WO1995028006A1 - Composant hybride semiconducteur - Google Patents

Composant hybride semiconducteur Download PDF

Info

Publication number
WO1995028006A1
WO1995028006A1 PCT/FR1995/000448 FR9500448W WO9528006A1 WO 1995028006 A1 WO1995028006 A1 WO 1995028006A1 FR 9500448 W FR9500448 W FR 9500448W WO 9528006 A1 WO9528006 A1 WO 9528006A1
Authority
WO
WIPO (PCT)
Prior art keywords
main substrate
silicon
contact pads
component according
substrate
Prior art date
Application number
PCT/FR1995/000448
Other languages
English (en)
Inventor
Jean-Yves Duboz
Emmanuel Rosencher
Philippe Bois
Original Assignee
Thomson-Csf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9404168A external-priority patent/FR2718570A1/fr
Application filed by Thomson-Csf filed Critical Thomson-Csf
Priority to EP95916724A priority Critical patent/EP0702850B1/fr
Priority to DE69501195T priority patent/DE69501195T2/de
Priority to US08/549,812 priority patent/US5726500A/en
Publication of WO1995028006A1 publication Critical patent/WO1995028006A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • H01L27/1465Infrared imagers of the hybrid type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/38Effects and problems related to the device integration
    • H01L2924/381Pitch distance

Definitions

  • the field of the invention is that of semiconductor components and in particular, but not exclusively, that of infrared detectors.
  • infrared detectors produced from semiconductor materials such as III-V compounds (GaAs, InP in particular), IV-VI (such as PbTe) or ll-VI (such as HgCdTe) exhibiting very good performance in detection.
  • III-V compounds GaAs, InP in particular
  • IV-VI such as PbTe
  • ll-VI such as HgCdTe
  • these materials are not suitable for easily making circuits for reading the detected photoelectric charges or circuits for processing the signals from this reading.
  • circuits must rather be made from silicon, the technology of which is now well mastered and therefore inexpensive. This is why, both for infrared detectors and for other functions, we have tried to develop mixed silicon / other semiconductor material devices.
  • gallium arsenide Attempts have been made in particular to deposit gallium arsenide on a silicon substrate: the layers based on gallium arsenide, deposited on a part of the silicon substrate, serve to form the active elements which cannot be made with silicon; the rest of the substrate is used to make silicon-based reading and processing circuits.
  • this solution although conceivable for gallium arsenide, is difficult to implement and is moreover not suitable for other infrared detection materials such as HgCdTe or PbTe.
  • Another solution currently widely used industrially, consists in making a hybrid assembly grouping together a component integrated on a silicon substrate and a component integrated on a substrate made of a different material (AsGa, InP, HgCdTe, PbTe).
  • the most used hybridization technology consists in using as the main hybridization substrate a silicon substrate on which are integrated electronic reading and processing circuits, and soldering on this integrated circuit, face against the face, a detection circuit formed on a substrate other than silicon and comprising the photosensitive elements.
  • FIG. 1 represents such an arrangement in the conventional case of hybridization by indium beads.
  • the detection circuit (substrate 10 made of a material such as AsGa for example) comprises contact pads 12 connected to photosensitive elements 14; the silicon substrate 15 comprises contact pads 16 connected to corresponding inputs of the reading circuits formed on this substrate.
  • the pads of the two integrated components are arranged exactly opposite one another and are welded together by means of indium balls 18. The hybridization of the two substrates is therefore done by welding all of the contact pads opposite, this weld establishing both the mechanical connection of the two substrates and the point-to-point electrical connection between each of the photosensitive elements and their respective reading circuits.
  • the silicon substrate, the main substrate for hybridization also comprises input / output contact pads 22 for connection with the outside.
  • the size of the infrared detection strips cannot in these conditions exceed approximately 10 mm. If it is desired to make longer bars, then several bars of a few millimeters each must be butted onto the main silicon substrate. This splicing however introduces areas lacking detectors (missing pixels in the explored image), which is not desirable.
  • the invention proposes a new type of hybrid semiconductor component whose originality is that it comprises several integrated silicon circuits of limited size, attached to a larger substrate (made of a material different from silicon) on which the active elements which cannot be produced on a silicon substrate are integrated.
  • the number and the pitch of these active elements is then no longer limited by the problems of differential expansion nor by the constraints linked to indium beads; for infrared detectors in particular, it becomes possible to produce high resolution and long length strips, in one piece (without butt jointing).
  • the hybrid semiconductor component according to the invention preferably comprises a main substrate made of a material other than silicon, in which are integrated on the one hand active elements, on the other hand pads contact and connections between each active element and a respective contact pad, and several silicon integrated circuit chips in which are integrated on the one hand electronic circuits intended to be connected to the active elements of the main substrate, and on the other hand contact pads facing those of the main substrate, the silicon chips being welded to the main substrate by means of the contact pads.
  • the main substrate material will most often be a semiconductor material, in particular taken from the classes III-V, II-VI or IV-VI, and very particularly GaAs, InP, PbTe, HgCdTe.
  • the invention is in fact particularly advantageous for the production of linear or multilinear arrays for detecting radiation, particularly infrared. It is very advantageously used for detectors of the type intended to be cooled to very low temperature.
  • the silicon chips can be chips of a few millimeters on a side, dimensions for which the differential thermal expansion constraints remain acceptable and which however already make it possible to integrate numerous and complex electronic functions: functions for reading charges from groups of several photosensitive elements, multiplexing functions of signals from this reading.
  • the contact pads of the main substrate carrying the active photosensitive elements are preferably offset relative to these elements so that they can have a size and a spacing pitch greater than the size and the spacing pitch of the active elements . Provision may also be made for the silicon chips, soldered to these offset contacts, not to cover the photosensitive active elements, so as to allow these detectors to be illuminated by the front face of the first substrate (the one which carries the silicon chips and the active elements). In the prior techniques of hybridization with indium beads, the illumination must necessarily be made from the rear face, which requires the use of techniques for thinning the substrate carrying the photosensitive elements. These techniques are expensive and lead to lower manufacturing yields.
  • the invention will be better understood thanks to the description which follows, given without limitation, and thanks to the appended figures among which:
  • FIG. 2 shows the principle of the invention of placing several silicon circuits on a main substrate of different material
  • FIG. 3 illustrates a component according to the invention in top view
  • FIG. 4 illustrates the principle of a high resolution component with active elements of size and not much smaller than the size and the pitch of the hybridization contact pads
  • FIG. 5 shows in section a detail of infrared detector that can be illuminated by the front face.
  • FIG 2 shows a top view of the principle of the invention.
  • the hybridization main substrate was the substrate 'of silicon on which the detection circuit is soldered with the photosensitive elements (see Figure T).
  • the main hybridization substrate is the substrate which carries the active elements; it is not made of silicon because the active elements cannot be produced, or not easily produced, on a silicon substrate.
  • the term “main substrate” is understood here to mean that which comprises connection pads of the hybrid component to the outside.
  • active element is meant here elements other than simple conductive connections; for a radiation detector the active elements are the photosensitive elements, which can be photodiodes for example.
  • the main substrate 30 is represented here as a whole circular slice d gallium arsenide (GaAs), for example a 3 inch wafer that is to say 7.5 cm in diameter, but of course the main substrate can be a rectangular chip cut in a wafer.
  • the substrate can also be indium phosphide (InP), HgCdTe, or PbTe, etc., depending on the type of radiation that we are seeking to detect.
  • the photosensitive elements 31 are directly integrated into this main substrate, according to diffusion techniques, deposits, masking, selective or non-selective etching usual in the manufacture of integrated semiconductors. The area in which these photosensitive elements are integrated is surrounded by a dashed line 32 in FIG. 2.
  • Conductive connections 34 are also integrated on the substrate 30. These connections individually connect the photosensitive elements 31 to contact pads 36 which are offset laterally with respect to these elements. These contact pads are distributed in groups in several different zones 40, 41, 42, 43, 44, 45 of the main substrate 30. Each zone corresponds to the location of a respective silicon integrated circuit 50, 51, 52, 53 , 54, 55 to be welded on the main substrate.
  • the silicon integrated circuit chips are represented next to the main substrate 30. They are represented visible front face but are intended to be turned over to be welded by their front face against the principal substrate. They have on this front face of the contact pads 58 whose positions correspond exactly, after turning the chip, to those of the contact pads of the zones 40 to 45.
  • the silicon chips include electronic circuits, and in particular, in the case infrared detectors, reading and multiplexing circuits making it possible to read individually and transmit sequentially on the outputs of the hybrid component signals representing the illuminations individually received by each of the photosensitive elements 31.
  • each photosensitive element 31 of the main substrate 30 is connected to a respective reading circuit of a silicon chip.
  • the photosensitive active elements are all located on the single main substrate, but the reading circuits are distributed over the different silicon chips.
  • zones 40 to 45 of the substrate 30 there are not only the pads 36 connected to the active elements 31, but also pads 37 connected to other connections 62 integrated on the main substrate 30. These other connections go either to input / output contact pads 64, located outside of zones 40 to 45 and of zone 32 and serving for the connection of the component with the exterior, or to other silicon chips.
  • the input / output pads 64 can be used for example solder location to receive flexible wires which connect them to connection terminals of a housing containing the hybrid component. Provision may be made for certain silicon chips to be connected by connections 62 to other silicon chips, without being connected to the photosensitive elements.
  • the hybrid semiconductor component produced by this technique is represented in FIG. 3.
  • the inverted silicon chips are soldered by their front face to the front face of the main substrate 30, preferably by means of indium balls.
  • Indium beads are conventionally produced by depositing a layer of indium on a substrate coated with an insulating layer open only above the contact pads. The substrate is then heated and the surface tension forces concentrate the indium in drops localized on the contact pads.
  • connection wires with the exterior are designated by the reference 66.
  • the housing of the hybrid component is not shown.
  • the silicon chips do not cover the input / output contacts 64. If they do not cover the photosensitive zone 32 either, it is possible, unlike the usual case, for the infrared detector component to be lit by its front face, c that is to say the face where the photosensitive elements 31 are integrated. It is therefore not necessary then to thin the substrate in AsGa or InP or HgCdTe, PbTe, etc. Thinning is a cause of fragility and loss of yield.
  • the contact pads 36 have dimensions and a spacing pitch identical to those of the active elements 31.
  • the invention is particularly advantageous in that it makes it possible to greatly reduce the size and the pitch of the photosensitive elements compared to what they were in the prior art.
  • contact pads 36 are preferably at least 25 to 30 micrometers wide (which is generally necessary for soldering with indium balls). They are divided into groups, each group corresponding to a respective silicon chip to be soldered to these pads. The photosensitive elements can however all remain aligned at a constant pitch, smaller, and even much smaller, than the pitch of the contact pads 36.
  • FIG. 5 shows in section a detail of embodiment: there is seen the main hybridization substrate 30 in AsGa or InP, a photosensitive element 31 constituted by layers based on gallium arsenide, an upper metallic contact 65 making it possible to connect the photosensitive element 31 to a contact pad 36 and therefore to a silicon chip 51 via a metal connection 34; an indium ball 67 between the pad 36 and a pad 58 of the silicon chip.
  • the circuits for reading the silicon chip produced according to the usual techniques in microelectronics, are symbolized by a diffusion 69 in the silicon; a lower contact layer 71, diffused on the surface of the substrate 30, provides access to the rear of the photosensitive element 31 which is generally a photodiode requiring an upper contact and a lower contact.
  • This lower layer 71 can be common to all the photosensitive elements of the substrate 30 and be connected by a contact not shown to the silicon circuits and to an input / output pad of the component. Finally, various insulating layers are generally required on the substrate 30 and on the silicon chips for the preparation of the component by usual microelectronic techniques.
  • the hybrid semiconductor component according to the invention allows the use of linear semiconductor devices made of material other than silicon, of lengths much greater than ten mm, without splicing, from the moment when a semiconductor substrate is available. sufficient surface area.

Abstract

L'invention concerne les composants hybrides semiconducteurs, et notamment les détecteurs infrarouge linéaires réalisés par hybridation. Le composant selon l'invention comprend un substrat principal (30) sur lequel sont intégrés des éléments actifs (31) qui ne peuvent être réalisés sur substrat de silicium. Le substrat est par exemple en AsGa ou InP ou HgCdTe ou PbTe. Plusieurs puces de silicium (50 à 55) sont montées sur le substrat principal, par hybridation au moyen de billes d'indium. Ces puces comportent les circuits de lecture et de multiplexage. Les puces de silicium restent de dimensions limitées (quelques millimètres) de sorte que les contraintes thermiques de dilatation différentielles sont limitées, mais la barrette de détection proprement dite peut être réalisée d'un seul tenant, sans raboutage. On peut donc réaliser des barrettes de grande longueur (plusieurs cm) et de haute résolution (au moins mille points).

Description

COMPOSANT HYBRIDE SEMICONDUCTEUR
Le domaine de l'invention est celui des composants semiconducteurs et notamment mais non exclusivement celui des détecteurs infrarouges.
Actuellement, il existe des détecteurs infrarouges réalisés à partir de matériaux semiconducteurs tels que des composés lll-V (GaAs, InP notamment), IV-VI (tel que PbTe) ou ll-VI (tel que HgCdTe) présentant de très bonnes performances en détection. Néanmoins, ces matériaux ne conviennent pas pour réaliser aisément des circuits de lecture des charges photoélectriques détectées ou des circuits de traitement des signaux issus de cette lecture. Ces circuits doivent plutôt être réalisés à partir de silicium, dont la technologie est maintenant bien maîtrisée et donc peu coûteuse. C'est pourquoi, aussi bien pour des détecteurs infrarouge que pour d'autres fonctions, on a essayé de développer des dispositifs mixtes silicium/autre matériau semiconducteur.
Des tentatives ont été faites en particulier pour déposer de l'arséniure de gallium sur un substrat de silicium : les couches à base d'arséniure de gallium, déposées sur une partie du substrat de silicium, servent à former les éléments actifs qui ne peuvent être réalisés avec du silicium; le reste du substrat est utilisé pour réaliser des circuits de lecture et de traitement à base de silicium. Mais cette solution, bien qu'envisageable pour l'arséniure de gallium, est difficile à mettre en oeuvre et ne convient d'ailleurs pas à d'autres matériaux de détection infrarouge tels que HgCdTe ou PbTe.
Une autre solution, actuellement largement utilisée industriellement, consiste à faire un montage hybride regroupant un composant intégré sur un substrat de silicium et un composant intégré sur un substrat en matériau différent (AsGa, InP, HgCdTe, PbTe). Dans le cas de détecteurs infrarouge, la technologie d'hybridation la plus utilisée consiste à utiliser comme substrat principal d'hybridation un substrat de silicium sur lequel sont intégrés des circuits de lecture et de traitement électronique, et à souder sur ce circuit intégré, face contre face, un circuit de détection, formé sur un substrat autre que du silicium et comportant les éléments photosensibles. La figure 1 représente un tel montage dans le cas classique d'une hybridation par billes d'indium. Le circuit de détection (substrat 10 en matériau tel que AsGa par exemple) comporte des plots de contact 12 reliés à des éléments photosensibles 14; le substrat de silicium 15 comporte des plots de contact 16 reliés à des entrées correspondantes des circuits de lecture formés sur ce substrat. Les plots des deux composants intégrés sont disposés exactement en regard les uns des autres et sont soudés ensemble par l' intermédiaires de billes d'indium 18. L'hybridation des deux substrats se fait donc par une soudure de l'ensemble des plots de contact en vis-à-vis, cette soudure établissant à la fois la liaison mécanique des deux substrats et la liaison électrique point par point entre chacun des éléments photosensibles et leurs circuits de lecture respectifs. Le substrat de silicium, substrat principal de l'hybridation, comporte par ailleurs des plots de contact d'entrée/sortie 22 pour la liaison avec l'extérieur.
Cette technique d'hybridation présente néanmoins des limites. En effet, il existe une grande différence entre les coefficients de dilatation thermique du silicium et ceux des autres semiconducteurs. Or, alors que l'hybridation est réalisée au-dessus de la température ambiante, les éléments actifs (type détecteur infrarouge) sont destinés à fonctionner à très basses températures (autour de 77°Kelvin) ; l'indium est d'ailleurs choisi pour sa grande capacité à absorber les contraintes qui se produisent lors du passage de la température ambiante à la très basse température d'utilisation. Mais même si les contraintes mécaniques sont réduites, les différences de coefficient de dilatation des deux substrats subsistent et entraînent que des plots de contact qui sont en vis-à-vis sur les deux substrats à une température donnée peuvent ne plus l'être à une autre température. C'est le cas lorsque des contacts sont très rapprochés. Ceci peut provoquer des court-circuits ou d'autres défauts rendant impossible un fonctionnement correct du composant.
Pour éviter cet inconvénient on est donc obligé de limiter fortement les dimensions du substrat portant les éléments de détection. La plupart du temps, la taille des barrettes de détection infrarouge ne peut dans ces conditions dépasser environ 10 mm. Si on souhaite réaliser des barrettes plus longues, on doit alors rabouter plusieurs barrettes de quelques millimètres chacune sur le substrat principal de silicium. Ce raboutage introduit cependant des zones dépourvues de détecteurs (pixels manquants dans l'image explorée), ce qui n'est pas souhaitable.
Une autre limitation de cette technologie d'hybridation se trouve être dans la taille des billes d'indium qui doit être suffisante (plusieurs dizaines de micromètre de largeur) pour permettre une soudure correcte entre les deux substrats. Cette taille est difficilement compatible avec l'utilisation d'un grand nombre de contacts très rapprochés entre les deux substrats : par exemple on ne peut pas employer cette technologie pour des barrettes de photodiodes de haute résolution comportant de nombreux éléments de détection et des contacts au dessus de ces éléments (cas classique) : si les plots de contact doivent être répartis sur une ligne de 10 millimètres au maximum avec un pas de 60 micromètres, on ne peut guère aller au delà de 150 éléments sur la barrette. Cette technologie est donc difficilement utilisable lorsque l'on cherche à densifier au maximum les fonctions actives sur des substrats semiconducteurs dont la taille est par ailleurs limitée par suite des contraintes thermiques.
On a également essayé de rapporter les barrettes de photodiodes ainsi que les puces de silicium sur un substrat intermédiaire ayant un coefficient de dilatation thermique intermédiaire entre celui du silicium et celui du substrat portant les éléments actifs. On limite ainsi partiellement mais pas suffisamment les problèmes dus aux coefficients de dilatation différents.
Pour résoudre ces différents problèmes, l'invention propose un nouveau type de composant semiconducteur hybride dont l'originalité est qu'il comporte plusieurs circuits intégrés de silicium de taille limitée, rapportés sur un substrat plus grand (en matériau différent du silicium) sur lequel sont intégrés les éléments actifs qui ne peuvent être réalisés sur un substrat de silicium. Le nombre et le pas de ces éléments actifs n'est alors plus limité par les problèmes de dilatation différentielle ni par les contraintes liées aux billes d'indium; pour des détecteurs infrarouge notamment il devient possible de réaliser des barrettes de haute résolution et de grande longueur, d'un seul tenant (sans opération d'aboutage).
Le composant semiconducteur hybride selon l'invention comprend de préférence un substrat principal en matériau autre que du silicium, dans lequel sont intégrés d'une part des éléments actifs, d'autre part des plots de contact et des connexions entre chaque élément actif et un plot de contact respectif, et plusieurs puces de circuit intégré en silicium dans lesquelles sont intégrés d'une part des circuits électroniques destinés à être reliés aux éléments actifs du substrat principal, et d'autre part des plots de contact en regard de ceux du substrat principal, les puces de silicium étant soudées sur le substrat principal par l'intermédiaire des plots de contact en regard.
Le matériau du substrat principal sera le plus souvent un matériau semiconducteur, notamment pris parmi les classes lll-V, ll-VI ou IV-VI, et tout particulièrement GaAs, InP, PbTe, HgCdTe. L'invention est en effet particulièrement intéressante pour la réalisation de barrettes linéaires ou multilinéaires de détection de rayonnement, infrarouge notamment. Elle est très avantageusement utilisée pour des détecteurs du type destiné à être refroidis à très basse température. Les puces de silicium peuvent être des puces de quelques millimètres de côté, dimensions pour lesquelles les contraintes de dilatation thermique différentielle restent acceptables et qui permettent cependant déjà d'intégrer des fonctions électroniques nombreuses et complexes : fonctions de lecture de charges issues de groupes de plusieurs éléments photosensibles, fonctions de multiplexage des signaux issus de cette lecture.
Les plots de contact du substrat principal portant les éléments actifs photosensibles sont de préférence déportés par rapport à ces éléments de sorte qu'ils peuvent avoir une taille et un pas d'espacement plus grand que la taille et le pas d'espacement des éléments actifs. On pourra prévoir aussi que les puces de silicium, soudées à ces contacts déportés, ne recouvrent pas les éléments actifs photosensibles, de manière à permettre un éclairement de ces détecteurs par la face avant du premier substrat (celle qui porte les puces de silicium et les éléments actifs). Dans les techniques antérieures d'hybridation par billes d'indium, l'éclairement doit se faire nécessairement par la face arrière, ce qui oblige à utiliser des techniques d'amincissement du substrat portant les éléments photosensibles. Ces techniques sont coûteuses et entraînent des baisses de rendement de fabrication. L'invention sera mieux comprise grâce à la description qui va suivre, donnée à titre non limitatif, et grâce aux figures annexées parmi lesquelles :
- la figure 1 , déjà décrite représente un composant hybride selon l'art connu, utilisant un substrat principal de silicium ;
- la figure 2 représente le principe de l'invention consistant à placer plusieurs circuits de silicium sur un substrat principal en matériau différent;
- la figure 3 illustre un composant selon l'invention en vue de dessus ;
- la figure 4 illustre le principe d'un composant de haute résolution avec des éléments actifs de taille et de pas beaucoup plus petits que la taille et le pas des plots de contact d'hybridation;
- la figure 5 représente en coupe un détail de détecteur infrarouge pouvant être éclairé par la face avant.
La figure 2 représente en vue de dessus, le principe de l'invention. Dans les techniques classiques d'hybridation utilisées pour des détecteurs infrarouge linéaires, multilinéaires ou matriciels, le substrat principal d'hybridation était le substrat' de silicium sur lequel on soudait le circuit de détection comportant les éléments photosensibles (cf. figure T). Ici, le substrat principal d'hybridation est le substrat qui porte les éléments actifs; il n'est pas en silicium du fait que les éléments actifs ne peuvent pas être réalisés, ou pas facilement réalisés, sur un substrat de silicium. Par "substrat principal", on entend ici celui qui comporte des plots de connexion du composant hybride vers l'extérieur. Par "élément actif on entend ici des éléments autres que de simples connexions conductrices; pour un détecteur de rayonnement les éléments actifs sont les éléments photosensibles, qui peuvent être des photodiodes par exemple. Le substrat principal 30 est représenté ici comme une tranche entière circulaire d'arséniure de gallium (GaAs), par exemple une tranche de 3 pouces c'est-à-dire 7,5 cm de diamètre, mais bien entendu le substrat principal peut être une puce rectangulaire découpée dans une tranche. Le substrat peut aussi être en phosphure d'indium (InP), en HgCdTe, ou en PbTe, etc., selon le type de rayonnement qu'on cherche à détecter. Les éléments photosensibles 31 sont directement intégrés dans ce substrat principal, selon des techniques de diffusions, dépôts, masquages, gravures sélectives ou non sélectives habituelles dans la fabrication de semiconducteurs intégrés. La zone dans laquelle sont intégrés ces éléments photosensibles est entourée d'un trait tireté 32 sur la figure 2. Des connexions conductrices 34, réalisées en principe par dépôt et gravure d'une couche métallique, sont également intégrées sur le substrat 30. Ces connexions relient individuellement les éléments photosensibles 31 à des plots de contact 36 qui sont déportés latéralement par rapport à ces éléments. Ces plots de contact sont répartis en groupes dans plusieurs zones différentes 40, 41 , 42, 43, 44, 45 du substrat principal 30. Chaque zone correspond à l'emplacement d'un circuit intégré de silicium respectif 50, 51, 52, 53, 54, 55 à souder sur le substrat principal. Les puces de circuit intégré de silicium sont représentées à côté du substrat principal 30. Elles sont représentées face avant visible mais sont destinées à être retournées pour être soudées par leur face avant contre le substrat principal. Elles comportent sur cette face avant des plots de contact 58 dont les positions correspondent exactement, après retournement de la puce, à celles des plots de contact des zones 40 à 45. Les puces de silicium comportent des circuits électroniques, et notamment, dans le cas de détecteurs infrarouges, des circuits de lecture et de multiplexage permettant de lire individuellement et de transmettre séquentiellement sur les sorties du composant hybride des signaux représentant les éclairements individuellement reçus par chacun des éléments photosensibles 31. En principe, chaque élément photosensible 31 du substrat principal 30 est relié à un circuit de lecture respectif d'une puce de silicium. Les éléments actifs photosensibles sont tous situés sur le substrat principal unique, mais les circuits de lecture sont répartis sur les différentes puces de silicium.
Parmi les plots de contact des zones 40 à 45 du substrat 30, il y a non seulement les plots 36 reliés aux éléments actifs 31, mais également des plots 37 reliés à d'autres connexions 62 intégrées sur le substrat principal 30. Ces autres connexions vont soit vers des plots de contact d'entrée/sortie 64, situés en dehors des zones 40 à 45 et de la zone 32 et servant à la connexion du composant avec l'extérieur, soit vers d'autres puces de silicium. Les plots d'entrée/sortie 64 peuvent servir par exemple d'emplacement de soudure pour recevoir des fils souples qui les relient à des bornes de connexion d'un boîtier contenant le composant hybride. On peut prévoir que certaines puces de silicium sont reliées par des connexions 62 à d'autres puces de silicium, sans être reliées aux éléments photosensibles. Ce serait le cas par exemple pour une puce de silicium servant uniquement à multiplexer les signaux issus des autres puces, ces dernières contenant chacune des circuits de lecture d'un groupe limité d'éléments photosensibles et des circuits de multiplexage limités à ce groupe d' éléments. Le composant semiconducteur hybride réalisé par cette technique est représenté à la figure 3. Les puces de silicium retournées sont soudées par leur face avant sur la face avant du substrat principal 30, de préférence par l'intermédiaire de billes d'indium. Les billes d'indium sont réalisées classiquement en déposant une couche d'indium sur un substrat revêtu d'une couche isolante ouverte uniquement au dessus des plots de contact. Le substrat est ensuite chauffé et les forces de tension superficielles concentrent l'indium en gouttes localisées sur les plots de contact.
Sur la figure 3, les fils de connexion avec l'extérieur sont désignés par la référence 66. Le boîtier du composant hybride n'est pas représenté. Les puces de silicium ne recouvrent pas les contacts d'entrée/sortie 64. Si elles ne recouvrent pas non plus la zone photosensible 32, on peut envisager, contrairement au cas habituel, que le composant détecteur infrarouge soit éclairé par sa face avant, c'est-à-dire la face où sont intégrés les éléments photosensibles 31. Il n'est donc pas nécessaire alors d'amincir le substrat en AsGa ou InP ou HgCdTe, PbTe, etc. L'amincissement est une cause de fragilité et de perte de rendement. Cependant, si on réalise ainsi un composant de détection à éclairer par la face avant, il faut faire en sorte que les connexions métalliques 34 ne masquent pas les éléments photosensibles; des conducteurs transparents aux longueurs d'onde détectées doivent être utilisés, ou alors les prises de contact sur ces éléments doivent occuper une faible proportion de la surface utile de ces éléments.
Sur la représentation schématique de la figure 2, on a supposé que les plots de contact 36 avaient des dimensions et un pas d'espacement identiques à ceux des éléments actifs 31. Mais l'invention est particulièrement intéressante en ce qu'elle permet de réduire beaucoup la taille et le pas des éléments photosensibles par rapport à ce qu'ils étaient dans l'art antérieur.
C'est ce que montre la figure 4, dans laquelle on a prévu que la taille et le pas des pixels photosensibles 31 sont beaucoup plus petites que la taille et le pas des plots de contact 36 auxquels ils sont raccordés. Les dimensions de plots de contact 36 sont de préférence d'au moins 25 à 30 micromètres de large (ce qui est en général nécessaire pour une soudure par billes d'indium). Ils sont répartis en groupes, chaque groupe correspondant à une puce de silicium respective à souder à ces plots. Les éléments photosensibles peuvent cependant rester tous alignés à un pas constant, plus petit, et même beaucoup plus petit, que le pas des plots de contact 36.
La figure 5 représente en coupe un détail de réalisation : on y voit le substrat principal d'hybridation 30 en AsGa ou InP, un élément photosensible 31 constitué par des couches à base d'arséniure de gallium, un contact métallique supérieur 65 permettant de connecter l'élément photosensible 31 à un plot de contact 36 et donc à une puce de silicium 51 par l'intermédiaire d'une connexion métallique 34; une bille d'indium 67 entre le plot 36 et un plot 58 de la puce de silicium. Les circuits de lecture de la puce de silicium, réalisés selon les techniques habituelles en microélectronique, sont symbolisés par une diffusion 69 dans le silicium; une couche de contact inférieure 71, diffusée en surface du substrat 30, permet d'accéder à l'arrière de l'élément photosensible 31 qui est en général une photodiode nécessitant un contact supérieur et un contact inférieur. Cette couche inférieure 71 peut être commune à tous les éléments photosensibles du substrat 30 et être reliée par un contact non représenté aux circuits de silicium et à un plot d'entrée/sortie du composant. Enfin, diverses couches isolantes sont en général nécessaires sur le substrat 30 et sur les puces de silicium pour l'élaboration du composant par des techniques de microélectronique habituelles.
Un seul niveau de métallisation est représenté sur la figure 5. Cependant, on comprendra que si les interconnexions entre le substrat principal 30 et les puces de silicium sont nombreuses, des croisements de connexions seront inévitables et nécessiteront plusieurs niveaux de métallisation séparées par des couches isolantes.
Le composant semiconducteur hybride selon l'invention permet l'utilisation de dispositifs linéaires semiconducteurs en matériau autre que du silicium, de longueurs largement supérieures à une dizaine de mm, sans raboutage, à partir du moment où l'on dispose d'un substrat semiconducteur correspondant de surface suffisante.
A partir d'un substrat d'AsGa par exemple dont le diamètre peut atteindre 7,5 centimètres (3 pouces), il est possible de réaliser une barrette de détection infrarouge linéaire ou multilineaire de plusieurs centimètres de long, et de haute résolution (plus de mille points par ligne), en montant sur le substrat d'AsGa plusieurs puces de silicium de quelques millimètres de côté.

Claims

REVENDICATIONS
1. Composant semiconducteur hybride caractérisé en ce qu'il comprend un substrat principal (30) en matériau autre que du silicium, dans lequel sont intégrés d'une part des éléments actifs (31), d'autre part des plots de contact (36) et des connexions (34) entre chaque élément actif et un plot de contact respectif, et plusieurs puces de circuit intégré en silicium (50 à 55) dans lesquelles sont intégrés d'une part des circuits électroniques destinés à être reliés aux éléments actifs du substrat principal, et d'autre part des plots de contact (58) en regard de ceux du substrat principal, les puces de silicium étant soudées sur le substrat principal par l'intermédiaire des plots de contact (36, 58) en regard.
2. Composant hybride selon la revendication 1 , caractérisé en ce que le substrat principal comporte des plots de contact d'entrée/sortie (64) situés en dehors de zones recouvertes par les puces de silicium, ces plots servant à la connexion du composant hybride avec l'extérieur.
3. Composant hybride selon la revendication 2, caractérisé en ce que les plots de contact d'entrée/sortie (64) sont reliés, par des connexions (62) intégrées sur le substrat principal, à des plots de contact supplémentaires (37) soudés aux puces de silicium.
4. Composant hybride selon l'une des revendications 1 à 3, caractérisé en ce que les éléments actifs du substrat principal sont répartis sur au moins une ligne, les plots de contact respectifs reliés à ces éléments actifs étant répartis en plusieurs groupes situés en dehors de cette ligne, chaque groupe correspondant à une puce de silicium respective, la taille et le pas des plots de contact dans chaque groupe étant plus grands que la taille et le pas des éléments actifs correspondants.
5. Composant hybride selon l'une des revendications 1 à 4, caractérisé en ce que les éléments actifs sont des éléments photosensibles.
6. Composant hybride selon la revendication 5, caractérisé en ce que les éléments photosensibles sont des détecteurs élémentaires infrarouge.
7. Composant hybride selon la revendication 6, caractérisé en ce qu'il comporte une barrette linéaire ou multilineaire de détecteurs infrarouge intégrés sur le substrat principal et des circuits de lecture correspondant à chaque détecteur pour lire les charges générées par l'éclairement des détecteurs, ces circuits de lecture étant intégrés sur les puces de silicium.
8. Composant hybride selon l'une des revendications 6 et 7, caractérisé en ce que le composant est un détecteur infrarouge à éclairement par la face avant du substrat principal, la face avant étant celle sur laquelle sont intégrés les éléments actifs et sur laquelle sont soudés les puces de silicium, ces dernières étant disposées de manière à ne pas recouvrir les détecteurs.
9. Composant hybride selon l'une des revendications précédentes, caractérisé en ce que les puces de silicium ont des dimensions latérales inférieures à 10 millimètres de côté.
10. Composant hybride selon l'une des revendications précédentes, caractérisé en ce que la soudure des puces de silicium sur le substrat principal se fait par l'intermédiaire de billes d'indium (67) formées sur les plots de contact en regard.
11. Composant hybride selon l'une des revendications précédentes, caractérisé en ce que le substrat principal est réalisé dans un matériaux semiconducteur des classes lll-V, ll-VI, ou IV-VI, et notamment l'un des matériaux suivants : GaAs, InP, HgCdTe, PbTe.
PCT/FR1995/000448 1994-04-08 1995-04-07 Composant hybride semiconducteur WO1995028006A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP95916724A EP0702850B1 (fr) 1994-04-08 1995-04-07 Composant hybride semiconducteur
DE69501195T DE69501195T2 (de) 1994-04-08 1995-04-07 Hybride halbleiteranordnung
US08/549,812 US5726500A (en) 1994-04-08 1995-04-07 Semiconductor hybrid component

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR94/04168 1994-04-08
FR9404168A FR2718570A1 (fr) 1994-04-08 1994-04-08 Composant hybride semiconducteur.
FR9407573A FR2718571B1 (fr) 1994-04-08 1994-06-21 Composant hybride semiconducteur.
FR94/07573 1994-06-21

Publications (1)

Publication Number Publication Date
WO1995028006A1 true WO1995028006A1 (fr) 1995-10-19

Family

ID=26231074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1995/000448 WO1995028006A1 (fr) 1994-04-08 1995-04-07 Composant hybride semiconducteur

Country Status (5)

Country Link
US (1) US5726500A (fr)
EP (1) EP0702850B1 (fr)
DE (1) DE69501195T2 (fr)
FR (1) FR2718571B1 (fr)
WO (1) WO1995028006A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029284A2 (fr) * 2006-09-07 2008-03-13 Detection Technology Oy Multiplexage de signaux de sortie de réseau de photodiodes

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6429112B1 (en) * 1994-07-07 2002-08-06 Tessera, Inc. Multi-layer substrates and fabrication processes
US6848173B2 (en) * 1994-07-07 2005-02-01 Tessera, Inc. Microelectric packages having deformed bonded leads and methods therefor
US5688716A (en) 1994-07-07 1997-11-18 Tessera, Inc. Fan-out semiconductor chip assembly
US5891795A (en) * 1996-03-18 1999-04-06 Motorola, Inc. High density interconnect substrate
US5926694A (en) * 1996-07-11 1999-07-20 Pfu Limited Semiconductor device and a manufacturing method thereof
FR2756666B1 (fr) * 1996-12-04 1999-02-19 Thomson Csf Detecteur d'ondes electromagnetiques
FR2756667B1 (fr) * 1996-12-04 1999-02-19 Thomson Csf Detecteur d'ondes electromagnetiques bispectral
JPH10229129A (ja) * 1997-02-18 1998-08-25 Oki Electric Ind Co Ltd 半導体集積回路のチップレイアウト及びその検証方法
FR2761537B1 (fr) 1997-04-01 1999-06-11 Thomson Csf Laser comprenant un empilement de diodes laser epitaxiees compris entre deux miroirs de bragg
JP3030271B2 (ja) * 1997-05-19 2000-04-10 富士通株式会社 半導体部品の実装方法
US5898223A (en) * 1997-10-08 1999-04-27 Lucent Technologies Inc. Chip-on-chip IC packages
JP3068534B2 (ja) * 1997-10-14 2000-07-24 九州日本電気株式会社 半導体装置
FR2772919B1 (fr) 1997-12-23 2000-03-17 Thomson Csf Imageur infrarouge a structure quantique fonctionnant a temperature ambiante
FR2780203B1 (fr) 1998-06-23 2003-07-04 Thomson Csf Detecteur a puits quantique avec couche de stockage des electrons photoexcites
US6214716B1 (en) * 1998-09-30 2001-04-10 Micron Technology, Inc. Semiconductor substrate-based BGA interconnection and methods of farication same
US6011314A (en) * 1999-02-01 2000-01-04 Hewlett-Packard Company Redistribution layer and under bump material structure for converting periphery conductive pads to an array of solder bumps
JP3718360B2 (ja) * 1999-02-09 2005-11-24 ローム株式会社 半導体装置
FR2808925B1 (fr) 2000-05-12 2003-08-08 Thomson Csf Detecteur optique bi-spectral
FR2811808B1 (fr) 2000-07-11 2002-10-25 Thomson Csf Dispositif d'auto-compensation pour detecteurs soustractifs
US6735387B1 (en) 2001-01-10 2004-05-11 Tim Schnell Motion detector camera
ITTO20010086A1 (it) * 2001-01-30 2002-07-30 St Microelectronics Srl Procedimento per sigillare e connettere parti di microsistemi elettromeccanici, fluidi, ottici e dispositivo cosi' ottenuto.
US6653572B2 (en) * 2001-02-07 2003-11-25 The Furukawa Electric Co., Ltd. Multilayer circuit board
DE10142531A1 (de) * 2001-08-30 2003-03-20 Philips Corp Intellectual Pty Sensoranordnung aus licht- und/oder röntgenstrahlungsempfindlichen Sensoren
US20030049925A1 (en) * 2001-09-10 2003-03-13 Layman Paul Arthur High-density inter-die interconnect structure
EP1472733B1 (fr) * 2002-01-31 2015-10-28 Micronas GmbH Dispositif de logement pour un dispositif de traitement electronique programmable
US6836023B2 (en) * 2002-04-17 2004-12-28 Fairchild Semiconductor Corporation Structure of integrated trace of chip package
TW546794B (en) * 2002-05-17 2003-08-11 Advanced Semiconductor Eng Multichip wafer-level package and method for manufacturing the same
JP2004055628A (ja) * 2002-07-17 2004-02-19 Dainippon Printing Co Ltd ウエハレベルの半導体装置及びその作製方法
US6962835B2 (en) * 2003-02-07 2005-11-08 Ziptronix, Inc. Method for room temperature metal direct bonding
FR2855654B1 (fr) * 2003-05-27 2006-03-03 Thales Sa Detecteur d'ondes electromagnetiques avec surface de couplage optique comprenant des motifs lamellaires
FR2855653B1 (fr) * 2003-05-27 2005-10-21 Thales Sa Structure amorphe de couplage optique pour detecteur d'ondes electromagnetiques et detecteur associe
FR2863774B1 (fr) * 2003-12-16 2006-03-03 Thales Sa Photodetecteur a concentration de champ proche
JP4359257B2 (ja) * 2004-07-06 2009-11-04 三星電機株式会社 Bgaパッケージおよびその製造方法
FR2937791B1 (fr) * 2008-10-24 2010-11-26 Thales Sa Dispositif d'imagerie polarimetrique optimise par rapport au contraste de polarisation
FR2937792B1 (fr) * 2008-10-24 2011-03-18 Thales Sa Dispositif d'imagerie multispectral a base de multi-puits quantiques
US8486758B2 (en) 2010-12-20 2013-07-16 Tessera, Inc. Simultaneous wafer bonding and interconnect joining
KR20130016682A (ko) * 2011-08-08 2013-02-18 에스케이하이닉스 주식회사 듀얼 레이어 구조의 반도체칩과 듀얼 레이어 구조의 반도체칩을 갖는 패키지들 및 그 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783594A (en) * 1987-11-20 1988-11-08 Santa Barbara Research Center Reticular detector array
US5236871A (en) * 1992-04-29 1993-08-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for producing a hybridization of detector array and integrated circuit for readout
US5300777A (en) * 1992-03-26 1994-04-05 Texas Instruments Incorporated Two color infrared detector and method

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3380155A (en) * 1965-05-12 1968-04-30 Sprague Electric Co Production of contact pads for semiconductors
US3823348A (en) * 1966-03-31 1974-07-09 Ibm Monolithic integrated structure including fabrication and package therefor
GB1487945A (en) * 1974-11-20 1977-10-05 Ibm Semiconductor integrated circuit devices
US4122479A (en) * 1975-01-31 1978-10-24 Hitachi, Ltd. Optoelectronic device having control circuit for light emitting element and circuit for light receiving element integrated in a semiconductor body
US4250520A (en) * 1979-03-14 1981-02-10 Rca Corporation Flip chip mounted diode
JPS5952859A (ja) * 1982-09-20 1984-03-27 Nec Corp 半導体装置
US4675717A (en) * 1984-10-09 1987-06-23 American Telephone And Telegraph Company, At&T Bell Laboratories Water-scale-integrated assembly
US4774630A (en) * 1985-09-30 1988-09-27 Microelectronics Center Of North Carolina Apparatus for mounting a semiconductor chip and making electrical connections thereto
FR2653229B1 (fr) * 1989-10-12 1992-01-17 Thomson Csf Detecteur capacitif d'onde electromagnetique.
FR2655434B1 (fr) * 1989-12-05 1992-02-28 Thomson Csf Dispositif optique a puits quantiques et procede de realisation.
JPH0462961A (ja) * 1990-06-29 1992-02-27 Sharp Corp 半導体装置およびその製造方法
FR2670006B1 (fr) * 1990-11-29 1993-03-12 Thomson Csf Bolometre electronique a puits quantique et application a un detecteur de rayonnements.
FR2678774B1 (fr) * 1991-07-05 1998-07-10 Thomson Csf Detecteur d'ondes electromagnetiques.
JPH0536894A (ja) * 1991-07-31 1993-02-12 Mitsubishi Electric Corp ハイブリツド型半導体装置及びその製造方法
FR2682477B1 (fr) * 1991-10-11 1994-04-15 Thomson Csf Spectrometre.
JPH05152509A (ja) * 1991-11-27 1993-06-18 Hitachi Ltd 電子回路システム装置
US5212406A (en) * 1992-01-06 1993-05-18 Eastman Kodak Company High density packaging of solid state devices
JPH05243482A (ja) * 1992-02-28 1993-09-21 Fujitsu Ltd 半導体集積回路
US5289637A (en) * 1992-03-25 1994-03-01 John Coffey Utility knife
FR2693594B1 (fr) * 1992-07-07 1994-08-26 Thomson Csf Détecteur d'ondes électromagnétiques à puits quantiques.
JPH06151701A (ja) * 1992-11-09 1994-05-31 Sharp Corp 半導体装置の製造方法
JPH06236981A (ja) * 1993-02-10 1994-08-23 Fujitsu Ltd 固体撮像素子
US5449908A (en) * 1993-12-30 1995-09-12 Texas Instruments Incorporated Hybrid CCD imaging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783594A (en) * 1987-11-20 1988-11-08 Santa Barbara Research Center Reticular detector array
US5300777A (en) * 1992-03-26 1994-04-05 Texas Instruments Incorporated Two color infrared detector and method
US5236871A (en) * 1992-04-29 1993-08-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for producing a hybridization of detector array and integrated circuit for readout

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MANTESE J V ET AL: "Infrared imaging using uncooled focal plane arrays of unreticulated 10- mu m potassium tantalum niobate films", IEEE TRANSACTIONS ON ELECTRON DEVICES, FEB. 1993, USA, vol. 40, no. 2, ISSN 0018-9383, pages 320 - 324 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029284A2 (fr) * 2006-09-07 2008-03-13 Detection Technology Oy Multiplexage de signaux de sortie de réseau de photodiodes
WO2008029284A3 (fr) * 2006-09-07 2008-07-24 Detection Technology Oy Multiplexage de signaux de sortie de réseau de photodiodes
US8405029B2 (en) 2006-09-07 2013-03-26 Detection Technology Oy Photodiode array output signal multiplexing

Also Published As

Publication number Publication date
FR2718571B1 (fr) 1996-05-15
FR2718571A1 (fr) 1995-10-13
EP0702850A1 (fr) 1996-03-27
EP0702850B1 (fr) 1997-12-10
US5726500A (en) 1998-03-10
DE69501195T2 (de) 1998-04-16
DE69501195D1 (de) 1998-01-22

Similar Documents

Publication Publication Date Title
EP0702850B1 (fr) Composant hybride semiconducteur
EP3667728B1 (fr) Procédé de réalisation d'un dispositif à diodes photo-émettrices et/ou photo-réceptrices et avec une grille de collimation auto-alignée
EP2038929B1 (fr) Procédé pour la réalisation d'une matrice de composants électroniques individuels et matrice réalisée par ce procédé
WO2008074688A1 (fr) Procede de fabrication de capteur d'image a haute densite d'integration
FR2625398A1 (fr) Dispositif d'imagerie thermique a plusieurs detecteurs
EP1495494B1 (fr) Matrice de photodetecteurs, a pixels isoles par des murs, hybridee sur un circuit de lecture
EP2339640A1 (fr) Photodétecteur à structure plasmon
EP0654825B1 (fr) Dispositif de détection de rayonnement, à éléments de détection aboutés, et procédé de fabrication de ce dispositif
WO2010061151A2 (fr) Procede de fabrication de cellules matricielles photosensibles dans l'infrarouge collees par adhesion moleculaire sur substrat optiquement transparent et capteur associe
EP1421624B1 (fr) Procede de fabrication de capteur d'image couleur avec ouvertures de contact creusees avant amincissement
EP3731285B1 (fr) Procede de realisation d'un dispositif photo-emetteur et/ou photo-recepteur a grille de separation optique metallique
EP1421622B1 (fr) Capteur d'image couleur sur substrat transparent et procede de fabrication
EP1353381B1 (fr) Matrice de photodetecteurs, à pixels isolés et grillé de stockage, hybridee sur un circuit de lecture
EP0089278B1 (fr) Détecteur infra-rouge matriciel
EP0654826A1 (fr) Détecteur de rayonnements dans deux bandes de longeurs d'ondes et procédé de fabrication de ce détecteur
EP1188187B1 (fr) Detecteur a semi-conducteur pour la detection de rayonnements ionisants
FR2887076A1 (fr) Capteur d'image a substrat semiconducteur aminci avec metallisation arriere
EP3696865A1 (fr) Photodiode
FR2922682A1 (fr) Procede de fabrication d'un micromodule de capture d'images
EP0737002A1 (fr) Registre de lecture à transfert de charges à sorties multiples
EP0991127A1 (fr) Dispositif hybride et procédé de realisation de composants eléctriquement actifs par assemblage
FR2754107A1 (fr) Detecteur de rayonnement photonique de grandes dimensions
FR2484705A1 (fr) Dispositif a image a deux dimensions a l'etat solide, en rayonnement electromagnetique et son procede de fabrication
FR2765730A1 (fr) Composant hybride semiconducteur
EP4268282A1 (fr) Integration d'un circuit de detection a base de resonateurs optiques sur un circuit de lecture d'un imageur

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995916724

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08549812

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995916724

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995916724

Country of ref document: EP