WO1996041043A1 - Carbide nanomaterials - Google Patents

Carbide nanomaterials Download PDF

Info

Publication number
WO1996041043A1
WO1996041043A1 PCT/US1996/009675 US9609675W WO9641043A1 WO 1996041043 A1 WO1996041043 A1 WO 1996041043A1 US 9609675 W US9609675 W US 9609675W WO 9641043 A1 WO9641043 A1 WO 9641043A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbide
nanorod
article
nanorods
boron
Prior art date
Application number
PCT/US1996/009675
Other languages
French (fr)
Inventor
Charles M. Lieber
Hongjie Dai
Original Assignee
President And Fellows Of Harvard College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by President And Fellows Of Harvard College filed Critical President And Fellows Of Harvard College
Publication of WO1996041043A1 publication Critical patent/WO1996041043A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/12Chemical after-treatment of artificial filaments or the like during manufacture of carbon with inorganic substances ; Intercalation
    • D01F11/126Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/907Oxycarbides; Sulfocarbides; Mixture of carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/921Titanium carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/97Preparation from SiO or SiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/991Boron carbide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2916Rod, strand, filament or fiber including boron or compound thereof [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Definitions

  • CARBIDE NANOMATERIA S Background of the Invention The invention is in the field of nanometer scale materials.
  • nano aterials examples include hollow carbon graphite tubes with diameters between 1 and 75 nm, and lengths up to one micron. Such nanotubes are produced, for example, in reactors at 550-850 °C by mixing hydrogen and carbon-containing gases in the presence of a catalyst. Strategies used to prepare filled nanotubes include in-situ arc growth using metal/carbon composites and the loading of nanotubes using liquid reagents. In addition, graphite-coated, partially-hollow lanthanum carbide particles with overall diameters between 20 and 40 nm have been made.
  • whiskers are crystalline solid structures generally having diameters between 1-100 microns, although diameters as small as 0.1 microns have been observed.
  • the invention features a carbide article consisting essentially of covalently bonded elements M 1 , M 2 and C having the molar ratio M 1 :!! 2 : ⁇ :l:y:x.
  • the first element M 1 is selected from the first element group consisting of titanium, silicon, niobium, iron, boron, tungsten, molybdenum, zirconium, hafnium, vanadium, tantalum, chromium, manganese, technetium, rhenium, osmium, cobalt, nickel, a lanthanide series element, scandium, yttrium, and lanthanum.
  • the second element M 2 is selected from a second element group consisting of nitrogen, boron, phosphorus, zinc, aluminum, copper, germanium, cadmium, indium, tin, lead, thallium, and the elements in the first element group, provided that the first and second elements are not the same.
  • the value of y is between 0 and 0.9 (e.g., y is 0 or y is between 0.1 and 0.9).
  • the third element C is sp 3 hybridized carbon, and the value of x is between 0.1 and 2.1 (e.g., between 0.9 and 1.1).
  • the article has an aspect ratio of between 10 and 1000 (e.g., between 50 and 500, or between 100 and 1000) , and has a shorter axis of between 1 and 40 nanometers (e.g., between 1 and 30 nm) .
  • the article has a single crystal structure, a polycrystalline structure, or an amorphous structure.
  • element M 1 is selected from the group consisting of titanium, silicon, niobium, iron, boron, tungsten, molybdenum, or gadolinium, or from the group consisting of titanium and silicon.
  • second element M 2 is selected from the group consisting of boron and nitrogen, wherein y is greater than 0 (e.g., between 0.1 and 0.9).
  • the article is a nanorod.
  • the nanoscale carbide articles of the invention are useful materials having metallic, semiconducting, insulating, superconducting, or magnetic properties, or a combination thereof.
  • the novel dimensions of the disclosed articles permit the building of nanostructures and superior metallic, ceramic, and polymer composites.
  • the tensile strength (kg/mm 2 ) of the disclosed nanorods is greater than that of the corresponding whisker.
  • Some embodiments have a lower density of stacking faults, as measured by TEM and normalized to diameter, than prior larger materials.
  • SiC nanorods disclosed herein have a lower density of stacking faults than the Sic whiskers as described by G. McMahon et al., J. Mater. Sci . 26:5655- 5663 (1991) .
  • the invention encompasses not only the individually identified carbide articles, but also other nanoscale materials that are made according to processes disclosed herein.
  • the invention also encompasses the methods disclosed herein for making carbide articles such as nanorods.
  • the term "carbide” means a compound of carbon and one or two elements more electropositive than carbon, excluding hydrogen.
  • the atoms in a carbide are covalently bound, the carbon atoms being generally sp 3 hybridized as in Ta 2 C and Cr 3 C 2 .
  • pure graphitic carbon e.g., nanotube starting material
  • binary carbides include TiC x , NbC x , and SiC x (wherein x is between 0.5 and 1.1), Fe 3 C x (wherein x is between 0.8 and 1.2), and BC X (wherein x is between 0.1 and 0.3).
  • binary carbides include ZrC x , HfC x , VC X , TaC x , CrC x , MoC x , WC X , NiC x , LaC x , CeC x , PrC x , NdC x , SmC x , GdC x , DyC x , HoC x , ErC x , and YbC x .
  • ternary carbides include carbonitrides, carboborides, and carbosilicides and others such as TiN y C x , MoN y C x , and SiN y C x , TiB y C x , TiTz- y C x , TiSi y C x , TiNb y C x , MoSi y C x , MoB y C x , MoGa y C x , MoAl y C x , FeB y C ⁇ , FeSi y C x , FeNi y C ⁇ , SiB y C ⁇ , TaSi y C ⁇ , WSi y C x , ZrSi y C x , NbSi y C x , CrSi y C x , NdB y C x , and Co y C x .
  • the values of x and y are, respectively, between 0.1 and 2.1 and between 0 and 0.9. Where y is 0, the carbide is a binary carbide consisting essentially of carbon and M 1 having the formula ratio of M 1 ⁇ . Where y is greater than 0 (e.g., between 0.1 and 0.9), the carbide is a ternary carbide consisting essentially of carbon, M 1 , and M 2 having the formula ratio M ⁇ y C...
  • the term "article” includes nanorods, sheets, cages, shaped forms, and irregular crystalline or amorphous forms, such as dendritic or starburst forms.
  • An article, such as a sheet may be substantially planar, wavy, corrugated, or helical.
  • An article may have one or more pores, grooves, or other textured topology.
  • nanorod means a space ⁇ filling article with an aspect ratio of at least 10 (e.g., at least 50, at least 100, or at least 500). In general, the aspect ratio is between 25 and 1000, (e.g., between 100 and 1000, between 50 and 500, between 100 and 500, or between 500 and 1000) .
  • a nanorod has a shorter axis of between 0.1 and 80 nm (e.g., between 1 and 40 nm, and preferably between 2 and 30 nm) . In other words, the length of a nanorod is between 0.02 and 50 ⁇ m, and preferably between 0.5 and 25 ⁇ m.
  • the disclosed nanorods are solid, being neither hollow with one or two open ends, nor hollow with two sealed ends.
  • impurities in or on the carbide lattice material such as oxygen (up to 10%) , halogen (up to 2%) , silicon (up to 5%) , tellurium (up to 1%) , and sp 2 hybridized carbon (up to 5%) .
  • the sources of these impurities are typically the reactants (metal oxide, transport molecules and transport agents) used in forming volatile metal and nonmetal species.
  • These impurities are covalently bonded within the lattice, covalently bonded to or physically adsorbed to the surface of the nanorod, or located in interstitial sites (caged) within the lattice. In some embodiments, the presence of some impurities is desirable.
  • the presence of silicon is desirable to enhance or impart greater strength or fracture resistance for applications in intercombustion engines and gas turbines. It is believed that the term “consisting essentially of” allows for the above-described impurities.
  • the term “short axis” is equivalent to "diameter,” meaning the shortest dimension or cross-sectional thickness of a nanorod. Where a nanorod is, e.g., helical or networked, the diameter is always measured across the thickness of the rod, and not the overall diameter of the helix or the network, which is generally much greater than the diameter of the nanorod. In general, the diameter of a nanorod is substantially the same along the length of the nanorod.
  • a nanorod may have pores, grooves, or a fluctuating diameter (in an embodiments with a fluctuating diameter, the diameter is the average diameter) .
  • the term "length" means a longitudinal dimension (or approximation) of the nanorod that is orthogonal to the diameter of the nanorod. Length is not the overall size of a helix or overlapping network, which (if made of only one nanorod) is generally shorter than the length of the nanorod. If a helix or network is made of more than one nanorod, the length of a nanorod may be larger or smaller than the overall length of the helix or network.
  • the invention is based, in part, on the discovery that carbon nanotubes are essentially completely converted to solid, covalently bound binary (or ternary) carbide nanorods. Conversion of nanotubes to carbide materials is essentially complete. In general, greater than 70% and typically 80% of the carbide materials are nanorods (having an aspect ratio of at least 10 and a diameter between 1 and 40 nm) , the remaining 20% being carbide materials having aspect ratios less than 10, i.e., closer to particulates.
  • the nanorod products have been shown to consist of at least 90% (and generally 95%) sp 3 hybridized carbon and the designated metal or nonmetal elements M 1 and M 2 , the remaining 5-10% being impurities such as oxygen, silicon, halogen, or tellurium, or combinations thereof.
  • the disclosed nanorods have the formula ratio M 1 *- 2 ⁇ , and a diameter of between 1 and 40 nm and an aspect ratio of between 10 and 1000.
  • the diameter of the nanorods can be controlled in large part by the carbon nanotube precursor. In some embodiments that contain silicon, the diameter of the product increases slightly. This increase can be minimized by reducing reaction time.
  • Element M 1 is selected from the first element group consisting of titanium, silicon, niobium, iron, boron, tungsten, molybdenum, zirconium, hafnium, vanadium, tantalum, chromium, manganese, technetium, rhenium, osmium, cobalt, nickel, a lanthanide series element (i.e., cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium) , scandium, yttrium, and lanthanum.
  • Preferred M 1 are titanium, silicon, niobium, iron, boron, gadolinium, tungsten, molybdenum, zirconium, hafnium, vanadium, tantalum, and chrom
  • Element M 2 is selected from the group consisting of nitrogen, boron, phosphorus, zinc, aluminum, copper, germanium, cadmium, indium, tin, lead, thallium, and the elements in the first element group (i.e., titanium, silicon, niobium, iron, boron, tungsten, molybdenum, gadolinium, zirconium, hafnium, vanadium, tantalum, chromium, manganese, technetium, rhenium, osmium, cobalt, nickel, cerium, praseodymium, neodymium, promethium, samarium, europium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, scandium, yttrium, and lanthanum) .
  • the elements in the first element group i.e., titanium, silicon, niobium,
  • M 2 are selected f om nitrogen and boron.
  • the ratio x of carbon to M 1 in a binary carbide (M 1 C X ) or a ternary carbide (M 1 -* 2 ⁇ ) is between 0.1 to 2.1.
  • M 1 is Ti, Zr, or Hf
  • x is preferably between 0.5 and 1.1, and more preferably between 0.9 and 1.1 (i.e., stoichiometric) .
  • M 1 is V, Nb, or Ta
  • x is preferably between 0.7 and 2.1.
  • TH transmission electron microscopy
  • energy-dispersive X-ray fluorescence to measure presence of nonmetals, metals, and impurities having a mass greater than or equal to sodium
  • electron energy loss spectroscopy to measure the hybridization of carbon
  • powder X-ray diffraction (XRD) to measure the crystal lattice structure
  • convergent beam electron diffraction to measure lattice symmetry or the lattice constant a (A) .
  • the nanorods are also characterized by crystal structure (amorphous, polycrystalline, or single crystal) .
  • the crystal structure can be affected, in part, by the temperature and time of reaction.
  • amorphous carbide materials are generally obtained at low reaction temperatures, e.g., below 1000 °C or even below 500 °C.
  • polycrystalline materials are generally obtained under conditions where: (i) nucleation of the carbide occurs at multiple uncorrelated sites along the carbon reactant (e.g., nanotube) and (ii) there is insufficient energy or time for the uncorrelated crystalline domains to rearrange into a single crystal structure. Nevertheless, temperatures required to produce polycrystalline materials are always higher than temperatures required to produce an amorphous phase of the same carbide.
  • single crystal materials are generally obtained when nucleation of the carbide occurs at a single site (e.g., an end of a carbon nanotube) , and the growth of the carbide phase spreads outward from this single site.
  • a polycrystalline material to rearrange into a single crystal material at temperatures sufficiently high to promote diffusion and atomic rearrangement.
  • a single crystal material consists of a single domain which may have few defects (high quality single crystal) or many defects (low quality single crystal) .
  • the radial composition for single crystal nanorods are uniform; however, the invention encompasses nonuniform radial doping in nanorods. While essentially straight nanorods are preferred, the invention also encompasses straight, helical, crosslinked, and networked geometries made of one or more nanorods.
  • the disclosed articles generally retain the qualitative properties of the corresponding bulk carbide.
  • a NbC nanorod has superconductive properties
  • a Fe 3 C nanorod has magnetic properties (see Examples 3 and 5, respectively) .
  • the disclosed nanorods compared with large carbide whiskers, have a increased surface-to-volume ratio, which improves mechanical strength (e.g., tensile strength) and chemical reactivity.
  • the nanorods disclosed herein are synthesized by the reaction of carbon nanotubes with a volatile metal or nonmetal species.
  • the reaction is carried out under static conditions in a sealed quartz tube with the reaction temperature dictated by the gas-phase transport of the oxide/halide reactants and carbide growth (see Examples 1-5) .
  • the carbon nanotube reactants need not be anchored or tensed in any way to produce essentially straight nanorod products.
  • Reaction temperatures are generally between 500 and 2500 °C, and preferably between 600 and 1700 ⁇ C.
  • the reaction can be monitored by measuring the conversion of carbon nanotube to carbide article and the structure of the carbide article.
  • the carbon nanotube reactants used in these vapor- solid reactions were obtained from metal-catalyzed growth using ethylene and hydrogen, adapted from C.E. Snyder et al. WO 89/07163 (1989) , or are commercially available from Hyperion Catalysis International, Lexington MA. This procedure yields relatively pure nanotube samples compared with arc-discharge methods, although some nanotubes exhibit poor crystallinity.
  • nanotubes may be prepared by arc discharge procedures as described, for example, by S. Iijima, Nature 354:56-58 (1991), T.W. Ebbesen and P.M. Ajayan, Nature 358:220-222 (1992), and D.T. Colbert et al. Science 266:1218-1222 (1994).
  • a defect includes any irregularity or nonstoichiometery in the crystal structure, such as a missing carbon atom (vacancy) , a missing carbon-carbon bond (dislocation) , or a stacking fault.
  • Defects can be repaired or minimized by annealing the nanotubes in an inert (e.g., He or Ar) atmosphere at temperatures exceeding 1400 °C and preferably between
  • a volatile metal or nonmetal oxide species (source of M 1 , and M 2 if present) is obtained by combining commercially-available reagents selected from the group consisting of a pure metal or nonmetal, a metal or nonmetal oxide, a halogen transport molecule, and a halogen transport agent. At least one mole equivalent, and generally between 2 and 10 mole equivalents, of a metal or nonmetal reactant is used.
  • a carbon source e.g., nanotube
  • a carbon source is reacted with, for example, (i) a pure transition metal and a halogen transport molecule selected from the group consisting of I 2 , Br 2 , Cl 2 or a transport agent such as TeCl , or (ii) a metal or nonmetal oxide and a halogen transport agent to form a binary carbide.
  • Ternary carbides are formed from two corresponding metal or nonmetal reagents, such as a pure metal or nonmetal, a halogen transport molecule, and a nitrogen source such as N 2 or NH 3 .
  • Transition metals are generally not sufficiently volatile under reaction conditions, but will form volatile complexes with the above-described halogen reagents.
  • the transport agent TeCl 4 forms volatile species with most nonvolatile oxides, including Mn0 2 and Mo0 2 .
  • Some reactants are generated in situ, such as B 2 0 2 , which was generated in situ by heating elemental boron and Ti0 2 powder.
  • Specific examples of such reagents include TiO, T- 2 ' B 2 ° 2 ' FeCl 3 , and SiO. Additional examples and guidance are found in H. Schafer, Angew. Chem. Int. -Ed., Engl . 10:43-50 (1971).
  • Commercially-available reagents generally do not require pre-treatment before use, since their purity is typically ⁇ 99%.
  • binary carbides include ZrC x , HfC x , VC X , TaC x , CrC x , MoC x , WC X , and NiC x (formed, e.g., by reaction of pure metal and halogen transport molecule with a carbon source) ; and LaC x , CeC x , PrC x , NdC x , SmC x , GdC x , DyC x , HoC x , ErC x , and YbC x (formed, e.g., by reaction of metal oxide and halogen transport agent with a carbon source) .
  • ternary carbides include TiN y C x , MoN y C x , and SiN y C x (formed, e.g. , by reaction of pure metal/nonmetal, halogen transport molecule, and nitrogen or ammonia with a carbon source) ; TiB y C x , TiTa y C x , TiSi y C ⁇ , TiNb y C x , MoSi y C x , MoB y C x , MoGa y C x , MoAl y C x , FeB y C x , FeSi y C x , FeNi y C x , SiB y C x , TaSi y C x , WSi y C x , ZrSi y C x , NbSi y C x , CrSi y C x , and WCo y C x (formed
  • the mechanism involves template-mediated growth, whereby carbon nanotubes define the diameter of the product carbide nanorods formed following reaction with a volatile species. This is supported by the similarity of the average nanorod diameters (and morphologies in the case of polycrystalline NbC) to that of the starting nanotubes. Catalytic growth and/or sintering of small nanotubes may also be involved. In principle, template mediated growth will produce carbide nanorods of any stable metal carbide.
  • Solid carbide nanorods (Sic, Tie, NbC, Fe 3 C, and BC X ) have been prepared in high-yield with typical diameters between 2 and 30 nm and lengths up to 20 ⁇ m (see Examples 1-5 below) .
  • the disclosed nanoscale articles are used in the preparation of nanostructures having a superior combination of a uniquely small size and mechanical, electrical and/or magnetic properties, suitable for electrodes in nanoscale batteries and for high density magnetic recording media. Small diameters and high aspect ratios also make the disclosed articles useful as improved reinforcements in metal, ceramic, and organic polymer matrix composites.
  • a carbide article disclosed herein can be selected from a wide range of metal and nonmetal carbides to suit the chemical properties (e.g., resistance, reactivity) or physical properties (e.g., coefficient of thermal expansion) desired for a particular composite. Specific products include cutting tools, engineering composites such as gas turbine blades and automotive ceramics, and implantable medical devices such as artificial limbs and joints.
  • Conductive or semi- conductive nanorods are also useful as "defects" embedded within a superconductor to pin vortices in high- temperature, high critical current density superconductor wires (e.g. copper oxide) , see P. Le Doussal and D. R. Nelson, Physica C 232:69-74 (1994).
  • the disclosed nanoscale articles are used in basic research to probe the effects of confinement and dimensionality in metallic, semiconducting and superconducting materials.
  • Example 1 Titanium carbide nanorods were made according to two different methods, Method A and Method B.
  • Method A The starting mixture was composed of 20 mg of carbon nanotubes produced as described above, and a compacted, solid pellet consisting of a 10-fold molar excess of TiO powder. After sealing the starting mixture under vacuum (l x 10" 3 torr) in a quartz tube, the tube was placed in the center of a tube furnace equilibrated at a temp-erature of 1350 °C for 12 hours. Then the furnace was turned off and allowed to cool naturally to room temperature.
  • Method B In the second method, the same procedure described in Method A was followed, except an amount of solid iodine corresponding to 1 mg I 2 per cm 3 of the quartz reaction tube was added to the tube, and the quartz tube was heated at 1200 °C for 24 hours.
  • TEM Transmission electron microscopy
  • SiC nanorods were synthesized according to two methods. In the first, the same procedure described in Method A, Example 1 was followed, except SiO powder was substituted for TiO powder, and the quartz tube was heated at 1300 - 1400 °C for 2 hours, then cooled to room temperature over an additional 2 hours. The silicon carbide nanorod product was blue-green.
  • Example 1 In the second, the same procedure described in Method B, Example 1 was followed, except SiO powder was substituted for TiO powder and the quartz tube was heated at 1150 °C for 2 hours. Structural and composition analyses of the material produced from the reaction of carbon nanotubes with Si and I 2 were consistent with the formation of silicon carbide (SiC) nanorods. TEM images showed that the SiC nanorods produced from this reaction were relatively straight, solid rods. The diameters of the SiC rods produced in the Si + I 2 reaction at 1200 °C were typically 2-20 nm (similar to the diameters of the carbon nanotube reactants) , with lengths around 1 ⁇ m.
  • SiC silicon carbide
  • the rod axes lay along the [111] direction in all of the nanorods prepared at 1300 - 1400 ⁇ C using SiO as the volatile silicon reactant, but at the lower Si+I 2 reaction temperatures (1100 - 1200 ⁇ C) this direction was not unique.
  • a high-resolution TEM image of one 7 nm diameter Sic nanorod produced at 1200 °C showed that the rod axis lay along the [100] direction, although small defect regions with a [111] direction were also present.
  • Example 3 Twenty milligrams of carbon nanotubes and a 10- fold molar excess of pelleted elemental niobium powder were sealed under vacuum (1 x 10" 3 torr) with an amount of iodine corresponding to 1 mg/cm 3 volume of the quartz reaction tube. The tube was placed in the center of a tube furnace equilibrated at 750 °C for 35 hours, then cooled to room temperature in 30 minutes. The quartz tube was opened to atmosphere, and the remaining unreacted Nb was removed in pellet form. The black nanorod product was poured from the quartz reaction tube, washed thoroughly with ethanol, and then dried.
  • the present reaction conditions also yielded unique morphologies, such as helical nanorods, which are believed to result from a direct conversion of helical carbon nanotube reactants.
  • the NbC nanorods had diameters of between 2 and 30 nm, and lengths generally greater than 1 micron.
  • Example 4 Twenty milligrams of carbon nanotubes and a 10- fold molar excess of anhydrous FeCl 3 powder were sealed under vacuum (1 x 10" 3 torr) . The tube was placed in the center of a tube furnace equilibrated at 1350 °C for 12 hours, then cooled to room temperature in 2 hours. The quartz tube was opened to atmosphere, and the remaining unreacted FeCl 3 was removed from the black nanorod product by repeated washing with ethanol. The black Fe 3 C nanorod product was poured from the quartz reaction tube was dried in air.
  • the solid, amorphous nanorods consisted of covalently bonded Fe and C. Magnetization measurements showed that the iron carbide nanorods were ferromagnetic.
  • the iron carbide nanorods had diameters of between 2 and 30 nm, and lengths generally greater than 1 micron.
  • Elemental boron powder and titanium dioxide powder were mixed thoroughly in a 1:1 molar ratio and placed in a crucible boat in an amount equivalent to a 10-fold molar excess relative to 20 mg of carbon nanotubes.
  • Twenty milligrams of carbon nanotubes and the B-Ti0 2 mixture were separately placed in a horizontal quartz tube open at both ends, and in turn, the horizontal quartz tube was placed in a horizontal tube furnace.
  • the end of the quartz tube nearest to the B-Ti0 2 mixture was fitted with a gas inlet through which argon gas was slowly flowed.
  • the other end of the quartz tube (nearest to the nanotubes) was fitted with a flexible tube connected to a bubbler. The argon flow was adjusted to produce about 1 bubble/second.
  • the furnace temperature was increased to 1400 °C over a period of 1 hour.
  • the furnace was maintained at 1400 °C for 2 hours, turned off, and allowed to cool naturally to room temperature.
  • the quartz tube was opened to atmosphere, and the remaining unreacted B-Ti0 2 was removed in the crucible boat.
  • the black nanorod product was poured from the reaction tube, washed thoroughly with ethanol, and dried.
  • the solid nanorods consisted of polycrystalline, covalently bonded boron and carbon.
  • the boron carbide nanorods had diameters of between 2 and 30 nm, and lengths generally greater than 1 micron.
  • the nanorods were shown to have insulating properties. Using a scanning probe microscope and modified lithography techniques, a single nanorod was contacted on one end with a gold electrode. A second movable probe electrode was contacted with the single nanorod at different points, and conductivity was measured.

Abstract

A nanoscale carbide article consisting essentially of covalently bounded elements M1, M2, and C having the molar ratio M1:M2:C::1:y:x, wherein the article has an aspect ratio of between 10 and 1000 and has a shorter axis of between 1 and 40 nanometers.

Description

CARBIDE NANOMATERIA S Background of the Invention The invention is in the field of nanometer scale materials.
Examples of nano aterials include hollow carbon graphite tubes with diameters between 1 and 75 nm, and lengths up to one micron. Such nanotubes are produced, for example, in reactors at 550-850 °C by mixing hydrogen and carbon-containing gases in the presence of a catalyst. Strategies used to prepare filled nanotubes include in-situ arc growth using metal/carbon composites and the loading of nanotubes using liquid reagents. In addition, graphite-coated, partially-hollow lanthanum carbide particles with overall diameters between 20 and 40 nm have been made.
In contrast to nanoscale materials, whiskers are crystalline solid structures generally having diameters between 1-100 microns, although diameters as small as 0.1 microns have been observed. gfflnηijiTY of th? Invention The invention features a carbide article consisting essentially of covalently bonded elements M1, M2 and C having the molar ratio M1:!!2:^:l:y:x. The first element M1 is selected from the first element group consisting of titanium, silicon, niobium, iron, boron, tungsten, molybdenum, zirconium, hafnium, vanadium, tantalum, chromium, manganese, technetium, rhenium, osmium, cobalt, nickel, a lanthanide series element, scandium, yttrium, and lanthanum. The second element M2 is selected from a second element group consisting of nitrogen, boron, phosphorus, zinc, aluminum, copper, germanium, cadmium, indium, tin, lead, thallium, and the elements in the first element group, provided that the first and second elements are not the same. The value of y is between 0 and 0.9 (e.g., y is 0 or y is between 0.1 and 0.9). The third element C is sp3 hybridized carbon, and the value of x is between 0.1 and 2.1 (e.g., between 0.9 and 1.1). The article has an aspect ratio of between 10 and 1000 (e.g., between 50 and 500, or between 100 and 1000) , and has a shorter axis of between 1 and 40 nanometers (e.g., between 1 and 30 nm) .
In certain embodiments, the article has a single crystal structure, a polycrystalline structure, or an amorphous structure. Preferably, element M1 is selected from the group consisting of titanium, silicon, niobium, iron, boron, tungsten, molybdenum, or gadolinium, or from the group consisting of titanium and silicon. Preferably, second element M2 is selected from the group consisting of boron and nitrogen, wherein y is greater than 0 (e.g., between 0.1 and 0.9). In one aspect, the article is a nanorod.
The nanoscale carbide articles of the invention are useful materials having metallic, semiconducting, insulating, superconducting, or magnetic properties, or a combination thereof. The novel dimensions of the disclosed articles permit the building of nanostructures and superior metallic, ceramic, and polymer composites. For example, the tensile strength (kg/mm2) of the disclosed nanorods is greater than that of the corresponding whisker. Some embodiments have a lower density of stacking faults, as measured by TEM and normalized to diameter, than prior larger materials. For example, SiC nanorods disclosed herein have a lower density of stacking faults than the Sic whiskers as described by G. McMahon et al., J. Mater. Sci . 26:5655- 5663 (1991) . The invention encompasses not only the individually identified carbide articles, but also other nanoscale materials that are made according to processes disclosed herein. The invention also encompasses the methods disclosed herein for making carbide articles such as nanorods.
Other features or advantages of the present invention will be apparent from the following detailed description of the invention, and also from the appending claims. Terms
As used herein, the term "carbide" means a compound of carbon and one or two elements more electropositive than carbon, excluding hydrogen. The atoms in a carbide are covalently bound, the carbon atoms being generally sp3 hybridized as in Ta2C and Cr3C2. In contrast, pure graphitic carbon (e.g., nanotube starting material) is sp2 hybridized. Examples of binary carbides include TiCx, NbCx, and SiCx (wherein x is between 0.5 and 1.1), Fe3Cx (wherein x is between 0.8 and 1.2), and BCX (wherein x is between 0.1 and 0.3). Additional examples of binary carbides include ZrCx, HfCx, VCX, TaCx, CrCx, MoCx, WCX, NiCx, LaCx, CeCx, PrCx, NdCx, SmCx, GdCx, DyCx, HoCx, ErCx, and YbCx. Examples of ternary carbides include carbonitrides, carboborides, and carbosilicides and others such as TiNyCx, MoNyCx, and SiNyCx, TiByCx, TiTz-yCx, TiSiyCx, TiNbyCx, MoSiyCx, MoByCx, MoGayCx, MoAlyCx, FeByCχ, FeSiyCx, FeNiyCχ, SiByCχ, TaSiyCχ, WSiyCx, ZrSiyCx, NbSiyCx, CrSiyCx, NdByCx, and CoyCx. The values of x and y are, respectively, between 0.1 and 2.1 and between 0 and 0.9. Where y is 0, the carbide is a binary carbide consisting essentially of carbon and M1 having the formula ratio of M1^. Where y is greater than 0 (e.g., between 0.1 and 0.9), the carbide is a ternary carbide consisting essentially of carbon, M1, and M2 having the formula ratio M^yC...
As used herein, the term "article" includes nanorods, sheets, cages, shaped forms, and irregular crystalline or amorphous forms, such as dendritic or starburst forms. An article, such as a sheet, may be substantially planar, wavy, corrugated, or helical. An article may have one or more pores, grooves, or other textured topology.
As used herein, the term "nanorod" means a space¬ filling article with an aspect ratio of at least 10 (e.g., at least 50, at least 100, or at least 500). In general, the aspect ratio is between 25 and 1000, (e.g., between 100 and 1000, between 50 and 500, between 100 and 500, or between 500 and 1000) . A nanorod has a shorter axis of between 0.1 and 80 nm (e.g., between 1 and 40 nm, and preferably between 2 and 30 nm) . In other words, the length of a nanorod is between 0.02 and 50 μm, and preferably between 0.5 and 25 μm. The disclosed nanorods are solid, being neither hollow with one or two open ends, nor hollow with two sealed ends.
There may be impurities in or on the carbide lattice material such as oxygen (up to 10%) , halogen (up to 2%) , silicon (up to 5%) , tellurium (up to 1%) , and sp2 hybridized carbon (up to 5%) . The sources of these impurities are typically the reactants (metal oxide, transport molecules and transport agents) used in forming volatile metal and nonmetal species. These impurities are covalently bonded within the lattice, covalently bonded to or physically adsorbed to the surface of the nanorod, or located in interstitial sites (caged) within the lattice. In some embodiments, the presence of some impurities is desirable. For example, the presence of silicon is desirable to enhance or impart greater strength or fracture resistance for applications in intercombustion engines and gas turbines. It is believed that the term "consisting essentially of" allows for the above-described impurities. As used herein, the term "short axis" is equivalent to "diameter," meaning the shortest dimension or cross-sectional thickness of a nanorod. Where a nanorod is, e.g., helical or networked, the diameter is always measured across the thickness of the rod, and not the overall diameter of the helix or the network, which is generally much greater than the diameter of the nanorod. In general, the diameter of a nanorod is substantially the same along the length of the nanorod. In some embodiments, a nanorod may have pores, grooves, or a fluctuating diameter (in an embodiments with a fluctuating diameter, the diameter is the average diameter) . As used herein, the term "length" means a longitudinal dimension (or approximation) of the nanorod that is orthogonal to the diameter of the nanorod. Length is not the overall size of a helix or overlapping network, which (if made of only one nanorod) is generally shorter than the length of the nanorod. If a helix or network is made of more than one nanorod, the length of a nanorod may be larger or smaller than the overall length of the helix or network.
Detailed Description of the Invention The invention is based, in part, on the discovery that carbon nanotubes are essentially completely converted to solid, covalently bound binary (or ternary) carbide nanorods. Conversion of nanotubes to carbide materials is essentially complete. In general, greater than 70% and typically 80% of the carbide materials are nanorods (having an aspect ratio of at least 10 and a diameter between 1 and 40 nm) , the remaining 20% being carbide materials having aspect ratios less than 10, i.e., closer to particulates. Typically, the nanorod products have been shown to consist of at least 90% (and generally 95%) sp3 hybridized carbon and the designated metal or nonmetal elements M1 and M2, the remaining 5-10% being impurities such as oxygen, silicon, halogen, or tellurium, or combinations thereof.
The disclosed nanorods have the formula ratio M1*-2 ^, and a diameter of between 1 and 40 nm and an aspect ratio of between 10 and 1000. The diameter of the nanorods can be controlled in large part by the carbon nanotube precursor. In some embodiments that contain silicon, the diameter of the product increases slightly. This increase can be minimized by reducing reaction time.
Element M1 is selected from the first element group consisting of titanium, silicon, niobium, iron, boron, tungsten, molybdenum, zirconium, hafnium, vanadium, tantalum, chromium, manganese, technetium, rhenium, osmium, cobalt, nickel, a lanthanide series element (i.e., cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium) , scandium, yttrium, and lanthanum. Preferred M1 are titanium, silicon, niobium, iron, boron, gadolinium, tungsten, molybdenum, zirconium, hafnium, vanadium, tantalum, and chromium.
Element M2 is selected from the group consisting of nitrogen, boron, phosphorus, zinc, aluminum, copper, germanium, cadmium, indium, tin, lead, thallium, and the elements in the first element group (i.e., titanium, silicon, niobium, iron, boron, tungsten, molybdenum, gadolinium, zirconium, hafnium, vanadium, tantalum, chromium, manganese, technetium, rhenium, osmium, cobalt, nickel, cerium, praseodymium, neodymium, promethium, samarium, europium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, scandium, yttrium, and lanthanum) . Preferred M2 are selected f om nitrogen and boron. The ratio x of carbon to M1 in a binary carbide (M1CX) or a ternary carbide (M1-*2^) is between 0.1 to 2.1. Where M1 is Ti, Zr, or Hf, x is preferably between 0.5 and 1.1, and more preferably between 0.9 and 1.1 (i.e., stoichiometric) . Where M1 is V, Nb, or Ta, x is preferably between 0.7 and 2.1. Other preferred ratios are as follows: Mo and W (0.6 - 2.1); Cr and Mn (0.2 - 0.7); Tc, Re, and Os (0.7 - 1.1); Fe, Co, and Ni (0.2 - 0.5); lanthanide elements such as Gd, Dy, and Yb (0.5 - l); and B (0.1 - 0.3). The value for y is between 0 and 0.9, y being 0 in binary carbides. Stoichiometric carbide nanorods have enhanced conductivity and lower chemical reactivity, due to fewer carbon vacancies. The properties of the disclosed, highly anisotropic nanorods are determined in numerous ways known to those in the art. These methods include transmission electron microscopy (TEH) to measure stacking fault density; energy-dispersive X-ray fluorescence to measure presence of nonmetals, metals, and impurities having a mass greater than or equal to sodium; electron energy loss spectroscopy to measure the hybridization of carbon; powder X-ray diffraction (XRD) to measure the crystal lattice structure; and convergent beam electron diffraction to measure lattice symmetry or the lattice constant a (A) .
The nanorods are also characterized by crystal structure (amorphous, polycrystalline, or single crystal) . The crystal structure can be affected, in part, by the temperature and time of reaction. First, amorphous carbide materials are generally obtained at low reaction temperatures, e.g., below 1000 °C or even below 500 °C. Second, polycrystalline materials are generally obtained under conditions where: (i) nucleation of the carbide occurs at multiple uncorrelated sites along the carbon reactant (e.g., nanotube) and (ii) there is insufficient energy or time for the uncorrelated crystalline domains to rearrange into a single crystal structure. Nevertheless, temperatures required to produce polycrystalline materials are always higher than temperatures required to produce an amorphous phase of the same carbide.
Third, single crystal materials are generally obtained when nucleation of the carbide occurs at a single site (e.g., an end of a carbon nanotube) , and the growth of the carbide phase spreads outward from this single site. Alternatively, it is possible for a polycrystalline material to rearrange into a single crystal material at temperatures sufficiently high to promote diffusion and atomic rearrangement. A single crystal material consists of a single domain which may have few defects (high quality single crystal) or many defects (low quality single crystal) . In general, the radial composition for single crystal nanorods are uniform; however, the invention encompasses nonuniform radial doping in nanorods. While essentially straight nanorods are preferred, the invention also encompasses straight, helical, crosslinked, and networked geometries made of one or more nanorods.
On the one hand, the disclosed articles generally retain the qualitative properties of the corresponding bulk carbide. For example, a NbC nanorod has superconductive properties, and a Fe3C nanorod has magnetic properties (see Examples 3 and 5, respectively) . On the other hand, compared with large carbide whiskers, the disclosed nanorods have a increased surface-to-volume ratio, which improves mechanical strength (e.g., tensile strength) and chemical reactivity.
Methods known in the art of measuring tensile strength are designed for existing fibers or whiskers, which are much larger than the disclosed nanorods. Therefore, a novel procedure is necessary for measuring the tensile strength of nanorods, such as using an atomic force microscope to apply known loads to a nanorod until it fractures or plastically deforms. A linear extrapolation based on T. Takahashi, J. Electrochem. Soc. 117:541 (1970) suggests that the tensile strength of nanorods is over ten times that of the corresponding whisker (10 microns in diameter) , and possibly as much as 8000 times greater. Synthesis
The nanorods disclosed herein are synthesized by the reaction of carbon nanotubes with a volatile metal or nonmetal species. In general, the reaction is carried out under static conditions in a sealed quartz tube with the reaction temperature dictated by the gas-phase transport of the oxide/halide reactants and carbide growth (see Examples 1-5) . The carbon nanotube reactants need not be anchored or tensed in any way to produce essentially straight nanorod products. Reaction temperatures are generally between 500 and 2500 °C, and preferably between 600 and 1700 βC. In general, the reaction can be monitored by measuring the conversion of carbon nanotube to carbide article and the structure of the carbide article. The carbon nanotube reactants used in these vapor- solid reactions were obtained from metal-catalyzed growth using ethylene and hydrogen, adapted from C.E. Snyder et al. WO 89/07163 (1989) , or are commercially available from Hyperion Catalysis International, Lexington MA. This procedure yields relatively pure nanotube samples compared with arc-discharge methods, although some nanotubes exhibit poor crystallinity. Alternatively, nanotubes may be prepared by arc discharge procedures as described, for example, by S. Iijima, Nature 354:56-58 (1991), T.W. Ebbesen and P.M. Ajayan, Nature 358:220-222 (1992), and D.T. Colbert et al. Science 266:1218-1222 (1994).
In general, it is preferred to use nanotubes having fewer carbon defects. A defect includes any irregularity or nonstoichiometery in the crystal structure, such as a missing carbon atom (vacancy) , a missing carbon-carbon bond (dislocation) , or a stacking fault. Defects can be repaired or minimized by annealing the nanotubes in an inert (e.g., He or Ar) atmosphere at temperatures exceeding 1400 °C and preferably between
1400 and 2000 °C. Annealing not only repairs defects but also improves both straightness and crystallinity of the graphitic nanotubes, which are generally highly curved. Turning to the source of a metal or nonmetal, an important consideration is the volatility of the material under the chosen reaction conditions. A volatile metal or nonmetal oxide species (source of M1, and M2 if present) is obtained by combining commercially-available reagents selected from the group consisting of a pure metal or nonmetal, a metal or nonmetal oxide, a halogen transport molecule, and a halogen transport agent. At least one mole equivalent, and generally between 2 and 10 mole equivalents, of a metal or nonmetal reactant is used. A carbon source (e.g., nanotube) is reacted with, for example, (i) a pure transition metal and a halogen transport molecule selected from the group consisting of I2, Br2, Cl2 or a transport agent such as TeCl , or (ii) a metal or nonmetal oxide and a halogen transport agent to form a binary carbide. Ternary carbides are formed from two corresponding metal or nonmetal reagents, such as a pure metal or nonmetal, a halogen transport molecule, and a nitrogen source such as N2 or NH3. Transition metals are generally not sufficiently volatile under reaction conditions, but will form volatile complexes with the above-described halogen reagents. In addition, the transport agent TeCl4 forms volatile species with most nonvolatile oxides, including Mn02 and Mo02. Some reactants are generated in situ, such as B202, which was generated in situ by heating elemental boron and Ti02 powder. Specific examples of such reagents include TiO, T-2' B 2°2' FeCl3, and SiO. Additional examples and guidance are found in H. Schafer, Angew. Chem. Int. -Ed., Engl . 10:43-50 (1971). Commercially-available reagents generally do not require pre-treatment before use, since their purity is typically ≥ 99%. Commercial sources include Aldrich Chemicals, Milwaukee, WI, and Johnson- Mathey, Ward Hill, MA. Examples of binary carbides include ZrCx, HfCx, VCX, TaCx, CrCx, MoCx, WCX, and NiCx (formed, e.g., by reaction of pure metal and halogen transport molecule with a carbon source) ; and LaCx, CeCx, PrCx, NdCx, SmCx, GdCx, DyCx, HoCx, ErCx, and YbCx (formed, e.g., by reaction of metal oxide and halogen transport agent with a carbon source) . Examples of ternary carbides include TiNyCx, MoNyCx, and SiNyCx (formed, e.g. , by reaction of pure metal/nonmetal, halogen transport molecule, and nitrogen or ammonia with a carbon source) ; TiByCx, TiTayCx, TiSiyCχ, TiNbyCx, MoSiyCx, MoByCx, MoGayCx, MoAlyCx, FeByCx, FeSiyCx, FeNiyCx, SiByCx, TaSiyCx, WSiyCx, ZrSiyCx, NbSiyCx, CrSiyCx, and WCoyCx (formed, e.g., by reaction of metal and halogen transport molecule with a carbon source) ; and MoSi Cx, WSiyCx, ZrSiyCx, NbSiyCx, CrSiyCx, WCo Cx, NdByCx, and FeNdyCx (formed, e.g., by reaction of metal oxide and halogen transport agent with a carbon source) .
Without intending to be bound, it is believed that the mechanism involves template-mediated growth, whereby carbon nanotubes define the diameter of the product carbide nanorods formed following reaction with a volatile species. This is supported by the similarity of the average nanorod diameters (and morphologies in the case of polycrystalline NbC) to that of the starting nanotubes. Catalytic growth and/or sintering of small nanotubes may also be involved. In principle, template mediated growth will produce carbide nanorods of any stable metal carbide.
Solid carbide nanorods (Sic, Tie, NbC, Fe3C, and BCX) have been prepared in high-yield with typical diameters between 2 and 30 nm and lengths up to 20 μm (see Examples 1-5 below) . Use
The disclosed nanoscale articles are used in the preparation of nanostructures having a superior combination of a uniquely small size and mechanical, electrical and/or magnetic properties, suitable for electrodes in nanoscale batteries and for high density magnetic recording media. Small diameters and high aspect ratios also make the disclosed articles useful as improved reinforcements in metal, ceramic, and organic polymer matrix composites. A carbide article disclosed herein can be selected from a wide range of metal and nonmetal carbides to suit the chemical properties (e.g., resistance, reactivity) or physical properties (e.g., coefficient of thermal expansion) desired for a particular composite. Specific products include cutting tools, engineering composites such as gas turbine blades and automotive ceramics, and implantable medical devices such as artificial limbs and joints. Conductive or semi- conductive nanorods are also useful as "defects" embedded within a superconductor to pin vortices in high- temperature, high critical current density superconductor wires (e.g. copper oxide) , see P. Le Doussal and D. R. Nelson, Physica C 232:69-74 (1994). Finally, the disclosed nanoscale articles are used in basic research to probe the effects of confinement and dimensionality in metallic, semiconducting and superconducting materials. Without further elaboration, it is believed that one skilled in the art can, based on the description herein, utilize the present invention to its fullest extent. All patents and publications cited herein are hereby incorporated by reference. The following specific examples are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure.
EXAMPLES
Example 1 Titanium carbide nanorods were made according to two different methods, Method A and Method B. Method A. The starting mixture was composed of 20 mg of carbon nanotubes produced as described above, and a compacted, solid pellet consisting of a 10-fold molar excess of TiO powder. After sealing the starting mixture under vacuum (l x 10"3 torr) in a quartz tube, the tube was placed in the center of a tube furnace equilibrated at a temp-erature of 1350 °C for 12 hours. Then the furnace was turned off and allowed to cool naturally to room temperature. After removing the quartz tube from the furnace and opening it to the atmosphere, the unreacted TiO powder, still in pellet form, was manually removed from the black nanorod product, which had a fine, powder-like consistency. The nanorods were poured from the quartz tube and thoroughly washed with ethanol and dried in air. Method B. In the second method, the same procedure described in Method A was followed, except an amount of solid iodine corresponding to 1 mg I2 per cm3 of the quartz reaction tube was added to the tube, and the quartz tube was heated at 1200 °C for 24 hours.
The morphology and structure of the products obtained from the reaction of TiO and carbon nanotubes at 1375 °C were determined. Transmission electron microscopy (TEM) images of the reaction product revealed straight and smoothly curved, solid rod-like structures that were distinct from the irregularly curved and hollow carbon nanotube reactants. These images also showed that the diameters of the rod-like products were similar to that of the carbon nanotubes (1-30 nm) , and that the lengths typically exceeded 1 μm and were measured up to 40 μm. Energy dispersive X-ray fluorescence and electron energy loss spectroscopy measurements demonstrated that these nanorods contained only titanium and sp3-hybridized carbon, and thus are consistent with the complete conversion of the carbon nanotubes into titanium carbide (TiC) .
This formulation was further established by structural analyses. Powder X-ray diffraction (XRD) measurements on nanorod samples produced using either TiO or Ti+I2 exhibited diffraction peaks that were indexed to the known cubic, rock salt structure of TiC with no evidence of either graphitic (nanotube reactant) , Ti- metal or Ti-oxide peaks present. The measured lattice constant, a = 4.326 , was consistent with a stoichiometry TiCx, x = 1. TEM and electron diffraction studies of single nanorods revealed smooth, regular saw¬ tooth, and irregularly faceted morphologies. The TiC nanorods also appeared to be single crystals with a very low density of stacking faults. Convergent beam electron diffraction patterns recorded along the <111> zone axis perpendicular to the axis of the smooth nanorod exhibited a lattice constant and six-fold symmetry corresponding to the (111) planes of cubic TiC. These data suggested that the axis of the smooth TiC nanorods was [110] for this morphology as well. The [110] direction is not unique for the TiC nanorods. In the irregularly faceted nanorods, high-resolution TEM and electron diffraction demonstrated that the growth direction was [111], and further showed that the TiC nanorods contained single crystal domains often exceeding 1 μm in length. The saw¬ tooth morphology has obvious advantages for some applications (e.g., composites).
Example 2
SiC nanorods were synthesized according to two methods. In the first, the same procedure described in Method A, Example 1 was followed, except SiO powder was substituted for TiO powder, and the quartz tube was heated at 1300 - 1400 °C for 2 hours, then cooled to room temperature over an additional 2 hours. The silicon carbide nanorod product was blue-green.
In the second, the same procedure described in Method B, Example 1 was followed, except SiO powder was substituted for TiO powder and the quartz tube was heated at 1150 °C for 2 hours. Structural and composition analyses of the material produced from the reaction of carbon nanotubes with Si and I2 were consistent with the formation of silicon carbide (SiC) nanorods. TEM images showed that the SiC nanorods produced from this reaction were relatively straight, solid rods. The diameters of the SiC rods produced in the Si + I2 reaction at 1200 °C were typically 2-20 nm (similar to the diameters of the carbon nanotube reactants) , with lengths around 1 μm. XRD patterns recorded on bulk samples were indexed to the zinc blended 0-SiC structure and showed no evidence of other crystalline impurities. TEM images and electron diffraction data also indicated that these single crystal silicon carbide nanorods possessed a higher density of planar defects in contrast to the near single crystal TiC nanorods (see Example 1 above) . For SiC nanorods with a [111] rod axis, the defects corresponded to rotational twin stacking faults; similar defects have been identified previously in much larger Sic whiskers. The rod axes lay along the [111] direction in all of the nanorods prepared at 1300 - 1400 βC using SiO as the volatile silicon reactant, but at the lower Si+I2 reaction temperatures (1100 - 1200 βC) this direction was not unique. A high-resolution TEM image of one 7 nm diameter Sic nanorod produced at 1200 °C showed that the rod axis lay along the [100] direction, although small defect regions with a [111] direction were also present.
Example 3 Twenty milligrams of carbon nanotubes and a 10- fold molar excess of pelleted elemental niobium powder were sealed under vacuum (1 x 10"3 torr) with an amount of iodine corresponding to 1 mg/cm3 volume of the quartz reaction tube. The tube was placed in the center of a tube furnace equilibrated at 750 °C for 35 hours, then cooled to room temperature in 30 minutes. The quartz tube was opened to atmosphere, and the remaining unreacted Nb was removed in pellet form. The black nanorod product was poured from the quartz reaction tube, washed thoroughly with ethanol, and then dried.
XRD showed that this reaction resulted in the complete conversion of the nanotubes into the cubic, rock salt phase of NbC. TEM images and selected area electron diffraction showed that the NbC nanorods produced in these reactions were polycrystalline with morphologies similar to the carbon nanotube starting materials. Significantly, these polycrystalline nanorods were also found to be superconducting like bulk NbC, as shown by magnetization measurements made as a function of temperature (Tc = 9 °K) . The polycrystalline structure was likely due to the low reaction temperature (750 °C) , and thus it should be possible in the future to optimize the growth conditions and produce single crystal NbC nanorods by raising the reaction temperature. The present reaction conditions also yielded unique morphologies, such as helical nanorods, which are believed to result from a direct conversion of helical carbon nanotube reactants. The NbC nanorods had diameters of between 2 and 30 nm, and lengths generally greater than 1 micron.
Example 4 Twenty milligrams of carbon nanotubes and a 10- fold molar excess of anhydrous FeCl3 powder were sealed under vacuum (1 x 10"3 torr) . The tube was placed in the center of a tube furnace equilibrated at 1350 °C for 12 hours, then cooled to room temperature in 2 hours. The quartz tube was opened to atmosphere, and the remaining unreacted FeCl3 was removed from the black nanorod product by repeated washing with ethanol. The black Fe3C nanorod product was poured from the quartz reaction tube was dried in air.
TEM analysis demonstrated that the solid, amorphous nanorods consisted of covalently bonded Fe and C. Magnetization measurements showed that the iron carbide nanorods were ferromagnetic. The iron carbide nanorods had diameters of between 2 and 30 nm, and lengths generally greater than 1 micron.
Example 5
Elemental boron powder and titanium dioxide powder were mixed thoroughly in a 1:1 molar ratio and placed in a crucible boat in an amount equivalent to a 10-fold molar excess relative to 20 mg of carbon nanotubes. Twenty milligrams of carbon nanotubes and the B-Ti02 mixture were separately placed in a horizontal quartz tube open at both ends, and in turn, the horizontal quartz tube was placed in a horizontal tube furnace. The end of the quartz tube nearest to the B-Ti02 mixture was fitted with a gas inlet through which argon gas was slowly flowed. The other end of the quartz tube (nearest to the nanotubes) was fitted with a flexible tube connected to a bubbler. The argon flow was adjusted to produce about 1 bubble/second.
After flowing argon through the quartz tube for 30 minutes to purge atmospheric gases, the furnace temperature was increased to 1400 °C over a period of 1 hour. The furnace was maintained at 1400 °C for 2 hours, turned off, and allowed to cool naturally to room temperature. The quartz tube was opened to atmosphere, and the remaining unreacted B-Ti02 was removed in the crucible boat. The black nanorod product was poured from the reaction tube, washed thoroughly with ethanol, and dried.
Analysis showed the solid nanorods consisted of polycrystalline, covalently bonded boron and carbon. The boron carbide nanorods had diameters of between 2 and 30 nm, and lengths generally greater than 1 micron. In addition, the nanorods were shown to have insulating properties. Using a scanning probe microscope and modified lithography techniques, a single nanorod was contacted on one end with a gold electrode. A second movable probe electrode was contacted with the single nanorod at different points, and conductivity was measured. OTHER EMBODIMENTS From the above description, the essential characteristics of the present invention can be ascertained.
Without departing from the spirit and scope thereof, various changes and modifications of the invention can be made to adapt it to various usages and conditions. Thus, other embodiments are also within the claims.
What is claimed is:

Claims

1. A carbide article consisting essentially of covalently bonded elements M1, M2 and C having the molar ratio M1:M :C::l:y:x, wherein said first element M1 is selected from a first element group consisting of titanium, silicon, niobium, iron, boron, tungsten, molybdenum, zirconium, hafnium, vanadium, tantalum, chromium, manganese, technetium, rhenium, osmium, cobalt, nickel, a lanthanide series element, scandium, yttrium, and lanthanum; said second element M2 is selected from a second element group consisting of nitrogen, boron, phosphorus, zinc, aluminum, copper, germanium, cadmium, indium, tin, lead, thallium, and the elements in said first element group, in which y is between 0 and 0.9, provided that said first and second element are not the same; and said third element C is carbon, in which x is between 0.1 and 2.1; wherein said article has an aspect ratio of between 10 and 1000, and has a shorter axis of between 1 and 40 nanometers.
2. A carbide article of claim 1, wherein said article has a single crystal structure.
3. A carbide article of claim 1, wherein said article has a polycrystalline structure.
4. A carbide article of claim 1, wherein said article has an amorphous structure.
5. A carbide article of claim 1, wherein said element M1 is selected from the group consisting of titanium, silicon, niobium, iron, boron, tungsten, molybdenum, or gadolinium.
6. A carbide article of claim 1, wherein y is 0.
7. A carbide article of claim 6, wherein said element M1 is selected from titanium and silicon, and x is between 0.9 and 1.1.
8. A carbide article of claim 1, wherein said shorter axis is between 1 and 30 nanometers.
9. A carbide article of claim 1, wherein said aspect ratio is between 50 and 500.
10. A carbide article of claim 1, wherein said aspect ratio is between 250 and 1000.
11. A carbide nanorod consisting essentially of covalently bonded elements M1, M2 and C having the molar ratio M^M^C^l^x, wherein said first element M1 is selected from a first element group consisting of titanium, silicon, niobium, iron, boron, tungsten, molybdenum, zirconium, hafnium, vanadium, tantalum, chromium, manganese, technetium, rhenium, osmium, cobalt, nickel, a lanthanide series element, scandium, yttrium, and lanthanum; said second element M2 is selected from a second element group consisting of nitrogen, boron, phosphorus, zinc, aluminum, copper, germanium, cadmium, indium, tin, lead, thallium, and the elements in said first element group, in which y is between 0 and 0.9, provided that said first and second element are not the same; and said third element C is carbon, in which x is between 0.1 and 2.1; wherein said nanorod has an aspect ratio of between 11 and 1000, and has a shorter axis of between 1 and 40 nanometers.
12. A carbide nanorod of claim 11, wherein said nanorod has a single crystal structure.
13. A carbide nanorod of claim 11, wherein said nanorod has a polycrystalline structure.
14. A carbide nanorod of claim 11, wherein said nanorod has an amorphous structure.
15. A carbide nanorod of claim 11, wherein said element M1 is selected from the group consisting of titanium, silicon, niobium, iron, boron, tungsten, molybdenum, or gadolinium.
16. A carbide nanorod of claim 11, wherein y is 0.
17. A carbide nanorod of claim 16, wherein said element M1 is selected from titanium and silicon, and x is between 0.9 and l.i.
18. A carbide nanorod of claim 11, wherein said shorter axis is between 1 and 30 nanometers.
19. A carbide nanorod of claim 11, wherein said aspect ratio is between 50 and 500.
20. A carbide article of claim 11, wherein said aspect ratio is between 100 and 1000.
21. A carbide nanorod of claim 11, wherein y is between 0.1 and 0.9 and said second element M2 is selected from the group consisting of boron and nitrogen.
PCT/US1996/009675 1995-06-07 1996-06-06 Carbide nanomaterials WO1996041043A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/477,080 US6190634B1 (en) 1995-06-07 1995-06-07 Carbide nanomaterials
US08/477,080 1995-06-07

Publications (1)

Publication Number Publication Date
WO1996041043A1 true WO1996041043A1 (en) 1996-12-19

Family

ID=23894452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/009675 WO1996041043A1 (en) 1995-06-07 1996-06-06 Carbide nanomaterials

Country Status (2)

Country Link
US (1) US6190634B1 (en)
WO (1) WO1996041043A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026871A1 (en) * 1996-12-18 1998-06-25 Eidgenössische Technische Hochschule Zürich Nanotubes, use and manufacture of same
US6290735B1 (en) 1997-10-31 2001-09-18 Nanogram Corporation Abrasive particles for surface polishing
JP2002534351A (en) * 1999-01-12 2002-10-15 ハイピリオン カタリシス インターナショナル インコーポレイテッド Carbide-based and oxycarbide-based compositions and nanorods
US6514897B1 (en) 1999-01-12 2003-02-04 Hyperion Catalysis International, Inc. Carbide and oxycarbide based compositions, rigid porous structures including the same, methods of making and using the same
US6809229B2 (en) 1999-01-12 2004-10-26 Hyperion Catalysis International, Inc. Method of using carbide and/or oxycarbide containing compositions
US6936565B2 (en) 1999-01-12 2005-08-30 Hyperion Catalysis International, Inc. Modified carbide and oxycarbide containing catalysts and methods of making and using thereof
US8048523B2 (en) 1997-10-31 2011-11-01 Nanogram Corporation Cerium oxide nanoparticles
WO2021173553A1 (en) * 2020-02-24 2021-09-02 Lam Research Corporation High modulus boron-based ceramics for semiconductor applications

Families Citing this family (419)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344271B1 (en) * 1998-11-06 2002-02-05 Nanoenergy Corporation Materials and products using nanostructured non-stoichiometric substances
US7416699B2 (en) * 1998-08-14 2008-08-26 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube devices
US6495291B1 (en) * 1999-08-09 2002-12-17 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
US20020054995A1 (en) * 1999-10-06 2002-05-09 Marian Mazurkiewicz Graphite platelet nanostructures
JP3846221B2 (en) * 2000-07-14 2006-11-15 株式会社村田製作所 Surface acoustic wave device
US7301199B2 (en) * 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
EP1314189B1 (en) * 2000-08-22 2013-02-27 President and Fellows of Harvard College Electrical device comprising doped semiconductor nanowires and method for its production
US20060175601A1 (en) * 2000-08-22 2006-08-10 President And Fellows Of Harvard College Nanoscale wires and related devices
AU2904602A (en) 2000-12-11 2002-06-24 Harvard College Nanosensors
US6706402B2 (en) * 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US6924538B2 (en) * 2001-07-25 2005-08-02 Nantero, Inc. Devices having vertically-disposed nanofabric articles and methods of making the same
US7566478B2 (en) * 2001-07-25 2009-07-28 Nantero, Inc. Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles
US6919592B2 (en) * 2001-07-25 2005-07-19 Nantero, Inc. Electromechanical memory array using nanotube ribbons and method for making same
US6643165B2 (en) 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US7259410B2 (en) * 2001-07-25 2007-08-21 Nantero, Inc. Devices having horizontally-disposed nanofabric articles and methods of making the same
US6835591B2 (en) * 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
US6574130B2 (en) * 2001-07-25 2003-06-03 Nantero, Inc. Hybrid circuit having nanotube electromechanical memory
US6784028B2 (en) * 2001-12-28 2004-08-31 Nantero, Inc. Methods of making electromechanical three-trace junction devices
US7176505B2 (en) * 2001-12-28 2007-02-13 Nantero, Inc. Electromechanical three-trace junction devices
US6872645B2 (en) * 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US20040026684A1 (en) * 2002-04-02 2004-02-12 Nanosys, Inc. Nanowire heterostructures for encoding information
US7335395B2 (en) * 2002-04-23 2008-02-26 Nantero, Inc. Methods of using pre-formed nanotubes to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
US6777639B2 (en) 2002-06-12 2004-08-17 Nanotechnologies, Inc. Radial pulsed arc discharge gun for synthesizing nanopowders
US7335908B2 (en) * 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
AU2003261205A1 (en) 2002-07-19 2004-02-09 President And Fellows Of Harvard College Nanoscale coherent optical components
WO2004027822A2 (en) * 2002-09-05 2004-04-01 Nanosys, Inc. Oriented nanostructures and methods of preparing
WO2004027336A1 (en) * 2002-09-17 2004-04-01 Midwest Research Institute Carbon nanotube heat-exchange systems
US7985590B2 (en) * 2002-09-26 2011-07-26 Science Application International Corporation Method and system for detection using nanodot taggants
US7035308B1 (en) 2002-10-28 2006-04-25 Science Applications International Corporation Method and system for countering laser technology
US7560136B2 (en) * 2003-01-13 2009-07-14 Nantero, Inc. Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
WO2004087564A1 (en) * 2003-04-04 2004-10-14 Startskottet 22286 Ab Precisely positioned nanowhiskers and nanowhisker arrays and method for preparing them
EP1634334A1 (en) 2003-04-04 2006-03-15 Startskottet 22286 AB Nanowhiskers with pn junctions and methods of fabricating thereof
US20050038498A1 (en) * 2003-04-17 2005-02-17 Nanosys, Inc. Medical device applications of nanostructured surfaces
US20060122596A1 (en) * 2003-04-17 2006-06-08 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
US7074294B2 (en) * 2003-04-17 2006-07-11 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
US7056409B2 (en) * 2003-04-17 2006-06-06 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
US20050221072A1 (en) * 2003-04-17 2005-10-06 Nanosys, Inc. Medical device applications of nanostructured surfaces
US7579077B2 (en) * 2003-05-05 2009-08-25 Nanosys, Inc. Nanofiber surfaces for use in enhanced surface area applications
US7972616B2 (en) * 2003-04-17 2011-07-05 Nanosys, Inc. Medical device applications of nanostructured surfaces
CA2522866A1 (en) * 2003-04-28 2005-01-20 Nanosys, Inc. Super-hydrophobic surfaces, methods of their construction and uses therefor
US7803574B2 (en) * 2003-05-05 2010-09-28 Nanosys, Inc. Medical device applications of nanostructured surfaces
TWI427709B (en) * 2003-05-05 2014-02-21 Nanosys Inc Nanofiber surfaces for use in enhanced surface area applications
KR20060058085A (en) * 2003-07-08 2006-05-29 큐나노 에이비 Probe structures incorporating nanowhiskers, production methods thereof, and methods of forming nanowhiskers
CN1283835C (en) * 2003-08-29 2006-11-08 中山大学 Large area tungsten Molybdenum and its oxide nano wires and array and their preparation and use
US7012214B2 (en) * 2003-09-24 2006-03-14 Nanotechnologies, Inc. Nanopowder synthesis using pulsed arc discharge and applied magnetic field
US7923109B2 (en) 2004-01-05 2011-04-12 Board Of Regents, The University Of Texas System Inorganic nanowires
US8025960B2 (en) * 2004-02-02 2011-09-27 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
US20110039690A1 (en) * 2004-02-02 2011-02-17 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
US7553371B2 (en) * 2004-02-02 2009-06-30 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
US7354850B2 (en) * 2004-02-06 2008-04-08 Qunano Ab Directionally controlled growth of nanowhiskers
US20090227107A9 (en) * 2004-02-13 2009-09-10 President And Fellows Of Havard College Nanostructures Containing Metal Semiconductor Compounds
WO2005094440A2 (en) 2004-03-18 2005-10-13 Nanosys Inc. Nanofiber surface based capacitors
CA2564220A1 (en) * 2004-04-30 2005-12-15 Nanosys, Inc. Systems and methods for nanowire growth and harvesting
US7785922B2 (en) 2004-04-30 2010-08-31 Nanosys, Inc. Methods for oriented growth of nanowires on patterned substrates
US20050279274A1 (en) * 2004-04-30 2005-12-22 Chunming Niu Systems and methods for nanowire growth and manufacturing
WO2006076027A2 (en) * 2004-05-17 2006-07-20 Cambrios Technology Corp. Biofabrication of transistors including field effect transistors
WO2006107312A1 (en) * 2004-06-15 2006-10-12 President And Fellows Of Harvard College Nanosensors
WO2006000790A1 (en) * 2004-06-25 2006-01-05 Btg International Limited Formation of nanowhiskers on a substrate of dissimilar material
WO2006016914A2 (en) * 2004-07-07 2006-02-16 Nanosys, Inc. Methods for nanowire growth
US20060024378A1 (en) * 2004-08-02 2006-02-02 Mehta Rakesh H Magnetically responsive carbon nano-structures for transporting biologically active substances, and methods relating thereto
US20060051281A1 (en) * 2004-09-09 2006-03-09 Bhabendra Pradhan Metal carbides and process for producing same
US8558311B2 (en) 2004-09-16 2013-10-15 Nanosys, Inc. Dielectrics using substantially longitudinally oriented insulated conductive wires
US8089152B2 (en) * 2004-09-16 2012-01-03 Nanosys, Inc. Continuously variable graded artificial dielectrics using nanostructures
US7365395B2 (en) * 2004-09-16 2008-04-29 Nanosys, Inc. Artificial dielectrics using nanostructures
US7318763B2 (en) * 2004-11-10 2008-01-15 General Electric Company Carbide nanostructures and methods for making same
US7348592B2 (en) * 2004-11-29 2008-03-25 The United States Of America As Represented By The Secretary Of The Navy Carbon nanotube apparatus and method of carbon nanotube modification
KR20070101857A (en) * 2004-12-06 2007-10-17 더 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Nanoscale wire-based data storage
US20060240218A1 (en) * 2005-04-26 2006-10-26 Nanosys, Inc. Paintable nonofiber coatings
US20100227382A1 (en) * 2005-05-25 2010-09-09 President And Fellows Of Harvard College Nanoscale sensors
WO2006132659A2 (en) * 2005-06-06 2006-12-14 President And Fellows Of Harvard College Nanowire heterostructures
WO2007044142A2 (en) * 2005-10-06 2007-04-19 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Methods for fabricating carbon nanotubes using silicon monoxide
CN101331590B (en) * 2005-12-29 2011-04-20 纳米系统公司 Methods for oriented growth of nanowires on patterned substrates
US7741197B1 (en) 2005-12-29 2010-06-22 Nanosys, Inc. Systems and methods for harvesting and reducing contamination in nanowires
US7826336B2 (en) * 2006-02-23 2010-11-02 Qunano Ab Data storage nanostructures
JP2009540333A (en) 2006-06-12 2009-11-19 プレジデント アンド フェロウズ オブ ハーバード カレッジ Nanosensors and related technologies
WO2008033303A2 (en) 2006-09-11 2008-03-20 President And Fellows Of Harvard College Branched nanoscale wires
US9353434B2 (en) 2006-10-12 2016-05-31 C3 International, Llc Methods for providing prophylactic surface treatment for fluid processing systems and components thereof
US7776760B2 (en) * 2006-11-07 2010-08-17 Nanosys, Inc. Systems and methods for nanowire growth
JP5009993B2 (en) 2006-11-09 2012-08-29 ナノシス・インク. Nanowire arrangement method and deposition method
WO2008127314A1 (en) 2006-11-22 2008-10-23 President And Fellows Of Harvard College High-sensitivity nanoscale wire sensors
US8049203B2 (en) * 2006-12-22 2011-11-01 Qunano Ab Nanoelectronic structure and method of producing such
KR20090096704A (en) * 2006-12-22 2009-09-14 큐나노 에이비 Led with upstanding nanowire structure and method of producing such
EP2091862B1 (en) * 2006-12-22 2019-12-11 QuNano AB Elevated led and method of producing such
US8183587B2 (en) * 2006-12-22 2012-05-22 Qunano Ab LED with upstanding nanowire structure and method of producing such
US7892610B2 (en) * 2007-05-07 2011-02-22 Nanosys, Inc. Method and system for printing aligned nanowires and other electrical devices
US7556788B2 (en) * 2007-10-05 2009-07-07 E.I. Du Pont De Nemours And Company Process for preparing boron carbon nanorods
WO2009073854A1 (en) * 2007-12-06 2009-06-11 Nanosys, Inc. Resorbable nanoenhanced hemostatic structures and bandage materials
US8319002B2 (en) * 2007-12-06 2012-11-27 Nanosys, Inc. Nanostructure-enhanced platelet binding and hemostatic structures
US8623301B1 (en) 2008-04-09 2014-01-07 C3 International, Llc Solid oxide fuel cells, electrolyzers, and sensors, and methods of making and using the same
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US8540889B1 (en) 2008-11-19 2013-09-24 Nanosys, Inc. Methods of generating liquidphobic surfaces
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US10490817B2 (en) 2009-05-19 2019-11-26 Oned Material Llc Nanostructured materials for battery applications
US20120135158A1 (en) 2009-05-26 2012-05-31 Sharp Kabushiki Kaisha Methods and systems for electric field deposition of nanowires and other devices
US8623288B1 (en) 2009-06-29 2014-01-07 Nanosys, Inc. Apparatus and methods for high density nanowire growth
CN101609735B (en) * 2009-07-21 2011-08-31 中国地质大学(北京) Method for preparing high purity, high density and high yield Si3N4/SiO2 coaxial nano-cable array
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
WO2011038228A1 (en) 2009-09-24 2011-03-31 President And Fellows Of Harvard College Bent nanowires and related probing of species
CA2789281C (en) 2010-02-10 2015-11-24 C3 International, Llc Low temperature electrolytes for solid oxide cells having high ionic conductivity
US9312155B2 (en) 2011-06-06 2016-04-12 Asm Japan K.K. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US9793148B2 (en) 2011-06-22 2017-10-17 Asm Japan K.K. Method for positioning wafers in multiple wafer transport
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US20160159653A1 (en) * 2012-01-04 2016-06-09 Virginia Commonwealth University High anisotropy nanoparticles
US8865301B2 (en) * 2012-01-26 2014-10-21 The United States Of America, As Represented By The Secretary Of The Navy Refractory metal boride ceramics and methods of making thereof
US8946830B2 (en) 2012-04-04 2015-02-03 Asm Ip Holdings B.V. Metal oxide protective layer for a semiconductor device
US9558931B2 (en) 2012-07-27 2017-01-31 Asm Ip Holding B.V. System and method for gas-phase sulfur passivation of a semiconductor surface
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US9021985B2 (en) 2012-09-12 2015-05-05 Asm Ip Holdings B.V. Process gas management for an inductively-coupled plasma deposition reactor
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US9640416B2 (en) 2012-12-26 2017-05-02 Asm Ip Holding B.V. Single-and dual-chamber module-attachable wafer-handling chamber
US9589770B2 (en) 2013-03-08 2017-03-07 Asm Ip Holding B.V. Method and systems for in-situ formation of intermediate reactive species
US9484191B2 (en) 2013-03-08 2016-11-01 Asm Ip Holding B.V. Pulsed remote plasma method and system
US8993054B2 (en) 2013-07-12 2015-03-31 Asm Ip Holding B.V. Method and system to reduce outgassing in a reaction chamber
US9905871B2 (en) 2013-07-15 2018-02-27 Fcet, Inc. Low temperature solid oxide cells
US9018111B2 (en) 2013-07-22 2015-04-28 Asm Ip Holding B.V. Semiconductor reaction chamber with plasma capabilities
US9793115B2 (en) 2013-08-14 2017-10-17 Asm Ip Holding B.V. Structures and devices including germanium-tin films and methods of forming same
US9240412B2 (en) 2013-09-27 2016-01-19 Asm Ip Holding B.V. Semiconductor structure and device and methods of forming same using selective epitaxial process
US9556516B2 (en) 2013-10-09 2017-01-31 ASM IP Holding B.V Method for forming Ti-containing film by PEALD using TDMAT or TDEAT
US9605343B2 (en) * 2013-11-13 2017-03-28 Asm Ip Holding B.V. Method for forming conformal carbon films, structures conformal carbon film, and system of forming same
US10179947B2 (en) 2013-11-26 2019-01-15 Asm Ip Holding B.V. Method for forming conformal nitrided, oxidized, or carbonized dielectric film by atomic layer deposition
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US9447498B2 (en) 2014-03-18 2016-09-20 Asm Ip Holding B.V. Method for performing uniform processing in gas system-sharing multiple reaction chambers
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
KR102221549B1 (en) * 2014-07-04 2021-02-26 삼성전자주식회사 Transparent conductors
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9543180B2 (en) 2014-08-01 2017-01-10 Asm Ip Holding B.V. Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
KR102300403B1 (en) 2014-11-19 2021-09-09 에이에스엠 아이피 홀딩 비.브이. Method of depositing thin film
KR102263121B1 (en) 2014-12-22 2021-06-09 에이에스엠 아이피 홀딩 비.브이. Semiconductor device and manufacuring method thereof
US9478415B2 (en) 2015-02-13 2016-10-25 Asm Ip Holding B.V. Method for forming film having low resistance and shallow junction depth
US10529542B2 (en) 2015-03-11 2020-01-07 Asm Ip Holdings B.V. Cross-flow reactor and method
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US10043661B2 (en) 2015-07-13 2018-08-07 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US9899291B2 (en) 2015-07-13 2018-02-20 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US10083836B2 (en) 2015-07-24 2018-09-25 Asm Ip Holding B.V. Formation of boron-doped titanium metal films with high work function
US10087525B2 (en) 2015-08-04 2018-10-02 Asm Ip Holding B.V. Variable gap hard stop design
US9647114B2 (en) 2015-08-14 2017-05-09 Asm Ip Holding B.V. Methods of forming highly p-type doped germanium tin films and structures and devices including the films
US9711345B2 (en) 2015-08-25 2017-07-18 Asm Ip Holding B.V. Method for forming aluminum nitride-based film by PEALD
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US9909214B2 (en) 2015-10-15 2018-03-06 Asm Ip Holding B.V. Method for depositing dielectric film in trenches by PEALD
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
US9455138B1 (en) 2015-11-10 2016-09-27 Asm Ip Holding B.V. Method for forming dielectric film in trenches by PEALD using H-containing gas
US9905420B2 (en) 2015-12-01 2018-02-27 Asm Ip Holding B.V. Methods of forming silicon germanium tin films and structures and devices including the films
US9607837B1 (en) 2015-12-21 2017-03-28 Asm Ip Holding B.V. Method for forming silicon oxide cap layer for solid state diffusion process
US9735024B2 (en) 2015-12-28 2017-08-15 Asm Ip Holding B.V. Method of atomic layer etching using functional group-containing fluorocarbon
US9627221B1 (en) 2015-12-28 2017-04-18 Asm Ip Holding B.V. Continuous process incorporating atomic layer etching
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
US9754779B1 (en) 2016-02-19 2017-09-05 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10501866B2 (en) 2016-03-09 2019-12-10 Asm Ip Holding B.V. Gas distribution apparatus for improved film uniformity in an epitaxial system
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US9892913B2 (en) 2016-03-24 2018-02-13 Asm Ip Holding B.V. Radial and thickness control via biased multi-port injection settings
US10087522B2 (en) 2016-04-21 2018-10-02 Asm Ip Holding B.V. Deposition of metal borides
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
KR102592471B1 (en) 2016-05-17 2023-10-20 에이에스엠 아이피 홀딩 비.브이. Method of forming metal interconnection and method of fabricating semiconductor device using the same
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9793135B1 (en) 2016-07-14 2017-10-17 ASM IP Holding B.V Method of cyclic dry etching using etchant film
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US10381226B2 (en) 2016-07-27 2019-08-13 Asm Ip Holding B.V. Method of processing substrate
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10177025B2 (en) 2016-07-28 2019-01-08 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (en) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and method of operating the same
US10090316B2 (en) 2016-09-01 2018-10-02 Asm Ip Holding B.V. 3D stacked multilayer semiconductor memory using doped select transistor channel
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10643904B2 (en) 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
KR102546317B1 (en) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Gas supply unit and substrate processing apparatus including the same
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
KR20180068582A (en) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US9916980B1 (en) 2016-12-15 2018-03-13 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
KR20180070971A (en) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10103040B1 (en) 2017-03-31 2018-10-16 Asm Ip Holding B.V. Apparatus and method for manufacturing a semiconductor device
USD830981S1 (en) 2017-04-07 2018-10-16 Asm Ip Holding B.V. Susceptor for semiconductor substrate processing apparatus
KR102457289B1 (en) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10504742B2 (en) 2017-05-31 2019-12-10 Asm Ip Holding B.V. Method of atomic layer etching using hydrogen plasma
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
KR20190009245A (en) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. Methods for forming a semiconductor device structure and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10605530B2 (en) 2017-07-26 2020-03-31 Asm Ip Holding B.V. Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US10236177B1 (en) 2017-08-22 2019-03-19 ASM IP Holding B.V.. Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
KR102491945B1 (en) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US10607895B2 (en) 2017-09-18 2020-03-31 Asm Ip Holdings B.V. Method for forming a semiconductor device structure comprising a gate fill metal
KR102630301B1 (en) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
KR102443047B1 (en) 2017-11-16 2022-09-14 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
TWI791689B (en) 2017-11-27 2023-02-11 荷蘭商Asm智慧財產控股私人有限公司 Apparatus including a clean mini environment
JP7214724B2 (en) 2017-11-27 2023-01-30 エーエスエム アイピー ホールディング ビー.ブイ. Storage device for storing wafer cassettes used in batch furnaces
US10290508B1 (en) 2017-12-05 2019-05-14 Asm Ip Holding B.V. Method for forming vertical spacers for spacer-defined patterning
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
TWI799494B (en) 2018-01-19 2023-04-21 荷蘭商Asm 智慧財產控股公司 Deposition method
WO2019142055A2 (en) 2018-01-19 2019-07-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
US10535516B2 (en) 2018-02-01 2020-01-14 Asm Ip Holdings B.V. Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
KR102636427B1 (en) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. Substrate processing method and apparatus
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (en) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US10510536B2 (en) 2018-03-29 2019-12-17 Asm Ip Holding B.V. Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber
KR102501472B1 (en) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. Substrate processing method
TWI811348B (en) 2018-05-08 2023-08-11 荷蘭商Asm 智慧財產控股公司 Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
KR20190129718A (en) 2018-05-11 2019-11-20 에이에스엠 아이피 홀딩 비.브이. Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures
KR102596988B1 (en) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
TW202013553A (en) 2018-06-04 2020-04-01 荷蘭商Asm 智慧財產控股公司 Wafer handling chamber with moisture reduction
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
KR102568797B1 (en) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing system
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
JP2021529880A (en) 2018-06-27 2021-11-04 エーエスエム・アイピー・ホールディング・ベー・フェー Periodic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials
CN112292478A (en) 2018-06-27 2021-01-29 Asm Ip私人控股有限公司 Cyclic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
KR20200002519A (en) 2018-06-29 2020-01-08 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR20200030162A (en) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. Method for deposition of a thin film
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (en) 2018-10-01 2020-04-07 Asm Ip控股有限公司 Substrate holding apparatus, system including the same, and method of using the same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (en) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
KR102546322B1 (en) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
KR102605121B1 (en) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (en) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and substrate processing apparatus including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (en) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. A method for cleaning a substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
TW202037745A (en) 2018-12-14 2020-10-16 荷蘭商Asm Ip私人控股有限公司 Method of forming device structure, structure formed by the method and system for performing the method
TWI819180B (en) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
KR20200091543A (en) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. Semiconductor processing device
CN111524788B (en) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 Method for topologically selective film formation of silicon oxide
KR102626263B1 (en) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. Cyclical deposition method including treatment step and apparatus for same
JP2020136678A (en) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー Method for filing concave part formed inside front surface of base material, and device
JP2020136677A (en) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー Periodic accumulation method for filing concave part formed inside front surface of base material, and device
KR20200102357A (en) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for plug fill deposition in 3-d nand applications
TW202100794A (en) 2019-02-22 2021-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing apparatus and method for processing substrate
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
KR20200108242A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer
KR20200108243A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Structure Including SiOC Layer and Method of Forming Same
JP2020167398A (en) 2019-03-28 2020-10-08 エーエスエム・アイピー・ホールディング・ベー・フェー Door opener and substrate processing apparatus provided therewith
KR20200116855A (en) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. Method of manufacturing semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
KR20200125453A (en) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system and method of using same
KR20200130121A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Chemical source vessel with dip tube
KR20200130118A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Method for Reforming Amorphous Carbon Polymer Film
KR20200130652A (en) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. Method of depositing material onto a surface and structure formed according to the method
JP2020188255A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141003A (en) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system including a gas detector
KR20200143254A (en) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (en) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. Temperature control assembly for substrate processing apparatus and method of using same
JP2021015791A (en) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. Plasma device and substrate processing method using coaxial waveguide
CN112216646A (en) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 Substrate supporting assembly and substrate processing device comprising same
KR20210010307A (en) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210010816A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Radical assist ignition plasma system and method
KR20210010820A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Methods of forming silicon germanium structures
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
TW202121506A (en) 2019-07-19 2021-06-01 荷蘭商Asm Ip私人控股有限公司 Method of forming topology-controlled amorphous carbon polymer film
TW202113936A (en) 2019-07-29 2021-04-01 荷蘭商Asm Ip私人控股有限公司 Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
CN112309899A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112309900A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
CN112323048B (en) 2019-08-05 2024-02-09 Asm Ip私人控股有限公司 Liquid level sensor for chemical source container
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
JP2021031769A (en) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
KR20210024423A (en) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
KR20210024420A (en) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210029090A (en) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. Methods for selective deposition using a sacrificial capping layer
KR20210029663A (en) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (en) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process
TW202129060A (en) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 Substrate processing device, and substrate processing method
KR20210043460A (en) 2019-10-10 2021-04-21 에이에스엠 아이피 홀딩 비.브이. Method of forming a photoresist underlayer and structure including same
KR20210045930A (en) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. Method of Topology-Selective Film Formation of Silicon Oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (en) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (en) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (en) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
KR20210065848A (en) 2019-11-26 2021-06-04 에이에스엠 아이피 홀딩 비.브이. Methods for selectivley forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112951697A (en) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885692A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885693A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
JP2021090042A (en) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. Substrate processing apparatus and substrate processing method
US10825911B1 (en) 2019-12-02 2020-11-03 Allen Howard Engel Dichalcogenide transistor
KR20210070898A (en) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
JP2021097227A (en) 2019-12-17 2021-06-24 エーエスエム・アイピー・ホールディング・ベー・フェー Method of forming vanadium nitride layer and structure including vanadium nitride layer
KR20210080214A (en) 2019-12-19 2021-06-30 에이에스엠 아이피 홀딩 비.브이. Methods for filling a gap feature on a substrate and related semiconductor structures
KR20210095050A (en) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. Method of forming thin film and method of modifying surface of thin film
TW202130846A (en) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 Method of forming structures including a vanadium or indium layer
KR20210100010A (en) 2020-02-04 2021-08-13 에이에스엠 아이피 홀딩 비.브이. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
TW202146715A (en) 2020-02-17 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method for growing phosphorous-doped silicon layer and system of the same
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
KR20210116240A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. Substrate handling device with adjustable joints
KR20210124042A (en) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. Thin film forming method
TW202146689A (en) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 Method for forming barrier layer and method for manufacturing semiconductor device
TW202145344A (en) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 Apparatus and methods for selectively etching silcon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
KR20210132605A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Vertical batch furnace assembly comprising a cooling gas supply
KR20210132600A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
KR20210132576A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Method of forming vanadium nitride-containing layer and structure comprising the same
KR20210134869A (en) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Fast FOUP swapping with a FOUP handler
KR20210141379A (en) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. Laser alignment fixture for a reactor system
KR20210143653A (en) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210145078A (en) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Structures including multiple carbon layers and methods of forming and using same
TW202201602A (en) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing device
TW202218133A (en) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method for forming a layer provided with silicon
TW202217953A (en) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing method
TW202219628A (en) 2020-07-17 2022-05-16 荷蘭商Asm Ip私人控股有限公司 Structures and methods for use in photolithography
TW202204662A (en) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 Method and system for depositing molybdenum layers
KR20220027026A (en) 2020-08-26 2022-03-07 에이에스엠 아이피 홀딩 비.브이. Method and system for forming metal silicon oxide and metal silicon oxynitride
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TW202229613A (en) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing material on stepped structure
KR20220053482A (en) 2020-10-22 2022-04-29 에이에스엠 아이피 홀딩 비.브이. Method of depositing vanadium metal, structure, device and a deposition assembly
TW202223136A (en) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 Method for forming layer on substrate, and semiconductor processing system
KR20220076343A (en) 2020-11-30 2022-06-08 에이에스엠 아이피 홀딩 비.브이. an injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202231903A (en) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3246950A (en) * 1961-01-03 1966-04-19 Monsanto Co Method of preparing fibrous silicon carbide
US3447952A (en) * 1965-12-07 1969-06-03 Corning Glass Works Manufacture of silicon carbide fibers

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988564A (en) 1986-08-25 1991-01-29 Gte Laboratories Incorporated Metal carbide, nitride, or carbonitride whiskers coated with metal carbides, nitrides, carbonitrides, or oxides
US4900525A (en) 1986-08-25 1990-02-13 Gte Laboratories Incorporated Chemical vapor deposition reactor for producing metal carbide or nitride whiskers
US4948573A (en) * 1986-12-02 1990-08-14 Alcan International Limited Process for producing silicon carbide and metal carbides
FR2611694B1 (en) 1987-02-23 1989-05-19 Pechiney Electrometallurgie PROCESS FOR THE PREPARATION OF SILICON CARBIDE TRICHITES
BR8905294A (en) 1988-01-28 1990-08-21 Hyperion Catalysis Int CARBON FIBRILLES, COMPOUND HAVING CARBON FIBRILLES, CONTINUOUS REINFORCED FIBRILLES, COMPOSITE UNDERWATER FIBRILLED REINFORCED MATRIX, PROCESS TO PREPARE VOLUME OF CARBONE FIBRILLES AND WET METAL CATALYST
JPH02175698A (en) 1988-12-27 1990-07-06 Tokai Carbon Co Ltd Production of sic whisker and device therefor
JPH035374A (en) 1989-06-01 1991-01-11 Mitsubishi Gas Chem Co Inc Silicon nitride-silicon carbide combined sintered body and its production
US5221526A (en) 1991-05-24 1993-06-22 Advanced Industrial Materials Production of silicon carbide whiskers using a seeding component to determine shape and size of whiskers
JPH05221799A (en) 1992-02-10 1993-08-31 Tokai Carbon Co Ltd Modification treatment of sic whisker
EP0582435B1 (en) 1992-08-06 1996-02-28 Toyota Jidosha Kabushiki Kaisha Method of producing TiC whiskers and metallic composite material reinforced by TiC whiskers
DE69325350T2 (en) 1992-12-25 2000-03-02 Oji Paper Co Process for the production of silicon carbide fibers
DE69628425T2 (en) 1995-03-31 2004-05-06 Hyperion Catalysis International, Inc., Cambridge CARBIDE NANOFIBRILLES AND METHOD FOR PRODUCING THE SAME

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3246950A (en) * 1961-01-03 1966-04-19 Monsanto Co Method of preparing fibrous silicon carbide
US3447952A (en) * 1965-12-07 1969-06-03 Corning Glass Works Manufacture of silicon carbide fibers

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMICAL PHYSICS LETTERS, Volume 222, issued 13 May 1994, D. ZHOU et al., "Production of Silicon Carbide Whiskers from Carbon Nanoclusters", pages 233-238. *
PHYSICAL REVIEW B: RAPID COMMUNICATIONS, Volume 51, Number 16, issued 15 April 1995, Z. WENG-SIEH, "Synthesis of BxCyNz Nanotubules", pages 11229-11232. *
SCIENCE, Volume 266, issued 09 December 1994, O. STEPHAN et al., "Doping Graphitic and Carbon Nanotube Structures with Boron and Nitrogen", pages 1683-1685. *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605266B2 (en) 1996-12-18 2003-08-12 Eidg. Technische Hochschule Zurich Use and process for production of nanotubes
US6210800B1 (en) 1996-12-18 2001-04-03 Eidg. Technische Hochschule Zurich Use and production of nanotubes containing a mixed valence venadium
WO1998026871A1 (en) * 1996-12-18 1998-06-25 Eidgenössische Technische Hochschule Zürich Nanotubes, use and manufacture of same
US6290735B1 (en) 1997-10-31 2001-09-18 Nanogram Corporation Abrasive particles for surface polishing
US8048523B2 (en) 1997-10-31 2011-11-01 Nanogram Corporation Cerium oxide nanoparticles
US7258706B2 (en) 1997-10-31 2007-08-21 Nanogram Corporation Abrasive particles for surface polishing
US6514897B1 (en) 1999-01-12 2003-02-04 Hyperion Catalysis International, Inc. Carbide and oxycarbide based compositions, rigid porous structures including the same, methods of making and using the same
US6809229B2 (en) 1999-01-12 2004-10-26 Hyperion Catalysis International, Inc. Method of using carbide and/or oxycarbide containing compositions
US6841508B2 (en) 1999-01-12 2005-01-11 Hyperion Catalysis International, Inc. Carbide and oxycarbide based compositions, rigid porous structures including the same, methods of making and using the same
US6936565B2 (en) 1999-01-12 2005-08-30 Hyperion Catalysis International, Inc. Modified carbide and oxycarbide containing catalysts and methods of making and using thereof
US7169730B2 (en) 1999-01-12 2007-01-30 Hyperion Catalysis International, Inc. Modified carbide and oxycarbide containing catalysts and methods of making and using thereof
US7230149B2 (en) 1999-01-12 2007-06-12 Hyperion Catalysis International, Inc. Method of using carbide and/or oxycarbide containing compositions
US7578989B2 (en) 1999-01-12 2009-08-25 Hyperion Catalysis International, Inc. Method of using carbide and/or oxycarbide containing compositions
JP4689045B2 (en) * 1999-01-12 2011-05-25 ハイピリオン カタリシス インターナショナル インコーポレイテッド Carbide-based and oxycarbide-based compositions and nanorods
JP2002534351A (en) * 1999-01-12 2002-10-15 ハイピリオン カタリシス インターナショナル インコーポレイテッド Carbide-based and oxycarbide-based compositions and nanorods
JP2003523913A (en) * 2000-01-12 2003-08-12 ハイピリオン カタリシス インターナショナル インコーポレイテッド Carbide-based and oxycarbide-based compositions, rigid porous structures containing the same, and methods of making and using the same
WO2021173553A1 (en) * 2020-02-24 2021-09-02 Lam Research Corporation High modulus boron-based ceramics for semiconductor applications

Also Published As

Publication number Publication date
US6190634B1 (en) 2001-02-20

Similar Documents

Publication Publication Date Title
US6190634B1 (en) Carbide nanomaterials
US5997832A (en) Preparation of carbide nanorods
Meng et al. Preparation of β–SiC nanorods with and without amorphous SiO2 wrapping layers
US6911260B2 (en) Reinforced carbon nanotubes
Zhou et al. Production of silicon carbide whiskers from carbon nanoclusters
Zhou et al. β-SiC nanorods synthesized by hot filament chemical vapor deposition
Han et al. Boron-doped carbon nanotubes prepared through a substitution reaction
Liang et al. Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles
Wu et al. Synthesis of coaxial nanowires of silicon nitride sheathed with silicon and silicon oxide
Gundiah et al. Synthesis and characterization of silicon carbide, silicon oxynitride and silicon nitride nanowires
US7544626B2 (en) Preparation of self-assembled silicon nanotubes by hydrothermal method
US20060057050A1 (en) Synthesis of boron carbide nanoparticles
Zhang et al. Synthesis of alumina nanotubes using carbon nanotubes as templates
Lei et al. Synthesis of transition metal carbide nanoparticles through melamine and metal oxides
WO2006031404A1 (en) Metal carbides and process for producing same
KR20110033165A (en) Silicon carbide fibers essentially devoid of whiskers and method for preparation thereof
Tang et al. SiC and its bicrystalline nanowires with uniform BN coatings
JP3798020B2 (en) Carbide microfibril and its manufacturing method
Liang et al. Growth and characterization of TiC nanorods activated by nickel nanoparticles
Tang et al. Effective growth of boron nitride nanotubes
Xie et al. Catalytic chemical vapor deposition synthesis and electron microscopy observation of coiled carbon nanotubes
JP4125638B2 (en) Nanofiber or nanotube comprising group V transition metal dichalcogenide crystal and method for producing the same
Zhang et al. Synthesis and characterization of several one-dimensional nanomaterials
WO2008018782A1 (en) Single crystal silicon carbaide nanowire, method of preparation thereof, and filter comprising the same
Cai et al. Ultra thin and ultra long SiC/SiO2 nanocables from catalytic pyrolysis of poly (dimethyl siloxane)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA IL JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WD Withdrawal of designations after international publication

Free format text: IL

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA