WO1995009544A1 - Method of producing pasteurized raw meat products - Google Patents

Method of producing pasteurized raw meat products Download PDF

Info

Publication number
WO1995009544A1
WO1995009544A1 PCT/US1994/011213 US9411213W WO9509544A1 WO 1995009544 A1 WO1995009544 A1 WO 1995009544A1 US 9411213 W US9411213 W US 9411213W WO 9509544 A1 WO9509544 A1 WO 9509544A1
Authority
WO
WIPO (PCT)
Prior art keywords
meat
temperature
seconds
high temperature
ultra
Prior art date
Application number
PCT/US1994/011213
Other languages
French (fr)
Inventor
Von T. Mendenhall
Original Assignee
Utah State University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/131,321 external-priority patent/US5366746A/en
Application filed by Utah State University filed Critical Utah State University
Priority to AU78478/94A priority Critical patent/AU7847894A/en
Publication of WO1995009544A1 publication Critical patent/WO1995009544A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/005Preserving by heating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/005Preserving by heating
    • A23B4/0053Preserving by heating with gas or liquids, with or without shaping, e.g. in form of powder, granules or flakes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/005Preserving by heating
    • A23B4/0053Preserving by heating with gas or liquids, with or without shaping, e.g. in form of powder, granules or flakes
    • A23B4/0056Preserving by heating with gas or liquids, with or without shaping, e.g. in form of powder, granules or flakes with packages, or with shaping in the form of blocks or portions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/015Preserving by irradiation or electric treatment without heating effect
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/06Freezing; Subsequent thawing; Cooling
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/14Preserving with chemicals not covered by groups A23B4/02 or A23B4/12
    • A23B4/16Preserving with chemicals not covered by groups A23B4/02 or A23B4/12 in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/26Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating
    • A23L3/263Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating with corpuscular or ionising radiation, i.e. X, alpha, beta or omega radiation

Definitions

  • This invention relates to commercial ⁇ sterilization of meat and meat products by altering the character of the meat surface. More particularly, this invention relates to a method of combining ultra-
  • the invention also relates to pasteurization of the meat surface by ultra-high temperature treatment and aging of the meat by incubation at high temperature.
  • meats for the take-out segment of the food service industry are prepared by ultra-high temperature pasteurization combined with packaging in a modified atmosphere.
  • 4,539,212 to Hunter teaches a process for sterilizing low-acid food containing meat or textured vegetable protein by acidifying the food, heating at high temperature (104- 137°C) for a short time (5-60 seconds) , and packing with a hot-fill-and-hold procedure.
  • U.S. Patent No. 4,572,839 to Guitteny et al teaches a method of high temperature sterilization of animal protein by grinding the raw material to make a slurry, partially hydrolyzing it, and heating a thin layer of the slurry to about 120-150°C for about 3 seconds to 15 minutes.
  • U.S. Patent No. 4,675,202 to Wenger et al teaches a process for sterilizing low-acid food containing meat or textured vegetable protein by acidifying the food, heating at high temperature (104- 137°C) for a short time (5-60 seconds) , and packing with a hot-fill-and-hold procedure.
  • U.S. Patent No. 4,201,796 to Harkins discloses a method of cooking meat by searing the surface of a cut or patty of meat by brief exposure to a blow torch pencil burner while leaving the inside of the meat relatively raw, refrigerating or freezing the meat, and cooking thoroughly in a microwave oven.
  • U.S. Patent No. 2,456,909 to Brasch discloses a method of sterilizing various types of meat including beef, pork, chicken, calf liver, and oysters with electron beam radiation.
  • the method involves placing the food to be sterilized in a container and removing air by introducing an inert gas or evacuating the container, sealing the container air tight, freezing the food at -20°C to -100°C, and irradiating the food with 3 to 6 MeV of high speed electrons during a series of consecutive very short time periods, each lasting less 10 "4 of a second.
  • Patent No. 3,567,462 to Silverman et al . which shows a method for extending the storage life of fresh animal tissue by pasteurizing the tissue by exposure to radiation and storing at refrigerated temperatures (0-7.2°C) in an atmosphere of 30-100% C0 2 .
  • Another significant advancement in the art would be to provide a method of reducing the cost of aging meat.
  • a further advancement in the art would be providing meat that is pathogen free, attractive in appearance, and ready for cooking by known methods including in a microwave oven. Related to this would be providing a method for increasing the value of discolored retail cuts of meat. Still another advancement in the art would be to seal the surface of a cut of meat to inhibit dehydration and to enhance even heat distribution upon cooking in a microwave oven, and to improve the flavor of meat cooked in a microwave oven.
  • An object of the present invention is to provide a method of commercially sterilizing raw meat and meat products.
  • Another object of the invention is to provide a commercial sterilization method that eliminates the need to refrigerate meat for storage and marketing.
  • a further object of the invention is to reduce the time and cost associated with aging meat.
  • a still further object of the invention is to seal the surface of a cut of meat to inhibit dehydration and to enhance even heat distribution upon cooking in a microwave oven.
  • Another object of the invention is to improve the tenderness and flavor of meat cooked by known methods including in a microwave oven. Still another object of the invention is to sterilize cuts of meat on a commercial scale at a minimum cost.
  • sterilizing meat through a method comprising the steps of (a) treating the meat at ultra-high temperature (UHT) for a time sufficient to denature surface proteins, without burning, to a depth of not more than about 2 mm; (b) cooling the meat to a refrigerated temperature; (c) hermetically sealing the meat in an inert atmosphere,* and (d) irradiating the hermetically sealed meat with an electron beam dosage sufficient to destroy all mesophilic vegetative pathogens, spores of pathogens, toxins, and spoilage microorganisms.
  • UHT ultra-high temperature
  • a method of accelerating the aging process and producing pasteurized raw meat that can be stored for extended periods at refrigerated temperatures comprises the steps of (a) treating meat at ultra-high temperature (UHT) of between about 900 and 1200°C for a time sufficient to denature surface proteins, without burning, to a depth of not more than about 2 mm; (b) cooling the UHT-treated meat to a refrigerated temperature of between about 2 and 4.4°C; and (c) hermetically sealing the cooled meat in an inert atmosphere.
  • UHT ultra-high temperature
  • a method of producing pasteurized raw meat and accelerating the aging process thereof, wherein the meat can be stored for extended periods at refrigerated temperatures comprises the steps of (a) treating a whole-muscle meat at ultra-high temperature (UHT) of between about 900 and 1200°C for a time sufficient to denature surface proteins, without burning, to a depth of not more than about 2 mm,* (b) aseptically packaging the ultra-high temperature treated meat in an inert atmosphere; (c) placing the packaged meat in an incubator and aging at a temperature in the range of about 39°C to 47°C for about 12 to 24 hours,* and (d) storing the packaged meat under refrigeration.
  • UHT ultra-high temperature
  • the whole-muscle meat is selected from refrigerated and hot-boned primals, subprimals, and retail cuts.
  • the combination of UHT and high temperature aging (HTA) results in meat with tenderness and flavor comparable to meat aged at refrigerated temperatures for 30-60 days.
  • a method of preparing a microwavable, pasteurized meat product having a cooked appearance and a refrigerated shelf life of up to about 60 days comprises the steps of (a) treating a whole-muscle meat at ultra-high temperature of between about 900 and 1200°C for a time sufficient to denature surface proteins, without burning, to a depth of not more than about 2 mm; (b) aseptically packaging the ultra-high temperature treated meat in a modified atmosphere containing in the range of about 80% to 100% carbon dioxide; and (c) storing the packaged meat under refrigeration.
  • the whole-muscle meat is a retail cut such as a steak or a roast.
  • the meat can be cooked by puncturing the film, placing the meat in a microwave oven, and cooking until an interior temperature of greater than 64°C is reached.
  • this invention is not limited to the particular process steps and materials disclosed herein as such process steps and materials may, of course, vary. It is also to be understood that the terminology used herein is used for the purpose of describing particular embodiments only and is not intended to be limiting since the scope of the present invention will be limited only by the appended claims.
  • meat means those animal tissues that are suitable for use as food including, but not limited to beef, pork, lamb, poultry, and fish. Meat includes the carcass, primal, and retail cuts of muscle tissue as well as ground and processed forms, or what may be commonly called meat products.
  • ultra-high temperature or “UHT” means temperatures in the range of about 900-1300°C.
  • EBR electron beam radiation
  • the specific method used for treating meat to obtain the results disclosed herein involve placing meat in a closed heat source, e.g., an electric oven, maintained at a temperature of between about 900 and 1300°C for a time sufficient to denature surface proteins up to a depth of not more than about 2 mm, i.e. typically between about 5 and 30 seconds.
  • a closed heat source e.g., an electric oven
  • the oven will contain a ceramic grill which provides the surface of the meat with a grilled pattern further enhancing the appearance. This is particularly useful when treating meats that have previously been somewhat discolored.
  • the oven is heated to the selected temperature with the grill in place, and then the oven is opened and the meat placed on the grill for the selected length of time. Then, the meat is removed and preferably cooled at a refrigerated temperature and hermetically sealed.
  • Example 1 Beef loin steaks about 1.9 cm thick and refrigerated at a temperature of 4.4°C were exposed to UHT at varying times and temperatures as shown in Table 1. After exposure to UHT, the amount of shrinkage, final internal temperature, and depth of denaturation were measured and appearance was assessed visually, as summarized in Table 1.
  • Exposure times of 5-20 seconds at these temperatures produced a steak with an acceptable grilled appearance with a denaturation depth of less than 1 mm. Shrinkage under these conditions was about 10% and the final internal temperature of the steaks was less than 21°C. Preferably, exposure times will be between about 5-15 seconds with about 10 seconds being optimal.
  • Shrinkage of less than 10% and preferably not more than about 5% should be observed.
  • Example 2 Steaks, having an average surface area of about 100 cm 2 and about 2 cm thick were exposed to UHT treatment at about 1100°C for a period of about 10 seconds and were then cooled to about 4.4°C and hermetically sealed under vacuum in a flexible polyethylene pouch which surrounds or envelopes the surface of the steaks. Control steaks of the same size, but not treated with UHT, were also sealed in the same manner. Control and UHT treated steaks were both refrigerated at 4.4°C and examined for the presence of both mesophilic and psychrotrophic bacteria after 24, 40. and 60 day periods. The control steaks were also examined at the time the storage period began for bacterial content. Estimates of bacterial populations on the surfaces of raw vacuum-packaged or UHT-treated steaks were determined by removal of the packaging material and immersing the steaks in 99 ml of sterile 0.1%
  • Raw meat is often "aged” for a period or time sufficient to bring about a maturity or ripeness of flavor and improve tenderness of the fibers when cooked.
  • the degree of tenderness is often determined by the shear value of a cooked core sample, i.e. the force required in kg to shear a core of cooked tissue.
  • the results below show that shear values of cooked cores of both raw vacuum-packaged and UHT-treated steaks decreased after storage at 4.4°C.
  • the refrigerated vacuum packaged samples were cooked to an internal temperature of 74°C in a microwave oven.
  • Shear values of UHT-treated and raw vacuum- packaged beef loin steaks were determined after storage at 4.4°C.
  • shear value is the force in kg required to shear a 1.3 cm diameter core of cooked tissue using a Warner-Bratzler shear. At various times after placing the steaks in storage, steaks were removed and cooked to 74°C in a microwave oven. Then the shear values were determined.
  • Example 4 Meat is commonly aged 30-60 days under refrigeration (4.4°C) using either wet (vacuum packaged) or dry (no package) conditions. Microorganisms grow extensively on the surface of the meat during aging, lactic acid bacteria and molds predominating on the wet and dry aged meats, respectively. The meat must be trimmed considerably, resulting in a loss of 10-30%, in preparation for sale. The cost of refrigeration and losses due to trimming both contribute to the high cost of aged meat. Despite the cost, aging meat is desirable because of increased tenderness and the resulting unique flavor.
  • a method of aging meat comprises subjecting whole-muscle refrigerated or hot-boned primals, subprimals, and retail cuts of meat to UHT pasteurization to denature the surface proteins to a depth of no more than about 2 mm to destroy all vegetative pathogens on the surface of the meat, aseptically packaging the UHT-treated meat in an inert atmosphere, placing the packaged meat in an incubator and incubating the meat for 12-24 hours at about 39°C to 43°C to effect high temperature aging (HTA) , and storing the packaged meat under refrigeration.
  • UHT pasteurization of the meat destroys vegetative pathogens and reduces spoilage microorganisms to very low levels, as shown above. During HTA, no significant growth of microorganisms occurs .
  • Some of the tougher and less costly cuts of meat from the round and chuck are much more tender and palatable after aging by this method.
  • round steaks with initial shear values (Warner- Bratzler) of 8-10 that were aged by a combination of UHT and HTA, then cooked by dry heat methods, exhibited significantly increased tenderness (Warner- Bratzler values of 2-3) .
  • the combination of UHT and HTA also provides a method of adding value to the less tender cuts of meat on a carcass.
  • Example 5 This example relates to a method of pasteurizing and storing meat for the take-out segment of the food service industry.
  • the procedure of this example produces a raw meat product, such as a whole-muscle retail cut (steak, roast, and the like) , with a cooked appearance and having a refrigerated shelf life of up to about 60 days.
  • This raw meat product can be safely cooked using microwave energy, giving the appearance and flavor of a charcoal-grilled product.
  • a method of pasteurizing meat and storing a raw meat product suitable for cooking, such as with microwave energy comprises treating the meat at ultra-high temperature (UHT) of between about 900 and 1200°C for a time sufficient to denature surface proteins, without burning, to a depth of not more than about 2 mm, aseptically packaging the ultra-high temperature treated meat in a modified atmosphere containing in the range of about 80% to 100% carbon dioxide, and storing the packaged meat under refrigeration.
  • the packaging material is preferably a film that is tolerant of being subjected to microwave energy so that preparation for cooking is minimized. With a microwavable film, the preparation for cooking can be as simple as puncturing the packaging material, placing the product in a microwave oven, and heating until a safe internal cooked temperature of greater than 64°C is obtained.
  • Raw steaks (100 g) were UHT pasteurized, aseptically packaged with a microwavable film in a modified atmosphere containing 80% carbon dioxide and 20% nitrogen, and stored under refrigeration. After 50 days, the steaks were prepared for cooking by puncturing the microwavable film and placing them on the carousel of a microwave oven. The steaks were cooked at a high energy setting for 2 minutes, resulting in an attractive, tasty, and healthful food.
  • Example 6 According to the procedure of Example 5, 900 g roasts were UHT pasteurized, aseptically packaged in a microwavable film in an atmosphere containing 100% carbon dioxide, and stored under refrigeration. After 60 days, the roasts were prepared for cooking by puncturing the film and placing the roasts in a microwave oven. The roasts were cooked at a high energy setting for 15 minutes with results that were substantially similar to those obtained with the steaks.
  • the UHT treatment described above improves appearance, enhances aging and destroys vegetative pathogens and most spoilage organisms on the surface of the meat, thereby enabling extended storage at temperatures requiring only refrigeration. It would also be desirable to provide means to destroy all vegetative pathogens, spores of pathogens, toxins and spoilage microorganisms which grow at ambient temperatures, i.e. temperatures of about 25-35°C. and thereby improve storage of raw meat products over a wider or more elevated temperature range.
  • Electron beam processing is routinely used, as a source of radiation, for a variety of applications.
  • EBR electron beam radiation
  • Polymers such as thin-film polymers and composites, may be cross-linked by EBR at various doses.
  • Hazardous wastes from hospitals and medical clinics are sterilized with EBR.
  • Waste water and sewer sludge have been treated with EBR to kill pathogens therein.
  • EBR is known to be used to pasteurize and sterilize food, prevent sprouting of vegetables such as potatoes, onions, and garlic, and kill certain insect pests in grains.
  • Table 4 summarizes some uses of EBR for treating foods.
  • Control insects 6 10 microorganisms
  • EBR a method of sterilizing certain food products, such as listed above, has not extended to the treatment of a meat which has been preprocessed by another means, such as UHT followed by vacuum packaging.
  • UHT another means
  • processing advantages attributed to EBR such as quick turn around time, short start-up time, simple operation, low power consumption, low temperature operation, accurate dosimetry control, less product degradation than with gamma irradiation, absence of constantly emitted radiation, large and small quantities of products may be treated, and all processing parameters may be continuously monitored.
  • the high speed electrons generated by EBR results in more than just surface sterilization of the meat product and can be accomplished with the product in a packaged form following the UHT and packaging process.
  • the degree of penetration is somewhat a function of the density of the material being treated.
  • the treatment can be carried out at refrigerated temperatures, i.e. 4.4°C or even at ambient temperatures if desired.
  • Vacuum packaged UHT-treated meats prepared according to Example 2 were exposed to EBR with a machine owned by Nutek Corp. (Salt Lake City, Utah) .
  • the machine specifications are as follows: Beam Power - 1 kW; Energy - 6 MeV; Demand Electrical Power - 3.5 kW; Operating Range: Design - 25-350 pulses per second (pps) ; Nominal - 180-300 pps; Conveyor Speed - 0.5-10 feet per minute; Typical Dose Rate - 5 kgray (0.5 Mrad) per minute; Average Beam Current - 120 microamps at 250 pps.
  • the machine was properly shielded and the vacuum packed UHF treated meat was subjected to radiation by passage on a conveyor past the beam window of the electron accelerator. The dose rate was adjusted by operational variables such as conveyor speed, beam power and energy, etc.
  • the method used for sterilizing meat with EBR involved, first, subjecting the meat to UHT treatment. Then, the UHT-treated meat was cooled and sealed in an air-tight container. Finally, the meat was irradiated with EBR.
  • the UHT-treated meat is preferably cooled in the range of -20 to 10°C, and more preferably in the range of 2 to 4.4 0 C before EBR treatment.
  • the container may be sealed under vacuum or, alternatively, the air in the container may be replaced with an inert gas, such as C0 2 , N 2 , or a mixture of both.
  • the container may be composed of any suitable material, preferably a laminated sealable plastic material that is impermeable to microorganisms, exchange of gases, and loss of moisture. Suitable materials include polyethylene, polypropylene, and the like.
  • Example 7 Beef steaks were UHT treated by exposure to 1100°C for 5-10 seconds. The UHT-treated meat was then cooled to ⁇ 4.4°C and packaged in a hermetically sealed polyethylene pouch under vacuum. Then the packaged meat was exposed to EBR at various dosages ranging from 0 to 20 kgray. Sterility, at ambient temperatures, was determined by incubating EBR irradiated meat samples at 30-32°C for 14 days in soybean casein digest medium, according to the United States Pharmacopeia (USP) sterility test. Results are given in Table 5.
  • USP United States Pharmacopeia
  • Sterility at 30-32°C appeared to be a function of dosage levels. While treatment at 5 and 8 kgray was somewhat effective, all UHT-treated meat samples that were exposed to at least 13 kgray of electron beam radiation were rendered completely sterile, as shown in Table 5. Suitable dosage ranges may vary from about 8 to 20 kgray with ranges of between about 10-15 kgray being preferred. Treatment at these dosages results in the destruction of all mesophilic vegetative pathogens, spores of pathogens, and spoilage microorganisms which would grow at room temperature.

Abstract

A method is disclosed for accelerating the ageing process and sterilizing raw meat for extended storage at refrigerated temperatures by treating the meat at ultra-high temperature (UHT), e.g. 900 to 1200 °C, for a time sufficient to denature proteins, without burning, to a depth of up to about 2 mm. After UHT treatment the meat is cooled to a refrigerated temperature and packaged in a hermetically sealed container. The meat can be rendered stable for storage at ambient temperatures by subjecting the hermetically sealed meat to electron beam radiation (EBR) at an irradiating dosage sufficient to destroy all mesophilic vegetative pathogens, spores of pathogens, toxins, and spoilage microorganisms which grow at ambient temperatures. UHT pasteurization coupled with high temperature aging for 12 to 24 hours results in meat with tenderness and flavor equivalent to meat aged under refrigeration for 30 to 60 days.

Description

"METHOD OF PRODUCING PASTEURIZED RAW MEAT PRODUCTS"
10 Background of the Invention
' This invention relates to commercial έ sterilization of meat and meat products by altering the character of the meat surface. More particularly, this invention relates to a method of combining ultra-
15 high temperature pasteurization and electron beam radiation to produce commercially sterile raw meat and meat products that may be stored without refrigeration. Only the surface or visible portion is altered with the remainder of the deep muscle tissue
20 below about 2 mm remaining in its raw or unaltered state except for the destruction of microorganisms. The invention also relates to pasteurization of the meat surface by ultra-high temperature treatment and aging of the meat by incubation at high temperature.
25 Further, meats for the take-out segment of the food service industry are prepared by ultra-high temperature pasteurization combined with packaging in a modified atmosphere.
Extending the storage life of meat and meat
30 products has been a subject of mankind's ingenuity since before recorded history. Many procedures have been developed, but they are all subject to certain limitations. Cooking, smoking, and curing all render meat less susceptible to spoilage, but the flavor of
35 the meat is altered, sometimes drastically, and the meat is still subject to eventual spoilage. Chemical additives may be effective preservatives, but commercial acceptance and regulatory approval have been limiting factors. Meat can be frozen and stored
40 for extended periods of time without seriously affecting flavor or palatability, but maintaining the meat in a frozen state is expensive.
Consumers discriminate against fresh beef steaks that contain more than about 25% surface discoloration. D. Hood & E. Riordan, 8 J. Food Technol . 333 (1973) . Surface discoloration of 50-75% is evident in fresh beef steaks after 4 days of retail display using primal cut packaging/precutting treatments. M. Miller et al . , 50 J. Food Sci. 1544 (1985) . Cutting subprimals into steaks, followed by vacuum packaging tends to decrease retail case life, juiciness, and tenderness. Retail fresh meat establishments have very few alternatives when disposing of discolored higher priced cuts except reducing price, retrimming, and grinding, all of which involve loss of value. Similarly, vacuum-packaged primal beef cuts lose quality after 45-60 days of storage depending on the storage temperature, degree of evacuation, permeability of the packaging material, initial load, and composition of the primal. S. Seideman et al . , 39 J. Milk Food Technol. 745 (1976) ; S. Seideman et al . , 41 J. Food Sci. 738 (1976) . Since the loss of bloom and the growth of microorganisms (assuming internal muscle sterility) are both primarily surface phenomena, the application of technology to improve the appearance of the surface and control microbial growth would be beneficial to extending shelf life. Methods of sterilizing meat and other animal tissues with high temperature treatment have been described previously. U.S. Patent No. 4,539,212 to Hunter teaches a process for sterilizing low-acid food containing meat or textured vegetable protein by acidifying the food, heating at high temperature (104- 137°C) for a short time (5-60 seconds) , and packing with a hot-fill-and-hold procedure. U.S. Patent No. 4,572,839 to Guitteny et al . teaches a method of high temperature sterilization of animal protein by grinding the raw material to make a slurry, partially hydrolyzing it, and heating a thin layer of the slurry to about 120-150°C for about 3 seconds to 15 minutes. U.S. Patent No. 4,675,202 to Wenger et al . discloses a method of sterilizing a slurry containing egg yolks by acidifying and then heating at temperatures between 128-1550C for a period of 1-50 seconds. U.S. Patent No. 4,201,796 to Harkins discloses a method of cooking meat by searing the surface of a cut or patty of meat by brief exposure to a blow torch pencil burner while leaving the inside of the meat relatively raw, refrigerating or freezing the meat, and cooking thoroughly in a microwave oven.
Methods for sterilizing and preserving food products with electron beam technology have also been described. U.S. Patent No. 2,456,909 to Brasch discloses a method of sterilizing various types of meat including beef, pork, chicken, calf liver, and oysters with electron beam radiation. The method involves placing the food to be sterilized in a container and removing air by introducing an inert gas or evacuating the container, sealing the container air tight, freezing the food at -20°C to -100°C, and irradiating the food with 3 to 6 MeV of high speed electrons during a series of consecutive very short time periods, each lasting less 10"4 of a second. Brasch found it necessary to freeze the food to avoid changes in taste, odor, appearance, and structure due to unwanted side reactions such as formation of hydrogen peroxide, ozone, nitrous oxides, mercaptans, and sulfides,* denaturation of proteins,* decarboxylation,* and hydrolysis. U.S. Patent No. 3,876,373 to Glyptis discloses electron beam sterilization as a prior art sterilization method, but rejected it for reasons of safety, expense, and alteration of the taste and color of the food.
Preservation of food by exposure to ionizing radiation has also been described, such as in U.S.
Patent No. 3,567,462 to Silverman et al . , which shows a method for extending the storage life of fresh animal tissue by pasteurizing the tissue by exposure to radiation and storing at refrigerated temperatures (0-7.2°C) in an atmosphere of 30-100% C02.
In view of the foregoing, it will be appreciated that providing a method for sterilizing meat and meat products on a commercial scale that eliminates the need to refrigerate meat would be a significant advancement in the art.
Another significant advancement in the art would be to provide a method of reducing the cost of aging meat.
A further advancement in the art would be providing meat that is pathogen free, attractive in appearance, and ready for cooking by known methods including in a microwave oven. Related to this would be providing a method for increasing the value of discolored retail cuts of meat. Still another advancement in the art would be to seal the surface of a cut of meat to inhibit dehydration and to enhance even heat distribution upon cooking in a microwave oven, and to improve the flavor of meat cooked in a microwave oven.
Objects and Summary of the Invention An object of the present invention is to provide a method of commercially sterilizing raw meat and meat products.
Another object of the invention is to provide a commercial sterilization method that eliminates the need to refrigerate meat for storage and marketing. A further object of the invention is to reduce the time and cost associated with aging meat.
Still another object of the invention is to provide a cut of meat that is pathogen free, attractive in appearance, and ready for cooking by known methods, including in a microwave oven. Yet another object of the invention is to increase the value of discolored retail cuts of meat.
A still further object of the invention is to seal the surface of a cut of meat to inhibit dehydration and to enhance even heat distribution upon cooking in a microwave oven.
Another object of the invention is to improve the tenderness and flavor of meat cooked by known methods including in a microwave oven. Still another object of the invention is to sterilize cuts of meat on a commercial scale at a minimum cost.
These and other objects may be accomplished by sterilizing meat through a method comprising the steps of (a) treating the meat at ultra-high temperature (UHT) for a time sufficient to denature surface proteins, without burning, to a depth of not more than about 2 mm; (b) cooling the meat to a refrigerated temperature; (c) hermetically sealing the meat in an inert atmosphere,* and (d) irradiating the hermetically sealed meat with an electron beam dosage sufficient to destroy all mesophilic vegetative pathogens, spores of pathogens, toxins, and spoilage microorganisms. A method of accelerating the aging process and producing pasteurized raw meat that can be stored for extended periods at refrigerated temperatures comprises the steps of (a) treating meat at ultra-high temperature (UHT) of between about 900 and 1200°C for a time sufficient to denature surface proteins, without burning, to a depth of not more than about 2 mm; (b) cooling the UHT-treated meat to a refrigerated temperature of between about 2 and 4.4°C; and (c) hermetically sealing the cooled meat in an inert atmosphere.
A method of producing pasteurized raw meat and accelerating the aging process thereof, wherein the meat can be stored for extended periods at refrigerated temperatures, comprises the steps of (a) treating a whole-muscle meat at ultra-high temperature (UHT) of between about 900 and 1200°C for a time sufficient to denature surface proteins, without burning, to a depth of not more than about 2 mm,* (b) aseptically packaging the ultra-high temperature treated meat in an inert atmosphere; (c) placing the packaged meat in an incubator and aging at a temperature in the range of about 39°C to 47°C for about 12 to 24 hours,* and (d) storing the packaged meat under refrigeration. The whole-muscle meat is selected from refrigerated and hot-boned primals, subprimals, and retail cuts. The combination of UHT and high temperature aging (HTA) results in meat with tenderness and flavor comparable to meat aged at refrigerated temperatures for 30-60 days.
A method of preparing a microwavable, pasteurized meat product having a cooked appearance and a refrigerated shelf life of up to about 60 days, comprises the steps of (a) treating a whole-muscle meat at ultra-high temperature of between about 900 and 1200°C for a time sufficient to denature surface proteins, without burning, to a depth of not more than about 2 mm; (b) aseptically packaging the ultra-high temperature treated meat in a modified atmosphere containing in the range of about 80% to 100% carbon dioxide; and (c) storing the packaged meat under refrigeration. The whole-muscle meat is a retail cut such as a steak or a roast. If the meat is packaged in a microwavable film, the meat can be cooked by puncturing the film, placing the meat in a microwave oven, and cooking until an interior temperature of greater than 64°C is reached. Detailed Description of the Invention Although the present invention, as described herein, presents the best embodiment presently known for using ultra-high temperature pasteurization and electron beam radiation to commercially sterilize meat and meat products, it is to be understood that this invention is not limited to the particular process steps and materials disclosed herein as such process steps and materials may, of course, vary. It is also to be understood that the terminology used herein is used for the purpose of describing particular embodiments only and is not intended to be limiting since the scope of the present invention will be limited only by the appended claims. As used herein, "meat" means those animal tissues that are suitable for use as food including, but not limited to beef, pork, lamb, poultry, and fish. Meat includes the carcass, primal, and retail cuts of muscle tissue as well as ground and processed forms, or what may be commonly called meat products.
As used herein, "ultra-high temperature" or "UHT" means temperatures in the range of about 900-1300°C.
Also, as used herein the term "electron beam radiation" or "EBR" means high speed electrons generated from properly shielded machine sources at energies up to about 10 million electron volts (10 MeV) .
Ultra-High Temperature Treatment The specific method used for treating meat to obtain the results disclosed herein involve placing meat in a closed heat source, e.g., an electric oven, maintained at a temperature of between about 900 and 1300°C for a time sufficient to denature surface proteins up to a depth of not more than about 2 mm, i.e. typically between about 5 and 30 seconds. Preferably the oven will contain a ceramic grill which provides the surface of the meat with a grilled pattern further enhancing the appearance. This is particularly useful when treating meats that have previously been somewhat discolored. The oven is heated to the selected temperature with the grill in place, and then the oven is opened and the meat placed on the grill for the selected length of time. Then, the meat is removed and preferably cooled at a refrigerated temperature and hermetically sealed.
Example 1 Beef loin steaks about 1.9 cm thick and refrigerated at a temperature of 4.4°C were exposed to UHT at varying times and temperatures as shown in Table 1. After exposure to UHT, the amount of shrinkage, final internal temperature, and depth of denaturation were measured and appearance was assessed visually, as summarized in Table 1.
Table 1
Oven temp Time Final internal Denaturation V Appearance CO (sec) temp CO DβDth (mm) Shrinkage
700 SO 27 2-3 13 slightly brown
800 40 21 2-3 13 slightly brown
900 20 21 1-2 10 slightly brown
1000 10 15 0.5-1 6 slightly brown
1100 10 14 0.5-1 5 evenly brown
1200 5 13 0.5-1 5 slightly burned
1300 5 13 0.5-1 5 burned
These results show that treating meat with UHT at the lower end of the temperature range (700-800°C) gave higher final internal temperatures, denaturation to greater depth, and more shrinkage of the meat. Exposure times were selected based on depth of surface protein denaturation and attractive appearance of the treated steaks. Exposure times shorter than 5 seconds were not practical due to the amount of time needed to place the steaks in the oven and retrieve them. The acceptable temperature for UHT treatment was in a range from about 900 to 1200°C with a range of from about 1000 to 1200°C being preferred and about 1100°C being most preferred. By use of the term "about" is meant that some variation is possible inasmuch as it is virtually impossible to maintain a constant temperature without any fluctuation. Therefore variations of from ±25°C from that stated are considered acceptable. Exposure times of 5-20 seconds at these temperatures produced a steak with an acceptable grilled appearance with a denaturation depth of less than 1 mm. Shrinkage under these conditions was about 10% and the final internal temperature of the steaks was less than 21°C. Preferably, exposure times will be between about 5-15 seconds with about 10 seconds being optimal.
Shrinkage of less than 10% and preferably not more than about 5% should be observed.
Example 2 Steaks, having an average surface area of about 100 cm2 and about 2 cm thick were exposed to UHT treatment at about 1100°C for a period of about 10 seconds and were then cooled to about 4.4°C and hermetically sealed under vacuum in a flexible polyethylene pouch which surrounds or envelopes the surface of the steaks. Control steaks of the same size, but not treated with UHT, were also sealed in the same manner. Control and UHT treated steaks were both refrigerated at 4.4°C and examined for the presence of both mesophilic and psychrotrophic bacteria after 24, 40. and 60 day periods. The control steaks were also examined at the time the storage period began for bacterial content. Estimates of bacterial populations on the surfaces of raw vacuum-packaged or UHT-treated steaks were determined by removal of the packaging material and immersing the steaks in 99 ml of sterile 0.1%
(w/v) peptone water diluent, shaking in a sterile bag, and plating on plate count agar. Compendium of Methods for the Microbiological Examination of Foods
(APHA, 1984) . Facultative and/or aerobic psychrophilic and mesophilic bacterial counts are shown in Table 2.
Table 2
2 Colony Forming Units/cm
Storage
Raw UHT Treated (days)
Mesophilic Psychrophilic Mesophilic Psychrophilic
0 620 810 <10 <10
20 780 1040 120 132
40 850 1260 130 160
60 1560 1810 110 170
These results show that bacterial counts on the surface of raw vacuum-packaged steaks increased upon storage at 4.4°C for up to 60 days. Bacterial counts on UHT-treated steaks remained relatively low. Thus, facultative and/or aerobic psychrophilic and mesophilic vegetative bacteria which grow at refrigerated temperatures are effectively controlled by UHT treatment.
Example 3
Raw meat is often "aged" for a period or time sufficient to bring about a maturity or ripeness of flavor and improve tenderness of the fibers when cooked. The degree of tenderness is often determined by the shear value of a cooked core sample, i.e. the force required in kg to shear a core of cooked tissue. The results below show that shear values of cooked cores of both raw vacuum-packaged and UHT-treated steaks decreased after storage at 4.4°C. The refrigerated vacuum packaged samples were cooked to an internal temperature of 74°C in a microwave oven.
Shear values of UHT-treated and raw vacuum- packaged beef loin steaks were determined after storage at 4.4°C. As used herein, shear value is the force in kg required to shear a 1.3 cm diameter core of cooked tissue using a Warner-Bratzler shear. At various times after placing the steaks in storage, steaks were removed and cooked to 74°C in a microwave oven. Then the shear values were determined.
Table 3
Storage Shear Value (days)
Raw UHT
0 10.25 9.75
10 7.5 3.9
20 6.4 4.1
40 4.3 5.2
60 4.5 4.3
As shown in Table 3, shear values of vacuum packed raw steaks decreased relatively rapidly within 10 days and continued to decrease slowly until a minimum was reached about 40 days after placing the steaks in storage. Shear values of the corresponding vacuum packed UHT-treated steaks also decreased rapidly within the first 10 days of storage, but did not decrease further upon additional refrigerated storage. The cooked samples of the UHT-treated steaks had lower shear values after 10 days of storage than did the cooked samples of the raw vacuum-packaged steaks at any time during the course of the experiment. These results suggest that UHT treatment of steaks does not interfere with the natural tenderization of meat during low temperature (4.4°C) aging. It has long been known that aging at refrigerated temperatures (4.4°C) improves tenderness. It is also clear that muscle tissue contains proteolytic enzymes that operate much more rapidly at 37°C than at 4.4°C. J. Sharp, 14 J. Sci. Food Agric. 468 (1963) .
Example 4 Meat is commonly aged 30-60 days under refrigeration (4.4°C) using either wet (vacuum packaged) or dry (no package) conditions. Microorganisms grow extensively on the surface of the meat during aging, lactic acid bacteria and molds predominating on the wet and dry aged meats, respectively. The meat must be trimmed considerably, resulting in a loss of 10-30%, in preparation for sale. The cost of refrigeration and losses due to trimming both contribute to the high cost of aged meat. Despite the cost, aging meat is desirable because of increased tenderness and the resulting unique flavor.
A method of aging meat comprises subjecting whole-muscle refrigerated or hot-boned primals, subprimals, and retail cuts of meat to UHT pasteurization to denature the surface proteins to a depth of no more than about 2 mm to destroy all vegetative pathogens on the surface of the meat, aseptically packaging the UHT-treated meat in an inert atmosphere, placing the packaged meat in an incubator and incubating the meat for 12-24 hours at about 39°C to 43°C to effect high temperature aging (HTA) , and storing the packaged meat under refrigeration. UHT pasteurization of the meat destroys vegetative pathogens and reduces spoilage microorganisms to very low levels, as shown above. During HTA, no significant growth of microorganisms occurs . The amount of tenderness and flavor development that occurs after the combination of UHT and HTA is equivalent to that of meat subjected to refrigerated aging for 30-60 days, i.e. to a Warner- Bratzler value below about 5. Thus, there is significant savings in the cost of meat aged by this method since trimming is unnecessary and the energy input is much lower.
Some of the tougher and less costly cuts of meat from the round and chuck are much more tender and palatable after aging by this method. For example, round steaks with initial shear values (Warner- Bratzler) of 8-10 that were aged by a combination of UHT and HTA, then cooked by dry heat methods, exhibited significantly increased tenderness (Warner- Bratzler values of 2-3) . Thus, the combination of UHT and HTA also provides a method of adding value to the less tender cuts of meat on a carcass.
Example 5 This example relates to a method of pasteurizing and storing meat for the take-out segment of the food service industry. The procedure of this example produces a raw meat product, such as a whole-muscle retail cut (steak, roast, and the like) , with a cooked appearance and having a refrigerated shelf life of up to about 60 days. This raw meat product can be safely cooked using microwave energy, giving the appearance and flavor of a charcoal-grilled product.
High levels (80-100%) of carbon dioxide gas mixed with nitrogen gas have not been used to package raw meat because of the adverse effect of such gas on the color of the meat. Unexpectedly, it has been discovered that the color of UHT pasteurized meat remains stable during storage in a carbon dioxide atmosphere.
A method of pasteurizing meat and storing a raw meat product suitable for cooking, such as with microwave energy, comprises treating the meat at ultra-high temperature (UHT) of between about 900 and 1200°C for a time sufficient to denature surface proteins, without burning, to a depth of not more than about 2 mm, aseptically packaging the ultra-high temperature treated meat in a modified atmosphere containing in the range of about 80% to 100% carbon dioxide, and storing the packaged meat under refrigeration. The packaging material is preferably a film that is tolerant of being subjected to microwave energy so that preparation for cooking is minimized. With a microwavable film, the preparation for cooking can be as simple as puncturing the packaging material, placing the product in a microwave oven, and heating until a safe internal cooked temperature of greater than 64°C is obtained.
Raw steaks (100 g) were UHT pasteurized, aseptically packaged with a microwavable film in a modified atmosphere containing 80% carbon dioxide and 20% nitrogen, and stored under refrigeration. After 50 days, the steaks were prepared for cooking by puncturing the microwavable film and placing them on the carousel of a microwave oven. The steaks were cooked at a high energy setting for 2 minutes, resulting in an attractive, tasty, and healthful food.
Example 6 According to the procedure of Example 5, 900 g roasts were UHT pasteurized, aseptically packaged in a microwavable film in an atmosphere containing 100% carbon dioxide, and stored under refrigeration. After 60 days, the roasts were prepared for cooking by puncturing the film and placing the roasts in a microwave oven. The roasts were cooked at a high energy setting for 15 minutes with results that were substantially similar to those obtained with the steaks.
Electron Beam Processing
The UHT treatment described above improves appearance, enhances aging and destroys vegetative pathogens and most spoilage organisms on the surface of the meat, thereby enabling extended storage at temperatures requiring only refrigeration. It would also be desirable to provide means to destroy all vegetative pathogens, spores of pathogens, toxins and spoilage microorganisms which grow at ambient temperatures, i.e. temperatures of about 25-35°C. and thereby improve storage of raw meat products over a wider or more elevated temperature range.
Electron beam processing is routinely used, as a source of radiation, for a variety of applications.
Medical devices, such as catheters, syringes, needles, tubing, empty drug containers, and clean room clothing are sterilized with electron beam radiation (EBR) at doses between 15 and 30 kgray (1.5-3.0 Mrad) . Polymers, such as thin-film polymers and composites, may be cross-linked by EBR at various doses. Hazardous wastes from hospitals and medical clinics are sterilized with EBR. Waste water and sewer sludge have been treated with EBR to kill pathogens therein. Further, in the food industry EBR is known to be used to pasteurize and sterilize food, prevent sprouting of vegetables such as potatoes, onions, and garlic, and kill certain insect pests in grains. In the United States, the use of radiation in the production, processing and handling of foods is governed generally under the provisions of 21 C.F.R. §§ 179 et seq. Table 4 summarizes some uses of EBR for treating foods.
Table 4
Dose (kGy)
Product Purpose
Wheat Disinfest insects 0.2-0.5
White potatoes Extend shelf life 0.05-0.15
Spices & seasonings Disinfest insects 30
Dry enzyme preps . Control insects 6 10 microorganisms
Pork carcasses or fresh Control Trichinella 0.3-1.0 non-cut processed cuts spiralis
Fresh fruits Delay maturation 1
Dry enzyme preps . Decontamination 10
Dry aromatic vegetable Decontamination 30 substances
Poultry Control microorganisms 3
The use of EBR as a method of sterilizing certain food products, such as listed above, has not extended to the treatment of a meat which has been preprocessed by another means, such as UHT followed by vacuum packaging. When compared with other forms of radiation, it is recognized that there are processing advantages attributed to EBR such as quick turn around time, short start-up time, simple operation, low power consumption, low temperature operation, accurate dosimetry control, less product degradation than with gamma irradiation, absence of constantly emitted radiation, large and small quantities of products may be treated, and all processing parameters may be continuously monitored.
Further, the high speed electrons generated by EBR results in more than just surface sterilization of the meat product and can be accomplished with the product in a packaged form following the UHT and packaging process. The degree of penetration is somewhat a function of the density of the material being treated. The treatment can be carried out at refrigerated temperatures, i.e. 4.4°C or even at ambient temperatures if desired. Vacuum packaged UHT-treated meats prepared according to Example 2 were exposed to EBR with a machine owned by Nutek Corp. (Salt Lake City, Utah) . The machine specifications are as follows: Beam Power - 1 kW; Energy - 6 MeV; Demand Electrical Power - 3.5 kW; Operating Range: Design - 25-350 pulses per second (pps) ; Nominal - 180-300 pps; Conveyor Speed - 0.5-10 feet per minute; Typical Dose Rate - 5 kgray (0.5 Mrad) per minute; Average Beam Current - 120 microamps at 250 pps. The machine was properly shielded and the vacuum packed UHF treated meat was subjected to radiation by passage on a conveyor past the beam window of the electron accelerator. The dose rate was adjusted by operational variables such as conveyor speed, beam power and energy, etc.
The method used for sterilizing meat with EBR involved, first, subjecting the meat to UHT treatment. Then, the UHT-treated meat was cooled and sealed in an air-tight container. Finally, the meat was irradiated with EBR. The UHT-treated meat is preferably cooled in the range of -20 to 10°C, and more preferably in the range of 2 to 4.40C before EBR treatment. The container may be sealed under vacuum or, alternatively, the air in the container may be replaced with an inert gas, such as C02, N2, or a mixture of both. The container may be composed of any suitable material, preferably a laminated sealable plastic material that is impermeable to microorganisms, exchange of gases, and loss of moisture. Suitable materials include polyethylene, polypropylene, and the like.
Example 7 Beef steaks were UHT treated by exposure to 1100°C for 5-10 seconds. The UHT-treated meat was then cooled to <4.4°C and packaged in a hermetically sealed polyethylene pouch under vacuum. Then the packaged meat was exposed to EBR at various dosages ranging from 0 to 20 kgray. Sterility, at ambient temperatures, was determined by incubating EBR irradiated meat samples at 30-32°C for 14 days in soybean casein digest medium, according to the United States Pharmacopeia (USP) sterility test. Results are given in Table 5.
Table 5. Sterility of UHT-treated steaks treated with EBR
Dose (kgray) Sterile/Total Samples
0 0/2
5 2/4
8 3/4
13 4/4
20 5/5
Sterility at 30-32°C appeared to be a function of dosage levels. While treatment at 5 and 8 kgray was somewhat effective, all UHT-treated meat samples that were exposed to at least 13 kgray of electron beam radiation were rendered completely sterile, as shown in Table 5. Suitable dosage ranges may vary from about 8 to 20 kgray with ranges of between about 10-15 kgray being preferred. Treatment at these dosages results in the destruction of all mesophilic vegetative pathogens, spores of pathogens, and spoilage microorganisms which would grow at room temperature.
Commercial sterilization also provides a method of aging meat at temperatures higher than with refrigeration (4.4°C), without the growth of microorganisms that would spoil the meat or render it unsafe for consumption. Shear values of UHT- and EBR- treated steaks aged at either 4.4°C or 43°C indicate that the same degree of tenderness can be achieved in one day at 43°C as in 14 days at 4.4°C, as shown in Table 6.
Table 6
Storage Shear Value (days)
4.4°C 43°C
0 10.5 10.5
1 10.0 4.1
10 7.1
14 4.6
Although the above examples and description demonstrate the use of UHT/EBR treatment in improving the shelf-life of raw meat, and beef steaks in particular, the same techniques can be utilized to treat other meat products. Therefore, the above examples are but illustrative of a complete and preferred embodiment which may be employed in operation of the present invention. The invention is directed to the discovery that the appearance, aging, and shelf life of raw meat products can be greatly improved by the combined treatment of UHT and EBR wherein the products are cooled and packaged following UHT treatment and then subjected to EBR to further destroy those pathogens which would be active at room temperatures. Therefore, within the guidelines presented herein, a certain amount of experimentation to obtain optimal operation parameters can be readily carried out by those skilled in the art. Therefore, the invention is limited in scope only by the following claims and functional equivalents thereof.

Claims

Claims 1. A method of accelerating the aging process and producing pasteurized raw meat which may be stored for extended periods at refrigerated temperatures comprising the steps of :
(a) treating said meat at ultra-high temperature of between about 900 and 1200°C for a time sufficient to denature surface proteins, without burning, to a depth of not more than about 2 mm; (b) cooling said meat to a refrigerated temperature of between about 2 and 4.4°C; and (c) hermetically sealing the cooled meat in an inert atmosphere.
2. The method according to Claim 1 wherein said treatment time is between about 5 and 20 seconds.
3. The method according to Claim 2 wherein said surface proteins are denatured to a depth of not more than about 1 mm.
4. The method according to Claim 3 wherein said temperature is between about 1000 and 1200°C and said treatment time is between about 5 and 15 seconds.
5. The method according to Claim 4 wherein said meat is hermetically sealed in an inert gas .
6. The method according to Claim 4 wherein said meat is hermetically sealed by vacuum packaging.
7. The method according to Claim 4 wherein said meat is beef.
8. The method according to Claim 7 wherein said beef is in the form of a steak.
9. The method according to Claim 8 wherein said steak is treated in an electric oven containing a ceramic grill which contacts the surface of the steak providing it with a grilled pattern.
10. The method according to Claim 9 wherein said steak is treated at a temperature of about 1100°C for a time of about 10 seconds.
11. A method of accelerating the aging process and producing commercially sterile raw meat which may be stored for extended periods at either ambient or refrigerated temperatures comprising the steps of :
(a) treating said meat at ultra-high temperature of between about 900 and 1200°C for a time sufficient to denature surface proteins, without burning, to a depth of not more than about 2 mm;
(b) cooling said meat to a refrigerated temperature of between about 2 and 4.4°C; (c) hermetically sealing the cooled meat in an inert atmosphere, and
(d) irradiating said hermetically sealed meat by electron beam radiation at a dosage sufficient to destroy all mesophilic vegetative pathogens, spores of pathogens, toxins, and spoilage microorganisms which grow at ambient temperatures.
12. The method according to Claim 11 wherein said meat is irradiated at a dosage of between about 8 and 20 kgray.
13. The method according to Claim 12 wherein said meat is irradiated at a dosage of between about 10 and 15 kgray.
14. The method according to Claim 12 wherein said treatment time in step (a) is between about 5 and 20 seconds.
15. The method according to Claim 14 wherein said surface proteins are denatured to a depth of not more than about 1 mm.
16. The method according to Claim 15 wherein, in step (a) , said temperature is between about 1000 and 1200°C and said treatment time is between about 5 and 15 seconds .
17. The method according to Claim 16 wherein said meat is hermetically sealed in an inert gas .
18. The method according to Claim 16 wherein said meat is hermetically sealed by vacuum packaging.
19. The method according to Claim 16 wherein said meat is beef.
20. The method according to Claim 19 wherein said beef is in the form of a steak.
21. The method according to Claim 19 wherein, in step (a) , said steak is treated in an electric oven containing a ceramic grill which contacts the surface of the steak providing it with a grilled pattern.
22. The method according to Claim 21 wherein said steak is treated at a temperature of about 1100°C for a time of about 10 seconds.
23. A method of producing pasteurized raw meat and accelerating the aging process thereof, wherein said meat can be stored for extended periods at refrigerated temperatures, comprising the steps of:
(a) treating a whole-muscle meat at ultra-high temperature of between about 900 and 1200°C for a time sufficient to denature surface proteins, without burning, to a depth of not more than about 2 mm;
(b) aseptically packaging the ultra-high temperature treated meat in an inert atmosphere; (c) placing the packaged meat in an incubator and aging at a temperature in the range of about 39°C to about 47°C for about 12 to 24 hours; and (d) storing the packaged meat under refrigeration.
24. The method according to Claim 23 wherein said whole-muscle meat is selected from refrigerated and hot-boned primals, subprimals, and retail cuts.
25. The method according to Claim 24 wherein the time of treating the meat at ultra-high temperature is between about 5 and 20 seconds.
26. The method according to Claim 25 wherein said surface proteins are denatured to a depth of not more than about 1 mm.
27. The method according to Claim 26 wherein said temperature is between about 1000 and 1200°C and said treatment time is between about 5 and 15 seconds.
28. The method according to Claim 27 wherein said packaging step is by hermetically sealing in an inert gas.
29. The method according to Claim 27 wherein said meat is hermetically sealed by vacuum packaging.
30. The method according to Claim 29 wherein said aging step results in meat with a Warner-Bratzler shear value of less than about 5.
31. A method of preparing a microwavable, pasteurized meat product having a cooked appearance and a refrigerated shelf life of up to about 60 days, comprising the steps of:
(a) treating a whole-muscle meat at ultra-high temperature of between about 900 and 1200°C for a time sufficient to denature surface proteins, without burning, to a depth of not more than about 2 mm;
(b) aseptically packaging the ultra-high temperature treated meat in a modified atmosphere containing in the range of about 80% to 100% carbon dioxide; and
(c) storing the packaged meat under refrigeratio .
32. The method according to Claim 31 wherein said whole-muscle meat is a retail cut.
33. The method according to Claim 32 wherein the time of treating the meat at ultra-high temperature is between about 5 and 20 seconds.
34. The method according to Claim 33 wherein said surface proteins are denatured to a depth of not more than about 1 mm.
35. The method according to Claim 34 wherein said temperature is between about 1000 and 1200°C and said treatment time is between about 5 and 15 seconds .
36. The method according to claim 35 wherein said packaging step is by hermetic sealing.
37. The method according to claim 36 wherein said packaging is in a microwavable film.
38. The method according to claim 37 wherein said meat is in the form of a steak.
39. The method according to claim 37 wherein said meat is in the form of a roast .
PCT/US1994/011213 1993-10-04 1994-10-03 Method of producing pasteurized raw meat products WO1995009544A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU78478/94A AU7847894A (en) 1993-10-04 1994-10-03 Method of producing pasteurized raw meat products

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/131,321 US5366746A (en) 1990-08-27 1993-10-04 Ultra-high temperature pasteurization and electron beam technology for sterilization of meat and meat products
US08/131,321 1993-10-04
US08/316,033 1994-09-30
US08/316,033 US5470597A (en) 1990-08-27 1994-09-30 Ultra-high temperature pasteurization of meat products

Publications (1)

Publication Number Publication Date
WO1995009544A1 true WO1995009544A1 (en) 1995-04-13

Family

ID=26829361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1994/011213 WO1995009544A1 (en) 1993-10-04 1994-10-03 Method of producing pasteurized raw meat products

Country Status (3)

Country Link
US (1) US5470597A (en)
AU (1) AU7847894A (en)
WO (1) WO1995009544A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999040803A1 (en) * 1998-02-12 1999-08-19 Accelerator Technology Corp. Method and system for electronic pasteurization
EP1055371A2 (en) * 1999-05-25 2000-11-29 Jerry L. Mitchell Method for treatment of containerised food
WO2002098243A2 (en) * 2001-06-01 2002-12-12 Surebeam Corporation System for, and method of, irradiating food products
US8383177B2 (en) 2008-08-08 2013-02-26 Stella & Chewys, LLC Method and system for reducing pathogens

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ272451A (en) * 1994-06-28 1997-11-24 Meat Research Corp Animal tissue testing; portion of tissue removed from carcass tested by measurement of ph of sample after incubation
US6949265B1 (en) 1995-07-03 2005-09-27 Cargill, Incorporated Low temperature rendering process
US6159515A (en) * 1995-07-03 2000-12-12 Cargill, Incorporated Low temperature rendering process
US6039985A (en) * 1996-11-22 2000-03-21 Princeton Nutrition, L.L.C. Refrigeration-shelf-stable ultra-pasteurized or pasteurized infant formula
US6030650A (en) * 1996-11-22 2000-02-29 Princeton Nutrition, L.L.C. Complete nutritional milk compositions and products
US6194009B1 (en) 1996-11-22 2001-02-27 Princeton Nutrition, Llc Refrigeration-shelf-stable ultra-pasteurized or pasteurized infant formula
US5985339A (en) * 1996-11-22 1999-11-16 Kamarei; A. Reza Refrigeration-shelf-stable ready-to-drink complete nutritional compositions and products
US6096354A (en) 1997-01-08 2000-08-01 The Iams Company Process for aseptically packaging protein-containing material and product produced thereby
US6093425A (en) * 1997-11-21 2000-07-25 Princeton Nutrition, L.L.C. Complete nutritional milk compositions and products
US6569482B2 (en) 1998-10-30 2003-05-27 Excel Corporation Method for surface treating animal tissue
JP2000217558A (en) * 1998-11-24 2000-08-08 Daiki Foods Kk Retort food and its production
US6713773B1 (en) 1999-10-07 2004-03-30 Mitec, Inc. Irradiation system and method
US6429608B1 (en) 2000-02-18 2002-08-06 Mitec Incorporated Direct injection accelerator method and system
WO2001062339A1 (en) * 2000-02-24 2001-08-30 Mitec Incorporated Bulk material irradiation system and method
US6707049B1 (en) 2000-03-21 2004-03-16 Mitec Incorporated Irradiation system with compact shield
US6780448B1 (en) 2001-02-06 2004-08-24 David Howard Pasteurization of food products
CA2443150A1 (en) * 2001-04-02 2002-10-10 Mitec Incorporated Irradiation system and method
US7154103B2 (en) * 2001-04-02 2006-12-26 Mitec Incorporated Method of providing extended shelf life fresh meat products
US6763760B2 (en) * 2001-07-03 2004-07-20 Hansen Conly L Machine for injecting liquids
US6976421B2 (en) 2001-07-03 2005-12-20 Conly L. Hansen Machine for injecting liquids
US6683319B1 (en) 2001-07-17 2004-01-27 Mitec Incorporated System and method for irradiation with improved dosage uniformity
WO2003011058A1 (en) * 2001-07-31 2003-02-13 Institut National De La Recherche Scientifique Formulations of compounds derived from natural sources and their use with irradiation for food preservation
US7285299B1 (en) 2002-02-22 2007-10-23 David Howard Surface pasteurization of cooked food products
US6843043B2 (en) * 2002-09-13 2005-01-18 Alkar Rapidpak, Inc. Web packaging pasteurization system
US6976347B2 (en) * 2002-09-13 2005-12-20 Alkar-Rapidpak, Inc. Surface pasteurization method
US7284477B2 (en) * 2003-05-08 2007-10-23 Hansen Conly L Needleless injection device and method of injecting
NL1029353C2 (en) * 2005-06-28 2007-01-02 Greencore Convenience Foods Li Method and device for subjecting a food product to a heat treatment.
US20070237866A1 (en) * 2006-03-10 2007-10-11 Mitec Incorporated Process for the extension of microbial life and color life of fresh meat products
US8729121B2 (en) 2007-06-25 2014-05-20 Adhezion Biomedical, Llc Curing accelerator and method of making
US7976885B2 (en) * 2007-10-23 2011-07-12 Alkar-Rapidpak-Mp Equipment, Inc. Anti-microbial injection for web packaging pasteurization system
EP2211727B1 (en) 2007-11-14 2014-03-12 Adhezion Biomedical, LLC Cyanoacrylate tissue adhesives
US8198344B2 (en) 2008-06-20 2012-06-12 Adhezion Biomedical, Llc Method of preparing adhesive compositions for medical use: single additive as both the thickening agent and the accelerator
US8293838B2 (en) 2008-06-20 2012-10-23 Adhezion Biomedical, Llc Stable and sterile tissue adhesive composition with a controlled high viscosity
US20110117047A1 (en) 2008-06-23 2011-05-19 Adhezion Biomedical, Llc Cyanoacrylate tissue adhesives with desirable permeability and tensile strength
US9254133B2 (en) 2008-10-31 2016-02-09 Adhezion Biomedical, Llc Sterilized liquid compositions of cyanoacrylate monomer mixtures
US8609128B2 (en) 2008-10-31 2013-12-17 Adhezion Biomedical, Llc Cyanoacrylate-based liquid microbial sealant drape
US8652510B2 (en) 2008-10-31 2014-02-18 Adhezion Biomedical, Llc Sterilized liquid compositions of cyanoacrylate monomer mixtures
US8445049B2 (en) * 2010-01-28 2013-05-21 David J. Skender Roasting apparatus and packaging system for providing a cooked food product having a long shelf life
US9309019B2 (en) 2010-05-21 2016-04-12 Adhezion Biomedical, Llc Low dose gamma sterilization of liquid adhesives
DE102010023963A1 (en) 2010-06-16 2011-12-22 Mars Inc. Method and apparatus for producing a foamed meat or fish product
WO2012067626A1 (en) * 2010-11-19 2012-05-24 Dapuzzo Douglas C Method of processing meat
US9314037B1 (en) 2013-08-15 2016-04-19 Joseph Gobster Meat aging assembly
US9421297B2 (en) 2014-04-02 2016-08-23 Adhezion Biomedical, Llc Sterilized compositions of cyanoacrylate monomers and naphthoquinone 2,3-oxides
US20160015046A1 (en) 2014-07-17 2016-01-21 Lund Food Holdings, Inc. Methods and packaging for wet aging meat
US20190159486A1 (en) * 2017-11-29 2019-05-30 IXON Food Technology Limited Method for Preparing Food
CN113508832A (en) * 2021-06-21 2021-10-19 西南科技大学 Preservative and fresh-keeping method for cooked chicken by combining irradiation with low-temperature storage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567462A (en) * 1967-01-26 1971-03-02 Massachusetts Inst Technology Method for preserving fresh animal tissue
US3876373A (en) * 1968-03-18 1975-04-08 Nicholas D Glyptis Method and apparatus for modifying the reproductive mechanism of organisms
US4201796A (en) * 1979-02-15 1980-05-06 Harkins James L Method of cooking meat

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2456909A (en) * 1946-09-28 1948-12-21 Electronized Chem Corp Method of sterilizing and preserving
US4045579A (en) * 1974-06-06 1977-08-30 Armour And Company Process for pasteurizing raw poultry
FR2510874A1 (en) * 1981-08-07 1983-02-11 Unisabi Sa PROCESS FOR RAPID STERILIZATION OF PROTEIN MATERIALS
US4539212A (en) * 1983-06-03 1985-09-03 The Procter & Gamble Company Sterilization and stabilization process for meat analog products
DE3471574D1 (en) * 1984-11-02 1988-07-07 Nestle Sa Processing of egg yolk

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567462A (en) * 1967-01-26 1971-03-02 Massachusetts Inst Technology Method for preserving fresh animal tissue
US3876373A (en) * 1968-03-18 1975-04-08 Nicholas D Glyptis Method and apparatus for modifying the reproductive mechanism of organisms
US4201796A (en) * 1979-02-15 1980-05-06 Harkins James L Method of cooking meat

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999040803A1 (en) * 1998-02-12 1999-08-19 Accelerator Technology Corp. Method and system for electronic pasteurization
US6576915B1 (en) 1998-02-12 2003-06-10 Mcintyre Peter M. Method and system for electronic pasteurization
EP1055371A2 (en) * 1999-05-25 2000-11-29 Jerry L. Mitchell Method for treatment of containerised food
EP1055371A3 (en) * 1999-05-25 2001-01-03 Jerry L. Mitchell Method for treatment of containerised food
AU779055B2 (en) * 1999-05-25 2005-01-06 Jerry L Mitchell Method for treatment of containerized food
WO2002098243A2 (en) * 2001-06-01 2002-12-12 Surebeam Corporation System for, and method of, irradiating food products
WO2002098243A3 (en) * 2001-06-01 2003-02-20 Surebeam Corp System for, and method of, irradiating food products
US8383177B2 (en) 2008-08-08 2013-02-26 Stella & Chewys, LLC Method and system for reducing pathogens

Also Published As

Publication number Publication date
AU7847894A (en) 1995-05-01
US5470597A (en) 1995-11-28

Similar Documents

Publication Publication Date Title
US5470597A (en) Ultra-high temperature pasteurization of meat products
US5366746A (en) Ultra-high temperature pasteurization and electron beam technology for sterilization of meat and meat products
US6033701A (en) Hydraulic pressure sterilization and preservation of foodstuff and feedstuff
Lee et al. Irradiation and packaging of fresh meat and poultry
Morris et al. Non‐thermal food processing/preservation technologies: A review with packaging implications
Dempster Radiation preservation of meat and meat products: a review
EP3494798B1 (en) Method for sterilizing processed foods comprising microwave heating pretreatment
WO1998030116A1 (en) Food preservation by extended hydraulic pressure
CA2800883C (en) High pressure pasteurizing of whole muscle meats
KR20120080610A (en) High pressure pasteurizing of frozen ground meats
KR19980701767A (en) Ultra high temperature processing of low fat meat products
KR20120078723A (en) High pressure pasteurizing of ground meats
US3705813A (en) Meat processing
van Laack Spoilage and preservation of muscle foods
Rahman et al. Techniques of meat preservation-A review
JPH02295432A (en) After-pasteurization
KR100292828B1 (en) Hygienic, nutritionally safe crushed meat products
Rahman Irradiation preservation of foods
KR100576333B1 (en) Method for keeping kimchi from overfermenting
Woods Food irradiation
NL2021412B1 (en) Safe and stable nitrite free meat products
CN113229465B (en) Radiation peculiar smell removing and texture protecting method for cooked diced rabbit meat
Blank et al. 3 Irradiation
CA1253028A (en) Process for preserving fresh fruit and vegetables
Sarkar et al. FUNDAMENTAL TO MODERN ADVANCES IN MEAT PRESERVATION

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK ES FI GB GE HU JP KE KG KP KR KZ LK LT LU LV MD MG MN MW NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE MW SD SZ AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA