WO1995018460A1 - Thin film formation method - Google Patents

Thin film formation method Download PDF

Info

Publication number
WO1995018460A1
WO1995018460A1 PCT/JP1994/002259 JP9402259W WO9518460A1 WO 1995018460 A1 WO1995018460 A1 WO 1995018460A1 JP 9402259 W JP9402259 W JP 9402259W WO 9518460 A1 WO9518460 A1 WO 9518460A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
thin film
discharge
film
forming
Prior art date
Application number
PCT/JP1994/002259
Other languages
English (en)
French (fr)
Inventor
Noriyuki Hirata
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to KR1019960703564A priority Critical patent/KR100241817B1/ko
Publication of WO1995018460A1 publication Critical patent/WO1995018460A1/ja
Priority to US08/672,216 priority patent/US6224950B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors

Definitions

  • the present invention relates to a method for forming a thin film on a substrate to be processed such as a glass substrate by a plasma CVD method.
  • a silicon nitride film (film type A) and an amorphous silicon film (film type B) are formed based on the conventional CVD system with multiple film forming chambers with parallel plate electrodes installed based on the flowchart in Fig. 6. How to do it.
  • a substrate such as a glass substrate is carried into the film formation chamber I for film type A, and is placed on the lower electrode of the ⁇ f plate electrode (1).
  • a high vacuum state for example, 1 X 1 0 _1 P a or less
  • the reaction gas A monosilane, Anmonia or nitrogen
  • the pressure is adjusted to a state where plasma discharge is possible (3), and power is supplied from the high-frequency power source to the counter electrode to start plasma discharge and deposit the thin film A on the substrate (4).
  • the power supply from the high frequency power supply is cut off to stop the plasma discharge, and at the same time, the supply of the reaction gas A is stopped (5).
  • the inside of the film forming chamber I is evacuated to the high vacuum state (for example, 1 ⁇ 10 _1 Pa or less) (6), and the substrate on which the thin film A is formed is unloaded from the evacuated film forming chamber I without breaking the vacuum. Then, it is carried into the film forming chamber ⁇ for forming the film type B (8).
  • film forming chamber ⁇ As in film forming chamber I, exhaust before film formation (9), introduction of reaction gas B (monosilane, hydrogen), pressure regulation (10), continuation of plasma discharge for a predetermined time (1 1 ), Stop plasma discharge (stop reaction gas B) (1 2) After the film is evacuated sequentially (13), the substrate is unloaded (14).
  • reaction gas B monosilane, hydrogen
  • pressure regulation 10
  • continuation of plasma discharge for a predetermined time (1 1 )
  • Stop plasma discharge stop reaction gas B
  • the pre-deposition evacuation described in (2) and (9) above removes impurity gas to clean the substrate surface and discharge space as much as possible, and to prevent impurities from entering the interface between the substrate and the thin film to be formed and the thin film itself. It is done for the purpose of doing.
  • the pressure at the time of pressure regulation is 100 Pa, it is necessary to keep the pressure of 1Z1000, that is, lxl 0 _1 Pa or less. It has been. Therefore, a wide-area turbo-molecular pump having a sufficient evacuation capacity is used for the evacuation before film formation, and the pressure is reduced to this pressure in about 60 seconds.
  • reaction gas A and B in (3) and (10) only the reaction gas is introduced into the deposition chamber, which has become a clean atmosphere by the exhaust before deposition, and it takes about 30 seconds before the discharge starts. Thus, the pressure is maintained at a constant level necessary for the continuation of the discharge. Control is used for this gas introduction, and an automatic control type throttle valve is used for pressure regulation. After the pressure in the film forming chamber is made constant by the reaction gas, the plasma discharge of (4) or (11) is started. The film thickness is adjusted by controlling the duration of the plasma discharge until the discharge stops in (5) and (12).
  • forming a film type A (silicon nitride) to a thickness of 400 nm and a film type B (amorphous silicon) to a thickness of 300 nm requires plasma discharges of 120 seconds and 360 seconds, respectively.
  • the supply of the reaction gas is stopped, and immediately after the deposition in (6) and (13), the exhaust is performed.
  • the purpose of this evacuation is the same as the above-mentioned evacuation before film formation.
  • the evacuation is performed using a wide area molecular pump having a sufficient evacuation capacity for 90 seconds.
  • a thin film transistor having a film type A (silicon nitride) and a film type B (amorphous silicon) as described above is continuously formed on a substrate in a vacuum using a parallel plate plasma CVD method, the following method is used.
  • a film formation chamber is required, and a total of 840 seconds are required for film formation.
  • a main object of the present invention is to provide a method for forming a thin film which does not require an exhaust means capable of reaching a high vacuum such as a wide area turbo molecular pump.
  • Another object of the present invention is to provide a method for forming a thin film capable of continuously forming a film laminated in a plurality of layers in a single film forming chamber and thus reducing the size of the apparatus. Is to do.
  • a substrate to be processed is placed in a vacuum vessel having a gas inlet, and one or more reaction gases are introduced into the vacuum vessel from the gas inlet while the reaction is performed.
  • a method for generating a plasma by applying high frequency power to a gas to form a thin film made of a reaction product of a reaction gas on the substrate to be processed
  • one or more component gases included in the two or more reaction gases Prior to the introduction of the reaction gas, one or more component gases included in the two or more reaction gases, i.e., the component gas constituting the reaction gas, which does not have a substantially thin film forming ability in a plasma state by itself.
  • Pre-treatment is performed by introducing high-frequency power to the discharge gas while generating a plasma while introducing a discharge gas, which is a gas that does not have a thin film forming ability by itself.
  • the method is characterized in that the reaction gas is introduced in place of the discharge gas without changing the plasma generation conditions to form a thin film on the substrate to be processed.
  • a parallel plate type plasma generator has a plurality of gas inlets, a vacuum vessel (film forming chamber) in which a pair of plate electrodes are arranged in parallel inside and below, and a reaction gas is supplied to the vacuum vessel. It consists of a reactant gas supply system to supply, a high frequency power supply that applies a 13.56 MHz high frequency voltage to the parallel plate electrodes, and so on.
  • the substrate is placed on the lower electrode, and a high-frequency power is applied to the parallel plate electrodes while introducing a discharge gas and then a reaction gas from the gas inlet to the previous process. This is performed by generating a Jerusalema.
  • a hydrogen gas constituting a silane gas is used as a discharge gas when the reaction in the next step is (a), formation of an amorphous silicon film, and (b) formation of a silicon nitride film.
  • silane gas is used (1) hydrogen gas, (2) nitrogen gas, or (3) ammonia gas, which is a compound of hydrogen that is an element of silane gas and nitrogen that is an element of nitrogen gas.
  • oxygen gas is used in the case of forming a silicon oxide film.
  • the gas pressure in the vacuum vessel is set in the range of 100 to 300 Pa depending on the film to be formed.
  • the vacuum inside the vacuum vessel does not need to be reduced to less than 10 Pa throughout the entire operation process, and thus it is not necessary to use a vacuum pump having a large exhaust capacity such as a wide-area turbo-molecular pump.
  • film formation using a parallel plate electrode type CVD apparatus is performed as follows.
  • a substrate to be processed for example, a glass substrate
  • a high frequency power of 13.56 MHz is applied between the parallel plate electrodes from a high frequency power supply while introducing a discharge gas.
  • the flow rate, the gas pressure, the distance between the electrodes, and the supplied power of all the processing gases are set to values set in advance according to the type of the film to be formed.
  • the surface of the substrate to be processed is cleaned by the plasma discharge.
  • the supply of the discharge gas is stopped, and the reaction gas is supplied.
  • the distance between the electrodes is adjusted according to the type of film to be formed prior to the supply of the reaction gas. It is not necessary to change the gas pressure and supply power, but they can be adjusted.
  • the supply pressure of the discharge gas is the reaction gas supply pressure.
  • the power set value under the supply of discharge gas shall be within the range of 50 ⁇ : L00% of the power set value under the supply of the reactant gas.
  • the plasma discharge time under the discharge gas is preferably in the range of 0.1 to 4 when the plasma discharge time under the reaction gas is 1, and the plasma discharge time is maintained while the plasma discharge is maintained.
  • the present invention is advantageously applied when a plurality of layers such as silicon nitride-monomorphous silicon-silicon nitride or silicon oxide-silicon nitride-amorphous silicon-nitride silicon are laminated. It is advantageously used in a manufacturing process of a channel etching type or a channel insulating film type amorphous silicon TFT (reverse stagger type or stagger type) having a thin film having such a layer structure.
  • a channel etching type or a channel insulating film type amorphous silicon TFT reverse stagger type or stagger type
  • the film forming chamber and the substrate at the time of the start of the discharge. Exposure to the activated atmosphere facilitates replacement of the impurity gas in the film formation chamber with the discharge gas, eliminating the need for high-vacuum evacuation with a wide-area turbo-molecular pump before and after film formation.
  • a thin film can be formed in a clean atmosphere, and a good thin film can be formed in a short time without contamination by impurities in an initial stage of the thin film formation.
  • the discharge gas, which is not involved in the thin film formation, and the reaction gas comprising the gas component involved in the thin film formation are maintained at substantially the same gas pressure without changing the discharge power. If the plasma discharge is introduced and the plasma discharge is continued with substantially the same discharge power, a stable plasma state can be maintained, so that the film quality at the initial stage of deposition and the subsequent film quality can be obtained. Control becomes easy.
  • a hydrogen gas is used as a discharge gas when forming a multilayer film including a plurality of layers including a semiconductor film, the state of the semiconductor interface is improved and a semiconductor device having excellent characteristics is manufactured. Can be. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a view conceptually showing a CVD apparatus used in an embodiment of the present invention
  • FIG. 2 is a flow chart of an embodiment of the present invention
  • FIG. 3 is manufactured using the present invention.
  • FIG. 4 schematically shows a channel-etching type TFT
  • FIG. 4 schematically shows a channel-insulation type TFT manufactured using the present invention
  • FIG. 5 shows a TFT manufactured using the present invention.
  • FIG. 6 is a schematic diagram showing another channel-etching type TFT
  • FIG. 6 is a flowchart of a conventional thin-film forming method using a parallel plate plasma CVD method
  • FIG. 7 is a graph showing a change in a reflected wave after power is applied. .
  • FIGS. 1 and 2 an embodiment applied to the production of a semiconductor film composed of silicon nitride type A) and amorphous silicon (film type B) by a parallel plate plasma CVD method will be described.
  • FIG. 1 is a view conceptually showing a CVD apparatus used in the present invention
  • FIG. 2 is a flowchart for explaining a method of manufacturing a semiconductor film by a parallel plate plasma CVD method of the present invention.
  • plasma generating electrodes 2 and 3 are vertically opposed to each other in a film-forming chamber 1 which is formed in a vacuum-tight manner.
  • the upper electrode 2 is supported electrically insulated from the film forming chamber 1 and is exposed in the film forming chamber 1.
  • the lower electrode 3 is provided with a heater 4 below the lower electrode 3.
  • the lower electrode 3 is grounded together with the film forming chamber 1, and a high frequency is applied between the grounded lower electrode 3 and the upper electrode 2.
  • Power supply 5 is connected.
  • the substrate 6 to be subjected to chemical vapor deposition is placed on the lower electrode 3, and high frequency power is applied to both electrodes in a reaction gas introduced into the film forming chamber 1 from the gas inlet 7. Plasma is generated, and the film ⁇ 9 in the gas is subjected to chemical vapor deposition on the substrate 6.
  • Reference numeral 8 is an unillustrated L, an exhaust port connected to an exhaust pump.
  • a substrate is carried into a film formation chamber I for laminating a silicon nitride film and an amorphous silicon film (1), and the substrate and the chamber are washed before forming a film type.
  • a discharge gas ⁇ nitrogen gas
  • the pressure is adjusted (100 to 300 Pa) to achieve a predetermined plasma discharge.
  • a gas flow control mechanism was used for gas introduction, and an automatic slot valve was used for pressure regulation (2).
  • high-frequency power is applied to the upper electrode 2 from a high-frequency power source, and discharge is started between the upper electrode 2 and the lower electrode 3 holding the substrate (3).
  • the reaction gas A (monosilane, nitrogen gas) required for the formation of the silicon film was introduced for 60 seconds, and a thin silicon nitride film was deposited to a thickness of 40 nm on the basis of this (4).
  • the conventional film forming method requires two film forming chambers, and it took 840 seconds.
  • the total time required for film formation was 180 seconds.
  • the quality of the interface film of the deposited film is improved, and a thin film transistor having excellent characteristics can be obtained.
  • silicon nitride and amorphous silicon are formed in a single film forming chamber.
  • three or more types of thin films are continuously formed in a single ⁇ 3 ⁇ 41 chamber. Is possible.
  • the discharge may be temporarily stopped, and exhaust may be performed as necessary. You may.
  • the discharge by the discharge gas and the discharge by the reaction gas are intermittent within 1 second. May be. Further, the high frequency power may be pulsed intermittent power.
  • a discharge gas that does not contribute to the film formation is introduced as a discharge gas from the reaction gas for forming a thin film, and the pressure is adjusted. Then, the surface to be formed is cleaned, and the clean discharge gas is subsequently used as a part of the reaction gas.
  • a discharge gas other than monosilane, which has no thin film itself, is discharged, and after a predetermined time has elapsed, the monosilane is introduced into the discharge space while the discharge is continued. Since the formation of the thin film was started, the substrate was exposed to the activated atmosphere at the time of the start of the discharge, and there was no need to perform high-vacuum evacuation with a wide area turbo molecular pump before and after the film formation.
  • a thin film can be formed in a clean atmosphere, and a good thin film can be formed in a short time without impurities being mixed in an initial stage of the thin film formation. That is, the inside of the film formation chamber may be maintained at a medium vacuum of about several Pa to 3 O O Pa, and a pump capable of reaching a high vacuum is not required, and an exhaust system using a dry pump or the like is sufficient.
  • 10 is a glass substrate
  • 11 is metal
  • 12 is a gate silicon nitride film
  • 13 is an amorphous silicon film
  • 14 is a doped amorphous silicon film
  • 15 is a silicon nitride film.
  • the present invention is used for forming a gate silicon nitride film—an amorphous silicon film—an n + silicon film.
  • reference numeral 16 denotes a channel insulating silicon nitride film
  • the present invention is used for forming a gate silicon nitride film 11 1, a gate silicon nitride film 12 2 -amorphous silicon film 13 3 -a channel insulating silicon nitride film 14. I have.
  • a regular staggered type shown in Fig. 5 was formed on a 370 mm x 470 mm glass substrate using the film forming conditions shown in Table 3 and a known etching technique. TFT was manufactured.
  • reference numeral 16 denotes a polycrystalline silicon film, and the other portions indicated by the same reference numerals as those in FIG. 3 are the same as those in FIG.
  • 16 is a polycrystalline silicon film, but may be an amorphous silicon film.
  • the present invention is used for forming a polycrystalline silicon film and a silicon nitride film.
  • the substrate to be processed and the film forming chamber are exposed to an activated atmosphere at the start of discharge and are cleaned. This eliminates the need for high-vacuum evacuation, so that a good thin film free of impurities in the initial stage of thin film formation can be formed in a short time.
  • the film forming chamber since the film forming chamber only needs to be maintained at a vacuum of several Pa to 3 OOPa, a pump capable of reaching a high vacuum is not required, which reduces equipment costs, reduces equipment size, and improves productivity. Improvement can be achieved.
  • a gas that does not itself have a film forming ability is used as the discharge gas, and the supply of the reaction gas is switched to the supply state while maintaining the plasma state.
  • a uniform and uniform film can be formed in the initial stage of the film formation and thereafter.
  • the component gas that constitutes the reaction gas is used as the discharge gas, it does not affect the characteristics even if it is taken into the film.
  • the interface of the semiconductor thin film is treated with hydrogen gas plasma. In the case of the treatment, Si-1H is formed at the interface, and there is an advantage that the characteristics of the obtained semiconductor device are improved.
  • the present invention it is possible to continuously form a multi-layered thin film in a single film forming chamber, and it is possible to form a film more efficiently than in a conventional thin film forming method. Can be performed, and productivity can be improved.
  • a thin film Since the substrate after formation is always placed in an activated gas atmosphere, even if a plurality of different film types are continuously performed in a single film formation chamber, impurities are not mixed into each film type. Good interface separation characteristics can be obtained.
  • the reproducibility of the film thickness is improved because the control of the film thickness only requires controlling the supply time of the gas involved in the formation of the thin film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Description

明 細 書
薄膜形成法
技術分野
本発明は、 例えばガラス基板のような被処理基体上にプラズマ C VD法に より薄膜を形成する方法に関する。 背景技術
従来から、 基板上に複数層の薄膜を形成する方法として、 TO平板電極を 設置した複数の成膜室を有する C V D装置を用 tゝて成膜を行う方法が知られて いる。
以下、 図 6のフローチャートに基づいて従来の平行平板電極を設置した複数 の成膜室を有する C V D装置により、基 に窒化シリコン膜 (膜種 A) 、 ァ モルファスシリコン膜 (膜種 B) を形成する方法を説明する。
まず、 膜種 A成膜用の成膜室 Iにガラス基板のような基板を搬入し^ f平板 電極の下部電極上に配置する (1 ) 。 高真空状態 (例えば 1 X 1 0 _1 P a以下) まで成膜前排気を施し (2) 、 膜種 Aの成膜に必要な反応ガス A (モノシラン、 ァンモニァ又は窒素) を前記 室 Iに導入して調圧を行いプラズマ放電が可 能な圧力状態とし (3 ) 、 高周波電源から対向電極に電力を供給してプラズマ 放電を開始させ基板上に薄膜 Aを堆積させる (4) 。 所定の時間放電を継続し た後、 高周波電源からの電力の供給を遮断してプラズマ放電を停止させ、 同時 に反応ガス Aの供給も停止する (5 ) 。 成膜室 I内を前記高真空状態 (例えば 1 X 1 0_1 P a以下) に排気し (6 ) 、排気された成膜室 Iから薄膜 Aの形成 された基板を真空を破らずに搬出し (7 ) 、 これを膜種 B形成用の成膜室 Πに 搬入する (8 ) 。 成膜室 Πにおいても成膜室 Iにおけると同様に、 成膜前排気 ( 9) 、 反応ガス B (モノシラン、 水素) の導入、調圧 (1 0 ) 、 所定時間プ ラズマ放電継続 (1 1 ) 、 プラズマ放電停止 (反応ガス B停止) (1 2) 、 成 膜後排気 (13) を順次行った後基板の搬出を行う (14)。
上記の (2) , (9) の成膜前排気は不純物ガスを排気して基板表面および 放電空間をできるだけ清浄にし、 基板と形成される薄膜との界面及び薄膜自体 への不純物の混入を防止する目的で行われるものである。 薄膜トランジスタの 製造の場合には、 この目的を達成するためには、 調圧時圧力を 100 P aとす る場合には、 その 1Z1000の圧力、 すなわち lxl 0_1P a以下にするこ とが必要とされている。 したがって、 この成膜前排気には十分な排気能力を有 する広域ターボ分子ポンプが用いられ、 60秒間程度を要してこの圧力まで減 圧される。 (3)、 (10) の反応ガス A, Bの導入、調圧では、 成膜前排気 により清浄雰囲気となつた成膜室内に反応ガスのみが導入されて、 放電開始前 約 30秒を要して放電継続に必要な一定圧力状態に保持される。 このガス導入 には、 制御 が用いられ、調圧には自動制御式スロットルバルブが用い られる。 反応ガスにより成膜室が一定圧力となった後、 (4)又は (11) の プラズマ放電が開始される。 膜厚の調整は、 (5) 、 (12) の放電停止まで のプラズマ放電の継続時間を制御することにより行われる。
具体的には、 膜種 A (窒化シリコン) を厚さ 400 nm、 膜種 B (ァモルフ ァスシリコン) を厚さ 300 nmに形成するには、 それぞれ 120秒、 360 秒のプラズマ放電が必要であり、放電停止と同時に反応ガスの供給を停止し、 直ちに (6)、 (13) の成膜後の排気が行われる。 この排気の目的は前記し た成膜前排気と同様であり、 成膜前排気と同様、十分な排気能力を有する広域 夕一ボ分子ポンプで 90秒の時間を要して排気が行われる。
上記のように膜種 A (窒化シリコン) , 膜種 B (アモルファスシリコン) を 有する薄膜トランジスタを、 平行平板プラズマ CVD法を用いて、 真空中で連 続的に基板上に成膜する場合には 2室の成膜室が必要であり、 かつ、 成膜には 全体で 840秒の時間が必要である。
上記のように従来の C V D装置を用いて成膜する場合には、 成膜前に成膜室 を清浄雰囲気とするために高真空にすることが行われており、 このため十分な 排気能力を有する広域ターボ分子ポンプを必要とする上に、 成膜室を必要な真 空度とするまでに、 成膜の前後に成膜に要する時間と同等またはそれ以上の排 気時間が必要となるという問題がある。
また、従来の C V D装置では、 複数層に積層された膜を形成するために膜種 の数と同数の成膜室が必要となり、 このため装置のコストが増大する上に装置 寸法が大きくなって大きな設置面積を必要とするという問題がある。
さらに、 膜厚の制御は放電時間の管理によって行っているため、 実際の放電 開始時刻を確実に検出することが困難であり膜厚を再現性よく制御することが 困難であるという問題もある。
また、 さらに、 図 7に示すように、 高周波電力源から電力を印加したとき、 放電開始後の電極板からの反射波が大きく、 このため、 その後反射波が小さく なり安定するまでの間の初期プラズマの状態はその後のプラズマの状態と異な り、堆積初期の膜質がその後の膜質と異なるものになるという問題がある。 こ の問題は、 膜の堆積速度を増加すればするほど、 すなわち印加する電力、 反応 ガスの供給量を增加すればする程顕著になる。 したがって、 良好な堆積初期の 膜質を得ようとすれば大きな堆積速度とすることはできず、 成膜所要時間が増 大し生産性が低下することとなる。
したがって、 本発明の主たる目的は、排気手段として広域ターボ分子ポンプ のように高真空に到達可能なものを必要としない薄膜形成方法を提供すること にある。
また、 本発明の他の目的は、複数層に積層された膜を単一の成膜室で連続的 に成膜することができ、 したがって、装置を小型化することができる薄膜形成 方法を提供することにある。
さらに、 本発明の他の目的は、 膜厚及び膜質が均一な複数層に積層された膜 を製造できる薄膜形成方法を提供することにある。 さらに、 本発明の別の目的は、 成膜所要時間が短く、 生産性の良好な薄膜形 成方法を提供することを目的とする。
また、 さらに、 本発明の他の目的は、半導体膜を含む複数層に積層された膜 からなる特性の優れた半導体装置を製造する方法を提供することにある。 発明の開示
本発明の薄膜形成法は、 ガス導入口を有する真空容器内に被処理基体を配 置し、前記ガス導入口から前記真空容器内に 1種または 2種以上の反応ガスを 導入しつつ該反応ガスに高周波電力を印加することによりプラズマを発生させ て前記被処理基板上に反応ガスの反応生成物からなる薄膜を形成させる方法に おいて、
前記反応ガスの導入に先だって、 それ単独ではプラズマ状態で実質的に薄膜 形成能を有しない前記反応ガスを構成する成分ガス、 即ち、 前記 2種以上の反 応ガスに包含される 1種以上のガスであってそれ自体では実質的に薄膜形成能 を有しないガスからなる放電用ガスを導入しつつ該放電用ガスに高周波電力を 印加してプラズマを発生させて前処理を行い、 しかる後実質的にプラズマ発生 条件を変えることなく前記放電用ガスに代え前記反応ガスを導入して前記被処 理基板上に薄膜を形成させることを特徴としている。
本発明に用いられるガス導入口を有する真空容器としては、公知の平行平板 型プラズマ C V D装置が例示される。
平行平板型プラズマ発生装置は、一般に、複数のガス導入口を有し内部に上 下に平行させて一対の平板電極を配置した真空容器 (成膜室) と、 この真空容 器に反応ガスを供給する反応ガス供給系と、平行平板電極に 13. 56 MH zの高 周波電圧を印加する高周波電源等から構成されている。
は、 下部電極に被処理基板を載置して、 ガス導入口から前工程に放電用 ガス次いで反応ガスを導入しつつ、平行平板電極に高周波電力を印加してブラ ズマを発生させることにより行われる。
前処 程においては、 放電用ガスとして、 次工程の反応が (a ) 、 ァモル ファスシリコン膜の形成である場合にはシランガスを構成する水素ガスが用い られ、 (b) 窒化シリコン膜の形成である場合にはシランガスを構成する (1 ) 水素ガス、 (2 ) 窒素ガス、 又は (3) シランガスを構成する元素である水素 と窒素ガスを構成する元素である窒素の化合物であるアンモニアガスが用いら れ、 ( c ) 酸化シリコン膜の形成である場合には酸素ガスが用いられる。
特に、半導体膜を含む複数層からなる半導体装置の製造において、 次工程の 反応がァモルファスシリコン膜の形成であるとき、放電用ガスとして水素ガス を使用すると、 アモルファスシリコンの界面に S i— Hの結合が生じて半導体 装置の特性を改善する効果がある。
本発明においては、 真空容器内のガス圧は、 形成される膜により 100 〜300 P aの範囲で設定される。 本発明においては、 全操作過程を通じて真空容器内 を 10P aより低い真空にする必要はなく、 したがって広域ターボ分子ポンプの ような排気能力の大きい真空ポンプを用いる必要はない。
本発明において、 例えば平行平板電極型 C V D装置を用いた成膜は次のよう に行われる。
まず、平行平板電極の下部電極上に被処理基板、例えばガラス基板を置き、 放電用ガスを導入しつつ、 高周波電源から平行平板電極間に 13. 56 MH zの高 周波電力を印加する。 このとき、 全処理ガスの流量、 ガス圧、 電極間距離、供 給電力は、 形成する膜の種類に応じて予め設定された値とされる。
このプラズマ放電により被処理基板の表面は清浄化される。 所定の時間放電 を継続して放電状態が安定した後、 放電用ガスの供給が停止され、 反応ガスが 供給される。 このとき、反応ガスの供給に先だって形成すべき膜の種類に応じ て電極間距離が調整される。 ガス圧、供給電力を変化させる必要はないが、調 整することも可能である。 この場合、放電用ガスの供給圧力は反応ガス供給圧 力の 10〜: LOO %の範囲内、 放電用ガスの供給下での電力設定値は反応ガス供給 下での電力設定値の 50〜: L00 %の範囲内とする。
放電用ガス下でのブラズマ放電の時間は前記反応ガス下でのブラズマ放電時 間を 1 としたとき、 0. 1 〜 4の範囲にあることが望ましく、 また、 プラズマ 放電を維持したまま放電用ガスに代え反応ガスを導入するに際し、 ガス圧及び 放電電力を一定にしたまま反応ガスの導入を行うことが望ましい。
複数層の積層された膜を形成する場合には、 所定時間第 1の■を行つた後、 反応ガスの供給を停止し、 ブラズマ放電を維持したまま第 2の膜に対応した放 電用ガスを導入し、 同様の工程を繰り返す。
本発明は、 窒化シリコン一ァモルファスシリコンー窒化シリコン或は酸化シ リコン一窒ィ匕シリコン一アモルファスシリコン一窒ィ匕シリコンのような複数層 を積層させて形成するときに有利に適用され、 このような層構造の薄膜を有す るチャネルエツチング型又はチャネル絶縁膜型のァモルファスシリコン T F T (逆ス夕ガ型又はスタガ型) の製造プロセス等に有利に用いられる。
本発明の薄膜形成法において、 薄膜の形成前に反応ガスの成分のうち、薄膜 形成に関与しないガス からなる放電用ガスにより放電を発生させると、放 電開始の時点において成膜室及び基板は活性化された雰囲気に曝されることと なり、 成膜室内の不純物ガスと放電用ガスとが容易に置換され、成膜前後にお いて広域ターボ分子ポンプによる高真空排気を行う必要はなく、 清浄な雰囲気 中での薄膜形成を行うことができ、短時間に薄膜形成の初期段階における不純 物混入のない良好な薄膜を形成し得る。 放電開始後、 所定時間経過の後に、放 電電力を変えずに、 薄膜形成に関与しない放電用ガスのガス成分および薄膜形 成に関与するガス成分からなる反応ガスを実質的に同じガス圧で導入してブラ ズマ放電を実質的に同じ放電電力で継続させれば安定なブラズマ状態を維持さ せることができるので堆積初期の膜質とその後の膜質とは同一のものが得られ、 膜厚の制御も容易となる。 特に、 半導体膜を含む複数層からなる積層膜を形成する際に、放電用ガスと して水素ガスを用 ゝると半導体界面の状態が改善されて特性の優れた半導体装 置を製造することができる。 図面の簡単な説明
第 1図は本発明の実施例に用いた C V D装置を概念的に示す図、第 2図は 本発明の一実施例のフローチヤ一トであって、 第 3図は本発明を用いて製作さ れたチャネルエツチング型の T F Tを模式的に示す図、 第 4図は本発明を用い て製作されたチャネル絶縁型の T F Tを模式的に示す図、第 5図は本発明を用 、て製作された他のチャネルエツチング型の T F Tを模式的に示す図、第 6図 は従来の平行平板ブラズマ C V D法による薄膜形成法のフローチャート、 第 7 図は電力印加後の反射波の変化を示すグラフである。 発明を実施するための最良の形態
実施例 1
図 1及び図 2を参照しながら、 平行平板ブラズマ C V D法により窒化シリコ ン 種 A) 、 アモルファスシリコン (膜種 B) からなる半導体膜の製造に適 用した実施例について説明する。
なお、 図 1は本発明に用いた C V D装置を概念的に示す図、 図 2は本発明の 平行平板ブラズマ C V D法による半導体膜の製法を説明するためのフローチヤ 一トである。
図 1において、真空密に構成された成膜室 1内には上下に対向してプラズマ 発生電極 2 , 3が間隔を置いて対向設置されている。 上部電極 2は成膜室 1と 電気的に絶縁されて支持され、 成膜室 1内に露出しており、 また下部電極 3は その下側に加熱ヒータ 4が配置されている。 そして、下部電極 3は成膜室 1と ともにアースされ、 このアースされた下部電極 3と上部電極 2との間に高周波 電源 5が接続されている。 化学気相成長される基板 6は下部電極 3上に載置さ れ、 ガス導入口 7から成膜室 1内へ導入された反応ガス中で上記両電極に高周 波電力を印加することによりプラズマを発生させ、 そのガス中の成膜 β¾9·を基 板 6上に化学気相成長させるようになっている。 符号 8は図示しな L、排気ポン プへ連通された排気口である。
なお、以下の説明において括弧で示した符号は図 2のフローチャートに示し た工程を示す符号である。
この実施例では、 まず、 窒化シリコンと、 ァモルァスシリコン膜とを積層成 膜する成膜室 Iに、基板を搬入し (1 ) 、膜種 Αの形成前に基板及び ξ¾Μ室を 洗净化し、 さらに、放電を安定させるためにモノシランを含まない放電用ガス Α (窒素ガス) のみを導入、 調圧 (1 0 0〜3 0 0 P a ) して所定のプラズマ 放電が可能な圧力状態とした (2) 。
このとき、 上記圧力状態を維持するまでに 3 0秒を必要とした。 なお、 ガス導 入には、 流量制御機構を使用し、 調圧には自動スロットバルプを使用した (2 ) 。 次に、 高周波電源から上部電極 2に高周波電力を印加し、基板を保持した 下部電極 3との間に放電を開始させ (3 ) 、 プラズマ放電が安定するまで 1 0 秒間間放置した後、 窒化シリコン膜の形成に必要な反応ガス A (モノシラン、 窒素ガス) を 6 0秒間導入して、 基 へ窒化シリコン膜の薄膜を 4 O O nm の厚さに堆積させた (4) 。
この後、 材料ガス Aの導入を停止させて基板上への窒化シリコンの堆積を終 了させると同時に (5) 、 アモルファスシリコン膜の形成前に放電を安定させ るため、放電状態を持続させたまま、材料ガス B (モノシラン) の構 素ガ スである水素ガス (放電用ガス B) の導入、 調圧を行った (6 ) 。 この時、必 要に応じて電極板への印加電力、調圧設定値、 電極間距離設定の変更を行うよ うにしてもよい。 アモルファスシリコンを連続的に堆積させるには、調圧設定 値を 1 5 0〜3 0 0 P aとすることが望ましい。 1 0秒間の放電の後、 材料ガス B (モノシラン) の導入を開始し (7)、 6 0秒間放電を続けて 3 0 0 n mの膜厚のアモルファスシリコンを堆積させた。 この後、 高周波電力源からの電力供給を停止して放電停止させ、 同時に材料 ガス Bの供給を停止させてァモルファスシリコン膜の基 への堆積を停止さ せた (8 ) 0 ここで、 成膜室内を到達真 ¾JSが中真空の例えば 1 0 P a以下と なるまで成膜後排気を行い (9) 、 成膜室から基板を搬出する (1 0 ) 。 なお、 成膜後排気に要する時間は十分な排気能力を有するドライポンプを使用して 1 0秒である。
以上のように、 この実施例の成膜方法によれば、従来の成膜方法では成膜室 2個を必要とし、 8 4 0秒を要していたのが成膜室 1個のみで連続的に成膜が 可能であり、 成膜に必要な合計時間を 1 8 0秒とすることができた。
また、 この実施例では、 モノシランを含まないガス中の放電時間を 1 0秒以 上に設定することにより、 常に不純物の影響を最低限に維持、 管理することが できた。
また、 上記のように放電 (プラズマ状態) を安定させた後にモノシランを導 入するので、 図 7に示した初期プラズマ状態での成膜形成はなく、 良好な初期 堆積の膜質が得られた。
したがって、 この実施例の方法によれば、 堆積膜の界面膜質が良好となり、 良好な特性の薄膜トランジスタを得ることができる。
この実施例では、 窒化シリコンとアモルファスシリコンの成膜を単一の成膜 室によって行っているが、 上記実施例と同様の手順によって、単一の β¾1室に よる 3種以上の薄膜の連続形成が可能である。 なお、 このように多種の薄膜を 連続形成する場合には、一つの薄膜の成膜後に異種の薄膜の成膜に先立つて、 放電を一旦停止させてもよく、必要に応じて排気を実施してもよい。
なお、放電用ガスによる放電と反応ガスによる放電は 1秒以内であれば間欠 してもよい。 また、 高周波電力はパルス状間欠電力であってもよい。
要するに、 この実施例は複数成膜を同じ成膜室にて実施し、 放電用ガスとし て、 薄膜形成用反応ガスの内、 成膜に寄与しない放電用ガスを導入し調圧後、 プラズマ状態にし、被形成面を清浄化し、 この清浄放電用ガスを引続いて 用反応ガスの一部として使用するものである。
この実施例では、 薄膜の形成以前にモノシラン以外のそれ自体では薄膜形成 能のない放電用ガスの放電を行い、 所定の時間経過後に放電を継続させたまま モノシランを放電空間中に導入して、 薄膜の形成を開始させるようにしたから、 放電開始の時点において基板は活性化された雰囲気に曝されることとなり、成 膜前後において広域タ一ボ分子ポンプによる高真空排気を行う必要はなく、 清 浄な雰囲気中での薄膜形成を行うことができ、 短時間に薄膜形成の初期段階に おける不純物混入のない良好な薄膜を形成し得る。 すなわち、成膜室内は数 P a〜3 O O P a程度の中真空に維持されればよく、高真空に到達可能なポンプ が不要であり、 ドライポンプ等による排気系で足りる。
また、従来の薄膜形成法においては、 4 0 0 n m膜厚の窒化シリコン薄膜形 成に 1 2 0秒、 3 0 O nm膜厚のアモルファスシリコン薄膜形成に 3 6 0秒を 要していたのに対して、 それぞれが 6 0秒でよく生産性が向上された。 すなわ ち、本発明によれば安定なプラズマ状態から堆積が開始されるので堆積初期の 膜質とその後の膜質とが同一となるので実質的に膜の成長速度を向上させるこ とが可能となる。 また、膜厚の制御にはモノシランの供給時間を管理するだけ で良好な膜厚の翻性が得られる。 本実施例により薄膜トランジス夕を製造す る場合には、 従来の 2成膜室使用の薄膜形成法において 8 4 0秒を要していた のに対して、 1 β ^室使用では 1 8 0秒ですむことになる。
実施例 2
図 1に示された平行平板 @ C V D装置を用いて、 370 mm x470 mmの ガラス基板上に、表 1に示す成膜条件及び公知のエッチング技術を用いて、 図 に示すチャネルエッチング TFT (逆スタガ型) を製造した
【表 1】
Figure imgf000013_0001
図 3において、 1 0はガラス基板、 1 1はメタル、 1 2はゲート窒化シリコ ン膜、 1 3はアモルファスシリコン膜、 1 4はドーブトアモルファスシリコン 膜、 1 5は窒化シリコン膜である。 この、実施例ではゲート窒化シリコン膜一 アモルファスシリコン膜一n+ シリコン膜の成膜に本発明が用いられている。 実施例 3
図 1に示された平行平板 ¾ C V D装置を用いて、 370 mm x470 mmの ガラス基板上に、表 2に示す成膜条件及び公知のエッチング技術を用いて、 図 4に示すチャネル絶縁型 T F T (逆スタガ型) を製造した。
(以下余白)
Figure imgf000015_0001
図 4において、 1 6はチャネル絶縁窒化シリ コン膜であり、 図 3 と同 —符号で示された他の部分は図 3の各部と同一部分である。 この、 実施 例ではゲー ト窒化シリ コン膜 1 1、 ゲー ト窒化シリ コ ン膜 1 2 —ァモル ファスシリ コン膜 1 3 —チャネル絶縁窒化シリ コン膜 1 4の成膜に本発 明が用いられている。
実施例 4
図 1に示された平行平板電極型 C V D装置を用いて、 370 mm x 470 mm のガラス基板上に、 表 3に示す成膜条件及び公知のエツチング技術を用 いて、 図 5に示す正スタガ型 T F Tを製造した。
【表 3】
Figure imgf000016_0001
- 1 4 - 訂正された; ¾紙 (規則 91) 図 5において、 1 6は多結晶シリコン膜であり、 図 3と同一符号で示された 他の部分は図 3の各部と同一部分である。
なお、 この実施例では 1 6を多結晶シリコン膜としたがアモルファスシリコ ンとすることもできる。 この、実施例では多結晶シリコン膜ー窒化シリコン膜 の成膜に本発明力用いられている。 産業上の利用可能性
本発明の薄膜形成法によれば、 被処理基体や成膜室内は、放電開始の時点 において活性化された雰囲気にさらされて清浄化されるので、 麵前後に清浄 化のために広域ターボ ポンプで高真空排気を行う必要がなくなり、短時間 で薄膜形成の初期段階における不純物混入のない良好な薄膜を形成することが できる。
また、 成膜室内は数 P a〜3 O O P a程度の真空に維持されればよいから、 高真空に到達可能なポンプが不要となって、 装置コストの低下、装置の小型化、 生産性の向上を図ることができる。
さらに、放電用ガスとして、 それ自体では膜形成能のないガスを使用しブラ ズマ状態を持続したまま反応ガスの供給に切換えるので、放電初期のプラズマ 不安定の状態での薄膜形成はなされず、 膜の形成の堆積初期とその後とで等質 均一の成膜を行うことができる。. さらに、 また、放電用ガスとして反応ガスを 構成する成分ガス等を使用するので、膜中に取り込まれても特性に影響を与え ることはなく、 特に、半導体薄膜の界面を水素ガスプラズマで処理した場合に は界面に S i一 Hが形成されて、 かえって得られる半導体装置の特性が改善さ れるという利点がある。
さらに、 また、 本発明によれば、 単一の成膜室により多種の積層された薄膜 を連続的に形成することが可能であり、 従来の薄膜形成法と比較して、 効率良 く成膜を行うことができ、 生産性を向上させることができる。 この場合、 薄膜 形成後の基板は常に活性化されたガス雰囲気内に置かれるので、単一の成膜室 内で異なる複数膜種の を連続的に行っても、 各膜種への不純物の混入はな く、 良好な界面分離特性を得ることができる。
また、膜厚の制御には薄膜の形成に関与するガスの供給時間を管理するだけ で済むから膜厚の再現性が向上される。
6 一

Claims

請 求 の 範 囲
1. ガス導入口を有する真空容器内に被処理基体を配置し、前記ガス導入 口から前記真空容器内に 1種または 2種以上の反応ガスを導入しつつ該反応ガ スに高周波電力を印加することによりプラズマを発生させて前記被処理基 に前記反応ガスの反応生成物からなる薄膜を形成させる方法において、
前記反応ガスの導入に先だって、 それ自体では実質的に薄膜形成能を有しな
1、前記反応ガスを構成する成分ガス、 または前記 2種以上の反応ガスに包含さ れる 1種以上のガスであってそれ自体では実質的に薄膜形成能を有しないガス からなる放電用ガスを導入しつつ該放電用ガスに高周波電力を印加してプラズ マを発生させて前処理を行い、 しかる後実質的にプラズマ状態を維持したまま 前記放電用ガスに代え前記反応ガスを導入して前記被処理基板上に薄膜を形成 させることを特徴とする薄膜形成法。
2. ガス導入口を有し内部に平行平板電極を有する真空容器内の前記 TO 平板電極の一方の電極に披処 am体を配置し、前記被処理基板上に複 i¾sの薄 膜を形成する薄膜形成方法において、前記ガス導入口から、放電用ガスを導入 しつつ前記平行平板電極に高周波電力を印加してプラズマ放電を起こさせるェ 程と、 実質的に前記放電を維持したまま前記放電用ガスに代え反応ガスを導入 して前記基板上に反応ガスの反応生成物からなる薄膜を形成させる工程を具備 し、
前記薄膜を形成させる工程の少なくとも 1つの工程が、 1種または複数種の 反応ガスを用いて反応^ ¾物からなる半導体薄膜を形成する工程であり、 かつ、 この工程の直前に導入される放電用ガスが、 それ自体ではプラズマ放電下で実 質的に薄膜形成能を有しな Lゝ前記反応ガスを構成する成分ガス、 または前記 2 種以上の反応ガスに包含される 1種以上のガスであつてそれ自体ではブラズマ 放電下で実質的に薄膜形成能を有しないガスからなることを特徴とする薄膜形
7 成方法。
3. 前記半導体薄膜がシリコンと非酸素元素からなるものであって、前記 放電用ガスが前記非酸素ガスからなることを特徴とする請求項 1または 2記載 の薄膜形成方法。
4. 前記半導体薄膜がシリコンからなり、 前記放電ガスが水素であること ' 特徴とする請求項 2記載の薄膜形成法。
5. 前記放電用ガスを導入しているときのプラズマ放電の時間が、前記反 応ガスを導入しているときのプラズマ放電時間を 1としたとき、 0. 1〜0.
4の範囲であることを特徴とする請求項 1乃至 4のいずれか 1記載の薄膜形成 法。
6. 実質的に、 プラズマ放電を維持したまま放電用ガスに代え反応ガスを 導入するに際し、 ガス圧及び放電電力を一定にした状態で反応ガスの導入を行 うことを特徴とする請求項 1乃至 5のいずれか 1記載の薄膜形成法。
7. 前記複数層の薄膜が窒化シリコンーァモルファスシリコンからなる薄 膜であることを特徴とする請求項 2乃至 6の ゝずれか 1記載の薄膜形成法。
8. 前記複数層の薄膜が、 窒ィ匕シリコン一アモルファスシリコン一窒化シ リコンからなる薄膜であることを特徴とする請求項 2乃至 6のいずれか 1記載 の薄膜形成方法。
9. 前記複数層の薄膜が、 アモルファスシリコン T F T (逆スタガ型) を 構成する酸化シリコンー窒化シリコン一アモルファスシリコンー窒化シリコン 薄膜である請求項 8記載の薄膜形成法。
1 0. 反応ガスがシランガスと、水素ガス、 窒素ガス及びアンモニアガスか ら選ばれた 1種または 2種以上からなり、放電用ガスが、水素ガス、 窒素ガス 及びアンモニアガスから選ばれた 1種または 2種以上からなる請求項 2乃至 9 の 、ずれか 1記載の薄膜形成方法。
PCT/JP1994/002259 1993-12-27 1994-12-27 Thin film formation method WO1995018460A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019960703564A KR100241817B1 (ko) 1993-12-27 1994-12-27 박막형성법
US08/672,216 US6224950B1 (en) 1993-12-27 1996-06-27 Method for formation of thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP32917193 1993-12-27
JP5/329171 1993-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/672,216 Continuation US6224950B1 (en) 1993-12-27 1996-06-27 Method for formation of thin film

Publications (1)

Publication Number Publication Date
WO1995018460A1 true WO1995018460A1 (en) 1995-07-06

Family

ID=18218442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/002259 WO1995018460A1 (en) 1993-12-27 1994-12-27 Thin film formation method

Country Status (4)

Country Link
US (1) US6224950B1 (ja)
KR (1) KR100241817B1 (ja)
TW (1) TW293184B (ja)
WO (1) WO1995018460A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596653B2 (en) * 2001-05-11 2003-07-22 Applied Materials, Inc. Hydrogen assisted undoped silicon oxide deposition process for HDP-CVD
US6740601B2 (en) * 2001-05-11 2004-05-25 Applied Materials Inc. HDP-CVD deposition process for filling high aspect ratio gaps
US6610605B2 (en) * 2001-06-28 2003-08-26 Intel Corporation Method and apparatus for fabricating encapsulated micro-channels in a substrate
KR100472518B1 (ko) * 2002-09-30 2005-03-10 주식회사 유진테크 싱글 챔버식 화학 기상증착 장치를 이용한 질화막 증착방법
US7365029B2 (en) * 2002-12-20 2008-04-29 Applied Materials, Inc. Method for silicon nitride chemical vapor deposition
US7172792B2 (en) * 2002-12-20 2007-02-06 Applied Materials, Inc. Method for forming a high quality low temperature silicon nitride film
US7972663B2 (en) * 2002-12-20 2011-07-05 Applied Materials, Inc. Method and apparatus for forming a high quality low temperature silicon nitride layer
US6808748B2 (en) * 2003-01-23 2004-10-26 Applied Materials, Inc. Hydrogen assisted HDP-CVD deposition process for aggressive gap-fill technology
US6958112B2 (en) * 2003-05-27 2005-10-25 Applied Materials, Inc. Methods and systems for high-aspect-ratio gapfill using atomic-oxygen generation
US6903031B2 (en) * 2003-09-03 2005-06-07 Applied Materials, Inc. In-situ-etch-assisted HDP deposition using SiF4 and hydrogen
US20050260356A1 (en) * 2004-05-18 2005-11-24 Applied Materials, Inc. Microcontamination abatement in semiconductor processing
US7229931B2 (en) * 2004-06-16 2007-06-12 Applied Materials, Inc. Oxygen plasma treatment for enhanced HDP-CVD gapfill
US7183227B1 (en) * 2004-07-01 2007-02-27 Applied Materials, Inc. Use of enhanced turbomolecular pump for gapfill deposition using high flows of low-mass fluent gas
US7087536B2 (en) * 2004-09-01 2006-08-08 Applied Materials Silicon oxide gapfill deposition using liquid precursors
KR100745130B1 (ko) * 2006-02-09 2007-08-01 삼성전자주식회사 박막 증착 장치 및 방법
JP5331407B2 (ja) * 2007-08-17 2013-10-30 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5058909B2 (ja) 2007-08-17 2012-10-24 株式会社半導体エネルギー研究所 プラズマcvd装置及び薄膜トランジスタの作製方法
US7678715B2 (en) * 2007-12-21 2010-03-16 Applied Materials, Inc. Low wet etch rate silicon nitride film
US8247315B2 (en) * 2008-03-17 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method for manufacturing semiconductor device
JP5324966B2 (ja) * 2009-03-06 2013-10-23 三菱重工業株式会社 光電変換装置の製造方法及び製膜装置
US9018108B2 (en) 2013-01-25 2015-04-28 Applied Materials, Inc. Low shrinkage dielectric films
JP6410622B2 (ja) * 2014-03-11 2018-10-24 東京エレクトロン株式会社 プラズマ処理装置及び成膜方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182127A (ja) * 1984-02-29 1985-09-17 Toshiba Corp 光励起反応装置
JPH03120822A (ja) * 1989-10-04 1991-05-23 Fujitsu Ltd 半導体装置の製造方法
JPH0532483A (ja) * 1991-05-24 1993-02-09 Sumitomo Metal Ind Ltd 気相成長方法及びプラズマプロセス装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310614A (en) 1979-03-19 1982-01-12 Xerox Corporation Method and apparatus for pretreating and depositing thin films on substrates
JPS6379970A (ja) 1986-09-24 1988-04-09 Agency Of Ind Science & Technol プラズマcvd法による高密着性薄膜形成方法
US4895734A (en) * 1987-03-31 1990-01-23 Hitachi Chemical Company, Ltd. Process for forming insulating film used in thin film electroluminescent device
JPH0435021A (ja) * 1990-05-31 1992-02-05 Tonen Corp 多結晶シリコン薄膜の成長方法
JP3120822B2 (ja) 1991-03-25 2000-12-25 ブラザー工業株式会社 文書作成装置
JPH04367221A (ja) * 1991-06-14 1992-12-18 Canon Inc 非単結晶シリコン膜の成膜方法及びその装置
US5211995A (en) * 1991-09-30 1993-05-18 Manfred R. Kuehnle Method of protecting an organic surface by deposition of an inorganic refractory coating thereon
DE69408405T2 (de) * 1993-11-11 1998-08-20 Nissin Electric Co Ltd Plasma-CVD-Verfahren und Vorrichtung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182127A (ja) * 1984-02-29 1985-09-17 Toshiba Corp 光励起反応装置
JPH03120822A (ja) * 1989-10-04 1991-05-23 Fujitsu Ltd 半導体装置の製造方法
JPH0532483A (ja) * 1991-05-24 1993-02-09 Sumitomo Metal Ind Ltd 気相成長方法及びプラズマプロセス装置

Also Published As

Publication number Publication date
US6224950B1 (en) 2001-05-01
TW293184B (ja) 1996-12-11
KR100241817B1 (ko) 2000-02-01
KR970700370A (ko) 1997-01-08

Similar Documents

Publication Publication Date Title
WO1995018460A1 (en) Thin film formation method
JP4449226B2 (ja) 金属酸化膜の改質方法、金属酸化膜の成膜方法及び熱処理装置
KR100848226B1 (ko) 반도체 장치의 제조 방법 및 기판 처리 장치
US20100221895A1 (en) Surface treatment apparatus and surface treatment method
EP0661732A2 (en) A method of forming silicon oxy-nitride films by plasma-enhanced chemical vapor deposition
US20050115504A1 (en) Method and apparatus for forming thin films, method for manufacturing solar cell, and solar cell
WO2000044033A1 (fr) Procede et appareil de depot de film
EP0474140A1 (en) Process of forming capacitive insulating film
TW200814157A (en) Overall defect reduction for PECVD films
JPH08321448A (ja) 真空排気装置、半導体製造装置及び真空処理方法
JP3529466B2 (ja) 薄膜形成方法
JPH04255221A (ja) 酸化タンタル膜のプラズマ化学気相成長法
JP2000223421A (ja) 成膜方法及びその装置
JPH0680658B2 (ja) 未反応ガスの除去及び反応抑制装置
EP2341163A1 (en) Method of forming a film
US7972961B2 (en) Purge step-controlled sequence of processing semiconductor wafers
WO2004006317A1 (ja) 基板処理装置のクリーニング方法
JP3224469B2 (ja) 薄膜形成法及びその装置
JP3924183B2 (ja) プラズマcvd成膜方法
JPH11131239A (ja) プラズマcvd成膜方法および装置
JPH05246794A (ja) 半導体薄膜、この膜の形成方法及びこの膜の形成装置並びにこの膜を備えた半導体装置
KR100384500B1 (ko) 박막형성장치의 셀프클리닝방법
JP2723053B2 (ja) 薄膜の形成方法およびその装置
JP2002064067A (ja) 化学気相成長を向上させるよう調整されたチャンバ
KR20020096860A (ko) 반도체 장치의 제조 방법, 기판 처리 방법 및 기판 처리장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 08672216

Country of ref document: US