WO1996008582A2 - Specific and universal probes and amplification primers to rapidly detect and identify common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories - Google Patents

Specific and universal probes and amplification primers to rapidly detect and identify common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories Download PDF

Info

Publication number
WO1996008582A2
WO1996008582A2 PCT/CA1995/000528 CA9500528W WO9608582A2 WO 1996008582 A2 WO1996008582 A2 WO 1996008582A2 CA 9500528 W CA9500528 W CA 9500528W WO 9608582 A2 WO9608582 A2 WO 9608582A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
bacterial
sample
probe
sequence
Prior art date
Application number
PCT/CA1995/000528
Other languages
French (fr)
Other versions
WO1996008582A3 (en
Inventor
Michel G. Bergeron
Marc Ouellette
Paul H. Roy
Original Assignee
Bergeron Michel G
Marc Ouellette
Roy Paul H
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23177744&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1996008582(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to DE69527154T priority Critical patent/DE69527154T2/en
Priority to AU34681/95A priority patent/AU705198C/en
Priority to AT95931109T priority patent/ATE219524T1/en
Priority to CA2199144A priority patent/CA2199144C/en
Priority to MX9701847A priority patent/MX9701847A/en
Application filed by Bergeron Michel G, Marc Ouellette, Roy Paul H filed Critical Bergeron Michel G
Priority to JP50978196A priority patent/JP4176146B2/en
Priority to EP95931109A priority patent/EP0804616B1/en
Priority to NZ292494A priority patent/NZ292494A/en
Priority to DK95931109T priority patent/DK0804616T3/en
Priority to BR9508918A priority patent/BR9508918A/en
Publication of WO1996008582A2 publication Critical patent/WO1996008582A2/en
Publication of WO1996008582A3 publication Critical patent/WO1996008582A3/en
Priority to NO19971111A priority patent/NO971111L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/21Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Pseudomonadaceae (F)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/21Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Pseudomonadaceae (F)
    • C07K14/212Moraxellaceae, e.g. Acinetobacter, Moraxella, Oligella, Psychrobacter
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/26Klebsiella (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/285Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Pasteurellaceae (F), e.g. Haemophilus influenza
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/305Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F)
    • C07K14/31Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F) from Staphylococcus (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/315Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/315Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci
    • C07K14/3156Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci from Streptococcus pneumoniae (Pneumococcus)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Definitions

  • Bacteria are classically identified by their ability to utilize different substrates as a source of carbon and nitrogen through the use of biochemical tests such as the API20ETM system. Susceptibility testing of Gram negative bacilli has progressed to microdilution tests. Although the API and the microdilution systems are cost-effective, at least two days are required to obtain preliminary results due to the necessity of two successive overnight incubations to isolate and identify the bacteria from the specimen. Some faster detection methods with sophisticated and expensive apparatus have been developed. For example, the fastest identification system, the autoSCAN-Walk-AwayTM system identifies both Gram negative and Gram positive from isolated bacterial colonies in 2 hours and susceptibility patterns to antibiotics in only 7 hours.
  • Urinary tract infections are extremely common and affect up to 20% of women and account for extensive morbidity and increased mortality among hospitalized patients (Johnson and Stamm, 1989; Ann. Intern. Med. 111:906- 917).
  • UTI are usually of bacterial etiology and require antimicrobial therapy.
  • the Gram negative bacillus Escherichia col i is by far the most prevalent urinary pathogen and accounts for 50 to 60 % of UTI (Pezzlo, 1988, op . ci t . ) .
  • the prevalence for bacterial pathogens isolated from urine specimens observed recently at the "Centre Hospitalier de l'Universite Laval (CHUL)" is given in Tables 1 and 2.
  • DNA probe and DNA amplification technologies offer several advantages over conventional methods. There is no need for subculturing, hence the organism can be detected directly in clinical samples thereby reducing the costs and time associated with isolation of pathogens. DNA-based technologies have proven to be extremely useful for specific applications in the clinical microbiology laboratory. For example, kits for the detection of fastidious organisms based on the use of hybridization probes or DNA amplification for the direct detection of pathogens in clinical specimens are commercially available (Persing et al , 1993. Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C).
  • the present invention is an advantageous alternative to the conventional culture identification methods used in hospital clinical microbiology laboratories and in private clinics for routine diagnosis. Besides being much faster, DNA- based diagnostic tests are more accurate than standard biochemical tests presently used for diagnosis because the bacterial genotype (e.g. DNA level) is more stable than the bacterial phenotype (e.g. biochemical properties).
  • the originality of this invention is that genomic DNA fragments (size of at least 100 base pairs) specific for 12 species of commonly encountered bacterial pathogens were selected from genomic libraries or from data banks.
  • Amplification primers or oligonucleotide probes (both less than 100 nucleotides in length) which are both derived from the sequence of species- specific DNA fragments identified by hybridization from genomic libraries or from selected data bank sequences are used as a basis to develop diagnostic tests. Oligonucleotide primers and probes for the detection of commonly encountered and clinically important bacterial resistance genes are also included. For example, Annexes I and II present a list of suitable oligonucleotide probes and PCR primers which were all derived from the species-specific DNA fragments selected from genomic libraries or from data bank sequences.
  • oligonucleotide sequences appropriate for the specific detection of the above bacterial species other than those listed in Annexes 1 and 2 may be derived from the species-specific fragments or from the selected data bank sequences.
  • the oligonucleotides may be shorter or longer than the ones we have chosen and may be selected anywhere else in the identified species-specific sequences or selected data bank sequences.
  • the oligonucleotides may be designed for use in amplification methods other than PCR.
  • the core of this invention is the identification of species-specific genomic DNA fragments from bacterial genomic DNA libraries and the selection of genomic DNA fragments from data bank sequences which are used as a source of species-specific and ubiquitous oligonucleotides.
  • the selection of oligonucleotides suitable for diagnostic purposes from the sequence of the species-specific fragments or from the selected data bank sequences requires much effort it is quite possible for the individual skilled in the art to derive from our fragments or selected data bank sequences suitable oligonucleotides which are different from the ones we have selected and tested as examples (Annexes I and II).
  • oligonucleotide primers and probes were selected from the highly conserved 16S or 23S rRNA genes to detect all bacterial pathogens possibly encountered in clinical specimens in order to determine whether a clinical specimen is infected or not. This strategy allows rapid screening out of the numerous negative clinical specimens submitted for bacteriological testing.
  • sequence from genomic DNA fragments selected either by hybridization from genomic libraries or from data banks and which are specific for the detection of commonly encountered bacterial pathogens (i.e. Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Staphylococcus saprophyticus, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis) in clinical specimens.
  • commonly encountered bacterial pathogens i.e. Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus
  • bacterial species are associated with approximately 90% of urinary tract infections and with a high percentage of other severe infections including septicemia, meningitis, pneumonia, intraabdominal infections, skin infections and many other severe respiratory tract infections. Overall, the above bacterial species may account for up to 80% of bacterial pathogens isolated in routine microbiology laboratories.
  • Synthetic oligonucleotides for hybridization (probes) or DNA amplification (primers) were derived from the above species-specific DNA fragments (ranging in sizes from 0.25 to 5.0 kilobase pairs (kbp)) or from selected data bank sequences
  • oligonucleotide probes and amplification primers Bacterial species for which some of the oligonucleotide probes and amplification primers were derived from selected data bank sequences are Escherichia coli, Enterococcus faecalis, Streptococcus pyogenes and Pseudomonas aeruginosa.
  • the person skilled in the art understands that the important innovation in this invention is the identification of the species-specific DNA fragments selected either from bacterial genomic libraries by hybridization or from data bank sequences.
  • the selection of oligonucleotides from these fragments suitable for diagnostic purposes is also innovative. Specific and ubiquitous oligonucleotides different from the ones tested in the practice are considered as embodiements of the present invention.
  • hybridization with either fragment or oligonucleotide probes
  • DNA amplification protocols for the detection of pathogens from clinical specimens renders possible a very rapid bacterial identification. This will greatly reduce the time currently required for the identification of pathogens in the clinical laboratory since these technologies can be applied for bacterial detection and identification directly from clinical specimens with minimum pretreatment of any biological specimens to release bacterial DNA.
  • probes and amplification primers allow identification of the bacterial species directly from clinical specimens or, alternatively, from an isolated colony.
  • DNA amplification assays have the added advantages of being faster and more sensitive than hybridization assays, since they allow rapid and exponential in vitro replication of the target segment of DNA from the bacterial genome.
  • Universal probes and amplification primers selected from the 16S or 23S rRNA genes highly conserved among bacteria, which permit the detection of any bacterial pathogens, will serve as a procedure to screen out the numerous negative clinical specimens received in diagnostic laboratories.
  • the use of oligonucleotide probes or primers complementary to characterized bacterial genes encoding resistance to antibiotics to identify commonly encountered and clinically important resistance genes is also under the scope of this invention.
  • DNA fragment probes were developed for the following bacterial species: Escherichia coli , Klebsiella pneumoniae,
  • the chromosomal DNA from each bacterial species for which probes were seeked was isolated using standard methods. DNA was digested with a frequently cutting restriction enzyme such as Sau3AI and then ligated into the bacterial plasmid vector pGEM3Zf (Promega) linearized by appropriate restriction endonuclease digestion. Recombinant plasmids were then used to transform competent E. coli strain DH5 ⁇ thereby yielding a genomic library. The plasmid content of the transformed bacterial cells was analyzed using standard methods. DNA fragments of target bacteria ranging in size from 0.25 to 5.0 kilobase pairs (kbp) were cut out from the vector by digestion of the recombinant plasmid with various restriction endonucleases. The insert was separated from the vector by agarose gel electrophoresis and purified in low melting point agarose gels. Each of the purified fragments of bacterial genomic DNA was then used as a probe for specificity tests.
  • a frequently cutting restriction enzyme such as
  • the gel-purified restriction fragments of unknown coding potential were labeled with the radioactive nucleotide ⁇ -32p(dATP) which was incorporated into the DNA fragment by the random priming labeling reaction.
  • Non- radioactive modified nucleotides could also be incorporated into the DNA by this method to serve as a label.
  • Each DNA fragment probe i.e. a segment of bacterial genomic DNA of at least 100 bp in length cut out from clones randomly selected from the genomic library
  • the double-stranded labeled DNA probe was heat-denatured to yield labeled single-stranded DNA which could then hybridize to any single-stranded target DNA fixed onto a solid support or in solution.
  • the target DNAs consisted of total cellular DNA from an array of bacterial species found in clinical samples (Table 5). Each target DNA was released from the bacterial cells and denatured by conventional methods and then irreversibly fixed onto a solid support (e.g. nylon or nitrocellulose membranes) or free in solution.
  • Pre-hybridization, hybridization and post-hybridization conditions were as follows: (i) Pre-hybridization; in 1 M NaCl + 10% dextran sulfate + 1% SDS (sodium dodecyl sulfate) + 100 ⁇ g/ml salmon sperm DNA at 65°C for 15 min.
  • Hybridization in fresh pre-hybridization solution containing the labeled probe at 65°C overnight,
  • Post-hybridization washes twice in 3X SSC containing 1% SDS (1X SSC is 0.15M NaCl, 0.015M NaCitrate) and twice in 0.1 X SSC containing 0.1% SDS; all washes were at 65°C for 15 min. Autoradiography of washed filters allowed the detection of selectively hybridized probes. Hybridization of the probe to a specific target DNA indicated a high degree of similarity between the nucleotide sequence of these two DNAs.
  • Species-specific DNA fragments selected from various bacterial genomic libraries ranging in size from 0.25 to 5.0 kbp were isolated for 10 common bacterial pathogens (Table 6) based on hybridization to chromosomal DNAs from a variety of bacteria performed as described above. All of the bacterial species tested (66 species listed in Table 5) were likely to be pathogens associated with common infections or potential contaminants which can be isolated from clinical specimens. A DNA fragment probe was considered specific only when it hybridized solely to the pathogen from which it was isolated. DNA fragment probes found to be specific were subsequently tested for their ubiquity (i.e. ubiquitous probes recognized most isolates of the target species) by hybridization to bacterial DNAs from approximately 10 to 80 clinical isolates of the species of interest (Table 6) . The DNAs were denatured, fixed onto nylon membranes and hybridized as described above. Sequencing of the species-specific fragment probes
  • nucleotide sequence of the totality or of a portion of the species-specific DNA fragments isolated was determined using the dideoxynucleotide termination sequencing method which was performed using Sequenase (USB Biochemicals) or T7 DNA polymerase (Pharmacia). These nucleotide sequences are shown in the sequence listing. Alternatively, sequences selected from data banks (GenBank and EMBL) were used as sources of oligonucleotides for diagnostic purposes for Escherichia coli, Enterococcus faecalis, Streptococcus pyogenes and Pseudomonas aeruginosa.
  • oligonucleotide primers or probes derived from a variety of genomic DNA fragments (size of more than 100 bp) selected from data banks was tested for their specificity and ubiquity in PCR and hybridization assays as described later. It is important to note that the data bank sequences were selected based on their potential of being species- specific according to available sequence information. Only data bank sequences from which species-specific oligonucleotides could be derived are included in this invention.
  • Oligonucleotide probes and amplification primers derived from species-specific fragments selected from the genomic libraries or from data bank sequences were synthesized using an automated DNA synthesizer (Millipore). Prior to synthesis, all oligonucleotides (probes for hybridization and primers for DNA amplification) were evaluated for their suitability for hybridization or DNA amplification by polymerase chain reaction (PCR) by computer analysis using standard programs (e.g. Genetics Computer Group (GCG) and Oligo TM 4.0 (National
  • oligonucleotides size less than 100 nucleotides
  • have some advantages over DNA fragment probes for the detection of bacteria such as ease of preparation in large quantities, consistency in results from batch to batch and chemical stability.
  • oligonucleotides were 5' end-labeled with the radionucleotide ⁇ 32 P(ATP) using T4 polynucleotide kinase
  • oligonucleotides were labeled with biotin, either enzymatically at their 3' ends or incorporated directly during synthesis at their 5' ends, or with digoxigenin. It will be appreciated by the person skilled in the art that labeling means other than the three above labels may be used.
  • the target DNA was denatured, fixed onto a solid support and hybridized as previously described for the DNA fragment probes.
  • Conditions for pre-hybridization and hybridization were as described earlier.
  • Post-hybridization washing conditions were as follows: twice in 3X SSC containing 1% SDS, twice in 2X SSC containing 1% SDS and twice in 1X SSC containing 1% SDS (all of these washes were at 65°C for 15 min ), and a final wash in 0.1X SSC containing 1% SDS at 25°C for 15 min.
  • For probes labeled with radioactive labels the detection of hybrids was by autoradiography as described earlier.
  • For non-radioactive labels detection may be colorimetric or by chemiluminescence.
  • the oligonucleotide probes may be derived from either strand of the duplex DNA.
  • the probes may consist of the bases
  • the probes may be of any suitable length and may be selected anywhere within the species-specific genomic DNA fragments selected from the genomic libraries or from data bank sequences. DNA amplification
  • primer pairs were derived either from the sequenced species-specific DNA fragments or from data bank sequences or, alternatively, were shortened versions of oligonucleotide probes. Prior to synthesis, the potential primer pairs were analyzed by using the program OligoTM 4.0
  • two oligonucleotide primers binding respectively to each strand of the denatured double-stranded target DNA from the bacterial genome are used to amplify exponentially in vi tro the target DNA by successive thermal cycles allowing denaturation of the DNA, annealing of the primers and synthesis of new targets at each cycle
  • PCR protocols were as follows. Clinical specimens or bacterial colonies were added directly to the 50 ⁇ L PCR reaction mixtures containing 50 mM KCl, 10 mM Tris-HCl pH 8.3, 2.5 mM MgCl2, 0.4 ⁇ M of each of the two primers, 200 ⁇ M of each of the four dNTPs and 1.25 Units of Taq DNA polymerase (Perkin Elmer). PCR reactions were then subjected to thermal cycling (3 min at 95°C followed by 30 cycles of 1 second at 95°C and 1 second at 55°C) using a
  • Perkin Elmer 480TM thermal cycler and subsequently analyzed by standard ethidium bromide-stained agarose gel electrophoresis. It is clear that other methods for the detection of specific amplification products, which may be faster and more practical for routine diagnosis, may be used. Such methods may be based on the detection of fluorescence after amplification (e.g. TaqMan TM system from Perkin Elmer or AmplisensorTM from Biotronics) or liquid hybridization with an oligonucleotide probe binding to internal sequences of the specific amplification product. These novel probes can be generated from our species-specific fragment probes. Methods based on the detection of fluorescence are particularly promising for utilization in routine diagnosis as they are, very rapid and quantitative and can be automated.
  • glycerol or dimethyl sulfoxide (DMSO) or other related solvents can be used to increase the sensitivity of the PCR and to overcome problems associated with the amplification of target with a high GC content or with strong secondary structures.
  • concentration ranges for glycerol and DMSO are 5-15% (v/v) and 3-10% (v ⁇ v), respectively.
  • concentration ranges for the amplification primers and the MgCl 2 are 0.1-1.0 ⁇ M and 1.5-3.5 mM, respectively. Modifications of the standard PCR protocol using external and nested primers (i.e. nested PCR) or using more than one primer pair (i.e.
  • multiplex PCR may also be used (Persing et al, 1993. Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C). For more details about the PCR protocols and amplicon detection methods see examples 7 and 8.
  • LCR ligase chain reaction
  • TAS transcription-based amplification systems
  • 3SR self-sustained sequence replication
  • NASBA nucleic acid sequence-based amplification
  • SDA strand displacement amplification
  • bDNA branched DNA
  • oligonucleotide probes derived either from the sequenced species-specific fragments or from data bank sequences, was tested by hybridization to DNAs from the array of bacterial species listed in Table 5 as previously described. Oligonucleotides found to be specific were subsequently tested for their ubiquity by hybridization to bacterial DNAs from approximately 80 isolates of the target species as described for fragment probes. Probes were considered ubiquitous when they hybridized specifically with the DNA from at least 80% of the isolates. Results for specificity and ubiquity tests with the oligonucleotide probes are summarized in Table 6. The specificity and ubiquity of the amplification primer pairs were tested directly from cultures (see example 7) of the same bacterial strains.
  • PCR assays were performed directly from bacterial colonies of approximately 80 isolates of the target species. Results are summarized in Table 7. All specific and ubiquitous oligonucleotide probes and amplification primers for each of the 12 bacterial species investigated are listed in Annexes I and II, respectively. Divergence in the sequenced DNA fragments can occur and, insofar as the divergence of these sequences or a part thereof does not affect the specificity of the probes or amplification primers, variant bacterial DNA is under the scope of this invention.
  • Amplification primers also derived from the sequence of highly conserved ribosomal RNA genes were used as an alternative strategy for universal bacterial detection directly from clinical specimens (Annex IV; Table 7).
  • the DNA amplification strategy was developed to increase the sensitivity and the rapidity of the test. This amplification test was ubiquitous since it specifically amplified DNA from.
  • ribosomal RNA genes could also be good candidates for universal bacterial detection directly from clinical specimens. Such genes may be associated with processes essential for bacterial survival
  • Antimicrobial resistance complicates treatment and often leads to therapeutic failures. Furthermore, overuse of antibiotics inevitably leads to the emergence of bacterial resistance. Our goal is to provide the clinicians, within one hour, the needed information to prescribe optimal treatments. Besides the rapid identification of negative clinical specimens with DNA-based tests for universal bacterial detection and the identification of the presence of a specific pathogen in the positive specimens with DNA-based tests for specific bacterial detection, the clinicians also need timely information about the ability of the bacterial pathogen to resist antibiotic treatments. We feel that the most efficient strategy to evaluate rapidly bacterial resistance to antimicrobials is to detect directly from the clinical specimens the most common and important antibiotic resistance genes (i.e. DNA-based tests for the detection of antibiotic resitance genes).
  • any recombinant plasmids and corresponding transformed host cells are under the scope of this invention.
  • the plasmid content of the transformed bacterial cells was analyzed using standard methods. DNA fragments from target bacteria ranging in size from 0.25 to 5.0 kbp were cut out from the vector by digestion of the recombinant plasmid with various restriction endonucleases. The insert was separated from the vector by agarose gel electrophoresis and purified in a low melting point agarose gel. Each of the purified fragments was then used for specificity tests. Labeling of DNA fragment probes.
  • the label used was ⁇ 32 p(dATP), a radioactive nucleotide which can be incorporated enzymatically into a double-stranded DNA molecule.
  • the fragment of interest is first denatured by heating at 95°C for 5 min, then a mixture of random primers is allowed to anneal to the strands of the fragments. These primers, once annealed, provide a starting point for synthesis of DNA.
  • DNA polymerase usually the Klenow fragment, is provided along with the four nucleotides, one of which is radioactive. When the reaction is terminated, the mixture of new DNA molecules is once again denatured to provide radioactive single-stranded DNA molecules
  • probe i.e. the probe
  • other modified nucleotides may be used to label the probes.
  • Nucleotide secruencing of DNA fragments The nucleotide sequence of the totality or a portion of each fragment found to be specific and ubiquitous (Example 1) was determined using the dideoxynucleotide termination sequencing method (Sanger et al . , 1977, Proc. Natl. Acad. Sci. USA. 74:5463-5467). These DNA sequences are shown in the sequence listing. Oligonucleotide probes and amplification primers were selected from these nucleotide sequences, or alternatively, from selected data banks sequences and were then synthesized on an automated Biosearch synthesizer (MilliporeTM) using phosphoramidite chemistry.
  • oligonucleotide was 5' end-labeled with ⁇ 32 P-ATP by the T4 polynucleotide kinase (Pharmacia) as described earlier.
  • the label could also be non- radioactive.
  • oligonucleotide probes Specificity test for oligonucleotide probes. All labeled oligonucleotide probes were tested for their specificity by hybridization to DNAs from a variety of Gram positive and Gram negative bacterial species as described earlier. Species- specific probes were those hybridizing only to DNA from the bacterial species from which it was isolated. Oligonucleotide probes found to be specific were submitted to ubiquity tests as follows.
  • Ubiguity test for oligonucleotide probes Ubiguity test for oligonucleotide probes. Specific oligonucleotide probes were then used in ubiquity tests with approximately 80 strains of the target species. Chromosomal DNAs from the isolates were transferred onto nylon membranes and hybridized with labeled oligonucleotide probes as described for specificity tests. The batteries of approximately 80 isolates constructed for each target species contain reference ATCC strains as well as a variety of clinical isolates obtained from various sources. Ubiquitous probes were those hybridizing to at least 80% of DNAs from the battery of clinical isolates of the target species. Examples of specific and ubiquitous oligonucleotide probes are listed in Annex 1.
  • PCR amplification The technique of PCR was used to increase sensitivity and rapidity of the tests .
  • the PCR primers used were often shorter derivatives of the extensive sets of oligonucleotides previously developed for hybridization assays (Table 6).
  • the sets of primers were tested in PCR assays performed directly from a bacterial colony or from a bacterial suspension (see Example 7) to determine their specificity and ubiquity (Table 7). Examples of specific and ubiquitous PCR primer pairs are listed in annex II. Specificity and ubiouity tests for amplification primers.
  • PCR assays were performed either directly from a bacterial colony or from a bacterial suspension, the latter being adjusted to a standard McFarland 0.5 (corresponds to 1.5 x 10 8 bacteria/mL).
  • McFarland 0.5 corresponds to 1.5 x 10 8 bacteria/mL.
  • a portion of the colony was transferred directly to a 50 ⁇ L PCR reaction mixture (containing 50 mM KCl, 10 mM Tris pH 8.3, 2.5 mM MgCl 2 . 0.4 ⁇ M of each of the two primers, 200 ⁇ M of each of the four dNTPs and 1.25 Unit of Tag DNA polymerase (Perkin Elmer)) using a plastic rod.
  • PCR amplification products were then analyzed by standard agarose gel (2%) electrophoresis. Amplification products were visualized in agarose gels containing 2.5 ⁇ g/mL of ethidium bromide under UV at 254 nm. The entire PCR assay can be completed in approximately one hour.
  • amplification from bacterial cultures was performed as described above but using a "hot start" protocol.
  • an initial reaction mixture containing the target DNA, primers and dNTPs was heated at 85°C prior to the addition of the other components of the PCR reaction mixture.
  • the final concentration of all reagents was as described above. Subsequently, the PCR reactions were submitted to thermal cycling and analysis as described above.
  • PCR has the advantage of being compatible with crude DNA preparations. For example, blood, cerebrospinal fluid and sera may be used directly in PCR assays after a brief heat treatment. We intend to use such rapid and simple strategies to develop fast protocols for DNA amplification from a variety of clinical specimens.
  • Detection of antibiotic resistance genes The presence of specific antibiotic resistance genes which are frequently encountered and clinically relevant is identified using the PCR amplification or hybridization protocols described in previous sections. Specific oligonucleotides used as a basis for the DNA-based tests are selected from the antibiotic resistance gene sequences. These tests can be performed either directly from clinical specimens or from a bacterial colony and should complement diagnostic tests for specific bacterial identification.
  • assays were performed by multiplex PCR (i.e. using several pairs of primers in a single PCR reaction) to (i) reach an ubiquity of 100% for the specific target pathogen or (ii) to detect simultaneously several species of bacterial pathogens.
  • Multiplex PCR assays could also be used to (i) detect simultaneously several bacterial species or, alternatively, (ii) to simultaneously identify the bacterial pathogen and detect specific antibiotic resistance genes either directly from a clinical specimen or from a bacterial colony.
  • amplicon detection methods should be adapted to differentiate the various amplicons produced.
  • Standard agarose gel electrophoresis could be used because it discriminates the amplicons based on their sizes.
  • Another useful strategy for this purpose would be detection using a variety of fluorochromes emitting at different wavelengths which are each coupled with a specific oligonucleotide linked to a fluorescence quencher which is degraded during amplification to release the fluorochrome (e.g. TaqMan TM , Perkin Elmer).
  • Detection of amplification products The person skilled in the art will appreciate that alternatives other than standard agarose gel electrophoresis (Example 7) may be used for the revelation of amplification products. Such methods may be based on the detection of fluorescence after amplification
  • amplification primers or an internal oligonucleotide probe specific to the amplicon(s) derived from the species-specific fragment probes is coupled with the fluorochrome or with any other label. Methods based on the detection of fluorescence are particularly suitable for diagnostic tests since they are rapid and flexible as fluorochromes emitting different wavelengths are available (Perkin Elmer).
  • Species-specific, universal and antibiotic resistance gene amplification primers can be used in other rapid amplification procedures such as the ligase chain reaction (LCR), transcription-based amplification systems (TAS), self- sustained sequence replication (3SR), nucleic acid sequence- based amplification (NASBA), strand displacement amplification (SDA) and branched DNA (bDNA) or any other methods to increase the sensitivity of the test.
  • Amplifications can be performed from an isolated bacterial colony or directly from clinical specimens. The scope of this invention is therefore not limited to the use of PCR but rather includes the use of any procedures to specifically identify bacterial DNA and which may be used to increase rapidity and sensitivity of the tests.
  • test kit would contain sets of probes specific for each bacterium as well as a set of universal probes.
  • the kit is provided in the form of test components, consisting of the set of universal probes labeled with non-radioactive labels as well as labeled specific probes for the detection of each bacterium of interest in specific clinical samples.
  • the kit will also include test reagents necessary to perform the prehybridization, hybridization, washing steps and hybrid detection. Finally, test components for the detection of known antibiotic resistance genes (or derivatives therefrom) will be included.
  • the kit will include standard samples to be used as negative and positive controls for each hybridization test.
  • kits Components to be included in the kits will be adapted to each specimen type and to detect pathogens commonly encountered in that type of specimen. Reagents for the universal detection of bacteria will also be included. Based on the sites of infection, the following kits for the specific detection of pathogens may be developed:
  • -A kit for the detection of bacterial pathogens retrieved from urine samples which contains eight specific test components (sets of probes for the detection of Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus saprophyticus, Staphylococcus aureus and Staphylococcus epidermidis).
  • -A kit for the detection of respiratory pathogens which contains seven specific test components (sets of probes for detecting Streptococcus pneumoniae, Moraxella catarrhalis,
  • Haemophilus influenzae Klebsiella pneumoniae, Pseudomonas aeruginosa, Streptococcus pyogenes and Staphylococcus aureus).
  • Moraxella catarrhalis Haemophilus influenzae, Proteus mirabilis, Klebsiella pneumoniae, Pseudomonas aeruginosa,
  • Escherichia coli Enterococcus faecalis, Staphylococcus aureus, Streptococcus pyogenes and Staphylococcus epidermidis.
  • kits for the detection of pathogens causing meningitis which contains four specific test components (sets of probes for the detection of Haemophilus influenzae, Streptococcus pneumoniae, Escherichia coli and Pseudomonas aeruginosa) .
  • kits for the detection of clinically important antibiotic resistance genes which contains sets of probes for the specific detection of at least one of the 19 following genes associated with bacterial resistance : blatem. bla rob , bla shv , aadB, aacC1, aacC2, aacC3, aacA4, mecA, vanA, vanH, vanX, safA, aacK-aphD, vat, vga, msrK, sul and int.
  • kits adapted for the detection of pathogens from skin, abdominal wound or any other clinically relevant kits will be developed.
  • test kits contain all reagents and controls to perform DNA amplification assays.
  • Diagnostic kits will be adapted for amplification by PCR (or other amplification methods) performed directly either from clinical specimens or from a bacterial colony. Components required for universal bacterial detection, bacterial identification and antibiotic resistance genes detection will be included. Amplification assays could be performed either in tubes or in microtitration plates having multiple wells. For assays in plates, the wells will be coated with the specific amplification primers and control DNAs and the detection of amplification products will be automated. Reagents and amplification primers for universal bacterial detection will be included in kits for tests performed directly from clinical specimens. Components required for bacterial identificationio and antibiotic resistance gene detection will be included i n kits for testing directly from colonies as well as in kits for testing directly from clinical specimens.
  • kits will be adapted for use with each type o f specimen as described in example 13 for hybridization-base diagnostic kits.
  • probes and amplification primers described in this invention for bacterial detection and identification is not limited to clinical microbiology applications. In fact, we feel that other sectors could also benefit from these new technologies. For example, these tests could be used by industries for quality control of food, water, pharmaceutical products or other products requiring microbiological control. These tests could also be applied to detect and identify bacteria in biological samples from organisms other than humans (e.g. other primates, mammals, farm animals and live stocks). These diagnostic tools could also be very useful for research purposes including clinical trials and epidemiological studies .
  • Sizes of DNA fragments range from 0.25 to 5.0 kbp.
  • a specific probe was considered ubiquitous when at least 80% of isolates of the target species (approximately 80 isolates) were recognized by each specific probe. When 2 or more probes are combined, 100% of the isolates are recognized.
  • the ubiquity was normally tested on 80 strains of the species of interest. All retained primer pairs amplified at least 90% of the isolates. When combinations of primers were used, an ubiquity of 100% was reached.
  • PCR amplifications directly performed from a bacterial colony were 100 % species-specific.
  • primer pair #1 is specific for Group A
  • GAS Streptococci
  • SpeA exotoxin A gene

Abstract

The present invention relates to DNA-based methods for universal bacterial detection, for specific detection of the pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epiderminis, Enterococcus faecalis, Staphylococcus saprophyticus, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis as well as for specific detection of commonly encountered and clinically relevant bacterial antibiotic resistance genes directly from clinical specimens or, alternatively, from a bacterial colony. The above bacterial species can account for as much as 80 % of bacterial pathogens isolated in routine microbiology laboratories. The core of this invention consists primarily of the DNA sequences from all species-specific genomic DNA fragments selected by hybridization from genomic libraries or, alternatively, selected from data banks as well as any oligonucleotide sequences derived from these sequences which can be used as probes or amplification primers for PCR or any other nucleic acid amplification methods. This invention also includes DNA sequences from the selected clinically relevant antibiotic resistance genes.

Description

SPECIFIC AND UNIVERSAL PROBES AND AMPLIFICATION PRIMERS TO RAPIDLY DETECT AND IDENTIFY COMMON BACTERIAL PATHOGENS AND ANTIBIOTIC RESISTANCE GENES FROM CLINICAL SPECIMENS FOR ROUTINE DIAGNOSIS IN MICROBIOLOGY LABORATORIES.
BACKGROUND OF THE INVENTION
Classical identification of bacteria
Bacteria are classically identified by their ability to utilize different substrates as a source of carbon and nitrogen through the use of biochemical tests such as the API20E™ system. Susceptibility testing of Gram negative bacilli has progressed to microdilution tests. Although the API and the microdilution systems are cost-effective, at least two days are required to obtain preliminary results due to the necessity of two successive overnight incubations to isolate and identify the bacteria from the specimen. Some faster detection methods with sophisticated and expensive apparatus have been developed. For example, the fastest identification system, the autoSCAN-Walk-Away™ system identifies both Gram negative and Gram positive from isolated bacterial colonies in 2 hours and susceptibility patterns to antibiotics in only 7 hours. However, this system has an unacceptable margin of error, especially with bacterial species other than Enterobacteriaceae (York et al., 1992. J. Clin. Microbiol. 30:2903-2910). Nevertheless, even this fastest method requires primary isolation of the bacteria as a pure culture, a process which takes at least 18 hours if there is a pure culture or 2 to 3 days if there is a mixed culture.
Urine specimens
A large proportion (40-50%) of specimens received in routine diagnostic microbiology laboratories for bacterial identification are urine specimens (Pezzlo, 1988, Clin.
Microbiol. Rev. 1:268-280). Urinary tract infections (UTI) are extremely common and affect up to 20% of women and account for extensive morbidity and increased mortality among hospitalized patients (Johnson and Stamm, 1989; Ann. Intern. Med. 111:906- 917). UTI are usually of bacterial etiology and require antimicrobial therapy. The Gram negative bacillus Escherichia col i is by far the most prevalent urinary pathogen and accounts for 50 to 60 % of UTI (Pezzlo, 1988, op . ci t . ) . The prevalence for bacterial pathogens isolated from urine specimens observed recently at the "Centre Hospitalier de l'Universite Laval (CHUL)" is given in Tables 1 and 2.
Conventional pathogen identification in urine specimens. The search for pathogens in urine specimens is so preponderant in the routine microbiology laboratory that a myriad of tests have been developed. The gold standard is still the classical semi-quantitative plate culture method in which a calibrated loop of urine is streaked on plates and incubated for 18-24 hours. Colonies are then counted to determine the total number of colony forming units (CFU) per liter of urine. A bacterial UTI is normally associated with a bacterial count of ≥107 CFU/L in urine. However, infections with less than 107 CFU/L in urine are possible, particularly in patients with a high incidence of diseases or those catheterized (Stark and Maki, 1984, N. Engl. J. Med. 311:560-564). Importantly, close to 80% of urine specimens tested are considered negative (<107 CFU/L; Table 3).
Accurate and rapid urine screening methods for bacterial pathogens would allow a faster identification of negative results and a more efficient clinical investigation of the patient. Several rapid identification methods (Uriscreen™, UTIscreen™, Flash Track™ DNA probes and others) were recently compared to slower standard biochemical methods which are based on culture of the bacterial pathogens. Although much faster, these rapid tests showed low sensitivities and specificities as well as a high number of false negative and false positive results (Koening et al., 1992. J. Clin. Microbiol. 30:342-345; Pezzlo et al., 1992. J. Clin. Microbiol. 30:640-684). Urine specimens found positive by culture are further characterized using standard biochemical tests to identify the bacterial pathogen and are also tested for susceptibility to antibiotics.
Any clinical specimens
As with urine specimen which was used here as an example, our probes and amplification primers are also applicable to any other clinical specimens. The DNA-based tests proposed in this invention are superior to standard methods currently used for routine diagnosis in terms of rapidity and accuracy. While a high percentage of urine specimens are negative, in many other clinical specimens more than 95% of cultures are negative (Table 4). These data further support the use of universal probes to screen out the negative clinical specimens. Clinical specimens from organisms other than humans (e.g. other primates, mammals, farm animals or live stocks) may also be used. Towards the development of rapid DNA-based diagnostic tests
A rapid diagnostic test should have a significant impact on the management of infections. For the identification of pathogens and antibiotic resistance genes in clinical samples, DNA probe and DNA amplification technologies offer several advantages over conventional methods. There is no need for subculturing, hence the organism can be detected directly in clinical samples thereby reducing the costs and time associated with isolation of pathogens. DNA-based technologies have proven to be extremely useful for specific applications in the clinical microbiology laboratory. For example, kits for the detection of fastidious organisms based on the use of hybridization probes or DNA amplification for the direct detection of pathogens in clinical specimens are commercially available (Persing et al , 1993. Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C). The present invention is an advantageous alternative to the conventional culture identification methods used in hospital clinical microbiology laboratories and in private clinics for routine diagnosis. Besides being much faster, DNA- based diagnostic tests are more accurate than standard biochemical tests presently used for diagnosis because the bacterial genotype (e.g. DNA level) is more stable than the bacterial phenotype (e.g. biochemical properties). The originality of this invention is that genomic DNA fragments (size of at least 100 base pairs) specific for 12 species of commonly encountered bacterial pathogens were selected from genomic libraries or from data banks. Amplification primers or oligonucleotide probes (both less than 100 nucleotides in length) which are both derived from the sequence of species- specific DNA fragments identified by hybridization from genomic libraries or from selected data bank sequences are used as a basis to develop diagnostic tests. Oligonucleotide primers and probes for the detection of commonly encountered and clinically important bacterial resistance genes are also included. For example, Annexes I and II present a list of suitable oligonucleotide probes and PCR primers which were all derived from the species-specific DNA fragments selected from genomic libraries or from data bank sequences. It is clear to the individual skilled in the art that oligonucleotide sequences appropriate for the specific detection of the above bacterial species other than those listed in Annexes 1 and 2 may be derived from the species-specific fragments or from the selected data bank sequences. For example, the oligonucleotides may be shorter or longer than the ones we have chosen and may be selected anywhere else in the identified species-specific sequences or selected data bank sequences. Alternatively, the oligonucleotides may be designed for use in amplification methods other than PCR. Consequently, the core of this invention is the identification of species- specific genomic DNA fragments from bacterial genomic DNA libraries and the selection of genomic DNA fragments from data bank sequences which are used as a source of species-specific and ubiquitous oligonucleotides. Although the selection of oligonucleotides suitable for diagnostic purposes from the sequence of the species-specific fragments or from the selected data bank sequences requires much effort it is quite possible for the individual skilled in the art to derive from our fragments or selected data bank sequences suitable oligonucleotides which are different from the ones we have selected and tested as examples (Annexes I and II).
Others have developed DNA-based tests for the detection and identification of some of the bacterial pathogens for which we have identified species-specific sequences (PCT patent application Serial No. WO 93/03186). However, their strategy was based on the amplification of the highly conserved 16S rRNA gene followed by hybridization with internal species-specific oligonucleotides. The strategy from this invention is much simpler and more rapid because it allows the direct amplification of species-specific targets using oligonucleotides derived from the species-specific bacterial genomic DNA fragments.
Since a high percentage of clinical specimens are negative, oligonucleotide primers and probes were selected from the highly conserved 16S or 23S rRNA genes to detect all bacterial pathogens possibly encountered in clinical specimens in order to determine whether a clinical specimen is infected or not. This strategy allows rapid screening out of the numerous negative clinical specimens submitted for bacteriological testing.
We are also developing other DNA-based tests, to be performed simultaneously with bacterial identification, to determine rapidly the putative bacterial susceptibility to antibiotics by targeting commonly encountered and clinically relevant bacterial resistance genes. Although the sequences from the selected antibiotic resistance genes are available and have been used to develop DNA-based tests for their detection (Ehrlich and Greenberg, 1994. PCR-based Diagnostics in Infectious Diseases, Blackwell Scientific Publications, Boston, Massachusetts; Persing et al, 1993. Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C), our approch is innovative as it represents major improvements over current "gold standard" diagnostic methods based on culture of the bacteria because it allows the rapid identification of the presence of a specific bacterial pathogen and evaluation of its susceptibility to antibiotics directly from the clinical specimens within one hour.
We believe that the rapid and simple diagnostic tests not based on cultivation of the bacteria that we are developing will gradually replace the slow conventional bacterial identification methods presently used in hospital clinical microbiology laboratories and in private clinics. In our opinion, these rapid DNA-based diagnostic tests for severe and common bacterial pathogens and antibiotic resistance will (i) save lives by optimizing treatment, (ii) diminish antibiotic resistance by reducing the use of broad spectrum antibiotics and (iii) decrease overall health costs by preventing or shortening hospitalizations.
SUMMARY OF THE INVENTION
In accordance with the present invention, there is provided sequence from genomic DNA fragments (size of at least 100 base pairs and all described in the sequence listing) selected either by hybridization from genomic libraries or from data banks and which are specific for the detection of commonly encountered bacterial pathogens (i.e. Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Staphylococcus saprophyticus, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis) in clinical specimens. These bacterial species are associated with approximately 90% of urinary tract infections and with a high percentage of other severe infections including septicemia, meningitis, pneumonia, intraabdominal infections, skin infections and many other severe respiratory tract infections. Overall, the above bacterial species may account for up to 80% of bacterial pathogens isolated in routine microbiology laboratories.
Synthetic oligonucleotides for hybridization (probes) or DNA amplification (primers) were derived from the above species-specific DNA fragments (ranging in sizes from 0.25 to 5.0 kilobase pairs (kbp)) or from selected data bank sequences
(GenBank and EMBL) . Bacterial species for which some of the oligonucleotide probes and amplification primers were derived from selected data bank sequences are Escherichia coli, Enterococcus faecalis, Streptococcus pyogenes and Pseudomonas aeruginosa. The person skilled in the art understands that the important innovation in this invention is the identification of the species-specific DNA fragments selected either from bacterial genomic libraries by hybridization or from data bank sequences. The selection of oligonucleotides from these fragments suitable for diagnostic purposes is also innovative. Specific and ubiquitous oligonucleotides different from the ones tested in the practice are considered as embodiements of the present invention.
The development of hybridization (with either fragment or oligonucleotide probes) or of DNA amplification protocols for the detection of pathogens from clinical specimens renders possible a very rapid bacterial identification. This will greatly reduce the time currently required for the identification of pathogens in the clinical laboratory since these technologies can be applied for bacterial detection and identification directly from clinical specimens with minimum pretreatment of any biological specimens to release bacterial DNA. In addition to being 100% specific, probes and amplification primers allow identification of the bacterial species directly from clinical specimens or, alternatively, from an isolated colony. DNA amplification assays have the added advantages of being faster and more sensitive than hybridization assays, since they allow rapid and exponential in vitro replication of the target segment of DNA from the bacterial genome. Universal probes and amplification primers selected from the 16S or 23S rRNA genes highly conserved among bacteria, which permit the detection of any bacterial pathogens, will serve as a procedure to screen out the numerous negative clinical specimens received in diagnostic laboratories. The use of oligonucleotide probes or primers complementary to characterized bacterial genes encoding resistance to antibiotics to identify commonly encountered and clinically important resistance genes is also under the scope of this invention.
DETAILED DESCRIPTION OF THE INVENTION
Development of species-specific DNA probes
DNA fragment probes were developed for the following bacterial species: Escherichia coli , Klebsiella pneumoniae,
Pseudomonas aeruginosa, Proteus mirabilis, Streptococc us pneumoniae, Staphylococcus aureus, Staphylococcus epidermidiis, Staphylococcus saprophyticus, Haemophilus influenzae and Moraxella catarrhalis. (For Enterococcus faecalis and Streptococcus pyogenes, oligonucleotide sequences were exclusively derived from selected data bank sequences). These species-specific fragments were selected from bacterial genomic libraries by hybridization to DNA from a variety of Gram positive and Gram negative bacterial species (Table 5).
The chromosomal DNA from each bacterial species for which probes were seeked was isolated using standard methods. DNA was digested with a frequently cutting restriction enzyme such as Sau3AI and then ligated into the bacterial plasmid vector pGEM3Zf (Promega) linearized by appropriate restriction endonuclease digestion. Recombinant plasmids were then used to transform competent E. coli strain DH5α thereby yielding a genomic library. The plasmid content of the transformed bacterial cells was analyzed using standard methods. DNA fragments of target bacteria ranging in size from 0.25 to 5.0 kilobase pairs (kbp) were cut out from the vector by digestion of the recombinant plasmid with various restriction endonucleases. The insert was separated from the vector by agarose gel electrophoresis and purified in low melting point agarose gels. Each of the purified fragments of bacterial genomic DNA was then used as a probe for specificity tests.
For each given species, the gel-purified restriction fragments of unknown coding potential were labeled with the radioactive nucleotide α-32p(dATP) which was incorporated into the DNA fragment by the random priming labeling reaction. Non- radioactive modified nucleotides could also be incorporated into the DNA by this method to serve as a label.
Each DNA fragment probe (i.e. a segment of bacterial genomic DNA of at least 100 bp in length cut out from clones randomly selected from the genomic library) was then tested for its specificity by hybridization to DNAs from a variety of bacterial species (Table 5). The double-stranded labeled DNA probe was heat-denatured to yield labeled single-stranded DNA which could then hybridize to any single-stranded target DNA fixed onto a solid support or in solution. The target DNAs consisted of total cellular DNA from an array of bacterial species found in clinical samples (Table 5). Each target DNA was released from the bacterial cells and denatured by conventional methods and then irreversibly fixed onto a solid support (e.g. nylon or nitrocellulose membranes) or free in solution. The fixed single-stranded target DNAs were then hybridized with the single-stranded probe. Pre-hybridization, hybridization and post-hybridization conditions were as follows: (i) Pre-hybridization; in 1 M NaCl + 10% dextran sulfate + 1% SDS (sodium dodecyl sulfate) + 100 μg/ml salmon sperm DNA at 65°C for 15 min. (ii) Hybridization; in fresh pre-hybridization solution containing the labeled probe at 65°C overnight, (iii) Post-hybridization; washes twice in 3X SSC containing 1% SDS (1X SSC is 0.15M NaCl, 0.015M NaCitrate) and twice in 0.1 X SSC containing 0.1% SDS; all washes were at 65°C for 15 min. Autoradiography of washed filters allowed the detection of selectively hybridized probes. Hybridization of the probe to a specific target DNA indicated a high degree of similarity between the nucleotide sequence of these two DNAs.
Species-specific DNA fragments selected from various bacterial genomic libraries ranging in size from 0.25 to 5.0 kbp were isolated for 10 common bacterial pathogens (Table 6) based on hybridization to chromosomal DNAs from a variety of bacteria performed as described above. All of the bacterial species tested (66 species listed in Table 5) were likely to be pathogens associated with common infections or potential contaminants which can be isolated from clinical specimens. A DNA fragment probe was considered specific only when it hybridized solely to the pathogen from which it was isolated. DNA fragment probes found to be specific were subsequently tested for their ubiquity (i.e. ubiquitous probes recognized most isolates of the target species) by hybridization to bacterial DNAs from approximately 10 to 80 clinical isolates of the species of interest (Table 6) . The DNAs were denatured, fixed onto nylon membranes and hybridized as described above. Sequencing of the species-specific fragment probes
The nucleotide sequence of the totality or of a portion of the species-specific DNA fragments isolated (Table 6) was determined using the dideoxynucleotide termination sequencing method which was performed using Sequenase (USB Biochemicals) or T7 DNA polymerase (Pharmacia). These nucleotide sequences are shown in the sequence listing. Alternatively, sequences selected from data banks (GenBank and EMBL) were used as sources of oligonucleotides for diagnostic purposes for Escherichia coli, Enterococcus faecalis, Streptococcus pyogenes and Pseudomonas aeruginosa. For this strategy, an array of suitable oligonucleotide primers or probes derived from a variety of genomic DNA fragments (size of more than 100 bp) selected from data banks was tested for their specificity and ubiquity in PCR and hybridization assays as described later. It is important to note that the data bank sequences were selected based on their potential of being species- specific according to available sequence information. Only data bank sequences from which species-specific oligonucleotides could be derived are included in this invention.
Oligonucleotide probes and amplification primers derived from species-specific fragments selected from the genomic libraries or from data bank sequences were synthesized using an automated DNA synthesizer (Millipore). Prior to synthesis, all oligonucleotides (probes for hybridization and primers for DNA amplification) were evaluated for their suitability for hybridization or DNA amplification by polymerase chain reaction (PCR) by computer analysis using standard programs (e.g. Genetics Computer Group (GCG) and OligoTM 4.0 (National
Biosciences)). The potential suitability of the PCR primer pairs was also evaluated prior to the synthesis by verifying the absence of unwanted features such as long stretches of one nucleotide, a high proportion of G or C residues at the 3' end and a 3'-terminal T residue (Persing et al, 1993. Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C). Hybridization with oligonucleotide probes
In hybridization experiments, oligonucleotides (size less than 100 nucleotides) have some advantages over DNA fragment probes for the detection of bacteria such as ease of preparation in large quantities, consistency in results from batch to batch and chemical stability. Briefly, for the hybridizations, oligonucleotides were 5' end-labeled with the radionucleotide γ32P(ATP) using T4 polynucleotide kinase
(Pharmacia). The unincorporated radionucleotide was removed by passing the labeled single-stranded oligonucleotide through a Sephadex G50 column. Alternatively, oligonucleotides were labeled with biotin, either enzymatically at their 3' ends or incorporated directly during synthesis at their 5' ends, or with digoxigenin. It will be appreciated by the person skilled in the art that labeling means other than the three above labels may be used.
The target DNA was denatured, fixed onto a solid support and hybridized as previously described for the DNA fragment probes. Conditions for pre-hybridization and hybridization were as described earlier. Post-hybridization washing conditions were as follows: twice in 3X SSC containing 1% SDS, twice in 2X SSC containing 1% SDS and twice in 1X SSC containing 1% SDS (all of these washes were at 65°C for 15 min ), and a final wash in 0.1X SSC containing 1% SDS at 25°C for 15 min. For probes labeled with radioactive labels the detection of hybrids was by autoradiography as described earlier. For non-radioactive labels detection may be colorimetric or by chemiluminescence.
The oligonucleotide probes may be derived from either strand of the duplex DNA. The probes may consist of the bases
A, G, C, or T or analogs. The probes may be of any suitable length and may be selected anywhere within the species- specific genomic DNA fragments selected from the genomic libraries or from data bank sequences. DNA amplification
For DNA amplification by the widely used PCR (polymerase chain reaction) method, primer pairs were derived either from the sequenced species-specific DNA fragments or from data bank sequences or, alternatively, were shortened versions of oligonucleotide probes. Prior to synthesis, the potential primer pairs were analyzed by using the program OligoTM 4.0
(National Biosciences) to verify that they are likely candidates for PCR amplifications.
During DNA amplification by PCR, two oligonucleotide primers binding respectively to each strand of the denatured double-stranded target DNA from the bacterial genome are used to amplify exponentially in vi tro the target DNA by successive thermal cycles allowing denaturation of the DNA, annealing of the primers and synthesis of new targets at each cycle
(Persing et al, 1993. Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C). Briefly, the PCR protocols were as follows. Clinical specimens or bacterial colonies were added directly to the 50 μL PCR reaction mixtures containing 50 mM KCl, 10 mM Tris-HCl pH 8.3, 2.5 mM MgCl2, 0.4 μM of each of the two primers, 200 μM of each of the four dNTPs and 1.25 Units of Taq DNA polymerase (Perkin Elmer). PCR reactions were then subjected to thermal cycling (3 min at 95°C followed by 30 cycles of 1 second at 95°C and 1 second at 55°C) using a
Perkin Elmer 480™ thermal cycler and subsequently analyzed by standard ethidium bromide-stained agarose gel electrophoresis. It is clear that other methods for the detection of specific amplification products, which may be faster and more practical for routine diagnosis, may be used. Such methods may be based on the detection of fluorescence after amplification (e.g. TaqManTM system from Perkin Elmer or Amplisensor™ from Biotronics) or liquid hybridization with an oligonucleotide probe binding to internal sequences of the specific amplification product. These novel probes can be generated from our species-specific fragment probes. Methods based on the detection of fluorescence are particularly promising for utilization in routine diagnosis as they are, very rapid and quantitative and can be automated.
To assure PCR efficiency, glycerol or dimethyl sulfoxide (DMSO) or other related solvents, can be used to increase the sensitivity of the PCR and to overcome problems associated with the amplification of target with a high GC content or with strong secondary structures. The concentration ranges for glycerol and DMSO are 5-15% (v/v) and 3-10% (v\v), respectively. For the PCR reaction mixture, the concentration ranges for the amplification primers and the MgCl2 are 0.1-1.0 μM and 1.5-3.5 mM, respectively. Modifications of the standard PCR protocol using external and nested primers (i.e. nested PCR) or using more than one primer pair (i.e. multiplex PCR) may also be used (Persing et al, 1993. Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C). For more details about the PCR protocols and amplicon detection methods see examples 7 and 8.
The person skilled in the art of DNA amplification knows the existence of other rapid amplification procedures such a ligase chain reaction (LCR), transcription-based amplification systems (TAS), self-sustained sequence replication (3SR), nucleic acid sequence-based amplification (NASBA), strand displacement amplification (SDA) and branched DNA (bDNA) (Persing et al, 1993. Diagnostic Molecular Microbiology:
Principles and Applications, American Society for Microbiology, Washington, D.C). The scope of this invention is not limited to the use of amplification by PCR, but rather includes the use of any rapid nucleic acid amplification methods or any other procedures which may be used to increase rapidity and sensitivity of the tests. Any oligonucleotides suitable for the amplification of nucleic acid by approaches other than PCR and derived from the species-specific fragments and from selected antibiotic resistance gene sequences included in this document are also under the scope of this invention. Specificity and ubiqruity tests for oligonucleotide probes and primers
The specificity of oligonucleotide probes, derived either from the sequenced species-specific fragments or from data bank sequences, was tested by hybridization to DNAs from the array of bacterial species listed in Table 5 as previously described. Oligonucleotides found to be specific were subsequently tested for their ubiquity by hybridization to bacterial DNAs from approximately 80 isolates of the target species as described for fragment probes. Probes were considered ubiquitous when they hybridized specifically with the DNA from at least 80% of the isolates. Results for specificity and ubiquity tests with the oligonucleotide probes are summarized in Table 6. The specificity and ubiquity of the amplification primer pairs were tested directly from cultures (see example 7) of the same bacterial strains. For specificity and ubiquity tests, PCR assays were performed directly from bacterial colonies of approximately 80 isolates of the target species. Results are summarized in Table 7. All specific and ubiquitous oligonucleotide probes and amplification primers for each of the 12 bacterial species investigated are listed in Annexes I and II, respectively. Divergence in the sequenced DNA fragments can occur and, insofar as the divergence of these sequences or a part thereof does not affect the specificity of the probes or amplification primers, variant bacterial DNA is under the scope of this invention.
Universal bacterial detection
In the routine microbiology laboratory a high percentage of clinical specimens sent for bacterial identification is negative (Table 4). For example, over a 2 year period, around 80% of urine specimens received by the laboratory at the "Centre Hospitalier de l'Universite Laval (CHUL) " were negative (i.e. <107 CFU/L) (Table 3). Testing clinical samples with universal probes or universal amplification primers to detect the presence of bacteria prior to specif ic identification and screen out the numerous negative specime ns is thus useful as it saves costs and may rapidly orient the clinical management of the patients. Several oligonucleotides and amplification primers were therefore synthesized from highly conserved portions of bacterial 16S or 23S ribosomal RNA gene sequences available in data banks (Annexes III and
IV). In hybridization tests, a pool of seven oligonucleotides (Annex I; Table 6) hybridized strongly to DNA from all bacterial species listed in Table 5. This pool of universal probes labeled with radionucleotides or with any other modified nucleotides is consequently very useful for detection of bacteria in urine samples with a sensitivity range of > 107 CFU/L. These probes can also be applied for bacterial detection in other clinical samples.
Amplification primers also derived from the sequence of highly conserved ribosomal RNA genes were used as an alternative strategy for universal bacterial detection directly from clinical specimens (Annex IV; Table 7). The DNA amplification strategy was developed to increase the sensitivity and the rapidity of the test. This amplification test was ubiquitous since it specifically amplified DNA from.
23 different bacterial species encountered in cliniccal specimens.
Well-conserved bacterial genes other than ribosomal RNA genes could also be good candidates for universal bacterial detection directly from clinical specimens. Such genes may be associated with processes essential for bacterial survival
(e.g. protein synthesis, DNA synthesis, cell division or DNA repair) and could therefore be highly conserved during evolution. We are working on these candidate genes to develop new rapid tests for the universal detection of bacteria directly from clinical specimens.
Antibiotic resistance genes
Antimicrobial resistance complicates treatment and often leads to therapeutic failures. Furthermore, overuse of antibiotics inevitably leads to the emergence of bacterial resistance. Our goal is to provide the clinicians, within one hour, the needed information to prescribe optimal treatments. Besides the rapid identification of negative clinical specimens with DNA-based tests for universal bacterial detection and the identification of the presence of a specific pathogen in the positive specimens with DNA-based tests for specific bacterial detection, the clinicians also need timely information about the ability of the bacterial pathogen to resist antibiotic treatments. We feel that the most efficient strategy to evaluate rapidly bacterial resistance to antimicrobials is to detect directly from the clinical specimens the most common and important antibiotic resistance genes (i.e. DNA-based tests for the detection of antibiotic resitance genes). Since the sequence from the most important and common bacterial antibiotic resistance genes are available from data banks, our strategy is to use the sequence from a portion or from the entire gene to design specific oligonucleotides which will be used as a basis for the development of rapid DNA-based tests. The sequence from the bacterial antibiotic resistance genes selected on the basis of their clinical relevance (i.e. high incidence and importance) is given in the sequence listing. Table 8 summarizes some characteristics of the selected antibiotic resistance genes. EXAMPLES
The following examples are intended to be illustrative of the various methods and compounds of the invention.
EXAMPLE 1 :
Isolation and cloning of fragments. Genomic DNAs from
Escherichia coli strain ATCC 25922, Klebsiella pneumoniae strain CK2 , Pseudomonas aeruginosa strain ATCC 27853, Proteus mirabilis strain ATCC 35657, Streptococcus pneumoniae strain ATCC 27336, Staphylococcus aureus strain ATCC 25923, Staphylococcus epidermidis strain ATCC 12228, Staphylococcus saprophyticus strain ATCC 15305, Haemophilus influenz ae reference strain Rd and Moraxella catarrhalis strain ATCC 53879 were prepared using standard procedures. It is understood that the bacterial genomic DNA may have been isolated from strains other than the ones mentioned above.
(For Enterococcus faecalis and Streptococcus pyogenes oligonucleotide sequences were derived exclusively from da banks) . Each DNA was digested with a restriction enzyme which frequently cuts DNA such as Sau3AI. The resulting DNA fragments were ligated into a plasmid vector (pGEM3Zf) to create recombinant plasmids and transformed into competent E. coli cells (DH5α) . It is understood that the vectors and corresponding competent cells should not be limited to the ones herein above specifically examplified. The objective of obtaining recombinant plasmids and transformed cells is to provide an easily reproducible source of DNA fragments useful as probes. Therefore, insofar as the inserted fragments are specific and selective for the target bacterial DNA, any recombinant plasmids and corresponding transformed host cells are under the scope of this invention. The plasmid content of the transformed bacterial cells was analyzed using standard methods. DNA fragments from target bacteria ranging in size from 0.25 to 5.0 kbp were cut out from the vector by digestion of the recombinant plasmid with various restriction endonucleases. The insert was separated from the vector by agarose gel electrophoresis and purified in a low melting point agarose gel. Each of the purified fragments was then used for specificity tests. Labeling of DNA fragment probes. The label used was α32p(dATP), a radioactive nucleotide which can be incorporated enzymatically into a double-stranded DNA molecule. The fragment of interest is first denatured by heating at 95°C for 5 min, then a mixture of random primers is allowed to anneal to the strands of the fragments. These primers, once annealed, provide a starting point for synthesis of DNA. DNA polymerase, usually the Klenow fragment, is provided along with the four nucleotides, one of which is radioactive. When the reaction is terminated, the mixture of new DNA molecules is once again denatured to provide radioactive single-stranded DNA molecules
(i.e. the probe). As mentioned earlier, other modified nucleotides may be used to label the probes.
Specificity and ubiσuitv tests for; the DNA fragment probes. Species-specific DNA fragments ranging in size from
0.25 to 5.0 kbp were isolated for 10 common bacterial pathogens (Table 6) based on hybridization to chromosomal DNAs from a variety of bacteria. Samples of whole cell DNA for each bacterial strain listed in Table 5 were transferred onto a nylon membrane using a dot blot apparatus, washed and denatured before being irreversibly fixed. Hybridization conditions were as described earlier. A DNA fragment probe was considered specific only when it hybridized solely to the pathogen from which it was isolated. Labeled DNA fragments hybridizing specifically only to target bacterial species
(i.e. specific) were then tested for their ubiquity by hybridization to DNAs from approximately 10 to 80 isolates of the species of interest as described earlier. The conditions for pre-hybridization, hybridization and post-hybridization washes were as described earlier. After autoradiography (or other detection means appropriate for the non-radioactive label used), the specificity of each individual probe can be determined. Each probe found to be specific (i.e. hybridizing only to the DNA from the bacterial species from which it was isolated) and ubiquitous (i.e. hybridizing to most isolates of the target species) was kept for further experimentations.
EXAMPLE 2 :
Same as example 1 except that testing of the strains is by colony hybridization. The bacterial strains were inoculated onto a nylon membrane placed on nutrient agar. The membranes were incubated at 37°C for two hours and then bacterial lysis and DNA denaturation were carried out according to standard procedures. DNA hybridization was performed as described earlier. EXAMPLE 3 :
Same as example 1 except that bacteria were detected directly from clinical samples. Any biological samples were loaded directly onto a dot blot apparatus and cells were lysed in si tu for bacterial detection. Blood samples should be heparizined in order to avoid coagulation interfering with their convenient loading on a dot blot apparatus.
EXAMPLE 4 :
Nucleotide secruencing of DNA fragments. The nucleotide sequence of the totality or a portion of each fragment found to be specific and ubiquitous (Example 1) was determined using the dideoxynucleotide termination sequencing method (Sanger et al . , 1977, Proc. Natl. Acad. Sci. USA. 74:5463-5467). These DNA sequences are shown in the sequence listing. Oligonucleotide probes and amplification primers were selected from these nucleotide sequences, or alternatively, from selected data banks sequences and were then synthesized on an automated Biosearch synthesizer (Millipore™) using phosphoramidite chemistry.
Labeling of oligonucleotides. Each oligonucleotide was 5' end-labeled with γ32P-ATP by the T4 polynucleotide kinase (Pharmacia) as described earlier. The label could also be non- radioactive.
Specificity test for oligonucleotide probes. All labeled oligonucleotide probes were tested for their specificity by hybridization to DNAs from a variety of Gram positive and Gram negative bacterial species as described earlier. Species- specific probes were those hybridizing only to DNA from the bacterial species from which it was isolated. Oligonucleotide probes found to be specific were submitted to ubiquity tests as follows.
Ubiguity test for oligonucleotide probes. Specific oligonucleotide probes were then used in ubiquity tests with approximately 80 strains of the target species. Chromosomal DNAs from the isolates were transferred onto nylon membranes and hybridized with labeled oligonucleotide probes as described for specificity tests. The batteries of approximately 80 isolates constructed for each target species contain reference ATCC strains as well as a variety of clinical isolates obtained from various sources. Ubiquitous probes were those hybridizing to at least 80% of DNAs from the battery of clinical isolates of the target species. Examples of specific and ubiquitous oligonucleotide probes are listed in Annex 1.
EXAMPLE 5 :
Same as example 4 except that a pool of specific oligonucleotide probes is used for bacterial identification (i) to increase sensitivity and assure 100% ubiquity or (ii) to identify simultaneously more than one bacterial species. Bacterial identification could be done from isolated colonies or directly from clinical specimens. EXAMPLE 61
PCR amplification. The technique of PCR was used to increase sensitivity and rapidity of the tests . The PCR primers used were often shorter derivatives of the extensive sets of oligonucleotides previously developed for hybridization assays (Table 6). The sets of primers were tested in PCR assays performed directly from a bacterial colony or from a bacterial suspension (see Example 7) to determine their specificity and ubiquity (Table 7). Examples of specific and ubiquitous PCR primer pairs are listed in annex II. Specificity and ubiouity tests for amplification primers.
The specificity of all selected PCR primer pairs was teste against the battery of Gram negative and Gram positive bacteria used to test the oligonucleotide probes (Table 5). Primer pairs found specific for each species were then tested for their ubiquity to ensure that each set of primers could amplify at least 80% of DNAs from a battery of approximately 80 isolates of the target species. The batteries of isolates constructed for each species contain reference ATCC strains and various clinical isolates representative of the clinical diversity for each species.
Standard precautions to avoid false positive PCR results should be taken. Methods to inactivate PCR amplification products such as the inactivation by uracil-N-glycosylase may be used to control PCR carryover.
EXAMPLE 7 :
Amplification directly from a bacterial colony or suspension. PCR assays were performed either directly from a bacterial colony or from a bacterial suspension, the latter being adjusted to a standard McFarland 0.5 (corresponds to 1.5 x 108 bacteria/mL). In the case of direct amplification from a colony, a portion of the colony was transferred directly to a 50 μL PCR reaction mixture (containing 50 mM KCl, 10 mM Tris pH 8.3, 2.5 mM MgCl2. 0.4 μM of each of the two primers, 200 μM of each of the four dNTPs and 1.25 Unit of Tag DNA polymerase (Perkin Elmer)) using a plastic rod. For the bacterial suspension, 4 μL of the cell suspension was added to 46 μL of the same PCR reaction mixture. For both strategies, the reaction mixture was overlaid with 50 μL of mineral oil and PCR amplifications were carried out using an initial denaturation step of 3 min. at 95°C followed by 30 cycles consisting of a 1 second denaturation step at 95°C and of a 1 second annealing step at 55°C in a Perkin Elmer 480™ thermal cycler. PCR amplification products were then analyzed by standard agarose gel (2%) electrophoresis. Amplification products were visualized in agarose gels containing 2.5 μg/mL of ethidium bromide under UV at 254 nm. The entire PCR assay can be completed in approximately one hour.
Alternatively, amplification from bacterial cultures was performed as described above but using a "hot start" protocol. In that case, an initial reaction mixture containing the target DNA, primers and dNTPs was heated at 85°C prior to the addition of the other components of the PCR reaction mixture. The final concentration of all reagents was as described above. Subsequently, the PCR reactions were submitted to thermal cycling and analysis as described above.
EXAMPLE 8 :
Amplification directly from Clinical specimens. For amplification from urine specimens, 4 μL of undiluted or diluted (1:10) urine was added directly to 46 μL of the above PCR reaction mixture and amplified as described earlier.
To improve bacterial cell lysis and eliminate the PCR inhibitory effects of clinical specimens, samples were routinely diluted in lysis buffer containing detergent (s). Subsequently, the lysate was added directly to the PCR reaction mixture. Heat treatments of the lysates, prior to DNA amplification, using the thermocycler or a microwave oven could also be performed to increase the efficiency of cell lysis.
Our strategy is to develop rapid and simple protocols to eliminate PCR inhibitory effects of clinical specimens and lyse bacterial cells to perform DNA amplification directly from a variety of biological samples. PCR has the advantage of being compatible with crude DNA preparations. For example, blood, cerebrospinal fluid and sera may be used directly in PCR assays after a brief heat treatment. We intend to use such rapid and simple strategies to develop fast protocols for DNA amplification from a variety of clinical specimens.
EXAMPLE 9 :
Detection of antibiotic resistance genes. The presence of specific antibiotic resistance genes which are frequently encountered and clinically relevant is identified using the PCR amplification or hybridization protocols described in previous sections. Specific oligonucleotides used as a basis for the DNA-based tests are selected from the antibiotic resistance gene sequences. These tests can be performed either directly from clinical specimens or from a bacterial colony and should complement diagnostic tests for specific bacterial identification.
EXAMPLE 101
Same as examples 7 and 8 except that assays were performed by multiplex PCR (i.e. using several pairs of primers in a single PCR reaction) to (i) reach an ubiquity of 100% for the specific target pathogen or (ii) to detect simultaneously several species of bacterial pathogens.
For example, the detection of Escherichia coli requires three pairs of PCR primers to assure a ubiquity of 100% Therefore, a multiplex PCR assay (using the "hot-start" protocol (Example 7)) with those three primer pairs was developed. This strategy was also used for the other bacterial pathogens for which more than one primer pair was required to reach an ubiquity of 100%.
Multiplex PCR assays could also be used to (i) detect simultaneously several bacterial species or, alternatively, (ii) to simultaneously identify the bacterial pathogen and detect specific antibiotic resistance genes either directly from a clinical specimen or from a bacterial colony. For these applications, amplicon detection methods should be adapted to differentiate the various amplicons produced. Standard agarose gel electrophoresis could be used because it discriminates the amplicons based on their sizes. Another useful strategy for this purpose would be detection using a variety of fluorochromes emitting at different wavelengths which are each coupled with a specific oligonucleotide linked to a fluorescence quencher which is degraded during amplification to release the fluorochrome (e.g. TaqManTM, Perkin Elmer).
EXAMPLE 11:
Detection of amplification products. The person skilled in the art will appreciate that alternatives other than standard agarose gel electrophoresis (Example 7) may be used for the revelation of amplification products. Such methods may be based on the detection of fluorescence after amplification
(e.g. AmplisensorTM, Biotronics; TaqMan) or other labels such as biotin (SHARP Signal system, Digene Diagnostics). These methods are quantitative and easily automated. One of the amplification primers or an internal oligonucleotide probe specific to the amplicon(s) derived from the species-specific fragment probes is coupled with the fluorochrome or with any other label. Methods based on the detection of fluorescence are particularly suitable for diagnostic tests since they are rapid and flexible as fluorochromes emitting different wavelengths are available (Perkin Elmer).
EXAMPLE 12 :
Species-specific, universal and antibiotic resistance gene amplification primers can be used in other rapid amplification procedures such as the ligase chain reaction (LCR), transcription-based amplification systems (TAS), self- sustained sequence replication (3SR), nucleic acid sequence- based amplification (NASBA), strand displacement amplification (SDA) and branched DNA (bDNA) or any other methods to increase the sensitivity of the test. Amplifications can be performed from an isolated bacterial colony or directly from clinical specimens. The scope of this invention is therefore not limited to the use of PCR but rather includes the use of any procedures to specifically identify bacterial DNA and which may be used to increase rapidity and sensitivity of the tests.
EXAMPLE 13 :
A test kit would contain sets of probes specific for each bacterium as well as a set of universal probes. The kit is provided in the form of test components, consisting of the set of universal probes labeled with non-radioactive labels as well as labeled specific probes for the detection of each bacterium of interest in specific clinical samples. The kit will also include test reagents necessary to perform the prehybridization, hybridization, washing steps and hybrid detection. Finally, test components for the detection of known antibiotic resistance genes (or derivatives therefrom) will be included. Of course, the kit will include standard samples to be used as negative and positive controls for each hybridization test.
Components to be included in the kits will be adapted to each specimen type and to detect pathogens commonly encountered in that type of specimen. Reagents for the universal detection of bacteria will also be included. Based on the sites of infection, the following kits for the specific detection of pathogens may be developed:
-A kit for the universal detection of bacterial pathogens from most clinical specimens which contains sets of probes specific for highly conserved regions of the bacterial genomes .
-A kit for the detection of bacterial pathogens retrieved from urine samples, which contains eight specific test components (sets of probes for the detection of Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus saprophyticus, Staphylococcus aureus and Staphylococcus epidermidis). -A kit for the detection of respiratory pathogens which contains seven specific test components (sets of probes for detecting Streptococcus pneumoniae, Moraxella catarrhalis,
Haemophilus influenzae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Streptococcus pyogenes and Staphylococcus aureus).
-A kit for the detection of pathogens retrieved from blood samples, which contains eleven specific test components (sets of probes for the detection of Streptococcus pneumoniae,
Moraxella catarrhalis, Haemophilus influenzae, Proteus mirabilis, Klebsiella pneumoniae, Pseudomonas aeruginosa,
Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, Streptococcus pyogenes and Staphylococcus epidermidis).
-A kit for the detection of pathogens causing meningitis, which contains four specific test components (sets of probes for the detection of Haemophilus influenzae, Streptococcus pneumoniae, Escherichia coli and Pseudomonas aeruginosa) .
-A kit for the detection of clinically important antibiotic resistance genes which contains sets of probes for the specific detection of at least one of the 19 following genes associated with bacterial resistance : blatem. blarob, blashv, aadB, aacC1, aacC2, aacC3, aacA4, mecA, vanA, vanH, vanX, safA, aacK-aphD, vat, vga, msrK, sul and int.
-Other kits adapted for the detection of pathogens from skin, abdominal wound or any other clinically relevant kits will be developed.
EXAMPLE 14 :
Same as example 13 except that the test kits contain all reagents and controls to perform DNA amplification assays.
Diagnostic kits will be adapted for amplification by PCR (or other amplification methods) performed directly either from clinical specimens or from a bacterial colony. Components required for universal bacterial detection, bacterial identification and antibiotic resistance genes detection will be included. Amplification assays could be performed either in tubes or in microtitration plates having multiple wells. For assays in plates, the wells will be coated with the specific amplification primers and control DNAs and the detection of amplification products will be automated. Reagents and amplification primers for universal bacterial detection will be included in kits for tests performed directly from clinical specimens. Components required for bacterial identificatio and antibiotic resistance gene detection will be included i n kits for testing directly from colonies as well as in kits for testing directly from clinical specimens.
The kits will be adapted for use with each type o f specimen as described in example 13 for hybridization-base diagnostic kits.
EXAMPLE 15:
It is understood that the use of the probes and amplification primers described in this invention for bacterial detection and identification is not limited to clinical microbiology applications. In fact, we feel that other sectors could also benefit from these new technologies. For example, these tests could be used by industries for quality control of food, water, pharmaceutical products or other products requiring microbiological control. These tests could also be applied to detect and identify bacteria in biological samples from organisms other than humans (e.g. other primates, mammals, farm animals and live stocks). These diagnostic tools could also be very useful for research purposes including clinical trials and epidemiological studies .
Figure imgf000031_0001
Figure imgf000032_0001
Figure imgf000033_0001
Figure imgf000034_0001
Figure imgf000035_0001
Figure imgf000036_0001
Figure imgf000037_0001
a No DNA fragment or oligonucleotide probes were tested for E.
faecalis and S. pyogenes.
b Sizes of DNA fragments range from 0.25 to 5.0 kbp.
c A specific probe was considered ubiquitous when at least 80% of isolates of the target species (approximately 80 isolates) were recognized by each specific probe. When 2 or more probes are combined, 100% of the isolates are recognized.
d These sequences were selected from data banks.
e Ubiquity tested with approximately 10 isolates of the target
species.
f A majority of probes (8/9) do not discriminate E. coli and Shigella spp.
9 Ubiquity tests with a pool of the 7 probes detected all 66 bacterial species listed in Table 5.
Figure imgf000038_0001
Figure imgf000039_0001
a All primer pairs are specific in PCR assays since no
amplification was observed with DNA from 66 different species of both Gram positive and Gram negative bacteria other than the species of interest (Table 5).
b The ubiquity was normally tested on 80 strains of the species of interest. All retained primer pairs amplified at least 90% of the isolates. When combinations of primers were used, an ubiquity of 100% was reached.
c For all primer pairs and multiplex combinations, PCR amplifications directly performed from a bacterial colony were 100 % species- specific.
d PCR assays performed directly from urine specimens.
e Primer pairs derived from data bank sequences. Primer pairs with no "e" are derived from our species-specific fragments.
f For S. pyogenes, primer pair #1 is specific for Group A
Streptococci (GAS) . Primer pair #2 is specific for the GAS- producing exotoxin A gene (SpeA) .
g Ubiquity tested on 195 isolates from 23 species representative of bacterial pathogens commonly encountered in clinical specimens. h Optimizations are in progress to eliminate non-specific
amplification observed with some bacterial species other than the target species.
i N.T.: not tested.
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000042_0001
Figure imgf000043_0001
Figure imgf000044_0001
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000050_0001
Figure imgf000051_0001
Figure imgf000052_0001
Figure imgf000053_0001
υ.
Figure imgf000054_0001
u>
Figure imgf000055_0001
_fc-
Figure imgf000056_0001
u u..
Figure imgf000057_0001
*
Figure imgf000058_0001
Figure imgf000059_0001
Figure imgf000060_0002
Figure imgf000060_0001
Figure imgf000061_0001
Figure imgf000061_0002
Figure imgf000061_0003
Figure imgf000062_0001
Figure imgf000062_0002
Figure imgf000062_0003
Figure imgf000062_0004
Figure imgf000063_0001
Figure imgf000063_0002
Figure imgf000064_0001
Figure imgf000064_0002
Figure imgf000064_0003
Figure imgf000065_0001
Figure imgf000066_0001
Figure imgf000066_0002
Figure imgf000067_0001
Figure imgf000067_0002
Figure imgf000067_0003
Figure imgf000067_0004
Figure imgf000067_0005
Figure imgf000068_0001
Figure imgf000068_0002
Figure imgf000068_0003
Figure imgf000068_0004
Figure imgf000068_0005
Figure imgf000069_0001
Figure imgf000069_0002
Figure imgf000069_0003
Figure imgf000070_0001
Figure imgf000070_0002
Figure imgf000070_0003
Figure imgf000070_0004
Figure imgf000071_0001
Figure imgf000071_0002
Figure imgf000072_0001
Figure imgf000072_0002
Figure imgf000073_0001
Figure imgf000073_0002
Figure imgf000073_0003
Figure imgf000074_0001
Figure imgf000075_0001
Figure imgf000075_0002
Figure imgf000076_0001
Figure imgf000077_0001
Figure imgf000077_0002
Figure imgf000077_0003
Figure imgf000078_0001
Figure imgf000078_0002
Figure imgf000079_0001
Figure imgf000080_0001
Figure imgf000080_0002
Figure imgf000080_0003
Figure imgf000080_0004
Figure imgf000080_0005
Figure imgf000081_0001
Figure imgf000081_0002
Figure imgf000081_0003
Figure imgf000081_0004
Figure imgf000081_0005
Figure imgf000082_0001
Figure imgf000082_0002
Figure imgf000082_0003
Figure imgf000083_0001
Figure imgf000083_0002
Figure imgf000083_0003
Figure imgf000084_0001
Figure imgf000085_0001
Figure imgf000086_0001
Figure imgf000087_0001
Figure imgf000088_0001
Figure imgf000088_0002
Figure imgf000089_0001
Figure imgf000089_0002
Figure imgf000089_0003
Figure imgf000090_0001
Figure imgf000090_0002
Figure imgf000090_0003
Figure imgf000090_0004
Figure imgf000091_0001
Figure imgf000092_0001
Figure imgf000093_0002
Figure imgf000093_0001
Figure imgf000094_0001
Figure imgf000094_0002
Figure imgf000095_0001
Figure imgf000095_0002
Figure imgf000095_0003
Figure imgf000096_0001
Figure imgf000096_0002
Figure imgf000097_0001
Figure imgf000098_0002
Figure imgf000099_0001
Figure imgf000100_0002
Figure imgf000100_0003
Figure imgf000101_0001
Figure imgf000102_0001
Figure imgf000103_0001
Figure imgf000104_0001
Figure imgf000105_0001
Figure imgf000106_0001
Figure imgf000107_0001
Figure imgf000108_0001
Figure imgf000109_0001
Figure imgf000110_0001
Figure imgf000111_0001
Figure imgf000112_0001
Figure imgf000113_0001
Figure imgf000114_0001
Figure imgf000115_0001
Figure imgf000116_0001
Figure imgf000117_0001
Figure imgf000118_0001
Figure imgf000119_0001
Figure imgf000120_0001
Figure imgf000121_0001
Figure imgf000122_0001
Figure imgf000123_0001
Figure imgf000124_0001
Figure imgf000125_0001
Figure imgf000126_0001
Figure imgf000127_0001
Figure imgf000128_0001
Figure imgf000129_0001
Figure imgf000130_0001
Figure imgf000131_0001
Figure imgf000132_0001
Figure imgf000133_0001
Figure imgf000134_0001
Figure imgf000135_0001
Figure imgf000136_0001
Figure imgf000137_0001
Figure imgf000138_0001
Figure imgf000139_0001
Figure imgf000140_0001
Figure imgf000141_0001
Figure imgf000141_0002
Figure imgf000141_0003
Figure imgf000142_0001
Figure imgf000142_0002
Figure imgf000142_0003
Figure imgf000142_0004
Figure imgf000143_0001
Figure imgf000143_0002
Figure imgf000143_0003
Figure imgf000143_0004
Figure imgf000144_0001
Figure imgf000144_0002
Figure imgf000144_0003
Figure imgf000144_0004
Figure imgf000145_0001
Figure imgf000145_0002
Figure imgf000145_0003
Figure imgf000145_0004
Figure imgf000146_0001
Figure imgf000146_0002
Figure imgf000146_0003
Figure imgf000146_0004
Figure imgf000147_0001
Figure imgf000147_0002
Figure imgf000147_0003
Figure imgf000148_0001
Figure imgf000149_0001
Figure imgf000149_0002
Figure imgf000149_0003
Figure imgf000150_0001
Figure imgf000150_0002
Figure imgf000150_0003
Figure imgf000151_0001
Figure imgf000151_0002
Figure imgf000151_0003
Figure imgf000151_0004
Figure imgf000152_0002
Figure imgf000152_0001
Figure imgf000152_0003
Figure imgf000153_0001
Figure imgf000153_0002
Figure imgf000153_0003
Figure imgf000153_0004
Figure imgf000154_0001
Figure imgf000154_0002
Figure imgf000154_0003
Figure imgf000155_0001

Claims

CLAIMS What is claimed is:
1. A method using probes (fragments and/or oligonucleotides) and/or amplification primers which are specific, ubiquitous and sensitive for determining the presence and/or amount nucleic acids from bacterial species selected from the group consisting of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Staphylococcus saprophyticus, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis in a any sample suspected of containing said bacterial nucleic acid, wherein said bacterial nucleic acid or variant or part thereof comprises a selected target region hybridizable with said probes or primers; said method comprising the steps of contacting said sample with said probes or primers and detecting the presence and/or amount of hybridized probes and/or amplified products as an indication of the presence and/or amount of said bacterial species.
2. A method as defined in claim 1 further using probes (fragments and/or oligonucleotides) and/or amplification primers which are universal and sensitive for determining the presence and/or amount of nucleic acids from any bacteria from any sample suspected of containing said bacterial nucleic acid, wherein said bacterial nucleic acid or variant or part thereof comprises a selected target region hybridizable with said probes or primers; said method comprising the steps of contacting said sample with said probes or primers and detecting the presence and/or amount of hybridized probes and/or amplified products as an indication of the presence and/or amount of said any bacteria.
3. A method as defined in claim 1 further using probes
(fragments and/or oligonucleotides) and/or amplification primers which are specific, ubiquitous and sensitive for determining the presence and/or amount of nucleic acids from an antibiotic resistance gene selected from the group consisting of bla t em, Blarob , Blash v, aadB, aacC1, aacC2, aacC3 , aacA4, mecA, vanA, vanH, vanX, satA, aach-aphD, va t , vga , msrA, sul and int in any sample suspected of containing said bacterial nucleic acid, wherein said bacterial nucleic acid or variant or part thereof comprises a selected target region hybridizable with said probes or primers; said method comprising the steps of contacting said sample with said probes or primers and detecting the presence and/or amount of hybridized probes and/or amplified products as an indication of the presence and/or amount of said antibiotic resistance gene.
4. The method of any one of claims 1, 2 and 3 which is performed directly on a sample obtained from human patients, animals, environment or food.
5. The method of any one of claims 1, 2 and 3 which is performed directly on a sample consisting of one or more bacterial colonies.
6. The method of any one of claims 1 to 5, wherein the bacterial nucleic acid is amplified by a method selected from the group consisting of:
a) polymerase chain reaction (PCR),
b) ligase chain reaction,
c) nucleic acid sequence-based amplification, d) self-sustained sequence replication,
e) strand displacement amplification,
f) branched DNA signal amplification,
g) nested PCR, and
h) multiplex PCR.
7. The method of claim 6 wherein said bacterial nucleic acid is amplified by PCR.
8. The method of claim 7 wherein the PCR protocol is modified to determine within one hour the presence of said bacterial nucleic acids by performing for each amplification cycle an annealing step of only one second at 55ºC and a denaturation step of only one second at 95ºC without any elongation step.
9. A method for the detection, identification and/or quantification of Escherichia coli directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Escherichia coli, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of Escherichia coli in said test sample.
10. A method as defined in claim 9, wherein said probe is selected from the group consisting of:
1) an oligonucleotide of 12-227 nucleotides in length which sequence is comprised in SEQ ID NO: 3 or a complementary sequence thereof,
2) an oligonucleotide of 12-278 nucleotides in length which sequence is comprised in SEQ ID NO: 4 or a complementary sequence thereof,
3) an oligonucleotide of 12-1596 nucleotides in length which sequence is comprised in SEQ ID NO: 5 or a complementary sequence thereof,
4) an oligonucleotide of 12-2703 nucleotides in length which sequence is comprised in SEQ ID NO: 6 or a complementary sequence thereof,
5) an oligonucleotide of 12-1391 nucleotides in length which sequence is comprised in SEQ ID NO: 7 or a complementary sequence thereof, and
variants thereof which specifically and ubiquitously anneal with strains and representatives of Escherichia coli .
11. The method of claim 10, wherein the probe for detecting nucleic acid sequences from Escherichia coli is selected from the group consisting of SEQ ID NO: 44, SEQ ID NO: 45, SEQ ID NO: 48, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51, SEQ ID NO: 52, SEQ ID NO: 53, SEQ ID NO: 54 and a sequence complementary thereof.
12. A method for detecting the presence and/or amount of Escheri chia coli in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Escherichia coli DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6 and SEQ ID NO: 7;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Escherichia coli in said test sample.
13. The method of claim 12, wherein said at least one pair of primers is selected from the group consisting of:
a) SEQ ID NO: 42 and SEQ ID NO: 43,
b) SEQ ID NO: 46 and SEQ ID NO: 47,
c) SEQ ID NO: 55 and SEQ ID NO: 56, and
d) SEQ ID NO: 131 and SEQ ID NO: 132.
14. A method for the detection, identification and/or quantification of Klebsiella pneumoniae directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in si tu said inoculated sample or isolated bacteria to release the bacterial DNA, said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Klebsiel la pneumoniae, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of Klebsiella pneumoniae in said test sample.
15. A method as defined in claim 14, wherein said probe is selected from the group consisting of:
1) an oligonucleotide of 12-238 nucleotides in length which sequence is comprised in SEQ ID NO: 8 or a complementary sequence thereof,
2) an oligonucleotide of 12-385 nucleotides in length which sequence is comprised in SEQ ID NO: 9 or a complementary sequence thereof,
3) an oligonucleotide of 12-462 nucleotides in length which sequence is comprised in SEQ ID NO: 10 or a complementary sequence thereof,
4) an oligonucleotide of 12-730 nucleotides in length which sequence is comprised in SEQ ID NO: 11 or a complementary sequence thereof, and variants thereof which specifically and ubiquitously anneal with strains and representatives of Kl ebs i el l a pneumoniae.
16. The method of claim 15, wherein the probe for detecting nucleic acid sequences from Klebsiella pneumoniae is selected from the group consisting of SEQ ID NO: 57, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 63, SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 69 and a sequence complementary thereof.
17. A method for detecting the presence and/or amount of Kl ebsiel la pneumoniae in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Klebsi el la pneumoniae DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, and SEQ ID NO: 11;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Klebsiella pneumoniae in said test sample.
18. The method of claim 17, wherein said at least one pair of primers is selected from the group consisting of:
a) SEQ ID NO: 61 and SEQ ID NO: 62,
b) SEQ ID NO: 67 and SEQ ID NO: 68 c) SEQ ID NO: 135 and SEQ ID NO: 136, and
d) SEQ ID NO: 137 and SEQ ID NO: 138.
19. A method for the detection, identification and/or quantification of Proteus mirabi lis directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in si tu said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Proteus mirabilis, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of Proteus mirabilis in said test sample.
20. A method as defined in claim 19, wherein said probe is selected from the group consisting of:
1) an oligonucleotide of 12-225 nucleotides in length which sequence is comprised in SEQ ID NO: 12 or a complementary sequence thereof,
2) an oligonucleotide of 12-402 nucleotides in length which sequence is comprised in SEQ ID NO: 13 or a complementary sequence thereof,
3) an oligonucleotide of 12-157 nucleotides in length which sequence is comprised in SEQ ID NO: 14 or a complementary sequence thereof,
4) an oligonucleotide of 12-1348 nucleotides in length which sequence is comprised in SEQ ID NO: 15 or a complementary sequence thereof, and
variants thereof which specifically and ubiquitously anneal with strains and representatives of Proteus mirabilis.
21. The method of claim 20, wherein the probe for detecting nucleic acid sequences from Proteus mirabilis is selected from the group consisting of SEQ ID NO: 70, SEQ ID NO: 71, SEQ ID NO: 72, SEQ ID NO: 73, SEQ ID NO: 76, SEQ ID NO: 77, SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 82 and a sequence complementary thereof.
22. A method for detecting the presence and/or amount of Proteus mirabi l is in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Proteus mirabilis DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, and SEQ ID NO: 15;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Proteus mirabilis in said test sample.
23. The method of claim 22, wherein said at least one pair of primers is selected from the group consisting of:
a) SEQ ID NO: 74 and SEQ ID NO: 75, and
b) SEQ ID NO: 133 and SEQ ID NO: 134.
24. A method for the detection, identification and/or quantification of Staphylococcus saprophyticus directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Staphyl ococcus saprophyticus, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of Staphylococcus saprophyticus in said test sample.
25. A method as defined in claim 24, wherein said probe is selected from the group consisting of:
1) an oligonucleotide of 12-172 nucleotides in length which sequence is comprised in SEQ ID NO: 21 or a complementary sequence thereof,
2) an oligonucleotide of 12-155 nucleotides in length which sequence is comprised in SEQ ID NO: 22 or a complementary sequence thereof,
3) an oligonucleotide of 12-145 nucleotides in length which sequence is comprised in SEQ ID NO: 23 or a complementary sequence thereof,
4) an oligonucleotide of 12-265 nucleotides in length which sequence is comprised in SEQ ID NO: 24 or a complementary sequence thereof, and
variants thereof which specifically and ubiquitously anneal with strains and representatives of Staphylococcus saprophyticus.
26. The method of claim 25, wherein the probe for detecting nucleic acid sequences from Staphylococcus saprophyticus is selected from the group consisting of SEQ ID NO: 96, SEQ ID NO: 97, SEQ ID NO: 100, SEQ ID NO: 101, SEQ ID NO: 102, SEQ ID NO: 103, SEQ ID NO: 104 and a sequence complementary thereof.
27. A method for detecting the presence and/or amount of Staphylococcus saprophyticus in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Staphylococcus saprophyticus DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, and SEQ ID NO: 24; b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Staphylococcus saprophyticus in said test sample.
28. The method of claim 27, wherein said at least one pair of primers is selected from the group consisting of:
a) SEQ ID NO: 98 and SEQ ID NO: 99, and
b) SEQ ID NO: 139 and SEQ ID NO: 140.
29. A method for the detection, identification and/or quantification of Moraxella catarrhalis directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in si tu said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 28, SEQ ID NO: 29, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Moraxel la ca tarrhal is , under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of Moraxella catarrhalis in said test sample.
30. A method as defined in claim 29, wherein said probe is selected from the group consisting of:
1) an oligonucleotide of 12-526 nucleotides in length which sequence is comprised in SEQ ID NO: 28 or a complementary sequence thereof,
2) an oligonucleotide of 12-466 nucleotides in length which sequence is comprised in SEQ ID NO: 29 or a complementary sequence thereof, and
variants thereof which specifically and ubiquitously anneal with strains and representatives of Moraxe lla catarrhalis.
31. The method of claim 30, wherein the probe for detecting nucleic acid sequences from Moraxella catarrhalis is selected from the group consisting of SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117 and a sequence complementary thereof.
32. A method for detecting the presence and/or amount of Moraxella ca tarrhal i s in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Moraxell a ca tarrhalis DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 28 and SEQ ID NO: 29;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Moraxella catarrhalis in said test sample.
33. The method of claim 32, wherein said at least one pair of primers is selected from the group consisting of:
a) SEQ ID NO: 112 and SEQ ID NO: 113,
b) SEQ ID NO: 118 and SEQ ID NO: 119, and
c) SEQ ID NO: 160 and SEQ ID NO: 119.
34. A method for the detection, identification and/or quantification of Pseudomonas aeruginosa directly from a test sample or from bacterial colonies, which comprises the following steps: a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inret support, and lysing in si tu said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, a sequence complementary thereof, a part thereof and a variant thereof, which specifically ubiquitously anneals with strains or representatives Pseudomonas aeruginosa, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of Pseudomonas aeruginosa in said test sample.
35. A method as defined in claim 34, wherein said probe is selected from the group consisting of:
1) an oligonucleotide of 12-2167 nucleotides in length which sequence is comprised in SEQ ID NO: 16 or a complementary sequence thereof, 2) an oligonucleotide of 12-1872 nucleotides in length which sequence is comprised in SEQ ID NO: 17 or a complementary sequence thereof,
3) an oligonucleotide of 12-3451 nucleotides in length which sequence is comprised in SEQ ID NO: 18 or a complementary sequence thereof,
4) an oligonucleotide of 12-744 nucleotides in length which sequence is comprised in SEQ ID NO: 19 or a complementary sequence thereof,
5) an oligonucleotide of 12-2760 nucleotides in length which sequence is comprised in SEQ ID NO: 20 or a complementary sequence thereof, and
variants thereof which specifically and ubiquitously anneal with strains and representatives of Pseudomonas aeruginosa.
36. The method of claim 35, wherein the probe for detecting nucleic acid sequences from Pseudomonas aeruginosa is selected from the group consisting of SEQ ID NO: 87, SEQ ID NO: 88, SEQ ID NO: 89, SEQ ID NO: 90, SEQ ID NO: 91, SEQ ID NO: 92, SEQ ID NO: 93, SEQ ID NO: 94, SEQ ID NO: 95 and a sequence complementary thereof.
37. A method for detecting the presence and/or amount of Pseudomonas aeruginosa in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Pseudomonas aeruginosa DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19 and SEQ ID NO: 20;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Pseudomonas aeruginosa in said test sample.
38. The method of claim 37, wherein said at least one pair of primers is selected from the group consisting of:
a) SEQ ID NO: 83 and SEQ ID NO: 84, and
b) SEQ ID NO: 85 and SEQ ID NO: 86.
39. A method for the detection, identification and/or quantification of Staphylococcus epidermidis directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 36, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Staphylococcus epidermidis, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of Staphylococcus epidermidis in said test sample.
40. A method as defined in claim 39, wherein said probe is selected from the group consisting of an oligonucleotide of 12-705 nucleotides in length which sequence is comprised in SEQ ID NO: 36 and variants thereof which specifically and ubiquitously anneal with strains and representatives of Staphylococcus epidermidis.
41. A method for detecting the presence and/or amount of Staphylococcus epidermidis in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Staphylococcus epidermidis DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the following sequence: SEQ ID NO: 36;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level ; and c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Staphylococcus epidermidis in said test sample.
42. The method of claim 41, wherein said at least one pair of primers is selected from the group consisting of:
a) SEQ ID NO: 145 and SEQ ID NO: 146, and
b) SEQ ID NO: 147 and SEQ ID NO: 148.
43. A method for the detection, identification and/or quantification of Staphylococcus aureus directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in si tu said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 37, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Staphylococcus aureus, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and c ) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of Staphylococcus aureus in said test sample.
44. A method as defined in claim 43, wherein said probe is selected from the group consisting of an oligonucleotide of 12-442 nucleotides in length which sequence is comprised in SEQ ID NO: 37 and variants thereof which specifically and ubiquitously anneal with strains and representatives of Staphylococcus aureus .
45. A method for detecting the presence and/or amount of Staphylococcus aureus in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Staphylococcus aureus DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the following sequence: SEQ ID NO: 37;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Staphylococcus aureus in said test sample.
46. The method of claim 45, wherein said at least one pair of primers is selected from the group consisting of:
a) SEQ ID NO: 149 and SEQ ID NO: 150, b) SEQ ID NO: 149 and SEQ ID NO: 151, and
c) SEQ ID NO: 152 and SEQ ID NO: 153.
47. A method for the detection, identification and/or quantification of Haemophilus influenzae directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in si tu said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Haemophilus influenzae, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of Haemophilus influenzae in said test sample.
48. A method as defined in claim 47, wherein said probe is selected from the group consisting of:
1) an oligonucleotide of 12-845 nucleotides in length which sequence is comprised in SEQ ID NO: 25 or a complementary sequence thereof,
2) an oligonucleotide of 12-1598 nucleotides in length which sequence is comprised in SEQ ID NO: 26 or a complementary sequence thereof,
3) an oligonucleotide of 12-9100 nucleotides in length which sequence is comprised in SEQ ID NO: 27 or a complementary sequence thereof, and
variants thereof which specifically and ubiquitously anneal with strains and representatives of Ha emophi l us influenzae.
49. The method of claim 48, wherein the probe for detecting nucleic acid sequences from Haemophilus influenzae is selected from the group consisting of SEQ ID NO: 105, SEQ ID NO: 106, SEQ ID NO: 107 and a sequence complementary thereof.
50. A method for detecting the presence and/or amount of Haemophilus influenzae in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Haemophilus influenzae DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 25, SEQ ID NO: 26 and SEQ ID NO: 27;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Haemophilus influenzae in said test sample.
51. The method of claim 50, wherein said at least one pair of primers comprises the following pair: SEQ ID NO: 154 and SEQ ID NO: 155.
52. A method for the detection, identification and/or quantification of Streptococcus pneumoniae directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 34, SEQ ID NO: 35, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Streptococcus pneumoniae, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of Streptococcus pneumoniae in said test sample.
53. A method as defined in claim 52, wherein said probe is selected from the group consisting of:
1) an oligonucleotide of 12-631 nucleotides in length which sequence is comprised in SEQ ID NO: 30 or a complementary sequence thereof,
2) an oligonucleotide of 12-3754 nucleotides in length which sequence is comprised in SEQ ID NO: 31 or a complementary sequence thereof,
3) an oligonucleotide of 12-841 nucleotides in length which sequence is comprised in SEQ ID NO: 34 or a complementary sequence thereof,
4) an oligonucleotide of 12-4500 nucleotides in length which sequence is comprised in SEQ ID NO: 35 or a complementary sequence thereof, and
variants thereof which specifically and ubiquitously anneal with strains and representatives of Streptococcus pneumoniae .
54. The method of claim 53, wherein the probe for detecting nucleic acid sequences from Streptococcus pneumoniae is selected from the group consisting of SEQ ID NO: 120, SEQ ID NO: 121 and a sequence complementary thereof.
55. A method for detecting the presence and/or amount of Streptococcus pneumoniae in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Streptococcus pneumoniae DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 34 and SEQ ID NO: 35;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Streptococcus pneumoniae in said test sample.
56. The method of claim 55, wherein said at least one pair of primers is selected from the group consisting of:
a) SEQ ID NO: 78 and SEQ ID NO: 79,
b) SEQ ID NO: 156 and SEQ ID NO: 157, and
c) SEQ ID NO: 158 and SEQ ID NO: 159.
57. A method for the detection, identification and/or quantification of Streptococcus pyogenes directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 32, SEQ ID NO: 33, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Streptococcus pyogenes , under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of Streptococcus pyogenes in said test sample.
58. A method as defined in claim 57, wherein said probe is selected from the group consisting of:
1) an oligonucleotide of 12-1337 nucleotides in length which sequence is comprised in SEQ ID NO: 32 or a complementary sequence thereof,
2) an oligonucleotide of 12-1837 nucleotides in length which sequence is comprised in SEQ ID NO: 33 or a complementary sequence thereof, and
variants thereof which specifically and ubiquitously anneal with strains and representatives of Streptococcus pyogenes .
59. A method for detecting the presence and/or amount of Streptococcus pyogenes in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Streptococcus pyogenes DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 32 and SEQ ID NO: 33;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amou t of Streptococcus pyogenes in said test sample.
60. The method of claim 59, wherein said at least one pair of primers is selected from the group consisting of:
a) SEQ ID NO: 141 and SEQ ID NO: 142, and
b) SEQ ID NO: 143 and SEQ ID NO: 144.
61. A method for the detection, identification and/or quantification of Enterococcus faecalis directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Enterococcus faecalis , under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of Enterococcus faecalis in said test sample.
62. A method as defined in claim 61, wherein said probe is selected from the group consisting of:
1) an oligonucleotide of 12-1817 nucleotides in length which sequence is comprised in SEQ ID NO: 1 or a complementary sequence thereof,
2) an oligonucleotide of 12-2275 nucleotides in length which sequence is comprised in SEQ ID NO: 2, and
variants thereof which specifically and ubiquitously anneal with strains and representatives of En terococcus faecalis.
63. A method for detecting the presence and/or amount of Enterococcus faecalis in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of En terococcus faecalis DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 1 and SEQ ID NO: 2;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level ; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Enterococcus faecalis in said test sample.
64. The method of claim 63, wherein said at least one pair of primers is selected from the group consisting of:
a) SEQ ID NO: 38 and SEQ ID NO: 39, and
b) SEQ ID NO: 40 and SEQ ID NO: 41.
65. A method for the detection of the presence and/or amount of any bacterial species directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a universal probe which sequence is selected from the group consisting of SEQ ID NO: 122, SEQ ID NO: 123, SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130 and sequence complementary thereof, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of said any bacterial species in said test sample.
66. A method for detecting the presence and/or amount of any bacterial species in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing a pair of universal primers which sequence is defined in SEQ ID NO: 126 and SEQ ID NO: 127, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said any bacterial species DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of said any bacterial species in said test sample.
67. A method for evaluating a bacterial resistance to β-lactam antibiotics mediated by the bacterial antibiotic resistance gene bl a t em (TEM-1) directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample. or inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 161, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for a β-lactamase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe ; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to β-lactam antibiotics mediated by the bacterial antibiotic resistance gene TEM-1.
68. A method as defined in claim 67, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 161.
69. A method for evaluating a bacterial resistance to β-lactam antibiotics mediated by the bacterial antibiotic resistance gene blat em (TEM-1) in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for a β-lactamase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 161;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to β-lactam antibiotics mediated by the bacterial antibiotic resistance gene TEM-1.
70. A method for evaluating a bacterial resistance to β-lactam antibiotics mediated by the bacterial antibiotic resistance gene blarob (ROB-1) directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in si tu said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 162, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for a β-lactamase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe ; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to β-lactam antibiotics mediated by the bacterial antibiotic resistance gene ROB-1.
71. A method as defined in claim 70, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 162.
72. A method for evaluating a bacterial resistance to β-lactam antibiotics mediated by the bacterial antibiotic resistance gene blarob (ROB-1) in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistanc gene coding for a β-lactamase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 162;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to β-lactam antibiotics mediated by the bacterial antibiotic resistance gene ROB-1.
73. A method for evaluating a bacterial resistance to β-lactam antibiotics mediated by the bacterial antibiotic resistance gene blash v (SHV-1) directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 163, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for a β-lactamase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to β-lactam antibiotics mediated by the bacterial antibiotic resistance gene SHV-1.
74. A method as defined in claim 73, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 163.
75. A method for evaluating a bacterial resistance to β-lactam antibiotics mediated by the bacterial antibiotic resistance gene blashv (SHV-1) in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for a β-lactamase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 163;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to β-lactam antibiotics mediated by the bacterial antibiotic resistance gene SHV-1.
76. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aadB directly from a test sample or from bacterial colonies, which comprises the following steps: a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 164, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an aminoglycoside adenylyltransferase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aadB.
77. A method as defined in claim 76, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 164.
78. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aadB in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for an aminoglycoside adenylyltransferase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 164;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aadB.
79. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacCl directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 165, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC1.
80. A method as defined in claim 79, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 165.
81. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacCl in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers haying at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 165;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC1.
82. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC2 directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in si tu said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 166, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC2.
83. A method as defined in claim 82, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 166.
84. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC2 in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 166;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC2.
85. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC3 directly from a test sample or from bacterial colonies, which comprises the following steps :
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 167, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC3.
86. A method as defined in claim 85, wherin said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 167.
87. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC3 in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 167;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level ; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC3 .
88. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacA4 directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA, said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, siid drobe comprising at least one single strand d ucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 168, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacA4 .
89. A method as defined in claim 88, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 168.
90 . A method for evaluating a bacterial res istance to aminoglycos ide ant ibiot ics mediated by the bacterial antibiotic resistance gene aacA4 in a test sample which comprises the following steps :
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length , one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase that contains a target sequence , and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 168;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacA4.
91. A method for evaluating a bacterial resistance to β-lactam antibiotics mediated by the bacterial antibiotic resistance gene mecA directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 169, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for a penicillin-binding protein, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to β-lactam antibiotics mediated by the bacterial antibiotic resistance gene mecA.
92. A method as defined in claim 91, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 169.
93. A method for evaluating a bacterial resistance to β- lactam antibiotics mediated by the bacterial antibiotic resistance gene mecA in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for a penicillin-binding protein that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 169;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level ; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to β-lactam antibiotics mediated by the bacterial antibiotic resistance gene mecA.
94. A method for evaluating a bacterial resistance to vancomycin mediated by the bacterial antibiotic resistance genes vanH, vanA and vanX directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 170, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance genes coding for vancomycin-resistance proteins, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to vancomycin mediated by the bacterial antibiotic resistance genes vanH, vanA and vanX.
95. A method as defined in claim 94, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 170.
96. A method for evaluating a bacterial resistance to vancomycin mediated by the bacterial antibiotic resistance genes vanH, vanA and vanX in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance genes coding for vancomycin-resistance proteins that contain a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 170;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectab le level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to vancomycin mediated by the bacterial antibiotic resistan ce genes vanH, vanA and vanX.
97. A method for evaluating a bacterial resistance to streptogramin A mediated by the bacterial antibiotic resistance gene satA directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA, said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 173, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for a streptogramin A acetyltransferase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to streptogramin A mediated by the bacterial antibiotic resistance gene satA.
98. A method as defined in claim 97, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 173.
99. A method for evaluating a bacterial resistance to streptogramin A mediated by the bacterial antibiotic resistance gene satA in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for streptogramin A acetyltransferase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 173;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to streptogramin A mediated by the bacterial antibiotic resistance gene satA.
100. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aach-aphD directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 174, a sequence complementar thereof, a part thereof and a variant thereof, whic specifically anneals with said bacterial antibiotic resistanc gene coding for an aminoglycoside acetyltransferase- phosphotransferase under conditions such that the nucleic aci of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacA-aphΩ.
101. A method as defined in claim 100, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 174.
102. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aach-aphD in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase- phosphotransferase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 174;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacA-aphD.
103. A method for evaluating a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistance gene vat directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 175, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for a virginiamycin acetyltransferase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistance gene vat.
104. A method as defined in claim 103, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 175.
105. A method for evaluating a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistance gene vat in a test sample which comprises the following steps: a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for a virginiamycin acetyltransferase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 175;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistance gene vat.
106. A method for evaluating a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistance gene vga directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample or inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in si tu said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 176, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an ATP-binding protein, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistance gene vga .
107. A method as defined in claim 106 , therein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO : 176.
108. A method for evaluating a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistance gene vga in a test sample which comprises the following steps : a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for an ATP-binding protein that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 176;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistance gene vga.
109. A method for evaluating a bacterial resistance to erythromycin mediated by the bacterial antibiotic resistance gene msrA directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 177, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an erythromycin resistance protein under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to erythromycin mediated by the bacterial antibiotic resistance gene msrA.
110. A method as defined in claim 109, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 177.
111. A method for evaluating a bacterial resistance to erythromycin mediated by the bacterial antibiotic resistance gene msrA in a test sample which comprises the following steps:
a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for an erythromycin resistance protein that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 177;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to erythromycin mediated by the bacterial antibiotic resistance gene msrA.
112. A method for evaluating potential bacterial resistance to β-lactams, aminoglycosides, chloramphenicol and/or trimethoprim mediated by the bacterial antibiotic resistance gene in t directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 171, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an integrase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of potential bacterial resistance to β-lactams, aminoglycosides, chloramphenicol and/or trimethoprim mediated by the bacterial antibiotic resistance gene int.
113. A method as defined in claim 112, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 171.
114. A method for evaluating potential bacterial resistance to β-lactams, aminoglycosides, chloramphenicol and/or trimethoprim mediated by the bacterial antibiotic resistance gene int in a test sample which comprises the following steps: a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistanc gene coding for an integrase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 171;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c) detecting the presence and/or amount of said amplified target sequence as an indication of potential bacterial resistance to β-lactams, aminoglycosides, chloramphenicol and/or trimethoprim mediated by the bacterial antibiotic resistance gene int.
115. A method for evaluating potential bacterial resistance to β-lactams, aminoglycosides, chloramphenicol and/or trimethoprim mediated by the bacterial antibiotic resistance gene sul directly from a test sample or from bacterial colonies, which comprises the following steps:
a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,
said bacterial DNA being in a substantially single stranded form;
b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 172, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for a sulfonamide resistance protein under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of potential bacterial resistance to β-lactams, aminoglycosides, chloramphenicol and/or trimethoprim mediated by the bacterial antibiotic resistance gene sul.
116. A method as defined in claim 115, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 172.
117. A method for evaluating potential bacterial resistance to β-lactams, aminoglycosides, chloramphenicol and/or trimethoprim mediated by the bacterial antibiotic resistance gene sul in a test sample which comprises the following steps: a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for a sulfonamide resistance protein that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 172;
b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
c ) detecting the presence and/or amount of said amplified target sequence as an indication of potential bacterial resistance to β- lactams , aminoglycosides , chloramphenicol and/or trimethoprim mediated by the bacterial antibiotic resistance gene sul .
118. A nucleic acid having the nucleotide sequence of any one of SEQ ID NOs : 1 to 37 , SEQ ID NOs : 161 to 177 , a part thereof and variants thereof which, when in single stranded form, ubiquitously and specifically hybridize with a target bacterial DNA as a probe or as a primer .
119. An oligonucleotide having a nucleotidic sequence of any one of SEQ ID NOs : 38 to 160.
120. A recombinant plasmid comprising a nucleic acid as defined in claim 118.
121. A recombinant host which has been transformed by a recombinant plasmid according to claim 120.
122. A recombinant host according to claim 121 wherein said host is Escherichia coli.
123. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the bacterial species defined in any one of claims 9, 14, 19, 24, 29, 34, 39, 43, 47, 52, 57 and 61, comprising any combination of probes defined therein.
124. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the bacterial species defined in any one of claims 10, 11, 15, 16, 20, 21, 25, 26, 30, 31, 35, 36, 40, 44, 48, 49, 53, 54, 58, 62 and 65, comprising any combination of oligonucleotide probes defined therein.
125. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the bacterial species defined in any one of claims 12, 13, 17, 18, 22, 23, 27, 28, 32, 33, 37, 38, 41, 42, 45, 46, 50, 51, 55, 56, 59, 60, 63, 64 and 66 comprising any combination of primers defined therein.
126. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the bacterial resistance genes defined in any one of claims 67, 70, 73, 76,
79, 82, 85, 88, 91, 94, 97, 100, 103, 106 and 109 comprising any combination of probes defined therein.
127. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the bacterial resistance genes defined in any one of claims 68, 71, 74, 77,
80, 83, 86, 89, 92, 95, 98, 101, 104, 107 and 110 comprising any combination of oligonucleotide probes defined therein.
128. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the bacterial resistance genes defined in any one of claims 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108 and 111 comprising any combination of primers defined therein.
129. A diagnostic kit for the simultaneous detection and quantification of nucleic acids of any combination of the bacterial species defined in claim 123, comprising any combination of the bacterial probes defined therein and any combination of the probes to the antibiotic resistance genes defined in any one of SEQ ID NOs: 161 to 177 in whole or in part.
130. A diagnostic kit for the simultaneous detection and quantification of nucleic acids of any combination of the bacterial species defined in claim 124, comprising any combination of the bacterial oligonucleotide probes defined therein and any combination of oligonucleotide probes that hybridize to the antibiotic resistance genes defined in any one of SEQ ID NOs: 161 to 177.
131. A diagnostic kit for the simultaneous detection and quantification of nucleic acids of any combination of the bacterial species defined in claim 125, comprising any combination of the primers defined therein and any combination of primers that anneal to the antibiotic resistance genes defined in any one of SEQ ID NOs: 161 to 177.
PCT/CA1995/000528 1994-09-12 1995-09-12 Specific and universal probes and amplification primers to rapidly detect and identify common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories WO1996008582A2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
BR9508918A BR9508918A (en) 1994-09-12 1995-09-12 Processes for determining the presence and / or quantity of bacterial species nucleic acids for the detection, identification and / or quantification of bacterial species to assess bacterial resistance to antibiotics recombinant host plasmid oligonucleotide recombinant plasmid and diagnostic kit
EP95931109A EP0804616B1 (en) 1994-09-12 1995-09-12 Specific and universal amplification primers to rapidly detect and identify common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories
AT95931109T ATE219524T1 (en) 1994-09-12 1995-09-12 SPECIFIC AND UNIVERSAL AMPLIFICATION PRIMERS FOR THE RAPID DETERMINATION AND IDENTIFICATION OF COMMON BACTERIAL PATHOGENS AND ANTIBIOTIC RESISTANCE GENES IN CLINICAL SAMPLES FOR ROUTINE DIAGNOSIS IN MICROBIOLOGY LABORATORIES
CA2199144A CA2199144C (en) 1994-09-12 1995-09-12 Specific and universal probes and amplification primers to rapidly detect and identify common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories
MX9701847A MX9701847A (en) 1994-09-12 1995-09-12 Specific and universal probes and amplification primers to rapidly detect .and identify common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories.
DE69527154T DE69527154T2 (en) 1994-09-12 1995-09-12 SPECIFIC AND UNIVERSAL AMPLIFICATION PRIMER FOR RAPID DETERMINATION AND IDENTIFICATION OF COMMON BACTERIAL PATHOGENES AND ANTIBIOTIC RESISTANCE GENES IN CLINICAL SAMPLES FOR ROUTINE DIAGNOSIS IN MICROBIOLOGY LABORATORIES
JP50978196A JP4176146B2 (en) 1994-09-12 1995-09-12 Specific and universal probes and amplification primers for the rapid detection and identification of common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories
AU34681/95A AU705198C (en) 1994-09-12 1995-09-12 Specific and universal probes and amplification primers to rapidly detect and identify common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories
NZ292494A NZ292494A (en) 1994-09-12 1995-09-12 Specific and universal probes and amplification primers for determining the presence of nucleic acids to detect and identify common bacterial pathogens and antibiotic resistant genes; sequences
DK95931109T DK0804616T3 (en) 1994-09-12 1995-09-12 Specific and universal amplification primers for rapid detection and identification of commonly occurring bacterial pathogens and antibiotic resistance genes from clinical trials for routine diagnosis in microbiological laboratories
NO19971111A NO971111L (en) 1994-09-12 1997-03-11 Specific and universal probes and amplification primers for rapid detection and identification of common bacterial pathogens and antibiotic resistance genes from clinical trials for routine diagnosis in microbiology laboratories

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US30473294A 1994-09-12 1994-09-12
US08/304,732 1994-09-12

Publications (2)

Publication Number Publication Date
WO1996008582A2 true WO1996008582A2 (en) 1996-03-21
WO1996008582A3 WO1996008582A3 (en) 1996-07-18

Family

ID=23177744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA1995/000528 WO1996008582A2 (en) 1994-09-12 1995-09-12 Specific and universal probes and amplification primers to rapidly detect and identify common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories

Country Status (14)

Country Link
US (3) US6001564A (en)
EP (2) EP0804616B1 (en)
JP (2) JP4176146B2 (en)
AT (1) ATE219524T1 (en)
BR (1) BR9508918A (en)
CA (1) CA2199144C (en)
DE (1) DE69527154T2 (en)
DK (1) DK0804616T3 (en)
ES (1) ES2176336T3 (en)
MX (1) MX9701847A (en)
NO (1) NO971111L (en)
NZ (1) NZ292494A (en)
PT (1) PT804616E (en)
WO (1) WO1996008582A2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996041878A1 (en) * 1995-06-13 1996-12-27 The Australian National University Nucleic acid molecule and its uses in determining pathogenicity of staphylococcus
EP0835936A2 (en) * 1996-09-12 1998-04-15 Smithkline Beecham Plc Arginyl tRNA synthase
WO1998028444A2 (en) * 1996-12-23 1998-07-02 The University Of Chicago Customized oligonucleotide microchips as multiple biosensors
WO1998020157A3 (en) * 1996-11-04 1998-08-13 Infectio Diagnostic Inc Species-specific, genus-specific and universal dna probes and amplification primers to rapidly detect and identify common bacterial and fungal pathogens and associated antibiotic resistance genes from clinical specimens for diagnosis in microbiology laboratories
WO1998048041A2 (en) * 1997-04-24 1998-10-29 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Dna probes, method and kit for identifying antibiotic-resistant strains of bacteria
WO1998048046A2 (en) * 1997-04-22 1998-10-29 Bavarian Nordic Research Institute A/S Taqmantm-pcr for the detection of pathogenic e. coli strains
WO1998059058A2 (en) * 1997-06-20 1998-12-30 Institut Pasteur Polynucleotides and their use for detecting resistance to streptogramin a or to streptogramin b and related compounds
WO1999001571A2 (en) * 1997-07-03 1999-01-14 Id Biomedical Corporation Compositions and methods for detecting vancomycin resistant enterococci by cycling probe reactions
WO2000052208A2 (en) * 1999-03-03 2000-09-08 The University Of Chicago Customized oligonucleotide microchips that convert multiple genetic information to simple patterns
US6136533A (en) * 1997-07-03 2000-10-24 Id Biomedical Additives for use in cycling probe reactions
WO2001009344A1 (en) * 1999-07-30 2001-02-08 Institut Pasteur DETECTION OF A GENE, vatD, ENCODING AN ACETYLTRANSFERASE INACTIVATING STREPTOGRAMIN
WO2001012803A2 (en) * 1999-08-17 2001-02-22 Beth Israel Deaconess Medical Center, Inc. Methods and compositions for restoring antibiotic susceptibility in glycopeptide-resistant enterococcus
US6380370B1 (en) 1997-08-14 2002-04-30 Genome Therapeutics Corporation Nucleic acid and amino acid sequences relating to Staphylococcus epidermidis for diagnostics and therapeutics
US6420135B1 (en) 1996-10-31 2002-07-16 Human Genome Sciences, Inc. Streptococcus pneumoniae polynucleotides and sequences
WO2002070736A2 (en) * 2001-03-02 2002-09-12 Austrian Research Centers Gmbh - Arc Method for the detection of nucleic acid molecules
WO2002095066A2 (en) * 2001-05-18 2002-11-28 Biotecon Diagnostics Gmbh Detecting microorganisms of the yersinia pestis/yersinia pseudotuberculosis species
US6503709B1 (en) 1997-07-03 2003-01-07 Id Biomedical Corporation Methods for rapidly detecting methicillin resistant staphylococci
US6551795B1 (en) 1998-02-18 2003-04-22 Genome Therapeutics Corporation Nucleic acid and amino acid sequences relating to pseudomonas aeruginosa for diagnostics and therapeutics
US6699703B1 (en) 1997-07-02 2004-03-02 Genome Therapeutics Corporation Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
WO2004020451A1 (en) * 2002-08-29 2004-03-11 The Uab Research Foundation Group b streptococcal phage lysin
US7005257B1 (en) 1998-05-22 2006-02-28 Seapro Theranostics International Detection of antibiotic resistance in microorganisms
US7081530B1 (en) 1997-07-02 2006-07-25 sanofi pasteur limitée Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7122314B2 (en) 2002-01-30 2006-10-17 Id Biomedical Corporation Methods for detecting vancomycin-resistant microorganisms and compositions therefor
US7943346B2 (en) 1994-09-12 2011-05-17 Geneohm Sciences Canada Inc. Probes and primers for detection of bacterial pathogens and antibiotic resistance genes
EP2322668A3 (en) * 1999-09-28 2011-10-05 Geneohm Sciences Canada Inc. Highly conserved gene and its use to generate species-specific, genus-specific, family-specific, group-specific and universal nucleic acid probes for microorganisms.
US8034588B2 (en) 1997-11-04 2011-10-11 Geneohm Sciences Canada Inc. Species-specific, genus-specific and universal DNA probes and amplification primers to rapidly detect and identify common bacterial and fungal pathogens and associated antibiotic resistance genes from clinical specimens for diagnosis in microbiology laboratories
US8426137B2 (en) 1996-11-04 2013-04-23 Genohm Sciences Canada, Inc. Methods and probes for detecting a vancomycin resistance gene
US9777335B2 (en) 2001-06-04 2017-10-03 Geneohm Sciences Canada Inc. Method for the detection and identification of methicillin-resistant Staphylococcus aureus
US11834720B2 (en) 2005-10-11 2023-12-05 Geneohm Sciences, Inc. Sequences for detection and identification of methicillin-resistant Staphylococcus aureus (MRSA) of MREJ types xi to xx

Families Citing this family (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001564A (en) * 1994-09-12 1999-12-14 Infectio Diagnostic, Inc. Species specific and universal DNA probes and amplification primers to rapidly detect and identify common bacterial pathogens and associated antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories
US6130038A (en) * 1996-07-16 2000-10-10 Gen-Probe Incorporated Method for amplifying target nucleic acids using modified primers
US7070925B1 (en) 1996-07-16 2006-07-04 Gen-Probe Incorporated Method for determining the presence of an RNA analyte in a sample using a modified oligonucleotide probe
US7060458B1 (en) * 1997-08-14 2006-06-13 Wyeth Nucleic acid and amino acid sequences relating to Staphylococcus epidermidis for diagnostics and therapeutics
US6242223B1 (en) 1998-09-28 2001-06-05 Creighton University Primers for use in detecting beta-lactamases
GB9904804D0 (en) 1999-03-02 1999-04-28 King S College London Identification of bacteria
US6673910B1 (en) 1999-04-08 2004-01-06 Genome Therapeutics Corporation Nucleic acid and amino acid sequences relating to M. catarrhalis for diagnostics and therapeutics
US20060275782A1 (en) 1999-04-20 2006-12-07 Illumina, Inc. Detection of nucleic acid reactions on bead arrays
US20030215821A1 (en) * 1999-04-20 2003-11-20 Kevin Gunderson Detection of nucleic acid reactions on bead arrays
US6821770B1 (en) * 1999-05-03 2004-11-23 Gen-Probe Incorporated Polynucleotide matrix-based method of identifying microorganisms
US20020086289A1 (en) * 1999-06-15 2002-07-04 Don Straus Genomic profiling: a rapid method for testing a complex biological sample for the presence of many types of organisms
US6878517B1 (en) * 1999-12-15 2005-04-12 Congra Grocery Products Company Multispecies food testing and characterization organoleptic properties
US7955794B2 (en) 2000-09-21 2011-06-07 Illumina, Inc. Multiplex nucleic acid reactions
US7582420B2 (en) 2001-07-12 2009-09-01 Illumina, Inc. Multiplex nucleic acid reactions
US8076063B2 (en) 2000-02-07 2011-12-13 Illumina, Inc. Multiplexed methylation detection methods
JP2001333783A (en) * 2000-05-29 2001-12-04 Tosoh Corp Oligonucleotide for detecting methicillin-resistant staphylococcus aureus
JP2001353000A (en) * 2000-06-09 2001-12-25 Tosoh Corp Detection of mec a gene of methicilinresistant staphyrococcus aureus(mrsa)
US20040005555A1 (en) * 2000-08-31 2004-01-08 Rothman Richard E. Molecular diagnosis of bactermia
GB0022017D0 (en) * 2000-09-08 2000-10-25 Univ Dundee Cell assays
US20030027135A1 (en) 2001-03-02 2003-02-06 Ecker David J. Method for rapid detection and identification of bioagents
US7666588B2 (en) 2001-03-02 2010-02-23 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA and characterization of mitochondrial DNA heteroplasmy
US20040121314A1 (en) * 2002-12-06 2004-06-24 Ecker David J. Methods for rapid detection and identification of bioagents in containers
WO2004060278A2 (en) 2002-12-06 2004-07-22 Isis Pharmaceuticals, Inc. Methods for rapid identification of pathogens in humans and animals
US20040121313A1 (en) 2002-12-06 2004-06-24 Ecker David J. Methods for rapid detection and identification of bioagents in organs for transplantation
US7226739B2 (en) 2001-03-02 2007-06-05 Isis Pharmaceuticals, Inc Methods for rapid detection and identification of bioagents in epidemiological and forensic investigations
US7718354B2 (en) 2001-03-02 2010-05-18 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
US7052837B2 (en) * 2001-03-13 2006-05-30 The Board Of Trustees Of The University Of Arkansas Histoplasma capsulatum catalase sequences and their use in the detection of Histoplamsa capsulatum and histoplasmosis
US20020187490A1 (en) * 2001-06-07 2002-12-12 Michigan State University Microbial identification chip based on DNA-DNA hybridization
NZ530343A (en) * 2001-06-22 2007-01-26 Marshfield Clinic Methods and oligonucleotides for the detection of E. coli 0157:H7
US8073627B2 (en) 2001-06-26 2011-12-06 Ibis Biosciences, Inc. System for indentification of pathogens
US7217510B2 (en) 2001-06-26 2007-05-15 Isis Pharmaceuticals, Inc. Methods for providing bacterial bioagent characterizing information
KR100439532B1 (en) * 2001-07-03 2004-07-09 주식회사 코메드 Multiplex polymerase chain reaction for rapidly detecting antibiotic resistance of Staphyllococcus strains
US20030148314A1 (en) * 2001-08-01 2003-08-07 Millennium Pharmaceuticals, Inc. Compositions, kits, and methods for identification, assessment, prevention, and therapy of colon cancer
US20040002080A1 (en) * 2001-12-14 2004-01-01 Creighton University Primers for use in detecting beta-lactamases
AU2002366391A1 (en) * 2001-12-19 2003-06-30 Quantibact A/S A method and a kit for determination of a microbial count
US6593093B1 (en) * 2002-02-20 2003-07-15 Mayo Foundation For Medical Education And Research Detection of group a Streptococcus
US8211657B2 (en) * 2002-04-29 2012-07-03 The Board Of Trustees Of The University Of Arkansas Capillary-column-based bioseparator/bioreactor with an optical/electrochemical detector for detection of microbial pathogens
US7045291B2 (en) * 2002-05-17 2006-05-16 Creighton University Multiplex PCR for the detection of AmpC beta-lactamase genes
DE10244456A1 (en) * 2002-09-24 2004-04-15 Hain Lifescience Gmbh Methods for the detection and differentiation of bacteria
US7074598B2 (en) * 2002-09-25 2006-07-11 Mayo Foundation For Medical Education And Research Detection of vancomycin-resistant enterococcus spp.
US7074599B2 (en) * 2002-09-27 2006-07-11 Mayo Foundation For Medical Education And Research Detection of mecA-containing Staphylococcus spp.
US7217519B1 (en) 2002-11-21 2007-05-15 The Board Of Trustees Of The University Of Arkansas Histoplasma capsulatum chitin synthase sequences and their use for detection of Histoplasma capsulatum and histoplasmosis
US20040101860A1 (en) * 2002-11-27 2004-05-27 Jones Alison M. Predicting animal performance
US20040259226A1 (en) * 2003-05-30 2004-12-23 Robey W. Wade Monitoring for and detecting microbes used in bioterrorism
WO2004053155A1 (en) * 2002-12-06 2004-06-24 Roche Diagniostics Gmbh Multiplex assay detection of pathogenic organisms
WO2005017488A2 (en) * 2003-01-23 2005-02-24 Science Applications International Corporation Method and system for identifying biological entities in biological and environmental samples
US20040185446A1 (en) * 2003-03-18 2004-09-23 Jones Alison M. Cpn60 targets for quantification of microbial species
US20040185434A1 (en) * 2003-03-21 2004-09-23 Robey W. Wade Detecting microbial contamination in animal by-products
US20040185454A1 (en) * 2003-03-21 2004-09-23 Jones Alison M. Identification and quantification of microbial species in a sample
US8046171B2 (en) 2003-04-18 2011-10-25 Ibis Biosciences, Inc. Methods and apparatus for genetic evaluation
US8057993B2 (en) 2003-04-26 2011-11-15 Ibis Biosciences, Inc. Methods for identification of coronaviruses
US8158354B2 (en) 2003-05-13 2012-04-17 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US7964343B2 (en) 2003-05-13 2011-06-21 Ibis Biosciences, Inc. Method for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US20040241662A1 (en) * 2003-05-30 2004-12-02 Robey W. Wade Detecting microbial contamination in grain and related products
DE10339609A1 (en) * 2003-08-28 2005-03-24 Forschungszentrum Karlsruhe Gmbh Oligonucleotide, method and system for the detection of antibiotic resistance-mediating genes in microorganisms by means of real-time PCR
US20070248954A1 (en) * 2003-09-10 2007-10-25 Creighton University Primers for Use in Detecting Beta-Lactamases
US8097416B2 (en) 2003-09-11 2012-01-17 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8546082B2 (en) 2003-09-11 2013-10-01 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US20120122096A1 (en) 2003-09-11 2012-05-17 Rangarajan Sampath Compositions for use in identification of bacteria
US20050058985A1 (en) * 2003-09-12 2005-03-17 Dodgson Kirsty Jane Method and kit for identifying vancomycin-resistant enterococcus
US8163895B2 (en) 2003-12-05 2012-04-24 Ibis Biosciences, Inc. Compositions for use in identification of orthopoxviruses
US7666592B2 (en) 2004-02-18 2010-02-23 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
US8119336B2 (en) 2004-03-03 2012-02-21 Ibis Biosciences, Inc. Compositions for use in identification of alphaviruses
EP2458619B1 (en) 2004-05-24 2017-08-02 Ibis Biosciences, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US20050266411A1 (en) 2004-05-25 2005-12-01 Hofstadler Steven A Methods for rapid forensic analysis of mitochondrial DNA
US7811753B2 (en) 2004-07-14 2010-10-12 Ibis Biosciences, Inc. Methods for repairing degraded DNA
EP1771583A2 (en) * 2004-07-26 2007-04-11 Nanosphere, Inc. Method for distinguishing methicillin resistant s. aureus from methicillin sensitive s. aureus in a mixed culture
KR101233565B1 (en) * 2004-08-04 2013-02-14 산토리 홀딩스 가부시키가이샤 Bacteria detection device, bacteria detection method and bacteria detection kit
US7309589B2 (en) 2004-08-20 2007-12-18 Vironix Llc Sensitive detection of bacteria by improved nested polymerase chain reaction targeting the 16S ribosomal RNA gene and identification of bacterial species by amplicon sequencing
KR100763906B1 (en) * 2004-12-23 2007-10-05 삼성전자주식회사 9 9 A primer set capable of specifically amplifying a target sequence found in 9 bacterial species and probe oligonucleotide specifically hybridizable with each target sequence of the 9 bacterial species
WO2006094238A2 (en) 2005-03-03 2006-09-08 Isis Pharmaceuticals, Inc. Compositions for use in identification of adventitious viruses
US8084207B2 (en) 2005-03-03 2011-12-27 Ibis Bioscience, Inc. Compositions for use in identification of papillomavirus
US20080280775A1 (en) * 2005-03-18 2008-11-13 Eppendorf Ag Determination of Antibiotic Resistance in Staphylococcus Aureus
US20060210998A1 (en) * 2005-03-18 2006-09-21 Christiane Kettlitz Determination of antibiotic resistance in staphylococcus aureus
DE102005015005A1 (en) * 2005-04-01 2006-10-05 Qiagen Gmbh Process for treating a sample containing biomolecules
US20060246463A1 (en) * 2005-04-20 2006-11-02 Vevea Dirk N Methods and oligonucleotides for the detection of Salmonella SP., E coli 0157:H7, and Listeria monocytogenes
US20060240442A1 (en) * 2005-04-20 2006-10-26 Vevea Dirk N Methods and oligonucleotides for the detection of Salmonella SP., E coli 0157:H7, and Listeria monocytogenes
WO2006111028A1 (en) * 2005-04-21 2006-10-26 Uti Limited Partnership Pcr for mrsa sccmec typing
CA2616281C (en) 2005-07-21 2014-04-22 Isis Pharmaceuticals, Inc. Methods for rapid identification and quantitation of mitochondrial dna variants
US20070269813A1 (en) * 2005-11-03 2007-11-22 Dewhirst Floyd E Methods and arrays for identifying human microflora
JP4934679B2 (en) * 2005-12-27 2012-05-16 サムスン エレクトロニクス カンパニー リミテッド Primers, probes, microarrays and methods for specifically detecting bacterial species associated with nine respiratory diseases
CN100465289C (en) * 2006-01-18 2009-03-04 博奥生物有限公司 Method for detecting drug resistant gene of gramnegative bacterium and its special chip and kit
US11237171B2 (en) 2006-02-21 2022-02-01 Trustees Of Tufts College Methods and arrays for target analyte detection and determination of target analyte concentration in solution
US8460879B2 (en) 2006-02-21 2013-06-11 The Trustees Of Tufts College Methods and arrays for target analyte detection and determination of target analyte concentration in solution
US8088582B2 (en) 2006-04-06 2012-01-03 Ibis Biosciences, Inc. Compositions for the use in identification of fungi
WO2007120869A2 (en) * 2006-04-14 2007-10-25 University Of South Florida Molecular detection and quantification of enterococci
AT504194B1 (en) * 2006-09-07 2008-07-15 Oesterr Rotes Kreuz BACTERIA DETECTION
AU2007353877B2 (en) 2006-09-14 2012-07-19 Ibis Biosciences, Inc. Targeted whole genome amplification method for identification of pathogens
KR100923303B1 (en) * 2006-09-28 2009-10-23 삼성전자주식회사 A primer set for amplifying target sequences of 10 bacterial species causing respiratory diseases, probe set specifically hybridizable with the target sequences of the 10 bacterial species, a microarray having immobilized the probe set and a method for detecting the presence of one or more of the 10 bacterial species
US8148511B2 (en) * 2006-09-28 2012-04-03 The University Of North Carolina At Chapel Hill Methods and compositions for the detection and quantification of E. coli and Enterococcus
KR100868765B1 (en) 2006-09-29 2008-11-17 삼성전자주식회사 A primer set for amplifying target sequences of bacterial species resistant to antibiotics, probe set specifically hybridizable with the target sequences of the bacterial species, a microarray having immobilized the probe set and a method for detecting the presence of one or more of the bacterial species
US8871471B2 (en) 2007-02-23 2014-10-28 Ibis Biosciences, Inc. Methods for rapid forensic DNA analysis
US20080243865A1 (en) * 2007-03-28 2008-10-02 Oracle International Corporation Maintaining global state of distributed transaction managed by an external transaction manager for clustered database systems
US8017337B2 (en) 2007-04-19 2011-09-13 Molecular Detection, Inc. Methods, compositions and kits for detection and analysis of antibiotic-resistant bacteria
US9598724B2 (en) 2007-06-01 2017-03-21 Ibis Biosciences, Inc. Methods and compositions for multiple displacement amplification of nucleic acids
EP2183391A4 (en) * 2007-07-31 2010-10-27 Quest Diagnostics Invest Inc Detection of methicillin-resistant and methicillin-sensitive staphylococcus aureus in biological samples
ES2556627T3 (en) 2007-08-30 2016-01-19 Trustees Of Tufts College Methods to determine the concentration of an analyte in solution
FI121428B (en) 2008-01-17 2010-11-15 Mobidiag Oy Broad-spectrum primers, test kit and method for detection and identification of bacterial species
WO2010033599A2 (en) 2008-09-16 2010-03-25 Ibis Biosciences, Inc. Mixing cartridges, mixing stations, and related kits, systems, and methods
EP2344893B1 (en) 2008-09-16 2014-10-15 Ibis Biosciences, Inc. Microplate handling systems and methods
US8148163B2 (en) 2008-09-16 2012-04-03 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US8222047B2 (en) 2008-09-23 2012-07-17 Quanterix Corporation Ultra-sensitive detection of molecules on single molecule arrays
US20100075439A1 (en) * 2008-09-23 2010-03-25 Quanterix Corporation Ultra-sensitive detection of molecules by capture-and-release using reducing agents followed by quantification
EP2396803A4 (en) 2009-02-12 2016-10-26 Ibis Biosciences Inc Ionization probe assemblies
WO2010104798A1 (en) 2009-03-08 2010-09-16 Ibis Biosciences, Inc. Bioagent detection methods
WO2010114842A1 (en) 2009-03-30 2010-10-07 Ibis Biosciences, Inc. Bioagent detection systems, devices, and methods
WO2011008971A1 (en) 2009-07-17 2011-01-20 Ibis Biosciences, Inc. Lift and mount apparatus
US9194877B2 (en) 2009-07-17 2015-11-24 Ibis Biosciences, Inc. Systems for bioagent indentification
US9416409B2 (en) 2009-07-31 2016-08-16 Ibis Biosciences, Inc. Capture primers and capture sequence linked solid supports for molecular diagnostic tests
EP2462244B1 (en) 2009-08-06 2016-07-20 Ibis Biosciences, Inc. Non-mass determined base compositions for nucleic acid detection
WO2011022589A2 (en) * 2009-08-20 2011-02-24 Mayo Foundation For Medical Education And Research Detection of enterovirus
EP2957641B1 (en) 2009-10-15 2017-05-17 Ibis Biosciences, Inc. Multiple displacement amplification
ES2544635T3 (en) 2010-03-01 2015-09-02 Quanterix Corporation Methods to extend the dynamic range in assays for the detection of molecules or particles
US9678068B2 (en) 2010-03-01 2017-06-13 Quanterix Corporation Ultra-sensitive detection of molecules using dual detection methods
US8415171B2 (en) 2010-03-01 2013-04-09 Quanterix Corporation Methods and systems for extending dynamic range in assays for the detection of molecules or particles
US8236574B2 (en) 2010-03-01 2012-08-07 Quanterix Corporation Ultra-sensitive detection of molecules or particles using beads or other capture objects
US9758840B2 (en) 2010-03-14 2017-09-12 Ibis Biosciences, Inc. Parasite detection via endosymbiont detection
US9952237B2 (en) 2011-01-28 2018-04-24 Quanterix Corporation Systems, devices, and methods for ultra-sensitive detection of molecules or particles
WO2012142301A2 (en) 2011-04-12 2012-10-18 Quanterix Corporation Methods of determining a treatment protocol for and/or a prognosis of a patients recovery from a brain injury
WO2013086201A1 (en) 2011-12-06 2013-06-13 Dowd Scot E Universal or broad range assays and multi-tag sample specific diagnostic process using non-optical sequencing
US9932626B2 (en) 2013-01-15 2018-04-03 Quanterix Corporation Detection of DNA or RNA using single molecule arrays and other techniques
BR112016015537A2 (en) * 2014-01-02 2019-09-03 Becton Dickinson Co methods and kits for detecting the presence of the polynucleotide sequence of e.g. histolytica in sample
US9863009B2 (en) 2014-09-19 2018-01-09 University Of Dammam Sequence specific primer pool for multiplex PCR and method of detecting microbial infections in thalassemia patients
CN107630071A (en) * 2016-07-18 2018-01-26 北京普若博升生物科技有限公司 The detection kit of SHV type extended spectrumβ-lactamase drug resistant genes
JP7239252B2 (en) * 2016-11-01 2023-03-14 セリバ・バイオロジクス・インコーポレイテッド Methods and compositions for reducing antibiotic resistance
CN114214319A (en) * 2021-12-28 2022-03-22 上海交通大学医学院附属上海儿童医学中心 Kit for quickly, simply and low-cost screening of urinary tract infection pathogenic bacteria and application thereof
CN115062933B (en) * 2022-06-01 2023-04-18 生态环境部南京环境科学研究所 Multi-level risk assessment method for microbial drug resistance of antibiotic residues in water environment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0438115A2 (en) * 1990-01-19 1991-07-24 F. Hoffmann-La Roche Ag Process for detection of water-borne microbial pathogens and indicators of human fecal contamination in water samples and kits therefor
WO1993003186A1 (en) * 1991-07-31 1993-02-18 F.Hoffmann-La Roche Ag Methods and reagents for detection of bacteria in cerebrospinal fluid
WO1994002645A1 (en) * 1992-07-17 1994-02-03 Aprogenex, Inc. Rapid detection of biopolymers in stained specimens

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4038804A1 (en) * 1990-10-09 1992-04-16 Boehringer Mannheim Gmbh METHOD FOR GENUS AND / AND SPECIES-SPECIFIC DETECTION OF BACTERIA IN A SAMPLING LIQUID
FR2567541B1 (en) * 1984-07-13 1987-02-06 Pasteur Institut DNA PROBE AND METHOD FOR THE DETECTION OF "SHIGELLES" AND ENTERO-INVASIVE STRAINS OF ESCHERICHIA COLI
FR2568588B1 (en) * 1984-08-02 1987-02-13 Inst Nat Sante Rech Med PROBE AND METHOD FOR THE DETECTION OF DETERMINED MICRO-ORGANISMS, IN PARTICULAR LEGIONELLA IN THE MEDIA CONTAINING THE SAME
FR2584419B1 (en) * 1985-07-08 1987-11-13 Pasteur Institut PROBE AND METHOD FOR DETECTING FACTORS OF RESISTANCE TO ERYTHROMYCIN IN CELL CULTURES, ESPECIALLY BACTERIAL
FR2599743B1 (en) * 1986-06-10 1988-09-30 Pasteur Institut DNA FRAGMENT COMPRISING AT LEAST ONE PART OF AN ERYTHROMYCIN RESISTANCE GENE, METHOD FOR OBTAINING SAME AND BIOCHEMICAL APPLICATIONS THEREOF
EP0277237A4 (en) * 1986-07-10 1990-02-22 Toray Industries Method of inspecting specimen for bacteria and probe therefor.
PT86204B (en) * 1986-11-24 1990-11-07 Hogan James John METHOD FOR THE PREPARATION OF NUCLEIC ACID PROBES FOR THE DETECTION AND / OR QUANTIFICATION OF NON-VIRAL ORGANISMS
US5541308A (en) * 1986-11-24 1996-07-30 Gen-Probe Incorporated Nucleic acid probes for detection and/or quantitation of non-viral organisms
DE3718591A1 (en) * 1987-06-03 1988-12-15 Behringwerke Ag AEUSSERES MEMBRANE PROTEIN F BY PSEUDOMONAS AERUGINOSA
AU1913288A (en) * 1987-07-24 1989-01-27 Universite Laval Dna probes for assaying b-lactamase production in gram-negative bacteria
JP2565552B2 (en) * 1987-10-15 1996-12-18 カイロン コーポレイション Nucleic acid multimer and amplified nucleic acid hybridization analysis method using the same
US5084565A (en) * 1988-08-18 1992-01-28 Gene-Trak Systems Probes for the specific detection of escherichia coli and shigella
FR2636075B1 (en) * 1988-09-07 1991-11-15 Biotechnologie Ste Europ METHOD FOR DETECTING BACTERIA, YEAST, PARASITES AND OTHER EUKARYOTS, ESPECIALLY IN FOOD PRODUCTS
US5041372A (en) * 1988-11-02 1991-08-20 The United States Of America As Represented By The Department Of Health And Human Services Probe to identify enteroinvasive E. coli and Shigella species
US5030556A (en) * 1989-03-30 1991-07-09 Danielle Beaulieu Species-specific DNNA probe for the detection of Branhamella catarrhalis
IE81145B1 (en) * 1989-04-20 2000-05-03 Thomas Gerard Barry Generation of specific probes for target nucleotide sequences
AU5810490A (en) * 1989-05-23 1990-12-18 Gene-Trak Systems Nucleic acid probes for the detection of staphylococcus aureus
WO1990015157A1 (en) * 1989-05-31 1990-12-13 Gene-Trak Systems Universal eubacteria nucleic acid probes and methods
US5334501A (en) * 1989-07-11 1994-08-02 Microprobe Corporation Quantification of bacteria using a nucleic acid hybridization assay
NL9002157A (en) * 1989-11-27 1991-06-17 U Gene Research Bv DNA FRAGMENTS AND DNA PROBES AND PRIMERS BASED ON THAT.
WO1991011531A1 (en) * 1990-02-02 1991-08-08 N.V. Innogenetics S.A. Hybridization probes for the detection of branhamella catarrhalis strains
EP0452596A1 (en) * 1990-04-18 1991-10-23 N.V. Innogenetics S.A. Hybridization probes derived from the spacer region between the 16S and 23S rRNA genes for the detection of non-viral microorganisms
SE466259B (en) * 1990-05-31 1992-01-20 Arne Forsgren PROTEIN D - AN IGD BINDING PROTEIN FROM HAEMOPHILUS INFLUENZAE, AND THE USE OF THIS FOR ANALYSIS, VACCINES AND PURPOSE
ES2168250T3 (en) * 1990-10-05 2002-06-16 Hoffmann La Roche METHODS AND REAGENTS FOR THE IDENTIFICATION OF NEGATIVE GRAM BACTERIA.
US5980909A (en) * 1991-02-15 1999-11-09 Uab Research Foundation Epitopic regions of pneumococcal surface protein A
CA2104014C (en) * 1991-02-15 2000-05-02 David E. Briles Structural gene of pneumococcal protein
US5476929A (en) * 1991-02-15 1995-12-19 Uab Research Foundation Structural gene of pneumococcal protein
US5472843A (en) * 1991-04-25 1995-12-05 Gen-Probe Incorporated Nucleic acid probes to Haemophilus influenzae
US5232831A (en) * 1991-06-28 1993-08-03 Gen-Probe Incorporated Nucleic acid probes to streptococcus pyogenes
JPH0549477A (en) * 1991-08-05 1993-03-02 Wakunaga Pharmaceut Co Ltd Detection of bacteria of the genus staphylococcus
CA2075423A1 (en) * 1991-08-13 1993-02-14 Paul Luther Skatrud Rapid method for detection of methicillin resistant staphylococci
US5292874A (en) * 1991-09-04 1994-03-08 Gen-Probe Incorporated Nucleic acid probes to Staphylococcus aureus
FR2685334B1 (en) * 1991-12-23 1995-05-05 Bio Merieux POLYPEPTIDES CONTAINING CHARACTERISTIC SEQUENCES OF PYRROLIDONE CARBOXYLYL PEPTIDASES, POLYNUCLEOTIDES CONTAINING A SEQUENCE ENCODING SUCH POLYPEPTIDES, AND THEIR USE.
JPH0690798A (en) * 1992-02-05 1994-04-05 Toagosei Chem Ind Co Ltd Probe for detecting staphylococcus aureus and method for detecting the same
FR2687168B1 (en) * 1992-02-10 1994-03-25 Bio Merieux FRAGMENT OF STREPTOCOCCUS PNEUMONIAE GENOMIC DNA, HYBRIDIZATION PROBE, AMPLIFIER PRIME, REAGENT AND METHOD FOR DETECTION OF STREPTOCOCCUS PNEUMONIAE.
JPH0654700A (en) * 1992-05-19 1994-03-01 Mitsui Toatsu Chem Inc Highly sensitive detection of resistant bacterium
CA2139847C (en) * 1992-07-07 2002-05-21 Akio Matsuhisa Probe for diagnosing infectious disease
JPH06165681A (en) * 1992-12-02 1994-06-14 Toyobo Co Ltd Oligonucleotide for detection of methicillin resistant staphylococcus aureus, detection of methicillin resistant staphylococcus aureus and kit of detection reagent
FR2699539B1 (en) * 1992-12-18 1995-02-17 Pasteur Institut Protein conferring an inducible type resistance to glycopeptides, especially in gram-positive bacteria. Nucleotide sequence encoding this protein.
EP0660874B1 (en) * 1993-06-23 2003-09-03 Beckman Coulter, Inc. Recombinant dnase b derived from streptococcus pyogenes
JP3499263B2 (en) * 1993-09-03 2004-02-23 株式会社紀文食品 Detection and nucleotide sequence of Klebsiella spp.
US5712118A (en) * 1993-09-29 1998-01-27 Research Foundation Of State University Of New York Vaccine for branhamella catarrhalis
US5599665A (en) * 1993-12-21 1997-02-04 Mcw Research Foundation Pseudomonas aeruginosa nucleic acids encoding exoenzyme S activity and use thereof in detecting pseudomonas aeruginosa infection
JP3525475B2 (en) * 1994-01-10 2004-05-10 恵 河野 Novel 'mecA protein, DNA encoding the same, and method for detecting methicillin-resistant Staphylococcus aureus using the same
US5582978A (en) * 1994-01-21 1996-12-10 Amoco Corporation Nucleic acid probes for the detection of Haemophilus influenzae
US5705332A (en) * 1994-04-25 1998-01-06 University Of Hawaii Detection and identification of Salmonella and Shigella
RU2154106C2 (en) * 1994-06-24 2000-08-10 Иннодженетикс Н.В. Simultaneous determination, identification and differentiation of eubacterial taxons using hybridization analysis
KR100391483B1 (en) * 1994-07-19 2003-10-30 박텍스 인코포레이티드 LKPphylline Structural Genes and Operons of Haemophilus influenzae
US6001564A (en) * 1994-09-12 1999-12-14 Infectio Diagnostic, Inc. Species specific and universal DNA probes and amplification primers to rapidly detect and identify common bacterial pathogens and associated antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories
US20020055101A1 (en) * 1995-09-11 2002-05-09 Michel G. Bergeron Specific and universal probes and amplification primers to rapidly detect and identify common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories
US5652102A (en) * 1994-12-05 1997-07-29 The United States Of America As Represented By The Secretary Of Agriculture Assay for enterohemorrhagic Escherichia coli 0157:H7 by the polymerase chain reaction
US5686336A (en) * 1995-07-26 1997-11-11 Taiwan Semiconductor Manufacturing Company Ltd. Method of manufacture of four transistor SRAM cell layout
US20030049636A1 (en) * 1999-05-03 2003-03-13 Bergeron Michel G. Species-specific, genus-specific and universal DNA probes and amplification primers to rapidly detect and identify common bacterial and fungal pathogens and associated antibiotic resistance genes from clinical specimens for diagnosis in microbiology laboratories
AU7636000A (en) * 1999-09-28 2001-04-30 Infectio Diagnostic (I.D.I.) Inc. Highly conserved genes and their use to generate species- specific, genus-specific, family-specific, group-specific and universal nucleic acid probes and amplification primers to rapidly detect and identify algal, archaeal, bacterial fungal and parasitical microorganisms from clinical specimens for diagnosis
US20070185478A1 (en) * 2006-02-08 2007-08-09 Plasiatherm, Inc. Device for local ablation of tissue

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0438115A2 (en) * 1990-01-19 1991-07-24 F. Hoffmann-La Roche Ag Process for detection of water-borne microbial pathogens and indicators of human fecal contamination in water samples and kits therefor
WO1993003186A1 (en) * 1991-07-31 1993-02-18 F.Hoffmann-La Roche Ag Methods and reagents for detection of bacteria in cerebrospinal fluid
WO1994002645A1 (en) * 1992-07-17 1994-02-03 Aprogenex, Inc. Rapid detection of biopolymers in stained specimens

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943346B2 (en) 1994-09-12 2011-05-17 Geneohm Sciences Canada Inc. Probes and primers for detection of bacterial pathogens and antibiotic resistance genes
WO1996041878A1 (en) * 1995-06-13 1996-12-27 The Australian National University Nucleic acid molecule and its uses in determining pathogenicity of staphylococcus
EP0835936A3 (en) * 1996-09-12 1999-10-27 Smithkline Beecham Plc Arginyl tRNA synthase
EP0835936A2 (en) * 1996-09-12 1998-04-15 Smithkline Beecham Plc Arginyl tRNA synthase
US6232097B1 (en) 1996-09-12 2001-05-15 Smithkline Beecham Corporation Arginyl tRNA synthetase polynucleotides
US8168205B2 (en) 1996-10-31 2012-05-01 Human Genome Sciences, Inc. Streptococcus pneumoniae polypeptides
EP1770164A3 (en) * 1996-10-31 2007-10-10 Human Genome Sciences, Inc. Streptococcus pneumoniae antigens and vaccines
US7141418B2 (en) 1996-10-31 2006-11-28 Human Genome Sciences, Inc. Streptococcus pneumoniae polynucleotides and sequences
US6929930B2 (en) 1996-10-31 2005-08-16 Human Genome Sciences, Inc. Streptococcus pneumoniae SP042 polynucleotides
EP1400592A1 (en) * 1996-10-31 2004-03-24 Human Genome Sciences, Inc. Streptococcus pneumoniae polynucleotides and sequences
US6420135B1 (en) 1996-10-31 2002-07-16 Human Genome Sciences, Inc. Streptococcus pneumoniae polynucleotides and sequences
US7056510B1 (en) 1996-10-31 2006-06-06 Human Genome Sciences, Inc. Streptococcus pneumoniae SP036 polynucleotides, polypeptides, antigens and vaccines
JP2010094133A (en) * 1996-11-04 2010-04-30 Geneohm Sciences Canada Inc Species-specific, genus-specific and universal probe and primer to rapidly detect and identify common bacterial and fungal pathogen and associated antibiotic resistance gene from clinical specimen for diagnosis in microbiology laboratory
EP2336364A1 (en) * 1996-11-04 2011-06-22 Geneohm Sciences Canada Inc. Species-specific, genus-specific and universal DNA probes and amplification primers to rapidly detect and identify common bacterial and fungal pathogens and associated antibiotic resistance genes from clinical specimens for diagnosis in microbiology laboratories
JP2008289493A (en) * 1996-11-04 2008-12-04 Geneohm Sciences Canada Inc Species-specific, genus-specific and universal probe and primer to rapidly detect and identify common bacterial and fungal pathogen and associated antibiotic resistant gene from clinical specimen for diagnosis in microbiology laboratory
EP2128268A1 (en) * 1996-11-04 2009-12-02 Geneohm Sciences Canada Inc. Species-specific, genus-specific and universal DNA probes and amplification primers to rapidly detect and identify common bacterial and fungal pathogens and associated antibiotic resistance genes from clinical specimens for diagnosis in microbiology laboratories
US8426137B2 (en) 1996-11-04 2013-04-23 Genohm Sciences Canada, Inc. Methods and probes for detecting a vancomycin resistance gene
EP2345746A1 (en) * 1996-11-04 2011-07-20 Geneohm Sciences Canada Inc. Species-specific, genus-specific and universal DNA probes and amplification primers to rapidly detect and identify common bacterial and fungal pathogens and associated antibiotic resistance genes from clinical specimens for diagnosis in microbiology laboratories
EP2339033A1 (en) * 1996-11-04 2011-06-29 Geneohm Sciences Canada, Inc. Species-specific, genus-specific and universal DNA probes and amplification primers to rapidly detect and identify common bacterial and fungal pathogens and associated antibiotic resistance genes from clinical specimens for diagnosis in microbiology laboratories
EP2339034A1 (en) * 1996-11-04 2011-06-29 Geneohm Sciences Canada Inc. Species-specific, genus-specific and universal DNA probes and amplification primers to rapidly detect and identify common bacterial and fungal pathogens and associated antibiotic resistance genes from clinical specimens for diagnosis in microbiology laboratories
AU731850B2 (en) * 1996-11-04 2001-04-05 Infectio Diagnostic (I.D.I.) Inc. Species-specific, genus-specific and universal DNA probes and amplification primers to rapidly detect and identify common bacterial and fungal pathogens and associated antibiotic resistance genes from clinical specimens for diagnosis in microbiology laboratories
WO1998020157A3 (en) * 1996-11-04 1998-08-13 Infectio Diagnostic Inc Species-specific, genus-specific and universal dna probes and amplification primers to rapidly detect and identify common bacterial and fungal pathogens and associated antibiotic resistance genes from clinical specimens for diagnosis in microbiology laboratories
EP2336365A1 (en) * 1996-11-04 2011-06-22 Geneohm Sciences Canada Inc. Species-specific, genus-specific and universal DNA probes and amplification primers to rapidly detect and identify common bacterial and fungal pathogens and associated antibiotic resistance genes from clinical specimens for diagnosis in microbiology laboratories
EP2336366A1 (en) * 1996-11-04 2011-06-22 Geneohm Sciences Canada Inc. Species-specific, genus-specific and universal DNA probes and amplification primers to rapidly detect and identify common bacterial and fungal pathogens and associated antibiotic resistance genes from clinical specimens for diagnosis in microbiology laboratories
US6458584B1 (en) 1996-12-23 2002-10-01 University Of Chicago Customized oligonucleotide microchips that convert multiple genetic information to simple patterns, are portable and reusable
WO1998028444A2 (en) * 1996-12-23 1998-07-02 The University Of Chicago Customized oligonucleotide microchips as multiple biosensors
WO1998028444A3 (en) * 1996-12-23 1998-12-17 Univ Chicago Customized oligonucleotide microchips as multiple biosensors
WO1998048046A2 (en) * 1997-04-22 1998-10-29 Bavarian Nordic Research Institute A/S Taqmantm-pcr for the detection of pathogenic e. coli strains
US6664080B1 (en) 1997-04-22 2003-12-16 Bavarian Nordic Research Institute TaqMan™-PCR for the detection of pathogenic E. coli strains
WO1998048046A3 (en) * 1997-04-22 1999-07-08 Bavarian Nordic Res Inst As Taqmantm-pcr for the detection of pathogenic e. coli strains
DE19717346C2 (en) * 1997-04-24 1999-05-20 Max Planck Gesellschaft DNA probes, methods and kit for identifying antibiotic resistant bacterial strains
WO1998048041A2 (en) * 1997-04-24 1998-10-29 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Dna probes, method and kit for identifying antibiotic-resistant strains of bacteria
WO1998048041A3 (en) * 1997-04-24 1999-01-28 Max Planck Gesellschaft Dna probes, method and kit for identifying antibiotic-resistant strains of bacteria
DE19717346A1 (en) * 1997-04-24 1998-10-29 Max Planck Gesellschaft DNA probes, methods and kit for identifying antibiotic resistant bacterial strains
US6713254B2 (en) 1997-04-24 2004-03-30 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. DNA probes, method and kit for identifying antibiotic-resistant strains of bacteria
EP2000537A3 (en) * 1997-06-20 2012-06-20 Institut Pasteur Polynucleotides and their use for detecting resistance to streptogramin A or to streptogramin B and related compounds
US6570001B1 (en) 1997-06-20 2003-05-27 Institut Pasteur Polynucleotides and their use for detecting resistance to streptogramin A or to streptogramin B and related compounds
EP2000537A2 (en) * 1997-06-20 2008-12-10 Institut Pasteur Polynucleotides and their use for detecting resistance to streptogramin A or to streptogramin B and related compounds
US6506893B1 (en) 1997-06-20 2003-01-14 Institut Pasteur Polynucleotides and their use for detecting resistance to streptogramin A or to streptogramin B and related compounds
US7691385B2 (en) 1997-06-20 2010-04-06 Institut Pasteur Polypeptides encoded by polynucleotides that are useful for detecting resistance to streptogramin A or to streptogramin B and related compounds
WO1998059058A3 (en) * 1997-06-20 1999-04-15 Pasteur Institut Polynucleotides and their use for detecting resistance to streptogramin a or to streptogramin b and related compounds
US7087740B2 (en) 1997-06-20 2006-08-08 Institut Pasteur Kits for use in detecting resistance to streptogramin A and related compounds
WO1998059058A2 (en) * 1997-06-20 1998-12-30 Institut Pasteur Polynucleotides and their use for detecting resistance to streptogramin a or to streptogramin b and related compounds
US6936422B2 (en) 1997-06-20 2005-08-30 Institut Pasteur Polynucleotides and their use for detecting resistance to streptogramin A or to streptogramin B and related compounds
US7129339B1 (en) 1997-07-02 2006-10-31 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7442523B2 (en) 1997-07-02 2008-10-28 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7074914B1 (en) 1997-07-02 2006-07-11 sanofi pasteur limitée Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7081530B1 (en) 1997-07-02 2006-07-25 sanofi pasteur limitée Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US6800744B1 (en) 1997-07-02 2004-10-05 Genome Therapeutics Corporation Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7098023B1 (en) 1997-07-02 2006-08-29 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7115731B1 (en) 1997-07-02 2006-10-03 sanofi pasteur limited/ sanofi pasteur limiteé Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7122368B1 (en) 1997-07-02 2006-10-17 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7893238B2 (en) 1997-07-02 2011-02-22 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7404958B2 (en) 1997-07-02 2008-07-29 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7129340B1 (en) 1997-07-02 2006-10-31 sanofi pasteur limited/sanofi pasteur limitée Nucleic acid and amino acid sequences relating to streptococcus pneumoniae for diagnostics and therapeutics
US7135560B1 (en) 1997-07-02 2006-11-14 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US6699703B1 (en) 1997-07-02 2004-03-02 Genome Therapeutics Corporation Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7151171B1 (en) 1997-07-02 2006-12-19 sanofi pasteur limited/sanofi pasteur limitée Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7153952B1 (en) 1997-07-02 2006-12-26 sanofi pasteur limited/sanofi pasteur limitée Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7405291B2 (en) 1997-07-02 2008-07-29 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7326544B2 (en) 1997-07-02 2008-02-05 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7335494B2 (en) 1997-07-02 2008-02-26 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7335493B2 (en) 1997-07-02 2008-02-26 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7338786B2 (en) 1997-07-02 2008-03-04 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7378258B2 (en) 1997-07-02 2008-05-27 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7378514B2 (en) 1997-07-02 2008-05-27 sanofi pasteur limited/sanofi pasteur limitée Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7381814B1 (en) 1997-07-02 2008-06-03 Sanofi Pasteur Limted Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7381815B2 (en) 1997-07-02 2008-06-03 Sanofi Parker Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7381816B2 (en) 1997-07-02 2008-06-03 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7385047B1 (en) 1997-07-02 2008-06-10 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7388090B2 (en) 1997-07-02 2008-06-17 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7390493B2 (en) 1997-07-02 2008-06-24 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7396532B2 (en) 1997-07-02 2008-07-08 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US6503709B1 (en) 1997-07-03 2003-01-07 Id Biomedical Corporation Methods for rapidly detecting methicillin resistant staphylococci
WO1999001571A2 (en) * 1997-07-03 1999-01-14 Id Biomedical Corporation Compositions and methods for detecting vancomycin resistant enterococci by cycling probe reactions
WO1999001571A3 (en) * 1997-07-03 1999-03-25 Id Biomedical Corp Compositions and methods for detecting vancomycin resistant enterococci by cycling probe reactions
US6136533A (en) * 1997-07-03 2000-10-24 Id Biomedical Additives for use in cycling probe reactions
US6274316B1 (en) 1997-07-03 2001-08-14 Id Biomedical Corporation Compositions and methods for detecting vancomycin resistant enterococci by cycling probe reactions
US7608450B2 (en) 1997-08-14 2009-10-27 Wyeth Nucleic acid and amino acid sequences relating to Staphylococcus epidermidis for diagnostics and therapeutics
US7416862B2 (en) 1997-08-14 2008-08-26 Wyeth Nucleic acid and amino acid sequences relating to Staphylococcus epidermidis for diagnostics and therapeutics
US7566776B2 (en) 1997-08-14 2009-07-28 Wyeth Nucleic acid and amino acid sequences relating to Staphylococcus epidermidis for diagnostics and therapeutics
US8110198B2 (en) 1997-08-14 2012-02-07 Wyeth Llc Nucleic acid and amino acid sequences relating to Staphylococcus epidermidis for diagnostics and therapeutics
US6380370B1 (en) 1997-08-14 2002-04-30 Genome Therapeutics Corporation Nucleic acid and amino acid sequences relating to Staphylococcus epidermidis for diagnostics and therapeutics
US8034588B2 (en) 1997-11-04 2011-10-11 Geneohm Sciences Canada Inc. Species-specific, genus-specific and universal DNA probes and amplification primers to rapidly detect and identify common bacterial and fungal pathogens and associated antibiotic resistance genes from clinical specimens for diagnosis in microbiology laboratories
US8067207B2 (en) 1997-11-04 2011-11-29 Geneohm Sciences Canada Inc. Species-specific, genus-specific and universal DNA probes and amplification primers to rapidly detect and identify common bacterial and fungal pathogens and associated antibiotic resistance genes from clinical specimens for diagnosis in microbiology laboratories
US7517684B2 (en) 1998-02-18 2009-04-14 Oscient Pharmaceuticals Corporation Nucleic acid and amino acid sequences relating to Pseudomonas aeruginosa for diagnostics and therapeutics
US6551795B1 (en) 1998-02-18 2003-04-22 Genome Therapeutics Corporation Nucleic acid and amino acid sequences relating to pseudomonas aeruginosa for diagnostics and therapeutics
US7005257B1 (en) 1998-05-22 2006-02-28 Seapro Theranostics International Detection of antibiotic resistance in microorganisms
WO2000052208A3 (en) * 1999-03-03 2002-03-21 Univ Chicago Customized oligonucleotide microchips that convert multiple genetic information to simple patterns
WO2000052208A2 (en) * 1999-03-03 2000-09-08 The University Of Chicago Customized oligonucleotide microchips that convert multiple genetic information to simple patterns
WO2001009344A1 (en) * 1999-07-30 2001-02-08 Institut Pasteur DETECTION OF A GENE, vatD, ENCODING AN ACETYLTRANSFERASE INACTIVATING STREPTOGRAMIN
WO2001012803A3 (en) * 1999-08-17 2001-10-18 Beth Israel Hospital Methods and compositions for restoring antibiotic susceptibility in glycopeptide-resistant enterococcus
WO2001012803A2 (en) * 1999-08-17 2001-02-22 Beth Israel Deaconess Medical Center, Inc. Methods and compositions for restoring antibiotic susceptibility in glycopeptide-resistant enterococcus
US8182996B2 (en) 1999-09-28 2012-05-22 Geneohm Sciences Canada Inc. Compositions and methods for detecting Klebsiella pneumoniae
US8114601B2 (en) 1999-09-28 2012-02-14 Geneohm Sciences Canada Inc. Highly conserved genes and their use to generate probes and primers for detection of microorganisms
EP2322668A3 (en) * 1999-09-28 2011-10-05 Geneohm Sciences Canada Inc. Highly conserved gene and its use to generate species-specific, genus-specific, family-specific, group-specific and universal nucleic acid probes for microorganisms.
US10047404B2 (en) 1999-09-28 2018-08-14 Geneohm Sciences Canada, Inc. Highly conserved tuf genes and their use to generate probes and primers for detection of coagulase-negative Staphylococcus
WO2002070736A3 (en) * 2001-03-02 2003-09-12 Arc Austrian Res Centers Gmbh Method for the detection of nucleic acid molecules
WO2002070736A2 (en) * 2001-03-02 2002-09-12 Austrian Research Centers Gmbh - Arc Method for the detection of nucleic acid molecules
WO2002095066A3 (en) * 2001-05-18 2003-12-04 Biotecon Diagnostics Gmbh Detecting microorganisms of the yersinia pestis/yersinia pseudotuberculosis species
WO2002095066A2 (en) * 2001-05-18 2002-11-28 Biotecon Diagnostics Gmbh Detecting microorganisms of the yersinia pestis/yersinia pseudotuberculosis species
US9777335B2 (en) 2001-06-04 2017-10-03 Geneohm Sciences Canada Inc. Method for the detection and identification of methicillin-resistant Staphylococcus aureus
US10577664B2 (en) 2001-06-04 2020-03-03 Geneohm Sciences Canada, Inc. Method for the detection and identification of methicillin-resistant Staphylococcus aureus
US10801074B2 (en) 2001-06-04 2020-10-13 Geneohm Sciences Canada, Inc. Method for the detection and identification of methicillin-resistant Staphylococcus aureus
US7122314B2 (en) 2002-01-30 2006-10-17 Id Biomedical Corporation Methods for detecting vancomycin-resistant microorganisms and compositions therefor
WO2004020451A1 (en) * 2002-08-29 2004-03-11 The Uab Research Foundation Group b streptococcal phage lysin
US11834720B2 (en) 2005-10-11 2023-12-05 Geneohm Sciences, Inc. Sequences for detection and identification of methicillin-resistant Staphylococcus aureus (MRSA) of MREJ types xi to xx

Also Published As

Publication number Publication date
US20090047671A1 (en) 2009-02-19
MX9701847A (en) 1997-06-28
EP0804616A2 (en) 1997-11-05
EP0804616B1 (en) 2002-06-19
ES2176336T3 (en) 2002-12-01
US20090053702A1 (en) 2009-02-26
PT804616E (en) 2002-11-29
NZ292494A (en) 1998-03-25
US6001564A (en) 1999-12-14
NO971111L (en) 1997-05-09
EP1138786A3 (en) 2004-11-24
AU3468195A (en) 1996-03-29
DK0804616T3 (en) 2002-10-07
JP2007125032A (en) 2007-05-24
ATE219524T1 (en) 2002-07-15
JPH10504973A (en) 1998-05-19
NO971111D0 (en) 1997-03-11
CA2199144A1 (en) 1996-03-21
EP1138786B1 (en) 2013-09-11
DE69527154D1 (en) 2002-07-25
DE69527154T2 (en) 2003-01-16
EP1138786A2 (en) 2001-10-04
CA2199144C (en) 2010-02-16
WO1996008582A3 (en) 1996-07-18
AU705198B2 (en) 1999-05-20
JP4176146B2 (en) 2008-11-05
BR9508918A (en) 1997-10-21

Similar Documents

Publication Publication Date Title
JP4176146B2 (en) Specific and universal probes and amplification primers for the rapid detection and identification of common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories
US7943346B2 (en) Probes and primers for detection of bacterial pathogens and antibiotic resistance genes
JP5221507B2 (en) Species-specific, genus-specific and universal probes and primers for the rapid detection and identification of common bacterial and fungal pathogens and related antibiotic resistance genes from clinical specimens for diagnosis in microbiology laboratories
US6015666A (en) Rapid DNA test for detecting quinolone-resistant Staphylococcus aureus pathogens in clinical material
RU2154106C2 (en) Simultaneous determination, identification and differentiation of eubacterial taxons using hybridization analysis
EP0525095B1 (en) HYBRIDIZATION PROBES DERIVED FROM THE SPACER REGION BETWEEN THE 16S AND 23S rRNA GENES FOR THE DETECTION OF NON-VIRAL MICROORGANISMS
JPH11503921A (en) Universal target for species identification
CA2698476A1 (en) Method for detecting bacteria and fungi
Martineau et al. Development of a rapid PCR assay specific for Staphylococcus saprophyticus and application to direct detection from urine samples
Watterworth et al. Multiplex PCR-DNA probe assay for the detection of pathogenic Escherichia coli
US5536638A (en) Hybridization probes derived from the spacer region between the 16S and 23S rRNA genes for the detection of Neisseria gonorrhoeae
CA2558553A1 (en) Assay for detecting and identifying micro-organisms
Hu et al. Simultaneous analysis of foodborne pathogenic bacteria by an oligonucleotide microarray assay
US5747259A (en) Materials and methods for species-specific detection of mycobacterium kansasii nucleic acids
JP2006509500A (en) Nucleic acid probes and broad range primers from the region of topoisomerase gene and methods of using them
AU705198C (en) Specific and universal probes and amplification primers to rapidly detect and identify common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories
JPH08297A (en) Oligonucleotide primer and probe to detect bacteria
US20020081606A1 (en) Methods for detecting and identifying a gram positive bacteria in a sample
JPH06165681A (en) Oligonucleotide for detection of methicillin resistant staphylococcus aureus, detection of methicillin resistant staphylococcus aureus and kit of detection reagent
IES20090470A2 (en) LepA/Guf1 gene sequences as a diagnostic target for the identification of bacterial species.
MXPA01006838A (en) Specific and universal probes and amplification primers to rapidly detect and identify common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95195699.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG UZ VN

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG UZ VN

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

ENP Entry into the national phase

Ref document number: 2199144

Country of ref document: CA

Ref document number: 2199144

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 292494

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: PA/a/1997/001847

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1995931109

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1995931109

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/006838

Country of ref document: MX

WWG Wipo information: grant in national office

Ref document number: 1995931109

Country of ref document: EP