WO1997004201A1 - Diebstahlschutzsystem für ein kraftfahrzeug - Google Patents

Diebstahlschutzsystem für ein kraftfahrzeug Download PDF

Info

Publication number
WO1997004201A1
WO1997004201A1 PCT/EP1996/002712 EP9602712W WO9704201A1 WO 1997004201 A1 WO1997004201 A1 WO 1997004201A1 EP 9602712 W EP9602712 W EP 9602712W WO 9704201 A1 WO9704201 A1 WO 9704201A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
transponder
energy
excitation frequency
changed
Prior art date
Application number
PCT/EP1996/002712
Other languages
English (en)
French (fr)
Inventor
Herbert Zimmer
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to BR9609543A priority Critical patent/BR9609543A/pt
Priority to MX9800675A priority patent/MX9800675A/es
Priority to EP19960922880 priority patent/EP0840832B1/de
Priority to DE59609024T priority patent/DE59609024D1/de
Publication of WO1997004201A1 publication Critical patent/WO1997004201A1/de
Priority to US09/013,296 priority patent/US6064298A/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B49/00Electric permutation locks; Circuits therefor ; Mechanical aspects of electronic locks; Mechanical keys therefor
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C9/00309Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/01Fittings or systems for preventing or indicating unauthorised use or theft of vehicles operating on vehicle systems or fittings, e.g. on doors, seats or windscreens
    • B60R25/04Fittings or systems for preventing or indicating unauthorised use or theft of vehicles operating on vehicle systems or fittings, e.g. on doors, seats or windscreens operating on the propulsion system, e.g. engine or drive motor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0008General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C9/00309Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks
    • G07C2009/00365Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks in combination with a wake-up circuit
    • G07C2009/00373Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks in combination with a wake-up circuit whereby the wake-up circuit is situated in the lock
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C2009/00579Power supply for the keyless data carrier
    • G07C2009/00603Power supply for the keyless data carrier by power transmission from lock
    • G07C2009/00611Power supply for the keyless data carrier by power transmission from lock by using inductive transmission
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C2009/00753Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys
    • G07C2009/00769Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys with data transmission performed by wireless means
    • G07C2009/00777Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys with data transmission performed by wireless means by induction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T70/00Locks
    • Y10T70/70Operating mechanism
    • Y10T70/7051Using a powered device [e.g., motor]
    • Y10T70/7062Electrical type [e.g., solenoid]

Definitions

  • the invention relates to an anti-theft system for a motor vehicle. It relates in particular to a locking system by which an immobilizer of the motor vehicle is released.
  • a known theft protection system (US 5,053,774) has a portable transponder that receives a question code signal from a stationary transceiver. After receipt of the question code signal, a response code signal is sent back to the transceiver. Energy is also transmitted in the question code signal and triggers the answer code signal. The energy is temporarily stored in an accumulator. If there is enough energy in the accumulator, the code signal is triggered.
  • the transponder and the transceiver are poorly coupled to one another, it may take a long time for the battery to be charged.
  • the problem of the invention is to create an anti-theft system for a motor vehicle, by means of which an energy store in the transponder is charged securely and quickly, so that a response code signal (hereinafter referred to as code signal) is sent out immediately upon receipt of a question code signal can.
  • code signal a response code signal
  • the problem is solved by the features of claim 1.
  • FIG. 1 a schematic block diagram of the theft protection system according to the invention
  • FIGS. 2a to 2e pulse diagrams of a transponder and a transceiver of the theft protection system
  • FIG. 3 a resonance curve of an oscillating circuit
  • FIG. 4 a block diagram of a first exemplary embodiment for generating an oscillation
  • FIG. 5 a block diagram of a second exemplary embodiment.
  • An anti-theft system has a transceiver 1 (FIG. 1) which is arranged in the motor vehicle and which interacts with a portable transponder 2 via a transformer coupling when the transponder 2 is in the vicinity of the transceiver 1.
  • the transceiver 1 generates an alternating field through which energy is transmitted to the transponder 2, as a result of which a capacitor (charging capacitor 3) or accumulator in the transponder 2 is then charged. If enough energy is charged in the charging capacitor 3, the transponder 2 is activated and code signals are transmitted back to the transceiver 1.
  • the transceiver 1 has an oscillating circuit (hereinafter referred to as an antenna oscillating circuit) which is excited to oscillate with the aid of an oscillator 4.
  • the antenna resonant circuit has at least one antenna capacitor 5 and one coil (antenna 6).
  • the antenna 6 can, for example, be wound around the ignition lock.
  • the transponder 2 also has a resonant circuit (hereinafter referred to as a transponder resonant circuit) with a coil 7 and a transponder capacitor 8. If the antenna 6 and the coil 7 are in close proximity to one another, then an inductive coupling and thus a data or energy transmission take place. This is the case, for example, when the transponder 2 is arranged on an ignition key. As soon as the ignition key is inserted into the ignition lock and the ignition key is turned, the antenna 6 and the coil 7 are electrically coupled to one another.
  • a transponder resonant circuit resonant circuit
  • the oscillation of the antenna resonant circuit 5, 6 is modulated by the transponder 2 in time with code information.
  • the transponder 2 has a switch 9, which connects an additional capacitor 10 to the transponder capacitor 8 of the transponder resonant circuit 7, 8 in time with the code information.
  • the modulation only takes place when the charging capacitor 3 is sufficiently charged with energy to switch the switch 9 in time with the code information.
  • the switch 9 is controlled by a transponder control unit (transponder IC 12), which can be designed as an integrated circuit.
  • the transceiver 1 As soon as the ignition key is turned in the ignition lock, the transceiver 1 generates an alternating field with a large field strength (energy signals) (FIG. 2a).
  • the energy signals are generated within a predetermined time period (charging phase), here for example 50 ms long. They have an amplitude of approximately 100 V.
  • charging phase here for example 50 ms long. They have an amplitude of approximately 100 V.
  • these energy signals charge the charging capacitor 3 at different speeds (FIG. 2b).
  • the charging capacitor 3 should be largely charged.
  • the transponder 2 detects that the energy signals are switched off, since the transceiver 1 then generates an alternating field with only a low field strength (in the order of magnitude of a few mV). Thereupon the switch 9 is switched within a further predetermined period of time (reading phase) in the cycle of the code information and thus generates the code signal (FIG. 2c).
  • the code signal is a signal with a small amplitude, for example of approximately 1 mV, and is present for approximately 20 ms. The amplitude of the code signal decreases continuously since the charging capacitor 3 supplies the energy for switching the switch and is consequently discharged continuously.
  • the code signal acts back on the antenna resonant circuit 5, 6 since the antenna 6 and the coil 7 are inductively coupled to one another. Therefore the vibration of the antenna Resonant circuit 5, 6 modulated ( Figure 2d). Since the additional capacitor 10 is switched in and out of the transponder capacitor 8, the antenna resonant circuit 5, 6 is subjected to different loads and, as a result, the frequency of the oscillation of the antenna resonant circuit 5, 6 is modulated.
  • the oscillation frequency of the antenna resonant circuit 5, 6 changes, for example, from 123 kHz to 134 kHz as a result of the frequency modulation by the code signal.
  • the modulated vibration of the antenna resonant circuit 5, 6 is detected by a demodulator 13 and evaluated in a control and evaluation unit 14. For this purpose, the periods last or the frequencies of the modulated oscillation are measured. If the frequency of the modulated oscillation is below a threshold value of, for example, 129 kHz, a high level of the modulated signal is recognized and if the frequency is above 129 kHz, a low level is recognized (FIG. 2e). In this way, the code information of the transponder 2 is demodulated from the modulated vibration.
  • a threshold value for example, 129 kHz
  • the code information is compared in the control or evaluation unit 14 with a predetermined target code information. If the two match, an enable signal is sent to a security unit in the motor vehicle.
  • Such a security unit can be, for example, a door lock or an immobilizer. With an authorized and correct code signal, the door lock is unlocked or the Immobilizer deactivated so that the engine can be started.
  • the antenna resonant circuit 5, 6 is forced by the oscillator 4 with an excitation size to oscillate with an excitation frequency f E.
  • the output voltage or current of the oscillator 4 can be used as the excitation variable.
  • the oscillator 4 oscillates at the oscillator frequency f 0 .
  • a frequency divider 15 can be arranged between the oscillator 4 and the antenna resonant circuit 5, 6, which divides the oscillator frequency f 0 down to the desired excitation frequency f E.
  • the excitation size results in a stationary, forced oscillation of the antenna resonant circuit 5, 6, which then oscillates at the excitation frequency f E.
  • Each resonant circuit has a natural frequency or resonance frequency f R , which is determined by the components of the resonant circuit, ie essentially by the antenna 6 and the antenna capacitor 5.
  • the generated intensity (field strength / amplitude) of the oscillation is greatest when the oscillating circuit is excited with the excitation frequency f E equal to the resonance frequency f R (the operating point Pi of the oscillating circuit is then at the resonance point P 0 ; see FIG. 3 for this). In this case, most of the energy is transferred to the transponder 2, so that the charging capacitor 3 can be charged quickly.
  • the power balance is illustrated on the basis of a resonance curve (FIG. 3) in which the frequency f on the abscissa (x-axis) and the oscillation intensity I as a result of the excitation variable, ie the amplitude of the excitation voltage or the excitation Current on which the ordinate (y axis) is plotted.
  • the excitation frequency f E operating point Pi
  • the intensity I of the oscillation becomes smaller and less energy is transmitted to the transponder 2.
  • the transponder 2 receives too little field energy. For this reason, the charging capacitor 3 can no longer be charged as quickly or insufficiently due to the energy being transferred too little. The transponder 2 then no longer modulates the antenna resonant circuit 5, 6 or interrupts the modulation in between.
  • the excitation frequency f E largely corresponds to the resonance frequency f R. Due to component tolerances in both the transceiver 1 and the transponder 2, however, the resonance frequency f R and the excitation frequency f E can differ from one another, so that no optimal energy transfer to the transponder 2 takes place. Even with small deviations of the two frequencies from one another, with a high quality of the resonant circuits (narrow quality curve drawn in dashed lines in FIG. 3), a considerable decrease in the intensity (field strength) of the alternating field transmitted can take place.
  • the invention provides that the excitation frequency f E is varied at least in the charging phase.
  • the energy of the oscillator 4 is switched on.
  • the oscillator 4 begins to oscillate at a predetermined frequency f 0 .
  • the excitation frequency f E which can be equal to the oscillator frequency f 0 , is changed within a predetermined frequency range within the charging phase. This is sufficient for the operating point of the maximum energy transfer (cf. FIG. 3) to be approximately reached at least once in order to sufficiently charge the charge capacitor 3.
  • the excitation frequency f E can be changed in predetermined steps within the predetermined frequency range.
  • the excitation frequency f E of 129 kHz + 3% (the predetermined frequency range being 129 kHz ⁇ 3%) can be changed in steps of 500 Hz.
  • the excitation frequency f E can also be changed continuously within the predetermined frequency range.
  • a circuit arrangement for changing the excitation frequency f E in predetermined steps is shown in FIG.
  • a driver 17 is operated clocked by a clock frequency CLK.
  • a frequency sequence control unit 18 specifies the frequency steps with which the programmable driver 18 is to be operated.
  • the antenna resonant circuit 5, 6 is switched on Amplifier 19 excited with the predetermined excitation frequency f E.
  • the excitation frequency f E can also be changed continuously with the aid of a voltage-controlled oscillator 4 (VCO) (FIG. 5).
  • VCO voltage-controlled oscillator 4
  • a suitable control signal sawtooth voltage of a sawtooth generator 21 is applied to the input of the oscillator 4.
  • the antenna resonant circuit 5, 6 is designed in the exemplary embodiments - due to its components - in such a way that its resonance frequency f R is approximately 129 kHz.
  • the oscillator frequency f 0 can be approximately 4 MHz, for example.
  • a 1/32 frequency divider 15 is arranged between the oscillator 4 and the antenna resonant circuit 5, 6. This results in an excitation frequency f E of approximately 129 kHz.
  • the excitation frequency f E can be changed so that an operating point is reached at least once, at which approximately maximum energy is transmitted. As a result, sufficient energy is transmitted to the transponder 2 and the charging capacitor 3 is charged safely and quickly.
  • a digital frequency divider can also be used, which divides the oscillator frequency f 0 to the excitation frequency f E.
  • Such a digital frequency divider has a continuously adjustable divider ratio.
  • the control or evaluation unit 14 can be implemented by a microprocessor or by a functionally equivalent circuit arrangement.
  • the function of the demodulator 13 can therefore also be taken over by the microprocessor.
  • the target code information with which the code information supplied by the transponder 2 is compared is stored in a memory (ROM, EEPROM), not shown.
  • the code information can also be stored in the transponder 2 in such memories. It can also be provided that the excitation frequency f E changes constantly within the charging phase, but the frequency range is not predetermined, but that the excitation frequency f E changes until the predetermined duration of the charging phase has ended. No fixed frequency range is therefore traversed, but the frequency is only changed for a period of time.
  • the charging phase takes approximately 50 ms.
  • the excitation frequency f E changes within this time period and within this time period the charging capacitor 3 is inductively charged by the transceiver 1.
  • the excitation frequency f E can also pass through the predetermined frequency range several times, so that a working point with maximum oscillation intensity I is reached several times.
  • the predetermined frequency range and the length of time for which the energy signal is sent to the transponder 2 depends on the size of the charging capacitor 3 and the energy required in the transponder 2.
  • the switch 9 can also be implemented by an integrated circuit in which the additional capacitor 10 is also included.
  • the switch 9 and the additional capacitor 10 can also be contained in the transponder IC 12.
  • an inductance can also be added.
  • the transponder resonant circuit 7, 8 is changed as a function of the code information and thereby the oscillation of the antenna resonant circuit 5, 6 is modulated.

Abstract

Ein Ladekondensator (3) eines Transponders (2) wird drahtlos durch Energiesignale eines Transceivers (1) aufgeladen. Die Höhe der übertragenen Energie hängt von der Güte der induktiven Übertragung zwischen Transponder (2) und Transceiver (1) ab. Es wird zu wenig Energie übertragen, wenn die Erregerfrequenz (fE) eines Transceiverschwingkreises (6, 7) infolge von Bauelementetoleranzen nicht mit seiner Resonanzfrequenz (fR) annähernd übereinstimmt. Damit der Ladekondensator (3) immer schnell und sicher geladen wird, wird die Erregerfrequenz (fE) während einer Ladephase innerhalb eines vorbestimmten Frequenzbereichs verändert, so daß sie zumindest einmal in die Nähe der Resonanzfrequenz (fR) gelangt.

Description

Beschreibung
Diebstahlschutzsystem für ein Kraftfahrzeug
Die Erfindung betrifft ein Diebstahlschutzsystem für ein Kraftfahrzeug. Sie betrifft insbesondere ein Schließsystem durch das eine Wegfahrsperre des Kraftfahrzeugs freigegeben wird.
Ein bekanntes Diebstahlschutzsystem (US 5,053,774) weist ei¬ nen tragbaren Transponder auf, der ein Fragecodesignal von einem stationären Tranceiver empfängt. Nach Empfang des Fra¬ gecodesignals wird ein Antwortcodesignal an den Tranceiver zurückgeschickt. Im dem Fragecodesignal wird Energie mit übertragen, durch die das Antwortcodesignal ausgelöst wird. Die Energie wird vorübergehend in einem Akkumulator gespei¬ chert. Wenn genügend Energie in dem Akkumulator vorhanden ist, so wird das Codesignal ausgelöst.
Wenn der Transponder und der Transceiver schlecht miteinander gekoppelt sind, so kann es unter Umständen sehr lange dauern, bis der Akkumulator geladen ist.
Das Problem der Erfindung ist es, ein Diebstahlschutzsystem für ein Kraftfahrzeug zu schaffen, durch das ein Energiespei¬ cher im Transponder sicher und schnell aufgeladen wird, damit unverzüglich nach Erhalt eine Fragecodesignals ein Antwort- codesignal (im folgenden als Codesignal bezeichnet) ausgesen¬ det werden kann. Das Problem wird erfindungsgemäß durch die Merkmale von Pa¬ tentanspruch 1 gelöst. Dabei wird durch Variieren der Erre¬ gerfrequenz des Fragecodesignals eine sichere Kopplung zwi¬ schen Transponder und Tranceiver erreicht.
Vorteilhafte Ausgestaltungen der Erfindung sind in den Un¬ teransprüchen gekennzeichnet.
Ausfuhrungsbeispiele der Erfindung ist anhand der schemati- sehen Zeichnungen näher erläutert. Es zeigen:
Figur 1: ein schematisches Blockschaltbild des erfindungsge¬ mäßen Diebstahlschutzsystems, Figur 2a bis 2e: Impulsdiagramme eines Transponders und eines Transceivers des Diebstahlschutzsystems,
Figur 3: eine Resonanzkurve eines Schwingkreises, Figur 4: ein Blockschaltbild eines ersten Ausführungsbei¬ spiels zum Erzeugen einer Schwingung und Figur 5: ein Blockschaltbild eines zweiten Ausführungsbei- spiels.
Ein erfindungsgemäßes Diebstahlschutzsystem weist einen im Kraftfahrzeug angeordneten Transceiver 1 (Figur 1) auf, der mit einem tragbaren Transponder 2 über eine transformatori- sehe Kopplung zusammenwirkt, wenn sich der Transponder 2 in der Nähe des Transceivers 1 befindet. Der Transceiver 1 er¬ zeugt ein Wechselfeld, durch das Energie zu dem Transponder 2 übertragen wird, wodurch dann ein Kondensator (Ladekonden¬ sator 3) oder Akkumulator im Transponder 2 aufgeladen wird. Wenn genügend Energie in dem Ladekondensator 3 geladen ist, wird der Transponder 2 aktiviert und Codesignale zurück zu dem Transceiver 1 übertragen.
Zur Energieübertragung und Datenrückübertragung weist der Transceiver 1 einen Schwingkreis auf (im folgenden als Anten¬ nenschwingkreis bezeichnet) , der mit Hilfe eines Oszillators 4 zum Schwingen angeregt wird. Der Antennenschwingkreis weist hierzu zumindest einen Antennenkondensator 5 und eine Spule (Antenne 6) auf. Die Antenne 6 kann beispielsweise um das Zündschloß gewickelt sein.
Der Transponder 2 weist ebenfalls einen Schwingkreis (im fol¬ genden als Transponderschwingkreis bezeichnet) mit einer Spu¬ le 7 und einem Transponderkondensator 8 auf. Wenn sich die Antenne 6 und die Spule 7 in unmittelbarer Nähe zueinander befinden, so findet eine induktive Kopplung und somit eine Daten- oder Energieübertragung statt. Dies ist beispielsweise dann der Fall, wenn der Transponder 2 auf einem Zündschlüssel angeordnet ist. Sobald der Zündschlüssel in das Zündschloß gesteckt und der Zündschlüssel verdreht wird, sind die Anten¬ ne 6 und die Spule 7 miteinander elektrisch gekoppelt.
Die Schwingung des Antennenschwingkreises 5, 6 wird durch den Transponder 2 im Takte einer Codeinformation moduliert. Hier- zu weist der Transponder 2 einen Schalter 9 auf, der im Takte der Codeinformation einen Zusatzkondensator 10 zu dem Trans¬ ponderkondensator 8 des Transponderschwingkreises 7, 8 hinzu- schaltet. Die Modulation findet jedoch erst dann statt, wenn der Ladekondensator 3 hinreichend mit Energie geladen ist, um den Schalter 9 im Takte der Codeinformation zu schalten. Der Schalter 9 wird dabei von einer Transponder-Steuereinheit (Transponder-IC 12) gesteuert, die als integrierter Schalt¬ kreis ausgebildet sein kann.
Sobald der Zündschlüssel im Zündschloß verdreht wird, erzeugt der Transceiver 1 ein Wechselfeld mit einer großen Feldstärke (Energiesignale) (Figur 2a) . Innerhalb einer vorbestimmten Zeitdauer (Ladephase) werden die Energiesignale erzeugt, hier beispielsweise 50 ms lang. Sie haben eine Amplitude von etwa 100 V. Je nach Güte der Kopplung zwischen Transponder 2 und Transceiver 1, d.h. je nach empfangener Feldstärke, laden diese Energiesignale den Ladekondensator 3 unterschiedlich schnell auf (Figur 2b) .
Wenn das Aussenden der Energiesignale beendet ist, sollte der Ladekondensator 3 weitgehend geladen sein. Der Transponder 2 erkennt das Abschalten der Energiesignale, da der Transceiver 1 danach ein Wechselfeld mit nur geringer Feldstärke (in der Größenordnung von einigen mV) erzeugt. Daraufhin wird der Schalter 9 innerhalb einer weiteren vorbestimmten Zeitdauer (Lesephase) im Takte der Codeinformation geschaltet und er¬ zeugt somit das Codesignal (Figur 2c) . Das Codesignal ist ein Signal mit einer geringen Amplitude, beispielsweise von etwa 1 mV, und steht etwa 20 ms lang an. Die Amplitude des Codesi- gnals nimmt ständig ab, da der Ladekondensator 3 die Energie zum Schalten des Schalters liefert und infolgedessen stetig entladen wird.
Das Codesignal wirkt auf den Antennenschwingkreis 5, 6 zu- rück, da die Antenne 6 und die Spule 7 induktiv miteinander gekoppelt sind. Daher wird die Schwingung des Antennen- Schwingkreises 5, 6 moduliert (Figur 2d) . Da der Zusatzkon¬ densator 10 zu dem Transponderkondensator 8 hinzu- und wegge¬ schaltet wird, wird der Antennenschwingkreis 5, 6 unter¬ schiedlich belastet und infolgedessen wird die Schwingung des Antennenschwingkreises 5, 6 in ihrer Frequenz moduliert.
Bei einer angenommenen mittleren Erregerfrequenz fE von 129 kHz, bei der der Antennenschwingkreis 5, 6 angeregt wird, än¬ dert sich die Schwingungsfrequenz des Antennenschwingkreises 5, 6 beispielsweise von 123 kHz bis 134 kHz infolge der Fre¬ quenzmodulation durch das Codesignal.
Die modulierte Schwingung des Antennenschwingkreises 5, 6 wird von einem Demodulator 13 erfaßt und in einer Steuer- und Auswerteeinheit 14 ausgewertet. Hierzu werden die Perioden¬ dauern oder die Frequenzen der modulierten Schwingung gemes¬ sen. Wenn die Frequenz der modulierten Schwingung unter einem Schwellwert von beispielsweise 129 kHz liegt, so wird ein High-Pegel des modulierten Signals erkannt und wenn die Fre- quenz über 129 kHz liegt, so wird ein Low-Pegel erkannt (Figur 2e) . Auf diese Weise wird die Codeinformation des Transponders 2 aus der modulierten Schwingung demoduliert.
Die Codeinformation wird in der Steuer- oder Auswerteeinheit 14 mit einer vorgegebenen Sollcodeinformation verglichen. Bei Übereinstimmung der beiden wird ein Freigabesignal an ein Si¬ cherheitsaggregat im Kraftfahrzeug gesendet.
Ein solches Sicherheitsaggregat kann beispielsweise ein Tür- schloß oder eine Wegfahrsperre sein. Bei berechtigtem und korrektem Codesignal wird das Türschloß entriegelt oder die Wegfahrsperre deaktiviert, so daß ein Starten des Motors mög¬ lich ist.
Der Antennenschwingkreis 5, 6 wird durch den Oszillator 4 mit einer Erregergröße zu einer Schwingung mit einer Erregerfre¬ quenz fE gezwungen. Als Erregergröße kann die Ausgangsspan¬ nung oder -ström des Oszillators 4 verwendet werden. Der Os¬ zillator 4 schwingt mit der Oszillatorfrequenz f0. Zwischen dem Oszillator 4 und dem Antennenschwingkreis 5, 6 kann zu- sätzlich noch ein Frequenzteiler 15 angeordnet sein, der die Oszillatorfrequenz f0 auf die gewünschte Erregerfrequenz fE herunterteilt.
Durch die Erregergröße entsteht eine stationäre erzwungene Schwingung des Antennenschwingkreises 5, 6, der dann mit der Erregerfrequenz fE schwingt. Jeder Schwingkreis besitzt eine Eigenfrequenz oder auch Resonanzfrequenz fR genannt, die durch die Bauelemente des Schwingkreises, d.h. im wesentli¬ chen durch die Antenne 6 und den Antennenkondensator 5, be- stimmt wird. Die erzeugte Intensität (Feldstärke/Amplitude) der Schwingung ist am größten, wenn der Schwingkreis mit der Erregerfrequenz fE gleich der Resonanzfrequenz fR erregt wird (der Arbeitspunkt Pi des Schwingkreises befindet sich dann im Resonanzpunkt P0; siehe hierzu Figur 3) . In diesem Fall wird die meiste Energie zum Transponder 2 übertragen, so daß der Ladekondensator 3 schnell geladen werden kann.
Die Leistungsbilanz wird anhand einer Resonanzkurve (Figur 3) verdeutlicht, bei der die Frequenz f auf der Abszisse (x- Achse) und die Schwingungsintensität I infolge der Erreger¬ größe, d.h. Amplitude der Erregerspannung oder des Erreger- Stroms, auf der Ordinate (y-Achse) aufgetragen sind. Weicht die Erregerfrequenz fE (Arbeitspunkt Pi) von der Resonanzfre¬ quenz fR ab, so wird die Intensität I der Schwingung kleiner und es wird weniger Energie zum Transponder 2 übertragen. Der Arbeitspunkt P0 wird dann eingenommen, wenn Erregerfrequenz fE = Resonanzfrequenz fR ist. Je nach Differenz zwischen den beiden Frequenzen befinden sich der Arbeitspunkt bei kleine¬ ren Intensitäten I (siehe Arbeitspunkt Pi oder P2) .
Liegt der Arbeitspunkt unterhalb einer im voraus ermittelten Leistungsgrenze 16, kommt zu wenig Feldenergie bei dem Trans¬ ponder 2 an. Daher kann aufgrund zu gering übertragener Ener¬ gie der Ladekondensator 3 nicht mehr so schnell oder nicht genügend geladen werden. Der Transponder 2 moduliert dann den Antennenschwingkreis 5, 6 nicht mehr oder bricht die Modula¬ tion zwischendurch ab.
Beim Entwurf eines solchen Diebstahlschutzsystems wird zwar darauf geachtet, daß die Erregerfrequenz fE weitgehend mit der Resonanzfrequenz fR übereinstimmt. Aufgrund von Bauteile¬ toleranzen sowohl im Transceiver 1 als auch im Transponder 2 können jedoch die Resonanzfrequenz fR und die Erregerfrequenz fE voneinander abweichen, so daß keine optimale Energieüber¬ tragung auf den Transponder 2 stattfindet. Bereits bei klei- nen Abweichungen der beiden Frequenzen voneinander können bei hoher Güte der Schwingkreise (schmale Gütekurve in der Figur 3 gestrichelt gezeichnet) eine beträchtliche Abnahme in der Intensität (Feldstärke) des übertragenen Wechselfeldes statt¬ finden. Eine optimale Leistungsbilanz wäre dann gegeben, wenn die Bauelemente der Schwingkreise und des Oszillators 4 derart ausgesucht wären, daß sie nur geringe Abweichungen von den Sollwerten haben und folglich dann immer die gleichen Ver¬ hältnisse herrschen. Hierzu muß jedoch ein sehr hoher Aufwand betrieben werden. Auch äußere Einflüsse, wie Temperatur¬ schwankungen, können Einfluß auf die Bauelemente haben, so daß sich die Verhältnisse schnell ändern. So kann es eben vorkommen, daß nicht die maximale Energie übertragen wird.
Damit der Ladekondensator 3 immer sicher und vollständig ge¬ laden wird, wird erfindungsgemäß vorgesehen, daß die Erreger¬ frequenz fE zumindest in der Ladephase variiert wird. Sobald der Transponder 2 mit dem Zündschlüssel im Zündschloß ver- dreht wird, wird die Energie des Oszillators 4 eingeschaltet. Der Oszillator 4 beginnt bei einer vorgegebenen Frequenz f0 zu schwingen. Die Erregerfrequenz fE, die gleich der Oszilla¬ torfrequenz f0 sein kann, wird innerhalb Ladephase in einem vorgegebenen Frequenzbereich verändert. Dies reicht aus, da- mit der Arbeitspunkt der maximalen Energieübertragung (vgl. Figur 3) zumindest einmal annähernd erreicht wird, um den La¬ dekondensator 3 ausreichend aufzuladen.
Die Erregerfrequenz fE kann dabei in vorgegebenen Schritten innerhalb des vorbestimmten Frequenzbereichs verändert wer¬ den. Beispielsweise kann die Erregerfrequenz fE von 129 kHz + 3% (wobei der vorbestimmte Frequenzbereich 129 kHz ± 3% be¬ trägt) in Stufen von 500 Hz verändert werden. Die Erregerfrequenz fE kann auch kontinuierlich innerhalb des vorbestimmten Frequenzbereichs verändert werden.
Zusätzlich ist es möglich, die Resonanzfrequenz fR des Anten- nenschwingkreises 5, 6 bei jeder Erregerfrequenz fE in vorge¬ gebenen Schritten zu ändern. Hierzu können bei jeder Erreger¬ frequenz fE verschiedene Impedanzen dem Antennenschwingkreis 5, 6 hinzu- oder weggeschaltet werden, wodurch die Resonanz¬ frequenz fR in bezug auf die Erregerfrequenz fE verändert wird.
Eine Schaltungsanordnung zum Verändern der Erregerfrequenz fE in vorgegebenen Schritten ist in der Figur 4 dargestellt. Da¬ bei wird ein Treiber 17 von einer Taktfrequenz CLK getaktet betrieben. Eine Frequenzabfolgesteuereinheit 18 gibt die Fre¬ quenzschritte vor, mit der der programmierbare Treiber 18 be¬ trieben werden soll. Sobald der Zündschlüssel im Zündschloß gedreht wird, d.h. sobald die Energiezufuhr eingeschaltet wird (vgl. ON/OFF-Signal, das über ein UND-Gatter 20 gelei- tet, in den Figuren 4 und 5) , wird der Antennenschwingkreis 5, 6 über einen Verstärker 19 mit der vorgegebenen Erreger¬ frequenz fE erregt.
Die Erregerfrequenz fE kann auch kontinuierlich mit Hilfe ei- nes spannungsgesteuerten Oszillators 4 (VCO) verändert werden (Figur 5) . Hierzu wird ein geeignetes Steuersignal (Sägezahnspannung eines Sägezahngenerators 21) an den Eingang des Oszillators 4 gelegt.
Der Antennenschwingkreis 5, 6 ist in den Ausführungsbeispie¬ len - bedingt durch seine Bauelemente - derart ausgelegt, daß seine Resonanzfrequenz fR etwa 129 kHz beträgt. Die Oszilla¬ torfrequenz f0 kann beispielsweise etwa 4 MHz betragen. Um den Oszillator 4 auch zum Erregen des Schwingkreises zu ver¬ wenden, wird ein 1/32-Frequenzteiler 15 zwischen dem Oszilla- tor 4 und dem Antennenschwingkreis 5, 6 angeordnet. Daraus resultiert eine Erregerfrequenz fE von etwa 129 kHz.
Durch Verändern der Oszillatorfrequenz f0 um einen vorgegebe¬ nen Wert kann die Erregerfrequenz fE geändert werden, damit zumindest einmal ein Arbeitspunkt erreicht wird, bei dem an¬ nähernd maximale Energie übertragen wird. Hierdurch wird dem¬ zufolge erreicht, daß genügend Energie zum Transponder 2 übertragen wird und der Ladekondensator 3 sicher und schnell aufgeladen wird.
Statt eines festen Frequenzteilers 15 kann auch ein digitaler Frequenzteiler verwendet werden, der die Oszillatorfrequenz f0 auf die Erregerfrequenz fE teilt. Ein solcher digitaler Frequenzteiler hat ein stufenlos einstellbares Teilerverhält- nis.
Die Steuer- oder Auswerteeinheit 14 kann durch einen Mikro¬ prozessor oder durch eine funktioneil gleichwertige Schal¬ tungsanordnung realisiert werden. Daher kann die Funktion des Demodulators 13 auch durch den Mikroprozessor übernommen wer¬ den. Die Sollcodeinformation mit der die vom Transponder 2 gelieferte Codeinformation verglichen wird, ist in einem nicht dargestellten Speicher (ROM, EEPROM) gespeichert.
Die Codeinformation kann in dem Transponder 2 ebenfalls in solchen Speichern gespeichert sein. Es kann auch vorgesehen sein, daß sich die Erregerfrequenz fE innerhalb der Ladephase ständig ändert, aber der Frequenzbe¬ reich dabei nicht vorgegeben ist, sondern daß sich die Erre¬ gerfrequenz fE solange ändert, bis die vorbestimmte Zeitdauer der Ladephase beendet ist. Es wird also kein fester Frequenz¬ bereich durchfahren, sondern nur eine Zeitdauer lang die Fre¬ quenz geändert.
In den Ausführungsbeispielen dauert die Ladephase etwa 50 ms. Innerhalb dieser Zeitdauer ändert sich erfindungsgemäß die Erregerfrequenz fE und innerhalb dieser Zeitdauer wird der Ladekondensator 3 induktiv von dem Transceiver 1 geladen.
Die Erregerfrequenz fE kann auch mehrfach den vorbestimmten Frequenzbereich durchfahren, so daß mehrmals ein Arbeitspunkt mit maximaler Schwingungsintensität I erreicht wird. Der vor¬ bestimmte Frequenzbereich und die Zeitdauer, wie lange das Energiesignal zu dem Transponder 2 gesendet wird, hängt von der Größe des Ladekondensators 3 und der im Transponder 2 be- nötigten Energie ab.
Der Schalter 9 kann auch durch einen integrierten Schaltkreis realisiert werden, in dem auch der Zusatzkondensator 10 ent¬ halten ist. Der Schalter 9 und der Zusatzkondensator 10 kön- nen auch in dem Transponder-IC 12 enthalten sein. Statt des Zusatzkondensators 10 kann auch eine Induktivität hinzuge¬ schaltet werden. Für die Erfindung ist jedoch nur wesentlich, daß der Transponderschwingkreis 7, 8 abhängig von der Codein¬ formation verändert wird und dadurch die Schwingung des An- tennenschwingkreises 5, 6 moduliert wird. Es kann dabei eine Frequenz-, Amplituden oder Impulsweitenmodulation verwendet werden.

Claims

Patentansprüche
1. Diebstahlschutzsystem, insbesondere für ein Kraftfahrzeug, mit - einer stationär angeordneten Einheit (1) , die eine Antenne (6) aufweist, die Teil eines ersten Schwingkreises (5, 6) ist,
- einer tragbaren Einheit (2) , die eine Spule (7) aufweist, die Teil eines zweiten Schwingkreises (7, 8) ist, der mit einem Energiespeicher (3) verbunden ist, und
- einem Oszillator (4) , der mit einer Oszillatorfrequenz (f0) schwingt und dessen Ausgangsgröße als Erregergrδße mit ei¬ ner Erregerfrequenz (fE) zum Erzwingen einer Schwingung des ersten Schwingkreises (5, 6) verwendet wird, wobei die Er- regerfrequenz (fE) für eine erste, vorbestimmte Zeitdauer innerhalb eines vorbestimmten Frequenzbereichs verändert wird, sobald eine Energieversorgung der stationär angeord¬ neten Einheit (1) eingeschaltet wird, um Energiesignale von der Antenne (6) zu der Spule (7) induktiv zu übertragen, wodurch der Energiespeicher (3) der tragbaren Einheit (2) zumindest teilweise aufgeladen wird.
2. Diebstahlschutzsystem nach Anspruch 1, dadurch gekenn¬ zeichnet, daß - die stationär angeordnete Einheit ein im Kraftfahrzeug an¬ geordneter Transceiver (1) ist,
- die tragbare Einheit ein tragbarer Transponder (2) ist, der eine Codeinformation trägt, wobei der Transponder (2) in¬ nerhalb einer zweiten, vorbestimmten Zeitdauer die Schwin- gung des Schwingkreises (5, 6) in Abhängigkeit seiner
Codeinformation moduliert, sobald der Energiespeicher zu- mindest teilweise aufgeladen ist, damit er den Transponder (2) mit Energie versorgen kann, und
- einer Auswerteeinheit (14) , der die Schwingung des Schwing¬ kreises (5, 6) zugeführt wird,
- wobei die modulierte Schwingung durch die Auswerteeinheit
(14) erfaßt, die Codeinformation daraus demoduliert, in ei¬ nem Komparator (14) mit einer Sollcodeinformation vergli¬ chen wird und bei Übereinstimmung ein Freigabesignal an ein Sicherheitsaggregat gesendet wird.
3. Diebstahlschutzsystem nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , d a ß die Erregerfrequenz (fE) in vorgegebenen Schritten innerhalb des vorbestimmten Frequenzbereichs verändert wird.
4. Diebstahlschutzsystem nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , d a ß die Erregerfrequenz (fE) kontinuierlich innerhalb des vorbe¬ stimmten Frequenzbereichs verändert wird.
5. Diebstahlschutzsystem nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , d a ß die Resonanzfrequenz (fR) des Schwingkreises (5, 6) des Tran¬ sceivers (1) bei jeder Erregerfrequenz (fE) in vorgegebenen Schritten verändert wird.
6. Diebstahlschutzsystem nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , d a ß die Erregerfrequenz (fE) durch einen einstellbaren Frequenz- teiler (15) verändert wird.
7. Diebstahlschutzsystem nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , d a ß die Erregerfrequenz (fE) durch den Oszillator (4) geändert wird, dessen Ausgangsgröße von einer variablen Steuergröße eines Generators (21) abhängig ist.
8. Diebstahlschutzsystem nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , d a ß der Transponder (2) auf einem Zündschlüssel angeordnet ist und der Zündschlüssel durch Drehen im Zündschloß die Energie- zufuhr für den Transceiver (1) .
9. Diebstahlschutzsystem nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , d a ß die Erregerfrequenz (fE) nur innerhalb einer vorbestimmten Zeitdauer nach Einschalten der Energiezufuhr geändert wird.
10. Diebstahlschutzsystem nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , d a ß der Transponder (2) über eine Spule (7) mit der Antenne (6) induktiv gekoppelt ist.
11. Diebstahlschutzsystem nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , d a ß das Sicherheitsaggregat ein Türschloß oder eine Wegfahrsperre ist.
PCT/EP1996/002712 1995-07-24 1996-06-21 Diebstahlschutzsystem für ein kraftfahrzeug WO1997004201A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR9609543A BR9609543A (pt) 1995-07-24 1996-06-21 Sistema de proteção contra furto para um veículo automotivo
MX9800675A MX9800675A (es) 1995-07-24 1996-06-21 Sistema anti-robo para un automovil.
EP19960922880 EP0840832B1 (de) 1995-07-24 1996-06-21 Diebstahlschutzsystem für ein kraftfahrzeug
DE59609024T DE59609024D1 (de) 1995-07-24 1996-06-21 Diebstahlschutzsystem für ein kraftfahrzeug
US09/013,296 US6064298A (en) 1995-07-24 1998-01-26 Antitheft system for a motor vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP95111629.2 1995-07-24
EP95111629 1995-07-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/013,296 Continuation US6064298A (en) 1995-07-24 1998-01-26 Antitheft system for a motor vehicle

Publications (1)

Publication Number Publication Date
WO1997004201A1 true WO1997004201A1 (de) 1997-02-06

Family

ID=8219462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/002712 WO1997004201A1 (de) 1995-07-24 1996-06-21 Diebstahlschutzsystem für ein kraftfahrzeug

Country Status (8)

Country Link
US (1) US6064298A (de)
EP (1) EP0840832B1 (de)
KR (1) KR100415469B1 (de)
BR (1) BR9609543A (de)
CZ (1) CZ14698A3 (de)
DE (1) DE59609024D1 (de)
MX (1) MX9800675A (de)
WO (1) WO1997004201A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0841448A1 (de) * 1996-11-06 1998-05-13 Ford Global Technologies, Inc. Verfahren zum Laden für einen Transponder
EP0874439A2 (de) * 1997-04-21 1998-10-28 Ford Motor Company Laden eines Transponders in einem Sicherheitssystem
WO1998050652A1 (de) * 1997-05-06 1998-11-12 Siemens Aktiengesellschaft Diebstahlschutzsystem für ein kraftfahrzeug
EP1046557A1 (de) * 1999-04-20 2000-10-25 Valeo Securité Habitacle Zugangsberechtigungssystem für ein Fahrzeug
EP1098283A2 (de) * 1999-11-02 2001-05-09 Microchip Technology Inc. Passiver Signaldiskriminator zum Wecken eines Kleinleistungstransponders
DE10331059A1 (de) * 2003-07-09 2005-02-03 Siemens Ag Transceiver und Verfahren zum Betreiben des Transceivers
WO2016055475A1 (de) * 2014-10-08 2016-04-14 Continental Automotive Gmbh Transponder-anordnung und verfahren zum betreiben eines transponders

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19823707A1 (de) * 1998-01-14 1999-12-02 Bayerische Motoren Werke Ag Verfahren zum Betrieb eines Fahrzeugs
DE19832628C2 (de) * 1998-07-21 2000-10-12 Daimler Chrysler Ag Transponderanordnung
FR2787655B1 (fr) * 1998-12-21 2001-03-09 St Microelectronics Sa Modulation capacitive dans un transpondeur electromagnetique
US20030174065A1 (en) * 2002-03-12 2003-09-18 Siemens Vdo Automotive Corporation Passive vehicle actuation card incorporated into personal use item
US20040237555A1 (en) * 2003-05-30 2004-12-02 Andrews Craig C. Mechanical refrigeration system with a high turndown ratio
DE102004039401A1 (de) * 2004-08-13 2006-03-09 Siemens Ag Transceiver-Transponder-System
DE102007010400A1 (de) * 2007-03-01 2008-09-04 Inge Ritzka Verifizierungssystem zum Nachweis von Eigentumsverhältnissen eines Gutes, Konsumgut oder sonstiges Produkt sowie Verfahren zum Kennzeichnen von Gütern
DE102007035904B4 (de) * 2007-07-31 2009-09-17 Continental Automotive Gmbh Benutzeridentifizierungsvorrichtung
US20110115605A1 (en) * 2009-11-17 2011-05-19 Strattec Security Corporation Energy harvesting system
DE102011117978A1 (de) * 2010-11-11 2012-05-16 Marquardt Gmbh Schließsystem, insbesondere für ein Kraftfahrzeug
CN117542134B (zh) * 2024-01-10 2024-04-05 深圳市每开创新科技有限公司 无源设备的通信方法、装置、电子设备和可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4918955A (en) * 1986-10-07 1990-04-24 Kabushiki Kaisha Tokai Rika Denki Seisakusho Vehicle key device
EP0568398A2 (de) * 1992-05-01 1993-11-03 Gec-Avery Limited Datensystem und Leseeinrichtung zum Lesen von induktiv gespeissten Datenträgern
WO1993023908A1 (en) * 1992-05-10 1993-11-25 Auckland Uniservices Limited A non-contact power distribution system
US5287112A (en) * 1993-04-14 1994-02-15 Texas Instruments Incorporated High speed read/write AVI system
DE4317119A1 (de) * 1993-05-21 1994-11-24 Audi Ag Diebstahlschutzeinrichtung als Immobilisationseinrichtung an einem Kraftfahrzeug

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60171475A (ja) * 1984-02-15 1985-09-04 アイデンティフィケ−ション・デバイセス・インコ−ポレ−テッド 識別システム
US4937795A (en) * 1987-07-06 1990-06-26 Tokyo Keiki Co., Ltd. Access alarming method and apparatus for working vehicle
DE301127T1 (de) * 1987-07-31 1989-08-24 Texas Instruments Deutschland Gmbh, 8050 Freising, De Transponder-anordnung.
GB8718552D0 (en) * 1987-08-05 1987-09-09 British Railways Board Track to train communications systems
US4942393A (en) * 1988-05-27 1990-07-17 Lectron Products, Inc. Passive keyless entry system
US5479155A (en) * 1988-12-05 1995-12-26 Prince Corporation Vehicle accessory trainable transmitter
JPH0552068A (ja) * 1991-08-21 1993-03-02 Tokai Rika Co Ltd 発信装置
JPH05179841A (ja) * 1991-12-27 1993-07-20 Riken Corp 自動車用操作キーシステムおよびこのシステムに用いられる操作キー
JP2823491B2 (ja) * 1993-08-30 1998-11-11 株式会社東海理化電機製作所 車両用盗難防止装置
EP0647753B1 (de) * 1993-10-08 2001-08-29 Trw Inc. Empfänger zum Gebrauch in einem schlüssellosen Eingangssystem und zum Empfangen öffentlicher Rundfunksendungen
DE4430360C1 (de) * 1994-08-26 1995-10-05 Siemens Ag Diebstahlschutzsystem für ein Kraftfahrzeug
EP0710756B1 (de) * 1994-11-07 2001-04-04 Siemens Aktiengesellschaft Diebstahlschutzsystem für ein Kraftfahrzeug
EP0799358B1 (de) * 1994-12-21 2002-03-27 Lear Automotive Dearborn, Inc. Rf-fernbedienungssystem mit wegfahrsperre

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4918955A (en) * 1986-10-07 1990-04-24 Kabushiki Kaisha Tokai Rika Denki Seisakusho Vehicle key device
EP0568398A2 (de) * 1992-05-01 1993-11-03 Gec-Avery Limited Datensystem und Leseeinrichtung zum Lesen von induktiv gespeissten Datenträgern
WO1993023908A1 (en) * 1992-05-10 1993-11-25 Auckland Uniservices Limited A non-contact power distribution system
US5287112A (en) * 1993-04-14 1994-02-15 Texas Instruments Incorporated High speed read/write AVI system
DE4317119A1 (de) * 1993-05-21 1994-11-24 Audi Ag Diebstahlschutzeinrichtung als Immobilisationseinrichtung an einem Kraftfahrzeug

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MILT LEONARD: "rf transponder embedded in auto ignition keys stymies car thieves", ELECTRONIC DESIGN, vol. 41, no. 25, 2 December 1993 (1993-12-02), HASBROUCK HEIGHTS, NEW JERSEY US, pages 35 - 36, XP000423195 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0841448A1 (de) * 1996-11-06 1998-05-13 Ford Global Technologies, Inc. Verfahren zum Laden für einen Transponder
EP0874439A2 (de) * 1997-04-21 1998-10-28 Ford Motor Company Laden eines Transponders in einem Sicherheitssystem
EP0874439A3 (de) * 1997-04-21 2002-07-17 Ford Motor Company Laden eines Transponders in einem Sicherheitssystem
WO1998050652A1 (de) * 1997-05-06 1998-11-12 Siemens Aktiengesellschaft Diebstahlschutzsystem für ein kraftfahrzeug
EP1046557A1 (de) * 1999-04-20 2000-10-25 Valeo Securité Habitacle Zugangsberechtigungssystem für ein Fahrzeug
FR2792753A1 (fr) * 1999-04-20 2000-10-27 Valeo Securite Habitacle Systeme d'autorisation de demarrage pour un vehicule automobile
EP1098283A2 (de) * 1999-11-02 2001-05-09 Microchip Technology Inc. Passiver Signaldiskriminator zum Wecken eines Kleinleistungstransponders
EP1098283A3 (de) * 1999-11-02 2002-04-24 Microchip Technology Inc. Passiver Signaldiskriminator zum Wecken eines Kleinleistungstransponders
DE10331059A1 (de) * 2003-07-09 2005-02-03 Siemens Ag Transceiver und Verfahren zum Betreiben des Transceivers
DE10331059B4 (de) * 2003-07-09 2005-08-04 Siemens Ag Transceiver
US7961015B2 (en) 2003-07-09 2011-06-14 Continental Automotive Gmbh Transceiver and method for operating the transceiver
WO2016055475A1 (de) * 2014-10-08 2016-04-14 Continental Automotive Gmbh Transponder-anordnung und verfahren zum betreiben eines transponders

Also Published As

Publication number Publication date
DE59609024D1 (de) 2002-05-08
EP0840832A1 (de) 1998-05-13
BR9609543A (pt) 1999-02-23
EP0840832B1 (de) 2002-04-03
US6064298A (en) 2000-05-16
KR100415469B1 (ko) 2004-05-31
CZ14698A3 (cs) 1998-07-15
KR19990028969A (ko) 1999-04-15
MX9800675A (es) 1998-04-30

Similar Documents

Publication Publication Date Title
DE19541855C1 (de) Diebstahlschutzsystem für ein Kraftfahrzeug
WO1997004201A1 (de) Diebstahlschutzsystem für ein kraftfahrzeug
DE4430360C1 (de) Diebstahlschutzsystem für ein Kraftfahrzeug
DE19621076C2 (de) Vorrichtung und Verfahren zum kontaktlosen Übertragen von Energie oder Daten
DE19752029B4 (de) Diebstahlschutzsystem für ein Kraftfahrzeug
DE19546171C1 (de) Diebstahlschutzsystem für ein Kraftfahrzeug
EP0609875B1 (de) Verfahren zum Begrenzen der Frequenz eines spannungsgesteuerten Oszillators in einer Steuerschaltung eines Resonanzwandler-Schaltnetzteils und Steuerschaltung für ein Resonanzwandler-Schaltnetzteil
WO2015052033A1 (de) Treiberschaltung für eine induktivität, verfahren zum betreiben einer induktivität und aktive sendeeinrichtung mit einer treiberschaltung
DD269478A5 (de) Elektronisches datenverarbeitungssystem
EP1248369A2 (de) Näherungssensor und Verfahren zu seinem Betrieb
WO2006018361A1 (de) Transceiver-transponder-system
DE19614455A1 (de) Verfahren zum Betrieb eines Systems aus einer Basisstation und einem damit kontaktlos gekoppelten Transponders sowie dafür geeignetes System
DE19602316C1 (de) Vorrichtung zum Übertragen von Daten oder Energie
DE102014222603B3 (de) Treiberschaltung für eine Induktivität und aktive Sendeeinrichtung mit einer Treiberschaltung
WO2007006245A1 (de) Zugangskontrollsystem für ein kraftfahrzeug
DE69632378T2 (de) Automatisches Antwortsystem mit einem Transponder
DE102014208880B4 (de) Treiberschaltung für eine Induktivität und aktive Sendeeinrichtung mit einer Treiberschaltung
EP0730071A1 (de) Diebstahlschutzsystem für ein Kraftfahrzeug
DE19634486C2 (de) Schaltungsanordnung zum Erzeugen einer amplitudenmodulierten Schwingung
DE19800565C2 (de) Datenübertragungssystem mit einem beweglichen Transponder und einer Basisstation
DE10331059B4 (de) Transceiver
WO1998028510A1 (de) Einrichtung zur energieübertragung
DE60119399T2 (de) Zusatz-schutzsystem gegen den nicht autorisierten gebrauch eines zugriffs und/oder eines zündschlüssels
DE19624846C1 (de) Diebstahlschutzsystem für ein Kraftfahrzeug
DE19544722C1 (de) Diebstahlschutzsystem für ein Kraftfahrzeug

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96194983.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN CZ KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996922880

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019980700271

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PV1998-146

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: PA/a/1998/000675

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 09013296

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996922880

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1998-146

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1019980700271

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: PV1998-146

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1996922880

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019980700271

Country of ref document: KR