WO1996016348A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO1996016348A1
WO1996016348A1 PCT/JP1995/002332 JP9502332W WO9616348A1 WO 1996016348 A1 WO1996016348 A1 WO 1996016348A1 JP 9502332 W JP9502332 W JP 9502332W WO 9616348 A1 WO9616348 A1 WO 9616348A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide plate
light guide
light
liquid crystal
fluorescent lamp
Prior art date
Application number
PCT/JP1995/002332
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuo Mori
Original Assignee
Hitachi Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd. filed Critical Hitachi Ltd.
Publication of WO1996016348A1 publication Critical patent/WO1996016348A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0025Diffusing sheet or layer; Prismatic sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0041Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided in the bulk of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity

Definitions

  • the present invention can be used for various types of liquid crystal display devices such as a simple matrix type and an active matrix type, and is particularly effective when applied to a surface light source device used as a backlight which is an illuminating means of the liquid crystal display device. .
  • liquid crystal display device has been widely used as such a thin, low-power display device.
  • the liquid crystal display device has an illumination device called a backlight installed below the liquid crystal display element, and images formed with the illumination light from the backlight and characters formed on the liquid crystal display element are used to visualize numbers. .
  • the backlight is a light guide plate formed of a transparent substrate for transmitting light in a plane, a cold cathode fluorescent lamp installed along at least one side edge of the light guide plate, an upper surface of the light guide plate, and a liquid crystal display element. It is mainly composed of a prism sheet inserted between them, and a reflection sheet installed or formed below the light guide plate.
  • FIG. 1 is an exploded perspective view illustrating an example of the overall configuration of the liquid crystal display device, wherein 1 is a liquid crystal display element, 2 is a backlight, 3 is a light guide plate, 4 is a cold cathode fluorescent lamp, and 5 is a lamp reflection sheet.
  • 8 is a prism sheet
  • 9 is a reflection sheet
  • 10 is a diffusion sheet
  • 13 is an upper frame
  • 14 is a spacer
  • 15 is a printed circuit board
  • 16 is a light shielding frame
  • 16 is a light shielding frame
  • 17 is an intermediate frame
  • 19 is a lamp cover.
  • a liquid crystal display element 1 is integrated with a printed circuit board 15 on which electronic components such as a drive IC are mounted, and a backlight 2 is laminated on a lower part of the liquid crystal display element 1 to be attached to an intermediate frame 17. Is fixed between the upper frame 13 and the lower frame 18.
  • the knock light 2 has a large area covering at least the effective area of the liquid crystal display element 1.
  • a light guide plate 3 having a beam, a reflection sheet 9 provided below the light guide plate 3, a diffusion sheet 10 provided on the upper surface of the light guide plate 3, and provided between the diffusion sheet 10 and the liquid crystal display element 1.
  • a spacer 14 is interposed between the liquid crystal display element 1 and the upper frame 13, and the light from the backlight 2 is interposed between the liquid crystal display element 1 and the backlight 2.
  • a light-shielding frame 16 is installed to prevent the element 1 from leaking out of the effective area.
  • the effective area of the liquid crystal display element 1 is illuminated with the illumination light from the backlight 2, and an image, characters, and numerals formed on the liquid crystal display element 1 are visually displayed.
  • FIG. 2 is a cross-sectional view of a main part for explaining the structure of a backlight in a conventional liquid crystal display device.
  • 1 is a liquid crystal display element
  • 2 is a backlight
  • 3 is a light guide plate
  • 3 a is a light reflection treated surface
  • 4 is a cold cathode fluorescent lamp
  • 4a is a cold cathode fluorescent lamp supply cable
  • 5 is a lamp reflection sheet
  • 8 is a prism sheet
  • 9 is a reflection sheet
  • 10 is a diffusion sheet
  • 13 is an upper frame
  • 15 is an upper frame.
  • 15a is a drive IC mounted on the printed circuit board
  • 17 is an intermediate frame
  • 18 is a lower frame.
  • a backlight (illumination light source) 2 is constituted by a cold cathode fluorescent lamp 4, a lamp reflection sheet 5, a reflection sheet 9, a light guide plate 3, a diffusion sheet 10 and a prism sheet 8.
  • a liquid crystal display element 1 is stacked above a backlight 2 which is an illumination light source, and is integrated with an upper frame 13 and a lower frame 18 together with a printed circuit board 15 on which a drive IC 15a is mounted. Is configured.
  • the backlight used in the liquid crystal display device has a surface formed by propagating light from the cold-cathode tube provided along the side edge of the light guide plate made of a transparent plate, preferably a resin plate, to the light guide plate. It is distributed in a shape.
  • the collimator is installed in the surface light source device. Is being provided.
  • Fig. 3 is a schematic sectional view showing a partial structure of a backlight having a collimated light.
  • a collimator 20 is provided along the end face of the light guide plate 3, a lamp reflection sheet 5 is attached to an end of the collimator 20, and the end face of the collimator 20 and the lamp reflection are provided.
  • the cold cathode fluorescent lamp 4 is provided in the space formed by the sheet 5.
  • the light-reflection-treated surface 3a (the prism array in the figure) is provided on the back surface of the light guide plate 3, that is, the surface opposite to the liquid crystal display element, but may be a dot or line-shaped print pattern. .
  • the light generated from the cold cathode fluorescent lamp 4 enters the collimator 20 from the collimator incident light surface 2 Ob, for example, enters the collimator at an incident angle of 90 °.
  • ⁇ Incident on the surface 2 Ob enters the collimator at a refraction angle of 42 °.
  • the collimator enters the collimator for example, when the inclination angle of the collimator slope 20a is 6 °, the angle formed with the horizontal direction in the figure by one internal reflection at the slope 20a of the collimator 20 is as follows. The angle becomes 30 °, and the angle between the horizontal direction in the figure and the two internal reflections is 18.
  • the collimator 20 is installed between the light guide plate 3 and the cold cathode fluorescent lamp 4, the size of the cold cathode fluorescent lamp installation part of the knock light becomes large, and the non-light emitting area of the knock light becomes large.
  • This has the disadvantage that the size in the plane direction increases due to the increase, and the so-called frame width of the liquid crystal display device becomes wide.
  • the collimating action of the collimator 20 has no effect on the longitudinal direction of the cold cathode fluorescent lamp 4, the light diffused in the longitudinal direction of the cold cathode fluorescent lamp 4 is still effective for the liquid crystal display device. There was a problem that it could not be used as an illuminating light.
  • the present invention has been made to solve the above-mentioned problems in the prior art, and has as its object to provide a liquid crystal display having a backlight capable of achieving low power consumption while satisfying the demand for a thin and light weight. It is intended to provide a device.
  • the present invention provides a liquid crystal display device having a backlight in which a cold cathode fluorescent lamp is installed near a side end surface of a light guide plate, wherein the side end surface of the light guide plate, the cold cathode fluorescent lamp, A collimator lens sheet is provided between them.
  • a liquid crystal display device having a backlight in which a cold cathode fluorescent lamp is installed near a side end surface of a light guide plate, wherein the side end surface of the light guide plate, the cold cathode fluorescent lamp, A collimator lens sheet is provided between the light guide plates, and a light reflection pattern is formed on the light guide plate to make the luminance distribution uniform.
  • a liquid crystal display device having a backlight in which a cold cathode fluorescent lamp is installed near a side end face of the isoluminous plate, A collimator lens sheet is provided between the side end surface of the plate and the cold cathode fluorescent lamp, and a light reflection pattern is formed on the lower surface of the light guide plate to make the luminance distribution uniform.
  • a prism sheet having a prism surface on the lower surface for controlling the direction of a light beam emitted from the upper surface of the light guide plate is provided.
  • a liquid crystal display device having a backlight in which a cold cathode fluorescent lamp is installed near a side end surface of a light guide plate, wherein the side end surface of the light guide plate and the cold cathode fluorescent lamp are provided.
  • a collimator lens sheet is provided between the two, and a light reflection pattern is formed on the lower surface of the light guide plate to make the luminance distribution uniform, and the direction of the light beam emitted from the upper surface of the light guide plate is formed above the light guide plate.
  • a prism sheet having a prism surface on the lower surface for control is provided, and hollow beads are mixed in the light guide plate.
  • the collimating overnight lens sheet, the light reflection pattern, and the light guide plate mixed with hollow beads are not limited to those used in combination with each other, and may be used alone and in combination with a conventional backlight structural member. .
  • a diffusion plate may be interposed between the breath sheet and the light guide plate as necessary.
  • the light generated from the cold cathode fluorescent lamp is collimated by a thin collimator lens sheet, which is different from the case of using the internal reflection type collimator as shown in FIG.
  • a light guide having substantially the same thickness as the diameter of the cold cathode fluorescent lamp can be used, so that the brightness can be improved and the power consumption can be reduced without hindering the reduction in thickness and weight.
  • the thickness of the collimator lens sheet is small, there is no unnecessary expansion of the non-light-emitting area, and the width of the frame of the liquid crystal display device does not increase.
  • a light reflection processing surface (prism array or reflection pattern) on the lower surface of the light guide plate, light from the cold cathode fluorescent lamp is emitted from the upper surface of the light guide plate and the luminance distribution of the illumination light is made uniform. be able to.
  • the light guide plate The lower surface for controlling the direction of the luminous flux emitted from the upper surface is provided with a prism sheet on the lower surface. The proportion of the luminous flux that can be effectively transmitted through the display element increases, and the light use efficiency is improved, so that low power consumption can be achieved.
  • the hollow beads are mixed in the light guide plate, the light flux propagating in the light guide plate can be diffused even in a region where the frequency of hitting the light reflection pattern is small. Can be suppressed.
  • FIG. 1 is an exploded perspective view illustrating an overall configuration example of a liquid crystal display device
  • FIG. 2 is a cross-sectional view of a main part illustrating a structure of a backlight in a conventional liquid crystal display device
  • FIG. 1 is an exploded perspective view illustrating an overall configuration example of a liquid crystal display device
  • FIG. 2 is a cross-sectional view of a main part illustrating a structure of a backlight in a conventional liquid crystal display device
  • FIG. 1 is an exploded perspective view illustrating an overall configuration example of a liquid crystal display device
  • FIG. 2 is a cross-sectional view of a main part illustrating a structure of a backlight in a conventional liquid crystal display device
  • FIG. 1 is an exploded perspective view illustrating an overall configuration example of a liquid crystal display device
  • FIG. 2 is a cross-sectional view of a main part illustrating a structure of a backlight in a conventional liquid crystal display device
  • FIG. 1 is an exploded perspective view illustrating an overall configuration
  • FIG. 3 is a schematic cross-sectional view showing a partial structure of a backlight having a collimator
  • FIG. 4 is a schematic diagram of a main part illustrating an embodiment of a liquid crystal display device according to the present invention
  • FIG. 5 is FIG. Fig. 6 is a partially broken plan view illustrating the installation state of the collimating lens sheet constituting the backlight in Fig. 4.
  • Fig. 6 is a description of the first example of the collimating lens sheet constituting the backlight in the present invention.
  • FIG. 7 is an explanatory view of a second example of a collimator lens sheet constituting the knock light according to the present invention
  • FIG. 8 is a second view of a collimating lens sheet constituting the backlight according to the present invention.
  • FIG. 9 is an explanatory view of three examples, Fig. 9 is a partially broken plan view showing another installation state of the collimated overnight lens sheet constituting the backlight in Fig. 4, Fig. 10 is Collimator lens sheet constituting backlight in the present invention Illustration of a fourth example, F
  • FIG. 1 g.11 is an explanatory view of a fifth example of a collimating lens sheet constituting a backlight according to the present invention
  • FIG. 12 is a sixth example of a collimating lens sheet constituting a backlight according to the present invention.
  • FIG. 13 is an explanatory view of a seventh example of a collimating lens sheet constituting a backlight according to the present invention.
  • FIG. 14 is a collimator lens constituting a backlight according to the present invention.
  • FIG. 15 is an explanatory view of an eighth example of the sheet
  • FIG. 15 is an explanatory view of a ninth example of the collimating overnight lens sheet constituting the backlight of the present invention
  • FIG. 16 is a backlight of the present invention.
  • FIG. 17 is an explanatory view of a tenth example of a collimator lens sheet to be constituted
  • FIG. 17 is a schematic diagram of a main part illustrating another embodiment of the liquid crystal display device according to the present invention
  • FIG. Explanatory drawing of a first example of a collimated lens sheet constituting a backlight in FIG. 19 is an explanatory view of a first or second example of the collimator lens sheet constituting the backlight according to the present invention
  • FIG. 20 is a first example of a collimator lens sheet constituting the backlight according to the present invention.
  • FIG. 21 is an explanatory view of three examples
  • FIG. 21 is an explanatory view of a 14th example of a collimated overnight lens sheet constituting the backlight of the present invention
  • FIG. 22 is a backlight of the present invention. Explanatory drawing of the 15th example of a collimated overnight lens sheet, Fig.
  • FIG. 24 is an explanatory diagram of an example
  • FIG. 24 is a schematic diagram of a main part illustrating still another embodiment of the liquid crystal display device according to the present invention
  • FIG. 26 is an explanatory diagram of an angular distribution and an emission angle distribution of the luminous intensity of a brilliance sheet emitted light beam.
  • FIG. 26 is a schematic diagram illustrating a cross-sectional shape of a bism sheet having a prism surface on a lower surface used in the present embodiment.
  • 27 is a layout diagram of the light guide plate and the prism sheet illustrating the operation of the prism sheet having the lower surface in this embodiment, and FIG.
  • FIG. 28 is another sectional shape of the prism sheet having the lower surface of the prism surface.
  • FIG. 29 is an explanatory diagram of an example, FIG. 29 is a schematic diagram of a main part illustrating still another embodiment of the liquid crystal display device according to the present invention, and FIG. 30 is an A—A Di of FIG.
  • FIG. 31 is a cross-sectional schematic view taken along the line Fig. 31 is a cross-sectional view of a principal part illustrating the shape of the prism surface of the bism sheet in FIG. g. 32 is an explanatory diagram of the relationship between the direction of the bristles groove of the three prism sheets in the present embodiment, and FIG. 33 is a diagram showing the prism groove shape of the prism sheet installed on the liquid crystal display element side in the present embodiment.
  • FIG. 34 is a partial cross-sectional view illustrating still another example of the prism groove shape of the prism sheet installed on the liquid crystal display element side in the present embodiment
  • FIG. g. 35 is an explanatory view of an example of a light reflection processing surface formed on the lower surface of the light guide plate used in each embodiment of the present invention.
  • Fi g. 36 is a light guide plate used in each embodiment of the present invention.
  • FIG. 37 is a schematic diagram for explaining another embodiment, and FIG. 37 is a schematic diagram for explaining the effect of the backlight in the liquid crystal display device according to the present invention.
  • FIG. 1 is a schematic diagram of a main part of an embodiment of a liquid crystal display device according to the present invention, wherein 1 is a liquid crystal display element, 2 is a backlight, 3 is a light guide plate, 4 is a cold cathode fluorescent lamp, 5 Is a lamp reflecting sheet, 6 is a collimating lens sheet, 7 is a reflecting tape, 8 is one or more prism sheets, and 9 is a reflecting sheet.
  • a backlight 2 faces a light guide plate 3 made of a transparent plate having a rectangular cross section, a cold cathode fluorescent lamp 4 installed along one side edge thereof, and a light guide plate 3 of the cold cathode fluorescent lamp 4.
  • a lamp reflecting sheet 5 installed around the side excluding the side, a collimator lens sheet 6 installed on the light guide plate 3 along the writing light surface, and the cold cathode fluorescent lamp 4 of the light guide plate 3
  • a reflective sheet 7 placed on the side edge opposite to the above, a prism sheet 8 placed on the upper surface of the light guide plate 3, that is, on the liquid crystal display element 1 side, and a reflective sheet 9 placed below the light guide plate 3.
  • the above-mentioned prism sheet includes at least one sheet having a prism groove on at least the light guide plate side, and one or more prism sheets having different groove directions can be laminated thereon. Further, the lower surface of the light guide plate 3 is subjected to light reflection processing such as a prism array.
  • the light guide plate 3 is, for example, an acrylic resin plate having a length of 15.5 mm in the vertical direction (vertical direction), a length of 21.8 mm in the horizontal direction (horizontal direction), a thickness of 4 mm, and a refractive index of around 1.5.
  • the lower surface of the transparent plate is treated to avoid total reflection.
  • processing to avoid total reflection processing mainly based on light scattering (diffuse reflection) and processing mainly based on regular reflection of light.
  • processing mainly based on light scattering a method in which a light scattering ink material is pattern-printed on the lower surface of the transparent plate, and a method in which the T® of the transparent plate is roughened.
  • a process mainly based on regular reflection of light there is a method of forming a prism array on the lower surface of a transparent plate.
  • the light beam incident on the light entrance surface of the light guide 3 from the cold cathode fluorescent lamp 4 is collimated by the collimating lens sheet 6 provided between the light entrance surface and the cold cathode fluorescent lamp 4.
  • the light beam collimated by the collimator lens sheet 6 propagates inside the light guide plate 3 while repeating regular reflection and scattering in the direction of the reflection tape 7, while passing through the prism sheet 8 from the upper surface of the light guide plate 3.
  • the liquid crystal display element 1 is illuminated.
  • a predetermined pixel is set to a light transmitting state or a light blocking state by a drive circuit (not shown), and illumination light from the backlight 2 passes or blocks the pixel in the light transmitting state or the light blocking state. Then, a visual display is made.
  • the reflection sheet 9 reflects the light emitted from the lower surface of the light guide plate 3 in the direction of the light guide plate 3 and is installed in order to use the light effectively.
  • the reflection tape 7 controls the light exiting from the light guide plate 3. It has the function of returning to the light guide plate 3 again.
  • FIG. 5 is a partially broken plan view illustrating the installation state of the collimator lens sheet constituting the backlight in FIG.
  • the collimating lens sheet 6 is disposed close to the light entrance surface 3 b of the light guide plate 3, that is, the side edge where the cold cathode fluorescent lamp 4 is installed.
  • the light beam emitted from the lamp 4 passes through the collimating lens sheet 6 and is collimated in a predetermined direction.Then, the light beam enters the light guide plate 3 and repeats regular reflection and scattering to form a liquid crystal from the upper surface of the light guide plate 3. Light is emitted in the direction of the display element.
  • FIG. 6 is an explanatory view of a first example of a collimating lens sheet constituting a backlight according to the present invention, wherein (a) is a cross-sectional view of FIG.
  • (b) is a perspective view of the collimator lens sheet viewed from the light incident surface 3b side of the light guide plate 3,
  • (c) is a partial cross-sectional view taken along the line B-Bdi of (b), 6 and 7 are a collimator lens sheet of this example, and 6a is a prism groove.
  • the light guide plate 3 is a transparent resin plate having the same thickness from the side edge of the cold cathode fluorescent lamp installation side to the reflective tape 7 side, and as a process for avoiding total reflection in the transparent resin plate, the lower surface of the transparent resin plate is used. Is formed with a prism array 3a as a light reflection processing surface.
  • the opening angle 0 of the prism groove 6 a is 90. Or 1 1 0.
  • the pitch is set to 31 to 51.
  • the collimator lens sheet 6 By the collimator lens sheet 6, the light beam emitted from the cold cathode fluorescent lamp 4 is collimated in the normal direction of the collimating lens sheet 6, on a plane orthogonal to the extending direction of the prism groove 6a. Light enters the light guide plate 3. As a result, most of the luminous flux emitted from the cold cathode fluorescent lamp 4 enters the light incident surface of the light guide plate 3 in a plane parallel to the plane of the drawing, and is smaller than that without the collimating lens sheet 6, Incident at an angle.
  • the light flux entering the light guide plate 3 travels through the light guide plate 3 in a state where it is collimated within a narrower angle range in a plane parallel to the paper surface. Will be.
  • the direction of travel of this light beam is controlled by specular reflection on the inclined surface of the prism array 3a disposed on the lower surface of the light guide plate 3 on the side where the cold cathode fluorescent lamp is installed, and critical when the inner surface is reflected on the upper surface of the light guide plate 3.
  • the light beam can be emitted from the upper surface of the light guide plate while being collimated in a plane parallel to the paper surface.
  • the direction of travel of the emitted light beam is determined by the internal reflection on the inclined surface on the side of the reflection tape 7 of the prism sheet (see FIG. 24) whose bottom surface is set on the upper surface of the light guide plate 3.
  • a high-luminance illumination light source is realized as a backlight for a liquid crystal display.
  • FIG. 7 is an explanatory view of a second example of the collimating lens sheet constituting the backlight according to the present invention, wherein (a) is a cross-sectional view of FIG.
  • (b) is a perspective view of the collimator lens sheet viewed from the light incident surface 3b side of the light guide plate 3,
  • (C) is a partial cross-sectional view taken along C one C line of (b), 6 2 are collimation one evening lens sheet of the present embodiment, 6 b are prism grooves.
  • the light guide plate 3 is a transparent resin plate having the same thickness from the side edge of the cold cathode fluorescent lamp installation side to the reflection tape 7 side, and as a process for avoiding total reflection in the transparent resin plate, the lower surface of the transparent resin plate is used. Is formed with a prism array 3a.
  • the opening angle 0 of the prism groove 6 b is 90. Or 1 1 0.
  • the pitch is set to 31 to 51 m.
  • the light emitted from the cold cathode fluorescent lamp 4 is collimated by the collimating lens sheet 6 in a direction normal to the collimating lens sheet 62 on a plane orthogonal to the extending direction of the prism groove 6b.
  • Light enters the light guide plate 3.
  • the light flux entering the light guide plate 3 travels through the light guide plate 3 in a state where it is collimated within a narrower angle range in a plane perpendicular to the paper surface. Become.
  • the direction of travel of this light beam is controlled by specular reflection on the side of the cold cathode fluorescent lamp on the side of the cold cathode fluorescent lamp of the prism array 3a arranged in the TS of the light guide plate 3, and is critical when the inner surface is reflected on the upper surface of the light guide plate 3.
  • the light beam can be emitted from the upper surface of the light guide plate while being collimated in a plane perpendicular to the paper surface.
  • the direction of travel of this emitted light beam is closer to the normal direction of the upper surface of the light guide plate 3 due to internal reflection on the slope of the reflection tape 7 side of the prism sheet whose bottom surface is installed on the upper surface of the light guide plate 3.
  • a high-brightness illumination light source is realized as a backlight for liquid crystal.
  • FIG. 8 is an explanatory view of a third example of the collimating lens sheet constituting the backlight according to the present invention.
  • (A) is a cross-sectional view of FIG. b) is a perspective view of the collimator Isseki lens sheet from the cold cathode fluorescent lamp 4 side
  • (c) is a partial sectional view taken along D-D line in (b), 6 3 this example of a collimator lens
  • the sheet, 6c is a micro-convex lens.
  • the light guide plate 3 is a transparent resin plate having the same thickness from the side edge of the cold cathode fluorescent lamp installation side to the reflection tape 7 side, and as a process for avoiding total reflection in the transparent resin plate, the lower surface of the transparent resin plate is used. Is formed with a prism array 3a.
  • the collimator lens sheet 63 located on the side edge of the cold cathode fluorescent lamp installation side has a large number of minute convex lenses 6 c on the surface facing the cold cathode fluorescent lamp 4, and has a light incident surface 3 b of the light guide plate 3.
  • the opposite side is flat.
  • the collimator lens sheet 6 3 light emitted from the cold cathode fluorescent lamp 4 is collimated in both sides of the plane perpendicular to the paper surface and a plane parallel to the plane with respect to the light guide plate 3 by lenticules 6 c Light enters the light guide plate 3.
  • the light guide plate 3 As a result, most of the luminous flux emitted from the cold cathode fluorescent lamp 4 is collimated with respect to the light incident surface 3b of the light guide plate 3 in both a plane parallel to the paper and a plane perpendicular to the paper. Incident at small angles of incidence than without the meter lens sheet 6 3. Taking into account the refraction effect on the light entrance surface 3b, the light flux entering the light guide plate 3 is collimated within a narrower angle range on both surfaces in a plane parallel to the paper and in a plane perpendicular to the paper. In this state, the light travels through the light guide plate 3.
  • the direction of travel of this light beam is controlled by specular reflection on the slope of the cold cathode fluorescent lamp installation side of the prism array 3 a disposed on the lower surface of the light guide plate 3, and the critical angle at the time of internal reflection on the upper surface of the light guide plate 3.
  • the light beam can be emitted from the upper surface of the light guide plate while being collimated in a plane parallel and perpendicular to the paper.
  • the direction of travel of this emitted light beam is closer to the normal direction of the upper surface of the light guide plate 3 due to internal reflection on the slope of the reflection tape 7 side of the prism sheet whose bottom surface is installed on the upper surface of the light guide plate 3.
  • a high-brightness illumination light source is realized as a backlight for liquid crystal.
  • FIG. 9 is a partially broken plan view illustrating another installation state of the collimating lens sheet constituting the backlight in FIG.
  • the collimator lens sheet 6 is arranged closely to the light incident surface 3 b of the light guide plate 3, that is, the side edge where the cold cathode fluorescent lamp 4 is installed.
  • the light emitted from the light guide plate 6 is collimated in a predetermined direction by passing through the collimator lens sheet 6, and thereafter enters the light guide plate 3, and is emitted from the upper surface of the light guide plate 3 while being reflected and propagated.
  • the lower surface of the light guide plate 3 is subjected to light reflection processing such as a prism groove.
  • FIG. 10 is an explanatory diagram of a fourth example of the collimating lens sheet constituting the backlight according to the present invention.
  • the light guide plate 3 is a transparent resin plate having the same thickness from the side edge of the cold cathode fluorescent lamp installation side, that is, from the light incident surface 3b to the reflection tape 7 side, and is used as a process for avoiding total reflection in the transparent resin plate.
  • the prism array 3a is formed on the transparent resin plate.
  • the light incident surface 3 b of the light guide plate 3 is installed in contact with the light incident surface 3 b, and the light incident surface 3 b facing the cold cathode fluorescent lamp 4 is a flat surface.
  • the prism groove 6a has an opening angle of 90 as in the case of FIG. Or set to 100 '.
  • the light beam emitted from the cold cathode fluorescent lamp 4 is collimated by the collimator lens sheet 6 in a direction normal to the collimator lens sheet 61 on a plane orthogonal to the extending direction of the bism groove 6a. And enters the light guide plate 3.
  • the luminous flux entering the humiliated light plate 3 travels through the light guide plate 3 in a state where it is collimated within a narrower angle range in a plane parallel to the paper. Become.
  • the direction of travel of this luminous flux is controlled by specular reflection on the slope of the prism array arranged on the lower surface of the light guide plate 3 on the side where the cold cathode fluorescent lamps are installed, and critical when internal reflection occurs on the upper surface of the light guide plate 3.
  • specular reflection on the slope of the prism array arranged on the lower surface of the light guide plate 3 on the side where the cold cathode fluorescent lamps are installed, and critical when internal reflection occurs on the upper surface of the light guide plate 3.
  • the direction of travel of the emitted light beam is adjusted by the internal reflection on the slope on the reflection tape 7 side of the bism sheet (see FIG. 24) whose bottom surface is placed on the upper surface of the light guide plate 3.
  • a high-luminance illumination light source can be realized as a backlight for liquid crystal.
  • FIG. 11 is an explanatory diagram of a fifth example of the collimator lens sheet constituting the backlight according to the present invention.
  • the light guide plate 3 is a transparent resin plate having the same thickness from the side edge of the cold cathode fluorescent lamp installation side, that is, from the light incident surface 3 b side to the reflection tape 7 side, and a process for avoiding total reflection in the transparent resin plate is performed.
  • the prism array 3a is formed on the lower surface of the transparent resin plate.
  • the collimating lens sheet 62 located on the light incident surface 3b guides many prism grooves 6b in a direction perpendicular to the plane of the light guide plate 3 (a direction perpendicular to the longitudinal direction of the cold cathode fluorescent lamp 4). It is provided on the light incident surface 3 b side of the light plate 3 and is installed in contact with the light incident surface 3 b of the light guide plate 3, and the side facing the cold cathode fluorescent lamp 4 is a flat surface.
  • the opening angle of the prism groove 6b is also set at 90 ⁇ to 110 ° .
  • the collimator lens sheet 6 2 light beams emitted from the cold cathode fluorescent lamp 4 Are collimated in the direction normal to the collimator lens sheet 61 and are incident on the light guide plate 3.
  • the light flux entering the light guide plate 3 travels inside the light guide plate 3 in a plane that is collimated within a narrower angle range in a plane perpendicular to the paper surface. Will be.
  • the direction of travel of this light beam is controlled by specular reflection at the slope of the prism array arranged on the lower surface of the light guide plate 3 on the side where the cold cathode fluorescent lamp is installed.
  • the light beam can be emitted from the upper surface of the light guide plate while being collimated in a plane perpendicular to the paper surface.
  • the traveling direction of the emitted light beam is changed to a direction closer to the normal direction of the upper surface of the light guide plate 3 due to internal reflection on the inclined surface on the reflection tape 7 side of the prism sheet having the bism surface with the lower surface installed on the upper surface of the light guide 3.
  • an illuminating light source with high brightness is realized as a backlight for liquid crystal.
  • FIG. 12 is an explanatory diagram of a sixth example of the collimated lens sheet constituting the backlight according to the present invention.
  • the light guide plate 3 is a transparent resin plate having the same thickness from the cold cathode fluorescent lamp installation side edge, that is, from the light incident surface 3 b to the reflection tape 7 side, and as a process for avoiding total reflection on the transparent resin plate ⁇ A prism array 3a is formed on the lower surface of the transparent resin plate.
  • the collimator Isseki lens sheet 6 3 located on the light incident surface 3 b has a number of lenticules 6 c on the surface facing the cold cathode fluorescent lamp 4, the light incident surface 3 b side the light guide plate with the flat surface Are arranged close to the light incident surface 3b.
  • the light emitted from the cold cathode fluorescent lamp 4 is collimated by the minute convex lens 6c into the light guide plate 3 in both a plane parallel to the paper and a plane perpendicular to the paper. Light enters the light guide plate 3.
  • the luminous flux emitted from the cold cathode fluorescent lamp 4 is collimated with respect to the light incident surface 3b of the light guide plate 3 in both a plane parallel to the paper and a plane perpendicular to the paper.
  • the incident light is incident at a smaller incident angle than when the lens sheet 62 is not provided.
  • the luminous flux entering the light guide plate 3 travels through the light guide plate 3 in a state of being collimated in both a plane parallel to the paper surface and a plane perpendicular to the paper surface.
  • the direction of travel of this light beam is controlled by specular reflection on the inclined surface of the prism array 3a formed on the lower surface of the light guide 3 on the side where the cold cathode fluorescent lamp is installed, and is critical when the inner surface is reflected on the upper surface of the light guide plate 3.
  • the light beam can be emitted from the upper surface of the light guide plate in a state of being kept collimated in a plane parallel and perpendicular to the paper surface.
  • the traveling direction of the emitted light beam is closer to the normal direction of the upper surface of the light guide plate 3 due to internal reflection on the inclined surface on the reflection tape 7 side of the brhythm sheet whose bottom surface is set on the upper surface of the light guide plate 3.
  • a high-brightness illumination light source can be realized as a liquid crystal backlight.
  • FIGS. 13A and 13B are explanatory views of a seventh example of the collimating lens sheet constituting the backlight according to the present invention, wherein FIG. 13A is a plan view and FIG. 13B is a plan view of FIG. It is sectional drawing cut
  • the collimating lens sheet 6, ′ in this example has a groove 6 a ′ extending in a direction parallel to the plane of the light guide plate 3, and the shape and pitch of the groove 6 a ′ are vertically shifted from the center in the vertical direction. It is formed with a gradation so as to gradually change toward the side.
  • the collimated overnight lens sheet 6 ' is placed between the cold cathode fluorescent lamp and the light entrance surface 3b of the light guide plate 3 to provide the cold cathode fluorescent light.
  • FIG. 14 is an explanatory view of an eighth example of the collimated lens sheet constituting the backlight according to the present invention, wherein (a) is a plan view and (b) is an F-F of (a). It is sectional drawing cut
  • the collimated overnight lens sheet 6 2 ′ in this example has a groove 6 b ′ extending in a direction perpendicular to the plane of the light guide plate 3, and the shape and pitch of the groove 6 b ′ are right and left from the center in the horizontal direction. It is formed with a gradation so that it changes gradually toward the outside.
  • FIG. 15 is an explanatory view of a ninth example of a collimated lens sheet constituting the backlight according to the present invention, wherein (a) is a plan view and (b) is a GG of (a).
  • FIG. 3C is a cross-sectional view taken along line H-H of FIG.
  • the collimating lens sheet 6 4 in this example has a large number of convex lenses 6 c ′ on the surface facing the light incident surface 3 b of the light guide plate 3, and the shape and radius of curvature of the convex lens 6 c ′ are different from those of the light guide plate 3. It is formed with a gradation so that it gradually changes from the center of the light incident surface 3b in the vertical direction.
  • FIG. 16 is an explanatory diagram of a tenth example of a collimating lens sheet constituting a backlight according to the present invention, wherein (a) is a plan view and (b) is an I-line of (a). It is sectional drawing cut
  • This example collimator Isseki Renzushi one DOO 6 4 has two types of prism grooves 6 d intersecting the surface facing the light incident surface 3 b of Shirubeko ⁇ 3.
  • the collimating lens sheet 6 4 By installing the collimating lens sheet 6 4 between F i g. 5 or F i g. 9 incident surface 3 b of the cold cathode fluorescent lamp 4 and the light guide plate 3 as shown in each of the prisms ⁇ In two planes perpendicular to the groove, light is incident at a smaller incident angle than when there is no collimating lens sheet 64. Taking into account the refraction effect on the light entrance surface 3b, the luminous flux entering the light guide plate 3 is collimated within a narrower angle range in two planes perpendicular to the respective prism grooves. The light travels through the light guide plate 3.
  • the traveling direction of this light beam is controlled by specular reflection on the inclined surface of the prism array 3a formed at T of the light guide plate 3, and the light is incident at an incident angle smaller than the critical angle at the time of internal reflection on the upper surface of the light guide plate 3.
  • the light beam can be emitted from the upper surface of the light guide plate 3 while being kept collimated in the two vertical surfaces.
  • high-luminance illumination as a liquid crystal backlight is achieved.
  • a light source is realized.
  • the shape and pitch of the prism groove 6 d may have gradation similarly to FIGS. 13 and 14.
  • FIG. 17 is a schematic view of a principal part for explaining another embodiment of the liquid crystal display device according to the present invention, wherein 1 is a liquid crystal display element, 2 is a backlight, 3 is a light guide plate, and 4 is a cold cathode fluorescent lamp. , 5 is a lamp reflection sheet, 6 is a collimator lens sheet, 7 is a reflection tape, 8 is a prism sheet, and 9 is a reflection sheet.
  • a backlight 2 is composed of a light guide plate 3 made of a transparent plate having a wedge-shaped cross section in a direction orthogonal to the longitudinal direction of the cold cathode fluorescent lamp 4, and a cold cathode fluorescent lamp 4 installed along one side edge thereof.
  • the light guide plate 3 is composed of a reflective sheet 9 provided on the lower surface of the light plate 3.
  • a transparent plate such as T®
  • processing based mainly on light scattering processing based mainly on regular reflection of light.
  • processing mainly based on light scattering a method of pattern printing an ink material having a light scattering property on the lower surface of the transparent plate, and a method of performing rough surface processing on T® of the transparent plate.
  • As a process mainly based on regular reflection of light there is a method of forming a prism array on the lower surface of a transparent plate.
  • Light incident from the cold cathode fluorescent lamp 4 on the light entrance surface of the light guide 3 is collimated by the collimating lens sheet 6 installed between the light entrance surface and the cold cathode fluorescent lamp 4. It is.
  • the light collimated by the collimator lens sheet 6 illuminates the liquid crystal display element 1 from the upper surface of the light guide plate 3 through the prism sheet 8 while repeating regular reflection and scattering in the direction of the reflection tape 7 in the light guide plate 3. .
  • a predetermined pixel is in a light transmitting or light blocking state by a drive circuit (not shown), and illumination light from the backlight 2 passes through or blocks the pixel in the light transmitting or light blocking state. Then, a visual display is made.
  • the reflection sheet 9 reflects the light emitted from the lower surface of the light guide plate 3 in the direction of the light guide plate 3 and is installed in order to use the light effectively.
  • the reflection tape 7 controls the light exiting from the light guide plate 3. It has the function of returning to the light guide plate 3 again.
  • FIG. 18 is an explanatory view of a first example of a collimating lens sheet constituting a backlight according to the present invention, and 6, is a collimating lens sheet similar to FIG. Denotes a prism groove.
  • the light guide plate 3 is a wedge-shaped transparent resin plate having a thickness that gradually decreases from the side edge of the cold cathode fluorescent lamp installation, that is, from the light incident surface 3 b to the reflection tape 7 side, and the transparent resin near the light incident surface 3 b is formed.
  • a prism array 3a is formed on the lower surface of the transparent resin plate.
  • the collimator lens sheet 6, located on the light entrance surface 3 b, has a number of prism grooves 6 a parallel to the plane of the light guide plate 3 (parallel to the longitudinal direction of the cold cathode fluorescent lamp 4) to enter the light guide plate 3. It is provided on the surface 3b side, and the side facing the cold cathode fluorescent lamp 4 is a flat surface.
  • the opening angle 0 of the prism groove 6 a is 90. 1 to 110 ⁇
  • the pitch is set to 31 to 51 ⁇ m.
  • the light emitted from the cold cathode fluorescent lamp 4 is placed on a plane orthogonal to the extending direction of the bism groove 6a, and is directed in the normal direction of the collimating lens sheet 6, The light is collimated and enters the light guide plate 3.
  • the light flux entering the light guide plate 3 is in a plane parallel to the paper plane, narrower, and collimated in the angle range. It will travel inside the light guide plate 3 with the mated prone.
  • the direction of travel of this luminous flux is controlled by specular reflection on the inclined surface of the prism array 3a formed on the lower surface of the light guide plate 3 on the cold cathode fluorescent lamp installation side, and the critical angle at the time of internal reflection on the upper surface of the light guide plate 3
  • the direction of travel of this emitted light beam is directed to a direction closer to the normal direction of the upper surface of the light guide plate 3 due to internal reflection on the inclined surface on the reflection tape 7 side of the bism sheet whose bottom surface is placed on the upper surface of the light guide plate 3.
  • F ig. 1 9 is an explanatory view of the first two examples collimation Isseki lens Sea Bok constituting the backlight in the present invention, 6 2 F ig. 7 the same collimation Isseki lens sheet, 6 b Denotes a prism groove.
  • the light guide plate 3 is a wedge-shaped transparent resin plate having a thickness that gradually decreases from the light incident surface 3 b side to the reflective tape 7 side, thereby avoiding total reflection in the transparent resin plate in a region near the light incident surface.
  • a prism array 3a is formed on a TIB of a transparent resin plate.
  • the light incident surface 3 b side position S has been collimation Isseki lens sheet 6 2 number of prism grooves 6 b in a direction (direction perpendicular to the longitudinal direction of the cold cathode fluorescent lamp 4) perpendicular to the plane of the light guide plate 3
  • On the light guide plate 3 side, and the side facing the cold cathode fluorescent lamp 4 is a flat surface.
  • the opening angle 0 of the prism groove 6b is set to 90 ′ to 110 ⁇ .
  • the collimator lens sheet 6 2 light emitted from the cold cathode fluorescent lamp 4 in a plane orthogonal to the extending direction of the prism grooves 6 b, it is collimated in the direction normal to the collimator Isseki lens sheet 6 2 guide Light is incident on the light plate 3.
  • the light flux entering the light guide plate 3 travels through the light guide plate 3 in a state where it is collimated within a narrower angle range in a plane perpendicular to the paper surface. Become.
  • the traveling direction of this light beam is set on the slope of the prism array 3a formed on the lower surface of the light guide plate 3 on the cold cathode fluorescent lamp installation side.
  • the direction of the beam is controlled by specular reflection at the inner surface of the light guide plate 3 and the light is incident at an angle of incidence smaller than the critical angle at the time of internal reflection at the upper surface of the light guide plate 3, so that the light beam is kept collimated in a plane perpendicular to the paper surface
  • the light can be emitted from the upper surface.
  • the direction of travel of the emitted light beam is closer to the normal direction of the upper surface of the light guide plate 3 due to internal reflection on the inclined surface on the reflection tape 7 side of the prism sheet whose bottom surface is installed on the upper surface of the light guide plate 3.
  • a high-luminance illuminating light source is realized as a backlight for liquid crystal.
  • F i g. 2 0 is fit in illustration of the first three examples collimation Isseki lens sheet that constitute the backlight in the present invention, 6 3 F ig. 7 the same collimation Isseki lens sheet, 6 c Is a micro convex lens.
  • the light guide plate 3 is a wedge-shaped transparent resin plate having a thickness that gradually decreases from the light incident surface 3 b side of the light guide plate 3 to the reflective tape 7 side.
  • a prism array 3a is formed on the lower surface of the transparent resin plate.
  • the cold cathode fluorescent lamp installation side edge collimator Isseki lens sheet 6 3, which is located has a number of lenticules 6 c on the surface facing the cold cathode fluorescent lamp 4, the light guide plate 3 side is a flat surface I have.
  • the luminous flux emitted from the cold cathode fluorescent lamp 4 is collimated by the collimator lens with respect to the light entrance surface 3b of the light guide plate 3 in both a plane parallel to the paper and a plane perpendicular to the paper. incident at small angles of incidence than without sheet 6 3.
  • the luminous flux entering the light guide plate 3 was collimated within a narrower angle range in both surfaces parallel to the paper and perpendicular to the paper. In this state, the light travels through the light guide plate 3.
  • the direction of travel of this light beam is controlled by specular reflection on the inclined side of the cold cathode fluorescent lamp installation side of the prism array 3a formed on the lower surface of the light guide plate 3, so that the inner surface reflects from the upper surface of the light guide plate 3 from the critical angle. Incident on the liquid crystal display element from the upper surface of the light guide plate 3 while being collimated in a plane parallel and perpendicular to the plane of the paper. Can be.
  • the traveling direction of the emitted light beam is closer to the normal direction of the upper surface of the light guide plate 3 due to the internal reflection of the lower surface provided on the upper surface of the light guide plate 3 on the slope of the prism sheet on the reflection tape 7 side of the prism surface.
  • a high-luminance illumination light source is realized as a backlight for liquid crystal.
  • FIG. 21 is an explanatory diagram of a 14th example of the collimator lens sheet constituting the backlight according to the present invention.
  • the light guide 3 is a wedge-shaped transparent resin plate whose thickness gradually decreases from the side edge of the cold cathode fluorescent lamp installation, that is, the light incident surface 3 b to the reflective tape 7 side, and the area near the light incident surface 3 b
  • a prism array 3a is formed on the lower surface of the transparent resin plate.
  • the collimator sheet 6, located on the light incident surface 3 b side, has a large number of prisms parallel to the plane of the light guide plate 3 (parallel to the longitudinal direction of the cold cathode fluorescent lamp 4), as in FIG. 6.
  • the light guide plate 3 has a groove 6a, which is installed in contact with the light entrance surface of the light guide plate 3, and the side facing the cold cathode fluorescent lamp 4 is a flat surface.
  • the opening angle of the prism groove 6a is set to 90 'to 110' similarly to the above-mentioned respective examples.
  • the light beam emitted from the cold-cathode fluorescent lamp 4 is collimated by the collimating lens sheet 6 in a direction normal to the collimator lens sheet 6 on a plane orthogonal to the extending direction of the prism groove 6a. Light enters the light guide plate 3.
  • the luminous flux emitted from the cold cathode fluorescent lamp 4 is incident on the light incident surface 3b of the light guide plate 3 in a plane parallel to the plane of the paper, compared with the case where there is no collimating lens sheet 6,. Incident at a small incident angle. Taking into account the refraction effect on the light entrance surface 3b, the luminous flux entering the light guide plate 3 travels through the light guide plate 3 in a state where it is collimated within a narrower angle range in a plane parallel to the paper surface. Become.
  • the direction of travel of this light beam is controlled by specular reflection on the slope of the cold cathode fluorescent lamp installation side of the prism array 3a formed on the lower surface of the light guide plate 3, and critical when the inner surface reflects on the upper surface of the light guide plate 3.
  • the light beam can be emitted from the upper surface of the light guide plate to the liquid crystal display element side in a collimated state in a plane parallel to the paper surface.
  • the direction of travel of this emitted light beam is guided by the internal reflection of the slope on the reflection tape 7 side of the breath sheet on the breath surface by the T® installed on the upper surface of the light guide plate 3.
  • a high-brightness illumination light source is realized as a liquid crystal backlight.
  • FIG. 22 is an explanatory diagram of a fifteenth example of the collimator lens sheet constituting the backlight according to the present invention.
  • the light guide plate 3 is a wedge-shaped transparent resin plate having a thickness gradually reduced from the light incident surface 3b side to the reflection tape 7 side, and the total reflection in the transparent resin plate in the region near the light incident surface 3b is suppressed.
  • a prism array 3a is formed on T® of the transparent resin plate.
  • the collimator lens sheet 62 located on the light incident surface 3 b side has a number of prism grooves 6 b in a direction perpendicular to the plane of the light guide plate 3 (a direction perpendicular to the longitudinal direction of the cold cathode fluorescent lamp 4). It is provided on the light guide plate 3 side, is installed in contact with the light entrance surface of the light guide plate 3, and the side facing the cold cathode fluorescent lamp 4 is a flat surface.
  • the opening angle of the prism groove 6b is also 90. Or 100. Is set to The collimator Isseki lens sheet 6 2, light beams emitted from the cold cathode fluorescent lamp 4 Te Ore, on a plane orthogonal to the extending direction of the prism grooves 6 b, the normal direction of the collimator lens sheet 6 2 And is incident on the light guide plate 3.
  • the direction of travel of this light beam is controlled by specular reflection on the side of the cold cathode fluorescent lamp installation side of the prism array 3 a formed on the lower surface of the light guide plate 3, and the critical angle at the time of internal reflection on the upper surface of the light guide plate 3 is smaller than the critical angle.
  • the light beam can be emitted from the upper surface of the light guide plate while being collimated in a plane perpendicular to the paper surface.
  • the traveling direction of the emitted light beam is closer to the normal direction of the upper surface of the light guide plate 3 due to internal reflection of the lower surface provided on the upper surface of the light guide plate 3 on the slope of the reflection tape 7 side of the blister sheet.
  • a high-brightness illumination light source can be realized as a backlight for liquid crystal.
  • FIG. 23 shows the collimator lens sheet constituting the backlight in the present invention.
  • FIG. 24 is an explanatory diagram of a 16th example of the FIG.
  • the light guide plate 3 is a wedge-shaped transparent resin plate having a thickness gradually reduced from the light incident surface 3 b side to the reflective tape 7 side, and the total reflection in the transparent resin near the light incident surface 3 b is performed.
  • a prism array 3a is formed on a transparent resin plate.
  • the collimating lens sheet 63 located on the light incident surface 3b side has a large number of minute convex lenses 6c on the surface facing the cold cathode fluorescent lamp 4, and the light guide plate 3 side is a flat surface and the light guide plate It is placed close to the light entrance surface of the device.
  • the collimator Isseki lens sheet 6 3 collimated in both sides of the cold cathode fluorescent lamp 4 in a plane perpendicular to the parallel plane and the plane to the plane with respect to the light guide plate 3 by the emitted light beam lenticules 6 c from Then, the light enters the light guide plate 3.
  • the luminous flux entering the light guide plate 3 travels through the light guide plate 3 in a state of being collimated on both surfaces ⁇ in a plane parallel to the paper surface and in a plane perpendicular to the paper surface.
  • the direction of travel of this light beam is controlled by specular reflection on the inclined surface of the prism array 3a formed on the lower surface of the light guide plate 3 on the cold cathode fluorescent lamp installation side, and the critical angle at the time of internal reflection on the upper surface of the light guide plate 3 is determined.
  • the critical angle at the time of internal reflection on the upper surface of the light guide plate 3 is determined.
  • the direction of travel of this emitted light beam is close to the normal direction of the upper surface of the light guide plate 3 due to internal reflection on the inclined surface of the prism sheet on the reflection tape 7 side where the lower surface installed on the upper surface of the light guide plate 3 is located.
  • a high-brightness illumination light source can be realized as a liquid crystal backlight.
  • FIG. 24 is a schematic view of a main part for explaining still another embodiment of the liquid crystal display device according to the present invention, wherein (a) is a perspective view, and (b) is a view along a-adi of (a).
  • FIG. 24 is a schematic view of a main part for explaining still another embodiment of the liquid crystal display device according to the present invention, wherein (a) is a perspective view, and (b) is a view along a-adi of (a).
  • the light guide ⁇ 3 is formed of a wedge-shaped transparent plate whose thickness gradually decreases from the cold cathode fluorescent lamp 4 side toward the reflection tape 7 a, a prism sheet 8 is placed on the upper part, and a lower part is on the lower part. A reflection sheet 9 is provided.
  • the lower surface of the light guide plate 3 has a prism Light reflecting treatment is performed on the light guide plate 3, and a reflective tape 7b is also attached to the side surface of the light guide plate 3.
  • a collimator lens sheet 6 is provided between the cold cathode fluorescent lamp 4 and the light incident surface 3b of the light guide plate 3.
  • the prism sheet 8 has a large number of prism grooves on its lower surface, and is placed with the surface on which the prism grooves are formed facing the light guide plate 3. Note that a diffusion plate can be interposed between the prism sheet 8 and the light guide plate 3.
  • FIG. 25 is an explanatory diagram of an emission angle distribution of luminous intensity of light emitted from the light guide plate and an emission angle distribution of luminous intensity of light emitted from the prism sheet in the present embodiment. 2) shows an emission angle distribution of the luminous intensity of the light emitted from the prism sheet.
  • the end of the light guide plate where the reflective tape is attached is 0 °
  • the end on the cold cathode fluorescent lamp installation side is 180 °.
  • the emission angle at which the luminous intensity of the light emitted from the unit area of the light guide plate becomes maximum (hereinafter, referred to as a peak angle) 0 is almost in the 20 ′ direction as shown in (1).
  • the light in this direction is directed by the prism sheet to a direction of approximately 90 ° which is the liquid crystal display element direction (upward in the vertical direction) as shown in (2).
  • the collimator lens sheet is installed on the light entrance surface of the light guide plate to collimate the incident light to increase the light use efficiency, and the lower surface is the prism sheet with the prism sheet on the slope on the reflection tape 7 side.
  • High-brightness illumination can be performed by making most of the light beam incident on the liquid crystal display element substantially perpendicular to the liquid crystal display element by internal reflection.
  • FIG. 26 is a schematic diagram for explaining the cross-sectional profile of a prism sheet having a prism surface on the lower surface used in each embodiment of the present invention.
  • This breath sheet has a smooth surface on the side facing the liquid crystal display element and a prism surface on the side facing the light guide plate.
  • the smooth surface side uses a PET film with a refractive index of approximately 1.66, and the prism surface has a two-layer structure with a substantially refractive index and 1.51 acrylic resin adhered. I have.
  • the prism groove of the prism sheet has one slope on the reflection tape side of the light guide plate 3 and is formed in a mountain shape with the other slope on the light entrance surface 3b side, and the angle of the slope on the reflection tape side ⁇ , Is, for example, 38 ° with respect to the diagonal of the prism sheet 6, and the slope of the light incident surface 3b side Is also 5 °, for example.
  • a light beam emitted from the light guide plate at a peak angle of luminous intensity of approximately 20 ° has a peak angle of approximately 90 °.
  • Luminous flux can be corrected.
  • FIG. 27 is an arrangement diagram of a light guide plate and a prism sheet for explaining the operation of the prism sheet in the present embodiment.
  • FIG Nio Te respectively substantially 3 8 ° as the relative angles 0 of the peak direction of the luminous intensity of the light beam 0 2 was the emerging from a unit area of the light guide plate 3, and approximately 5 ° and child Accordingly, the light beam emitted from the prism sheet 8 enters the liquid crystal display element at a peak angle of about 90 °.
  • Fig. 28 is an explanatory view of another example of the cross-sectional shape of the breath sheet.
  • A shows a flat portion 8a provided at the valley of the prism sheet shown in Fig. 27.
  • B is a flat portion with a flat portion 8b,
  • (c) is a curved portion with valleys and peaks 8c and 8d, and
  • (d) is a flat portion with a valley.
  • the portion 8a has a curved portion 8d at the peak, and (e) has a curved portion 8c at the valley and a flat portion 8b at the peak.
  • the angle 01 of one slope and the angle 02 of the other slope are the same as those described in FIG.
  • the angle distribution of the luminous intensity of the light emitted from the upper surface of the light guide plate becomes almost perpendicular to the liquid crystal display element as described in FIG. 25 above. Incident.
  • FIG. 29 is a schematic diagram of a principal part for explaining still another embodiment of the liquid crystal display device according to the present invention.
  • the light guide plate 3 is either a transparent plate having a uniform thickness or a wedge-shaped transparent plate whose thickness gradually decreases from the cold cathode fluorescent lamp 4 side (light incident surface 3 b side) toward the reflective tape 7.
  • a light reflection pattern such as a blizzard array or scattering ink printing is formed on the lower surface of the transparent resin plate, or a roughening process is performed. It has been done.
  • Three prism sheets 8, 8 2 , 8 3 are mounted on the upper part of the light guide plate 3, and a reflection sheet 9 is arranged on the lower part. Note that reflective tape is also applied to the side of the light guide plate 3. May be attached.
  • the prism sheet 8 has a number of prism grooves 8 on its lower surface (the light guide plate 3 side), and the prism groove direction 8 lh is parallel to the cold cathode fluorescent lamp 4.
  • the prism sheet 82 has a number of prisms grooves 8 2 - (opposite side to the light guide plate 3) the upper surface thereof, the prism groove direction 8 2b is prism groove direction 8 lb of the prism sheet 8, They are arranged at an angle.
  • the prism sheet 8 3 has a number of pre-prism grooves 8 3, (opposite side to the light guide plate 3) the upper surface thereof, the prism groove direction 8 3b is the prism sheet 82 of Brise beam groove direction 8 2b With respect to a line perpendicular to the longitudinal direction of the cold-cathode fluorescent lamp.
  • the prism surface of the 8 2, 8 3 are stacked in a manner facing the liquid crystal display element side.
  • a diffusion plate may be interposed between the prism sheet 8 and the light guide plate 3.
  • FIG. 30 is a schematic cross-sectional view taken along the line A—A of FIG. 29.
  • three prism sheets 8, 8 are provided between the light guide plate 3 and the liquid crystal display element 1. , 8 2, 8 3 are arranged by stacking.
  • a light reflection processing surface 3 a is formed on the lower surface of the light guide plate 3, and a diffusion sheet 10 is interposed between the prism sheet 8 and the light guide plate 3. Is not necessary.
  • FIG. 31 is a fragmentary cross-sectional view for explaining the shape of the prism surface of the prism sheet in FIG. 29.
  • the three prism sheets 8,, 8 2 , 8 3 The prism grooves 8 lb , 8 2b , 8 3b of the prism grooves 8 lb , 8 2b , 8 3 b (the size of the grooves g, that is, the slope opening angle 0
  • the size is selected according to the illumination characteristics of the backlight, the light transmission characteristics of the liquid crystal display element, and the luminance distribution characteristics of the display surface of the liquid crystal display device. Alternatively, it can be locally different, so that the display surface of the liquid crystal display device can have a desired luminance distribution.
  • FIG. 32 is an explanatory diagram of the relationship between the prism groove directions of the three prism sheets in the present embodiment.
  • the prism groove direction 8 lb of the prism sheet 8 on the light guide plate 3 side is in a direction parallel to the longitudinal direction of the cold cathode fluorescent lamp 4, and the prism groove direction 8 2b of the prism sheet 8 2 on the upper surface thereof is
  • the prism sheet 8 is arranged at an angle with respect to the prism groove direction 8 lb of the prism sheet 8.
  • the prism groove direction 8 3b of the prism sheet 8 3 of the liquid crystal display device 1 side is positioned at an angle 0 2 on the opposite side with respect to Bed prism sheet 8, the prism groove direction 8, b.
  • 0, 0 2 are acute angles.
  • the viewing angle can be increased in a plane perpendicular to the longitudinal direction of the cold cathode fluorescent lamp.
  • the viewing angle can be adjusted by changing the direction of each prism groove of the three breath sheets, and a liquid crystal display device adapted to the intended use can be configured.
  • F i g. 33 is a partial cross-sectional view illustrating another example of the prism groove shape of the prism sheet 82, 8 3 installed on the liquid crystal display element side in the present embodiment.
  • Prism sheet 82 of this example (8 3) is for the prism grooves 8 2b the (8 3b) are cross section formed in a semicircular or partial circular shape, the light directed to the liquid crystal display device direction the F i g. Its directivity is weaker than that shown in 31. As a result, the viewing angle spreads moderately, and there is little difference in brightness between the viewing angle and the brightness of the entire display surface.
  • F i g. 34 is a partial cross-sectional view illustrating still another example of the prism groove shape of Purizumushi Ichito 8 2, 8 3 installed on the liquid crystal display element side in the present embodiment.
  • Prism sheet 82 of this example the ones the shape of the prism grooves shown in the F i g. 31 to that shown in the Fi g. 33 partially adopted, central region (82 in the prism sheet ⁇ ') And the surrounding area (8 2 ⁇ ).
  • FIG. 35 is an explanatory view of an example of a light reflection processing surface formed on the lower surface of the light guide plate used in each embodiment of the present invention, in which total reflection is avoided and luminance is unified. It is a schematic diagram explaining the example of the case.
  • the figure shows the surface of the light guide plate 3 on the side opposite to the T®, that is, the liquid crystal display element, and the cold cathode fluorescent lamp 4 is disposed at one end.
  • a light reflection pattern 11 such as a blizzard array or scattering ink printing is arranged so as to be linear in parallel with the longitudinal direction of the cold cathode fluorescent lamp 4, and the arrangement interval is set.
  • the cold cathode fluorescent lamp 4 is formed so that it becomes closer as it goes away, and becomes denser as it goes to both sides of the cold cathode fluorescent lamp 4.
  • the light from the cold cathode fluorescent lamp 4 is specularly reflected by the prism array pattern 11, and is incident on the upper surface of the light guide plate 3 at an incident angle smaller than the critical angle at the time of internal reflection on the upper surface of the light guide plate 3, so that a plane parallel to the paper surface is obtained.
  • the inner and outer light can be emitted from the upper surface of the light guide plate while being substantially collimated in a vertical plane or both.
  • FIG. 36 is a schematic view for explaining another example of the light guide plate used in each embodiment of the present invention, wherein (a) is a sectional view and (b) is a sectional view of hollow beads.
  • hollow beads 12 are dispersed in a light guide plate 3 made of an acrylic resin.
  • the diameter of the hollow beads 12 varies from a minimum of 0.1 ⁇ 111 to a maximum of 100 ⁇ m, but the average is 5 to 30 ⁇ m.
  • the size of The thickness t of the shell is from 0.05 to several 10 / m.
  • the hollow layer of the hollow beads 12 may be a gas such as nitrogen, helium, argon, or neon, which has a low refractive index substantially equal to that of air in terms of the force, which is usually air, and the effect.
  • the light guide plate 3 is shown as having a wedge-shaped cross section in the same figure, hollow beads may be dispersed in a flat light guide plate in the same manner as described above.
  • the light beam L emitted from the cold cathode fluorescent lamp collides with the hollow beads 12 and is scattered in the process of traveling through the light guide plate 3.
  • the scattered ⁇ collides with other hollow beads 1 2 one after another, and the scattering The enclosure expands.
  • FIG. 37 is a schematic diagram for explaining the effect of the backlight in the liquid crystal display device according to the present invention, wherein a is a light guide plate 3 which is emitted from the cold cathode fluorescent lamp 4 and collimated by the collimator lens sheet 6.
  • B is the luminous intensity distribution of the luminous flux emitted from the upper surface of the light guide plate 3
  • c is the luminous intensity distribution of the luminous flux emitted from the upper surface of the prism sheet.
  • the light flux having the luminous intensity distribution a collimated by the collimator lens sheet 6 propagates through the light guide plate 3 and exits from the upper surface of the light guide plate 3 with the luminous intensity distribution b.
  • the prism sheet 8 converts the incident light beam having the luminous intensity distribution b into an outgoing light beam c that travels substantially perpendicularly to the liquid crystal display element by the internal reflection action on the lower surface prism slope, and makes the light beam enter the liquid crystal display element.
  • the light guide plate is not limited to the one having a wedge-shaped cross section as shown in the figure, and the same effect can be obtained by using a flat plate.
  • liquid crystal display device which is configured by any one of the above-described embodiments as the collimation overnight lens sheet, the prism sheet, and the light guide plate, or a combination thereof, a high quality liquid crystal display device Can be obtained.
  • the luminous flux having the enhanced directivity guides the light guide plate ⁇ and emits it to the upper surface while maintaining high directivity, and the traveling direction of the emitted luminous flux
  • the brightness of the backlight as a liquid crystal backlight can be controlled by controlling the direction of Power consumption of the surface light source device can be reduced.
  • a light guide plate having a thickness approximately equal to the diameter of the fluorescent lamp can be used, and the thickness of the collimating lens sheet can be reduced, the thickness can be reduced and the frame can be narrowed. be able to.

Abstract

A liquid crystal device in which a liquid crystal display element illuminated with a planar luminous flux emitted through a transparent guide plate from a cold cathode fluorescent lamp placed along one of the side edges of the transparent guide plate. The liquid crystal display device includes a collimator lens disposed on a light incidence surface of the guide plate to improve directivity of the luminous flux from the cold cathode lamp before it enters the guide plate, and a prism sheet for directing the luminous flux from the guide plate toward the liquid crystal element to a direction nearly normal to the upper surface of the guide plate. Hollow beads are dispersed in the guide plate to improve the efficiency of use of light from the fluorescent lamp and provide uniform brightness so as to obtain bright and uniform display.

Description

明 細 書  Specification
〔発明の名称〕  [Title of Invention]
液晶表示装置  Liquid crystal display
〔技術分野〕  〔Technical field〕
本発明は、 単純マトリックス方式、 アクティブマトリックス方式等の各種の液 晶表示装置に利用でき、 特に前記液晶表示装置の照明手段であるバックライトと して用いられる面光源装置に適用して有効である。  INDUSTRIAL APPLICABILITY The present invention can be used for various types of liquid crystal display devices such as a simple matrix type and an active matrix type, and is particularly effective when applied to a surface light source device used as a backlight which is an illuminating means of the liquid crystal display device. .
〔背景技術〕  (Background technology)
モービル'コンビユーティング時代の幕開けとともに、 実用に耐えうる携帯性 能の実現に向けて、 表示装置の薄型軽量、 低消費電力化が望まれている。  With the dawn of the Mobile's Combining era, there is a demand for thinner, lighter, and lower power consumption display devices to achieve practically portable performance.
このような薄型柽量、 低消費電力の表示装置として、 近年は所謂液晶表示装置 が多用されるようになっている。  In recent years, a so-called liquid crystal display device has been widely used as such a thin, low-power display device.
液晶表示装置は、 液晶表示素子の下部に設置したバックライ卜と称する照明装 置を有し、 このバックライトによる照明光で液晶表示素子に形成した画像、 文字 ある 、は数字を可視化するものである。  The liquid crystal display device has an illumination device called a backlight installed below the liquid crystal display element, and images formed with the illumination light from the backlight and characters formed on the liquid crystal display element are used to visualize numbers. .
バックライトは、 光を面状に伝播させるための透明な基板で形成した導光板と、 この導光板の少なくとも一側縁に沿って設置した冷陰極蛍光灯と、 導光板の上面 と液晶表示素子の間に介挿したプリズムシート、 および導光板の下部に設置また は形成した反射シートとから主として構成される。  The backlight is a light guide plate formed of a transparent substrate for transmitting light in a plane, a cold cathode fluorescent lamp installed along at least one side edge of the light guide plate, an upper surface of the light guide plate, and a liquid crystal display element. It is mainly composed of a prism sheet inserted between them, and a reflection sheet installed or formed below the light guide plate.
F i g . 1は液晶表示装置の全体構成例を説明する展開斜視図であって、 1は 液晶表示素子、 2はバックライト、 3は導光板、 4は冷陰極蛍光灯、 5はランプ 反射シート、 8はプリズムシート、 9は反射シート、 1 0は拡散シート、 1 3は 上フレーム、 1 4はスぺーサ、 1 5はブリント基板、 1 6は遮光フレーム、 1 7 は中間フレーム、 1 8は下フレーム、 1 9はランプカバーである。  FIG. 1 is an exploded perspective view illustrating an example of the overall configuration of the liquid crystal display device, wherein 1 is a liquid crystal display element, 2 is a backlight, 3 is a light guide plate, 4 is a cold cathode fluorescent lamp, and 5 is a lamp reflection sheet. , 8 is a prism sheet, 9 is a reflection sheet, 10 is a diffusion sheet, 13 is an upper frame, 14 is a spacer, 15 is a printed circuit board, 16 is a light shielding frame, 16 is a light shielding frame, 17 is an intermediate frame, 18 Is a lower frame, and 19 is a lamp cover.
同図において、 液晶表示素子 1には駆動 I C等の電子部品を搭載したプリント 基板 1 5が一体化され、 その下部にバックライト 2を積層した状態で中間フレー ム 1 7に組付けられ、 これを上フレーム 1 3と下フレーム 1 8で挟持して固定さ れる。  In the same figure, a liquid crystal display element 1 is integrated with a printed circuit board 15 on which electronic components such as a drive IC are mounted, and a backlight 2 is laminated on a lower part of the liquid crystal display element 1 to be attached to an intermediate frame 17. Is fixed between the upper frame 13 and the lower frame 18.
ノくックライト 2は、 少なくとも上記液晶表示素子 1の有効領域をカバーする広 がりをもつ導光板 3と、 導光板 3の下部に設置した反射シート 9、 導光板 3の上 面に設置された拡散シート 1 0および拡散シート 1 0と液晶表示素子 1の間に設 置されたプリズムシート 8、 および導光板 3の一端縁に沿つて配置された冷陰極 蛍光灯 4とランプ反射シート 5ならびにランブカバ一 1 9とから構成される。 なお、 液晶表示素子 1と上フレーム 1 3の間にはスぺーサ 1 4が介挿され、 ま た液晶表示素子 1とバックライト 2との間には、 バックライト 2からの光が液晶 表示素子 1の有効領域外に漏れるのを防止するための遮光フレーム 1 6が設置さ れている。 The knock light 2 has a large area covering at least the effective area of the liquid crystal display element 1. A light guide plate 3 having a beam, a reflection sheet 9 provided below the light guide plate 3, a diffusion sheet 10 provided on the upper surface of the light guide plate 3, and provided between the diffusion sheet 10 and the liquid crystal display element 1. And a cold cathode fluorescent lamp 4, a lamp reflection sheet 5, and a lamp cover 19 disposed along one edge of the light guide plate 3. A spacer 14 is interposed between the liquid crystal display element 1 and the upper frame 13, and the light from the backlight 2 is interposed between the liquid crystal display element 1 and the backlight 2. A light-shielding frame 16 is installed to prevent the element 1 from leaking out of the effective area.
このような構造において、 液晶表示素子 1の有効領域はバックライト 2からの 照明光で照明され、 液晶表示素子 1に形成された画像あるいは文字 ·数字等が可 視的に表示される。  In such a structure, the effective area of the liquid crystal display element 1 is illuminated with the illumination light from the backlight 2, and an image, characters, and numerals formed on the liquid crystal display element 1 are visually displayed.
F i g . 2は従来の液晶表示装置におけるバックライトの構造を説明する要部 断面図であって、 1は液晶表示素子、 2はバックライト、 3は導光板、 3 aは光 反射処理面、 4は冷陰極蛍光灯、 4 aは冷陰極蛍光灯の給簏ケーブル、 5はラン ブ反射シート、 8はプリズムシート、 9は反射シート、 1 0は拡散シート、 1 3 は上フレーム、 1 5はブリント基板、 1 5 aはブリント基板に搭載した駆動 I C、 1 7は中間フレーム、 1 8は下フレームである。  FIG. 2 is a cross-sectional view of a main part for explaining the structure of a backlight in a conventional liquid crystal display device. 1 is a liquid crystal display element, 2 is a backlight, 3 is a light guide plate, 3 a is a light reflection treated surface, 4 is a cold cathode fluorescent lamp, 4a is a cold cathode fluorescent lamp supply cable, 5 is a lamp reflection sheet, 8 is a prism sheet, 9 is a reflection sheet, 10 is a diffusion sheet, 13 is an upper frame, and 15 is an upper frame. Is a printed circuit board, 15a is a drive IC mounted on the printed circuit board, 17 is an intermediate frame, and 18 is a lower frame.
同図において、 冷陰極蛍光灯 4、 ランプ反射シート 5、 反射シート 9、 導光板 3、 拡散シート 1 0およびプリズムシート 8によってバックライト (照明光源) 2が構成される。  In the figure, a backlight (illumination light source) 2 is constituted by a cold cathode fluorescent lamp 4, a lamp reflection sheet 5, a reflection sheet 9, a light guide plate 3, a diffusion sheet 10 and a prism sheet 8.
この照明光源であるバックライト 2の上方に液晶表示素子 1が積層され、 駆動 I C 1 5 aを搭載したブリント基板 1 5と共に上フレーム 1 3と下フレーム 1 8 とで一体化して液晶表示装 Sが構成される。  A liquid crystal display element 1 is stacked above a backlight 2 which is an illumination light source, and is integrated with an upper frame 13 and a lower frame 18 together with a printed circuit board 15 on which a drive IC 15a is mounted. Is configured.
冷陰極蛍光灯 4から導光板 3の入光面に入射する全ての光線は、 入光面に対す る屈折角が 4 2 ° 以下で導光板 3内に進入し、 図中に矢印で示したように、 導光 板上面による正反射および、 プリズム面(プリズムアレイ) あるいはドットゃラ ィン状印刷バターンもしくは粗面等の全反射を回避する処理面 3 aを形成した導 光 ίδΤ®による正反射や散乱を操り返しながら、 導光板 3内を伝播して液晶表示 素子 1方向に指向され、 当該液晶表示素子 1を背面から照明する。 このように、 液晶表示装置に用いられるバックライトは、 樹脂板を好適とする 透明板からなる導光板の側縁に沿って設置した冷陰極管からの光を上記導光板に 伝播させることによって面状に分布させるものである。 All light rays entering the light entrance surface of the light guide plate 3 from the cold cathode fluorescent lamp 4 enter the light guide plate 3 at a refraction angle of 42 ° or less with respect to the light entrance surface, and are indicated by arrows in the figure. As described above, the light guide し た δΤ® formed with the processing surface 3a that avoids the regular reflection by the upper surface of the light guide plate and the total reflection such as a prism surface (prism array) or a dot-line printed pattern or a rough surface. While repeating reflection and scattering, the light propagates through the light guide plate 3 and is directed toward the liquid crystal display element 1 to illuminate the liquid crystal display element 1 from behind. As described above, the backlight used in the liquid crystal display device has a surface formed by propagating light from the cold-cathode tube provided along the side edge of the light guide plate made of a transparent plate, preferably a resin plate, to the light guide plate. It is distributed in a shape.
そして、 近年の液晶表示装置のバックライトは、 液晶表示装置の薄型軽量化 · 高輝度 低消費罨カ化のために、 それ自体の薄型軽量化 ·高輝度 Z低消費電力化 を図る必要がある。  In recent years, it is necessary to reduce the thickness and weight of liquid crystal display devices and to reduce the thickness and weight of liquid crystal display devices. .
特に、 低消費電力化を目的とする輝度効率向上のため、 エス ·アイ ·ディ 9 アプリケーションズ ダイジ スト (S【D 94 APPLICATIONS DIGEST) 1 0 〜1 3頁に示されるように、 面光源装置にコリメータを設けることが行なわれて いる。  In particular, to improve the luminance efficiency for the purpose of reducing power consumption, the S-D9 APPLICATIONS DIGEST (S [D94 APPLICATIONS DIGEST]) As shown on pages 10 to 13, the collimator is installed in the surface light source device. Is being provided.
F i g . 3はコリメ一夕を有するバックライトの一部構造を示す概略断面図で お  Fig. 3 is a schematic sectional view showing a partial structure of a backlight having a collimated light.
同図に示すように、 導光板 3の端面に沿ってコリメ一夕 2 0が設けられ、 コリ メータ 2 0の端部にランプ反射シート 5が取り付けられ、 コリメ一夕 2 0の端面 とランプ反射シート 5とによって形成された空間内に冷陰極蛍光灯 4が設けられ ている。 なお、 導光板 3の裏面すなわち液晶表示素子とは反対側の面には、 光反 射処理面 3 a (同図ではプリズムアレイ) とされているが、 ドットあるいはライ ン状の印刷パターンでもよい。  As shown in the figure, a collimator 20 is provided along the end face of the light guide plate 3, a lamp reflection sheet 5 is attached to an end of the collimator 20, and the end face of the collimator 20 and the lamp reflection are provided. The cold cathode fluorescent lamp 4 is provided in the space formed by the sheet 5. The light-reflection-treated surface 3a (the prism array in the figure) is provided on the back surface of the light guide plate 3, that is, the surface opposite to the liquid crystal display element, but may be a dot or line-shaped print pattern. .
このような構造のバックライ卜においては、 冷陰極蛍光灯 4から発生した光は コリメ一夕入光面 2 O bからコリメ一夕 2 0に入射し、 例えば 9 0 ° の入射角で コリメータ入光面 2 O bに入射した^は 4 2 ° の屈折角でコリメ一夕内に進入 する。 コリメータ内に進入した は、 例えばコリメ一夕斜面 2 0 aの傾き角が 6 ° のときに、 コリメータ 2 0の斜面 2 0 aでの一回の内面反射によって図の水 平方向となす角度が 3 0 ° になり、 二回の内面反射で図の水平方向となす角度が 1 8。 となるように、 コリメ一夕 2 0の斜面 2 0 aによる内面反射を受ける全て の光線はより水平に近い方向へと進行方向を変えるため、 導光板 3の入光面 3 b に入射する全光束の指向性が高められ、 指向性が高められた光束の大部分が導光 板 3の Tffiに配設された光反射処理面 3 aであるプリズムアレイ (以下、 このブ リズムアレイを 3 aと称する場合がある) の斜面による正反射を経て上面に出射 するので、 全光束の光量は同じでも指向性が高い分だけ輝度が向上する効果があ る。 In the backlight having such a structure, the light generated from the cold cathode fluorescent lamp 4 enters the collimator 20 from the collimator incident light surface 2 Ob, for example, enters the collimator at an incident angle of 90 °. ^ Incident on the surface 2 Ob enters the collimator at a refraction angle of 42 °. When the collimator enters the collimator, for example, when the inclination angle of the collimator slope 20a is 6 °, the angle formed with the horizontal direction in the figure by one internal reflection at the slope 20a of the collimator 20 is as follows. The angle becomes 30 °, and the angle between the horizontal direction in the figure and the two internal reflections is 18. Since all the rays that are internally reflected by the slope 20a of the collimator 20 change their traveling direction to a direction closer to horizontal, all the rays that enter the light-entering surface 3b of the light guide plate 3 The directivity of the luminous flux is increased, and most of the luminous flux having the increased directivity is a prism array (hereinafter, referred to as 3a, which is a light reflection processing surface 3a disposed on the Tffi of the light guide plate 3). Emitted to the upper surface through specular reflection by the slope Therefore, even if the light amount of all the luminous flux is the same, there is an effect that the luminance is improved by the higher directivity.
しかし、 このようなバックライトは、 コリメータ 2 0における内面反射によつ て光の措向性を高めるものであるため、 コリメータ 2 0の断面形状は末広がりに なり、 冷陰極蛍光灯 4の直径よりもかなり大きい厚さの導光板 3を用いる必要が ある。 そのため、 バックライトの薄型柽量化を行なう上では不利である。  However, such a backlight enhances the directivity of light by internal reflection in the collimator 20, so that the cross-sectional shape of the collimator 20 becomes wider and smaller than the diameter of the cold cathode fluorescent lamp 4. However, it is necessary to use the light guide plate 3 having a considerably large thickness. This is disadvantageous in reducing the thickness and weight of the backlight.
また、 導光板 3と冷陰極蛍光灯 4との間にコリメ一夕 2 0を設置するため、 ノくックライトの冷陰極蛍光灯設置部分の寸法が大きくなり、 ノくックライトの無発 光領域が増大して平面方向のサイズが大きくなり、 液晶表示装置の所謂額縁の幅 が広くなつてしまうという欠点を持つ。  In addition, since the collimator 20 is installed between the light guide plate 3 and the cold cathode fluorescent lamp 4, the size of the cold cathode fluorescent lamp installation part of the knock light becomes large, and the non-light emitting area of the knock light becomes large. This has the disadvantage that the size in the plane direction increases due to the increase, and the so-called frame width of the liquid crystal display device becomes wide.
更にまた、 コリメ一夕 2 0によるコリメート作用は冷陰極蛍光灯 4の長手方向 に対しては効果がないため、 当該冷陰極蛍光灯 4の長手方向に拡散する光は依然 として液晶表示素子に対する有効な照明光として利用できないという問題があつ た。  Furthermore, since the collimating action of the collimator 20 has no effect on the longitudinal direction of the cold cathode fluorescent lamp 4, the light diffused in the longitudinal direction of the cold cathode fluorescent lamp 4 is still effective for the liquid crystal display device. There was a problem that it could not be used as an illuminating light.
〔発明の開示〕  [Disclosure of the Invention]
本発明は上記した従来技術における諸問題を解決するためになされたものであ り、 その目的は、 薄型軽量という要求を満たしながら、 低消費電力化を図ること ができるバックライトを備えた液晶表示装置を提供することを目的とする。 上記目的を達成するため、 本発明においては、 導光板の側端面近傍に冷陰極蛍 光灯を設置したバックライトを有する液晶表示装置において、 上記導光板の側端 面と上記冷陰極蛍光灯との間にコリメ一タレンズシ一トを設けたことを特徴とす る。  SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems in the prior art, and has as its object to provide a liquid crystal display having a backlight capable of achieving low power consumption while satisfying the demand for a thin and light weight. It is intended to provide a device. In order to achieve the above object, the present invention provides a liquid crystal display device having a backlight in which a cold cathode fluorescent lamp is installed near a side end surface of a light guide plate, wherein the side end surface of the light guide plate, the cold cathode fluorescent lamp, A collimator lens sheet is provided between them.
また、 上記目的を達成するため、 本発明においては、 導光板の側端面近傍に冷 極蛍光灯を設置したバックライトを有する液晶表示装置において、 上記導光板の 側端面と上記冷陰極蛍光灯との間にコリメ一タレンズシ一トを設け、 かつ導光板 の に輝度分布を均一にするための光反射パターンを形成したことを特徴とす る。  To achieve the above object, according to the present invention, there is provided a liquid crystal display device having a backlight in which a cold cathode fluorescent lamp is installed near a side end surface of a light guide plate, wherein the side end surface of the light guide plate, the cold cathode fluorescent lamp, A collimator lens sheet is provided between the light guide plates, and a light reflection pattern is formed on the light guide plate to make the luminance distribution uniform.
さらに、 上記目的を達成するため、 本発明においては、 等光板の側端面近傍に 冷陰極蛍光灯を設置したバックライトを有する液晶表示装置において、 上記導光 板の側端面と上記冷陰極蛍光灯との間にコリメ一タレンズシ一トを設け、 かつ導 光板の下面に輝度分布を均一にするための光反射パターンを形成し、 そして導光 板の上部に導光板の上面から出射する光束の方向制御を行うための下面がプリズ ム面のプリズムシートを設けたことを特徴とする。 Further, in order to achieve the above object, according to the present invention, there is provided a liquid crystal display device having a backlight in which a cold cathode fluorescent lamp is installed near a side end face of the isoluminous plate, A collimator lens sheet is provided between the side end surface of the plate and the cold cathode fluorescent lamp, and a light reflection pattern is formed on the lower surface of the light guide plate to make the luminance distribution uniform. A prism sheet having a prism surface on the lower surface for controlling the direction of a light beam emitted from the upper surface of the light guide plate is provided.
そして、 上記目的を達成するため、 本発明においては、 導光板の側端面近傍に 冷陰極蛍光灯を設置したバックライトを有する液晶表示装置において、 上記導光 板の側端面と上記冷陰極蛍光灯との間にコリメ一タレンズシ一トを設け、 かつ導 光板の下面に輝度分布を均一にするための光反射パターンを形成し、 そして導光 板の上部に導光板の上面から出射する光束の方向制御を行うための下面がプリズ ム面のプリズムシートを設け、 さらに導光板中に中空ビーズを混入してなること を特徴とする。  To achieve the above object, according to the present invention, there is provided a liquid crystal display device having a backlight in which a cold cathode fluorescent lamp is installed near a side end surface of a light guide plate, wherein the side end surface of the light guide plate and the cold cathode fluorescent lamp are provided. A collimator lens sheet is provided between the two, and a light reflection pattern is formed on the lower surface of the light guide plate to make the luminance distribution uniform, and the direction of the light beam emitted from the upper surface of the light guide plate is formed above the light guide plate. A prism sheet having a prism surface on the lower surface for control is provided, and hollow beads are mixed in the light guide plate.
なお、 上記のコリメ一夕レンズシート、 光反射パターン、 中空ビーズ混入導光 板は、 それらを組み合わせて用いるものに限らず、 それぞれを単独で従来のバッ クライト構造部材と組み合わせて構成することもできる。  The collimating overnight lens sheet, the light reflection pattern, and the light guide plate mixed with hollow beads are not limited to those used in combination with each other, and may be used alone and in combination with a conventional backlight structural member. .
また、 '必要に応じてブリズムシートと導光板との間に拡散板を介揷してもよい ものである。  Further, a diffusion plate may be interposed between the breath sheet and the light guide plate as necessary.
本発明のバックライトにおいては、 冷陰極蛍光灯から発生した光は薄いコリ メータレンズシートによりコリメートされるので、 F i g. 3に示したような内 面反射型コリメ一夕を用いる場合と異なり、 冷陰極蛍光灯の直径とほぼ同じ厚さ の導光扳を用いることができ、 薄型軽量化を妨げずに輝度を向上し、 低消費電力 化を図ることができる。 また、 コリメータレンズシートの厚みは薄いので、 余計 な無発光領域の拡大もなく、 液晶表示装置の額縁の幅が広くなることもない。 また、 導光板の下面に光反射処理面(プリズムアレイや反射パターン) を形成 したことにより、 冷陰極蛍光灯からの光を導光板の上面から出射すると共に、 照 明光の輝度分布を均一化することができる。  In the backlight of the present invention, the light generated from the cold cathode fluorescent lamp is collimated by a thin collimator lens sheet, which is different from the case of using the internal reflection type collimator as shown in FIG. In addition, a light guide having substantially the same thickness as the diameter of the cold cathode fluorescent lamp can be used, so that the brightness can be improved and the power consumption can be reduced without hindering the reduction in thickness and weight. In addition, since the thickness of the collimator lens sheet is small, there is no unnecessary expansion of the non-light-emitting area, and the width of the frame of the liquid crystal display device does not increase. In addition, by forming a light reflection processing surface (prism array or reflection pattern) on the lower surface of the light guide plate, light from the cold cathode fluorescent lamp is emitted from the upper surface of the light guide plate and the luminance distribution of the illumination light is made uniform. be able to.
さらに、 コリメ一タレンズシ一トにより指向性が高められた光束が導光板上面 から出射するときの最大光度方向が導光板上面の法棣方向に対して傾レ、ている場 合に、 導光板の上面から出射する光束の方向制御を行うための下面がプリズム面 のブリズムシ一トを設けたことにより、 液晶表示素子に入射する光束の中で液晶 表示素子を有効に透過し得る光束が占める割合が增加し、 光の利用効率が向上す るので低消費電力化を図ることができる。 Furthermore, if the direction of maximum luminous intensity when the light beam whose directivity is enhanced by the collimator lens sheet exits from the upper surface of the light guide plate is inclined with respect to the normal direction on the upper surface of the light guide plate, the light guide plate The lower surface for controlling the direction of the luminous flux emitted from the upper surface is provided with a prism sheet on the lower surface. The proportion of the luminous flux that can be effectively transmitted through the display element increases, and the light use efficiency is improved, so that low power consumption can be achieved.
そして、 導光板中に中空ビーズを混入したことにより、 導光板内を伝搬する光 束が、 光反射パターンに当たる頻度が小さい領域においても拡散され得るので、 光反射パターンの境界において発生し得る輝度段差の発生を抑制することができ る。 Since the hollow beads are mixed in the light guide plate, the light flux propagating in the light guide plate can be diffused even in a region where the frequency of hitting the light reflection pattern is small. Can be suppressed.
〔図面の簡単な説明〕 [Brief description of drawings]
F i g. 1は液晶表示装置の全体構成例を説明する展開斜視図、 F i g. 2は 従来の液晶表示装置におけるバックライトの構造を説明する要部断面図、 F i g. FIG. 1 is an exploded perspective view illustrating an overall configuration example of a liquid crystal display device, FIG. 2 is a cross-sectional view of a main part illustrating a structure of a backlight in a conventional liquid crystal display device, and FIG.
3はコリメータを有するバックライトの一部構造を示す概略断面図、 F i g. 4 は本発明による液晶表示装置の一実施例を説明する要部模式図、 F i g. 5は F i g. 4におけるバックライトを構成するコリメ一夕レンズシートの設置状態を 説明する部分破断した平面図、 F i g. 6は本発明におけるバックライトを構成 するコリメ一夕レンズシートの第 1例の説明図、 F i g. 7は本発明における ノくックライトを構成するコリメータレンズシートの第 2例の説明図、 F i g. 8 は本発明におけるバックライトを構成するコリメ一夕レンズシー卜の第 3例の説 明図、 F i g. 9は F i g. 4におけるバックライトを構成するコリメ一夕レン ズシートの他の設置状態を説明する部分破断した平面図、 F i g. 1 0は本発明 におけるバックライトを構成するコリメータレンズシートの第 4例の説明図、 F3 is a schematic cross-sectional view showing a partial structure of a backlight having a collimator, FIG. 4 is a schematic diagram of a main part illustrating an embodiment of a liquid crystal display device according to the present invention, FIG. 5 is FIG. Fig. 6 is a partially broken plan view illustrating the installation state of the collimating lens sheet constituting the backlight in Fig. 4. Fig. 6 is a description of the first example of the collimating lens sheet constituting the backlight in the present invention. FIG. 7 is an explanatory view of a second example of a collimator lens sheet constituting the knock light according to the present invention, and FIG. 8 is a second view of a collimating lens sheet constituting the backlight according to the present invention. Fig. 9 is an explanatory view of three examples, Fig. 9 is a partially broken plan view showing another installation state of the collimated overnight lens sheet constituting the backlight in Fig. 4, Fig. 10 is Collimator lens sheet constituting backlight in the present invention Illustration of a fourth example, F
1 g. 1 1は本発明におけるバックライトを構成するコリメ一夕レンズシートの 第 5例の説明図、 F i g. 1 2は本発明におけるバックライトを構成するコリ メータレンズシートの第 6例の説明図、 F i g. 1 3は本発明におけるバックラ イトを構成するコリメ一夕レンズシートの第 7例の説明図、 F i g. 1 4は本発 明におけるバックライトを構成するコリメータレンズシートの第 8例の説明図、 F i g. 1 5は本発明におけるバックライトを構成するコリメ一夕レンズシート の第 9例の説明図、 F i g. 1 6は本発明におけるバックライトを構成するコリ メータレンズシートの第 1 0例の説明図、 F i g. 1 7は本発明による液晶表示 装置の他の実施例を説明する要部模式図、 F i g. 1 8は本発明におけるバック ライトを構成するコリメ一夕レンズシートの第 1 1例の説明図、 F i g. 1 9は 本発明におけるバックライトを構成するコリメータレンズシートの第 1 2例の説 明図、 F i g. 20は本発明におけるバックライトを構成するコリメ一夕レンズ シートの第 1 3例の説明図、 F i g. 2 1は本発明におけるバックライトを構成 するコリメ一夕レンズシートの第 1 4例の説明図、 F i g. 22は本発明におけ るバックライトを構成するコリメ一夕レンズシートの第 1 5例の説明図、 F i g.1 g.11 is an explanatory view of a fifth example of a collimating lens sheet constituting a backlight according to the present invention, and FIG. 12 is a sixth example of a collimating lens sheet constituting a backlight according to the present invention. FIG. 13 is an explanatory view of a seventh example of a collimating lens sheet constituting a backlight according to the present invention. FIG. 14 is a collimator lens constituting a backlight according to the present invention. FIG. 15 is an explanatory view of an eighth example of the sheet, FIG. 15 is an explanatory view of a ninth example of the collimating overnight lens sheet constituting the backlight of the present invention, and FIG. 16 is a backlight of the present invention. FIG. 17 is an explanatory view of a tenth example of a collimator lens sheet to be constituted, FIG. 17 is a schematic diagram of a main part illustrating another embodiment of the liquid crystal display device according to the present invention, and FIG. Explanatory drawing of a first example of a collimated lens sheet constituting a backlight in FIG. 19 is an explanatory view of a first or second example of the collimator lens sheet constituting the backlight according to the present invention, and FIG. 20 is a first example of a collimator lens sheet constituting the backlight according to the present invention. FIG. 21 is an explanatory view of three examples, FIG. 21 is an explanatory view of a 14th example of a collimated overnight lens sheet constituting the backlight of the present invention, and FIG. 22 is a backlight of the present invention. Explanatory drawing of the 15th example of a collimated overnight lens sheet, Fig.
23は本発明におけるバックライトを構成するコリメ一夕レンズシートの第 1 6 例の説明図、 F i g. 24は本発明による液晶表示装置のさらに他の実施例を説 明する要部模式図、 Fi g. 25は本実施例における導光板出射光束の光度の出 射角分布とブリズムシ一ト出射光束の光度の出射角分布の説明図、 F i g. 26 は本実施例に使用する下面がプリズム面のブリズムシ一トの断面形状を説明する 模式図、 F i g. 27は本実施例における下面がプリズム面のブリズムシ一卜の 作用を説明する導光板とプリズムシ一トの配置図、 F i g. 28は下面がプリズ ム面のプリズムシートの断面形状の他の例の説明図、 F i g. 29は本発明によ る液晶表示装置のさらにまた他の実施例を説明する要部模式図、 F i g. 30は F i g. 29の A— A棣に沿って切断した断面模式図、 F i g. 31は F i g. 29におけるブリズムシ一卜のプリズム面の形状を説明する要部断面図、 F i g. 32は本実施例における 3枚のプリズムシートのブリズム溝方向の関係の説明図、 F i g. 33は本実施例における液晶表示素子側に設置されるプリズムシ一トの プリズム溝形状の他の例を説明する部分断面図、 Fi g. 34は本実施例におけ る液晶表示素子側に設置されるプリズムシ一トのプリズ厶溝形状のさらに他の例 を説明する部分断面図、 F i g. 35は本発明の各実施例に使用される導光板の 下面に形成される光反射処理面の一例の説明図、 Fi g. 36は本発明の各実施 例に使用される導光板の他の実施例を説明する模式図、 F i g. 37は本発明に よる液晶表示装置におけるバックライトの効果を説明する模式図である。 Reference numeral 23 denotes the first sixteenth lens sheet of the collimating lens constituting the backlight in the present invention. FIG. 24 is an explanatory diagram of an example, FIG. 24 is a schematic diagram of a main part illustrating still another embodiment of the liquid crystal display device according to the present invention, and FIG. FIG. 26 is an explanatory diagram of an angular distribution and an emission angle distribution of the luminous intensity of a brilliance sheet emitted light beam. FIG. 26 is a schematic diagram illustrating a cross-sectional shape of a bism sheet having a prism surface on a lower surface used in the present embodiment. 27 is a layout diagram of the light guide plate and the prism sheet illustrating the operation of the prism sheet having the lower surface in this embodiment, and FIG. 28 is another sectional shape of the prism sheet having the lower surface of the prism surface. FIG. 29 is an explanatory diagram of an example, FIG. 29 is a schematic diagram of a main part illustrating still another embodiment of the liquid crystal display device according to the present invention, and FIG. 30 is an A—A Di of FIG. FIG. 31 is a cross-sectional schematic view taken along the line Fig. 31 is a cross-sectional view of a principal part illustrating the shape of the prism surface of the bism sheet in FIG. g. 32 is an explanatory diagram of the relationship between the direction of the bristles groove of the three prism sheets in the present embodiment, and FIG. 33 is a diagram showing the prism groove shape of the prism sheet installed on the liquid crystal display element side in the present embodiment. FIG. 34 is a partial cross-sectional view illustrating still another example of the prism groove shape of the prism sheet installed on the liquid crystal display element side in the present embodiment, and FIG. g. 35 is an explanatory view of an example of a light reflection processing surface formed on the lower surface of the light guide plate used in each embodiment of the present invention. Fi g. 36 is a light guide plate used in each embodiment of the present invention. FIG. 37 is a schematic diagram for explaining another embodiment, and FIG. 37 is a schematic diagram for explaining the effect of the backlight in the liquid crystal display device according to the present invention.
〔発明を実施するための最良の形態〕 [Best mode for carrying out the invention]
F i g. は本発明による液晶表示装置の一実施例を説明する要部模式図で あって、 1は液晶表示素子、 2はバックライト、 3は導光板、 4は冷陰極蛍光灯、 5はランプ反射シート、 6はコリメ一夕レンズシート、 7は反射テープ、 8は 1 または複数枚のプリズムシート、 9は反射シートである。  FIG. 1 is a schematic diagram of a main part of an embodiment of a liquid crystal display device according to the present invention, wherein 1 is a liquid crystal display element, 2 is a backlight, 3 is a light guide plate, 4 is a cold cathode fluorescent lamp, 5 Is a lamp reflecting sheet, 6 is a collimating lens sheet, 7 is a reflecting tape, 8 is one or more prism sheets, and 9 is a reflecting sheet.
同図において、 バックライト 2は断面が矩形の透明板からなる導光板 3と、 そ の一側縁に沿って設置した冷陰極蛍光灯 4と、 冷陰極蛍光灯 4の導光板 3と対面 する (入光面) 側を除いて周回設置されたランプ反射シート 5と、 導光板 3の上 記入光面に沿って設置したコリメ一タレンズシ一ト 6と、 導光板 3の前記冷陰極 蛍光灯 4とは反対の側縁に設置された反射テープ 7と、 導光板 3の上面すなわち 液晶表示素子 1側に載置されたプリズムシート 8と、 導光板 3の下部に設置され た反射シ一ト 9とから構成される。 なお、 上記プリズムシートは少なくとも導光 板側にプリズム溝を有する 1枚を含み、 この上に溝方向を異ならせた 1又は複数 枚のプリズムシートを積層することもできる。 また、 導光板 3の下面にはプリズ ムアレイ等の光反射処理がなされている。  In the figure, a backlight 2 faces a light guide plate 3 made of a transparent plate having a rectangular cross section, a cold cathode fluorescent lamp 4 installed along one side edge thereof, and a light guide plate 3 of the cold cathode fluorescent lamp 4. (Light incident surface) A lamp reflecting sheet 5 installed around the side excluding the side, a collimator lens sheet 6 installed on the light guide plate 3 along the writing light surface, and the cold cathode fluorescent lamp 4 of the light guide plate 3 A reflective sheet 7 placed on the side edge opposite to the above, a prism sheet 8 placed on the upper surface of the light guide plate 3, that is, on the liquid crystal display element 1 side, and a reflective sheet 9 placed below the light guide plate 3. It is composed of The above-mentioned prism sheet includes at least one sheet having a prism groove on at least the light guide plate side, and one or more prism sheets having different groove directions can be laminated thereon. Further, the lower surface of the light guide plate 3 is subjected to light reflection processing such as a prism array.
この導光板 3は、 例えば縦方向 (垂直方向) が 1 5 5 mm、 横方向 (水平方 向) が 2 1 8 mm、 厚さが 4 mm、 屈折率が 1 . 5 0近傍のアクリル樹脂板等の 透明板の下面に、 全反射を回避する処理を施したもので構成される。 全反射を回 避する処理としては、 光の散乱(拡散反射) に主に基づく処理と、 光の正反射に 主に基づく処理の二通りがある。 光の散乱に主に基づく処理としては、 透明板の 下面に光散乱性を有するインク材料をパターン印刷する方法と、 透明板の T®に 粗面加工を施す方法の二種がある。 また光の正反射に主に基づく処理としては、 透明板の下面にプリズムアレイを形成する方法がある。  The light guide plate 3 is, for example, an acrylic resin plate having a length of 15.5 mm in the vertical direction (vertical direction), a length of 21.8 mm in the horizontal direction (horizontal direction), a thickness of 4 mm, and a refractive index of around 1.5. The lower surface of the transparent plate is treated to avoid total reflection. There are two types of processing to avoid total reflection: processing mainly based on light scattering (diffuse reflection) and processing mainly based on regular reflection of light. There are two types of processing mainly based on light scattering: a method in which a light scattering ink material is pattern-printed on the lower surface of the transparent plate, and a method in which the T® of the transparent plate is roughened. As a process mainly based on regular reflection of light, there is a method of forming a prism array on the lower surface of a transparent plate.
冷陰極蛍光灯 4から導光扳 3の入光面に入射する光束は、 当該入光面と冷陰極 蛍光灯 4との間に設置されたコリメ一夕レンズシート 6によってコリメートされ る。  The light beam incident on the light entrance surface of the light guide 3 from the cold cathode fluorescent lamp 4 is collimated by the collimating lens sheet 6 provided between the light entrance surface and the cold cathode fluorescent lamp 4.
コリメ一タレンズシ一ト 6によってコリメ一卜された光束は、 導光板 3内を反 射テープ 7方向に正反射と散乱を繰り返しながら伝播しつつ、 当該導光板 3の上 面からプリズムシ一ト 8を通して液晶表示素子 1を照明する。 液晶表示素子 1は、 図示しない駆動回路で所定の画素が光透過状態又は光遮断 状態とされ、 バックライト 2からの照明光が上記光透過状態又は光遮断状態とさ れた画素を通過又は遮光されて可視表示がなされる。 The light beam collimated by the collimator lens sheet 6 propagates inside the light guide plate 3 while repeating regular reflection and scattering in the direction of the reflection tape 7, while passing through the prism sheet 8 from the upper surface of the light guide plate 3. The liquid crystal display element 1 is illuminated. In the liquid crystal display element 1, a predetermined pixel is set to a light transmitting state or a light blocking state by a drive circuit (not shown), and illumination light from the backlight 2 passes or blocks the pixel in the light transmitting state or the light blocking state. Then, a visual display is made.
なお、 反射シート 9は導光板 3の下面から出射する光を導光板 3方向に反射さ せて、 光を有効に利用するために設置され、 また、 反射テープ 7は導光板 3から 抜け出す光を再度導光板 3に戻す機能を有する。  The reflection sheet 9 reflects the light emitted from the lower surface of the light guide plate 3 in the direction of the light guide plate 3 and is installed in order to use the light effectively.The reflection tape 7 controls the light exiting from the light guide plate 3. It has the function of returning to the light guide plate 3 again.
F i g . 5は F i g. 4におけるバックライトを構成するコリメータレンズ シー卜の設置状態を説明する部分破断した平面図である。  FIG. 5 is a partially broken plan view illustrating the installation state of the collimator lens sheet constituting the backlight in FIG.
同図に示したように、 コリメ一夕レンズシート 6は導光板 3の入光面 3 bすな わち冷陰極蛍光灯 4を設置する側縁に近接して配置されており、 冷陰極蛍光灯 4 から出射する光束はこのコリメ一夕レンズシート 6を通過することにより所定の 方向にコリメートされ、 その後に導光板 3内に入射し、 正反射と散乱を繰り返し つつ導光板 3の上面から液晶表示素子方向に出射する。  As shown in the figure, the collimating lens sheet 6 is disposed close to the light entrance surface 3 b of the light guide plate 3, that is, the side edge where the cold cathode fluorescent lamp 4 is installed. The light beam emitted from the lamp 4 passes through the collimating lens sheet 6 and is collimated in a predetermined direction.Then, the light beam enters the light guide plate 3 and repeats regular reflection and scattering to form a liquid crystal from the upper surface of the light guide plate 3. Light is emitted in the direction of the display element.
F i g . 6は本発明におけるバックライトを構成するコリメ一夕レンズシート の第 1例の説明図であって、 (a ) は F i g . 5の A— A線に沿った断面図、 FIG. 6 is an explanatory view of a first example of a collimating lens sheet constituting a backlight according to the present invention, wherein (a) is a cross-sectional view of FIG.
( b ) はコリメータレンズシートを導光板 3の入光面 3 b側から見た钭視図、(b) is a perspective view of the collimator lens sheet viewed from the light incident surface 3b side of the light guide plate 3,
( c ) は (b ) の B— B棣で切断した部分断面図であり、 6 , は本例のコリメ一 タレンズシート、 6 aはプリズム溝である。 (c) is a partial cross-sectional view taken along the line B-Bdi of (b), 6 and 7 are a collimator lens sheet of this example, and 6a is a prism groove.
この例では、 導光板 3は冷陰極蛍光灯設置側縁から反射テープ 7側に同一厚さ の透明樹脂板であり、 透明樹脂板内での全反射を回避する処理として、 透明樹脂 板の下面に光反射処理面としてのプリズムアレイ 3 aが形成されている。 また冷 陰極蛍光灯設置側縁に位 されたコリメ一タレンズシ一ト 6, は導光扳 3の平面 に平行(冷陰極蛍光灯 4の長手方向に平行) に多数のプリズム溝 6 aを導光板 3 の入光面 3 b側に有し、 冷陰極蛍光灯 4に対面する側は平坦面となっている。 上記プリズム溝 6 aは、 その開放角度 0が 9 0。 ないし 1 1 0。 、 ピッチが 3 1〜5 1 に設定されている。  In this example, the light guide plate 3 is a transparent resin plate having the same thickness from the side edge of the cold cathode fluorescent lamp installation side to the reflective tape 7 side, and as a process for avoiding total reflection in the transparent resin plate, the lower surface of the transparent resin plate is used. Is formed with a prism array 3a as a light reflection processing surface. The collimator lens sheet 6, which is located on the side edge of the cold cathode fluorescent lamp installation, has a number of prism grooves 6a parallel to the plane of the light guide 3 (parallel to the longitudinal direction of the cold cathode fluorescent lamp 4). 3 is provided on the light incident surface 3 b side, and the side facing the cold cathode fluorescent lamp 4 is a flat surface. The opening angle 0 of the prism groove 6 a is 90. Or 1 1 0. The pitch is set to 31 to 51.
このコリメータレンズシート 6 , により、 冷陰極蛍光灯 4から出射された光束 はプリズム溝 6 aの延在方向と直交する平面上において、 コリメ一夕レンズシ一 ト 6 , の法棣方向にコリメートされて導光板 3に入射する。 これにより、 冷陰極蛍光灯 4から出射された光束の大部分は導光板 3の入光面 に対し、 紙面に平行な面内において、 コリメ一夕レンズシート 6 , がない場合よ りも小さな入射角で入射する。 入光面 3 bにおける屈折作用を加味すると、 導光 板 3内に進入する光束は、 紙面に平行な面内において更に狭い角度範囲内にコリ メートされた状態で、 導光板 3内を進行することになる。 この光束の進行方向を、 導光板 3の下面に配設されたプリズムアレイ 3 aの冷陰極蛍光灯設置側斜面にお ける正反射によって方向制御し、 導光板 3の上面での内面反射時に臨界角よりも 小さな入射角で入射させることによって、 紙面に平行な面内にお 、てコリメート されたままの状態で、 光束を導光板上面から出射させることができる。 この出射 光束の進行方向を、 導光板 3の上面に設置した下面がブリズ厶面のプリズ厶シー ト (F i g . 2 4参照) の反射テープ 7側の斜面における内面反射により、 導光 板 3の上面の法線方向に近い方向へ方向制御することによって、 液晶用バックラ ィトとして高輝度な照明光源が実現される。 By the collimator lens sheet 6, the light beam emitted from the cold cathode fluorescent lamp 4 is collimated in the normal direction of the collimating lens sheet 6, on a plane orthogonal to the extending direction of the prism groove 6a. Light enters the light guide plate 3. As a result, most of the luminous flux emitted from the cold cathode fluorescent lamp 4 enters the light incident surface of the light guide plate 3 in a plane parallel to the plane of the drawing, and is smaller than that without the collimating lens sheet 6, Incident at an angle. Taking into account the refraction effect on the light entrance surface 3b, the light flux entering the light guide plate 3 travels through the light guide plate 3 in a state where it is collimated within a narrower angle range in a plane parallel to the paper surface. Will be. The direction of travel of this light beam is controlled by specular reflection on the inclined surface of the prism array 3a disposed on the lower surface of the light guide plate 3 on the side where the cold cathode fluorescent lamp is installed, and critical when the inner surface is reflected on the upper surface of the light guide plate 3. By making the light incident at an angle of incidence smaller than the angle, the light beam can be emitted from the upper surface of the light guide plate while being collimated in a plane parallel to the paper surface. The direction of travel of the emitted light beam is determined by the internal reflection on the inclined surface on the side of the reflection tape 7 of the prism sheet (see FIG. 24) whose bottom surface is set on the upper surface of the light guide plate 3. By controlling the direction in a direction close to the normal direction of the upper surface of the LCD, a high-luminance illumination light source is realized as a backlight for a liquid crystal display.
F i g. 7は本発明におけるバックライトを構成するコリメ一夕レンズシート の第 2例の説明図であって、 (a ) は F i g . 5の A— A棣に沿った断面図、 FIG. 7 is an explanatory view of a second example of the collimating lens sheet constituting the backlight according to the present invention, wherein (a) is a cross-sectional view of FIG.
( b ) はコリメータレンズシートを導光板 3の入光面 3 b側から見た斜視図、(b) is a perspective view of the collimator lens sheet viewed from the light incident surface 3b side of the light guide plate 3,
( c ) は ( b ) の C一 C線で切断した部分断面図であり、 6 2 は本例のコリメ一 夕レンズシート、 6 bはプリズム溝である。 (C) is a partial cross-sectional view taken along C one C line of (b), 6 2 are collimation one evening lens sheet of the present embodiment, 6 b are prism grooves.
この例でも、 導光板 3は冷陰極蛍光灯設置側縁から反射テープ 7側に同一厚さ の透明樹脂板であり、 透明樹脂板内での全反射を回避する処理として、 透明樹脂 板の下面にプリズムアレイ 3 aが形成されている。 また冷陰極蛍光灯設置側縁に 位置されたコリメータレンズシート 6 2 は導光板 3の平面に直交する方向 (冷陰 極蛍光灯 の長手方向に直交する方向) に多数のブリズム溝 6 bを導光板 3の入 光面 3 b側に有し、 冷陰極蛍光灯 4に対面する側は平坦面となっている。 Also in this example, the light guide plate 3 is a transparent resin plate having the same thickness from the side edge of the cold cathode fluorescent lamp installation side to the reflection tape 7 side, and as a process for avoiding total reflection in the transparent resin plate, the lower surface of the transparent resin plate is used. Is formed with a prism array 3a. The guiding many Burizumu groove 6 b to the collimator lens sheet 6 2, which is located in the cold cathode fluorescent lamp installation side edge direction orthogonal to the plane of the light guide plate 3 (the direction perpendicular to the longitudinal direction of the cold cathode fluorescent lamp) It is provided on the light incident surface 3 b side of the light plate 3, and the side facing the cold cathode fluorescent lamp 4 is a flat surface.
上記プリズム溝 6 bは、 その開放角度 0が 9 0。 ないし 1 1 0。 、 ピッチが 3 1〜5 1 mに設定されている。  The opening angle 0 of the prism groove 6 b is 90. Or 1 1 0. The pitch is set to 31 to 51 m.
このコリメ一夕レンズシート 6 , により、 冷陰極蛍光灯 4から出射された光は プリズム溝 6 bの延在方向と直交する平面上において、 コリメ一夕レンズシート 62の法線方向にコリメートされて導光板 3に入射する。 これにより、 冷陰極蛍光灯 4から出射された光束の大部分は導光板 3の入光面 3 bに対し、 紙面に垂直な面内において、 コリメータレンズシート 6 2 がない場 合よりも小さな入射角で入射する。 入光面 3 bにおける屈折作用を加味すると、 導光板 3内に進入する光束は、 紙面に垂直な面内において更に狭い角度範囲内に コリメートされた状態で、 導光板 3内を進行することになる。 この光束の進行方 向を、 導光板 3の TSに配設されたプリズムアレイ 3 aの冷陰極蛍光灯設置側斜 面における正反射によって方向制御し、 導光板 3の上面での内面反射時に臨界角 よりも小さな入射角で入射させることによって、 紙面に垂直な面内においてコリ メートされたままの状態で、 光束を導光板上面から出射させることができる。 こ の出射光束の進行方向を、 導光板 3の上面に設置した下面がブリズム面のブリズ ムシ一トの反射テープ 7側の斜面における内面反射により、 導光板 3の上面の法 線方向に近い方向へ方向制御することによって、 液晶用バックライトとして高輝 度な照明光源が実現される。 The light emitted from the cold cathode fluorescent lamp 4 is collimated by the collimating lens sheet 6 in a direction normal to the collimating lens sheet 62 on a plane orthogonal to the extending direction of the prism groove 6b. Light enters the light guide plate 3. Thus, most of the light beams emitted from the cold cathode fluorescent lamp 4 with respect to the incident surface 3 b of the light guide plate 3, in a plane perpendicular to the plane, smaller incidence than If there is no collimator lens sheet 6 2 Incident at an angle. Taking into account the refraction effect on the light entrance surface 3b, the light flux entering the light guide plate 3 travels through the light guide plate 3 in a state where it is collimated within a narrower angle range in a plane perpendicular to the paper surface. Become. The direction of travel of this light beam is controlled by specular reflection on the side of the cold cathode fluorescent lamp on the side of the cold cathode fluorescent lamp of the prism array 3a arranged in the TS of the light guide plate 3, and is critical when the inner surface is reflected on the upper surface of the light guide plate 3. By making the light incident at an incident angle smaller than the angle, the light beam can be emitted from the upper surface of the light guide plate while being collimated in a plane perpendicular to the paper surface. The direction of travel of this emitted light beam is closer to the normal direction of the upper surface of the light guide plate 3 due to internal reflection on the slope of the reflection tape 7 side of the prism sheet whose bottom surface is installed on the upper surface of the light guide plate 3. By controlling the direction, a high-brightness illumination light source is realized as a backlight for liquid crystal.
F i g . 8は本発明におけるバックライトを構成するコリメ一夕レンズシート の第 3例の説明図であって、 (a ) は F i g. 5の A— A線に沿った断面図、 ( b ) はコリメ一夕レンズシートを冷陰極蛍光灯 4側から見た斜視図、 (c ) は ( b ) の D— D線で切断した部分断面図であり、 6 3 は本例のコリメータレンズ シート、 6 cは微小凸レンズである。 FIG. 8 is an explanatory view of a third example of the collimating lens sheet constituting the backlight according to the present invention. (A) is a cross-sectional view of FIG. b) is a perspective view of the collimator Isseki lens sheet from the cold cathode fluorescent lamp 4 side, (c) is a partial sectional view taken along D-D line in (b), 6 3 this example of a collimator lens The sheet, 6c, is a micro-convex lens.
この例でも、 導光板 3は冷陰極蛍光灯設置側縁から反射テープ 7側に同一厚さ の透明樹脂板であり、 透明樹脂板内での全反射を回避する処理として、 透明樹脂 板の下面にプリズムアレイ 3 aが形成されている。 また冷陰極蛍光灯設置側縁に 位置されたコリメ一タレンズシ一ト 6 3 は冷陰極蛍光灯 4と対面する面に多数の 微小凸レンズ 6 cを有し、 導光板 3の入光面 3 bと対面する側は平坦面となって いる。  Also in this example, the light guide plate 3 is a transparent resin plate having the same thickness from the side edge of the cold cathode fluorescent lamp installation side to the reflection tape 7 side, and as a process for avoiding total reflection in the transparent resin plate, the lower surface of the transparent resin plate is used. Is formed with a prism array 3a. In addition, the collimator lens sheet 63 located on the side edge of the cold cathode fluorescent lamp installation side has a large number of minute convex lenses 6 c on the surface facing the cold cathode fluorescent lamp 4, and has a light incident surface 3 b of the light guide plate 3. The opposite side is flat.
このコリメータレンズシート 6 3 により、 冷陰極蛍光灯 4から出射された光は 微小凸レンズ 6 cにより導光板 3に対して紙面に平行な面内および紙面に垂直な 面内の両面内でコリメートされて導光板 3に入射する。 The collimator lens sheet 6 3, light emitted from the cold cathode fluorescent lamp 4 is collimated in both sides of the plane perpendicular to the paper surface and a plane parallel to the plane with respect to the light guide plate 3 by lenticules 6 c Light enters the light guide plate 3.
これにより、 冷陰極蛍光灯 4から出射された光束の大部分は導光板 3の入光面 3 bに対し、 紙面に平行な面内および紙面に垂直な面内の両面内において、 コリ メータレンズシート 6 3 がない場合よりも小さな入射角で入射する。 入光面 3 b における屈折作用を加味すると、 導光板 3内に進入する光束は、 紙面に平行な面 内および紙面に垂直な面内の両面内において、 更に狭い角度範囲内にコリメ一ト された状態で、 導光板 3内を進行することになる。 この光束の進行方向を、 導光 板 3の下面に配設されたプリズムアレイ 3 aの冷陰極蛍光灯設置側斜面における 正反射によって方向制御し、 導光板 3の上面での内面反射時に臨界角よりも小さ な入射角で入射させることによって、 紙面に平行および垂直な面内においてコリ メートされたままの状態で、 光束を導光板上面から出射させることができる。 こ の出射光束の進行方向を、 導光板 3の上面に設置した下面がブリズム面のブリズ ムシ一トの反射テープ 7側の斜面における内面反射により、 導光板 3の上面の法 線方向に近い方向へ方向制御することによって、 液晶用バックライトとして高輝 度な照明光源が実現される。 As a result, most of the luminous flux emitted from the cold cathode fluorescent lamp 4 is collimated with respect to the light incident surface 3b of the light guide plate 3 in both a plane parallel to the paper and a plane perpendicular to the paper. Incident at small angles of incidence than without the meter lens sheet 6 3. Taking into account the refraction effect on the light entrance surface 3b, the light flux entering the light guide plate 3 is collimated within a narrower angle range on both surfaces in a plane parallel to the paper and in a plane perpendicular to the paper. In this state, the light travels through the light guide plate 3. The direction of travel of this light beam is controlled by specular reflection on the slope of the cold cathode fluorescent lamp installation side of the prism array 3 a disposed on the lower surface of the light guide plate 3, and the critical angle at the time of internal reflection on the upper surface of the light guide plate 3. By making the light incident at a smaller angle of incidence, the light beam can be emitted from the upper surface of the light guide plate while being collimated in a plane parallel and perpendicular to the paper. The direction of travel of this emitted light beam is closer to the normal direction of the upper surface of the light guide plate 3 due to internal reflection on the slope of the reflection tape 7 side of the prism sheet whose bottom surface is installed on the upper surface of the light guide plate 3. By controlling the direction, a high-brightness illumination light source is realized as a backlight for liquid crystal.
F i g. 9は F i g . 4におけるバックライトを構成するコリメ一夕レンズ シートの他の設置状態を説明する部分破断した平面図である。  FIG. 9 is a partially broken plan view illustrating another installation state of the collimating lens sheet constituting the backlight in FIG.
同図に示したように、 コリメータレンズシート 6は導光板 3の入光面 3 bすな わち冷陰極蛍光灯 4を設置する側縁に密接して配置されており、 冷陰極蛍光灯 4 からの出射光はこのコリメ一タレンズシ一ト 6を通過することにより所定の方向 にコリメートされ、 その後に導光板 3に入射し、 反射伝播しながら導光板 3の上 面から出射する。 なお、 導光板 3の下面にはプリズム溝等の光反射処理が施され ている。  As shown in the figure, the collimator lens sheet 6 is arranged closely to the light incident surface 3 b of the light guide plate 3, that is, the side edge where the cold cathode fluorescent lamp 4 is installed. The light emitted from the light guide plate 6 is collimated in a predetermined direction by passing through the collimator lens sheet 6, and thereafter enters the light guide plate 3, and is emitted from the upper surface of the light guide plate 3 while being reflected and propagated. The lower surface of the light guide plate 3 is subjected to light reflection processing such as a prism groove.
F i g. 1 0は本発明におけるバックライトを構成するコリメ一夕レンズシ一 トの第 4例の説明図である。  FIG. 10 is an explanatory diagram of a fourth example of the collimating lens sheet constituting the backlight according to the present invention.
この例では、 導光板 3は冷陰極蛍光灯設置側縁すなわち入光面 3 bから反射 テープ 7側に同一厚さの透明樹脂板であり、 透明樹脂板内での全反射を回避する 処理として、 透明樹脂板の にプリズムアレイ 3 aが形成されている。 また冷 陰極蛍光灯設置側縁に位置されたコリメ一タレンズシ一ト 6 , は導光板 3の平面 に平行 (冷陰極蛍光灯 4の長手方向に平行) に多数のプリズム溝 6 aを導光板 3 側に有し、 導光板 3の入光面 3 bに接して設置され、 冷陰極蛍光灯 4に対面する 入光面 3 b側は平坦面となっている。 上記プリズム溝 6 aは、 その開放角度は前記 F i g . 6と同様に 9 0。 ないし 1 0 0 ' に設定されている。 In this example, the light guide plate 3 is a transparent resin plate having the same thickness from the side edge of the cold cathode fluorescent lamp installation side, that is, from the light incident surface 3b to the reflection tape 7 side, and is used as a process for avoiding total reflection in the transparent resin plate. The prism array 3a is formed on the transparent resin plate. The collimator lens sheet 6, which is located on the side edge of the cold cathode fluorescent lamp installation side, has a number of prism grooves 6 a parallel to the plane of the light guide plate 3 (parallel to the longitudinal direction of the cold cathode fluorescent lamp 4). The light incident surface 3 b of the light guide plate 3 is installed in contact with the light incident surface 3 b, and the light incident surface 3 b facing the cold cathode fluorescent lamp 4 is a flat surface. The prism groove 6a has an opening angle of 90 as in the case of FIG. Or set to 100 '.
このコリメ一夕レンズシート 6 , により、 冷陰極蛍光灯 4から出射された光束 はブリズム溝 6 aの延在方向と直交する平面上において、 コリメ一タレンズシ一 ト 6 1 の法線方向にコリメートされて導光板 3に入射する。  The light beam emitted from the cold cathode fluorescent lamp 4 is collimated by the collimator lens sheet 6 in a direction normal to the collimator lens sheet 61 on a plane orthogonal to the extending direction of the bism groove 6a. And enters the light guide plate 3.
これにより、 冷陰極蛍光灯 4から出射された光束の大部分は導光板 3の入光面 3 bに対し、 紙面に平行な面内において、 コリメータレンズシート 6 , がない場 合よりも小さな入射角で入射する。 入光面 3 bにおける屈折作用を加味すると、 辱光板 3内に進入する光束は、 紙面に平行な面内において更に狭い角度範囲内に コリメートされた状態で、 導光板 3内を進行することになる。 この光束の進行方 向を、 導光板 3の下面に配設されたプリズムアレイの冷陰極蛍光灯設置側斜面に おける正反射によつて方向制御し、 導光板 3の上面での内面反射時に臨界角より も小さな入射角で入射させることによって、 紙面に平行な面内にぉレ、てコリメ一 卜されたままの状態で、 光束を導光板上面から出射させることができる。 この出 射光束の進行方向を、 導光板 3の上面に設置した下面がブリズム面のブリズム シート (F i g. 2 4参照) の反射テープ 7側の斜面における内面反射により、 導光板 3の上面の法線方向に近レ、方向へ方向制御することによって、 液晶用バッ クライトとして高輝度な照明光源が実現される。  As a result, most of the luminous flux emitted from the cold cathode fluorescent lamp 4 enters the light incident surface 3b of the light guide plate 3 in a plane parallel to the plane of the drawing, and is smaller than that without the collimator lens sheet 6, Incident at an angle. Taking into account the refraction effect on the light entrance surface 3b, the luminous flux entering the humiliated light plate 3 travels through the light guide plate 3 in a state where it is collimated within a narrower angle range in a plane parallel to the paper. Become. The direction of travel of this luminous flux is controlled by specular reflection on the slope of the prism array arranged on the lower surface of the light guide plate 3 on the side where the cold cathode fluorescent lamps are installed, and critical when internal reflection occurs on the upper surface of the light guide plate 3. By making the light incident at an incident angle smaller than the angle, the light beam can be emitted from the upper surface of the light guide plate while being kept collimated in a plane parallel to the paper surface. The direction of travel of the emitted light beam is adjusted by the internal reflection on the slope on the reflection tape 7 side of the bism sheet (see FIG. 24) whose bottom surface is placed on the upper surface of the light guide plate 3. By controlling the direction close to and normal to the normal direction, a high-luminance illumination light source can be realized as a backlight for liquid crystal.
F i g. 1 1は本発明におけるバックライトを構成するコリメータレンズシー トの第 5例の説明図である。  FIG. 11 is an explanatory diagram of a fifth example of the collimator lens sheet constituting the backlight according to the present invention.
この例でも、 導光板 3は冷陰極蛍光灯設置側縁すなわち入光面 3 b側から反射 テープ 7側に同一厚さの透明樹脂板であり、 透明樹脂板内での全反射を回避する 処理として、 透明樹脂板の下面にプリズムアレイ 3 aが形成されている。 また入 光面 3 bに位置されたコリメ一夕レンズシート 6 2 は導光板 3の平面に直交する 方向 (冷陰極蛍光灯 4の長手方向に直交する方向) に多数のプリズム溝 6 bを導 光板 3の入光面 3 b側に有して導光板 3の入光面 3 bに接して設置され、 冷陰極 蛍光灯 4に対面する側は平坦面となっている。  Also in this example, the light guide plate 3 is a transparent resin plate having the same thickness from the side edge of the cold cathode fluorescent lamp installation side, that is, from the light incident surface 3 b side to the reflection tape 7 side, and a process for avoiding total reflection in the transparent resin plate is performed. The prism array 3a is formed on the lower surface of the transparent resin plate. The collimating lens sheet 62 located on the light incident surface 3b guides many prism grooves 6b in a direction perpendicular to the plane of the light guide plate 3 (a direction perpendicular to the longitudinal direction of the cold cathode fluorescent lamp 4). It is provided on the light incident surface 3 b side of the light plate 3 and is installed in contact with the light incident surface 3 b of the light guide plate 3, and the side facing the cold cathode fluorescent lamp 4 is a flat surface.
上記プリズム溝 6 bの開放角度も 9 0 β ないし 1 1 0 · に設定されている。 このコリメータレンズシート 6 2 により、 冷陰極蛍光灯 4から出射された光束 はプリズム溝 6 bの延在方向と直交する平面上にぉレ、て、 コリメータレンズシ一 ト 6 1 の法線方向にコリメートされて導光板 3に入射する。 The opening angle of the prism groove 6b is also set at 90β to 110 ° . The collimator lens sheet 6 2, light beams emitted from the cold cathode fluorescent lamp 4 Are collimated in the direction normal to the collimator lens sheet 61 and are incident on the light guide plate 3.
これにより、 冷陰極蛍光灯 4から出射された光束の大部分は導光板 3の入光面 3 bに対し、 紙面に垂直な面内において、 コリメータレンズシート 6 2 がない場 合よりも小さな入射角で入射する。 入光面 3 bにおける屈折作用を加味すると、 導光板 3内に進入する光束は、 紙面に垂直な面内において更に狭い角度範囲内に コリメ一トされた伏態で導光板 3内を進行することになる。 この光束の進行方向 を、 導光板 3の下面に配設されたプリズムアレイの冷陰極蛍光灯設置側斜面にお ける正反射によって方向制御し、 導光板 3の上面での内面反射時に臨界角よりも 小さな入射角で入射させることによって、 紙面に垂直な面内においてコリメート されたままの状態で、 光束を導光板上面から出射させることができる。 この出射 光束の進行方向を、 導光扳 3の上面に設置した下面がブリズム面のプリズムシー トの反射テープ 7側の斜面における内面反射により、導光板 3の上面の法線方向 に近い方向へ方向制御することによって、 液晶用バックライトとして高輝度な照 明光源が実現される。 Thus, most of the light beams emitted from the cold cathode fluorescent lamp 4 with respect to the incident surface 3 b of the light guide plate 3, in a plane perpendicular to the plane, smaller incidence than If there is no collimator lens sheet 6 2 Incident at an angle. Taking into account the refraction effect on the light incident surface 3b, the light flux entering the light guide plate 3 travels inside the light guide plate 3 in a plane that is collimated within a narrower angle range in a plane perpendicular to the paper surface. Will be. The direction of travel of this light beam is controlled by specular reflection at the slope of the prism array arranged on the lower surface of the light guide plate 3 on the side where the cold cathode fluorescent lamp is installed. By making the light incident at a small incident angle, the light beam can be emitted from the upper surface of the light guide plate while being collimated in a plane perpendicular to the paper surface. The traveling direction of the emitted light beam is changed to a direction closer to the normal direction of the upper surface of the light guide plate 3 due to internal reflection on the inclined surface on the reflection tape 7 side of the prism sheet having the bism surface with the lower surface installed on the upper surface of the light guide 3. By controlling the direction, an illuminating light source with high brightness is realized as a backlight for liquid crystal.
F i g . 1 2は本発明におけるバックライトを構成するコリメ一夕レンズシー トの第 6例の説明図である。  FIG. 12 is an explanatory diagram of a sixth example of the collimated lens sheet constituting the backlight according to the present invention.
この例でも、 導光板 3は冷陰極蛍光灯設置側縁すなわち入光面 3 bから反射 テープ 7側に同一厚さの透明樹脂板であり、 透明樹脂板內での全反射を回避する 処理として、 透明樹脂板の下面にプリズムアレイ 3 aが形成されている。 また入 光面 3 bに位置したコリメ一夕レンズシート 6 3 は冷陰極蛍光灯 4と対面する面 に多数の微小凸レンズ 6 cを有し、 入光面 3 b側は平坦面で当該導光板の入光面 3 bに密接して配置されている。 Also in this example, the light guide plate 3 is a transparent resin plate having the same thickness from the cold cathode fluorescent lamp installation side edge, that is, from the light incident surface 3 b to the reflection tape 7 side, and as a process for avoiding total reflection on the transparent resin plate 內A prism array 3a is formed on the lower surface of the transparent resin plate. The collimator Isseki lens sheet 6 3 located on the light incident surface 3 b has a number of lenticules 6 c on the surface facing the cold cathode fluorescent lamp 4, the light incident surface 3 b side the light guide plate with the flat surface Are arranged close to the light incident surface 3b.
このコリメータレンズシート 6 3 により、 冷陰極蛍光灯 4から出射された光は 微小凸レンズ 6 cにより導光板 3に対して紙面に平行な面内および紙面に垂直な 面内の両面内でコリメートされて導光板 3に入射する。  Due to the collimator lens sheet 63, the light emitted from the cold cathode fluorescent lamp 4 is collimated by the minute convex lens 6c into the light guide plate 3 in both a plane parallel to the paper and a plane perpendicular to the paper. Light enters the light guide plate 3.
これにより、 冷陰極蛍光灯 4から出射された光束の大部分は導光板 3の入光面 3 bに対し、 紙面に平行な面内および紙面に垂直な面内の両面内において、 コリ メ一タレンズシ一ト 6 2 がない場合よりも小さな入射角で入射する。 導光板 3内に進入する光束は、 紙面に平行な面内および紙面に垂直な面内の両 面内においてコリメートされた状態で、 導光板 3内を進行することになる。 この 光束の進行方向を、 導光扳 3の下面に形成されたプリズムアレイ 3 aの冷陰極蛍 光灯設置側斜面における正反射によって方向制御し、 導光板 3の上面での内面反 射時に臨界角よりも小さな入射角で入射させることによって、 紙面に平行および 垂直な面内においてコリメートされたままの伏態で、 光束を導光板上面から出射 させることができる。 この出射光束の進行方向を、 導光板 3の上面に設置した下 面がブリズム面のブリズムシートの反射テープ 7側の斜面における内面反射によ り、 導光板 3の上面の法線方向に近い方向へ方向制御することによって、 液晶用 バックライトとして高輝度な照明光源が実現される。 As a result, most of the luminous flux emitted from the cold cathode fluorescent lamp 4 is collimated with respect to the light incident surface 3b of the light guide plate 3 in both a plane parallel to the paper and a plane perpendicular to the paper. The incident light is incident at a smaller incident angle than when the lens sheet 62 is not provided. The luminous flux entering the light guide plate 3 travels through the light guide plate 3 in a state of being collimated in both a plane parallel to the paper surface and a plane perpendicular to the paper surface. The direction of travel of this light beam is controlled by specular reflection on the inclined surface of the prism array 3a formed on the lower surface of the light guide 3 on the side where the cold cathode fluorescent lamp is installed, and is critical when the inner surface is reflected on the upper surface of the light guide plate 3. By making the light incident at an angle of incidence smaller than the angle, the light beam can be emitted from the upper surface of the light guide plate in a state of being kept collimated in a plane parallel and perpendicular to the paper surface. The traveling direction of the emitted light beam is closer to the normal direction of the upper surface of the light guide plate 3 due to internal reflection on the inclined surface on the reflection tape 7 side of the brhythm sheet whose bottom surface is set on the upper surface of the light guide plate 3. By controlling the direction, a high-brightness illumination light source can be realized as a liquid crystal backlight.
F i g. 1 3は本発明におけるバックライトを構成するコリメ一夕レンズシ一 トの第 7例の説明図であって、 (a ) は平面図、 (b ) は (a ) の E— E線で切 断した断面図である。  FIGS. 13A and 13B are explanatory views of a seventh example of the collimating lens sheet constituting the backlight according to the present invention, wherein FIG. 13A is a plan view and FIG. 13B is a plan view of FIG. It is sectional drawing cut | disconnected by the line.
この例のコリメ一夕レンズシート 6 , ' は導光板 3の平面と平行な方向に延在 する溝 6 a ' を有し、 当該溝 6 a ' の形状やピッチが垂直方向中心部から上下外 側に向かって漸次変化するようにグラデーションを持たせて形成されてレ、る。 このコリメ一夕レンズシート 6 , ' を F i g. 5または F i g. 9に示したよ うに冷陰極蛍光灯 と導光板 3の入光面 3 bの間に設置することにより、 冷陰極 蛍光灯 4からコリメ一夕レンズシート 6 ! ' を経て導光板 3側に出てくる光束が、 量および進行方向ともピッチ間で均一になり、 高輝度であるとともに均一性の高 い照明光源が実現される。  The collimating lens sheet 6, ′ in this example has a groove 6 a ′ extending in a direction parallel to the plane of the light guide plate 3, and the shape and pitch of the groove 6 a ′ are vertically shifted from the center in the vertical direction. It is formed with a gradation so as to gradually change toward the side. As shown in Fig. 5 or Fig. 9, the collimated overnight lens sheet 6 'is placed between the cold cathode fluorescent lamp and the light entrance surface 3b of the light guide plate 3 to provide the cold cathode fluorescent light. The amount of light and the traveling direction from the lamp 4 to the light guide plate 3 through the collimator lens sheet 6! 'Are uniform between the pitches, realizing an illumination light source with high brightness and high uniformity. Is done.
F i g. 1 4は本発明におけるバックライトを構成するコリメ一夕レンズシー 卜の第 8例の説明図であって、 (a ) は平面図、 (b ) は (a ) の F— F線で切 断した断面図である。  FIG. 14 is an explanatory view of an eighth example of the collimated lens sheet constituting the backlight according to the present invention, wherein (a) is a plan view and (b) is an F-F of (a). It is sectional drawing cut | disconnected by the line.
この例のコリメ一夕レンズシート 6 2 ' は導光板 3の平面と垂直な方向に延在 する溝 6 b ' を有し、 当該溝 6 b ' の形伏やピッチが水平方向中心部から左右外 側に向かって漸次変化するようにグラデーションを持たせて形成されている。 このコリメ一夕レンズシート 6 2 ' を F i g. 5または F i g. 9に示したよ うに冷陰極蛍光灯 4と導光板 3の入光面 3 bの間に設置することにより、 冷陰極 蛍光灯 4からコリメ一夕レンズシート 6 2 ' を経て導光板 3側に出てくる光束が、 量および進行方向ともピッチ間で均一になり、 高輝度であるとともに均一性の高 い照明光源が実現される。 The collimated overnight lens sheet 6 2 ′ in this example has a groove 6 b ′ extending in a direction perpendicular to the plane of the light guide plate 3, and the shape and pitch of the groove 6 b ′ are right and left from the center in the horizontal direction. It is formed with a gradation so that it changes gradually toward the outside. By installing this collimating overnight lens sheet 6 2 ′ between the cold cathode fluorescent lamp 4 and the light incident surface 3 b of the light guide plate 3 as shown in FIG. 5 or FIG. The luminous flux coming out of the fluorescent lamp 4 to the light guide plate 3 through the collimating lens sheet 6 2 ′ is uniform between the pitches in both the amount and the traveling direction, and an illumination light source having high brightness and high uniformity is obtained. Is achieved.
F i g. 1 5は本発明におけるバックライトを構成するコリメ一夕レンズシー トの第 9例の説明図であって、 (a ) は平面図、 (b ) は (a ) の G— G線で切 断した断面図、 (c ) は (a ) の H— H線で切断した断面図である。  FIG. 15 is an explanatory view of a ninth example of a collimated lens sheet constituting the backlight according to the present invention, wherein (a) is a plan view and (b) is a GG of (a). FIG. 3C is a cross-sectional view taken along line H-H of FIG.
この例のコリメ一夕レンズシート 6 4 は導光板 3の入光面 3 bに対面する面に 多数の凸レンズ 6 c ' を有し、 かつ凸レンズ 6 c ' の形伏や曲率半径が導光板 3 の入光面 3 bの中心部から、 上下方向に向かって、 漸次変化するようにグラデー シヨンを持たせて形成されている。 The collimating lens sheet 6 4 in this example has a large number of convex lenses 6 c ′ on the surface facing the light incident surface 3 b of the light guide plate 3, and the shape and radius of curvature of the convex lens 6 c ′ are different from those of the light guide plate 3. It is formed with a gradation so that it gradually changes from the center of the light incident surface 3b in the vertical direction.
このコリメ一夕レンズシート 6 3 ' を F i g. 5または F i g. 9に示したよ うに冷陰極蛍光灯 4と導光板 3の入光面 3 bの間に設置することにより、 冷陰極 蛍光灯 4からコリメータレンズシート 6 3 ' を経て導光板 3側に出てくる光束が、 量および進行方向とも凸レンズ間で均一になり、 高輝度であるとともに均一性の 高い照明光源が実現される。 By installing this collimated overnight lens sheet 6 3 ′ between the cold cathode fluorescent lamp 4 and the light entrance surface 3 b of the light guide plate 3 as shown in FIG. 5 or FIG. The luminous flux from the fluorescent lamp 4 to the light guide plate 3 side via the collimator lens sheet 6 3 ′ becomes uniform between the convex lenses in both the amount and the traveling direction, and an illumination light source with high brightness and high uniformity is realized. .
F i g. 1 6は本発明におけるバックライトを構成するコリメ一夕レンズシー トの第 1 0例の説明図であって、 (a ) は平面図、 (b ) は (a ) の I一 I棣で 切断した断面図である。  FIG. 16 is an explanatory diagram of a tenth example of a collimating lens sheet constituting a backlight according to the present invention, wherein (a) is a plan view and (b) is an I-line of (a). It is sectional drawing cut | disconnected by IDi.
この例のコリメ一夕レンズシ一ト 6 4 は導光扳 3の入光面 3 bに対面する面に 交差する二種類のプリズム溝 6 dを有している。 This example collimator Isseki Renzushi one DOO 6 4 has two types of prism grooves 6 d intersecting the surface facing the light incident surface 3 b of Shirubeko扳3.
このコリメータレンズシート 6 4 を F i g. 5または F i g. 9に示したよう に冷陰極蛍光灯 4と導光板 3の入光面 3 bの間に設置することにより、 それぞれ のプリズ厶溝に垂直な二つの平面内において、 コリメ一夕レンズシート 6 4 がな い場合よりも小さな入射角で入射する。 入光面 3 bにおける屈折作用を加味する と、 導光板 3内に進入する光束は、 それぞれのプリズム溝に垂直な二つの面内に おいて、 更に狭い角度範囲内にコリメートされた状態で、 導光板 3内を進行する ことになる。 この光束の進行方向を、 導光板 3の T に形成されたプリズムァレ ィ 3 aの斜面における正反射によって制御し、 導光板 3の上面での内面反射時に 臨界角よりも小さな入射角で入射させることによって、 それぞれのプリズム溝に 垂直な二つの面内においてコリメートされたままの状態で、 光束を導光板 3の上 面から出射させることができる。 この出射光束の進行方向を導光板 3の上面に設 置したプリズムシートにより導光板 3の上面の法線方向に近レ、方向へ方向制御す ることによって、 液晶用バックライトとして高輝度な照明光源が実現される。 なお、 このプリズム溝 6 dの形伏やピッチに上記 F i g . 1 3、 F i g . 1 4 と同様にグラデーションを持たせることもできる。 By installing the collimating lens sheet 6 4 between F i g. 5 or F i g. 9 incident surface 3 b of the cold cathode fluorescent lamp 4 and the light guide plate 3 as shown in each of the prisms厶In two planes perpendicular to the groove, light is incident at a smaller incident angle than when there is no collimating lens sheet 64. Taking into account the refraction effect on the light entrance surface 3b, the luminous flux entering the light guide plate 3 is collimated within a narrower angle range in two planes perpendicular to the respective prism grooves. The light travels through the light guide plate 3. The traveling direction of this light beam is controlled by specular reflection on the inclined surface of the prism array 3a formed at T of the light guide plate 3, and the light is incident at an incident angle smaller than the critical angle at the time of internal reflection on the upper surface of the light guide plate 3. Depending on each prism groove The light beam can be emitted from the upper surface of the light guide plate 3 while being kept collimated in the two vertical surfaces. By controlling the direction of the emitted light beam in the direction normal to the upper surface of the light guide plate 3 by using a prism sheet placed on the upper surface of the light guide plate 3, high-luminance illumination as a liquid crystal backlight is achieved. A light source is realized. The shape and pitch of the prism groove 6 d may have gradation similarly to FIGS. 13 and 14.
F i g . 1 7は本発明による液晶表示装置の他の実施例を説明する要部模式図 であって、 1は液晶表示素子、 2はバックライト、 3は導光板、 4は冷陰極蛍光 灯、 5はランプ反射シート、 6はコリメータレンズシート、 7は反射テープ、 8 はプリズムシート、 9は反射シートである。  FIG. 17 is a schematic view of a principal part for explaining another embodiment of the liquid crystal display device according to the present invention, wherein 1 is a liquid crystal display element, 2 is a backlight, 3 is a light guide plate, and 4 is a cold cathode fluorescent lamp. , 5 is a lamp reflection sheet, 6 is a collimator lens sheet, 7 is a reflection tape, 8 is a prism sheet, and 9 is a reflection sheet.
同図において、 バックライト 2は冷陰極蛍光灯 4の長手方向と直交する方向の 断面が楔形の透明板からなる導光板 3と、 その一側縁に沿って設置した冷陰極蛍 光灯 4と、 冷陰極蛍光灯 4の導光板 3と対面する側を除いて周回設置されたラン プ反射シート 5と、 導光扳 3の上記一側緣に沿って設置したコリメ一夕レンズ シート 6と、 導光板 3の前記冷陰極蛍光灯 4とは反対の側縁に設置された反射 テープ 7と、 液晶表示素子 1側(上面) に載置された下面にプリズム溝を有する プリズムシート 8と、 導光板 3の下面に設置された反射シート 9とから構成され この導光板 3は、 例えば縱方向 (垂直方向) が 1 5 5 mm, 横方向 (水平方 向) が 2 1 8 mm、 冷陰極蛍光灯側の厚さが 4 mm、 反射テープ側の厚さが 2 m m、 屈折率が 1 . 5 0近傍のァクリル樹脂板等の透明板の T®に、 入光面近傍領 域での内面反射における全反射を回避する光反射処理を施したもので構成される。 全反射を回避する処理としては、 光の散乱に主に基づく処理と、 光の正反射に主 に基づく処理の二通りがある。 光の散乱に主に基づく処理としては、 透明板の下 面に光散乱性を有するィンク材料をパターン印刷する方法と、 透明板の T®に粗 面加工を施す方法の二種がある。 また光の正反射に主に基づく処理としては、 透 明板の下面にプリズムアレイを形成する方法がある。  In the figure, a backlight 2 is composed of a light guide plate 3 made of a transparent plate having a wedge-shaped cross section in a direction orthogonal to the longitudinal direction of the cold cathode fluorescent lamp 4, and a cold cathode fluorescent lamp 4 installed along one side edge thereof. A lamp reflecting sheet 5 provided around the cold cathode fluorescent lamp 4 except for a side facing the light guide plate 3; a collimating lens sheet 6 provided along the one side of the light guide 3; A reflection tape 7 provided on a side edge of the light guide plate 3 opposite to the cold cathode fluorescent lamp 4, a prism sheet 8 having a prism groove on a lower surface placed on the liquid crystal display element 1 side (upper surface); The light guide plate 3 is composed of a reflective sheet 9 provided on the lower surface of the light plate 3. Acrylic resin plate with a thickness of 4 mm on the lamp side, 2 mm on the reflective tape side, and a refractive index of around 1.5 It is composed of a transparent plate such as T® that has been subjected to light reflection processing to avoid total internal reflection in the area near the light entrance surface. There are two types of processing to avoid total reflection: processing based mainly on light scattering and processing based mainly on regular reflection of light. There are two types of processing mainly based on light scattering: a method of pattern printing an ink material having a light scattering property on the lower surface of the transparent plate, and a method of performing rough surface processing on T® of the transparent plate. As a process mainly based on regular reflection of light, there is a method of forming a prism array on the lower surface of a transparent plate.
冷陰極蛍光灯 4からから導光扳 3の入光面に入射する光は、 当該入光面と冷陰 極蛍光灯 4との間に設置されたコリメ一夕レンズシート 6によってコリメートさ れる。 Light incident from the cold cathode fluorescent lamp 4 on the light entrance surface of the light guide 3 is collimated by the collimating lens sheet 6 installed between the light entrance surface and the cold cathode fluorescent lamp 4. It is.
コリメータレンズシート 6によってコリメートされた光は、 導光板 3内を反射 テープ 7方向に正反射と散乱を繰り返しながら伝播しつつ、 当該導光板 3の上面 からプリズムシート 8を通して液晶表示素子 1を照明する。  The light collimated by the collimator lens sheet 6 illuminates the liquid crystal display element 1 from the upper surface of the light guide plate 3 through the prism sheet 8 while repeating regular reflection and scattering in the direction of the reflection tape 7 in the light guide plate 3. .
液晶表示素子 1は、 図示しない駆動回路で所定の画素が光透過又は光遮断伏態 とされ、 バックライト 2からの照明光が上記光透過又は光遮断伏態とされた画素 を通過し又は遮光されて可視表示がなされる。  In the liquid crystal display element 1, a predetermined pixel is in a light transmitting or light blocking state by a drive circuit (not shown), and illumination light from the backlight 2 passes through or blocks the pixel in the light transmitting or light blocking state. Then, a visual display is made.
なお、 反射シート 9は導光板 3の下面から出射する光を導光板 3方向に反射さ せて、 光を有効に利用するために設置され、 また、 反射テープ 7は導光板 3から 抜け出す光を再度導光板 3に戻す機能を有する。  The reflection sheet 9 reflects the light emitted from the lower surface of the light guide plate 3 in the direction of the light guide plate 3 and is installed in order to use the light effectively.The reflection tape 7 controls the light exiting from the light guide plate 3. It has the function of returning to the light guide plate 3 again.
F i g . 1 8は本発明におけるバックライトを構成するコリメ一夕レンズシー トの第 1 1例の説明図であって、 6 , は F i g . 6と同様のコリメ一夕レンズ シート、 6 aはプリズム溝である。  FIG. 18 is an explanatory view of a first example of a collimating lens sheet constituting a backlight according to the present invention, and 6, is a collimating lens sheet similar to FIG. Denotes a prism groove.
この例では、 導光板 3は冷陰極蛍光灯設置側縁すなわち入光面 3 bから反射 テープ 7側に漸減する厚さとした楔形の透明樹脂板であり、 入光面 3 b近傍領域 の透明樹脂板内での全反射を回避する処理として、 透明樹脂板の下面にプリズム アレイ 3 aが形成されている。 また、 入光面 3 bに位置されたコリメータレンズ シート 6 , は導光板 3の平面に平行 (冷陰極蛍光灯 4の長手方向に平行) に多数 のプリズム溝 6 aを導光板 3の入光面 3 b側に有し、 冷陰極蛍光灯 4に対面する 側は平坦面となっている。  In this example, the light guide plate 3 is a wedge-shaped transparent resin plate having a thickness that gradually decreases from the side edge of the cold cathode fluorescent lamp installation, that is, from the light incident surface 3 b to the reflection tape 7 side, and the transparent resin near the light incident surface 3 b is formed. As a process for avoiding total reflection within the plate, a prism array 3a is formed on the lower surface of the transparent resin plate. Also, the collimator lens sheet 6, located on the light entrance surface 3 b, has a number of prism grooves 6 a parallel to the plane of the light guide plate 3 (parallel to the longitudinal direction of the cold cathode fluorescent lamp 4) to enter the light guide plate 3. It is provided on the surface 3b side, and the side facing the cold cathode fluorescent lamp 4 is a flat surface.
上記プリズム溝 6 aは、 その開放角度 0が 9 0。 ないし 1 1 0 β 、 ピッチが 3 1〜5 1〃mに設定されている。 The opening angle 0 of the prism groove 6 a is 90. 1 to 110 β , the pitch is set to 31 to 51〃m.
このコリメータレンズシート 6 , により、 冷陰極蛍光灯 4から出射された光は ブリズム溝 6 aの延在方向と直交する平面上にぉ 、て、 コリメ一夕レンズシ一ト 6 , の法線方向にコリメートされて導光板 3に入射する。  Due to the collimator lens sheet 6, the light emitted from the cold cathode fluorescent lamp 4 is placed on a plane orthogonal to the extending direction of the bism groove 6a, and is directed in the normal direction of the collimating lens sheet 6, The light is collimated and enters the light guide plate 3.
これにより、 冷陰極蛍光灯 4から出射された光束の大部分は導光板 3の入光面 3 bに対し、 紙面に平行な面内において、 コリメータレンズシート 6 , がない場 合よりも小さな入射角で入射する。 入光面における屈折作用を加味すると、 導光 板 3内に進入する光束は、 紙面に平行な面内にぉレ、て更に狭レ、角度範囲内にコリ メートされた伏態で、 導光板 3内を進行することになる。 この光束の進行方向を、 導光板 3の下面に形成されたプリズムアレイ 3 aの冷陰極蛍光灯設置側斜面にお ける正反射によって方向制御し、 導光板 3の上面での内面反射時に臨界角よりも 小さな入射角で入射させることによって、 紙面に平行な面内においてコリメート されたままの状態で、 光束を導光板 3の上面から液晶表示素子 1の方向に出射さ せることができる。 この出射光束の進行方向を、 導光板 3の上面に設置した下面 がブリズム面のブリズムシートの反射テープ 7側の斜面における内面反射により、 導光板 3の上面の法線方向に近い方向へ方向制御することによって、 液晶用バッ クライトとして高輝度な照明光源が実現される。 As a result, most of the luminous flux emitted from the cold cathode fluorescent lamp 4 enters the light incident surface 3b of the light guide plate 3 in a plane parallel to the plane of the drawing, and is smaller than that without the collimator lens sheet 6, Incident at an angle. Taking into account the refraction effect on the light entrance surface, the light flux entering the light guide plate 3 is in a plane parallel to the paper plane, narrower, and collimated in the angle range. It will travel inside the light guide plate 3 with the mated prone. The direction of travel of this luminous flux is controlled by specular reflection on the inclined surface of the prism array 3a formed on the lower surface of the light guide plate 3 on the cold cathode fluorescent lamp installation side, and the critical angle at the time of internal reflection on the upper surface of the light guide plate 3 By making the light incident at a smaller incident angle, the light beam can be emitted from the upper surface of the light guide plate 3 toward the liquid crystal display element 1 while being collimated in a plane parallel to the paper. The direction of travel of this emitted light beam is directed to a direction closer to the normal direction of the upper surface of the light guide plate 3 due to internal reflection on the inclined surface on the reflection tape 7 side of the bism sheet whose bottom surface is placed on the upper surface of the light guide plate 3. By controlling, an illumination light source with high brightness is realized as a backlight for liquid crystal.
F i g . 1 9は本発明におけるバックライトを構成するコリメ一夕レンズシー 卜の第 1 2例の説明図であって、 6 2 は F i g . 7と同様のコリメ一夕レンズ シート、 6 bはプリズム溝である。 F ig. 1 9 is an explanatory view of the first two examples collimation Isseki lens Sea Bok constituting the backlight in the present invention, 6 2 F ig. 7 the same collimation Isseki lens sheet, 6 b Denotes a prism groove.
この例でも、 導光板 3は入光面 3 b側から反射テープ 7側に漸減する厚さとし た楔形の透明樹脂板であり、 入光面近傍領域の透明樹脂板内での全反射を回避す る処理として、 透明樹脂板の TIBにプリズムアレイ 3 aが形成されている。 また 入光面 3 b側に位 Sされたコリメ一夕レンズシート 6 2 は導光板 3の平面に直交 する方向 (冷陰極蛍光灯 4の長手方向に直交する方向) に多数のプリズム溝 6 b を導光板 3側に有し、 冷陰極蛍光灯 4に対面する側は平坦面となっている。 Also in this example, the light guide plate 3 is a wedge-shaped transparent resin plate having a thickness that gradually decreases from the light incident surface 3 b side to the reflective tape 7 side, thereby avoiding total reflection in the transparent resin plate in a region near the light incident surface. As a process, a prism array 3a is formed on a TIB of a transparent resin plate. The light incident surface 3 b side position S has been collimation Isseki lens sheet 6 2 number of prism grooves 6 b in a direction (direction perpendicular to the longitudinal direction of the cold cathode fluorescent lamp 4) perpendicular to the plane of the light guide plate 3 On the light guide plate 3 side, and the side facing the cold cathode fluorescent lamp 4 is a flat surface.
上記プリズム溝 6 bは、 その開放角度 0が 9 0 ' ないし 1 1 0 β に設定されて いる。 The opening angle 0 of the prism groove 6b is set to 90 ′ to 110 β .
このコリメータレンズシート 6 2 により、 冷陰極蛍光灯 4から出射された光は プリズム溝 6 bの延在方向と直交する平面上において、 コリメ一夕レンズシート 6 2 の法線方向にコリメートされて導光板 3に入射する。 The collimator lens sheet 6 2, light emitted from the cold cathode fluorescent lamp 4 in a plane orthogonal to the extending direction of the prism grooves 6 b, it is collimated in the direction normal to the collimator Isseki lens sheet 6 2 guide Light is incident on the light plate 3.
これにより、 冷陰極蛍光灯 4から出射された光束の大部分は導光板 3の入光面 3 bに対し、 紙面に垂直な面内において、 コリメータレンズシート 6 2 がない場 合よりも小さな入射角で入射する。 入光面における屈折作用を加味すると、 導光 板 3内に進入する光束は、 紙面に垂直な面内において更に狭い角度範囲内にコリ メートされた状態で、 導光板 3内を進行することになる。 この光束の進行方向を、 導光板 3の下面に形成されたプリズムアレイ 3 aの冷陰極蛍光灯設置側斜面にお ける正反射によって方向制御し、 導光板 3の上面での内面反射時に臨界角よりも 小さな入射角で入射させることによって、 紙面に垂直な面内においてコリメート されたままの状態で、 光束を導光板上面から出射させることができる。 この出射 光束の進行方向を、 導光板 3の上面に設置した下面がブリズ厶面のプリズ厶シー トの反射テープ 7側の斜面における内面反射により、 導光板 3の上面の法線方向 に近い方向へ方向制御することによって、 液晶用バックライトとして高輝度な照 明光源が実現される。 Thus, most of the light beams emitted from the cold cathode fluorescent lamp 4 with respect to the incident surface 3 b of the light guide plate 3, in a plane perpendicular to the plane, smaller incidence than If there is no collimator lens sheet 6 2 Incident at an angle. Taking into account the refraction effect on the light entrance surface, the light flux entering the light guide plate 3 travels through the light guide plate 3 in a state where it is collimated within a narrower angle range in a plane perpendicular to the paper surface. Become. The traveling direction of this light beam is set on the slope of the prism array 3a formed on the lower surface of the light guide plate 3 on the cold cathode fluorescent lamp installation side. The direction of the beam is controlled by specular reflection at the inner surface of the light guide plate 3 and the light is incident at an angle of incidence smaller than the critical angle at the time of internal reflection at the upper surface of the light guide plate 3, so that the light beam is kept collimated in a plane perpendicular to the paper surface The light can be emitted from the upper surface. The direction of travel of the emitted light beam is closer to the normal direction of the upper surface of the light guide plate 3 due to internal reflection on the inclined surface on the reflection tape 7 side of the prism sheet whose bottom surface is installed on the upper surface of the light guide plate 3. By controlling the direction, a high-luminance illuminating light source is realized as a backlight for liquid crystal.
F i g. 2 0は本発明におけるバックライトを構成するコリメ一夕レンズシー トの第 1 3例の説明図であうて、 6 3 は F i g . 7と同様のコリメ一夕レンズ シート、 6 cは微小凸レンズである。 F i g. 2 0 is fit in illustration of the first three examples collimation Isseki lens sheet that constitute the backlight in the present invention, 6 3 F ig. 7 the same collimation Isseki lens sheet, 6 c Is a micro convex lens.
この例でも、 導光板 3は導光板 3の入光面 3 b側から反射テープ 7側に漸減す る厚さとした楔形の透明樹脂板であり、 入光面近傍領域の透明樹脂板内での全反 射を回避する処理として、 透明樹脂板の下面にプリズムアレイ 3 aが形成されて いる。 また冷陰極蛍光灯設置側縁に位置されたコリメ一夕レンズシート 6 3 は冷 陰極蛍光灯 4と対面する面に多数の微小凸レンズ 6 cを有し、 導光板 3側は平坦 面となっている。 Also in this example, the light guide plate 3 is a wedge-shaped transparent resin plate having a thickness that gradually decreases from the light incident surface 3 b side of the light guide plate 3 to the reflective tape 7 side. As a process for avoiding total reflection, a prism array 3a is formed on the lower surface of the transparent resin plate. The cold cathode fluorescent lamp installation side edge collimator Isseki lens sheet 6 3, which is located has a number of lenticules 6 c on the surface facing the cold cathode fluorescent lamp 4, the light guide plate 3 side is a flat surface I have.
このコリメ一夕レンズシート 6 3 により、 冷陰極蛍光灯 4から出射された光は 微小凸レンズ 6 cにより導光板 3に対して紙面に平行な面内および紙面に垂直な 面内の両面内でコリメ一トされて導光板 3に入射する。 The collimator Isseki lens sheet 6 3, collimator in both sides of the cold cathode fluorescent lamp 4 in a plane perpendicular to the parallel plane and the plane to the plane with respect to the light guide plate 3 light emitted by lenticules 6 c from The light is incident on the light guide plate 3.
これにより、 冷陰極蛍光灯 4から出射された光束の大部分は導光板 3の入光面 3 bに対し、 紙面に平行な面内および紙面に垂直な面内の両面内において、 コリ メータレンズシート 6 3 がない場合よりも小さな入射角で入射する。 入光面にお ける屈折作用を加味すると、 導光板 3内に進入する光束は、 紙面に平行な面内お よび紙面に垂直な面内の両面内において、 更に狭い角度範囲内にコリメートされ た状態で、 導光板 3内を進行することになる。 この光束の進行方向を、 導光板 3 の下面に形成されたプリズムアレイ 3 aの冷陰極蛍光灯設置側斜面における正反 射によって方向制御し、 導光板 3の上面での内面反射時に臨界角よりも小さな入 射角で入射させることによって、 紙面に平行および垂直な面内においてコリメ一 卜されたままの状態で、 光束を導光板 3の上面から液晶表示素子に出射させるこ とができる。 この出射光束の進行方向を、 導光板 3の上面に設匱した下面がプリ ズム面のプリズムシー卜の反射テープ 7側の斜面における内面反射により、 導光 板 3の上面の法線方向に近い方向へ方向制御することによって、 液晶用バックラ イトとして高輝度な照明光源が実現される。 As a result, most of the luminous flux emitted from the cold cathode fluorescent lamp 4 is collimated by the collimator lens with respect to the light entrance surface 3b of the light guide plate 3 in both a plane parallel to the paper and a plane perpendicular to the paper. incident at small angles of incidence than without sheet 6 3. Taking into account the refraction effect on the light entrance surface, the luminous flux entering the light guide plate 3 was collimated within a narrower angle range in both surfaces parallel to the paper and perpendicular to the paper. In this state, the light travels through the light guide plate 3. The direction of travel of this light beam is controlled by specular reflection on the inclined side of the cold cathode fluorescent lamp installation side of the prism array 3a formed on the lower surface of the light guide plate 3, so that the inner surface reflects from the upper surface of the light guide plate 3 from the critical angle. Incident on the liquid crystal display element from the upper surface of the light guide plate 3 while being collimated in a plane parallel and perpendicular to the plane of the paper. Can be. The traveling direction of the emitted light beam is closer to the normal direction of the upper surface of the light guide plate 3 due to the internal reflection of the lower surface provided on the upper surface of the light guide plate 3 on the slope of the prism sheet on the reflection tape 7 side of the prism surface. By controlling the direction, a high-luminance illumination light source is realized as a backlight for liquid crystal.
F i g. 2 1は本発明におけるバックライトを構成するコリメータレンズシ一 トの第 1 4例の説明図である。  FIG. 21 is an explanatory diagram of a 14th example of the collimator lens sheet constituting the backlight according to the present invention.
この例では、 導光扳 3は冷陰極蛍光灯設置側縁すなわち入光面 3 bから反射 テープ 7側に漸滅する厚さとした楔形の透明樹脂板であり、 入光面 3 bの近傍領 域の透明樹脂板内での全反射を回避する処理として、 透明樹脂板の下面にプリズ ムアレイ 3 aが形成されている。 また入光面 3 b側に位置されたコリメ一タレン ズシート 6 , は F i g. 6と同様に導光板 3の平面に平行(冷陰極蛍光灯 4の長 手方向に平行) に多数のプリズム溝 6 aを導光板 3側に有し、 導光板 3の入光面 に接して設置され、 冷陰極蛍光灯 4に対面する側は平坦面となっている。  In this example, the light guide 3 is a wedge-shaped transparent resin plate whose thickness gradually decreases from the side edge of the cold cathode fluorescent lamp installation, that is, the light incident surface 3 b to the reflective tape 7 side, and the area near the light incident surface 3 b In order to avoid total reflection in the transparent resin plate, a prism array 3a is formed on the lower surface of the transparent resin plate. The collimator sheet 6, located on the light incident surface 3 b side, has a large number of prisms parallel to the plane of the light guide plate 3 (parallel to the longitudinal direction of the cold cathode fluorescent lamp 4), as in FIG. 6. The light guide plate 3 has a groove 6a, which is installed in contact with the light entrance surface of the light guide plate 3, and the side facing the cold cathode fluorescent lamp 4 is a flat surface.
上記プリズム溝 6 aは、 その開放角度も上記各例と同様に 9 0 ' ないし 1 1 0 ' に設定されている。  The opening angle of the prism groove 6a is set to 90 'to 110' similarly to the above-mentioned respective examples.
このコリメ一夕レンズシート 6 , により、 冷陰極蛍光灯 4から出射された光束 はプリズム溝 6 aの延在方向と直交する平面上において、 コリメータレンズシー ト 6 , の法線方向にコリメートされて導光板 3に入射する。  The light beam emitted from the cold-cathode fluorescent lamp 4 is collimated by the collimating lens sheet 6 in a direction normal to the collimator lens sheet 6 on a plane orthogonal to the extending direction of the prism groove 6a. Light enters the light guide plate 3.
これにより、 冷陰極蛍光灯 4から出射された光束の大部分は導光板 3の入光面 3 bに対し、 紙面に平行な面内において、 コリメ一夕レンズシート 6, がない場 合よりも小さな入射角で入射する。 入光面 3 bにおける屈折作用を加味すると、 導光板 3内に進入する光束は、 紙面に平行な面内において更に狭い角度範囲内に コリメートされた状態で、 導光板 3内を進行することになる。 この光束の進行方 向を、 導光板 3の下面に形成されたブリズ厶ァレイ 3 aの冷陰極蛍光灯設置側斜 面における正反射によって方向制御し、 導光板 3の上面での内面反射時に臨界角 よりも小さな入射角で入射させることによって、 紙面に平行な面内においてコリ メートされたままの伏態で、 光束を導光板上面から液晶表示素子側に出射させる ことができる。 この出射光束の進行方向を、 導光板 3の上面に設置した T®がブ リズム面のブリズムシ一トの反射テープ 7側の斜面における内面反射により、 導 光板 3の上面の法線方向に近レ、方向へ方向制御することによって、 液晶用バック ライトとして高輝度な照明光源が実現される。 As a result, most of the luminous flux emitted from the cold cathode fluorescent lamp 4 is incident on the light incident surface 3b of the light guide plate 3 in a plane parallel to the plane of the paper, compared with the case where there is no collimating lens sheet 6,. Incident at a small incident angle. Taking into account the refraction effect on the light entrance surface 3b, the luminous flux entering the light guide plate 3 travels through the light guide plate 3 in a state where it is collimated within a narrower angle range in a plane parallel to the paper surface. Become. The direction of travel of this light beam is controlled by specular reflection on the slope of the cold cathode fluorescent lamp installation side of the prism array 3a formed on the lower surface of the light guide plate 3, and critical when the inner surface reflects on the upper surface of the light guide plate 3. By making the light incident at an angle of incidence smaller than the angle, the light beam can be emitted from the upper surface of the light guide plate to the liquid crystal display element side in a collimated state in a plane parallel to the paper surface. The direction of travel of this emitted light beam is guided by the internal reflection of the slope on the reflection tape 7 side of the breath sheet on the breath surface by the T® installed on the upper surface of the light guide plate 3. By controlling the direction close to and normal to the normal direction of the upper surface of the light plate 3, a high-brightness illumination light source is realized as a liquid crystal backlight.
F i g . 2 2は本発明におけるバックライトを構成するコリメータレンズシ一 トの第 1 5例の説明図である。  FIG. 22 is an explanatory diagram of a fifteenth example of the collimator lens sheet constituting the backlight according to the present invention.
この例でも、 導光板 3は入光面 3 b側から反射テープ 7側に漸減する厚さとし た楔形の透明樹脂板であり、入光面 3 b近傍領域の透明樹脂板内での全反射を回 避する処理として、 透明樹脂板の T®にプリズムアレイ 3 aが形成されている。 また入光面 3 b側に位置されたコリメ一タレンズシ一ト 6 2 は導光板 3の平面に 直交する方向 (冷陰極蛍光灯 4の長手方向に直交する方向) に多数のプリズム溝 6 bを導光板 3側に有し、 導光板 3の入光面に接して設置され、 冷陰極蛍光灯 4 に対面する側は平坦面となっている。  Also in this example, the light guide plate 3 is a wedge-shaped transparent resin plate having a thickness gradually reduced from the light incident surface 3b side to the reflection tape 7 side, and the total reflection in the transparent resin plate in the region near the light incident surface 3b is suppressed. As a evacuating process, a prism array 3a is formed on T® of the transparent resin plate. The collimator lens sheet 62 located on the light incident surface 3 b side has a number of prism grooves 6 b in a direction perpendicular to the plane of the light guide plate 3 (a direction perpendicular to the longitudinal direction of the cold cathode fluorescent lamp 4). It is provided on the light guide plate 3 side, is installed in contact with the light entrance surface of the light guide plate 3, and the side facing the cold cathode fluorescent lamp 4 is a flat surface.
上記プリズム溝 6 bの開放角度も 9 0。 ないし 1 0 0。 に設定されている。 このコリメ一夕レンズシート 6 2 により、 冷陰極蛍光灯 4から出射された光束 はプリズム溝 6 bの延在方向と直交する平面上にぉレ、て、 コリメータレンズシー ト 6 2 の法線方向にコリメートされて導光板 3に入射する。 The opening angle of the prism groove 6b is also 90. Or 100. Is set to The collimator Isseki lens sheet 6 2, light beams emitted from the cold cathode fluorescent lamp 4 Te Ore, on a plane orthogonal to the extending direction of the prism grooves 6 b, the normal direction of the collimator lens sheet 6 2 And is incident on the light guide plate 3.
これにより、 冷陰極蛍光灯 4から出射された光束の大部分は導光板 3の入光面 3 bに対し、 紙面に垂直な面内において、 コリメ一夕レンズシート 6 2 がない場 合よりも小さな入射角で入射する。 入光面 3 bにおける屈折作用を加味すると、 導光板 3内に進入する光束は、 紙面に垂直な面内において更に狭い角度範囲内に コリメートされた状態で、 導光板 3内を進行することになる。 この光束の進行方 向を、 導光板 3の下面に形成されたプリズムァレイ 3 aの冷陰極蛍光灯設置側斜 面における正反射によって方向制御し、 導光板 3の上面での内面反射時に臨界角 よりも小さな入射角で入射させることによって、 紙面に垂直な面内においてコリ メートされたままの状態で、 光束を導光板上面から出射させることができる。 こ の出射光束の進行方向を、 導光板 3の上面に設置した下面がブリズ厶面のブリズ ムシ一トの反射テープ 7側の斜面における内面反射により、 導光板 3の上面の法 線方向に近い方向へ方向制御することによって、 液晶用バックライトとして高輝 度な照明光源カ壤現される。 As a result, most of the luminous flux emitted from the cold cathode fluorescent lamp 4 is incident on the light incident surface 3 b of the light guide plate 3 in a plane perpendicular to the plane of the paper, compared with the case where the collimating lens sheet 6 2 is not provided. Incident at a small incident angle. Taking into account the refraction effect on the light entrance surface 3b, the light flux entering the light guide plate 3 travels through the light guide plate 3 in a state where it is collimated within a narrower angle range in a plane perpendicular to the paper surface. Become. The direction of travel of this light beam is controlled by specular reflection on the side of the cold cathode fluorescent lamp installation side of the prism array 3 a formed on the lower surface of the light guide plate 3, and the critical angle at the time of internal reflection on the upper surface of the light guide plate 3 is smaller than the critical angle. By making the light incident at a small incident angle, the light beam can be emitted from the upper surface of the light guide plate while being collimated in a plane perpendicular to the paper surface. The traveling direction of the emitted light beam is closer to the normal direction of the upper surface of the light guide plate 3 due to internal reflection of the lower surface provided on the upper surface of the light guide plate 3 on the slope of the reflection tape 7 side of the blister sheet. By controlling the direction, a high-brightness illumination light source can be realized as a backlight for liquid crystal.
F i g. 2 3は本発明におけるバックライトを構成するコリメータレンズシー 9 FIG. 23 shows the collimator lens sheet constituting the backlight in the present invention. 9
2 4 トの第 1 6例の説明図である。 FIG. 24 is an explanatory diagram of a 16th example of the FIG.
この例でも、 導光板 3は入光面 3 b側から反射テープ 7側に漸減する厚さとし た楔形の透明樹脂板であり、 入光面 3 b近傍領域の透明榭脂扳内での全反射を回 避する処理として、 透明樹脂板の にプリズムアレイ 3 aが形成されている。 また入光面 3 b側に位置されたコリメ一夕レンズシート 6 3 は冷陰極蛍光灯 4と 対面する面に多数の微小凸レンズ 6 cを有し、 導光板 3側は平坦面で当該導光板 の入光面に密接して配置されて 、る。  Also in this example, the light guide plate 3 is a wedge-shaped transparent resin plate having a thickness gradually reduced from the light incident surface 3 b side to the reflective tape 7 side, and the total reflection in the transparent resin near the light incident surface 3 b is performed. As a process for avoiding, a prism array 3a is formed on a transparent resin plate. The collimating lens sheet 63 located on the light incident surface 3b side has a large number of minute convex lenses 6c on the surface facing the cold cathode fluorescent lamp 4, and the light guide plate 3 side is a flat surface and the light guide plate It is placed close to the light entrance surface of the device.
このコリメ一夕レンズシート 6 3 により、 冷陰極蛍光灯 4から出射された光束 は微小凸レンズ 6 cにより導光板 3に対して紙面に平行な面内および紙面に垂直 な面内の両面内でコリメートされて導光板 3に入射する。 The collimator Isseki lens sheet 6 3, collimated in both sides of the cold cathode fluorescent lamp 4 in a plane perpendicular to the parallel plane and the plane to the plane with respect to the light guide plate 3 by the emitted light beam lenticules 6 c from Then, the light enters the light guide plate 3.
これにより、 冷陰極蛍光灯 4から出射された光束の大部分は導光板 3の入光面 3 bに対し、 紙面に平行な面内および紙面に垂直な面内の両面内において、 コリ メータレンズシート 6 3 がなレ、場合よりも小さな入射角で入射する。 As a result, most of the luminous flux emitted from the cold cathode fluorescent lamp 4 is collimated by the collimator lens with respect to the light entrance surface 3b of the light guide plate 3 in both a plane parallel to the paper and a plane perpendicular to the paper. sheet 6 3 such les than when incident at a small angle of incidence.
導光板 3内に進入する光束は、 紙面に平行な面内および紙面に垂直な面内の両 面內においてコリメートされた状態で、 導光板 3内を進行することになる。 この 光束の進行方向を、 導光板 3の下面に形成されたプリズムアレイ 3 aの冷陰極蛍 光灯設置側斜面における正反射によって方向制御し、 導光板 3の上面での内面反 射時に臨界角よりも小さな入射角で入射させることによって、 紙面に平行および 垂直な面内においてコリメートされたままの状態で、 光束を導光板上面から液晶 表示素子側へ出射させることができる。 この出射光束の進行方向を、 導光板 3の 上面に設置した下面がプリズム面のブリズムシ一トの反射テープ 7側の斜面にお ける内面反射により、導光板 3の上面の法棣方向に近レ、方向へ方向制御すること によって、 液晶用バックライトとして高輝度な照明光源が実現される。  The luminous flux entering the light guide plate 3 travels through the light guide plate 3 in a state of being collimated on both surfaces 內 in a plane parallel to the paper surface and in a plane perpendicular to the paper surface. The direction of travel of this light beam is controlled by specular reflection on the inclined surface of the prism array 3a formed on the lower surface of the light guide plate 3 on the cold cathode fluorescent lamp installation side, and the critical angle at the time of internal reflection on the upper surface of the light guide plate 3 is determined. By making the light incident at a smaller incident angle, the light beam can be emitted from the upper surface of the light guide plate to the liquid crystal display element side while being collimated in a plane parallel and perpendicular to the paper surface. The direction of travel of this emitted light beam is close to the normal direction of the upper surface of the light guide plate 3 due to internal reflection on the inclined surface of the prism sheet on the reflection tape 7 side where the lower surface installed on the upper surface of the light guide plate 3 is located. By controlling the direction, a high-brightness illumination light source can be realized as a liquid crystal backlight.
F i g . 2 4は本発明による液晶表示装置のさらに他の実施例を説明する要部 模式図であって、 (a ) は斜視図、 (b ) は (a ) の a— a棣に沿って切断した 断面図である。  FIG. 24 is a schematic view of a main part for explaining still another embodiment of the liquid crystal display device according to the present invention, wherein (a) is a perspective view, and (b) is a view along a-adi of (a). FIG.
同図において、 導光扳 3は冷陰極蛍光灯 4側から反射テープ 7 aに向けて厚さ が漸減する楔形の透明板からなり、 その上部にプリズムシート 8が載置され、 下 部には反射シート 9が配 Sされている。 なお、 導光板 3の下面にはプリズムァレ ィ等の光反射処理がなされ、 また導光板 3の側面にも反射テープ 7 bが貼付され ている。 In the same figure, the light guide 扳 3 is formed of a wedge-shaped transparent plate whose thickness gradually decreases from the cold cathode fluorescent lamp 4 side toward the reflection tape 7 a, a prism sheet 8 is placed on the upper part, and a lower part is on the lower part. A reflection sheet 9 is provided. The lower surface of the light guide plate 3 has a prism Light reflecting treatment is performed on the light guide plate 3, and a reflective tape 7b is also attached to the side surface of the light guide plate 3.
そして、 冷陰極蛍光灯 4と導光板 3の入光面 3 bの間にはコリメータレンズ シート 6が設置されている。  A collimator lens sheet 6 is provided between the cold cathode fluorescent lamp 4 and the light incident surface 3b of the light guide plate 3.
プリズムシート 8はその下面に多数のプリズム溝を有し、 このプリズム溝を形 成した面を導光板 3に向けて載置される。 なお、 プリズムシート 8と導光板 3の 間に拡散板を介揷することもできる。  The prism sheet 8 has a large number of prism grooves on its lower surface, and is placed with the surface on which the prism grooves are formed facing the light guide plate 3. Note that a diffusion plate can be interposed between the prism sheet 8 and the light guide plate 3.
F i g. 2 5は本実施例における導光板出射光の光度の出射角分布とプリズム シート出射光の光度の出射角分布の説明図であって、 (1 ) は導光板の出射光、 ( 2 ) はプリズムシートの出射光の光度の出射角分布を示す。  FIG. 25 is an explanatory diagram of an emission angle distribution of luminous intensity of light emitted from the light guide plate and an emission angle distribution of luminous intensity of light emitted from the prism sheet in the present embodiment. 2) shows an emission angle distribution of the luminous intensity of the light emitted from the prism sheet.
同図において、 導光板の反射テープ貼付端を 0 ° とし、 冷陰極蛍光灯設置側端 を 1 8 0。 としたとき、 導光板の単位面積から出射する光の光度が最大となる出 射角度 (以下、 ピーク角度と呼ぶ) 0は (1 ) に示したようにほぼ 2 0 ' 方向で ある。 この方向の光をプリズムシートによって (2 ) に示したように液晶表示素 子方向 (垂直方向上方) であるほぼ 9 0 °方向にする。  In the figure, the end of the light guide plate where the reflective tape is attached is 0 °, and the end on the cold cathode fluorescent lamp installation side is 180 °. Then, the emission angle at which the luminous intensity of the light emitted from the unit area of the light guide plate becomes maximum (hereinafter, referred to as a peak angle) 0 is almost in the 20 ′ direction as shown in (1). The light in this direction is directed by the prism sheet to a direction of approximately 90 ° which is the liquid crystal display element direction (upward in the vertical direction) as shown in (2).
このように、 導光板の入光面にコリメータレンズシートを設置して入射光をコ リメートし光利用効率を高めると共に、 下面がプリズム面のプリズ厶シ一トの反 射テープ 7側の斜面における内面反射により、液晶表示素子へ入射する光束の大 部分を液晶表示素子へほぼ垂直に入射させることによって、 高輝度の照明を行う ことができる。  In this way, the collimator lens sheet is installed on the light entrance surface of the light guide plate to collimate the incident light to increase the light use efficiency, and the lower surface is the prism sheet with the prism sheet on the slope on the reflection tape 7 side. High-brightness illumination can be performed by making most of the light beam incident on the liquid crystal display element substantially perpendicular to the liquid crystal display element by internal reflection.
F i g. 2 6は本発明の各実施例に使用する、 下面がプリズム面のプリズム シートの断面形伏を説明する模式図である。  FIG. 26 is a schematic diagram for explaining the cross-sectional profile of a prism sheet having a prism surface on the lower surface used in each embodiment of the present invention.
このブリズムシ一トは液晶表示素子と対面する側が平滑面で、 導光板と対面す る側にプリズム面を有している。 上記平滑面側は屈折率がほぼ 1 . 6 6のボリェ チレンテレフ夕レート (P E T) フィルムを用い、 プリズム面は屈折率が略、 1 . 5 1のアクリル樹脂を接着させた二層構造となっている。  This breath sheet has a smooth surface on the side facing the liquid crystal display element and a prism surface on the side facing the light guide plate. The smooth surface side uses a PET film with a refractive index of approximately 1.66, and the prism surface has a two-layer structure with a substantially refractive index and 1.51 acrylic resin adhered. I have.
上記プリズムシ一トのプリズム溝は導光板 3の反射テープ側に一方の斜面を有 し、 入光面 3 b側に他方の斜面を持つ山形で形成され、 反射テープ側の斜面の角 度 ø , は、 プリズムシート 6の法棣に対して例えば 3 8 °、 入光面 3 b側の斜面 の角度 0 2 は同じく例えば 5 ° である。 The prism groove of the prism sheet has one slope on the reflection tape side of the light guide plate 3 and is formed in a mountain shape with the other slope on the light entrance surface 3b side, and the angle of the slope on the reflection tape side ø, Is, for example, 38 ° with respect to the diagonal of the prism sheet 6, and the slope of the light incident surface 3b side Is also 5 °, for example.
このようなプリズムシートを用いることによって、 前記 F i g. 2 5に示した ように、 導光板から光度のピーク角度がほぼ 2 0 ° で出射した光束を、 ピーク角 度がほぼ 9 0。 の光束に镇正することができる。  By using such a prism sheet, as shown in FIG. 25, a light beam emitted from the light guide plate at a peak angle of luminous intensity of approximately 20 ° has a peak angle of approximately 90 °. Luminous flux can be corrected.
F i g. 2 7は本実施例におけるプリズムシートの作用を説明する導光板とプ リズムシ一トの配置図である。  FIG. 27 is an arrangement diagram of a light guide plate and a prism sheet for explaining the operation of the prism sheet in the present embodiment.
同図にぉ 、て、 導光板 3の単位面積から出射する光束の光度のピーク方向の角 度 0に対して と 02 を前記したようにそれぞれ略 3 8 °、 ほぼ 5 ° とするこ とにより、 プリズムシート 8から出射する光束は液晶表示素子に対してほぼ 9 0 ° のピーク角度で入射する。 FIG Nio Te, respectively substantially 3 8 ° as the relative angles 0 of the peak direction of the luminous intensity of the light beam 0 2 was the emerging from a unit area of the light guide plate 3, and approximately 5 ° and child Accordingly, the light beam emitted from the prism sheet 8 enters the liquid crystal display element at a peak angle of about 90 °.
F i g. 2 8はブリズムシ一卜の断面形状の他の例の説明図であって、 (a ) は F i g. 2 7に示したプリズムシートの谷部に平坦部 8 aを設けたもの、 ( b ) は同じく山部に平坦部 8 bを設けたもの、 (c ) は谷部と山部に曲面部 8 c , 8 dを持たせたもの、 (d ) は谷部に平坦部 8 aを、 山部に曲面部 8 dを持たせ たもの、 (e ) は谷部に曲面部 8 cを、 山部に平坦部 8 bを持たせたものである。 上記 (a )〜(b ) の各プリズムシートにおいて、 その一方の斜面の角度 01 と他方の斜面の角度 02は前記 F i g. 2 6で説明したものと同様である。  Fig. 28 is an explanatory view of another example of the cross-sectional shape of the breath sheet. (A) shows a flat portion 8a provided at the valley of the prism sheet shown in Fig. 27. (B) is a flat portion with a flat portion 8b, (c) is a curved portion with valleys and peaks 8c and 8d, and (d) is a flat portion with a valley. The portion 8a has a curved portion 8d at the peak, and (e) has a curved portion 8c at the valley and a flat portion 8b at the peak. In each of the prism sheets (a) and (b), the angle 01 of one slope and the angle 02 of the other slope are the same as those described in FIG.
以上の様なプリズムシートを用いることで、 前記 F i g. 2 5で説明したよう に、 導光板上面から出射する光の光度の角度分布を液晶表示素子に対してビーク 角度がほぼ直角となるように入射させることができる。  By using the prism sheet as described above, the angle distribution of the luminous intensity of the light emitted from the upper surface of the light guide plate becomes almost perpendicular to the liquid crystal display element as described in FIG. 25 above. Incident.
F i g. 2 9は本発明による液晶表示装置のさらにまた他の実施例を説明する 要部模式図である。  FIG. 29 is a schematic diagram of a principal part for explaining still another embodiment of the liquid crystal display device according to the present invention.
同図において、 導光板 3は一様な厚みの透明板または冷陰極蛍光灯 4側(入光 面 3 b側) から反射テープ 7に向けて厚さが漸減する楔形の透明板の何れかを用 い、 透明樹脂板内での全反射を回避する処理として、 透明樹脂板の下面にブリズ 厶アレイや散乱性ィンク印刷等の光反射パ夕一ンが形成され、 あるいは粗面化処 理がなされている。  In the figure, the light guide plate 3 is either a transparent plate having a uniform thickness or a wedge-shaped transparent plate whose thickness gradually decreases from the cold cathode fluorescent lamp 4 side (light incident surface 3 b side) toward the reflective tape 7. In order to avoid total reflection in the transparent resin plate, a light reflection pattern such as a blizzard array or scattering ink printing is formed on the lower surface of the transparent resin plate, or a roughening process is performed. It has been done.
導光板 3の上部には 3枚のプリズムシート 8 ,, 8 2 , 8 3 が楱曆載置され、 下部には反射シート 9が配置されている。 なお、 導光板 3の側面にも反射テープ を貼付してもよい。 Three prism sheets 8, 8 2 , 8 3 are mounted on the upper part of the light guide plate 3, and a reflection sheet 9 is arranged on the lower part. Note that reflective tape is also applied to the side of the light guide plate 3. May be attached.
そして、 冷陰極蛍光灯 4と導光板 3の入光面の間には前記実施例で説明したコ リメ一夕レンズシート 6!, 62 , 63 . 64 の何れかが設置されている。 Then, one of the cold cathode fluorescent lamp 4 and co Increment described in the embodiment between the light incident surface of the light guide plate 3 Isseki lens sheet 6 !, 6 2, 6 3. 64 is installed.
プリズムシート 8, はその下面(導光板 3側) に多数のプリズム溝 8,·を有し、 そのプリズム溝方向 8 lhは冷陰極蛍光灯 4と平行である。 The prism sheet 8 has a number of prism grooves 8 on its lower surface (the light guide plate 3 side), and the prism groove direction 8 lh is parallel to the cold cathode fluorescent lamp 4.
また、 プリズムシート 82 はその上面(導光板 3とは反対側) に多数のプリズ ム溝 82·を有し、 そのプリズム溝方向 82bは上記プリズムシート 8, のプリズム 溝方向 8 lbとある角度をもって配置される。 The prism sheet 82 has a number of prisms grooves 8 2 - (opposite side to the light guide plate 3) the upper surface thereof, the prism groove direction 8 2b is prism groove direction 8 lb of the prism sheet 8, They are arranged at an angle.
そして、 プリズムシート 83 はその上面(導光板 3とは反対側) に多数のプリ ズム溝 83,を有し、 そのプリズム溝方向 83bは上記プリズムシート 82 のブリズ ム溝方向 82bの角度に対して冷陰極蛍光灯の長手方向と直角な線に関して反対方 向にある角度をもって配置される。 Then, the prism sheet 8 3 has a number of pre-prism grooves 8 3, (opposite side to the light guide plate 3) the upper surface thereof, the prism groove direction 8 3b is the prism sheet 82 of Brise beam groove direction 8 2b With respect to a line perpendicular to the longitudinal direction of the cold-cathode fluorescent lamp.
このように、 3枚のプリズムシートのうち、 8 , のプリズム面は導光板 3側に 向かうとともに、 82 , 83 のプリズム面は液晶表示素子側に向かう形で積層さ れている。 Thus, of the three prism sheets, 8, together with the prism surface of toward the light guide plate 3 side, the prism surface of the 8 2, 8 3 are stacked in a manner facing the liquid crystal display element side.
なお、 プリズ厶シ一ト 8と導光板 3の間に拡散板を介揷することもできる。  Note that a diffusion plate may be interposed between the prism sheet 8 and the light guide plate 3.
F i g. 30は F i g. 29の A— A線に沿って切断した断面模式図であり、 図示したように、 導光板 3と液晶表示素子 1の間に 3枚のプリズムシート 8 , , 82, 83 が積層して配置されている。 なお、 導光板 3の下面には光反射処理面 3 aが形成され、 またプリズムシート 8 , と導光板 3との間には拡散シート 1 0 が介挿されているが、 この拡散シート 1 0は必ずしも必要ではない。 FIG. 30 is a schematic cross-sectional view taken along the line A—A of FIG. 29. As shown, three prism sheets 8, 8 are provided between the light guide plate 3 and the liquid crystal display element 1. , 8 2, 8 3 are arranged by stacking. A light reflection processing surface 3 a is formed on the lower surface of the light guide plate 3, and a diffusion sheet 10 is interposed between the prism sheet 8 and the light guide plate 3. Is not necessary.
F i g. 3 1は F i g. 29におけるプリズムシートのプリズム面の形状を説 明する要部断面図である。  FIG. 31 is a fragmentary cross-sectional view for explaining the shape of the prism surface of the prism sheet in FIG. 29.
上記した 3枚のプリズムシート 8 , , 82 , 83 のプリズム溝 8 lb, 82b, 8 3 bを構成する山形形伏の大きさ (溝 gの大きさ、 すなわち斜面の開放角 0の大き さ) はバックライトの照明特性、 液晶表示素子の光透過特性、 その他液晶表示装 置の表示面の輝度分布特性に応じて選択され、 またその大きさも液晶表示素子の 中央部と周辺部、 あるいは局部的に異ならせることができ、 それにより液晶表示 装置の表示面面に所望の輝度分布を持たせることができる。 F i g. 32は本実施例における 3枚のプリズムシートのプリズム溝方向の関 係の説明図である。 The three prism sheets 8,, 8 2 , 8 3 The prism grooves 8 lb , 8 2b , 8 3b of the prism grooves 8 lb , 8 2b , 8 3 b (the size of the grooves g, that is, the slope opening angle 0 The size is selected according to the illumination characteristics of the backlight, the light transmission characteristics of the liquid crystal display element, and the luminance distribution characteristics of the display surface of the liquid crystal display device. Alternatively, it can be locally different, so that the display surface of the liquid crystal display device can have a desired luminance distribution. FIG. 32 is an explanatory diagram of the relationship between the prism groove directions of the three prism sheets in the present embodiment.
同図において、 導光板 3側のプリズムシート 8, のプリズム溝方向 8 lbは冷陰 極蛍光灯 4の長手方向と平行する方向にあり、 その上面のプリズムシート 82 の プリズム溝方向 82bは、 プリズムシート 8, のプリズム溝方向 8 lbに対して角度 だけずらして配置される。 In the figure, the prism groove direction 8 lb of the prism sheet 8 on the light guide plate 3 side is in a direction parallel to the longitudinal direction of the cold cathode fluorescent lamp 4, and the prism groove direction 8 2b of the prism sheet 8 2 on the upper surface thereof is The prism sheet 8 is arranged at an angle with respect to the prism groove direction 8 lb of the prism sheet 8.
そして、 液晶表示素子 1側のプリズムシート 83 のプリズム溝方向 83bは、 ブ リズムシート 8, のプリズム溝方向 8, bに関して反対側に角度 02 を持って配置 される。 なお、 0,、 02 は鋭角である。 Then, the prism groove direction 8 3b of the prism sheet 8 3 of the liquid crystal display device 1 side is positioned at an angle 0 2 on the opposite side with respect to Bed prism sheet 8, the prism groove direction 8, b. Note that 0, 0 2 are acute angles.
3枚のプリズムシートを上記したような配置で設置することにより、 冷陰極蛍 光灯の長手方向に垂直な面内において視野角を広げることができる。  By arranging the three prism sheets in the above-described arrangement, the viewing angle can be increased in a plane perpendicular to the longitudinal direction of the cold cathode fluorescent lamp.
本実施例によれば、 3枚のブリズムシ一卜の各プリズム溝方向を変化させるこ とにより、 視野角を調整することができ、 用途に合わせた液晶表示装置を構成で さる。  According to this embodiment, the viewing angle can be adjusted by changing the direction of each prism groove of the three breath sheets, and a liquid crystal display device adapted to the intended use can be configured.
F i g. 33は本実施例において液晶表示素子側に設置されるプリズムシート 82 , 83 のプリズム溝形状の他の例を説明する部分断面図である。 F i g. 33 is a partial cross-sectional view illustrating another example of the prism groove shape of the prism sheet 82, 8 3 installed on the liquid crystal display element side in the present embodiment.
この例のプリズムシート 82 ( 83 ) は、 そのプリズム溝 82b (83b)を断面 が半円または部分円形状に形成したものであり、 液晶表示素子方向に指向する光 は前記 F i g. 31に示したものに比べて、 その指向性が弱まったものとなる。 そのため、 視野角の広がり方は穏やかとなり、 視野角による明暗の段差は少な く、 表示面全体の明るさが向上する。 Prism sheet 82 of this example (8 3) is for the prism grooves 8 2b the (8 3b) are cross section formed in a semicircular or partial circular shape, the light directed to the liquid crystal display device direction the F i g. Its directivity is weaker than that shown in 31. As a result, the viewing angle spreads moderately, and there is little difference in brightness between the viewing angle and the brightness of the entire display surface.
F i g. 34は本実施例における液晶表示素子側に設置されるプリズムシ一ト 82 , 83 のプリズム溝形状のさらに他の例を説明する部分断面図である。 F i g. 34 is a partial cross-sectional view illustrating still another example of the prism groove shape of Purizumushi Ichito 8 2, 8 3 installed on the liquid crystal display element side in the present embodiment.
この例のプリズムシート 82 は、 そのプリズム溝の形状を前記 F i g. 31に 示したものと Fi g. 33に示したものを部分的に採用し、 プリズムシートの中 央領域 (82·' ) と周辺領域 (82·) とで異ならせたものである。 Prism sheet 82 of this example, the ones the shape of the prism grooves shown in the F i g. 31 to that shown in the Fi g. 33 partially adopted, central region (82 in the prism sheet · ') And the surrounding area (8 2 ·).
これにより、 視野角の広がり方を局部的に変化させることができる。  As a result, the manner in which the viewing angle spreads can be locally changed.
このように、 本実施例によれば、 3枚のプリズムシートのプリズム溝方向を設 定することにより、 視野角の方向および広がり方を任意に調整することができる。 F i g . 3 5は本発明の各実施例に使用される導光板の下面に形成される光反 射処理面の一例の説明図であって、 全反射を回避すると共に輝度 一化を図った 場合の例を説明する模式図である。 Thus, according to the present embodiment, by setting the prism groove directions of the three prism sheets, it is possible to arbitrarily adjust the direction of the viewing angle and the manner of spreading. FIG. 35 is an explanatory view of an example of a light reflection processing surface formed on the lower surface of the light guide plate used in each embodiment of the present invention, in which total reflection is avoided and luminance is unified. It is a schematic diagram explaining the example of the case.
同図は導光板 3の T®すなわち液晶表示素子とは反対の側の面を示し、 一端に 冷陰極蛍光灯 4が配置されている。  The figure shows the surface of the light guide plate 3 on the side opposite to the T®, that is, the liquid crystal display element, and the cold cathode fluorescent lamp 4 is disposed at one end.
この下面には、 冷陰極蛍光灯 4の長手方向と平行な線状となるように、 ブリズ 厶アレイまたは散乱性インク印刷等の光反射パターン 1 1を配設してなり、 その 配設間隔は冷陰極蛍光灯 4力、ら遠くなるに従レ、、 また冷陰極蛍光灯 4の両側に行 くに従って密となるように形成される。  On this lower surface, a light reflection pattern 11 such as a blizzard array or scattering ink printing is arranged so as to be linear in parallel with the longitudinal direction of the cold cathode fluorescent lamp 4, and the arrangement interval is set. The cold cathode fluorescent lamp 4 is formed so that it becomes closer as it goes away, and becomes denser as it goes to both sides of the cold cathode fluorescent lamp 4.
このプリズムアレイパターン 1 1により、 冷陰極蛍光灯 4からの光束が正反射 を受け、 導光板 3の上面での内面反射時に臨界角よりも小さな入射角で入射する ことによって、 紙面に平行な面内ある 、は垂直な面内あるいはその両方において ほぼコリメートされたままの状態で、 導光板上面から出射することができる。 こ の出射光束の進行方向を、 導光板 3の上面に設置した下面がブリズム面のブリズ ムシ一トにより、 導光板 3の上面の法線方向に近い方向へ方向制御することに よって、 液晶用バックライトとして高輝度な照明光源が実現される。  The light from the cold cathode fluorescent lamp 4 is specularly reflected by the prism array pattern 11, and is incident on the upper surface of the light guide plate 3 at an incident angle smaller than the critical angle at the time of internal reflection on the upper surface of the light guide plate 3, so that a plane parallel to the paper surface is obtained. The inner and outer light can be emitted from the upper surface of the light guide plate while being substantially collimated in a vertical plane or both. By controlling the traveling direction of the emitted light beam to a direction close to the normal direction of the upper surface of the light guide plate 3 by using a blism sheet with the lower surface installed on the upper surface of the light guide plate 3 for liquid crystal. A high-luminance illumination light source is realized as a backlight.
F i g . 3 6は本発明の各実施例に使用される導光板の他の例を説明する模式 図であって、 (a ) は断面図、 (b ) は中空ビーズの断面図である。  FIG. 36 is a schematic view for explaining another example of the light guide plate used in each embodiment of the present invention, wherein (a) is a sectional view and (b) is a sectional view of hollow beads.
同図 (a ) において、 アクリル形樹脂からなる導光板 3に中空ビーズ 1 2が分 散されている。 この中空ビーズ 1 2は同図 (b ) に示したように、 直径 dが最小 0 . 1〃111から最大1 0 0〃mまでのばらつきがあるものの、 平均的には 5〜3 0〃mの大きさである。 また、 殻の厚さ tは 0 . 0 5〜数 1 0 / mである。  In FIG. 1A, hollow beads 12 are dispersed in a light guide plate 3 made of an acrylic resin. As shown in FIG. 3B, the diameter of the hollow beads 12 varies from a minimum of 0.1 直径 111 to a maximum of 100〃m, but the average is 5 to 30〃m. Is the size of The thickness t of the shell is from 0.05 to several 10 / m.
この中空ビーズ 1 2の中空層は通常は空気である力、'、 効果の面からは空気と 略 同等の低い屈折率をもつ窒素、 ヘリウム、 アルゴン、 ネオン等の気体でよい。 なお、 同図では、 導光板 3を断面が楔形として示したが、 平板状の導光板に中空 ビーズを上記と同様に分散してもよい。  The hollow layer of the hollow beads 12 may be a gas such as nitrogen, helium, argon, or neon, which has a low refractive index substantially equal to that of air in terms of the force, which is usually air, and the effect. Although the light guide plate 3 is shown as having a wedge-shaped cross section in the same figure, hollow beads may be dispersed in a flat light guide plate in the same manner as described above.
このような構造にぉレ、て、 冷陰極蛍光灯から出射した光線 Lは導光板 3の中を 進んで行く過程において、 中空ビーズ 1 2に衝突して散乱される。  In such a structure, the light beam L emitted from the cold cathode fluorescent lamp collides with the hollow beads 12 and is scattered in the process of traveling through the light guide plate 3.
散乱された^はさらに他の中空ビーズ 1 2に次々に衝突して行き、 散乱の範 囲が広がって行く。 The scattered ^ collides with other hollow beads 1 2 one after another, and the scattering The enclosure expands.
中空ビーズへの衝突と散乱を操り返す間に導光板 3の上面に到達する光が存在 し、 そのときの入射角が全反射より小さくなる光はスネルの法則にしたがって一 部が透過して導光板 3の外部に出射する。  There is light that reaches the upper surface of the light guide plate 3 while controlling collision and scattering with the hollow beads, and at this time light whose incident angle is smaller than total reflection is partially transmitted and guided according to Snell's law. The light exits the light plate 3.
このように、 導光板に中空ビーズを分散することにより、 導光板 3の下面に配 設された光反射パターンの境界に発生する輝度段差が抑制されることで輝度分布 を均等化でき、 これに前記したブリズムシートの何れかを用いることによって、 良好な品質の画像表示を得ることができる。  In this way, by dispersing the hollow beads in the light guide plate, the brightness step generated at the boundary of the light reflection pattern provided on the lower surface of the light guide plate 3 is suppressed, and the brightness distribution can be equalized. By using any of the above-mentioned breath sheets, a good quality image display can be obtained.
F i g . 3 7は本発明による液晶表示装置におけるバックライ卜の効果を説明 する模式図であって、 aは冷陰極蛍光灯 4から出射してコリメ一タレンズシ一ト 6でコリメートされて導光板 3の入光面に入射した光束の光度分布、 bは導光板 3の上面から出射する光束の光度分布、 cはプリズムシ一トの上面から出射する 光束の光度分布である。  FIG. 37 is a schematic diagram for explaining the effect of the backlight in the liquid crystal display device according to the present invention, wherein a is a light guide plate 3 which is emitted from the cold cathode fluorescent lamp 4 and collimated by the collimator lens sheet 6. B is the luminous intensity distribution of the luminous flux emitted from the upper surface of the light guide plate 3, and c is the luminous intensity distribution of the luminous flux emitted from the upper surface of the prism sheet.
図示したように、 コリメータレンズシート 6でコリメートされた光度分布 aを もつ光束は導光板 3を伝播することにより光度分布 bで導光板 3の上面から出射 する。  As shown in the figure, the light flux having the luminous intensity distribution a collimated by the collimator lens sheet 6 propagates through the light guide plate 3 and exits from the upper surface of the light guide plate 3 with the luminous intensity distribution b.
プリズムシ一ト 8は、 下面プリズ厶斜面での内面反射作用により上記光度分布 bの入射光束を液晶表示素子に対しほぼ垂直に進行する出射光束 cにして、 当該 液晶表示素子に入射せしめる。  The prism sheet 8 converts the incident light beam having the luminous intensity distribution b into an outgoing light beam c that travels substantially perpendicularly to the liquid crystal display element by the internal reflection action on the lower surface prism slope, and makes the light beam enter the liquid crystal display element.
なお、 導光板は図示した断面が楔形のものに限らず、 平板状のものを用いたも のにおレ、ても略、同様の効果が得られる。  The light guide plate is not limited to the one having a wedge-shaped cross section as shown in the figure, and the same effect can be obtained by using a flat plate.
〔産業上の利用性〕  [Industrial applicability]
このように、 コリメ一夕レンズシート、 プリズムシート、 導光板として前記し た各実施例の何れか、 あるいはそれらの組み合わせで構成した本発明による液晶 表示装置によれば、 品質の良好な液晶表示装置を得ることができる。  As described above, according to the liquid crystal display device according to the present invention, which is configured by any one of the above-described embodiments as the collimation overnight lens sheet, the prism sheet, and the light guide plate, or a combination thereof, a high quality liquid crystal display device Can be obtained.
また、 本発明に係る液晶表示装置においては、 指向性が高められた光束が高い 指向性を保ったままの状態で導光板內を導光して上面に出射するとともに、 この 出射光束の進行方向を下面がプリズ厶面のプリズ厶シ一トにより導光板上面の法 線方向に近い方向へ方向制御することによって、 液晶用バックライトとしての輝 度が向上し、 面光源装置の低消費電力化を図ることができる。 しかも、 蛍光ラン ブの直径とほぼ同じ厚さの導光板を用いることができ、 またコリメ一夕レンズ シートの厚さを小さくすることができることから、 薄型柽量化と狭額縁化をも満 たすことができる。 Further, in the liquid crystal display device according to the present invention, the luminous flux having the enhanced directivity guides the light guide plate で and emits it to the upper surface while maintaining high directivity, and the traveling direction of the emitted luminous flux The brightness of the backlight as a liquid crystal backlight can be controlled by controlling the direction of Power consumption of the surface light source device can be reduced. In addition, since a light guide plate having a thickness approximately equal to the diameter of the fluorescent lamp can be used, and the thickness of the collimating lens sheet can be reduced, the thickness can be reduced and the frame can be narrowed. be able to.

Claims

請求の範囲 The scope of the claims
1 . 下面に全反射を回避するための光反射処理を施した透明板からなる導光板と、 前記導光板の少なくとも一側縁を入光面としてこの入光面に沿って設置した冷陰 極蛍光灯と、 前記冷陰極蛍光灯の周囲に前記入光面との対面部分を除 、て設置し たランプ反射シートと、 前記導光板の上面に設置したプリズムシートと、 前記導 光板の下部に設置した反射シートと、 前記ブリズムシ一卜の上面に設置した液晶 表示素子とを少なくとも有し、 前記冷陰極蛍光灯と前記導光板の入光面の間に前 記冷陰極蛍光灯から出射する光をコリメ一トして前記入光面に導入するコリメ一 夕レンズシ一トを設置したことを特徴とする液晶表示装置。  1. A light guide plate made of a transparent plate whose lower surface has been subjected to a light reflection treatment for avoiding total reflection, and a cold cathode disposed along at least one side edge of the light guide plate as a light incident surface. A fluorescent lamp, a lamp reflection sheet provided around the cold cathode fluorescent lamp except for a portion facing the light incident surface, a prism sheet provided on an upper surface of the light guide plate, and a lower portion of the light guide plate. Light emitted from the cold cathode fluorescent lamp between the cold cathode fluorescent lamp and the light incident surface of the light guide plate, at least comprising a reflection sheet provided and a liquid crystal display element provided on the upper surface of the breath sheet. A collimating lens sheet for collimating and introducing the collimated light into the light incident surface.
2 . 請求の範囲第 1項において、 前記コリメ一夕レンズシートの一方の面に前記 冷陰極蛍光灯の長手方向と平行なプリズム溝を有し、 前記一方の面を前記導光板 の入光面に対して微小距離だけ雜間させて設置したことを特徴とする液晶表示装 置。  2. The light guide plate according to claim 1, further comprising a prism groove parallel to a longitudinal direction of the cold cathode fluorescent lamp on one surface of the collimating overnight lens sheet, and the one surface being a light incident surface of the light guide plate. A liquid crystal display device, which is installed with a small distance from it.
3 . 請求の範囲第 1項において、 前記コリメータレンズシートの一方の面に前記 冷陰極蛍光灯の長手方向と直角なプリズム溝を有し、 前記一方の面を前記導光板 の入光面に対して微小距離だけ離間させて設置したことを特徴とする液晶表示装 。  3. The collimator lens sheet according to claim 1, wherein the collimator lens sheet has, on one surface thereof, a prism groove perpendicular to a longitudinal direction of the cold cathode fluorescent lamp, and the one surface with respect to a light incident surface of the light guide plate. A liquid crystal display device characterized by being installed at a very small distance from the display.
4 . 請求の範囲第 1項において、 前記コリメ一夕レンズシートの一方の面に多数 の凸レンズを有し、 前記一方の面またはその反対側の面の何れかを前記導光板の 入光面に対して微小距雜だけ離間させて設置したことを特徴とする液晶表示装置。  4. The claim 1, wherein the collimating lens sheet has a plurality of convex lenses on one surface, and one of the one surface and the opposite surface is provided on a light incident surface of the light guide plate. A liquid crystal display device which is set apart from a small distance.
5 . 請求の範囲第 1項において、 前記コリメ一夕レンズシートの一方の面に交差 する二種類のプリズム溝を有し、 前記一方の面を前記導光板の入光面に対して微 小距離だけ雜間させて設置したことを特徴とする液晶表示装置。  5. The collimating lens sheet according to claim 1, further comprising two types of prism grooves intersecting one surface of the collimating lens sheet, wherein the one surface is a minute distance from a light incident surface of the light guide plate. A liquid crystal display device characterized by being installed only in a room.
6 . 請求の範囲第 1項において、 前記コリメ一夕レンズシートの一方の面に前記 冷陰極蛍光灯の長手方向と平行なプリズ厶溝を有し、 前記一方の面を前記導光板 の入光面に密着させて設置したことを特徴とする液晶表示装置。  6. The light guide plate according to claim 1, further comprising a prism groove parallel to a longitudinal direction of the cold-cathode fluorescent lamp on one surface of the collimating lens sheet, and the one surface being incident on the light guide plate. A liquid crystal display device, which is provided in close contact with a surface.
7 . 請求の範囲第 1項において、 前記コリメ一夕レンズシートの一方の面に前記 冷陰極蛍光灯の長手方向と直角なプリズム溝を有し、 前記一方の面を前記導光板 の入光面に密着させて設置したことを特徴とする液晶表示装置。 7. The collimating lens sheet according to claim 1, wherein one surface of the collimating lens sheet has a prism groove perpendicular to a longitudinal direction of the cold cathode fluorescent lamp, and the one surface is a light incident surface of the light guide plate. A liquid crystal display device characterized by being installed in close contact with a liquid crystal display.
8 . 請求の範囲第 1項において、 前記コリメ一夕レンズシートの一方の面に多数 の微小凸レンズを有し、 前記一方の面またはその反対側の面の何れかを前記導光 板の入光面に密着させて設置したことを特徴とする液晶表示装置。 8. The light guide plate according to claim 1, wherein the collimating lens sheet has a large number of minute convex lenses on one surface, and either one of the one surface or the surface on the opposite side is incident on the light guide plate. A liquid crystal display device, which is provided in close contact with a surface.
9 . 請求の範囲第 1項において、 前記コリメ一夕レンズシートの一方の面に交差 する二種類のプリズム溝を有し、 前記一方の面を前記導光板の入光面に密着させ て設置したことを特徴とする液晶表示装置。  9. In Claim 1, the prism sheet has two types of prism grooves intersecting with one surface of the collimating lens sheet, and the one surface is placed in close contact with the light incident surface of the light guide plate. A liquid crystal display device characterized by the above-mentioned.
1 0 . 下面に全反射を回避するための光反射処理を施した透明板からなる導光板 と、 前記導光板の少なくとも一側縁を入光面としてこの入光面に沿って設置した 冷陰極蛍光灯と、 前記冷陰極蛍光灯の周囲に前記入光面との対面部分を除いて設 置したランプ反射シートと、 前記導光板の上面に設置したプリズムシートと、 前 記導光板の下部に設置した反射シートと、 前記プリズムシートの上面に設置した 液晶表示素子とを少なくとも有し、 前記冷陰極蛍光灯と前記導光板の入光面の間 に前記冷陰極蛍光灯から出射する光をコリメートして前記入光面に導入するコリ メータレンズシ一トを設置すると共に、 前記プリズムシー卜が前記液晶表示素子 側に平坦面を有し前記導光扳側に前記冷陰極蛍光灯の長手方向に平行な多数のブ リズム溝を備えた一枚の透明シートから構成したことを特徴とする液晶表示装置。  10. A light guide plate made of a transparent plate whose lower surface has been subjected to light reflection processing to avoid total reflection, and a cold cathode disposed along the light incident surface with at least one side edge of the light guide plate as a light incident surface A fluorescent lamp, a lamp reflecting sheet provided around the cold cathode fluorescent lamp except for a portion facing the light incident surface, a prism sheet provided on an upper surface of the light guide plate, and a lower portion of the light guide plate. And a liquid crystal display device disposed on the upper surface of the prism sheet. The light emitted from the cold cathode fluorescent lamp is collimated between the cold cathode fluorescent lamp and the light incident surface of the light guide plate. A collimator lens sheet to be introduced into the light entrance surface, and the prism sheet has a flat surface on the liquid crystal display element side and a longitudinal direction of the cold cathode fluorescent lamp on the light guide 扳 side. Many breath grooves parallel to A liquid crystal display device comprising a single transparent sheet provided with the liquid crystal display device.
1 1 . 下面に全反射を回避するための光反射処理を施した透明板からなる導光板 と、 前記導光板の少なくとも一側緣を入光面としてこの入光面に沿って設置した 冷陰極蛍光灯と、 前記冷陰極蛍光灯の周囲に前記入光面との対面部分を除いて設 置したランプ反射シートと、 前記導光板の上面に設置したプリズムシートと、 前 記導光板の下部に設置した反射シートと、 前記プリズムシ一卜の上面に設置した 液晶表示素子とを少なくとも有し、 前記冷陰極蛍光灯と前記導光板の入光面の間 に前記冷陰極蛍光灯から出射する光をコリメートして前記入光面に導入するコリ メータレンズシートを設置すると共に、 前記プリズムシートが、 前記液晶表示素 子側に平坦面を有し前記導光板側に前記冷陰極蛍光灯の長手方向に平行な多数の プリズム溝を備えた 1枚の透明シートおよび、 前記導光扳側に平坦面を有し前記 液晶表示素子側にそれぞれプリズム溝を有する 2枚の透明シートの積層からなり、 前記 2枚の透明シートの各ブリズム溝方向が前記 1枚の透明シートのブリズ厶溝 に対して互 、に等しい角度をもつて交差してなることを特徴とする液晶表示装置。 11. Light guide plate made of a transparent plate whose lower surface has been subjected to light reflection processing to avoid total reflection, and a cold cathode installed along this light entrance surface with at least one side of the light guide plate as a light entrance surface A fluorescent lamp, a lamp reflecting sheet provided around the cold cathode fluorescent lamp except for a portion facing the light incident surface, a prism sheet provided on an upper surface of the light guide plate, and a lower portion of the light guide plate. At least a reflection sheet provided, and a liquid crystal display element provided on an upper surface of the prism sheet, and emits light emitted from the cold cathode fluorescent lamp between the cold cathode fluorescent lamp and a light incident surface of the light guide plate. A collimator lens sheet for collimating and introducing the light into the light incident surface is provided, and the prism sheet has a flat surface on the liquid crystal display element side and a longitudinal direction of the cold cathode fluorescent lamp on the light guide plate side. Multiple parallel prisms And a laminate of two transparent sheets each having a flat surface on the light guide side and a prism groove on the liquid crystal display element side, respectively. A liquid crystal display device characterized in that the direction of the bristles groove intersects with the one of the one transparent sheet at an angle equal to the width of the bluish groove.
1 2 . 請求の範囲第 1項、 第 1 0項、 または第 1 1項の何れかにおいて、 前記導 光板に微小な中空ビーズを分散してなることを特徴とする液晶表示装置。 12. The liquid crystal display device according to any one of claims 1, 10, and 11, wherein minute hollow beads are dispersed in the light guide plate.
PCT/JP1995/002332 1994-11-24 1995-11-15 Liquid crystal display device WO1996016348A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6/289466 1994-11-24
JP28946694 1994-11-24

Publications (1)

Publication Number Publication Date
WO1996016348A1 true WO1996016348A1 (en) 1996-05-30

Family

ID=17743644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002332 WO1996016348A1 (en) 1994-11-24 1995-11-15 Liquid crystal display device

Country Status (1)

Country Link
WO (1) WO1996016348A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051029A1 (en) * 2002-12-04 2004-06-17 Martini Spa Luminous tile
WO2007087031A1 (en) * 2006-01-13 2007-08-02 Optical Research Associates Display systems including light enhancing structures with arrays of elongate features
CN100437285C (en) * 2005-09-21 2008-11-26 财团法人工业技术研究院 Brightness-increasing module and light source device including same
CN104048207A (en) * 2014-06-13 2014-09-17 苏州科利亚照明科技有限公司 Lamp holder with integrated light guide plate
KR101443386B1 (en) 2007-12-29 2014-09-24 엘지디스플레이 주식회사 Optical plate, backlight unit and liquid crystal display device having the same
US8902484B2 (en) 2010-12-15 2014-12-02 Qualcomm Mems Technologies, Inc. Holographic brightness enhancement film
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US9075177B2 (en) 2006-01-13 2015-07-07 Avery Dennison Corporation Light enhancing structures with a plurality of arrays of elongate features
US9110289B2 (en) 1998-04-08 2015-08-18 Qualcomm Mems Technologies, Inc. Device for modulating light with multiple electrodes
JPWO2014132726A1 (en) * 2013-02-28 2017-02-02 Nsマテリアルズ株式会社 Liquid crystal display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439804A (en) * 1990-06-06 1992-02-10 Hiroshi Saito Light emitting device
JPH05203950A (en) * 1992-01-27 1993-08-13 Sekisui Chem Co Ltd Condenser sheet and panel light emitting device
JPH05341132A (en) * 1992-06-12 1993-12-24 Fujitsu Ltd Surface light source unit
JPH0682635A (en) * 1992-07-07 1994-03-25 Sekisui Chem Co Ltd Surface light source device
JPH06174929A (en) * 1992-05-15 1994-06-24 Fujitsu Ltd Backlight device and condenser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439804A (en) * 1990-06-06 1992-02-10 Hiroshi Saito Light emitting device
JPH05203950A (en) * 1992-01-27 1993-08-13 Sekisui Chem Co Ltd Condenser sheet and panel light emitting device
JPH06174929A (en) * 1992-05-15 1994-06-24 Fujitsu Ltd Backlight device and condenser
JPH05341132A (en) * 1992-06-12 1993-12-24 Fujitsu Ltd Surface light source unit
JPH0682635A (en) * 1992-07-07 1994-03-25 Sekisui Chem Co Ltd Surface light source device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MICROFILM OF THE SPECIFICATION AND DRAWINGS ANNEXED TO THE WRITTEN APPLICATION OF JAPANESE UTILITY MODEL, Application No. 47191/1989 (Laid-Open No. 138725/1990), (STANLEY ELECTRIC CO., LTD.), (20.11.90). *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US9110289B2 (en) 1998-04-08 2015-08-18 Qualcomm Mems Technologies, Inc. Device for modulating light with multiple electrodes
WO2004051029A1 (en) * 2002-12-04 2004-06-17 Martini Spa Luminous tile
CN100437285C (en) * 2005-09-21 2008-11-26 财团法人工业技术研究院 Brightness-increasing module and light source device including same
WO2007087031A1 (en) * 2006-01-13 2007-08-02 Optical Research Associates Display systems including light enhancing structures with arrays of elongate features
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US9075177B2 (en) 2006-01-13 2015-07-07 Avery Dennison Corporation Light enhancing structures with a plurality of arrays of elongate features
KR101443386B1 (en) 2007-12-29 2014-09-24 엘지디스플레이 주식회사 Optical plate, backlight unit and liquid crystal display device having the same
US8902484B2 (en) 2010-12-15 2014-12-02 Qualcomm Mems Technologies, Inc. Holographic brightness enhancement film
JPWO2014132726A1 (en) * 2013-02-28 2017-02-02 Nsマテリアルズ株式会社 Liquid crystal display
CN104048207A (en) * 2014-06-13 2014-09-17 苏州科利亚照明科技有限公司 Lamp holder with integrated light guide plate

Similar Documents

Publication Publication Date Title
US5410454A (en) Device for supplying incident light to edge light panels
JP3632208B2 (en) LIGHTING DEVICE AND LIQUID CRYSTAL DISPLAY DEVICE AND ELECTRONIC DEVICE USING THE SAME
US6174064B1 (en) Light guide panel and plane illuminator apparatus
US5709447A (en) Lighting device
JP4980425B2 (en) display
US6379017B2 (en) Illuminating system
JP4035998B2 (en) Surface light source device, diffusion plate, and liquid crystal display device
KR20050042145A (en) Flat light source device
KR20030025817A (en) Apparatus of surface light source
WO2000060280A1 (en) Illuminator and liquid crystal display comprising the illuminator
JP3199504B2 (en) Lighting equipment
JP2002245825A (en) Backlight, liquid crystal display device and electronic equipment
WO1996016348A1 (en) Liquid crystal display device
JP2005085671A (en) Light guide plate and plane light source device
JP3558321B2 (en) Sidelight type surface light source device and light guide plate
JP2001210129A (en) Sidelight surface light emitting device
JP3311822B2 (en) Hollow light guide plate body and hollow light guide plate using the same
JPH11305225A (en) Light transmission element, surface light source device and display device using the surface light source device
TWI399590B (en) Liquid crystal display, backlight module thereof and light guide structure thereof
KR20010046581A (en) Backlight device for display
JP3472510B2 (en) Surface emitting device
JP3411858B2 (en) Light guide plate and flat lighting device
JPH07182914A (en) Plane luminaire
JPH1164641A (en) Illuminator by upward irradiation and liquid crystal display device
JP3417261B2 (en) Lighting equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)