WO1996012305A1 - Squid with a superconductive loop and resonator - Google Patents

Squid with a superconductive loop and resonator Download PDF

Info

Publication number
WO1996012305A1
WO1996012305A1 PCT/DE1995/001397 DE9501397W WO9612305A1 WO 1996012305 A1 WO1996012305 A1 WO 1996012305A1 DE 9501397 W DE9501397 W DE 9501397W WO 9612305 A1 WO9612305 A1 WO 9612305A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
squid
substrate
superconducting
loop
Prior art date
Application number
PCT/DE1995/001397
Other languages
German (de)
French (fr)
Inventor
Martin Gottschlich
Yi Zhang
Heinz Chaloupka
Matthias Hein
Michael Jeck
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Priority to JP8512839A priority Critical patent/JPH10507314A/en
Priority to EP95934050A priority patent/EP0787361A1/en
Publication of WO1996012305A1 publication Critical patent/WO1996012305A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/035Measuring direction or magnitude of magnetic fields or magnetic flux using superconductive devices
    • G01R33/0354SQUIDS
    • G01R33/0358SQUIDS coupling the flux to the SQUID
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices
    • H10N60/124Josephson-effect devices comprising high-Tc ceramic materials

Definitions

  • the invention relates to a super-quantum interference detector (SQUID) with a superconducting loop formed on one side of a substrate and containing a Josephson contact and a superconducting resonator which is provided for coupling to SQUID signals of the loop.
  • SQUID super-quantum interference detector
  • (Front) side of a substrate is formed a superconducting layer and is laterally structured in the form of a loop with a microbridge as a Josephson contact.
  • the SQUID loop is designed in such a way that, as a flow-focusing element, it simultaneously effects the focusing of a magnetic flux into the loop opening.
  • a superconducting resonator is provided on the front of the substrate, which is coupled to the SQUID loop.
  • the resonator is designed as a resonator, even if, for example, from M. Strupp et al. , Contribution to the Workshop on HTS Josephson Junctions and 3-Terminal Devices, University of Twente, The
  • a SQUID with an S-shaped - ⁇ / 2 resonator is known.
  • the resonator is manufactured in a microstrip configuration.
  • Such a SQUID with ⁇ / 2 resonator does have a relatively high energy resolution with relatively low noise.
  • the moderate is a disadvantage
  • Resonator quality in the order of up to about 3,000 at 77 K.
  • the SQUIDs with ⁇ / 2 resonator show only relatively small flux focussing elements on the resonator SQUID loop side of the substrate for space reasons, so that the field resolution is very low .
  • the washer SQUID as the base plate of a superconducting stripline resonator, which consists of three superconducting layers which are arranged one above the other and each separated by a substrate acting as a dielectric.
  • the middle superconducting layer is structured in the form of the resonator part.
  • the resonator part can optionally contain coupling lines.
  • the SQUID is positioned laterally at a location where the high-frequency current flows.
  • Q L is the loaded quality of the resonator. Since this can be very large in the present case, k can be chosen to be small.
  • the coupling k is the same as the HF current in the SQUID loop range.
  • a setting of k can thus be achieved on the one hand by lateral displacement of the SQUID relative to the resonator.
  • the change in k can also be set in a targeted manner by varying the distance between the SQUID and the resonator.
  • the third superconducting layer on the back of the second substrate is laterally structured in such a way that it matches the structuring of the SQUID loop structure on the front of the first
  • FIGS. 2a-c shows a schematic cross section through the SQUID according to the invention in the A-A plane indicated in FIGS. 2a-c,
  • FIG. 2a Schematic representation of the lateral
  • FIG. 2b shows a schematic representation of the lateral geometry of the U-shaped resonator on the second substrate
  • FIG. 2c shows a schematic representation of the lateral geometry of the third, superconducting layer on the back of the second substrate.
  • LaA103 substrate 1 shows a SQUID according to the invention in cross section through the AA plane shown in FIGS. 2a to 2c.
  • a former LaA103 substrate 1 has a superconducting YBa2Cu3 ⁇ 7 layer, which is laterally suitably structured to form the SQUID function (FIG. 2a).
  • a second LaAlC> substrate 3 has a lateral, U-shaped, superconducting YBa2C -3 ⁇ 7 layer on one side to form the resonator 4 (FIG. 2b).
  • the substrate 3 has a further, superconducting YBa2Cu3 ⁇ 7 layer on the back, the lateral geometry of which is shown in FIG. 2c.
  • the substrate 3 is positioned relative to the substrate 1 so that as a result three superconducting YBa2Cu3 ⁇ 7 layers arranged in parallel, each separated from one another by dielectric LaAl0 3 1 and 2, are formed.
  • FIGS. 2a to 2c The lateral geometries of the three superconducting layers 2, 4, 5 are shown schematically in FIGS. 2a to 2c.
  • the lateral structuring of the superconducting layer 2 has a guader-shaped layer area, in the middle of which there is a SQUID loop opening 6 of 50 * 50 ⁇ irr and also a superconducting microbridge as a Josephson contact 7 and a slit-shaped opening 8 - in order to maximize the flow-focusing Effect of layer 2 - are included.
  • 2b shows the superconducting, planar resonator 4 relative to the cuboid configuration of the superconducting layer 2 or 5 as a U-shaped structured superconducting layer 4.
  • FIG. 2c shows the lateral geometry of the superconducting layer 5. It corresponds to the superconducting micro bridge as Josephson contact 7 of the lateral geometry of the SQUID-forming layer 2, except for the superconducting micro bridge.
  • the corresponding loop opening 6 in the layer 5 is not the same size, but actually - to increase the flow-focusing effect of the layer 5 - too
  • the SQUID shown in FIGS. 1, 2a to 2c with a U-shaped resonator has a modular structure, so that this gives the possibility of exchanging the resonator 4 with substrate 3 and layer 5 for the system of substrate 1 and layer 2.
  • the quality (quality) of the resonator can be determined simply by using a superconducting film as the end plate instead of SQUIDs 1, 2.
  • the modular structure allows system 4, 3 and 5 as a test system for washer SQUIDs 1 and 2 with various parameters such as to use the SQUID inductor ß ⁇ .
  • a procedural approach e.g. find the optimal operating mode of a selected washer SQUID.
  • the present SQUID resonator system can also be used with readout electronics via two-port coupling, as described, for example, by M. Heinz et al., Contribution to the Workshop on HTS Josephson Junction and 3-Terminal Devices, University of Twente, The Netherlands, 2-4 May 1994 is known to be operated.
  • the SQUID according to the invention can be operated both in the RF range and at low frequencies with conventional readout electronics for RF washer SQUIDs.
  • U-shaped resonators for example S-shaped, ⁇ ⁇ or-/ 2 resonators can also be used in the SQUID according to the invention.
  • metallized isolators can be used as terminations of the resonator base plates, which meet the above-mentioned condition due to the frequency dependence of the skin depth.
  • substrate thicknesses of 0.5 mm and layer thicknesses for the superconducting layers 2, 4 and 5 of 200 nm YBa2Cu3 ⁇ 7 were selected.
  • the two ends of the U-shaped resonator were about 5 mm apart, the dimensions of the cuboid layers 2 and 5 were 8 * 8 mm.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

The invention concerns a SQUID comprising a superconductive loop which is formed in layers at the front of a substrate and comprises a Josephson junction, the SQUID further comprising a superconductive resonator. The object of the invention is to provide a SQUID which has a coupled resonator and increased energy resolution with respect to known SQUIDS, low noise and high field sensitivity. To this end the resonator is formed in layers and rigidly connected to the front of a second substrate, the resonator resting against the rear of the first substrate. At the rear the second substrate has a superconductive layer which laterally geometrically corresponds to the structure of the loop of the first substrate with the exception of the coating in the region of the Josephson junction. The substrate material consists of dielectric material.

Description

B e s c h r e i b u n gDescription
SQUID mit supraleitender Schleife und ResonatorSQUID with superconducting loop and resonator
Die Erfindung bezieht sich auf einen Super-Quanten- Interferenz-Detektor (SQUID) mit schichtförmig auf einer Seite eines Substrates gebildeter, einen Josephson-Kontakt enthaltender, supraleitender Schleife und einem supraleitenden Resonator, der zur Ankopplung an SQUID-Signale der Schleife vorgesehen ist.The invention relates to a super-quantum interference detector (SQUID) with a superconducting loop formed on one side of a substrate and containing a Josephson contact and a superconducting resonator which is provided for coupling to SQUID signals of the loop.
Aus Y. Zhang et al., Supercond. Sei. Technol. 7 (1994), S. 269-272 ist ein SQUID für den Hochfrequenzbereich (HF-SQUID) bekannt, bei dem auf einer ersteren,From Y. Zhang et al., Supercond. Be. Technol. 7 (1994), pp. 269-272 a SQUID for the radio frequency range (HF-SQUID) is known, in which on a former,
(Vorder-)Seite eines Substrats eine supraleitende Schicht gebildet und lateral in Form einer Schleife mit Mikrobrücke als Josephson-Kontakt strukturiert ist.(Front) side of a substrate is formed a superconducting layer and is laterally structured in the form of a loop with a microbridge as a Josephson contact.
Dabei ist die SQUID-Schleife so ausgebildet, daß sie gleichzeitig als flußfokussierendes Element die Fokussierung eines magnetischen Flusses in die Schleifenöffnung hinein bewirkt. Außerdem ist auf der Vorderseite des Substrats ein supraleitender Resonator vorgesehen, der mit der SQUID-Schleife gekoppelt ist.The SQUID loop is designed in such a way that, as a flow-focusing element, it simultaneously effects the focusing of a magnetic flux into the loop opening. In addition, a superconducting resonator is provided on the front of the substrate, which is coupled to the SQUID loop.
Der Resonator ist dabei als -Resonator ausgebildet, wenn auch beispielsweise aus M. Strupp et al. , Contribution to the Workshop on HTS Josephson Junctions and 3-Terminal Devices, University of Twente, TheThe resonator is designed as a resonator, even if, for example, from M. Strupp et al. , Contribution to the Workshop on HTS Josephson Junctions and 3-Terminal Devices, University of Twente, The
Netherlands, 2-4 May 1994, ein SQUID mit S-förmigem -Λ/2-Resonator bekannt ist. Dabei ist der Resonator in Mikrostreifenkonfiguration hergestellt. Zwar hat ein solcher SQUID mit λ/2-Resonator eine relativ hohe Energieauflösung bei relativ niedrigem Rauschen. Nachteilig ist jedoch die mäßigeNetherlands, 2-4 May 1994, a SQUID with an S-shaped -Λ / 2 resonator is known. The resonator is manufactured in a microstrip configuration. Such a SQUID with λ / 2 resonator does have a relatively high energy resolution with relatively low noise. However, the moderate is a disadvantage
Resonatorgüte in der Größenordnung von bis zu etwa 3.000 bei 77 K. Außerdem zeigen die SQUIDs mit Λ /2- Resonator aus Platzgründen auf der Resonator-SQUID- Schleifen-Seite des Substrats nur relativ kleine Fluß- fok ssierungselemente, sodaß die Feldauflösung sehr gering ist.Resonator quality in the order of up to about 3,000 at 77 K. In addition, the SQUIDs with Λ / 2 resonator show only relatively small flux focussing elements on the resonator SQUID loop side of the substrate for space reasons, so that the field resolution is very low .
Demgegenüber vergleichsweise besser ist die Feldauflösung bei SQUIDs mit λ-Resonator. Nachteilig bei diesen SQUIDS ist jedoch ein verhältnismäßig großes Flußrauschen bei kleinen Resonatorgüten in der Größenordnung von etwa 300 bei 77 K.In contrast, the field resolution is comparatively better for SQUIDs with a λ resonator. A disadvantage of these SQUIDS, however, is a relatively large flow noise with small resonator qualities in the order of magnitude of approximately 300 at 77 K.
Es ist Aufgabe der Erfindung, einen SQUID mit gekop- peltem Resonator zu schaffen, bei dem die genannten Nachteile verringert, insb. gegenüber den bekannten SQUIDs eine erhöhte Energieauflösung bei niedrigem Rauschen und hoher Feldempfindlichkeit aufweist.It is an object of the invention to provide a SQUID with a coupled resonator in which the disadvantages mentioned are reduced, in particular when compared to the known SQUIDs, it has an increased energy resolution with low noise and high field sensitivity.
Die Aufgabe wird durch einen SQUID mit den Merkmalen des Anspruchs 1 gelöst.The object is achieved by a SQUID with the features of claim 1.
Es wurde erkannt, den Washer-SQUID als Grundplatte eines supraleitenden Streifenleitungs-Resonator auszu- bilden, der aus drei übereinander parallel angeordne¬ ten, durch jeweils ein als Dielektrikum wirkendes Substrat getrennten, supraleitenden Schichten besteht. Die mittlere supraleitende Schicht ist in Form des Resonatorteils strukturiert. Der Resonatorteil kann dabei gegebenenfalls Koppelleitungen enthalten. Damit das maximale SQUID-Signal ausgelesen werden kann, ist der SQUID lateral an einem Ort positioniert, wo der Hochfreguenzstrom fließt.It was recognized to design the washer SQUID as the base plate of a superconducting stripline resonator, which consists of three superconducting layers which are arranged one above the other and each separated by a substrate acting as a dielectric. The middle superconducting layer is structured in the form of the resonator part. The resonator part can optionally contain coupling lines. In order to the maximum SQUID signal can be read, the SQUID is positioned laterally at a location where the high-frequency current flows.
Je kleiner die Kopplung k des SQUIDs an den Resonator, desto größer ist das auslesbare SQUID-Signal. Dies gilt unter der VoraussetzungThe smaller the coupling k of the SQUID to the resonator, the larger the readable SQUID signal. This applies on the condition
Q L ^ Q L ^
Dabei ist QL die belastete Güte des Resonators. Da diese im vorliegenden Fall sehr groß sein kann, kann k klein gewählt werden. Dei Kopplung k ist gleichläufig zum HF-Strom im SQUID-Schleifenbereich.Q L is the loaded quality of the resonator. Since this can be very large in the present case, k can be chosen to be small. The coupling k is the same as the HF current in the SQUID loop range.
Eine Einstellung von k kann somit zum einen durch laterale Verschiebung des SQUIDs relativ zum Resonator erzielt werden. Zum anderen kann die Änderung von k auch durch Variation des Abstandes des SQUIDs zum Resonator gezielt eingestellt werden.A setting of k can thus be achieved on the one hand by lateral displacement of the SQUID relative to the resonator. On the other hand, the change in k can also be set in a targeted manner by varying the distance between the SQUID and the resonator.
Schließlich ist die dritte supraleitende Schicht auf der Rückseite des zweiten Substrats lateral so struk¬ turiert, daß sie der Strukturierung der SQUID- Schleifenstruktur auf der Vorderseite des erstenFinally, the third superconducting layer on the back of the second substrate is laterally structured in such a way that it matches the structuring of the SQUID loop structure on the front of the first
Substrats mit Ausnahme des Bereichs des Josephson- Kontaktes ent-spricht. Dadurch wird in vorteilhafter Weise die flußfokussierende Wirkung der ersteren Schicht durch diese dritte supraleitende Schicht unterstützend verstärkt.Corresponds to substrate with the exception of the area of the Josephson contact. As a result, the flow-focusing effect of the former layer is advantageously enhanced by this third superconducting layer.
Im Ergebnis erhält man einen SQUID, der die bisherigen Vorzüge bekannter MikrowellenSQUIDs, insbesondere die hohe Energieauflösung und niedriges Rauschen, weiter verbessert und gleichzeitig eine hohe Feldempfind¬ lichkeit erreicht wird.As a result, a SQUID is obtained which continues the advantages of known microwave SQUIDs, in particular the high energy resolution and low noise improved and at the same time a high field sensitivity is achieved.
Es zeigen:Show it:
Fig. 1 Schematischer Querschnitt durch den erfindungsgemäßen SQUID in der in Fig. 2a-c angedeuteten A-A-Ebene,1 shows a schematic cross section through the SQUID according to the invention in the A-A plane indicated in FIGS. 2a-c,
Fig. 2a Schematische Darstellung der lateralenFig. 2a Schematic representation of the lateral
Geometrie der die SQUID-Schleife mit Josephson-Kontakt und Flußfokussierungs- element bildenden, ersteren, supraleitenden Schicht auf dem ersten Substrat,Geometry of the first superconducting layer forming the SQUID loop with Josephson contact and flux focusing element, on the first substrate,
Fig. 2b Schematische Darstellung der lateralen Geome¬ trie des U-förmigen Resonators auf dem zweiten Substrat, Fig. 2c Schematische Darstellung der lateralen Geome- trie der dritten, supraleitenden Schicht auf der Rückseite des zweiten Substrats.2b shows a schematic representation of the lateral geometry of the U-shaped resonator on the second substrate, FIG. 2c shows a schematic representation of the lateral geometry of the third, superconducting layer on the back of the second substrate.
In der Fig. 1 ist ein erfindungsgemäßer SQUID im Quer¬ schnitt durch die in den Figuren 2a bis 2c dargestellte A-A-Ebene schematisch dargestellt. Die eine Seite eines ersteren LaA103-Substrats 1 weist eine supraleitende YBa2Cu3θ7-Schicht auf, die zur Bildung der SQUID- Funktion lateral geeignet strukturiert ist (Fig. 2a).1 shows a SQUID according to the invention in cross section through the AA plane shown in FIGS. 2a to 2c. One side of a former LaA103 substrate 1 has a superconducting YBa2Cu3θ 7 layer, which is laterally suitably structured to form the SQUID function (FIG. 2a).
Ein zweites LaAlC> -Substrat 3 weist auf einer Seite zur Bildung des Resonators 4 eine lateral, U-förmig strukturierte, supraleitende YBa2C -3θ7-Schicht auf (Fig. 2b). Dabei weist das Substrat 3 auf der Rückseite eine weitere, supraleitende YBa2Cu3θ7-Schich auf, deren laterale Geometrie in Fig. 2c dargestellt ist. Das Substrat 3 wird relativ zum Substrat 1 so positioniert, daß im Ergebnis drei parallel angeordnete, supraleitende YBa2Cu3θ7-Schichten, jeweils voneinander getrennt durch dielektrisches LaAl03 1 und 2, gebildet sind.A second LaAlC> substrate 3 has a lateral, U-shaped, superconducting YBa2C -3θ 7 layer on one side to form the resonator 4 (FIG. 2b). The substrate 3 has a further, superconducting YBa2Cu3θ 7 layer on the back, the lateral geometry of which is shown in FIG. 2c. The substrate 3 is positioned relative to the substrate 1 so that as a result three superconducting YBa2Cu3θ 7 layers arranged in parallel, each separated from one another by dielectric LaAl0 3 1 and 2, are formed.
In den Fig. 2a bis 2c sind schematisch die lateralen Geometrien der drei supraleitenden Schichten 2, 4, 5 dargestellt.The lateral geometries of the three superconducting layers 2, 4, 5 are shown schematically in FIGS. 2a to 2c.
Die laterale Strukturierung der supraleitenden Schicht 2 weist einen guaderförmigen Schichtbereich auf, in deren Mitte eine SQUID-Schleifen-Öffnung 6 von 50 * 50 μirr und außerdem eine supraleitende Mikro- brücke als Josephson-Kontakt 7 und eine schlitzförmige Öffnung 8 - zur Maximierung der flußfokussierenden Wirkung der Schicht 2 - enthalten sind.The lateral structuring of the superconducting layer 2 has a guader-shaped layer area, in the middle of which there is a SQUID loop opening 6 of 50 * 50 μirr and also a superconducting microbridge as a Josephson contact 7 and a slit-shaped opening 8 - in order to maximize the flow-focusing Effect of layer 2 - are included.
In Fig. 2b ist der supraleitende, planare Resonator 4 relativ zur quaderförmigen Ausbildung der supra¬ leitenden Schicht 2 oder 5 als U-förmig strukturierte, supraleitende Schicht 4 dargestellt, .2b shows the superconducting, planar resonator 4 relative to the cuboid configuration of the superconducting layer 2 or 5 as a U-shaped structured superconducting layer 4.
Schließlich zeigt die Fig. 2c die laterale Geometrie der supraleitenden Schicht 5. Sie entspricht bis auf die supraleitende Mikro-Brücke als Josephson-Kontakt 7 der lateralen Geometrie der SQUID-bildenden Schicht 2.Finally, FIG. 2c shows the lateral geometry of the superconducting layer 5. It corresponds to the superconducting micro bridge as Josephson contact 7 of the lateral geometry of the SQUID-forming layer 2, except for the superconducting micro bridge.
Entgegen der geteigten Darstellung ist jedoch die derContrary to the predicted representation, however, that of
Schleifenöffnung 6 ensprechenden Öffnung in der Schicht 5 nicht gleich groß, sondern tatsächlich - zur Erhöhung der flußfokussierenden Wirkung der Schicht 5 - zuThe corresponding loop opening 6 in the layer 5 is not the same size, but actually - to increase the flow-focusing effect of the layer 5 - too
300 * 300 μm2 gewählt.300 * 300 μm 2 selected.
Der in den Fig. 1, 2a bis 2c dargestellte SQUID mit U- förmigem Resonator ist als System modular aufgebaut, so daß dadurch die Möglichkeit gegeben ist, den Resonator 4 mit Substrat 3 und Schicht 5 gegen das System aus Substrat 1 und Schicht 2 auszutauschen.The SQUID shown in FIGS. 1, 2a to 2c with a U-shaped resonator has a modular structure, so that this gives the possibility of exchanging the resonator 4 with substrate 3 and layer 5 for the system of substrate 1 and layer 2.
Die Qualität (Güte) des Resonators kann einfach ermittelt werden, indem man an Stelle des SQUIDs 1, 2 einen supraleitenden Film als Endplatte einsetzt.The quality (quality) of the resonator can be determined simply by using a superconducting film as the end plate instead of SQUIDs 1, 2.
Der modulare Aufbau erlaubt auf diese Weise das System 4, 3 und 5 als Test-System für Washer-SQUIDs 1 und 2 mit verschiedenen Parametern wie z.B. die SQUID- Induktivität ß^, einzusetzen. Bei einer solchen verfahrensmäßigen Vorgehensweise läßt sich z.B. der optimale Betriebsmodus eines ausgewählten Washer-SQUIDs finden.The modular structure allows system 4, 3 and 5 as a test system for washer SQUIDs 1 and 2 with various parameters such as to use the SQUID inductor ß ^. With such a procedural approach, e.g. find the optimal operating mode of a selected washer SQUID.
Des weiteren ist es dabei vorstellbar, dabei die Temperatur des Systems zu variieren oder auch die Koppelstärke bzw. Resonatortiefe durch gezielte Veränderung des Abstandes zwischen SQUID und Resonator, z.B. durch Wahl von Substraten 1 unterschiedlicher Dicke, einzustellen.Furthermore, it is conceivable to vary the temperature of the system or the coupling strength or resonator depth by deliberately changing the distance between SQUID and resonator, e.g. by choosing substrates 1 of different thicknesses.
Das vorliegende SQUID-Resonator-System kann auch mit einer Ausleseelektronik über Zweitorankopplung, wie es beispielsweise aus M. Heinz et al., Contribution to the Workshop on HTS Josephson Junction and 3-Terminal Devices, University of Twente, The Netherlands, 2-4 May 1994 bekannt ist, betrieben werden.The present SQUID resonator system can also be used with readout electronics via two-port coupling, as described, for example, by M. Heinz et al., Contribution to the Workshop on HTS Josephson Junction and 3-Terminal Devices, University of Twente, The Netherlands, 2-4 May 1994 is known to be operated.
Der erfindungsgemäße SQUID kann sowohl im HF-Bereich als auch bei niedrigen Frequenzen mit herkömmlicher Ausleseelektronik für RF-Washer-SQUIDs betrieben werden. Außer U-förmigen Resonatoren können beispielsweise auch S-förmige, λ~ oder Λ/2-Resonatoren beim erfindungs- gemäßen SQUID zum Einsatz kommen.The SQUID according to the invention can be operated both in the RF range and at low frequencies with conventional readout electronics for RF washer SQUIDs. In addition to U-shaped resonators, for example S-shaped, λ ~ or-/ 2 resonators can also be used in the SQUID according to the invention.
Allgemein zum Betrieb ist es zweckmäßig, das System in ein hochfrequenzmäßig dichtes, aber für den Regelfall magnetisch durchlässiges Gehäuse einzubauen. Zu diesem Zweck können als Abschlüsse der Resonatorgrundplatten metallisierte Isolatoren eingesetzt werden, die die oben angeführte Bedingung aufgrund der Frequenzab¬ hängigkeit der Skintiefe erfüllen.In general for operation, it is expedient to install the system in a housing that is tight in terms of radio frequency, but as a rule magnetically permeable. For this purpose, metallized isolators can be used as terminations of the resonator base plates, which meet the above-mentioned condition due to the frequency dependence of the skin depth.
Für den in den Figuren 1 und 2a bis 2c dargestellten SQUID wurden Substratdicken von 0,5 mm und Schichtdicken für die supraleitenden Schichten 2, 4 und 5 von jeweils 200 nm YBa2Cu3θ7 gewählt. Die beiden Enden des U-förmigen Resonators waren etwa 5 mm voneinander entfernt, die Abmessungen der quaderförmigen Schichten 2 und 5 betrugen 8 * 8 mm . For the SQUID shown in FIGS. 1 and 2a to 2c, substrate thicknesses of 0.5 mm and layer thicknesses for the superconducting layers 2, 4 and 5 of 200 nm YBa2Cu3θ 7 were selected. The two ends of the U-shaped resonator were about 5 mm apart, the dimensions of the cuboid layers 2 and 5 were 8 * 8 mm.

Claims

P a t e n t a n s p r u c h Patent claim
1. SQUID mit schichtförmig auf der Vorderseite eines Substrats (1) gebildeter, einen Josephson-Kontakt (7) enthaltender, supraleitender Schleife und supraleitendem Resonator (4),1. SQUID with a superconducting loop and superconducting resonator (4) formed in a layer on the front side of a substrate (1) and containing a Josephson contact (7),
d a d u r c h g e k e n n z e i c h n e t , daßd a d u r c h g e k e n n z e i c h n e t that
der Resonator (4) schichtförmig gebildet mit der Vorderseite eines zweiten Substrats (3) fest verbunden ist,the resonator (4) is formed in a layered manner and is firmly connected to the front of a second substrate (3),
der Resonator (4) an der Rückseite des ersteren Substrats (1) anliegt,the resonator (4) rests on the back of the former substrate (1),
das zweite Substrat (3) auf seiner Rückseite eine supraleitende Schicht (5) aufweist, die lateral geometrisch der Strukturierung der Schleife des ersten Substrats (1) mit Ausnahme der Beschichtung im Bereich desthe second substrate (3) has on its rear side a superconducting layer (5) which is geometrically structured laterally with regard to the structuring of the loop of the first substrate (1) with the exception of the coating in the region of the
Josephson-Kontaktes (7) entspricht undJosephson contact (7) corresponds and
als Substratmaterial (1,3) dielektrisches Material vorgesehen ist. dielectric material is provided as the substrate material (1,3).
PCT/DE1995/001397 1994-10-13 1995-10-07 Squid with a superconductive loop and resonator WO1996012305A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8512839A JPH10507314A (en) 1994-10-13 1995-10-07 SQUID with superconducting loop and resonator
EP95934050A EP0787361A1 (en) 1994-10-13 1995-10-07 Squid with a superconductive loop and resonator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4436448.2 1994-10-13
DE4436448A DE4436448C1 (en) 1994-10-13 1994-10-13 SQUID with increased energy resolution

Publications (1)

Publication Number Publication Date
WO1996012305A1 true WO1996012305A1 (en) 1996-04-25

Family

ID=6530582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1995/001397 WO1996012305A1 (en) 1994-10-13 1995-10-07 Squid with a superconductive loop and resonator

Country Status (4)

Country Link
EP (1) EP0787361A1 (en)
JP (1) JPH10507314A (en)
DE (1) DE4436448C1 (en)
WO (1) WO1996012305A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003090161A2 (en) * 2002-04-15 2003-10-30 D-Wave Systems, Inc. Extra-substrate control system
US11790259B2 (en) 2019-09-06 2023-10-17 D-Wave Systems Inc. Systems and methods for tuning capacitance in quantum devices

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036186A2 (en) * 1996-03-26 1997-10-02 Forschungszentrum Jülich GmbH Arrangement for coupling an rf-squid magnetometer to a superconductive tank circuit
DE10063735C1 (en) * 2000-12-18 2002-04-18 Inst Physikalische Hochtech Ev Superconducting quantum interference detector sensor has several trimming structures in form of removable protrusions formed on arms forming SQUID hole
DE10111619C1 (en) * 2001-03-10 2002-07-11 Forschungszentrum Juelich Gmbh Coupling arrangement for rf-SQUID magnetometer has resonator within space enclosed by rf-SQUID
US8841764B2 (en) * 2012-01-31 2014-09-23 International Business Machines Corporation Superconducting quantum circuit having a resonant cavity thermalized with metal components

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064029A (en) * 1977-02-08 1977-12-20 The United States Of America As Represented By The United States Energy Research And Development Administration Method of making an improved superconducting quantum interference device
WO1990000742A1 (en) * 1988-07-11 1990-01-25 UNITED STATES GOVERNMENT, as represented by THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION OFFICE OF ASSOCIATE GENERAL COUNSEL (INTELLECTUAL PRO PERTY) Planar thin film squid with integral flux concentrator
DE4319693A1 (en) * 1993-06-16 1994-12-22 Forschungszentrum Juelich Gmbh RF-SQUID with an integrated lambda microwave resonator as a highly sensitive magnetometer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8911237U1 (en) * 1989-09-21 1989-11-02 Kernforschungsanlage Juelich Gmbh, 5170 Juelich, De

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064029A (en) * 1977-02-08 1977-12-20 The United States Of America As Represented By The United States Energy Research And Development Administration Method of making an improved superconducting quantum interference device
WO1990000742A1 (en) * 1988-07-11 1990-01-25 UNITED STATES GOVERNMENT, as represented by THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION OFFICE OF ASSOCIATE GENERAL COUNSEL (INTELLECTUAL PRO PERTY) Planar thin film squid with integral flux concentrator
DE4319693A1 (en) * 1993-06-16 1994-12-22 Forschungszentrum Juelich Gmbh RF-SQUID with an integrated lambda microwave resonator as a highly sensitive magnetometer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANAKA S ET AL: "Properties of YBa/sub 2/Cu/sub 3/O/sub 7-y/ large washer SQUID", JAPANESE JOURNAL OF APPLIED PHYSICS, PART 2 (LETTERS), 1 MAY 1993, JAPAN, vol. 32, no. 5A, ISSN 0021-4922, pages L662 - L664 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003090161A2 (en) * 2002-04-15 2003-10-30 D-Wave Systems, Inc. Extra-substrate control system
WO2003090161A3 (en) * 2002-04-15 2005-02-17 Dwave Sys Inc Extra-substrate control system
US6911664B2 (en) 2002-04-15 2005-06-28 D-Wave Systems, Inc. Extra-substrate control system
US7042005B2 (en) 2002-04-15 2006-05-09 D-Wave Systems, Inc. Extra-substrate control system
US11790259B2 (en) 2019-09-06 2023-10-17 D-Wave Systems Inc. Systems and methods for tuning capacitance in quantum devices

Also Published As

Publication number Publication date
DE4436448C1 (en) 1996-02-29
JPH10507314A (en) 1998-07-14
EP0787361A1 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
EP0895092B1 (en) Superconducting hybrid-resonator for the reception of NMR signals
DE3809452A1 (en) SUPER LADDER FOR MAGNETIC FIELD SHIELDING
DE3833886C2 (en) Magnetic field shielding with a superconducting film
DE2440576C2 (en) cryotron
DE4204369A1 (en) METHOD FOR DETERMINING THE QUALITY OF AN INDIVIDUAL SUPRAL-CONDUCTING FILM AND DEVICE FOR CARRYING OUT THIS METHOD
DE4124048C2 (en) Superconducting component with a Josephson contact in a monocrystalline high-temperature superconductor and method for its production
DE4436448C1 (en) SQUID with increased energy resolution
DE3142949C2 (en)
DE69828217T2 (en) High-frequency circuit element
DE19927661B4 (en) Arrangement of carrier and superconducting film
EP0513557A2 (en) Superconducting tunneling device
WO1993000721A1 (en) Planar zig-zag antenna
DE69919786T2 (en) High frequency filter
EP1302780A1 (en) Superconducting NMR resonators with a macroscopically homogeneous distribution of the superconductor
EP0787362B1 (en) Concentrated component and a high-frequency circuit containing such a component
DE19961538A1 (en) High frequency device, e.g. an electromagnetic wave filter, antenna or transmission line for use in upper frequency bands, has a superconducting electrode comprising a metal covered superconductive oxide on a dielectric layer
WO1996030776A1 (en) Rf squid with tank circuit
DE102005032422B4 (en) Arrangement of carrier and superconducting film, Vortexdiode comprising such an arrangement and use of Vortexdioden for filters
DE2408633C3 (en) Superconducting microwave filter
DE4302742A1 (en)
DE19534283C2 (en) High frequency SQUID with resonant flux focusing structure
EP0783707B1 (en) High-frequency squid with a resonant flow-focusing structure
DE10111619C1 (en) Coupling arrangement for rf-SQUID magnetometer has resonator within space enclosed by rf-SQUID
EP0977299A2 (en) Active high frequency control element
DE10153705B4 (en) Josephson contact substrate and method of operation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995934050

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 817952

Date of ref document: 19970408

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1995934050

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995934050

Country of ref document: EP