WO1996011790A1 - Verfahren zum herstellen eines dreidimensionalen objektes - Google Patents

Verfahren zum herstellen eines dreidimensionalen objektes Download PDF

Info

Publication number
WO1996011790A1
WO1996011790A1 PCT/EP1995/003725 EP9503725W WO9611790A1 WO 1996011790 A1 WO1996011790 A1 WO 1996011790A1 EP 9503725 W EP9503725 W EP 9503725W WO 9611790 A1 WO9611790 A1 WO 9611790A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
envelope
support structure
core
region
Prior art date
Application number
PCT/EP1995/003725
Other languages
English (en)
French (fr)
Inventor
Carl Fruth
Hans J. Langer
Original Assignee
Eos Gmbh Electro Optical Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eos Gmbh Electro Optical Systems filed Critical Eos Gmbh Electro Optical Systems
Priority to EP95932782A priority Critical patent/EP0785859B1/de
Priority to JP8512879A priority patent/JPH09511705A/ja
Priority to DE59504444T priority patent/DE59504444D1/de
Priority to US08/817,998 priority patent/US5897825A/en
Publication of WO1996011790A1 publication Critical patent/WO1996011790A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the invention relates to a method for producing a three-dimensional object according to the preamble of claim 1.
  • a method for producing a three-dimensional object is known under the term "stereolithography".
  • a layer of a liquid or powdery material is applied to a support or an already solidified layer and is solidified at the corresponding points by irradiation with a directed light beam, for example a laser beam.
  • the object is produced in layers by successive solidification of a plurality of successive layers.
  • a method for producing a three-dimensional object is known from DE 43 09 524, in which the entire object or each layer of the object to be formed is broken down into an inner core region and an outer envelope region and the radiation effect in the core region and in the envelope region Generation of different properties of both areas is controlled differently.
  • the object to be formed is broken down into an envelope area and a core area in a computer.
  • the object data corresponding to the decomposition of the object to be formed into the envelope area and core area are made available to a further computer which controls an irradiation device for consolidating the layers of the object to be formed.
  • WO 94/07 681 a method for producing a three-dimensional object by successively solidifying layers of the object lying one above the other is known, in which partial areas of a layer are initially solidified and thereby connected to underlying partial areas of the previously solidified layer to form multilayer cells , and then adjacent sub-areas of the same layer are connected to one another by solidifying narrow connecting areas. This is intended to reduce deformation of the object.
  • the three-dimensional disassembly of the support structure into the core area and the envelope area makes the support structure very homogeneous, since there is no double irradiation or double exposure within the support structure.
  • the envelope area can be constructed in such a way that an easily detachable connection to the object is produced, and the core area can be constructed in such a way that a sufficiently stable support structure with a short construction time - 3a -
  • Fig. 1 is a schematic representation of an apparatus for performing the method according to the invention
  • FIG. 2 is a schematic cross-sectional view of a
  • Fig. 3 shows a section along the line A - A of
  • FIG. 4 shows a schematic cross-sectional view of an object to be formed with a support structure according to a further embodiment of the invention.
  • a device for carrying out the method according to the invention has a container 1 which is open on its upper side and which has a material which can be solidified under the influence of electromagnetic radiation to a level or a surface 2 3 is filled.
  • a carrier 4 with an essentially flat and horizontal carrier plate 5, which is arranged parallel to the surface 2 and can be moved and positioned up and down perpendicularly to the surface 2 or to the carrier plate 5 by means of a height adjustment device, not shown can.
  • An object 6 to be formed is arranged on the carrier plate 5 together with a support structure 20, the object 6 and the support structure 20 each consisting of a plurality of layers 6a, 6b, 6c, 6d and 6e or 20a, 20b and 20c, which each extend parallel to the surface 2 and to the support plate 5, are constructed.
  • a device (not shown) for smoothing the surface 2 of the solidifiable material 3 is arranged above the container 1.
  • an irradiation device 7 for example a laser, which emits a directed light beam 8.
  • the directed light beam 8 - 5 - is via a deflection device 9, for example a
  • a controller 11 controls the deflecting device 9 in such a way that the deflected beam 10 strikes any desired location on the surface 2 of the solidifiable material 3 in the container 1.
  • the controller 11 is connected to a computer unit 50 which the. Control 11 supplies the corresponding data for solidifying the layers of the object 6 and the support structure 20.
  • the carrier plate 5 is positioned in the container 1 in a first step in such a way that between the top of the carrier plate 5 and the surface 2 of the solidifiable material 3 in the container 1, a layer thickness corresponding exactly to the intended one There is a distance.
  • the layer of the solidifiable material 3 located above the carrier plate 5 is determined by means of the light beam 8, 10 generated by the irradiation device 7 and controlled by the deflection device 9 and the control device 11 at predetermined, corresponding to the object 6 and the associated support structure 20 Places irradiated, whereby the material 3 is solidified and thus forms a solid layer 6a or 20a corresponding to the shape of an object and the support structure.
  • the object and the support construction data for the control of the consolidation of each layer are calculated by breaking down a three-dimensional model of the object 6 and the support structure 20 into individual layers.
  • the entire three-dimensional support structure 20 in the computer unit 50 is broken down into an envelope area and a core area.
  • the envelope - 6 - area and the core area form two independent parts or individual objects of the support structure.
  • the three-dimensional model of the support structure can also be broken down in a separate computer, and the data generated can be transferred to the computer unit 50.
  • the radiation effect during solidification in each layer is now carried out in different ways, depending on whether it is the core area or the envelope area of the support structure. Due to the disassembly, a double exposure of overlapping parts of the support structure no longer occurs.
  • FIG. 2 shows a section through a support structure 21 together with the object 6 in the region of the connection of the support structure 21 to the object 6.
  • the support structure 21 is broken down into a core region 22 and an envelope region 23, which have different structures and thus different properties exhibit.
  • the radiation effect is preferably carried out in such a way that the deformation of the support structure 21 when the object 6 is generated is minimal.
  • the core area 22 must be exposed hard and thus inelastically, i. H. strong solidification must be created.
  • the core area 22 of the support structure 21 is only solidified in individual, spaced-apart partial areas which are either not connected at all or are connected to one another by connecting webs. If the envelope region 23 is sufficiently stable, it is also possible not to consolidate the core region 22 at all. After completion, non-consolidated material can be discharged through openings provided in the envelope area and / or in the core area.
  • the solidification of the support structure 21 in the envelope area 23 can preferably be used to produce a sufficiently stable but easily detachable connection of the support structure to the
  • the exposure in the envelope area is soft, i. H. less solidification than in the core area is generated, so that the envelope area of the support structure does not inseparably adhere to the object in the area of the connection to the object.
  • Individual spaced subregions can also be solidified in the envelope region 23 of the support structure, which are either not connected at all or are connected to one another by connecting webs.
  • the distance between the partial areas in the envelope area is preferably smaller than the distance between the partial areas in the core area so that the object is adequately supported.
  • areas of the envelope area 23 of the support structure 21, which adjoin the object it is possible to solidify only individual contiguous blocks or blocks of the envelope area, thereby producing a perforated connection to the object, which detaches the support structure after Completion of the object facilitated.
  • the wall thickness of the envelope area can be adjusted within the entire support structure and / or from layer to layer. The distance between the support structure and the walls of the object to be formed can thus be set.
  • a further embodiment of the method according to the invention consists in disassembling a support structure 30 into shell regions 31, 32, 33 and a core region 26 forming several shells, these regions 31, 32, 33, 26 are each separate parts or individual objects of the support structure.
  • Different shell thicknesses are possible.
  • An envelope area can, for example, completely or Include only partially.
  • the shell 31 has no Z thickness, but it has an XY wall thickness.
  • the envelope region 32 has only a Z thickness, while the envelope region 33 has a uniform wall thickness in the XY and Z directions.
  • the core 26 can be built with very large spaced sections. With such a shell-shaped disassembly, it is possible to optimally direct the flow of force through the support structure with minimal construction time.

Abstract

Bei einem Verfahren zum Herstellen eines dreidimensionalen Objektes (6), bei dem das Objekt durch aufeinanderfolgendes Verfestigen einzelner Schichten (6a, 6b, 6c, 6d, 6e) aus flüssigem oder pulverförmigem Material (3) durch Einwirkung einer elektromagnetischen Strahlung (8, 10) erzeugt wird und bei dem zusammen mit dem Objekt eine Stützkonstruktion (20, 21) zum Stützen des Objektes (6) verfestigt wird, wird die Stützkonstruktion (20, 21) in dreidimensionaler Weise in einen inneren Kernbereich (22) und einen äußeren Hüllbereich (23) zerlegt und die Strahlungseinwirkung zur Erzeugung unterschiedlicher Eigenschaften beider Bereiche verschieden gesteuert.

Description

Verfahren zum Herstellen eines dreidimensionalen Objektes
Die Erfindung bezieht sich auf ein Verfahren zum Herstellen eines dreidimensionalen Objektes nach dem Oberbegriff des Patentanspruches 1.
Ein Verfahren zum Herstellen eines dreidimensionalen Objek¬ tes ist unter dem Begriff "Stereolithographie" bekannt. Hierbei wird auf einen Träger bzw. eine bereits verfestigte Schicht eine Schicht eines flüssigen oder pulverförmigen Materials aufgetragen und durch Bestrahlen mit einem ge¬ richteten Lichtstrahl, beispielsweise einem Laserstrahl, an dem Objekt entsprechenden Stellen verfestigt. Durch suk¬ zessives Verfestigen einer Vielzahl von aufeinanderfolgen¬ den Schichten wird das Objekt schichtweise hergestellt.
Ein derartiges Verfahren, bei dem zusammen mit dem Objekt Stützkonstruktionen zum Stützen von Teilen des Objektes bzw. des gesamtes Objektes verfestigt werden, ist aus der EP-A-0 338 751 bekannt. Beim Aufbau von Stützkonstruktionen entstehen jedoch
Schwierigkeiten der folgenden Art.
Bei filigranen Strukturen sowie bei der Verschneidung von Flächen werden wegen der im CAD-Modell getrennten Flächen- verbunde mehrere Einzelstützen erzeugt. Diese können dicht nebeneinander liegen und/oder sich überschneiden bzw. durchdringen. Bei der Belichtung der Stützkonstruktion wer¬ den die Konturlinien der Einzelstützen in geringstem Ab¬ stand zueinander belichtet. Dabei verschmelzen sie mitein¬ ander. Die entstandene Stützkonstruktion läßt sich ohne Zerstörung des Bauteiles nicht oder nur sehr schwer entfer¬ nen.
Um das Verschmelzen dicht nebeneinanderliegender Konturli¬ nien von Einzelstützen zu verhindern, ist es möglich, die Stützen ohne Kontur zu belichten. Die Stützen müssen dann jedoch sehr hart belichtet werden, d. h. es muß ein hoher Grad an Verfestigung erzeugt werden, um ein Ausfransen der Stützen an den Rändern zu verhindern. Die so erzeugte Stützkonstruktion ist wiederum nur sehr mühsam vom Bauteil zu entfernen oder kann ohne Zerstörung desselben nicht ent¬ fernt werden.
Aus der DE 43 09 524 ist ein Verfahren zum Herstellen eines dreidimensionalen Objektes bekannt, bei dem das gesamte Ob¬ jekt bzw. jede Schicht des zu bildenden Objektes in einen inneren Kernbereich und einen äußeren Hüllbereich zerlegt wird und die Strahlungseinwirkung im Kernbereich und im Hüllbereich zur Erzeugung unterschiedlicher Eigenschaften beider Bereiche verschieden gesteuert wird. Die Zerlegung des zu bildenden Objektes in einen Hüllbereich und einen Kernbereich erfolgt in einem Rechner. Der Zerlegung des zu bildenden Objektes in Hüllbereich und Kernberich entspre¬ chende Objektdaten werden einem weiteren Rechner zur Verfü¬ gung gestellt, der eine Bestrahlungseinrichtung zum Verfe¬ stigen der Schichten des zu bildenden Objektes steuert. Durch die Zerlegung ist es möglich, ein Objekt mit unter- schiedlichen und den jeweiligen Erfordernissen entsprechenden vorteilhaften Baustilen aufzubauen.
Aus der WO 94/07 681 ist ein Verfahren zum Herstellen eines dreidimensionalen Objekts durch aufeinanderfolgendes Verfes¬ tigen von übereinanderliegenden Schichten des Objekts bekannt, bei dem jeweils zunächst Teilbereiche einer Schicht verfestigt und dabei mit darunterliegenden Teilbereichen der vorher ver¬ festigten Schicht zu mehrschichtigen Zellen verbunden werden, und danach benachbarte Teilbereiche derselben Schicht durch Verfestigen von schmalen Verbindungsbereichen miteinander verbunden werden. Dadurch soll eine Verformung des Objekts verringert werden.
Es ist Aufgabe der Erfindung, ein Verfahren zum Herstellen eines dreidimensionalen Objektes bereitzustellen, bei dem eine zusammen mit dem Objekt erzeugte Stützkonstruktion einen homogenen Aufbau aufweist, in einer kurzen Zeit hergestellt werden kann und nach der Fertigstellung des Objektes leicht von diesem entfernt werden kann.
Die Aufgabe wird gelöst durch das Verfahren nach Patentanspruch 1. Weiterbildungen sind in den Unteransprüchen gegeben.
Durch die Zerlegung der Stützkonstruktion in dreidimensionaler Weise in den Kernbereich und den Hüllbereich wird die erzeugte Stützkonstruktion sehr homogen, da es keine Doppelbestrahlung bzw. Doppelbelichtung innerhalb der Stützkonstruktion gibt. Durch Steuerung der Strahlungseinwirkung im Hüllbereich verschieden von der im Kernbereich kann der Hüllbereich so auf¬ gebaut werden, daß eine leicht lösbare Anbindung an das Objekt erzeugt wird, und der Kernbereich kann so aufgebaut werden, daß eine ausreichend stabile Stützkonstruktion mit geringer Bauzeit - 3a -
erzeugt wird und Verzugskräfte bei der Bildung des Objektes bei geringer Deformation der Stützkonstruktion aufgenommen werden können.
Es folgt die Beschreibung von Ausführungsbeispielen anhand der Figuren.
Von den Figuren zeigen:
Fig. 1 Eine schematische Darstellung einer Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens;
- 4 - Fig. 2 eine schematische Querschnittansicht eines
Teiles eines zu bildenden Objektes zusammen mit einer Stützkonstruktion gemäß einer Aus¬ führungsform der Erfindung;
Fig. 3 einen Schnitt entlang der Linie A - A von
Fig. 2;
Fig. 4 eine schematische Querschnittansicht eines zu bildenden Objektes mit einer Stützkon¬ struktion gemäß einer weiteren Ausführungs¬ form der Erfindung.
Wie am besten aus Fig. 1 ersichtlich ist, weist eine Vor¬ richtung zur Durchführung des erfindungsgemäßen Verfahrens einen auf seiner Oberseite offenen Behälter 1 auf, der bis einem Niveau bzw. einer Oberfläche 2 mit einem unter Ein¬ wirkung elektromagnetischer Strahlung verfestigbaren Mate¬ rial 3 gefüllt ist. In dem Behälter 1 befindet sich ein Träger 4 mit einer im wesentlichen ebenen und horizontalen Trägerplatte 5, die parallel zur Oberfläche 2 angeordnet ist und mittels einer nicht gezeigten Höheneinstellvorrich- tung senkrecht zur Oberfläche 2 bzw. zur Trägerplatte 5 auf und ab verschoben und positioniert werden kann.
Auf der Trägerplatte 5 ist ein zu bildendes Objekt 6 zusam¬ men mit einer Stützkonstruktion 20 angeordnet, wobei das Objekt 6 und die Stützkonstruktion 20 jeweils aus einer Mehrzahl von Schichten 6a, 6b, 6c, 6d und 6e bzw. 20a, 20b und 20c, die sich jeweils parallelr zur Oberfläche 2 und zur Trägerplatte 5 erstrecken, aufgebaut sind.
Über dem Behälter 1 ist eine nicht gezeigte Vorrichtung zum Glätten der Oberfläche 2 des verfestigbaren Materiales 3 angeordnet.
Oberhalb des Behälters 1 ist eine Bestrahlungseinrichtung 7, beispielsweise ein Laser, angeordnet, die einen gerich¬ teten Lichtstrahl 8 abgibt. Der gerichtete Lichtstrahl 8 - 5 - wird über eine Ablenkeinrichtung 9, beispielsweise einen
Drehspiegel, als abgelenkter Strahl 10 auf die Oberfläche 2 des verfestigbaren Materiales 3 in dem Behälter 1 abge¬ lenkt. Eine Steuerung 11 steuert die Ablenkeinrictttung 9 derart, daß der abgelenkte Strahl 10 auf jede gewünschte Stelle der Oberfläche 2 des verfestigbaren Materiales 3 in dem Behälter 1 auftrifft. Die Steuerung 11 ist mit einer Computereinheit 50 verbunden, die der . Steuerung 11 die entsprechenden Daten zur Verfestigung der Schichten des Ob¬ jektes 6 und der Stützkonstruktion 20 liefert.
Bei dem Verfahren zum Herstellen des dreidimensionalen Ob¬ jektes wird die Trägerplatte 5 in einem ersten Schritt in dem Behälter 1 so positioniert, daß zwischen der Oberseite der Trägerplatte 5 und der Oberfläche 2 des verfestigbaren Materiales 3 in dem Behälter 1 ein gerade der vorgesehen Schichtdicke entsprechender Abstand vorliegt. Die sich über der Trägerplatte 5 befindliche Schicht des verfestigbaren Materiales 3 wird mittels des von der Bestrahlungseinrich- tung 7 erzeugten und über die Ablenkeinrichtung 9 und die Steuereinrichtung 11 gesteuerten Lichtstrahles 8, 10 an vorgegebenen, dem Objekt 6 und der zugehörigen Stützkon¬ struktion 20 entsprechenden Stellen bestrahlt, wodurch das Material 3 verfestigt wird und so eine der Form eines Ob¬ jektes und der Stützkonstruktion entsprechende feste Schicht 6a bzw. 20a bildet. Das Bilden von weiteren Schich¬ ten 6b, 6c, 6d und 6e bzw. 20b und 20c erfolgt sukzessive durch Absenken der Trägerplatte 5 um einen der jeweiligen Schichtdicke entsprechenden Betrag und erneutes Bestrahlen an den dem Objekt 6 bzw. der Stützkonstruktion 20 entspre¬ chenden Stellen.
In der Computereinheit 50 erfolgt eine Berechnung der Ob¬ jekt- und der Stützkonstruktionsdaten für die Steuerung der Verfestigung jeder Schicht durch Zerlegung eines dreidimen¬ sionalen Modelles des Objektes 6 und der Stützkonstruktion 20 in einzelne Schichten. Dabei wird die gesamte dreidimen¬ sionale Stützkonstruktion 20 in der Computereinheit 50 in einen Hüllbereich und einen Kernbereich zerlegt. Der Hüll- - 6 - bereich und der Kernbereich bilden zwei eigenständige Teile bzw. Einzelobjekte der Stützkonstruktion. Die Zerlegung des dreidimensionalen Modells der Stützkonstruktion kann auch in einem separaten Computer erfolgen, und die erzeugten Da¬ ten können an die Computereinheit 50 übergeben werden. Die Strahlungseinwirkung bei der Verfestigung in jeder Schicht erfolgt nun in unterschiedlicher Art und Weise, je nachdem, ob es sich um den Kernbereich oder den Hüllbereich der Stützkonstruktion handelt. Durch die Zerlegung tritt eine Doppelbelichtung von sich überschneidenden Teilen der Stützkonstruktion nicht mehr auf.
Fig. 2 zeigt einen Schnitt durch eine Stützkonstruktion 21 zusammen mit dem Objekt 6 im Bereich der Anbindung der Stützkonstruktion 21 an das Objekt 6. Die Stützkonstruktion 21 ist in einen Kernbereich 22 und einen Hüllbereich 23 zerlegt, die unterschiedliche Strukturen und damit unter¬ schiedliche Eigenschaften aufweisen. Fig. 3, die einen Schnitt entlang der Linie A-A von Fig. 2 darstellt, veran¬ schaulicht die Anbindung der Stützkonstruktion 21 über de¬ ren Hüllbereich 23 an das Objekt 6 in einer Schicht.
Im Kernbereich 22 erfolgt die Strahlungseinwirkung bevor¬ zugt so, daß die Verformung der Stützkonstruktion 21 bei der Erzeugung des Objektes 6 minimal ist. Dazu muß der Kernbereich 22 hart und damit unelastisch belichtet werden, d. h. es muß eine starke Verfestigung erzeugt werden.
Zur Verringerung der erforderlichen Bauzeit und zur Materi¬ alersparnis wird der Kernbereich 22 der Stützkonstruktion 21 nur in einzelnen beabstandeten Teilbereichen verfestigt, die entweder gar nicht oder durch Verbindungsstege mitein¬ ander verbunden sind. Es ist bei ausreichend stabiler Ver¬ festigung des Hüllbereiches 23 auch möglich, den Kernbe¬ reich 22 überhaupt nicht zu verfestigen. Nichtverfestigtes Material kann nach der Fertigstellung durch im Hüllbereich und/oder im Kernbereich vorgesehene Öffnungen abgelassen werden. - 7 - Die Verfestigung der Stützkonstruktion 21 im Hüllbereich 23 kann bevorzugt zur Erzeugung einer ausreichend stabilen, aber leicht lösbaren Anbindung der Stützkonstruktion an das
Objekt erfolgen. Dazu erfolgt die Belichtung im Hüllbereich weich, d. h. eine geringere Verfestigung als im Kernbereich wird erzeugt, so daß der Hüllbereich der Stützkonstruktion im Bereich der Anbindung an das Objekt nicht unlösbar an dem Objekt anhaftet.
Im Hüllbereich 23 der Stützkonstruktion können ebenfalls einzelne beabstandete Teilbereiche verfestigt werden, die entweder gar nicht oder durch Verbindungsstege miteinander verbunden sind. Der Abstand der Teilbereiche im Hüllbereich ist bevorzugt kleiner als der Abstand der Teilbereiche im Kernbereich, damit das Objekt ausreichend gestützt wird. In Bereichen des Hüllbereiches 23 der Stützkonstruktion 21, die an das Objekt angrenzen, ist es möglich, nur einzelne zusammenhängende Blöcke bzw. Klötzchen des Hüllbereiches zu verfestigen, wodurch eine perforierte Anbindung an das Ob¬ jekt erzeugt wird, die die Ablösung der Stützkonstruktion nach der Fertigstellung des Objektes erleichtert.
Die Wandstärke des Hüllbereiches ist innerhalb der gesamten Stützkonstruktion und/oder von Schicht zu Schicht einstell¬ bar. Damit kann der Abstand der Stützkonstruktion zu Wänden des zu bildenden Objektes eingestellt werden.
Durch geeignete Wahl der Strahlungseinwirkung bzw. der Belichtungstechnik können gegenüber dem herkömmlichen Ver¬ fahren Bauzeiteinsparungen von bis zu 80% erreicht werden.
Wie am besten aus Fig. 4 ersichtlich ist, besteht eine wei¬ tere Ausführungsform des erfindungsgemäßen Verfahrens darin, eine Stützkonstruktion 30 in mehrere Schalen bil¬ dende Hüllbereiche 31, 32, 33 und einen Kernbereich 26 zu zerlegen, wobei diese Bereiche 31, 32, 33, 26 jeweils ei¬ genständige Teile bzw. Einzelobjekte der Stützkonstruktion sind. Verschiedene Schalendicken sind möglich. Ein Hüllbe¬ reich kann beispielsweise den Kernbereich vollständig oder - 8 - nur teilweise einschließen. So besitzt gemäß Fig. 4 die Hülle 31 keine Z-Dicke, hingegen jedoch XY-Wandstärke. Der Hüllbereich 32 besitzt lediglich Z-Dicke, während der Hüll¬ bereich 33 eine gleichmäßige Wandstärke in XY- und Z-Rich- tung aufweist. Der Kern 26 kann bei dieser Stützkonstruk¬ tion mit sehr groß beabstandeten Teilbereichen gebaut wer¬ den. Mit einer solchen schalenförmigen Zerlegung ist es möglich, den Kraftfluß durch die Stützkonstruktion bei mi¬ nimaler Bauzeit optimal zu leiten.

Claims

- 9 -P A T E N T A N S P R Ü C H E
1. Verfahren zum Herstellen eines dreidimensionalen Ob¬ jektes, bei dem das Objekt (6) durch aufeinanderfolgendes Verfestigen einzelner Schichten (6a, 6b, 6c, 6d, 6e) aus verfestigbarem flüssigem oder pulverförmigem Material (3) durch Einwirkung einer elektromagnetischen Strahlung (8, 10) erzeugt wird und bei dem zusammen mit dem Objekt (6) eine Stützkonstruktion (20, 21) zum Stützen des Objektes (6) verfestigt wird, dadurch gekennzeichnet, daß die Stützkonstruktion (20, 21) in dreidimensionaler Weise in einen inneren Kernbereich (22) und einen äußeren Hüllbe¬ reich (23) zerlegt wird und die Strahlungseinwirkung zur Erzeugung unterschiedlicher Eigenschaften beider Bereiche verschieden gesteuert wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Stützkonstruktion (20, 21) schichtweise zusammen mit der Verfestigung der Schichten (6a, 6b, 6c, 6d, 6e) des Ob¬ jektes (6) verfestigt wird und die Zerlegung in den Hüllbe¬ reich (23) und den Kernbereich (22) in jeder Schicht (20a, 20b, 20c) erfolgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeich¬ net, daß die Strahlungseinwirkung im Kernbereich (22) so erfolgt, daß die Verformung der Stützkonstruktion (20, 21) bei der Erzeugung des Objektes (6) minimal ist und daß die Strah¬ lungseinwirkung im Hüllbereich (23) zur Erzeugung der An¬ bindung der Stützkonstruktion an das Objekt erfolgt. - 10 -
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Strahlungseinwirkung im Kernbereich (22) so erfolgt, daß eine starke Verfestigung erzeugt wird und daß die Strahlungseinwirkung im Hüllbereich (23) so erfolgt, daß eine geringe Verfestigung erzeugt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß im Kernbereich (22) einzelne beabstandete Teilbereiche verfestigt werden.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Teilbereiche durch Verbindungsstege miteinander verbun¬ den werden.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß im Hüllbereich (23) einzelne beabstandete Teilbereiche verfestigt werden.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Teilbereiche durch Verbindungsstege miteinander verbun¬ den werden.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeich¬ net, daß der Abstand der Teilbereiche im Hüllbereich (23) kleiner als der Abstand der Teilbereiche im Kernbereich (22) ist.
10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß in Bereichen des Hüllbereiches (23), die an das Objekt (6) angrenzen, nur einzelne Schichten oder eine Anzahl von übereinanderliegenden Schichten oder einzelne Teilbereiche einer Schicht zur Erzeugung einer perforierten Anbindung an das Objekt (6) verfestigt v/erden. - 11 -
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Strahlungseinwirkung so gesteuert wird, daß eine Wandstarke des Hüllbereiches (23) für die gesamte Stützkonstruktion gleich ist.
12. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß eine Wandstärke des Hüllbereiches (23) über die Stützkonstruktion einstellbar ist.
13. Verfahren nach einem der Ansprüche l bis 10, dadurch gekennzeichnet, daß das zu bildende Objekt (6) in dreidimensionaler Weise in einen Kernbereich und einen Hüllbereich zerlegt wird und daß die Strahlungseinwirkung im Kernbereich so erfolgt, daß die Verformung des Objektes bei und nach der Verfestigung minimal ist und daß die Strahlungseinwirkung im Hüllbereich zur Erzeugung einer glatten und genauen Oberfläche erfolgt.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß der Kernbereich in mindestens einen zweiten Hullbereich (32, 33) und einen zweiten Kernbereich (26) zerlegt wird und die Strahlungseinwirkung zur Erzeugung unterschiedli¬ cher Eigenschaf en jedes Bereiches verschieden gesteuert wird.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die Wandstarken der Hullbereiche (31, 32, 33) einstellbar sind.
16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß im Hüllbereich (23, 31, 32, 33) Öffnungen gebildet werden, durch die unverfestigtes Material aus dem Kernbereich (22, 26) ausfließen kann. - 1 2 -
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß im Kernbereich (22, 26) Öffnungen gebildet werden, durch die unverfestigtes Material aus dem Kernbereich (22_,^ 26) ausfließen kann.
18. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 14, gekennzeichnet durch einen Behälter (1) zur Aufnahme des durch Einwirkung elek¬ tromagnetischer Strahlung verfestigbaren Materials (3) , einen höhenverstellbaren Träger (4, 5) zum Tragen des Ob¬ jekts (6), und eine Vorrichtung (7, 9, 11) zum Verfestigen einer Schicht des Materials (3) mittels elektromagnetischer Strahlung.
19. Vorrichtung nach Anspruch 15, gekennzeichnet durch eine Computereinheit (50) zur Berechnung der Zerlegung der Stützkonstruktion (20) in den Hüllbereich und den Kernbe¬ reich.
PCT/EP1995/003725 1994-10-13 1995-09-21 Verfahren zum herstellen eines dreidimensionalen objektes WO1996011790A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP95932782A EP0785859B1 (de) 1994-10-13 1995-09-21 Verfahren und vorrichtung zum herstellen eines dreidimensionalen objektes
JP8512879A JPH09511705A (ja) 1994-10-13 1995-09-21 3次元物体の製造方法
DE59504444T DE59504444D1 (de) 1994-10-13 1995-09-21 Verfahren und vorrichtung zum herstellen eines dreidimensionalen objektes
US08/817,998 US5897825A (en) 1994-10-13 1995-09-21 Method for producing a three-dimensional object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4436695.7 1994-10-13
DE4436695A DE4436695C1 (de) 1994-10-13 1994-10-13 Verfahren zum Herstellen eines dreidimensionalen Objektes

Publications (1)

Publication Number Publication Date
WO1996011790A1 true WO1996011790A1 (de) 1996-04-25

Family

ID=6530733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/003725 WO1996011790A1 (de) 1994-10-13 1995-09-21 Verfahren zum herstellen eines dreidimensionalen objektes

Country Status (5)

Country Link
US (1) US5897825A (de)
EP (1) EP0785859B1 (de)
JP (1) JPH09511705A (de)
DE (3) DE4436695C1 (de)
WO (1) WO1996011790A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014095872A1 (en) * 2012-12-17 2014-06-26 Materialise N.V. Graded materials formed with three dimensional printing

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503785A (en) * 1994-06-02 1996-04-02 Stratasys, Inc. Process of support removal for fused deposition modeling
DE4436695C1 (de) * 1994-10-13 1995-12-21 Eos Electro Optical Syst Verfahren zum Herstellen eines dreidimensionalen Objektes
WO1997014549A1 (de) * 1995-10-13 1997-04-24 Eos Gmbh Electro Optical Systems Verfahren zum herstellen eines dreidimensionalen objektes
DE19715582B4 (de) * 1997-04-15 2009-02-12 Ederer, Ingo, Dr. Verfahren und System zur Erzeugung dreidimensionaler Körper aus Computerdaten
DE19906564C2 (de) * 1999-02-17 2001-01-25 Peschges Klaus Juergen Verfahren zur Herstellung von dreidimensionalen Gegenständen mittels Stereolithographie
US6524346B1 (en) 1999-02-26 2003-02-25 Micron Technology, Inc. Stereolithographic method for applying materials to electronic component substrates and resulting structures
GB9919511D0 (en) * 1999-08-19 1999-10-20 British Aerospace Stereolithography
US6814823B1 (en) 1999-09-16 2004-11-09 Solidica, Inc. Object consolidation through sequential material deposition
US6519500B1 (en) * 1999-09-16 2003-02-11 Solidica, Inc. Ultrasonic object consolidation
US6558606B1 (en) * 2000-01-28 2003-05-06 3D Systems, Inc. Stereolithographic process of making a three-dimensional object
US6463349B2 (en) * 2000-03-23 2002-10-08 Solidica, Inc. Ultrasonic object consolidation system and method
ES2230086T3 (es) 2000-03-24 2005-05-01 Voxeljet Technology Gmbh Metodo y aparato para fabricar una pieza estructural mediante la tecnica de deposicion multi-capa y moldeo macho fabricado con el metodo.
US6574523B1 (en) 2000-05-05 2003-06-03 3D Systems, Inc. Selective control of mechanical properties in stereolithographic build style configuration
US6607689B1 (en) * 2000-08-29 2003-08-19 Micron Technology, Inc. Layer thickness control for stereolithography utilizing variable liquid elevation and laser focal length
JP3446733B2 (ja) * 2000-10-05 2003-09-16 松下電工株式会社 三次元形状造形物の製造方法及びその装置
JP3446748B2 (ja) * 2001-04-24 2003-09-16 松下電工株式会社 三次元形状造形物の製造方法および成形金型
DE10219984C1 (de) * 2002-05-03 2003-08-14 Bego Medical Ag Vorrichtung und Verfahren zum Herstellen frei geformter Produkte
DE10219983B4 (de) * 2002-05-03 2004-03-18 Bego Medical Ag Verfahren zum Herstellen von Produkten durch Freiform-Lasersintern
AU2003270831A1 (en) * 2002-09-23 2004-04-08 Volcano Corporation Sensor catheter having reduced cross-talk wiring arrangements
EP1590149B1 (de) * 2002-12-03 2008-10-22 Objet Geometries Ltd. Verfahren und vorrichtung für dreidimensionales drucken
DE10309519B4 (de) * 2003-02-26 2006-04-27 Laserinstitut Mittelsachsen E.V. Verfahren und Vorrichtung zur Herstellung von Miniaturkörpern oder mikrostrukturierten Körpern
US7435072B2 (en) 2003-06-02 2008-10-14 Hewlett-Packard Development Company, L.P. Methods and systems for producing an object through solid freeform fabrication
US20040254665A1 (en) * 2003-06-10 2004-12-16 Fink Jeffrey E. Optimal dimensional and mechanical properties of laser sintered hardware by thermal analysis and parameter optimization
US20100174392A1 (en) * 2003-06-10 2010-07-08 Fink Jeffrey E Optimal dimensional and mechanical properties of laser sintered hardware by thermal analysis and parameter optimization
US7261542B2 (en) * 2004-03-18 2007-08-28 Desktop Factory, Inc. Apparatus for three dimensional printing using image layers
DE502005004008D1 (de) 2004-05-10 2008-06-19 Envisiontec Gmbh Verfahren zur herstellung eines dreidimensionalen objekts mit auflösungsverbesserung mittels pixel-shift
DE102004022961B4 (de) * 2004-05-10 2008-11-20 Envisiontec Gmbh Verfahren zur Herstellung eines dreidimensionalen Objekts mit Auflösungsverbesserung mittels Pixel-Shift
US7547978B2 (en) 2004-06-14 2009-06-16 Micron Technology, Inc. Underfill and encapsulation of semiconductor assemblies with materials having differing properties
US7235431B2 (en) * 2004-09-02 2007-06-26 Micron Technology, Inc. Methods for packaging a plurality of semiconductor dice using a flowable dielectric material
EP1881888A1 (de) * 2005-05-20 2008-01-30 Huntsman Advanced Materials (Switzerland) GmbH Vorrichtung und verfahren zur schnellen herstellung von prototypen
DE102006008332B4 (de) * 2005-07-11 2009-06-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer funktionellen Baueinheit und funktionelle Baueinheit
DE102005050665A1 (de) 2005-10-20 2007-04-26 Bego Medical Gmbh Schichtweises Herstellungsverfahren mit Korngrößenbeeinflussung
ES2328430B1 (es) * 2006-04-06 2010-09-16 Moises Mora Garcia Maquina de fabricacion de protesis dentales y maxilofaciales a partir de un modelo digital tridimensional mediante aplicacion directa de laser y sinterizacion, y procedimiento de operacion de dicha maquina.
DE102006019963B4 (de) * 2006-04-28 2023-12-07 Envisiontec Gmbh Vorrichtung und Verfahren zur Herstellung eines dreidimensionalen Objekts durch schichtweises Verfestigen eines unter Einwirkung von elektromagnetischer Strahlung verfestigbaren Materials mittels Maskenbelichtung
DE102006019964C5 (de) * 2006-04-28 2021-08-26 Envisiontec Gmbh Vorrichtung und Verfahren zur Herstellung eines dreidimensionalen Objekts mittels Maskenbelichtung
GB0715621D0 (en) 2007-08-10 2007-09-19 Rolls Royce Plc Support architecture
US7963020B2 (en) * 2007-08-28 2011-06-21 Sealed Air Corporation (Us) Apparatus and method for manufacturing foam parts
US7923298B2 (en) 2007-09-07 2011-04-12 Micron Technology, Inc. Imager die package and methods of packaging an imager die on a temporary carrier
GB0719747D0 (en) * 2007-10-10 2007-11-21 Materialise Nv Method and apparatus for automatic support generation for an object made by means of a rapid prototype production method
EP2052693B2 (de) 2007-10-26 2021-02-17 Envisiontec GmbH Verfahren und Formlosfabrikationssystem zur Herstellung eines dreidimensionalen Gegenstands
US9561622B2 (en) * 2008-05-05 2017-02-07 Georgia Tech Research Corporation Systems and methods for fabricating three-dimensional objects
DE102009009273B4 (de) 2009-02-17 2014-08-21 Siemens Medical Instruments Pte. Ltd. Verfahren zur Herstellung eines Hörgeräts mit indirekter Laserbestrahlung
US20120132627A1 (en) 2009-04-28 2012-05-31 Bae Systems Plc Additive layer fabrication method
DE102010015451A1 (de) 2010-04-17 2011-10-20 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Herstellen dreidimensionaler Objekte
FR2962061B1 (fr) * 2010-07-01 2013-02-22 Snecma Procede de fabrication d'une piece metallique par fusion selective d'une poudre
WO2012021940A1 (en) * 2010-08-20 2012-02-23 Zydex Pty Ltd Apparatus and method for making an object
BE1020619A3 (nl) * 2011-02-04 2014-02-04 Layerwise N V Werkwijze voor het laagsgewijs vervaardigen van dunwandige structuren.
DE102011005929A1 (de) * 2011-03-23 2012-09-27 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung und Verfahren zum Herstellen eines Bauteils in Schichtbauweise
FR2974316B1 (fr) * 2011-04-19 2015-10-09 Phenix Systems Procede de fabrication d'un objet par solidification d'une poudre a l'aide d'un laser
US8691333B2 (en) * 2011-06-28 2014-04-08 Honeywell International Inc. Methods for manufacturing engine components with structural bridge devices
JP5772668B2 (ja) * 2012-03-08 2015-09-02 カシオ計算機株式会社 3次元造形方法及び造形物複合体並びに3次元造形装置
US20140076749A1 (en) * 2012-09-14 2014-03-20 Raytheon Company Variable density desiccator housing and method of manufacturing
EP2969487B1 (de) * 2013-03-14 2020-09-09 Stratasys, Inc. Verfahren zur herstellung eines dreidimensionalen artikel
CN105163930B (zh) 2013-03-15 2017-12-12 3D系统公司 用于激光烧结系统的滑道
EP2988921B1 (de) 2013-04-26 2019-09-04 Materialise N.V. Hybride trägersysteme und verfahren zur generierung eines hybriden trägersystems mit dreidimensionalem drucken
CN103273652B (zh) * 2013-06-08 2015-12-09 王夏娃 数字光信号处理立体成型机及其立体成型方法
CN103273653B (zh) * 2013-06-18 2015-12-02 王夏娃 激光电镜立体成型机及立体成型方法
EP2886307A1 (de) 2013-12-20 2015-06-24 Voxeljet AG Vorrichtung, Spezialpapier und Verfahren zum Herstellen von Formteilen
US9527244B2 (en) 2014-02-10 2016-12-27 Global Filtration Systems Apparatus and method for forming three-dimensional objects from solidifiable paste
US9844917B2 (en) 2014-06-13 2017-12-19 Siemens Product Lifestyle Management Inc. Support structures for additive manufacturing of solid models
DE102015001480A1 (de) * 2015-02-09 2016-08-11 Werkzeugbau Siegfried Hofmann Gmbh Verfahren zum Herstellen eines dreidimensionalen Objekts durch aufeinander folgendes Verfestigen von Schichten
DE102015207306A1 (de) 2015-04-22 2016-10-27 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts
DE102015217469A1 (de) 2015-09-11 2017-03-16 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts
BE1024125B1 (fr) * 2015-09-21 2017-11-17 Safran Aero Boosters S.A. Aube de compresseur de turbomachine axiale a treillis
US10391753B2 (en) 2016-02-11 2019-08-27 General Electric Company Methods and keyway supports for additive manufacturing
US10744713B2 (en) 2016-02-11 2020-08-18 General Electric Company Methods and breakable supports for additive manufacturing
US10583606B2 (en) 2016-02-11 2020-03-10 General Electric Company Method and supports with powder removal ports for additive manufacturing
US10486362B2 (en) 2016-02-11 2019-11-26 General Electric Company Method and connecting supports for additive manufacturing
US10357828B2 (en) 2016-02-11 2019-07-23 General Electric Company Methods and leading edge supports for additive manufacturing
US10799951B2 (en) 2016-02-11 2020-10-13 General Electric Company Method and conformal supports for additive manufacturing
US10549478B2 (en) * 2016-02-11 2020-02-04 General Electric Company Methods and surrounding supports for additive manufacturing
JP6236112B2 (ja) * 2016-03-30 2017-11-29 株式会社松浦機械製作所 サポート及びワーク並びに当該サポートの造形方法
CN106077639A (zh) * 2016-06-01 2016-11-09 西安铂力特激光成形技术有限公司 一种激光选区熔化成形设备及其成形方法
PL3278908T3 (pl) * 2016-08-02 2020-07-27 Siemens Aktiengesellschaft Konstrukcja wsporcza, sposób jej zapewnienia i sposób wytwarzania addytywnego
JP2018065308A (ja) * 2016-10-20 2018-04-26 株式会社ミマキエンジニアリング 造形装置及び造形方法
US10471695B2 (en) 2016-10-26 2019-11-12 General Electric Company Methods and thermal structures for additive manufacturing
US10000011B1 (en) 2016-12-02 2018-06-19 Markforged, Inc. Supports for sintering additively manufactured parts
US10828698B2 (en) 2016-12-06 2020-11-10 Markforged, Inc. Additive manufacturing with heat-flexed material feeding
US10800108B2 (en) 2016-12-02 2020-10-13 Markforged, Inc. Sinterable separation material in additive manufacturing
DE102016124401A1 (de) * 2016-12-14 2018-06-14 Cl Schutzrechtsverwaltungs Gmbh Verfahren zur additiven Herstellung eines dreidimensionalen Objekts
DE102016125608A1 (de) * 2016-12-23 2018-06-28 Technische Universität Darmstadt Verfahren und ein Stützelement zum Abstützen einer überhängenden Struktur
DE102017108534A1 (de) 2017-04-21 2018-10-25 Eos Gmbh Electro Optical Systems Kontrolle eines additiven Fertigungsprozesses
US10967578B2 (en) 2017-07-11 2021-04-06 Daniel S. Clark 5D part growing machine with volumetric display technology
US11919246B2 (en) 2017-07-11 2024-03-05 Daniel S. Clark 5D part growing machine with volumetric display technology
US10899088B2 (en) 2017-11-17 2021-01-26 Matsuura Machinery Corporation Support and method of shaping workpiece and support
GB2570723A (en) * 2018-02-06 2019-08-07 Rolls Royce Plc A method of manufacturing a component
JP6938398B2 (ja) * 2018-02-09 2021-09-22 東レエンジニアリング株式会社 立体造形方法
US11230050B2 (en) * 2018-02-27 2022-01-25 Carbon, Inc. Lattice base structures for additive manufacturing
FR3081746B1 (fr) * 2018-06-05 2021-03-12 S A S 3Dceram Sinto Procede de fabrication conjointe, par la technique des procedes additifs, d’une piece et de son support, et piece obtenue apres retrait du support
US11117329B2 (en) 2018-06-26 2021-09-14 General Electric Company Additively manufactured build assemblies having reduced distortion and residual stress
US11371788B2 (en) 2018-09-10 2022-06-28 General Electric Company Heat exchangers with a particulate flushing manifold and systems and methods of flushing particulates from a heat exchanger
US11440097B2 (en) 2019-02-12 2022-09-13 General Electric Company Methods for additively manufacturing components using lattice support structures
US10766194B1 (en) 2019-02-21 2020-09-08 Sprintray Inc. Apparatus, system, and method for use in three-dimensional printing
US11679555B2 (en) 2019-02-21 2023-06-20 Sprintray, Inc. Reservoir with substrate assembly for reducing separation forces in three-dimensional printing
US20230182400A1 (en) * 2020-04-06 2023-06-15 Hewlett-Packard Development Company, L.P. Support structure generation for 3d printed objects
CN114559654B (zh) * 2022-02-28 2023-11-28 深圳市创想三维科技股份有限公司 3d模型打孔方法、装置、终端设备及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0338751A2 (de) * 1988-04-18 1989-10-25 3D Systems, Inc. Träger für Stereolithographie
US5198159A (en) * 1990-10-09 1993-03-30 Matsushita Electric Works, Ltd. Process of fabricating three-dimensional objects from a light curable resin liquid
DE4309524C1 (de) * 1993-03-24 1993-11-25 Eos Electro Optical Syst Verfahren zum Herstellen eines dreidimensionalen Objekts
EP0590957A1 (de) * 1992-10-01 1994-04-06 CMET, Inc. Lichtgehärteter Artikel mit Auslassöffnungen für nicht erstarrte Flüssigkeit und Verfahren zu seiner Herstellung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999143A (en) * 1988-04-18 1991-03-12 3D Systems, Inc. Methods and apparatus for production of three-dimensional objects by stereolithography
JPH0624773B2 (ja) * 1989-07-07 1994-04-06 三井造船株式会社 光学的造形法
CA2032726A1 (en) * 1989-12-29 1991-06-30 Eustathios Vassiliou Solid imaging method and apparatus
JPH0745195B2 (ja) * 1990-11-02 1995-05-17 三菱商事株式会社 高精度光固化造形装置
DE4233812C1 (de) * 1992-10-07 1993-11-04 Eos Electro Optical Syst Verfahren und vorrichtung zum herstellen von dreidimensionalen objekten
EP0655317A1 (de) * 1993-11-03 1995-05-31 Stratasys Inc. Schnelles Prototypenherstellungsverfahren zum Trennen eines Teiles von einer Stützstruktur
DE4436695C1 (de) * 1994-10-13 1995-12-21 Eos Electro Optical Syst Verfahren zum Herstellen eines dreidimensionalen Objektes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0338751A2 (de) * 1988-04-18 1989-10-25 3D Systems, Inc. Träger für Stereolithographie
US5198159A (en) * 1990-10-09 1993-03-30 Matsushita Electric Works, Ltd. Process of fabricating three-dimensional objects from a light curable resin liquid
EP0590957A1 (de) * 1992-10-01 1994-04-06 CMET, Inc. Lichtgehärteter Artikel mit Auslassöffnungen für nicht erstarrte Flüssigkeit und Verfahren zu seiner Herstellung
DE4309524C1 (de) * 1993-03-24 1993-11-25 Eos Electro Optical Syst Verfahren zum Herstellen eines dreidimensionalen Objekts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014095872A1 (en) * 2012-12-17 2014-06-26 Materialise N.V. Graded materials formed with three dimensional printing

Also Published As

Publication number Publication date
EP0785859A1 (de) 1997-07-30
EP0785859B1 (de) 1998-12-02
DE59504444D1 (de) 1999-01-14
JPH09511705A (ja) 1997-11-25
US5897825A (en) 1999-04-27
DE19538257A1 (de) 1996-04-18
DE19538257C2 (de) 1997-09-11
DE4436695C1 (de) 1995-12-21

Similar Documents

Publication Publication Date Title
DE4436695C1 (de) Verfahren zum Herstellen eines dreidimensionalen Objektes
DE4309524C1 (de) Verfahren zum Herstellen eines dreidimensionalen Objekts
DE4233812C1 (de) Verfahren und vorrichtung zum herstellen von dreidimensionalen objekten
EP1419836B2 (de) Verfahren zur Herstellung eines Formkörpers durch Metallpulverschmelzverfahren
EP1993812B1 (de) Verfahren und vorrichtung zum herstellen eines dreidimensionalen objekts
EP0738584B1 (de) Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes
DE60021440T2 (de) Verfahren und Vorrichtung zum stereolithografischen Formen von dreidimensionalen Gegenständen mit reduzierter Verkrümmung
DE19507881A1 (de) Verfahren zum Stützen eines Objekts, verfertigt durch Stereolithographie oder ein anderes schnelles Prototypen-Fertigungsverfahren
EP2386405B1 (de) Vorrichtung zum generativen Herstellen eines dreidimensionalen Objekts mit Baufeldbegrenzung
DE60115136T2 (de) Herstellung von dreidimensionalen Gegenständen durch kontrollierte Photohärtung
WO2020048646A1 (de) Wechseln zwischen zonenspezifischen bestrahlungsstrategien bei der generativen fertigung
EP3085519A1 (de) Verfahren und vorrichtung zum herstellen eines dreidimensionalen objekts
WO2016110440A1 (de) Vorrichtung und generatives schichtbauverfahren zur herstellung eines dreidimensionalen objekts mit mehrzahligen strahlen
WO2008049384A1 (de) Vorrichtung zum herstellen eines dreidimensionalen objektes
EP3254829A1 (de) Vorrichtung und verfahren zum generativen herstellen eines dreidimensionalen objekts
EP1144146A3 (de) Vorrichtung für das selektive laser-schmelzen zur herstellung eines formkörpers
DE10124795A1 (de) Vorrichtung und Verfahren zur Herstellung eines Werkstücks mit exakter Geometrie
EP0755321B1 (de) Verfahren zur herstellung eines dreidimensionalen objektes
WO2018172079A1 (de) Überlappoptimierung
DE4326986C1 (de) Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Objekten
DE19954891A1 (de) Verfahren zur Herstellung eines Formkörpers
WO1997014549A1 (de) Verfahren zum herstellen eines dreidimensionalen objektes
DE102019007480A1 (de) Anordnung und Verfahren zum Erzeugen einer Schicht eines partikelförmigen Baumaterials in einem 3D-Drucker
EP3702132B1 (de) Verfahren zur lithographiebasierten generativen fertigung eines dreidimensionalen bauteils
DE102022121182A1 (de) Verfahren zur Verbesserung der Oberflächenrauhigkeit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995932782

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08817998

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995932782

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995932782

Country of ref document: EP