting PMP22 expression
AU2017234678A1 (en) 2016-03-16 2018-08-16 Ionis Pharmaceuticals, Inc. Methods of modulating KEAP1
WO2017161168A1 (en) 2016-03-16 2017-09-21 Ionis Pharmaceuticals, Inc. Modulation of dyrk1b expression
WO2017158422A1 (en) 2016-03-16 2017-09-21 Crispr Therapeutics Ag Materials and methods for treatment of hereditary haemochromatosis
JP2019516393A (en) 2016-03-18 2019-06-20 カリス サイエンス インコーポレイテッド Oligonucleotide probes and uses thereof
ES2933435T3 (en) 2016-04-13 2023-02-08 Ionis Pharmaceuticals Inc Methods to reduce the expression of C9ORF72
AU2017252023A1 (en) 2016-04-18 2018-11-15 Crispr Therapeutics Ag Materials and methods for treatment of hemoglobinopathies
MA45295A (en) 2016-04-19 2019-02-27 Alnylam Pharmaceuticals Inc HIGH DENSITY LIPOPROTEIN BINDING PROTEIN (HDLBP / VIGILINE) RNA COMPOSITION AND METHODS FOR USING THEM
WO2017191503A1 (en) 2016-05-05 2017-11-09 Crispr Therapeutics Ag Materials and methods for treatment of hemoglobinopathies
CN109414408B (en) 2016-05-16 2022-03-29 得克萨斯州大学系统董事会 Cationic sulfonamide amino lipids and amphiphilic zwitterionic amino lipids
WO2017205686A1 (en) 2016-05-25 2017-11-30 Caris Science, Inc. Oligonucleotide probes and uses thereof
US20190256845A1 (en) 2016-06-10 2019-08-22 Alnylam Pharmaceuticals, Inc. COMPLEMENT COMPONENT C5 iRNA COMPOSITIONS AND METHODS OF USE THEREOF FOR TREATING PAROXYSMAL NOCTURNAL HEMOGLOBINURIA (PNH)
US11708614B2 (en) 2016-06-15 2023-07-25 Streck Llc Assays and methods for determining microbial resistance
EP3471781A4 (en) 2016-06-17 2020-05-06 Ionis Pharmaceuticals, Inc. Modulation of gys1 expression
WO2017223528A1 (en) 2016-06-24 2017-12-28 The Scripps Research Institute Novel nucleoside triphosphate transporter and uses thereof
WO2018002812A1 (en) 2016-06-29 2018-01-04 Crispr Therapeutics Ag Materials and methods for treatment of myotonic dystrophy type 1 (dm1) and other related disorders
WO2018002762A1 (en) 2016-06-29 2018-01-04 Crispr Therapeutics Ag Materials and methods for treatment of amyotrophic lateral sclerosis (als) and other related disorders
WO2018002783A1 (en) 2016-06-29 2018-01-04 Crispr Therapeutics Ag Materials and methods for treatment of friedreich ataxia and other related disorders
EP3481856A1 (en) 2016-07-06 2019-05-15 Crispr Therapeutics AG Materials and methods for treatment of pain related disorders
AU2017292173B2 (en) 2016-07-06 2022-01-13 Vertex Pharmaceuticals Incorporated Materials and methods for treatment of pain related disorders
WO2018007871A1 (en) 2016-07-08 2018-01-11 Crispr Therapeutics Ag Materials and methods for treatment of transthyretin amyloidosis
US11253601B2 (en) 2016-07-11 2022-02-22 Translate Bio Ma, Inc. Nucleic acid conjugates and uses thereof
RS63928B1 (en) 2016-07-15 2023-02-28 Ionis Pharmaceuticals Inc Compounds and methods for modulation of smn2
WO2018020323A2 (en) 2016-07-25 2018-02-01 Crispr Therapeutics Ag Materials and methods for treatment of fatty acid disorders
NL2017294B1 (en) 2016-08-05 2018-02-14 Univ Erasmus Med Ct Rotterdam Natural cryptic exon removal by pairs of antisense oligonucleotides.
NL2017295B1 (en) 2016-08-05 2018-02-14 Univ Erasmus Med Ct Rotterdam Antisense oligomeric compound for Pompe disease
US11364304B2 (en) 2016-08-25 2022-06-21 Northwestern University Crosslinked micellar spherical nucleic acids
SG10201607303YA (en) 2016-09-01 2018-04-27 Agency Science Tech & Res Antisense oligonucleotides to induce exon skipping
WO2018055577A1 (en) 2016-09-23 2018-03-29 Synthena Ag Mixed tricyclo-dna, 2'-modified rna oligonucleotide compositions and uses thereof
JOP20190065A1 (en) 2016-09-29 2019-03-28 Ionis Pharmaceuticals Inc Compounds and methods for reducing tau expression
WO2018067900A1 (en) 2016-10-06 2018-04-12 Ionis Pharmaceuticals, Inc. Method of conjugating oligomeric compounds
SG10201609048RA (en) 2016-10-28 2018-05-30 Agency Science Tech & Res Antisense oligonucleotides
CA3037046A1 (en) 2016-10-31 2018-05-03 University Of Massachusetts Targeting microrna-101-3p in cancer therapy
JOP20190104A1 (en) 2016-11-10 2019-05-07 Ionis Pharmaceuticals Inc Compounds and methods for reducing atxn3 expression
TWI788312B (en) 2016-11-23 2023-01-01 美商阿尼拉製藥公司 SERPINA1 iRNA COMPOSITIONS AND METHODS OF USE THEREOF
US11033570B2 (en) 2016-12-02 2021-06-15 Cold Spring Harbor Laboratory Modulation of Lnc05 expression
EP3555296A4 (en) 2016-12-13 2020-07-29 Seattle Children's Hospital (DBA Seattle Children's Research Institute) Methods of exogenous drug activation of chemical-induced signaling complexes expressed in engineered cells in vitro and in vivo
KR20230166146A (en) 2016-12-16 2023-12-06 알닐람 파마슈티칼스 인코포레이티드 Methods for treating or preventing ttr-associated diseases using transthyretin(ttr) irna compositions
IL301053A (en) 2017-01-23 2023-05-01 Regeneron Pharma Hsd17b13 variants and uses thereof
CA3054031A1 (en) 2017-02-22 2018-08-30 Crispr Therapeutics Ag Compositions and methods for gene editing
EP3585900B1 (en) 2017-02-22 2022-12-21 CRISPR Therapeutics AG Materials and methods for treatment of spinocerebellar ataxia type 2 (sca2) and other spinocerebellar ataxia type 2 protein (atxn2) gene related conditions or disorders
US11407997B2 (en) 2017-02-22 2022-08-09 Crispr Therapeutics Ag Materials and methods for treatment of primary hyperoxaluria type 1 (PH1) and other alanine-glyoxylate aminotransferase (AGXT) gene related conditions or disorders
EP3585807A1 (en) 2017-02-22 2020-01-01 CRISPR Therapeutics AG Materials and methods for treatment of early onset parkinson's disease (park1) and other synuclein, alpha (snca) gene related conditions or disorders
WO2018154439A1 (en) 2017-02-22 2018-08-30 Crispr Therapeutics Ag Materials and methods for treatment of spinocerebellar ataxia type 1 (sca1) and other spinocerebellar ataxia type 1 protein (atxn1) gene related conditions or disorders
US11180756B2 (en) 2017-03-09 2021-11-23 Ionis Pharmaceuticals Morpholino modified oligomeric compounds
JOP20190215A1 (en) 2017-03-24 2019-09-19 Ionis Pharmaceuticals Inc Modulators of pcsk9 expression
US20180284123A1 (en) 2017-03-30 2018-10-04 California Institute Of Technology Barcoded rapid assay platform useful for efficient analysis of candidate molecules and methods of making and using the platform
US11203611B2 (en) 2017-04-14 2021-12-21 Tollnine, Inc. Immunomodulating polynucleotides, antibody conjugates thereof, and methods of their use
AU2018254437A1 (en) 2017-04-18 2019-11-28 Alnylam Pharmaceuticals, Inc. Methods for the treatment of subjects having a hepatitis B virus (HBV) infection
WO2018193428A1 (en) 2017-04-20 2018-10-25 Synthena Ag Modified oligomeric compounds comprising tricyclo-dna nucleosides and uses thereof
JP2020517613A (en) 2017-04-20 2020-06-18 シンセナ アーゲー Modified oligomeric compounds containing tricyclo DNA nucleosides and uses thereof
EP3612232A1 (en) 2017-04-21 2020-02-26 The Broad Institute, Inc. Targeted delivery to beta cells
WO2018209270A1 (en) 2017-05-11 2018-11-15 Northwestern University Adoptive cell therapy using spherical nucleic acids (snas)
US11622977B2 (en) 2017-05-12 2023-04-11 Crispr Therapeutics Ag Materials and methods for engineering cells and uses thereof in immuno-oncology
EP3645546A4 (en) 2017-06-30 2021-12-01 Solstice Biologics, Ltd. Chiral phosphoramidite auxiliaries and methods of their use
CN111051512A (en) 2017-07-11 2020-04-21 辛索克斯公司 Incorporation of non-natural nucleotides and methods thereof
WO2019014530A1 (en) 2017-07-13 2019-01-17 Alnylam Pharmaceuticals Inc. Lactate dehydrogenase a (ldha) irna compositions and methods of use thereof
EP3652186A4 (en) 2017-07-13 2021-03-31 Northwestern University General and direct method for preparing oligonucleotide-functionalized metal-organic framework nanoparticles
WO2019028425A1 (en) 2017-08-03 2019-02-07 Synthorx, Inc. Cytokine conjugates for the treatment of autoimmune diseases
WO2019036613A1 (en) 2017-08-18 2019-02-21 Ionis Pharmaceuticals, Inc. Modulation of the notch signaling pathway for treatment of respiratory disorders
US10517889B2 (en) 2017-09-08 2019-12-31 Ionis Pharmaceuticals, Inc. Modulators of SMAD7 expression
US11806360B2 (en) 2017-09-19 2023-11-07 Alnylam Pharmaceuticals, Inc. Compositions and methods for treating transthyretin (TTR) mediated amyloidosis
SG11202003464VA (en) 2017-10-17 2020-05-28 Crispr Therapeutics Ag Compositions and methods for gene editing for hemophilia a
US20210180091A1 (en) 2017-10-26 2021-06-17 Vertex Pharmaceuticals Incorporated Materials and methods for treatment of hemoglobinopathies
WO2019089922A1 (en) 2017-11-01 2019-05-09 Alnylam Pharmaceuticals, Inc. Complement component c3 irna compositions and methods of use thereof
TWI809004B (en) 2017-11-09 2023-07-21 美商Ionis製藥公司 Compounds and methods for reducing snca expression
US20210032622A1 (en) 2017-11-09 2021-02-04 Crispr Therapeutics Ag Self-inactivating (sin) crispr/cas or crispr/cpf1 systems and uses thereof
US20200385719A1 (en) 2017-11-16 2020-12-10 Alnylam Pharmaceuticals, Inc. Kisspeptin 1 (kiss1) irna compositions and methods of use thereof
EP3714054A1 (en) 2017-11-20 2020-09-30 Alnylam Pharmaceuticals, Inc. Serum amyloid p component (apcs) irna compositions and methods of use thereof
CN111727251A (en) 2017-11-21 2020-09-29 克里斯珀医疗股份公司 Materials and methods for treating autosomal dominant retinitis pigmentosa
US20200384033A1 (en) 2017-12-05 2020-12-10 Vertex Pharmaceuticals Incorporated Crispr-cas9 modified cd34+ human hematopoietic stem and progenitor cells and uses thereof
CA3084825A1 (en) 2017-12-14 2019-06-20 Crispr Therapeutics Ag Novel rna-programmable endonuclease systems and their use in genome editing and other applications
WO2019118916A1 (en) 2017-12-14 2019-06-20 Ionis Pharmaceuticals, Inc. Conjugated antisense compounds and their use
AU2018388484A1 (en) 2017-12-18 2020-07-30 Alnylam Pharmaceuticals, Inc. High mobility group box-1 (HMGB1) iRNA compositions and methods of use thereof
AU2018393050A1 (en) 2017-12-21 2020-06-18 Bayer Healthcare Llc Materials and methods for treatment of Usher Syndrome Type 2A
WO2019126641A2 (en) 2017-12-21 2019-06-27 Ionis Pharmaceuticals, Inc. Modulation of frataxin expression
EP3728595A1 (en) 2017-12-21 2020-10-28 CRISPR Therapeutics AG Materials and methods for treatment of usher syndrome type 2a and/or non-syndromic autosomal recessive retinitis pigmentosa (arrp)
CA3088180A1 (en) 2018-01-12 2019-07-18 Crispr Therapeutics Ag Compositions and methods for gene editing by targeting transferrin
WO2019140231A1 (en) 2018-01-12 2019-07-18 Bristol-Myers Squibb Company Antisense oligonucleotides targeting alpha-synuclein and uses thereof
MX2020007369A (en) 2018-01-15 2020-10-28 Ionis Pharmaceuticals Inc Modulators of dnm2 expression.
WO2019142135A1 (en) 2018-01-19 2019-07-25 Synthena Ag Tricyclo-dna nucleoside precursors and processes for preparing the same
US20190233816A1 (en) 2018-01-26 2019-08-01 Massachusetts Institute Of Technology Structure-guided chemical modification of guide rna and its applications
MA51787A (en) 2018-02-05 2020-12-16 Vertex Pharma SUBSTANCES AND METHODS OF TREATMENT OF HEMOGLOBINOPATHIES
MA51788A (en) 2018-02-05 2020-12-16 Vertex Pharma SUBSTANCES AND METHODS FOR TREATING HEMOGLOBINOPATHIES
JP7317029B2 (en) 2018-02-12 2023-07-28 アイオーニス ファーマシューティカルズ, インコーポレーテッド Modified compounds and uses thereof
US20210130824A1 (en) 2018-02-16 2021-05-06 Crispr Therapeutics Ag Compositions and methods for gene editing by targeting fibrinogen-alpha
KR20200127207A (en) 2018-02-26 2020-11-10 신톡스, 인크. IL-15 conjugate and uses thereof
TW202000199A (en) 2018-03-02 2020-01-01 美商Ionis製藥公司 Modulators of IRF4 expression
US11732260B2 (en) 2018-03-02 2023-08-22 Ionis Pharmaceuticals, Inc. Compounds and methods for the modulation of amyloid-β precursor protein
EP3768834A1 (en) 2018-03-19 2021-01-27 CRISPR Therapeutics AG Novel rna-programmable endonuclease systems and uses thereof
US11661601B2 (en) 2018-03-22 2023-05-30 Ionis Pharmaceuticals, Inc. Methods for modulating FMR1 expression
EP4051799A2 (en) 2018-03-30 2022-09-07 Rheinische Friedrich-Wilhelms-Universität Bonn Aptamers for targeted activaton of t cell-mediated immunity
CN116536272A (en) 2018-04-06 2023-08-04 儿童医疗中心有限公司 Compositions and methods for somatic reprogramming and imprinting
SG11202008660TA (en) 2018-04-11 2020-10-29 Ionis Pharmaceuticals Inc Modulators of ezh2 expression
WO2019204668A1 (en) 2018-04-18 2019-10-24 Casebia Therapeutics Limited Liability Partnership Compositions and methods for knockdown of apo(a) by gene editing for treatment of cardiovascular disease
WO2019213571A1 (en) 2018-05-03 2019-11-07 The Trustees Of Wheaton College Improved membranes for nanopore sensing applications
CR20200604A (en) 2018-05-09 2021-02-09 Ionis Pharmaceuticals Inc Compounds and methods for reducing atxn3 expression
BR112020020957B1 (en) 2018-05-09 2022-05-10 Ionis Pharmaceuticals, Inc Oligomeric compounds, population and pharmaceutical composition thereof and their uses
TW202016304A (en) 2018-05-14 2020-05-01 美商阿尼拉製藥公司 Angiotensinogen (agt) irna compositions and methods of use thereof
US11833168B2 (en) 2018-06-14 2023-12-05 Ionis Pharmaceuticals, Inc. Compounds and methods for increasing STMN2 expression
US11332746B1 (en) 2018-06-27 2022-05-17 Ionis Pharmaceuticals, Inc. Compounds and methods for reducing LRRK2 expression
MX2021000922A (en) 2018-07-25 2021-03-31 Ionis Pharmaceuticals Inc Compounds and methods for reducing atxn2 expression.
BR112021001613A2 (en) 2018-08-13 2021-05-04 Alnylam Pharmaceuticals, Inc. double-stranded ribonucleic acid agents, cell, pharmaceutical compositions, methods of inhibiting gene expression, inhibiting replication and treating a subject, methods for reducing the level of an antigen and for reducing viral load, and use of an agent dsrna
US20210348162A1 (en) 2018-08-16 2021-11-11 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the lect2 gene
AU2019325255A1 (en) 2018-08-20 2021-04-15 Rogcon, Inc. Antisense oligonucleotides targeting SCN2A for the treatment of SCN1A encephalopathies
US20210292766A1 (en) 2018-08-29 2021-09-23 University Of Massachusetts Inhibition of Protein Kinases to Treat Friedreich Ataxia
EP3620520A1 (en) 2018-09-10 2020-03-11 Universidad del Pais Vasco Novel target to treat a metabolic disease in an individual
US20220056220A1 (en) 2018-09-14 2022-02-24 Northwestern University Programming protein polymerization with dna
US20210332367A1 (en) 2018-09-18 2021-10-28 Alnylam Pharmaceuticals, Inc. KETOHEXOKINASE (KHK) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
TW202023573A (en) 2018-09-19 2020-07-01 美商Ionis製藥公司 Modulators of pnpla3 expression
US20210348159A1 (en) 2018-10-17 2021-11-11 Crispr Therapeutics Ag Compositions and methods for delivering transgenes
US10913951B2 (en) 2018-10-31 2021-02-09 University of Pittsburgh—of the Commonwealth System of Higher Education Silencing of HNF4A-P2 isoforms with siRNA to improve hepatocyte function in liver failure
TW202028222A (en) 2018-11-14 2020-08-01 美商Ionis製藥公司 Modulators of foxp3 expression
BR112021008967A2 (en) 2018-11-15 2021-08-17 Ionis Pharmaceuticals, Inc. irf5 expression modulators
TW202039841A (en) 2018-11-21 2020-11-01 美商Ionis製藥公司 Compounds and methods for reducing prion expression
US20210332495A1 (en) 2018-12-06 2021-10-28 Northwestern University Protein Crystal Engineering Through DNA Hybridization Interactions
EP4285929A3 (en) 2018-12-20 2024-03-06 Humabs Biomed SA Combination hbv therapy
WO2020132521A1 (en) 2018-12-20 2020-06-25 Praxis Precision Medicines, Inc. Compositions and methods for the treatment of kcnt1 related disorders
KR20210117271A (en) 2018-12-21 2021-09-28 노쓰웨스턴유니버시티 Use of annexin to prevent and treat myofascial injuryUse of annexin to prevent and treat muscle damage
WO2020139977A1 (en) 2018-12-26 2020-07-02 Northwestern University Use of glucocorticoid steroids in preventing and treating conditions of muscle wasting, aging and metabolic disorder
SG11202107669WA (en) 2019-01-16 2021-08-30 Genzyme Corp Serpinc1 irna compositions and methods of use thereof
JP2022519532A (en) 2019-01-31 2022-03-24 アイオーニス ファーマシューティカルズ, インコーポレーテッド Modulator of YAP1 expression
AU2020218203A1 (en) 2019-02-06 2021-08-26 Synthorx, Inc. IL-2 conjugates and methods of use thereof
MA54951A (en) 2019-02-15 2021-12-22 Bayer Healthcare Llc GENE EDITING FOR HEMOPHILIA A WITH ENHANCED FACTOR VIII EXPRESSION
AU2020227824A1 (en) 2019-02-27 2021-08-26 Ionis Pharmaceuticals, Inc. Modulators of MALAT1 expression
US20220175956A1 (en) 2019-03-06 2022-06-09 Northwestern University Hairpin-like oligonucleotide-conjugated spherical nucleic acid
CA3139919A1 (en) 2019-03-11 2020-09-17 Ochsner Health System Microrna regulatory network as biomarkers of seizure in patients with spontaneous intracerebral hemorrhage
SG11202109741VA (en) 2019-03-12 2021-10-28 Crispr Therapeutics Ag Novel high fidelity rna-programmable endonuclease systems and uses thereof
WO2020205463A1 (en) 2019-03-29 2020-10-08 Ionis Pharmaceuticals, Inc. Compounds and methods for modulating ube3a-ats
BR112021022806A2 (en) 2019-05-13 2022-01-25 Vir Biotechnology Inc Method for treating chronic hbv infection, sirna, uses of a sirna, and of a sirna and peg-ifna and of a sirna, peg-ifna and an nrti, method, composition for use or use and kit
WO2020243644A1 (en) 2019-05-31 2020-12-03 Streck, Inc. Detection of antibiotic resistance genes
US11879145B2 (en) 2019-06-14 2024-01-23 The Scripps Research Institute Reagents and methods for replication, transcription, and translation in semi-synthetic organisms
EP3956450A4 (en) 2019-07-26 2022-11-16 Ionis Pharmaceuticals, Inc. Compounds and methods for modulating gfap
WO2021022109A1 (en) 2019-08-01 2021-02-04 Alnylam Pharmaceuticals, Inc. SERPIN FAMILY F MEMBER 2 (SERPINF2) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
WO2021022108A2 (en) 2019-08-01 2021-02-04 Alnylam Pharmaceuticals, Inc. CARBOXYPEPTIDASE B2 (CPB2) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
WO2021030522A1 (en) 2019-08-13 2021-02-18 Alnylam Pharmaceuticals, Inc. SMALL RIBOSOMAL PROTEIN SUBUNIT 25 (RPS25) iRNA AGENT COMPOSITIONS AND METHODS OF USE THEREOF
CN114555128A (en) 2019-08-15 2022-05-27 新索思股份有限公司 Combination immunooncology therapy with IL-2 conjugates
EP4013767A4 (en) 2019-08-15 2023-10-25 Ionis Pharmaceuticals, Inc. Linkage modified oligomeric compounds and uses thereof
KR20220051355A (en) 2019-08-23 2022-04-26 신톡스, 인크. IL-15 conjugates and uses thereof
EP4025694A1 (en) 2019-09-03 2022-07-13 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the lect2 gene
WO2021050554A1 (en) 2019-09-10 2021-03-18 Synthorx, Inc. Il-2 conjugates and methods of use to treat autoimmune diseases
US20220389429A1 (en) 2019-10-04 2022-12-08 Alnylam Pharmaceuticals, Inc. Compositions and methods for silencing ugt1a1 gene expression
JP2022552249A (en) 2019-10-14 2022-12-15 アストラゼネカ・アクチエボラーグ Modulators of PNPLA3 expression
WO2021076828A1 (en) 2019-10-18 2021-04-22 Alnylam Pharmaceuticals, Inc. Solute carrier family member irna compositions and methods of use thereof
AU2020369515A1 (en) 2019-10-22 2022-04-21 Alnylam Pharmaceuticals, Inc. Complement component C3 iRNA compositions and methods of use thereof
WO2021086623A1 (en) 2019-10-31 2021-05-06 The Trustees Of Wheaton College Design and characterization of multilayered structures for support of lipid bilayers
EP4051796A1 (en) 2019-11-01 2022-09-07 Alnylam Pharmaceuticals, Inc. Compositions and methods for silencing dnajb1-prkaca fusion gene expression
TW202132567A (en) 2019-11-01 2021-09-01 美商阿尼拉製藥公司 Huntingtin (htt) irna agent compositions and methods of use thereof
JP2022554272A (en) 2019-11-04 2022-12-28 シンソークス, インコーポレイテッド Interleukin 10 conjugates and uses thereof
WO2021096763A1 (en) 2019-11-13 2021-05-20 Alnylam Pharmaceuticals, Inc. Methods and compositions for treating an angiotensinogen- (agt-) associated disorder
US20230056569A1 (en) 2019-11-22 2023-02-23 Alnylam Pharmaceuticals, Inc. Ataxin3 (atxn3) rnai agent compositions and methods of use thereof
JP2023503635A (en) 2019-11-27 2023-01-31 クリスパー・セラピューティクス・アクチェンゲゼルシャフト Methods of synthesizing RNA molecules
MX2022006433A (en) 2019-12-13 2022-06-23 Alnylam Pharmaceuticals Inc Human chromosome 9 open reading frame 72 (c9orf72) irna agent compositions and methods of use thereof.
WO2021126734A1 (en) 2019-12-16 2021-06-24 Alnylam Pharmaceuticals, Inc. Patatin-like phospholipase domain containing 3 (pnpla3) irna compositions and methods of use thereof
EP4077674A1 (en) 2019-12-18 2022-10-26 Alia Therapeutics S.R.L. Compositions and methods for treating retinitis pigmentosa
WO2021142245A1 (en) 2020-01-10 2021-07-15 Translate Bio, Inc. Compounds, pharmaceutical compositions and methods for modulating expression of muc5b in lung cells and tissues
US20230057461A1 (en) 2020-01-27 2023-02-23 The U.S.A., As Represented By The Secretary, Department Of Health And Human Services Rab13 and net1 antisense oligonucleotides to treat metastatic cancer
WO2021154941A1 (en) 2020-01-31 2021-08-05 Alnylam Pharmaceuticals, Inc. Complement component c5 irna compositions for use in the treatment of amyotrophic lateral sclerosis (als)
CN115427571A (en) 2020-02-10 2022-12-02 阿尔尼拉姆医药品有限公司 Compositions and methods for silencing VEGF-A expression
MX2022010052A (en) 2020-02-18 2022-09-05 Alnylam Pharmaceuticals Inc Apolipoprotein c3 (apoc3) irna compositions and methods of use thereof.
TW202140787A (en) 2020-02-28 2021-11-01 美商Ionis製藥公司 Compounds and methods for modulating smn2
CA3169523A1 (en) 2020-02-28 2021-09-02 Jaume Pons Transglutaminase-mediated conjugation
EP4114947A1 (en) 2020-03-05 2023-01-11 Alnylam Pharmaceuticals, Inc. Complement component c3 irna compositions and methods of use thereof for treating or preventing complement component c3-associated diseases
CA3174725A1 (en) 2020-03-06 2021-09-10 Alnylam Pharmaceuticals, Inc. Ketohexokinase (khk) irna compositions and methods of use thereof
EP4121534A1 (en) 2020-03-18 2023-01-25 Alnylam Pharmaceuticals, Inc. Compositions and methods for treating subjects having a heterozygous alanine-glyoxylate aminotransferase gene (agxt) variant
WO2021195307A1 (en) 2020-03-26 2021-09-30 Alnylam Pharmaceuticals, Inc. Coronavirus irna compositions and methods of use thereof
US20230190785A1 (en) 2020-03-30 2023-06-22 Alnylam Pharmaceuticals, Inc. Compositions and methods for silencing dnajc15 gene expression
US20230295622A1 (en) 2020-04-06 2023-09-21 Alnylam Pharmaceuticals, Inc. Compositions and methods for silencing myoc expression
CN116134135A (en) 2020-04-07 2023-05-16 阿尔尼拉姆医药品有限公司 Compositions and methods for silencing SCN9A expression
EP4133077A1 (en) 2020-04-07 2023-02-15 Alnylam Pharmaceuticals, Inc. Transmembrane serine protease 2 (tmprss2) irna compositions and methods of use thereof
WO2021206917A1 (en) 2020-04-07 2021-10-14 Alnylam Pharmaceuticals, Inc. ANGIOTENSIN-CONVERTING ENZYME 2 (ACE2) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
BR112022021813A2 (en) 2020-04-27 2023-01-17 Alnylam Pharmaceuticals Inc APOLIPOPROTEIN AND (APOE) IRNA AGENT COMPOSITIONS AND METHODS OF USE THEREOF
IL297680A (en) 2020-04-30 2022-12-01 Alnylam Pharmaceuticals Inc Complement factor b (cfb) irna compositions and methods of use thereof
EP4143321A2 (en) 2020-05-01 2023-03-08 Ionis Pharmaceuticals, Inc. Compounds and methods for modulating atxn1
WO2021231673A1 (en) 2020-05-15 2021-11-18 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of leucine rich repeat kinase 2 (lrrk2)
EP4150076A1 (en) 2020-05-15 2023-03-22 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of methyl-cpg binding protein 2 (mecp2)
EP4150088A1 (en) 2020-05-15 2023-03-22 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of argininosuccinate synthetase (ass1)
EP4150078A1 (en) 2020-05-15 2023-03-22 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of argininosuccinate lyase (asl)
EP4150090A1 (en) 2020-05-15 2023-03-22 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of otoferlin (otof)
WO2021231685A1 (en) 2020-05-15 2021-11-18 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of transmembrane channel-like protein 1 (tmc1)
EP4150087A1 (en) 2020-05-15 2023-03-22 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of gap junction protein beta 2 (gjb2)
WO2021231691A1 (en) 2020-05-15 2021-11-18 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of retinoschisin 1 (rsi)
EP4153746A1 (en) 2020-05-21 2023-03-29 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting marc1 gene expression
AR122534A1 (en) 2020-06-03 2022-09-21 Triplet Therapeutics Inc METHODS FOR THE TREATMENT OF NUCLEOTIDE REPEAT EXPANSION DISORDERS ASSOCIATED WITH MSH3 ACTIVITY
EP4162050A1 (en) 2020-06-09 2023-04-12 Alnylam Pharmaceuticals, Inc. Rnai compositions and methods of use thereof for delivery by inhalation
BR112022024420A2 (en) 2020-06-18 2023-01-17 Alnylam Pharmaceuticals Inc XANTHINE DEHYDROGENASE (XDH) IRNA COMPOSITIONS AND METHODS OF USE THEREOF
CA3182458A1 (en) 2020-06-24 2021-12-30 Laura ROSEN Engineered hepatitis b virus neutralizing antibodies and uses thereof
AU2021296622A1 (en) 2020-06-25 2023-02-23 Synthorx, Inc. Immuno oncology combination therapy with IL-2 conjugates and anti-EGFR antibodies
JP2023532518A (en) 2020-06-29 2023-07-28 アイオーニス ファーマシューティカルズ, インコーポレーテッド Compounds and methods for modulating PLP1
TW202227102A (en) 2020-09-22 2022-07-16 瑞典商阿斯特捷利康公司 Method of treating fatty liver disease
EP4217489A1 (en) 2020-09-24 2023-08-02 Alnylam Pharmaceuticals, Inc. Dipeptidyl peptidase 4 (dpp4) irna compositions and methods of use thereof
US20230392134A1 (en) 2020-09-30 2023-12-07 Crispr Therapeutics Ag Materials and methods for treatment of amyotrophic lateral sclerosis
TW202229552A (en) 2020-10-05 2022-08-01 美商艾拉倫製藥股份有限公司 G protein-coupled receptor 75 (gpr75) irna compositions and methods of use thereof
EP3978608A1 (en) 2020-10-05 2022-04-06 SQY Therapeutics Oligomeric compound for dystrophin rescue in dmd patients throughout skipping of exon-51
BR112023006024A2 (en) 2020-10-09 2023-05-09 Synthorx Inc IMMUNO-ONCOLOGY THERAPIES WITH IL-2 CONJUGATES
MX2023004029A (en) 2020-10-09 2023-04-27 Synthorx Inc Immuno oncology combination therapy with il-2 conjugates and pembrolizumab.
EP4232581A1 (en) 2020-10-21 2023-08-30 Alnylam Pharmaceuticals, Inc. Methods and compositions for treating primary hyperoxaluria
EP4232582A1 (en) 2020-10-23 2023-08-30 Alnylam Pharmaceuticals, Inc. Mucin 5b (muc5b) irna compositions and methods of use thereof
JP2023549500A (en) 2020-11-13 2023-11-27 アルナイラム ファーマシューティカルズ, インコーポレイテッド Coagulation factor V (F5) iRNA composition and method of use thereof
US11447521B2 (en) 2020-11-18 2022-09-20 Ionis Pharmaceuticals, Inc. Compounds and methods for modulating angiotensinogen expression
CA3202708A1 (en) 2020-11-23 2022-05-27 Alpha Anomeric Sas Nucleic acid duplexes
CA3201452A1 (en) 2020-12-01 2022-06-09 Alnylam Pharmaceuticals, Inc. Methods and compositions for inhibition of hao1 (hydroxyacid oxidase 1 (glycolate oxidase)) gene expression
EP4259795A1 (en) 2020-12-08 2023-10-18 Alnylam Pharmaceuticals, Inc. Coagulation factor x (f10) irna compositions and methods of use thereof
GB2603454A (en) 2020-12-09 2022-08-10 Ucl Business Ltd Novel therapeutics for the treatment of neurodegenerative disorders
BR112023012377A2 (en) 2020-12-23 2023-10-24 Flagship Pioneering Innovations Vi Llc MODIFIED TRAIN COMPOSITIONS AND USES THEREOF
WO2022150260A1 (en) 2021-01-05 2022-07-14 Alnylam Pharmaceuticals, Inc. COMPLEMENT COMPONENT 9 (C9) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
WO2022174102A1 (en) 2021-02-12 2022-08-18 Synthorx, Inc. Lung cancer combination therapy with il-2 conjugates and an anti-pd-1 antibody or antigen-binding fragment thereof
TW202305131A (en) 2021-02-12 2023-02-01 美商艾拉倫製藥股份有限公司 SUPEROXIDE DISMUTASE 1 (SOD1) iRNA COMPOSITIONS AND METHODS OF USE THEREOF FOR TREATING OR PREVENTING SUPEROXIDE DISMUTASE 1- (SOD1-) ASSOCIATED NEURODEGENERATIVE DISEASES
TW202245843A (en) 2021-02-12 2022-12-01 美商欣爍克斯公司 Skin cancer combination therapy with il-2 conjugates and cemiplimab
CN117222739A (en) 2021-02-25 2023-12-12 阿尔尼拉姆医药品有限公司 Prion protein (PRNP) IRNA compositions and methods of use thereof
WO2022182574A1 (en) 2021-02-26 2022-09-01 Alnylam Pharmaceuticals, Inc. KETOHEXOKINASE (KHK) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
AU2022231003A1 (en) 2021-03-04 2023-09-14 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (angptl3) irna compositions and methods of use thereof
WO2022192519A1 (en) 2021-03-12 2022-09-15 Alnylam Pharmaceuticals, Inc. Glycogen synthase kinase 3 alpha (gsk3a) irna compositions and methods of use thereof
US20220288181A1 (en) 2021-03-12 2022-09-15 Northwestern University Antiviral vaccines using spherical nucleic acids
JP2024512635A (en) 2021-03-29 2024-03-19 アルナイラム ファーマシューティカルズ, インコーポレイテッド Huntingtin (HTT) iRNA agent composition and method of use thereof
WO2022212153A1 (en) 2021-04-01 2022-10-06 Alnylam Pharmaceuticals, Inc. Proline dehydrogenase 2 (prodh2) irna compositions and methods of use thereof
TW202309291A (en) 2021-04-07 2023-03-01 法商新植物Sas公司 Compositions and methods for indoor air remediation
KR20240001207A (en) 2021-04-26 2024-01-03 알닐람 파마슈티칼스 인코포레이티드 Transmembrane protease, serine 6 (TMPRSS6) iRNA compositions and methods of using the same
WO2022232343A1 (en) 2021-04-29 2022-11-03 Alnylam Pharmaceuticals, Inc. Signal transducer and activator of transcription factor 6 (stat6) irna compositions and methods of use thereof
EP4334448A1 (en) 2021-05-03 2024-03-13 Alnylam Pharmaceuticals, Inc. Compositions and methods for treating transthyretin (ttr) mediated amyloidosis
WO2022245583A1 (en) 2021-05-18 2022-11-24 Alnylam Pharmaceuticals, Inc. Sodium-glucose cotransporter-2 (sglt2) irna compositions and methods of use thereof
EP4341405A1 (en) 2021-05-20 2024-03-27 Korro Bio, Inc. Methods and compositions for adar-mediated editing
WO2022256283A2 (en) 2021-06-01 2022-12-08 Korro Bio, Inc. Methods for restoring protein function using adar
WO2022256395A1 (en) 2021-06-02 2022-12-08 Alnylam Pharmaceuticals, Inc. Patatin-like phospholipase domain containing 3 (pnpla3) irna compositions and methods of use thereof
TW202313679A (en) 2021-06-03 2023-04-01 美商欣爍克斯公司 Head and neck cancer combination therapy comprising an il-2 conjugate and a pd-1 antagonist
WO2022256290A2 (en) 2021-06-04 2022-12-08 Alnylam Pharmaceuticals, Inc. HUMAN CHROMOSOME 9 OPEN READING FRAME 72 (C9ORF72) iRNA AGENT COMPOSITIONS AND METHODS OF USE THEREOF
AR126070A1 (en) 2021-06-08 2023-09-06 Alnylam Pharmaceuticals Inc COMPOSITIONS AND METHODS FOR TREATING OR PREVENTING STARGARDT DISEASE AND/OR DISORDERS ASSOCIATED WITH RETINOL BORDER PROTEIN 4 (RBP4)
EP4101928A1 (en) 2021-06-11 2022-12-14 Bayer AG Type v rna programmable endonuclease systems
KR20240021218A (en) 2021-06-11 2024-02-16 바이엘 악티엔게젤샤프트 Novel type V RNA programmable endonuclease system
CN117500815A (en) 2021-06-18 2024-02-02 Ionis制药公司 Compounds and methods for reducing IFNAR1 expression
WO2023278410A1 (en) 2021-06-29 2023-01-05 Korro Bio, Inc. Methods and compositions for adar-mediated editing
US20230194709A9 (en) 2021-06-29 2023-06-22 Seagate Technology Llc Range information detection using coherent pulse sets with selected waveform characteristics
CA3225469A1 (en) 2021-06-30 2023-01-05 Alnylam Pharmaceuticals, Inc. Methods and compositions for treating an angiotensinogen- (agt-) associated disorder
WO2023285431A1 (en) 2021-07-12 2023-01-19 Alia Therapeutics Srl Compositions and methods for allele specific treatment of retinitis pigmentosa
IL309905A (en) 2021-07-23 2024-03-01 Alnylam Pharmaceuticals Inc Beta-catenin (ctnnb1) irna compositions and methods of use thereof
WO2023009687A1 (en) 2021-07-29 2023-02-02 Alnylam Pharmaceuticals, Inc. 3-hydroxy-3-methylglutaryl-coa reductase (hmgcr) irna compositions and methods of use thereof
IL310244A (en) 2021-08-03 2024-03-01 Alnylam Pharmaceuticals Inc Transthyretin (ttr) irna compositions and methods of use thereof
CA3228255A1 (en) 2021-08-04 2023-02-09 Alnylam Pharmaceuticals, Inc. Irna compositions and methods for silencing angiotensinogen (agt)
AU2022328347A1 (en) 2021-08-13 2024-02-08 Alnylam Pharmaceuticals, Inc. Factor xii (f12) irna compositions and methods of use thereof
WO2023034870A2 (en) 2021-09-01 2023-03-09 Ionis Pharmaceuticals, Inc. Compounds and methods for reducing dmpk expression
EP4144841A1 (en) 2021-09-07 2023-03-08 Bayer AG Novel small rna programmable endonuclease systems with impoved pam specificity and uses thereof
WO2023044370A2 (en) 2021-09-17 2023-03-23 Alnylam Pharmaceuticals, Inc. Irna compositions and methods for silencing complement component 3 (c3)
CA3232420A1 (en) 2021-09-20 2023-03-23 Alnylam Pharmaceuticals, Inc. Inhibin subunit beta e (inhbe) modulator compositions and methods of use thereof
WO2023056329A1 (en) 2021-09-30 2023-04-06 Akouos, Inc. Compositions and methods for treating kcnq4-associated hearing loss
WO2023069603A1 (en) 2021-10-22 2023-04-27 Korro Bio, Inc. Methods and compositions for disrupting nrf2-keap1 protein interaction by adar mediated rna editing
TW202334418A (en) 2021-10-29 2023-09-01 美商艾拉倫製藥股份有限公司 Huntingtin (htt) irna agent compositions and methods of use thereof
WO2023076451A1 (en) 2021-10-29 2023-05-04 Alnylam Pharmaceuticals, Inc. Complement factor b (cfb) irna compositions and methods of use thereof
WO2023086292A2 (en) 2021-11-10 2023-05-19 University Of Rochester Gata4-targeted therapeutics for treatment of cardiac hypertrophy
WO2023086295A2 (en) 2021-11-10 2023-05-19 University Of Rochester Antisense oligonucleotides for modifying protein expression
GB202117758D0 (en) 2021-12-09 2022-01-26 Ucl Business Ltd Therapeutics for the treatment of neurodegenerative disorders
WO2023122573A1 (en) 2021-12-20 2023-06-29 Synthorx, Inc. Head and neck cancer combination therapy comprising an il-2 conjugate and pembrolizumab
WO2023118349A1 (en) 2021-12-21 2023-06-29 Alia Therapeutics Srl Type ii cas proteins and applications thereof
WO2023122750A1 (en) 2021-12-23 2023-06-29 Synthorx, Inc. Cancer combination therapy with il-2 conjugates and cetuximab
WO2023118068A1 (en) 2021-12-23 2023-06-29 Bayer Aktiengesellschaft Novel small type v rna programmable endonuclease systems
WO2023141314A2 (en) 2022-01-24 2023-07-27 Alnylam Pharmaceuticals, Inc. Heparin sulfate biosynthesis pathway enzyme irna agent compositions and methods of use thereof
WO2023194359A1 (en) 2022-04-04 2023-10-12 Alia Therapeutics Srl Compositions and methods for treatment of usher syndrome type 2a
WO2023237587A1 (en) 2022-06-10 2023-12-14 Bayer Aktiengesellschaft Novel small type v rna programmable endonuclease systems
WO2024039776A2 (en) 2022-08-18 2024-02-22 Alnylam Pharmaceuticals, Inc. Universal non-targeting sirna compositions and methods of use thereof
WO2024050261A1 (en) 2022-08-29 2024-03-07 University Of Rochester Antisense oligonucleotide-based anti-fibrotic therapeutics
WO2024059165A1 (en) 2022-09-15 2024-03-21 Alnylam Pharmaceuticals, Inc. 17b-hydroxysteroid dehydrogenase type 13 (hsd17b13) irna compositions and methods of use thereof
WO2024056880A2 (en) 2022-09-16 2024-03-21 Alia Therapeutics Srl Enqp type ii cas proteins and applications thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259293A (en) * 1985-09-09 1987-03-14 Teijin Ltd Fluorescent nucleoside or nucleotide
WO1988007542A1 (en) * 1987-03-27 1988-10-06 Technische Universiteit Eindhoven Poly(deoxyribonucleotides), pharmaceutical compositions, use and preparation of the poly(deoxyribonucleotides)
EP0318245A2 (en) * 1987-11-24 1989-05-31 Gen-Probe Incorporated Means and method for enhancing nucleic acid hybridization
EP0541153A1 (en) * 1991-10-30 1993-05-12 Janssen Pharmaceutica N.V. 1,3-Dihydro-2H-imidazo[4,5-b]-quinolin-2-one derivatives as phosphodiesterase inhibitors
WO1994024144A2 (en) * 1993-04-19 1994-10-27 Gilead Sciences, Inc. Enhanced triple-helix and double-helix formation with oligomers containing modified purines

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1046044A (en) * 1964-02-24 1966-10-19 Shionogi & Co Pyrimidopyrimidothiazine compounds and/or thiazine compounds and production thereof
US3583298A (en) * 1967-02-07 1971-06-08 Earl C Van Swearingen Color picture reproduction
US3706748A (en) * 1971-10-04 1972-12-19 Daniel D Rosenfeld Substituted uracil phosphates as pesticides
AT344190B (en) * 1976-05-28 1978-07-10 Hoffmann La Roche METHOD FOR PRODUCING 1- (2-TETRAHYDROFURYL) -5-FLUORURACIL
US4396623A (en) * 1981-08-26 1983-08-02 Southern Research Institute Carbocyclic analogs of uracil nucleosides as antiviral agents
US5047533A (en) * 1983-05-24 1991-09-10 Sri International Acyclic purine phosphonate nucleotide analogs
DK167280B1 (en) * 1985-03-20 1993-10-04 Ciba Geigy Ag 3-ARYLURACIL DERIVATIVES, PROCEDURES FOR PREPARING THEREOF, WEED POLLUTANTS CONTAINING THESE DERIVATIVES AND THE USE OF THE DERIVATIVES FOR THE WEED PREVENTION
CS264222B1 (en) * 1986-07-18 1989-06-13 Holy Antonin N-phosphonylmethoxyalkylderivatives of bases of pytimidine and purine and method of use them
SE8802173D0 (en) * 1988-06-10 1988-06-10 Astra Ab PYRIMIDINE DERIVATIVES
US5130238A (en) * 1988-06-24 1992-07-14 Cangene Corporation Enhanced nucleic acid amplification process
US4879214A (en) * 1988-11-15 1989-11-07 E. I. Du Pont De Nemours And Company Differentiation of nucleic acid segments on the basis of nucleotide differences
US5145960A (en) * 1989-04-24 1992-09-08 E. R. Squibb & Sons, Inc. Pyrimidinyl tetrahydrofurans
US5043272A (en) * 1989-04-27 1991-08-27 Life Technologies, Incorporated Amplification of nucleic acid sequences using oligonucleotides of random sequence as primers
US5106727A (en) * 1989-04-27 1992-04-21 Life Technologies, Inc. Amplification of nucleic acid sequences using oligonucleotides of random sequences as primers
US5049551A (en) * 1989-05-30 1991-09-17 Ube Industries, Ltd. 5-fluorouracil, 2'-deoxy-5-fluorouridine and 1-carbomoyl-5-fluorouracil compounds
US5112736A (en) * 1989-06-14 1992-05-12 University Of Utah Dna sequencing using fluorescence background electroblotting membrane
US5232830A (en) * 1990-05-11 1993-08-03 Microprobe Corporation Intrinsic fluorescent quenching methods
DE4015715A1 (en) * 1990-05-16 1991-11-21 Bayer Ag NEW OLIGOPHOSPHATES WITH ANTIVIRAL EFFECT
US5194370A (en) * 1990-05-16 1993-03-16 Life Technologies, Inc. Promoter ligation activated transcription amplification of nucleic acid sequences
CS387190A3 (en) * 1990-08-06 1992-03-18 Ustav Organicke Chemie A Bioch (2r)-2-/di(2-propyl)phosphonylmethoxy/-3-p-toluenesulfonyloxy -1- trimethylacetoxypropane and process for preparing thereof
DE4035479A1 (en) * 1990-11-08 1992-05-14 Basf Ag SUBSTITUTED PYRIDO (2,3-D) PYRIMIDINE-2,4 (1H, 3H) DIONE
US5208221A (en) * 1990-11-29 1993-05-04 Bristol-Myers Squibb Company Antiviral (phosphonomethoxy) methoxy purine/pyrimidine derivatives
US5169766A (en) * 1991-06-14 1992-12-08 Life Technologies, Inc. Amplification of nucleic acid molecules
EP0558740B1 (en) * 1991-09-19 1998-08-05 VYSIS, Inc. Probe composition for genome identification and methods
US5502177A (en) * 1993-09-17 1996-03-26 Gilead Sciences, Inc. Pyrimidine derivatives for labeled binding partners

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259293A (en) * 1985-09-09 1987-03-14 Teijin Ltd Fluorescent nucleoside or nucleotide
WO1988007542A1 (en) * 1987-03-27 1988-10-06 Technische Universiteit Eindhoven Poly(deoxyribonucleotides), pharmaceutical compositions, use and preparation of the poly(deoxyribonucleotides)
EP0318245A2 (en) * 1987-11-24 1989-05-31 Gen-Probe Incorporated Means and method for enhancing nucleic acid hybridization
EP0541153A1 (en) * 1991-10-30 1993-05-12 Janssen Pharmaceutica N.V. 1,3-Dihydro-2H-imidazo[4,5-b]-quinolin-2-one derivatives as phosphodiesterase inhibitors
WO1994024144A2 (en) * 1993-04-19 1994-10-27 Gilead Sciences, Inc. Enhanced triple-helix and double-helix formation with oligomers containing modified purines

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NUCLEOSIDES AND NUCLEOTIDES, vol.13, no.1-3, 1994 pages 77 - 94 K.DZIEWISZEK ET AL. 'Derivatives of 1-(2-d eoxy-2-fluoro-beta-D-arabinofuranosyl)-5-P henyluracil and 5-Benzyluracil. Synthesis and Biological Properties.' *
SCIENCE, vol.238, 1987 pages 336 - 341 J.M.PROBER ET AL. 'A System for Rapid DNA Sequencing with Fluorescent Chain-Terminating Dideoxynucleotides.' cited in the application *
TETRAHEDRON, (INCL. TETRAHEDRON REPORTS), vol.45, no.4, 1989, OXFORD GB pages 1145 - 1154 B.JOUSSEAUME ET AL. '(4+2) Cycloadditions of Acetylenic Organotins : Synthetic Applications of Polyfunctional Cyclic Vinyltins.' *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153745A (en) * 1995-09-22 2000-11-28 Amersham Pharmacia Biotech Uk Limited Relating to mutagenesis of nucleic acids
USRE44779E1 (en) 1997-03-07 2014-02-25 Santaris Pharma A/S Bicyclonucleoside and oligonucleotide analogues
WO1999024452A2 (en) * 1997-11-07 1999-05-20 Isis Pharmaceuticals, Inc. Pyrimidine derivatives for labeled binding partners
WO1999024452A3 (en) * 1997-11-07 1999-09-16 Isis Pharmaceuticals Inc Pyrimidine derivatives for labeled binding partners
US7070933B2 (en) 2001-09-28 2006-07-04 Gen-Probe Incorporated Inversion probes
US8569331B2 (en) 2010-11-01 2013-10-29 Arqule, Inc. Substituted benzo[f]lmidazo[1,2-d]pyrido[2,3-b][1,4]diazepine compounds
US11447519B2 (en) 2016-11-10 2022-09-20 San Diego State University Research Foundation Compounds for fluorescence sensing of duplex formation

Also Published As

Publication number Publication date
US6967079B2 (en) 2005-11-22
JP4098356B2 (en) 2008-06-11
US6005096A (en) 1999-12-21
US6617437B1 (en) 2003-09-09
WO1995007918A3 (en) 1995-08-03
ATE239752T1 (en) 2003-05-15
DE69432636T2 (en) 2004-03-25
DE69432636D1 (en) 2003-06-12
JPH09506859A (en) 1997-07-08
EP0719272A1 (en) 1996-07-03
US5502177A (en) 1996-03-26
US5763588A (en) 1998-06-09
US20030207824A1 (en) 2003-11-06
EP0719272B1 (en) 2003-05-07

Similar Documents

Publication Publication Date Title
EP0719272B1 (en) Pyrimidine derivatives for labeled binding partners
USRE39324E1 (en) Pyrimidine derivatives and oligonucleotides containing same
Agrofoglio et al. Palladium-assisted routes to nucleosides
US6007992A (en) Pyrimidine derivatives for labeled binding partners
US6060592A (en) Pyrimidine nucleoside compounds and oligonucleoside compounds containing same
AU757724B2 (en) Novel nucleosides having bicyclic sugar moiety
Lee et al. Synthesis and anti-HIV and anti-HBV activities of 2 ‘-fluoro-2 ‘, 3 ‘-unsaturated l-nucleosides
US6335432B1 (en) Structural analogs of amine bases and nucleosides
Ostrowski et al. 5-Substituted pyrimidines with a 1, 5-anhydro-2, 3-dideoxy-D-arabino-hexitol moiety at N-1: synthesis, antiviral activity, conformational analysis, and interaction with viral thymidine kinase
WO2002018371A1 (en) Nucleoside metabolism inhibitors
EP1027364B1 (en) Pyrimidine derivatives for labeled binding partners
WO1995024185A1 (en) Novel pyrimidine nucleosides
Goudgaon et al. 1-(Ethoxymethyl)-6-(phenylselenenyl) pyrimidines with activity against human immunodeficiency virus types 1 and 2
Beijer et al. Simplified and cost effective syntheses of fully protected phosphoramidite monomers suitable for the assembly of oligo (2′-O-allylribonucleotides)
Raju et al. Synthesis and biological properties of purine and pyrimidine 5'-deoxy-5'-(dihydroxyphosphinyl)-. beta.-D-ribofuranosyl analogs of AMP, GMP, IMP, and CMP
Vrbková et al. Bifunctional acyclic nucleoside phosphonates: synthesis of chiral 9-{3-hydroxy [1, 4-bis (phosphonomethoxy)] butan-2-yl} derivatives of purines
JP2003012690A (en) Method of producing nucleotide using substituted imidazole derivative or substituted benzimidazole derivative
Birkus et al. The substrate activity of (S)-9-[3-hydroxy-(2-phosphonomethoxy) propyl] adenine diphosphate toward DNA polymerases α, δ and ε
JP5017639B2 (en) Nucleoside derivatives
Pomeisl et al. Pyrimidine 1-[2-(phosphonomethoxy) propyl] derivatives: Their syntheses and utilization as potent inhibitors of thymidine phosphorylase (PD-ECGF) from SD-lymphoma
Panayides The Synthesis and Biological Testing of Nucleoside Derivatives
Repkova et al. Oligoribonucleotides containing an aminoalkyl group at the N (4) atom of cytosine as precursors of new reagents for site-specific modifications of biopolymers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1994929830

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1994929830

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994929830

Country of ref document: EP