WO1997001197A1 - Method and antenna for providing an omnidirectional pattern - Google Patents

Method and antenna for providing an omnidirectional pattern Download PDF

Info

Publication number
WO1997001197A1
WO1997001197A1 PCT/US1996/005741 US9605741W WO9701197A1 WO 1997001197 A1 WO1997001197 A1 WO 1997001197A1 US 9605741 W US9605741 W US 9605741W WO 9701197 A1 WO9701197 A1 WO 9701197A1
Authority
WO
WIPO (PCT)
Prior art keywords
loop
input
antenna
omnidirectional
pattern
Prior art date
Application number
PCT/US1996/005741
Other languages
French (fr)
Inventor
James Patrick Phillips
Original Assignee
Motorola Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc. filed Critical Motorola Inc.
Priority to CA002198111A priority Critical patent/CA2198111C/en
Priority to AU55735/96A priority patent/AU691111B2/en
Priority to EP96913132A priority patent/EP0776530A4/en
Publication of WO1997001197A1 publication Critical patent/WO1997001197A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/12Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/18Vertical disposition of the antenna

Definitions

  • the present invention relates generally to antennas, and more particularly to omnidirectional antennas.
  • Omnidirectional loop antennas in prior art are small with regard to the operating wavelength and therefore have a narrow frequency bandwidth of operation and are not well suited for many communication systems.
  • the size of the loop is increased. As the loop is made larger, the current distribution around the loop is no longer uniform and the radiation pattern is not omnidirectional but has directionality. As the bandwidth is increased, the size of the antenna increases and the Omnidirectional pattern may be affected. This can be expressed in the form of a table of different size loops expressed in terms of the wavelength of the center frequency of the operating band as shown below. As the loop varies from a circumference of 0.2 wavelengths to 0.5 wavelengths the unusable bandwidth as expressed as a percentage of the center frequency varies from 0.14% to 9.0%.
  • the azimuth pattern becomes non-uniform with peaks and nulls. These nulls produce degraded performance when they are in the direction of the site of the other antenna in the RF communication link.
  • Omnidirectional, vertically polarized antennas are well known and often used in communication systems.
  • the signal is reflected from many surrounding objects and these reflections combine in constructive and destructive ways. When the combination is destructive, the signal is canceled and communication is impossible.
  • a second antenna using horizontal polarization was available, an altemate or diversity communication path would be available.
  • the second antenna has to be isolated and decorrelated from the first.
  • a very effective way of accomplishing this is to have the polarizations of the antennas to be orthogonal. Because the first antennas are usually vertically polarized, the second antenna should be horizontally polarized.
  • FIG. 1 is a diagram of one embodiment of an antenna for providing an omnidirectional polarized pattern in accordance with the present invention.
  • FIG. 2 is a diagram of a second embodiment of an antenna for providing an omnidirectional polarized pattern in accordance with the present invention.
  • FIG. 3 is a graphical representation of return loss of the loop antenna in accordance with the present invention.
  • FIG. 4 is a flow diagram of one embodiment of step for implementing a method for providing an omnidirectional pattern in accordance with the present invention.
  • the present invention provides a method and antenna for providing an omnidirectional pattern with a small structure.
  • FIGs 1 - 1 The present invention is more fully described in FIGs 1 -
  • FIG. 1 is a diagram of one embodiment of an antenna for providing an omnidirectional pattern in accordance with the present invention.
  • the loop (102) is a discontinuous loop comprising at least a first capacitive element (104), feed point (106), and matching network (108).
  • a discontinuity is introduced to balance the omnidirectional transmission pattern.
  • the capacitive element (104) By using the capacitive element (104), current maximums (1 10 and 1 12) are located on either side of the loop (102) to balance the transmission pattern.
  • the capacitors are about 0.7 pico-Farads.
  • FIG. 2 is a diagram of a second embodiment of an antenna for providing an omnidirectional pattern in accordance with the present invention.
  • the antenna (200) comprises an electric dipole (202) and a loop (204).
  • the electric dipole (202) receives a first input (206).
  • the loop (204) receives a second input (208).
  • the electric dipole (202) utilizes a dipole integral "bazooka" balun for common mode operation.
  • the loop (204) is shown in greater detail in figure 1 .
  • the loop (204) utilizes an infinite loop balun for common mode operation.
  • the loop balun is achieved by using a twisted pair transmission line with a small diameter for the wires of the transmission line.
  • the antenna may include a hybrid coupler (210) for inputting one sense circular polarization to the first input (206) and the opposite sense to the second input (208).
  • the second input (208) is equal in amplitude to the first input (206) and the phase of the second input (208) is in quadrature with the phase of the first input (206).
  • the hybrid coupler (21 0) provides the first input (206) and the second input (208) with a left hand circular input (214) and a right hand circular input (21 2).
  • the electric dipole (202) consists of two conductive cylinders approximately one quarter wavelength and equal in size and located collinear with each other. These are made of brass but any highly conductive metal could be used.
  • each cylinder is slightly shorter that one quarter of a wavelength at the center frequency the center of the operating band of frequencies.
  • the diameter of the cylinders is about one tenth of the length. Connection to the dipole is made across a gap between the two cylinders with the coaxial cable running coaxially with the lower cylinder.
  • the lower cylinder forms the balun in addition to being one section of the dipole.
  • the loop is made from copper tubing about one two-hundredth of a wavelength in diameter.
  • the diameter of the loop is one seventh of a wavelength.
  • the loop is discontinuous at two points and capacitors are connected across the discontinuities. The value of the capacitors is selected to cause resonance at the center frequency of operation. At 800 MHz, the capacitors are about 0.7 pico-Farads. Because the circumference of the loop is nearly one half wavelength, the current distribution is non uniform around the loop. Without the capacitors a single current maximum occurs which is therefore offset from the center of the loop.
  • the hybrid couplers (21 0) are commercial
  • FIG. 3 is a graphical representation of return loss in accordance with the present invention.
  • the return loss (302) is a function of frequency (304).
  • the return losses of the electric dipole (308) and the loop (312) are centered a center frequency f 0 (306).
  • the return loss of prior art loops (310) has a substantially narrower bandwidth than the return loss of the loop in the present invention (312).
  • "Q" is defined in the art to be ratio of two pi times the energy stored by a reactive element to the energy dissipated over one cycle in a resonant circuit. Q is therefore equal to the ratio of the reactance of the loop to the radiation resistance of the loop as shown below.
  • Q is also a measure of how much usable frequency bandwidth an antenna provides. It is equal to the center frequency of operation divided by the half-power bandwidth as shown below.
  • Fmax is the maximum frequency of operation
  • Fmin is the minimum frequency of operation
  • Fcenter is the center frequency of operation
  • the Q. should be less that 20. This requires that the reactance "Xl" be no more than 20 times the radiation resistance, "Rr" of equation 1 .
  • the radiation resistance is very small but it increases as the fourth power of the diameter of the loop.
  • the reactance is much larger than the resistance but it increases only linearly with diameter. Therefore, an infinitesimally small loop has an infinite "Q" and it decreases rapidly as the loop is made larger.
  • FIG. 4, numeral 400 is a flow diagram of one embodiment of steps for implementing a method for providing both horizontally and vertically polarized omnidirectional patterns in accordance with the present invention.
  • a first input is received by an electric dipole (402), and a second input is received by a loop (404).
  • the loop is a discontinuous loop comprising at least a first capacitive element at a discontinuity to balance the omnidirectional transmission pattern.
  • the electric dipole utilizes a coaxial or "bazooka” dipole balun to allow connection coaxially to the dipole.
  • the loop utilizes a separate balun for operation co-located with the dipole.
  • the loop balun is achieved by a coaxial or "bazooka” balun or by using a twisted-pair transmission line with a small diameter wires for each conductor.
  • the transmission line connecting to the loop is decoupled from the antenna structure by using the same coaxial or "bazooka” balun used by the electric dipole .
  • the separate coaxial feedlines may be located in parallel while passing through the lower tube which forms the lower arm of the dipole and the balun for the electric dipole.
  • Circular polarization may be provided by the co-located electric dipole and loop by connecting them to a common RF signal source with equal RF signal magnitude and with a phase quadrature relationship between them .
  • the second input is equal in amplitude to the first input and the phase of the second input is in quadrature with the phase of the first input.
  • a hybrid combiner provides two isolated inputs with orthogonal quadrature relationships. The hybrid can thus provide both left-hand and right-hand circularly polarized signals simultaneously and independently.
  • the present invention provides a method and antenna for providing an electrically small, omnidirectional, horizontally polarized pattern.
  • the antenna element may be co-located and independently connected with an electric dipole.
  • a multiplicity of wave polarizations are available for diversity to improve the reliability of a communications system.
  • In-door, RF, data communication systems are improved by using circular polarization.
  • a small antenna of this type will have application in cordless phone and micro cellular base stations.
  • the advantages are the antenna is a smaller size than prior art of the same bandwidth due to being integrated and collocated with the dipole, a receiving antenna such as a hand held antenna, can be in any orientation, and the antenna can be low cost with baluns.

Abstract

The present invention provides a method (400) and antenna (100) for providing an omnidirectional pattern. The antenna (100) is smaller than prior art omnidirectional antennas with the same bandwidth. The smaller size is made possible by the use of at least one capacitive element (104) at a discontinuity in the loop (102). The pattern is balanced and therefore the omnidirectionality is maintained by the current maximum (110 and 112) that are created by the capacitive element (104).

Description

METHOD AND ANTENNA FOR PROVIDING AN OMNIDIRECTIONAL
PATTERN
Field of the invention
The present invention relates generally to antennas, and more particularly to omnidirectional antennas.
Background of the Invention
Omnidirectional loop antennas in prior art are small with regard to the operating wavelength and therefore have a narrow frequency bandwidth of operation and are not well suited for many communication systems. To increase the operating bandwidth the size of the loop is increased. As the loop is made larger, the current distribution around the loop is no longer uniform and the radiation pattern is not omnidirectional but has directionality. As the bandwidth is increased, the size of the antenna increases and the Omnidirectional pattern may be affected. This can be expressed in the form of a table of different size loops expressed in terms of the wavelength of the center frequency of the operating band as shown below. As the loop varies from a circumference of 0.2 wavelengths to 0.5 wavelengths the unusable bandwidth as expressed as a percentage of the center frequency varies from 0.14% to 9.0%. However, the uniformity of the pattern degrades . If the maximum response is compared to the minimum response in the azimuth plane this can be expressed in decibels and shown in the table below. Circumference Radiation Bandwidth in Azimuth Max. to in Wavelengths Resistance Percentage Minimum in dB
0.2 0.32 Ohms 0.14 % 1.0 dB
0.3 1.5 Ohms 0.56 % 2.0 dB
0.4 5.1 8 Ohms 2.33% 4.0 dB
0.5 12.3 Ohms 6.45 %. 6.0 dB
When the loop is made large enough for the bandwidth to be great enough to be usable in typical communication systems, typically greater than 5.0%, then the azimuth pattern becomes non-uniform with peaks and nulls. These nulls produce degraded performance when they are in the direction of the site of the other antenna in the RF communication link.
Omnidirectional, vertically polarized antennas, usually called electric dipoles, are well known and often used in communication systems. In land mobile, cellular and other base- to-mobile communication systems, the signal is reflected from many surrounding objects and these reflections combine in constructive and destructive ways. When the combination is destructive, the signal is canceled and communication is impossible. If however, a second antenna using horizontal polarization was available, an altemate or diversity communication path would be available. For this second path to be effective the second antenna has to be isolated and decorrelated from the first. A very effective way of accomplishing this is to have the polarizations of the antennas to be orthogonal. Because the first antennas are usually vertically polarized, the second antenna should be horizontally polarized. There exists, therefore, a need for a method and antenna for providing omnidirectional pattern, wherein the antenna is smaller than prior art with comparable bandwidth.
Brief Descriptions of the Drawings
FIG. 1 is a diagram of one embodiment of an antenna for providing an omnidirectional polarized pattern in accordance with the present invention.
FIG. 2 is a diagram of a second embodiment of an antenna for providing an omnidirectional polarized pattern in accordance with the present invention.
FIG. 3 is a graphical representation of return loss of the loop antenna in accordance with the present invention.
FIG. 4 is a flow diagram of one embodiment of step for implementing a method for providing an omnidirectional pattern in accordance with the present invention.
Detailed Description of the Preferred Embodiments
Generally, the present invention provides a method and antenna for providing an omnidirectional pattern with a small structure.
The present invention is more fully described in FIGs 1 -
FIG. 1 , numeral 100, is a diagram of one embodiment of an antenna for providing an omnidirectional pattern in accordance with the present invention. The loop (102) is a discontinuous loop comprising at least a first capacitive element (104), feed point (106), and matching network (108). A discontinuity is introduced to balance the omnidirectional transmission pattern. By using the capacitive element (104), current maximums (1 10 and 1 12) are located on either side of the loop (102) to balance the transmission pattern. At 800 MHz, the capacitors are about 0.7 pico-Farads.
FIG. 2, numeral 200, is a diagram of a second embodiment of an antenna for providing an omnidirectional pattern in accordance with the present invention. The antenna (200) comprises an electric dipole (202) and a loop (204).
The electric dipole (202) receives a first input (206). The loop (204) receives a second input (208). The electric dipole (202) utilizes a dipole integral "bazooka" balun for common mode operation. The loop (204) is shown in greater detail in figure 1 . The loop (204) utilizes an infinite loop balun for common mode operation. The loop balun is achieved by using a twisted pair transmission line with a small diameter for the wires of the transmission line.
The antenna may include a hybrid coupler (210) for inputting one sense circular polarization to the first input (206) and the opposite sense to the second input (208). The second input (208) is equal in amplitude to the first input (206) and the phase of the second input (208) is in quadrature with the phase of the first input (206). The hybrid coupler (21 0) provides the first input (206) and the second input (208) with a left hand circular input (214) and a right hand circular input (21 2). The electric dipole (202) consists of two conductive cylinders approximately one quarter wavelength and equal in size and located collinear with each other. These are made of brass but any highly conductive metal could be used. The length of each cylinder is slightly shorter that one quarter of a wavelength at the center frequency the center of the operating band of frequencies. The diameter of the cylinders is about one tenth of the length. Connection to the dipole is made across a gap between the two cylinders with the coaxial cable running coaxially with the lower cylinder. The lower cylinder forms the balun in addition to being one section of the dipole. The loop is made from copper tubing about one two-hundredth of a wavelength in diameter. The diameter of the loop is one seventh of a wavelength. The loop is discontinuous at two points and capacitors are connected across the discontinuities. The value of the capacitors is selected to cause resonance at the center frequency of operation. At 800 MHz, the capacitors are about 0.7 pico-Farads. Because the circumference of the loop is nearly one half wavelength, the current distribution is non uniform around the loop. Without the capacitors a single current maximum occurs which is therefore offset from the center of the loop. The hybrid couplers (21 0) are commercially available
FIG. 3, numeral 300, is a graphical representation of return loss in accordance with the present invention. The return loss (302) is a function of frequency (304). The return losses of the electric dipole (308) and the loop (312) are centered a center frequency f0 (306). The return loss of prior art loops (310) has a substantially narrower bandwidth than the return loss of the loop in the present invention (312). "Q" is defined in the art to be ratio of two pi times the energy stored by a reactive element to the energy dissipated over one cycle in a resonant circuit. Q is therefore equal to the ratio of the reactance of the loop to the radiation resistance of the loop as shown below.
= Xl/Rr
Where: XI = the inductive reactance of the loop, and Rr = the radiation resistance of the loop.
"Q" is also a measure of how much usable frequency bandwidth an antenna provides. It is equal to the center frequency of operation divided by the half-power bandwidth as shown below.
Q = Fcenter/(Fmax - Fmin)
Where Fmax is the maximum frequency of operation, Fmin is the minimum frequency of operation, and Fcenter is the center frequency of operation.
To obtain the usable bandwidths of 5%, which are typical of many communication systems, the Q. should be less that 20. This requires that the reactance "Xl" be no more than 20 times the radiation resistance, "Rr" of equation 1 .
For electrically small loops, the radiation resistance is very small but it increases as the fourth power of the diameter of the loop. The reactance is much larger than the resistance but it increases only linearly with diameter. Therefore, an infinitesimally small loop has an infinite "Q" and it decreases rapidly as the loop is made larger.
FIG. 4, numeral 400, is a flow diagram of one embodiment of steps for implementing a method for providing both horizontally and vertically polarized omnidirectional patterns in accordance with the present invention. A first input is received by an electric dipole (402), and a second input is received by a loop (404). The loop is a discontinuous loop comprising at least a first capacitive element at a discontinuity to balance the omnidirectional transmission pattern.
The electric dipole utilizes a coaxial or "bazooka" dipole balun to allow connection coaxially to the dipole. The loop utilizes a separate balun for operation co-located with the dipole. The loop balun is achieved by a coaxial or "bazooka" balun or by using a twisted-pair transmission line with a small diameter wires for each conductor. The transmission line connecting to the loop is decoupled from the antenna structure by using the same coaxial or "bazooka" balun used by the electric dipole . The separate coaxial feedlines may be located in parallel while passing through the lower tube which forms the lower arm of the dipole and the balun for the electric dipole.
Circular polarization may be provided by the co-located electric dipole and loop by connecting them to a common RF signal source with equal RF signal magnitude and with a phase quadrature relationship between them . The first input for the electric dipole and the second input for the loop antenna, by a hybrid coupler (406). The second input is equal in amplitude to the first input and the phase of the second input is in quadrature with the phase of the first input. A hybrid combiner provides two isolated inputs with orthogonal quadrature relationships. The hybrid can thus provide both left-hand and right-hand circularly polarized signals simultaneously and independently.
Thus, the present invention provides a method and antenna for providing an electrically small, omnidirectional, horizontally polarized pattern. The antenna element may be co-located and independently connected with an electric dipole. With such a structure, a multiplicity of wave polarizations are available for diversity to improve the reliability of a communications system. In-door, RF, data communication systems are improved by using circular polarization. A small antenna of this type will have application in cordless phone and micro cellular base stations. The advantages are the antenna is a smaller size than prior art of the same bandwidth due to being integrated and collocated with the dipole, a receiving antenna such as a hand held antenna, can be in any orientation, and the antenna can be low cost with baluns.
Although exemplary embodiments are described above, it will be obvious to those skilled in the art that many alterations and modifications may be made without departing from the invention. Accordingly, it is intended that all such alterations and modifications be included within the spirit and scope of the invention as defined in the appended claims.

Claims

CLAIMSWe claim:
1. A method for providing an omnidirectional pattern, the method comprising:
receiving a first input by an electric dipole; and
receiving a second input by a loop, wherein the loop is a discontinuous loop comprising at least a first capacitive element at a discontinuity to balance the omnidirectional transmission pattern.
2. The method of claim 1 further comprising an initial step of inputting circular polarization to the first input and the second input by a hybrid coupler.
3. An antenna for providing an omnidirectional pattern, the antenna comprising:
a conductive loop oriented in the horizontal plane for receiving a first input to provide a current distribution, the loop contains at least a first discontinuity and is larger than 0.5 wavelengths in circumference; and
at least a first capacitive element at the discontinuities to modify the current distribution on the loop and thus provide the omnidirectional pattem.
4. The antenna of claim 3 wherein the loop utilizes a coaxial or "bazooka" balun for common mode operation.
5. The antenna of claim 4, wherein the loop balun is achieved by using a twisted pair transmission line with a small diameter for the wires.
6. The antenna of claim 3 further comprising an electric dipole, operably coupled to the conductive loop, for receiving a second input.
7. The antenna of claim 6, wherein the electric dipole utilizes a coaxial or "bazooka " balun for common mode operation.
8. The antenna of claim 6, wherein the antenna further comprises a hybrid coupler for inputting circular polarization to the first input and the second input, wherein the second input is equal in amplitude to the first input and the phase of the second input is in quadrature with the phase of the first input.
PCT/US1996/005741 1995-06-21 1996-04-26 Method and antenna for providing an omnidirectional pattern WO1997001197A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002198111A CA2198111C (en) 1995-06-21 1996-04-26 Method and antenna for providing an omnidirectional pattern
AU55735/96A AU691111B2 (en) 1995-06-21 1996-04-26 Method and antenna for providing an omnidirectional pattern
EP96913132A EP0776530A4 (en) 1995-06-21 1996-04-26 Method and antenna for providing an omnidirectional pattern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US49303995A 1995-06-21 1995-06-21
US08/493,039 1995-06-21

Publications (1)

Publication Number Publication Date
WO1997001197A1 true WO1997001197A1 (en) 1997-01-09

Family

ID=23958656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/005741 WO1997001197A1 (en) 1995-06-21 1996-04-26 Method and antenna for providing an omnidirectional pattern

Country Status (6)

Country Link
US (1) US5751252A (en)
EP (1) EP0776530A4 (en)
CN (1) CN1081836C (en)
AU (1) AU691111B2 (en)
CA (1) CA2198111C (en)
WO (1) WO1997001197A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1010457C2 (en) * 1998-11-03 2000-05-04 Nedap Nv Large loop antennas.
WO2001041253A1 (en) * 1999-12-01 2001-06-07 Logitech Europe S.A. Loop antenna parasitics reduction technique
GB2380325A (en) * 2001-06-20 2003-04-02 Univ Belfast Loop antennae with opposed gaps
US6960984B1 (en) 1999-12-08 2005-11-01 University Of North Carolina Methods and systems for reactively compensating magnetic current loops
KR101243564B1 (en) * 2004-11-12 2013-03-27 바이엘 헬스케어 엘엘씨 Site-directed modification of fviii

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2315602B (en) * 1996-07-23 2000-11-29 Motorola Inc Loop antenna
US5914613A (en) 1996-08-08 1999-06-22 Cascade Microtech, Inc. Membrane probing system with local contact scrub
US6256882B1 (en) 1998-07-14 2001-07-10 Cascade Microtech, Inc. Membrane probing system
SE514773C2 (en) * 1998-09-28 2001-04-23 Allgon Ab Radio communication unit and antenna system
US6480158B2 (en) 2000-05-31 2002-11-12 Bae Systems Information And Electronic Systems Integration Inc. Narrow-band, crossed-element, offset-tuned dual band, dual mode meander line loaded antenna
US6914423B2 (en) 2000-09-05 2005-07-05 Cascade Microtech, Inc. Probe station
US6965226B2 (en) 2000-09-05 2005-11-15 Cascade Microtech, Inc. Chuck for holding a device under test
DE10143173A1 (en) 2000-12-04 2002-06-06 Cascade Microtech Inc Wafer probe has contact finger array with impedance matching network suitable for wide band
US6515632B1 (en) 2001-06-06 2003-02-04 Tdk Rf Solutions Multiply-fed loop antenna
AU2002327490A1 (en) 2001-08-21 2003-06-30 Cascade Microtech, Inc. Membrane probing system
US6608602B2 (en) * 2001-11-06 2003-08-19 Intel Corporation Method and apparatus for a high isolation dual port antenna system
US7057404B2 (en) 2003-05-23 2006-06-06 Sharp Laboratories Of America, Inc. Shielded probe for testing a device under test
US7492172B2 (en) 2003-05-23 2009-02-17 Cascade Microtech, Inc. Chuck for holding a device under test
US7250626B2 (en) 2003-10-22 2007-07-31 Cascade Microtech, Inc. Probe testing structure
KR20060126700A (en) 2003-12-24 2006-12-08 캐스케이드 마이크로테크 인코포레이티드 Active wafer probe
US7187188B2 (en) 2003-12-24 2007-03-06 Cascade Microtech, Inc. Chuck with integrated wafer support
KR20070058522A (en) 2004-09-13 2007-06-08 캐스케이드 마이크로테크 인코포레이티드 Double sided probing structures
US7535247B2 (en) 2005-01-31 2009-05-19 Cascade Microtech, Inc. Interface for testing semiconductors
US7656172B2 (en) 2005-01-31 2010-02-02 Cascade Microtech, Inc. System for testing semiconductors
US20070069968A1 (en) * 2005-09-29 2007-03-29 Moller Paul J High frequency omni-directional loop antenna including three or more radiating dipoles
US7839351B2 (en) * 2006-04-14 2010-11-23 Spx Corporation Antenna system and method to transmit cross-polarized signals from a common radiator with low mutual coupling
US7723999B2 (en) 2006-06-12 2010-05-25 Cascade Microtech, Inc. Calibration structures for differential signal probing
US7403028B2 (en) 2006-06-12 2008-07-22 Cascade Microtech, Inc. Test structure and probe for differential signals
US7764072B2 (en) 2006-06-12 2010-07-27 Cascade Microtech, Inc. Differential signal probing system
US8081699B2 (en) 2006-07-15 2011-12-20 Kazimierz Siwiak Wireless communication system and method with elliptically polarized radio frequency signals
US7876114B2 (en) 2007-08-08 2011-01-25 Cascade Microtech, Inc. Differential waveguide probe
EP2034557B1 (en) 2007-09-06 2012-02-01 Delphi Delco Electronics Europe GmbH Antenna for satellite reception
DE102008003532A1 (en) * 2007-09-06 2009-03-12 Lindenmeier, Heinz, Prof. Dr. Ing. Antenna for satellite reception
GB0805393D0 (en) * 2008-03-26 2008-04-30 Dockon Ltd Improvements in and relating to antennas
US8462061B2 (en) * 2008-03-26 2013-06-11 Dockon Ag Printed compound loop antenna
US8164528B2 (en) * 2008-03-26 2012-04-24 Dockon Ag Self-contained counterpoise compound loop antenna
DE102008002587A1 (en) * 2008-06-23 2009-12-24 Biotronik Crm Patent Ag Patient device with an antenna arrangement with polarization diversity
US7888957B2 (en) 2008-10-06 2011-02-15 Cascade Microtech, Inc. Probing apparatus with impedance optimized interface
WO2010059247A2 (en) 2008-11-21 2010-05-27 Cascade Microtech, Inc. Replaceable coupon for a probing apparatus
US8319503B2 (en) 2008-11-24 2012-11-27 Cascade Microtech, Inc. Test apparatus for measuring a characteristic of a device under test
DE102009011542A1 (en) * 2009-03-03 2010-09-09 Heinz Prof. Dr.-Ing. Lindenmeier Antenna for receiving circularly in a direction of rotation of the polarization of broadcast satellite radio signals
US8164537B2 (en) * 2009-05-07 2012-04-24 Mororola Mobility, Inc. Multiband folded dipole transmission line antenna
CN101777704B (en) * 2010-02-21 2013-02-06 摩比天线技术(深圳)有限公司 Indoor omnidirectional antenna
US8164532B1 (en) 2011-01-18 2012-04-24 Dockon Ag Circular polarized compound loop antenna
US8654021B2 (en) 2011-09-02 2014-02-18 Dockon Ag Single-sided multi-band antenna
EP2774216B1 (en) 2011-11-04 2021-05-05 Dockon AG Capacitively coupled compound loop antenna
US9324020B2 (en) * 2012-08-30 2016-04-26 Nxp B.V. Antenna structures and methods for omni directional radiation patterns
US20140313093A1 (en) 2013-04-17 2014-10-23 Telefonaktiebolaget L M Ericsson Horizontally polarized omni-directional antenna apparatus and method
JP2015070587A (en) * 2013-10-01 2015-04-13 セイコーエプソン株式会社 Antenna and electronic device
US9419347B2 (en) * 2014-05-27 2016-08-16 City University Of Hong Kong Circularly polarized antenna
TWI533522B (en) * 2014-08-08 2016-05-11 啟碁科技股份有限公司 Miniature antenna and antenna module thereof
CN110635224A (en) * 2018-06-21 2019-12-31 湘南学院 Broadband antenna based on fire sprinkler head

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2953782A (en) * 1955-05-04 1960-09-20 Marconi Wireless Telegraph Co Receiving aerial systems
US4183027A (en) * 1977-10-07 1980-01-08 Ehrenspeck Hermann W Dual frequency band directional antenna system
US4801944A (en) * 1987-10-13 1989-01-31 Madnick Peter A Antenna
US4809009A (en) * 1988-01-25 1989-02-28 Grimes Dale M Resonant antenna

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1818639A (en) * 1928-01-19 1931-08-11 Drahtlose Telegraphie Gmbh Radio direction finding
US3474452A (en) * 1967-02-16 1969-10-21 Electronics Research Inc Omnidirectional circularly polarized antenna
US4340891A (en) * 1978-04-26 1982-07-20 Motorola, Inc. Dual polarized base station receive antenna
JPS57142002A (en) * 1981-02-27 1982-09-02 Toshiba Corp Small-sized loop antenna
US4947180A (en) * 1989-06-14 1990-08-07 Terk Technologies Corporation FM antenna
US5198826A (en) * 1989-09-22 1993-03-30 Nippon Sheet Glass Co., Ltd. Wide-band loop antenna with outer and inner loop conductors
US5038150A (en) * 1990-05-14 1991-08-06 Hughes Aircraft Company Feed network for a dual circular and dual linear polarization antenna
JP3095473B2 (en) * 1991-09-25 2000-10-03 株式会社トキメック Detected device and moving object identification system
US5300936A (en) * 1992-09-30 1994-04-05 Loral Aerospace Corp. Multiple band antenna
US5469180A (en) * 1994-05-02 1995-11-21 Motorola, Inc. Method and apparatus for tuning a loop antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2953782A (en) * 1955-05-04 1960-09-20 Marconi Wireless Telegraph Co Receiving aerial systems
US4183027A (en) * 1977-10-07 1980-01-08 Ehrenspeck Hermann W Dual frequency band directional antenna system
US4801944A (en) * 1987-10-13 1989-01-31 Madnick Peter A Antenna
US4809009A (en) * 1988-01-25 1989-02-28 Grimes Dale M Resonant antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0776530A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1010457C2 (en) * 1998-11-03 2000-05-04 Nedap Nv Large loop antennas.
WO2000026989A1 (en) * 1998-11-03 2000-05-11 N.V. Nederlandsche Apparatenfabriek Nedap System for detecting and optionally communicating with transponders such as antitheft transponders and identification transponders
WO2001041253A1 (en) * 1999-12-01 2001-06-07 Logitech Europe S.A. Loop antenna parasitics reduction technique
US6359594B1 (en) 1999-12-01 2002-03-19 Logitech Europe S.A. Loop antenna parasitics reduction technique
US6600452B2 (en) 1999-12-01 2003-07-29 Logitech Europe S.A. Loop antenna parasitics reduction technique
CN1333492C (en) * 1999-12-01 2007-08-22 罗技欧洲公司 Loop antenna parasitics reducing techinque
US6960984B1 (en) 1999-12-08 2005-11-01 University Of North Carolina Methods and systems for reactively compensating magnetic current loops
GB2380325A (en) * 2001-06-20 2003-04-02 Univ Belfast Loop antennae with opposed gaps
GB2380325B (en) * 2001-06-20 2005-06-01 Univ Belfast Improvements relating to antennas
KR101243564B1 (en) * 2004-11-12 2013-03-27 바이엘 헬스케어 엘엘씨 Site-directed modification of fviii

Also Published As

Publication number Publication date
US5751252A (en) 1998-05-12
AU691111B2 (en) 1998-05-07
EP0776530A1 (en) 1997-06-04
CA2198111C (en) 2000-01-11
CN1157061A (en) 1997-08-13
CA2198111A1 (en) 1997-01-09
EP0776530A4 (en) 1998-06-10
AU5573596A (en) 1997-01-22
CN1081836C (en) 2002-03-27

Similar Documents

Publication Publication Date Title
US5751252A (en) Method and antenna for providing an omnidirectional pattern
US6606061B2 (en) Broadband circularly polarized patch antenna
US6753826B2 (en) Dual band phased array employing spatial second harmonics
US6040803A (en) Dual band diversity antenna having parasitic radiating element
US7084823B2 (en) Integrated front end antenna
US6281849B1 (en) Printed bi-polarization antenna and corresponding network of antennas
US4479130A (en) Broadband antennae employing coaxial transmission line sections
CN107895846B (en) Circular polarization patch antenna with broadband
US3879735A (en) Broadband antenna systems with isolated independent radiators
JP3618267B2 (en) Antenna device
JP3323020B2 (en) Diversity antenna
JPH08186425A (en) Miniaturized antenna and diversity antenna
won Jung et al. A single-arm circular spiral antenna with inner/outer feed circuitry for changing polarization and beam characteristics
US3475756A (en) Polarization diversity loop antenna
Sibille et al. Beam steering circular monopole arrays for wireless applications
CN113544906B (en) Dual-port antenna structure
US11757187B2 (en) Wide band directional antenna
CN219350668U (en) Microstrip antenna and electronic equipment
JPH10510110A (en) Receiving module for extremely high frequency directional electromagnetic field reception
CN116137378A (en) Antenna and electronic device
JPH06204733A (en) Small sized antenna
JPH03126302A (en) Antenna for travelling object
JPH11266119A (en) Multistage antenna
EP0080507A1 (en) Broadband antennae

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96190659.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1996913132

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2198111

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996913132

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996913132

Country of ref document: EP