WO1997013130A2 - Static and dynamic pressure sensing electronic component - Google Patents

Static and dynamic pressure sensing electronic component Download PDF

Info

Publication number
WO1997013130A2
WO1997013130A2 PCT/DE1996/001718 DE9601718W WO9713130A2 WO 1997013130 A2 WO1997013130 A2 WO 1997013130A2 DE 9601718 W DE9601718 W DE 9601718W WO 9713130 A2 WO9713130 A2 WO 9713130A2
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
electrodes
individual
carrier layer
component according
Prior art date
Application number
PCT/DE1996/001718
Other languages
German (de)
French (fr)
Other versions
WO1997013130A3 (en
Inventor
Margit Biehl
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO1997013130A2 publication Critical patent/WO1997013130A2/en
Publication of WO1997013130A3 publication Critical patent/WO1997013130A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/22Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
    • G01L5/226Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to manipulators, e.g. the force due to gripping
    • G01L5/228Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to manipulators, e.g. the force due to gripping using tactile array force sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5058Prostheses not implantable in the body having means for restoring the perception of senses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5058Prostheses not implantable in the body having means for restoring the perception of senses
    • A61F2002/5059Prostheses not implantable in the body having means for restoring the perception of senses the feeling of position

Definitions

  • the invention relates to an electronic component for static and dynamic pressure detection with a non-conductive base substrate, on which at least two electrodes are applied, which are arranged on the substrate surface such that the electrodes are spaced apart, and with one, above the base substrate and the Flexible, non-conductive carrier layer arranged on the electrode pairs, on the underside of which, depending on the number of the electrode pairs, elastic, electrically conductive deforming elements which are oriented essentially centrally to the individual electrode pairs and have a cross-sectional area whose diameter is in Near the base substrate is smaller than the electrode spacing and which increases continuously in the direction of the carrier layer and corresponds approximately to the substrate area covered by the electrodes, which can be pressed against the conductor track pairs.
  • pressure sensor arrays are used, which are preferably designed as matrix sensors and for Robotics and telemanipulation, but also for medical applications such as prosthetics. Components of this type are aids for detecting surface topologies or positions of touched or gripped objects and, with suitable tactile feedback, make telemanipulation considerably easier.
  • piezoresistive sensors change their electrical resistance under the action of pressure and also permit the detection of static pressures.
  • Conductive elastomers have been used in connection with piezoresistive sensors, which makes the sensors inexpensive, mechanically robust and flexible.
  • the measurement result is subject to a high degree of hysteresis if the pressure-dependent change in the specific resistance of the elastomer material is used as the sensor principle.
  • pressure sensor arrays are known which have been produced with the aid of micromechanical silicon technology, which capacitively or piezoresistively determine the pressure-induced deflection of a membrane and thus quantitatively the applied pressure.
  • Such silicon pressure sensor arrays can be produced with a high resolution, but are inflexible and fragile due to the silicon carrier material, and are very complex and therefore very expensive to produce.
  • Sugiyama S. et al. "Tactile Image Detection Using an IK-element Silicon Pressure Sensor Array", in Sensors and Actuators, A21-A23 (1990), pp. 397-400; Wolffenfuttel M.R., Regtien P.P.L. "Polysilicon Bridges for the Realization of Tactile Sensors", in Sensors and Actuators A, 25-27 (1991), pp. 257-264.
  • JP 2-275603 which is considered to be the closest prior art, shows a pressure sensor which consists of an electrically insulating base plate 4, on which two elongate electrodes 10, 11 are formed, which are at a distance from one another are upset. There is an electrically conductive rubber over the electrode gap manufactured contact wedge 13 attached, which can be pressed under pressure on the electrode gap. If the contact wedge is pressed completely onto the electrode gap, the latter short-circuits the opposite electrodes, as a result of which a current flows between the electrodes.
  • This pressure sensor can only differentiate between two states, namely the state without exerting pressure, in which there is no current flow between the electrodes and the state in which the contact wedge shorts the two electrodes, so that a current flow is generated between the two electrodes, a statement over which the force or pressure holding down the contact wedge is not possible.
  • the invention is based on the object of developing an electronic component for static and dynamic pressure detection of the type described above in such a way that, with the aid of known micromechanical production methods and the use of conductive elastomers, a pressure sensor array can be produced which can be both a has high sensitivity as well as a large dynamic range and a high resolution.
  • the poor overcoupling properties should be eliminated when using elastomers, so that mechanical overcoupling is reduced to a minimum.
  • the manufacturing process should be less complex and therefore less expensive.
  • the solution to the problem underlying the invention is specified in claim 1.
  • Advantageous embodiments can be found in claims 2 ff.
  • the electronic component consists essentially of two parts, the base substrate, which can be rigid or flexible, on the upper side of which thin-film technology, conductor track structures and spacer structures are applied, and a carrier layer is arranged exactly over the top of the base substrate and has a three-dimensional structured elastomer matrix with conductive and non-conductive elastomer areas.
  • the conductor track structures applied to the upper side of the base substrate form individual array elements which have the shape of two interdigital electrodes, each with at least two fingers.
  • the simplest form of interdigital electrodes each consist of two electrodes, the electrode structure of which corresponds to the shape of an "F" and are arranged with respect to one another such that the transverse electrode sections of the "F" arrangement come to lie parallel next to one another in an alternating order.
  • the manufacture of such interdigital electrodes is accomplished in thin-film technology with the aid of standard photolytographic methods from a non-corrosive metal, for example gold or platinum.
  • the substrate areas between the metal electrodes are also coated with a non-conductive spacer material with the aid of microsystem technology production methods so that the spacer structures protrude slightly beyond the conductor track structures. The typical peaks are in the micrometer range.
  • the carrier layer opposite the conductor track structures, on the underside of which electrically conductive deforming elements are attached consists of a non-conductive elastomer layer and a conductive elastomer matrix applied thereon, which has a large number of adjoining elastomer pyramids.
  • the pyramid shapes are produced by molding a silicon wafer structured with the aid of anisotropic standard etching technology. To produce such structures, uncrosslinked conductive elastomer is first knife-coated into the pyramid-shaped etching pits, then a layer of insulating elastomer that is as thin as possible is applied to the entire wafer surface. In principle, both types of elastomer must have the highest possible resistance to tearing and tear.
  • the softness of the conductive elastomer in the crosslinked state determines the dynamic range of the sensor. Furthermore, the extensibility and thickness of the non-conductive elastomer influence the mechanical coupling between the sensor elements, so that the greatest possible extensibility with the smallest possible thickness should be sought.
  • the structured elastomer matrix can be removed from the silicon mold.
  • the carrier layer consisting of a non-conductive elastomer and the elastomer pyramid matrix structure applied thereon are now positioned on the surface of the base substrate in such a way that the individual pyramid tips each rest on the space between two conductor tracks, so that no current flow between the conductor track Electrodes are made over the conductive elastomer pyramid tip. If pressure is now exerted on the back of the support structure, which is also the sensor surface, the pyramid tips are pressed against the substrate and flattened accordingly. As a result of the flattening, individual electrode contact fingers of the interdigital electrodes are contacted with one another via the conductive elastomer, so that the resistance between the two electrodes decreases.
  • the flattening surface increases as a result of the pyramidal shape of the conductive elastomer, as a result of which, on the one hand, an increasing number of interdigital fingers and, on the other hand, two fingers contact each other over a greater length become.
  • the resistance between the electrons consequently decreases with increasing contact pressure.
  • the insulating spacer structures between the electrodes only serve to rule out electrode contact in a completely unloaded state.
  • FIG. 3 embodiment of a sensor array according to the invention under the action of pressure.
  • FIG. 1 shows a pair of interdigital electrodes, each consisting of two electrode arrangements E1 and E2.
  • the individual electrodes have the shape of an "F".
  • the transverse electrode sections of both electrode tracks project into one another in such a way that they are spaced apart from one another by an insulation layer I.
  • Figure 2 shows an embodiment of a pressure sensor array according to the invention, which is shown in cross section. The example shown consists of 4 x 4 pressure sensor array elements, four of which can be seen in the cross-sectional representation.
  • a sensor array element consists of the base substrate 1, on which the interdigital electrode pair 2 shown in FIG. 1 is applied. Electrically isolating spacer structures I are incorporated between the electrode conductor structures, which are shown as black areas in FIG.
  • the carrier layer 3 made of a non-conductive elastomer is arranged above this electrode arrangement, and elastomer pyramids 4 made of conductive elastomer are attached to the underside thereof.
  • the tips of the pyramids are positioned in such a way that they lie exactly on the insulating layer I. If pressure is now exerted on the sensor surface 5, as can be seen in FIG. 3, the contact surface of the elastomer pyramids on the conductor track structures expands, so that the individual interdigital electrodes are contacted with one another, as a result of which the resistance between the two electrodes decreases . In the case shown in FIG.
  • Functional samples consist of 4 x 4 pressure sensor array elements, each with a grid dimension of 0.76 mm x 0.51 mm. The circumference of the whole The pressure sensor is approximately 2 mm x 3 mm.
  • a glass substrate with gold electrodes of 50 ⁇ m conductor width and a gold layer thickness of 400 nm as well as an insulating polyimide spacer structure of approx. 1 ⁇ m have been used as materials for the pressure sensor.
  • Each individual interdigital electrode consists of two fingers with a conductor width of 50 ⁇ m and an interdigital distance of 50 ⁇ m. For each individual pressure sensor element, one of the two electrodes is individually contacted to the outside, while the respective counter electrode of all sensor elements are connected to one another and are at a common potential.
  • Elastosil LR 3162 from Wacker was used for the conductive elastomer material and likewise from Wacker for the non-conductive component Elastosil LR 3003.
  • the size of the conductive pyramids at the base is 0.56 mm x 0.41 mm, the height is 0.29 mra.
  • the thickness of the non-conductive silicone rubber layer is approximately 0.2 mm.
  • the two layers of the sensor are positioned exactly one above the other under a microscope and bonded to one another at the sensor edge without tension.
  • a further increase in the number of array elements could be simplified with the aid of so-called row-column coding, since this would allow a reduction in the number of conductor tracks.
  • a measuring sensitivity of at least 14 mN / mm 2 can be achieved. Furthermore, there is a high tolerance to large forces of at least 10 N / mm 2 reachable. Shock loads, large dynamic ranges and high resolving power with the element size described above can be achieved with the component according to the invention. With the aid of somewhat more complex standard masking techniques, the production method allows the spatial and / or dynamic resolution achieved to be increased by at least a factor of 5.
  • An additional advantage of the sensor principle is that when using a polyimide film substrate, a 2- Dimensionally bendable sensor can be produced, which can be provided, for example, on an artificial finger with a corresponding sense of touch.

Abstract

An electronic component for sensing static and dynamic pressure has a non-conducting base substrate that carries at least two electrodes mutually spaced on the surface of the substrate, as well as a non-conducting, flexible carrier layer arranged above the base substrate and the electrode pairs. A number of elastic, electroconductive deformation elements which correspond to the number of electrode pairs are arranged on the bottom side of the non-conducting carrier layer, substantially in the centre of the individual electrode pairs, and may be pressed against the pairs of conductive tracks. The cross-sectional area of these elastic deformation elements is smaller in diameter near the base substrate than the distance between the electrodes, continuously increases in the direction of the carrier layer and at the level of the carrier layer approximately corresponds to the substrate surface covered by the electrodes. The invention is characterised in that the individual electrodes are mutually insulated conductive tracks which fan out into at least two individual conductive tracks arranged in such a way on the substrate surface that the individual conductive tracks of each electrode alternate in pairs with the conductive tracks of the other electrode.

Description

Elektronisches Bauelement zur statischen und dynamischen Electronic component for static and dynamic
DruckerfassunqPrinter acquisition
B e s c h r e i b u n gDescription
Technisches GebietTechnical field
Die Erfindung bezieht sich auf ein Elektronisches Bauelement zur statischen und dynamischen Druckerfassung mit einem nichtleitfähigem Grundsubstrat, auf dem wenigstens zwei Elektroden aufgebracht sind, die derart auf der Substratoberfläche angeordnet sind, daß die Elektroden gegenseitig beabstandet sind, sowie mit einer, über dem Grundsubstrat und den Elektroden-Paaren ange¬ ordneten flexiblen, nicht leitenden Trägerschicht, an deren Unterseite entsprechend der Anzahl der Elektroden- Paare, elastische, im wesentlichen mittig zu den einzelnen Elektroden-Paaren ausgerichtete, elektrisch leitende Ver¬ formelemente mit einer Querschnittsfläche, deren Durch¬ messer in Grundsubstratnähe kleiner als der Elektrodenabstand ist und die in Richtung der Trägerschicht kontinuierlich zunimmt und an der Trägerschicht in etwa der von den Elektroden bedeckten Substratfläche entspricht, angebracht sind, die gegen die Leiterbahnpaare drückbar sind.The invention relates to an electronic component for static and dynamic pressure detection with a non-conductive base substrate, on which at least two electrodes are applied, which are arranged on the substrate surface such that the electrodes are spaced apart, and with one, above the base substrate and the Flexible, non-conductive carrier layer arranged on the electrode pairs, on the underside of which, depending on the number of the electrode pairs, elastic, electrically conductive deforming elements which are oriented essentially centrally to the individual electrode pairs and have a cross-sectional area whose diameter is in Near the base substrate is smaller than the electrode spacing and which increases continuously in the direction of the carrier layer and corresponds approximately to the substrate area covered by the electrodes, which can be pressed against the conductor track pairs.
Stand der TechnikState of the art
Elektronische Bauelemente der vorbeschriebenen Gattung werden auf dem technischen Gebiet der taktilen Sensorik verwendet. Zu Zwecken Erfassung flächenverteilter Druck¬ einwirkung werden Drucksensor-Arrays eingesetzt, die vor¬ zugsweise als Matrix-Sensoren ausgebildet sind und für Robotik und Telemanipulation, aber auch für medizinische Anwendungen wie beispielsweise in der Prothetik Einsatz finden. Derartige Bauelemente sind Hilfsmittel zur Erfas¬ sung von Oberflächentopologien oder Positionen berührter bzw. ergriffener Objekte und erlauben bei geeigneter tak- tiler Rückkopplung die Telemanipulation erheblich zu er¬ leichtern.Electronic components of the type described above are used in the technical field of tactile sensors. For the purpose of recording area-distributed pressure, pressure sensor arrays are used, which are preferably designed as matrix sensors and for Robotics and telemanipulation, but also for medical applications such as prosthetics. Components of this type are aids for detecting surface topologies or positions of touched or gripped objects and, with suitable tactile feedback, make telemanipulation considerably easier.
Es sind große technische Anstrengungen unternommen worden, Drucksensor-Arrays mit hinreichend gutem Auflösungsvermö¬ gen zu entwickeln. Verschiedenste physikalische Prinzipien getestet worden, wie beispielsweise piezoelektrische Sen¬ soren, die robust und preiswert, jedoch nur zur Aufnahme dynamischer Drucksignale geeignet sind. Selbst der Einsatz optischer Sensoren ist zur Druckerfassung erprobt worden, zumal sie sehr empfindliche Meßsignale liefern, jedoch sind sie teuer und relativ sperrig in der Anwendung.Great technical efforts have been made to develop pressure sensor arrays with a sufficiently good resolution. A wide variety of physical principles have been tested, such as piezoelectric sensors, which are robust and inexpensive, but are only suitable for receiving dynamic pressure signals. Even the use of optical sensors has been tested for pressure detection, especially since they provide very sensitive measurement signals, but they are expensive and relatively bulky to use.
Im Unterschied zu piezoelektrischen Sensoren verändern die sogenannten piezoresistiven Sensoren unter Druckeinwirkung ihren elektrischen Widerstand und gestatten auch die Er¬ fassung statischer Drücke. In Verbindung mit piezoresisti¬ ven Sensoren sind leitfähige Elastomere eingesetzt worden, wodurch die Sensoren preisgünstig, mechanisch robust und flexibel werden. Jedoch ist es bislang nicht möglich ge¬ wesen, derartige Sensoren mit einem Auflösungsvermögen von unter einem Millimeter herzustellen, wodurch bislang nur eine geringe Meßempfind-lichkeit erreichbar und zudem ein derart kleiner Dyna-mikbereich erzielbar ist, so daß sich die Meßsignal-Antwort auf eine bloße binäre Antwortcharak¬ teristik beschränkt. Schließlich ist das Meßergebnis stark hysteresebehaftet, sofern die druckabhängige Änderung des spezifischen Widerstandes des Elastomermaterials als Sen¬ sorprinzip eingesetzt wird. Weitere Probleme, die mit dem Einsatz von Elastomer bei Drucksensor-Arrays auftreten, sind mechanisches und elek¬ trisches Überkoppeln zwischen zwei benachbarten Drucksen- sor-einheiten. Hierzu wird insbesondere auf den Beitrag von Raibert M.H., Tanner J.E., "Design and Implementation of a VLSI Tactile Sensing Computer", in The International Journal of Robotics Research, Vol. 1, No. 3, (1982), S. 3- 18, hingewiesen.In contrast to piezoelectric sensors, the so-called piezoresistive sensors change their electrical resistance under the action of pressure and also permit the detection of static pressures. Conductive elastomers have been used in connection with piezoresistive sensors, which makes the sensors inexpensive, mechanically robust and flexible. However, it has not hitherto been possible to produce such sensors with a resolution of less than one millimeter, so far only a low measuring sensitivity has been achievable and, moreover, such a small dynamic range can be achieved, so that the measuring signal response to one mere binary response characteristics limited. Finally, the measurement result is subject to a high degree of hysteresis if the pressure-dependent change in the specific resistance of the elastomer material is used as the sensor principle. Further problems that arise with the use of elastomer in pressure sensor arrays are mechanical and electrical coupling between two adjacent pressure sensor units. In particular, Raibert MH, Tanner JE, "Design and Implementation of a VLSI Tactile Sensing Computer", in The International Journal of Robotics Research, Vol. 3, (1982), pp. 3-18.
Alternativ zu der vorgenannten Sensoranordnung sind Druck¬ sensor-Arrays bekannt, die mit Hilfe mikromechanischer Siliziumtechnologie hergestellt worden sind, die kapazitiv oder piezoresistiv die druckinduzierte Durchbiegung einer Membran und damit quantitativ den aufgebrachten Druck ermitteln. Derartige Silizium-Drucksensor-Arrays können mit hohem Auflösungsvermögen hergestellt werden, sind jedoch aufgrund des Siliziumträgermaterials unflexibel und zerbrechlich sowie sehr aufwendig und damit sehr teuer in der Herstellung. Auf folgende Druckschriften wird in die¬ sem Zusammenhang verwiesen: Sugiyama S. et al. , "Tactile Image Detection Using a IK-element Silicon Pressure Sensor Array", in Sensors and Actuators, A21-A23 (1990), S. 397- 400; Wolffenfuttel M.R., Regtien P.P.L. "Polysilicon Bridges for the Realization of Tactile Sensors", in Sen¬ sors and Actuators A, 25-27 (1991), S. 257-264.As an alternative to the aforementioned sensor arrangement, pressure sensor arrays are known which have been produced with the aid of micromechanical silicon technology, which capacitively or piezoresistively determine the pressure-induced deflection of a membrane and thus quantitatively the applied pressure. Such silicon pressure sensor arrays can be produced with a high resolution, but are inflexible and fragile due to the silicon carrier material, and are very complex and therefore very expensive to produce. In this context, reference is made to the following publications: Sugiyama S. et al. , "Tactile Image Detection Using an IK-element Silicon Pressure Sensor Array", in Sensors and Actuators, A21-A23 (1990), pp. 397-400; Wolffenfuttel M.R., Regtien P.P.L. "Polysilicon Bridges for the Realization of Tactile Sensors", in Sensors and Actuators A, 25-27 (1991), pp. 257-264.
Ferner geht aus der japanischen Druckschrift JP 2-275603, die als nächstkommender Stand der Technik angesehen wird, ein Drucksensor hervor, der aus einer elektrisch isolierenden Grundplatte 4, auf der zwei länglich ge¬ formte, sich mit einem Abstand gegenüber stehende Elektroden 10, 11 aufgebracht sind. Über dem Elektrodenspalt ist ein aus elektrisch leitendem Gummi gefertigter Kontaktkeil 13 angebracht, der unter Druckausübung auf den Elektrodenspalt preßbar ist. Wird der Kontaktkeil vollständig auf den Elektrodenspalt ge¬ drückt, so schließt dieser die sich gegenüberliegenden Elektroden kurz, wodurch es zu einem Stromfluß zwischen den Elektroden kommt.Furthermore, JP 2-275603, which is considered to be the closest prior art, shows a pressure sensor which consists of an electrically insulating base plate 4, on which two elongate electrodes 10, 11 are formed, which are at a distance from one another are upset. There is an electrically conductive rubber over the electrode gap manufactured contact wedge 13 attached, which can be pressed under pressure on the electrode gap. If the contact wedge is pressed completely onto the electrode gap, the latter short-circuits the opposite electrodes, as a result of which a current flows between the electrodes.
Dieser Drucksensor kann lediglich zwischen zwei Zuständen unterscheiden, nämlich der Zustand ohne Druckausübung, bei dem kein Stromfluß zwischen den Elektroden erfolgt und der Zustand, in dem der Kontaktkeil die beiden Elektroden kurzschließt, so daß ein Stromfluß zwischen den beiden Elektroden erzeugt wird, wobei eine Aussage über die den Kontaktkeil niederhaltende Kraft bzw. Druck nicht möglich ist.This pressure sensor can only differentiate between two states, namely the state without exerting pressure, in which there is no current flow between the electrodes and the state in which the contact wedge shorts the two electrodes, so that a current flow is generated between the two electrodes, a statement over which the force or pressure holding down the contact wedge is not possible.
Darstellung der ErfindungPresentation of the invention
Der Erfindung liegt die Aufgabe zugrunde ein elektroni¬ sches Bauelement zur statischen und dynamischen Drucker¬ fassung der vorbeschriebenen Gattung derart weiterzubil¬ den, daß unter Zuhilfenahme bekannter mikromechanischer Herstellungsmethoden und dem Einsatz leitfähiger Elasto¬ mere ein Drucksensor-Array hergestellt werden kann, das sowohl eine hohe Empfindlichkeit als auch einen großen dynamischen Bereich und ein hohes Auflösungsvermögen auf¬ weist. Überdies sollen die schlechten Überkopplungseigen¬ schaften bei der Verwendung von Elastomeren ausgeschaltet werden, so daß ein mechanisches Überkoppeln auf ein Mini¬ mum reduziert wird. Es soll schließlich ein zweidimensio- nal biegbarer Sensor herstellbar sein, der beispielsweise an der Spitze eines Tastfingers anzubringen ist. Schlie߬ lich soll der Herstellungsprozeß wenig aufwendig und damit preisgünstiger sein. Die Lösung der der Erfindung zugrunde liegenden Aufgabe ist im Anspruch 1 angegeben. Vorteilhafte Ausführungsfor¬ men sind den Ansprüchen 2 ff. zu entnehmen.The invention is based on the object of developing an electronic component for static and dynamic pressure detection of the type described above in such a way that, with the aid of known micromechanical production methods and the use of conductive elastomers, a pressure sensor array can be produced which can be both a has high sensitivity as well as a large dynamic range and a high resolution. In addition, the poor overcoupling properties should be eliminated when using elastomers, so that mechanical overcoupling is reduced to a minimum. Finally, it should be possible to produce a two-dimensionally bendable sensor which is to be attached, for example, to the tip of a touch finger. Finally, the manufacturing process should be less complex and therefore less expensive. The solution to the problem underlying the invention is specified in claim 1. Advantageous embodiments can be found in claims 2 ff.
Erfindungsgemäß ist ein Elektronisches Bauelement zur statischen und dynamischen Druckerfassung mit einem nichtleitfähigem Grundsubstrat, auf dem wenigstens zwei Elektroden aufgebracht sind, die derart auf der Substratoberfläche angeordnet sind, daß die Elektroden gegenseitig beabstandet sind, sowie mit einer, über dem Grundsubstrat und den Elektroden-Paaren angeordneten flexiblen, nicht leitenden Trägerschicht, an deren Unter¬ seite entsprechend der Anzahl der Elektroden-Paare, elastische, im wesentlichen mittig zu den einzelnen Elektroden-Paaren ausgerichtete, elektrisch leitende Ver¬ formelemente mit einer Querschnittsfläche, deren Durch¬ messer in Grundsubstratnähe kleiner als der Elektrodenabstand ist und die in Richtung der Trägerschicht kontinuierlich zunimmt und an der Trägerschicht in etwa der von den Elektroden bedeckten Substratfläche entspricht, angebracht sind, die gegen die Leiterbahnpaare drückbar sind, derart weitergebildet, daß die einzelnen Elektroden jeweils in mindestens zwei ein¬ zelne Leiterbahnen auffächernde, voneinander isolierte Leiternbahnen sind, die derart auf der Substratoberfläche aufgebracht sind, und daß sich paarweise jeweils eine Leiterbahn der einen mit der Leiterbahn der anderen Elektrode abwechselt.According to the invention is an electronic component for static and dynamic pressure detection with a non-conductive base substrate, on which at least two electrodes are applied, which are arranged on the substrate surface in such a way that the electrodes are spaced apart, and with one, above the base substrate and the electrode pairs arranged flexible, non-conductive carrier layer, on the underside of which, depending on the number of electrode pairs, elastic, essentially centrally aligned to the individual electrode pairs, electrically conductive deformation elements with a cross-sectional area, the diameter of which in the vicinity of the base substrate is less than the electrode spacing is and which increases continuously in the direction of the carrier layer and is attached to the carrier layer and corresponds approximately to the substrate area covered by the electrodes, which can be pressed against the conductor track pairs, in such a way that the individual electrodes are in each case in at least two individual conductor tracks fanning out, mutually insulated conductor tracks which are applied to the substrate surface in such a way that one conductor track of the one alternates with the conductor track of the other electrode.
Das elektronische Bauelement besteht im wesentlichen aus zwei Teilen, dem Grundsubstrat, das starr oder biegsam ausgeführt sein kann, auf dessen Oberseite in Dünnschichttechnik Leiterbahnstrukturen sowie Spacer- Strukturen aufgebracht sind und einer Trägerschicht, die exakt über der Oberseite des Grundsubstrats angeordnet ist und eine dreidimensionale strukturierte Elastomermatrix mit leitenden und nichtleitenden Elastomerbereiche auf¬ weist.The electronic component consists essentially of two parts, the base substrate, which can be rigid or flexible, on the upper side of which thin-film technology, conductor track structures and spacer structures are applied, and a carrier layer is arranged exactly over the top of the base substrate and has a three-dimensional structured elastomer matrix with conductive and non-conductive elastomer areas.
Die auf der Oberseite des Grundsubstrats aufgebrachten Leiterbahnstrukturen bilden erfindungsgemäß einzelne Array-Elemente, die die Form zweier Interdigital- Elektroden mit jeweils mindestens zwei Fingern aufweisen. Die einfachste Form von Interdigital-Elektroden bestehen jeweils aus zwei Elektroden, deren Elektrodenstruktur der Form eines "F" entspricht und sind derart zueinander ange¬ ordnet, so daß die querverlaufenden Elektrodenabschnitte der "F"-Anordnung in abwechselnder Reihenfolge parallel nebeneinander zu liegen kommen. Die Herstellung derartiger Interdigital-Elektroden wird in Dünnschichttechnik mit Hilfe photolytographischer Standard-Methoden aus einem nicht korrodierenden Metall, beispielsweise Gold oder Platin, bewerkstelligt. Die Substratbereiche zwischen den Metallelektroden sind ebenso unter Zuhilfenahme mikrosystemtechnischer Herstellungsmethoden mit einem nichtleitenden Spacermaterial so dick beschichtet, daß die Spacerstrukturen geringfügig über die Leiterbahnstrukturen hinausragen. Die typischen Überhöhungen bewegen sich im Mikrometer-Bereich.According to the invention, the conductor track structures applied to the upper side of the base substrate form individual array elements which have the shape of two interdigital electrodes, each with at least two fingers. The simplest form of interdigital electrodes each consist of two electrodes, the electrode structure of which corresponds to the shape of an "F" and are arranged with respect to one another such that the transverse electrode sections of the "F" arrangement come to lie parallel next to one another in an alternating order. The manufacture of such interdigital electrodes is accomplished in thin-film technology with the aid of standard photolytographic methods from a non-corrosive metal, for example gold or platinum. The substrate areas between the metal electrodes are also coated with a non-conductive spacer material with the aid of microsystem technology production methods so that the spacer structures protrude slightly beyond the conductor track structures. The typical peaks are in the micrometer range.
Die den Leiterbahnstrukturen gegenüberliegende Träger¬ schicht, auf deren Unterseite elektrisch leitende Verform¬ elemente angebracht sind, besteht aus einer nichtleitenden Elastomerschicht und einer darauf aufgebrachten leitenden Elastomermatrix, die eine Vielzahl aneinandergrenzende Elastomer-Pyramiden aufweist. Die Herstellung der Pyrami¬ den-Formen erfolgt durch Abformung eines mit Hilfe aniso¬ troper Standard-Ätztechnik strukturierten Siliziumwafers. Zur Herstellung derartiger Strukturen wird zunächst unver- netztes leitfähiges Elastomer in die pyramidenförmigen Ätzgruben eingerakelt, danach wird eine möglichst dünne Schicht aus isolierendem Elastomer auf die gesamte Wafer- oberläche aufgebracht. Beide Elastomertypen müssen prinzi¬ piell eine möglichst hohe Ein- und Weiterreißfestigkeit aufweisen. Die Weichheit des leitenden Elastomers im ver¬ netzten Zustand bestimmt den dynamischen Bereich des Sen¬ sors. Ferner beeinflussen die Dehnbar-keit und Dicke des nichtleitenden Elastomers das mechanische Überkoppeln zwischen den Sensorelementen, so daß eine möglichst hohe Dehnbarkeit bei möglichst kleiner Dicke anzustreben ist. Nach dem Vernetzen der Elastomere kann die strukturierte Elastomermatrix von der Siliziumform abgezogen werden.The carrier layer opposite the conductor track structures, on the underside of which electrically conductive deforming elements are attached, consists of a non-conductive elastomer layer and a conductive elastomer matrix applied thereon, which has a large number of adjoining elastomer pyramids. The pyramid shapes are produced by molding a silicon wafer structured with the aid of anisotropic standard etching technology. To produce such structures, uncrosslinked conductive elastomer is first knife-coated into the pyramid-shaped etching pits, then a layer of insulating elastomer that is as thin as possible is applied to the entire wafer surface. In principle, both types of elastomer must have the highest possible resistance to tearing and tear. The softness of the conductive elastomer in the crosslinked state determines the dynamic range of the sensor. Furthermore, the extensibility and thickness of the non-conductive elastomer influence the mechanical coupling between the sensor elements, so that the greatest possible extensibility with the smallest possible thickness should be sought. After the elastomers have been crosslinked, the structured elastomer matrix can be removed from the silicon mold.
Die aus einem nichtleitenden Elastomer bestehende Träger¬ schicht und die darauf aufgebrachte Elastomer-Pyramiden- matrixstruktur wird nun derart auf die Oberfläche des Grundsubstrates positioniert, daß die einzelnen Pyramiden¬ spitzen jeweils auf dem Zwischenraum zweier Leiterbahnen aufliegen, so daß kein Stromfluß zwischen den Leiterbahn- Elektroden über die leitende Elastomer-Pyramidenspitze erfolgt. Wird nun auf die Rückseite der Trägerstruktur, die zugleich Sensoroberfläche ist, Druck ausgeübt, so werden die Pyramidenspitzen gegen das Substrat gedrückt und entsprechend abgeplattet. In Folge der Abplattung werden einzelne Elektrodenkontaktfinger der Interdigital- Elektroden über das leitende Elastomer miteinander kontak¬ tiert, so daß der Widerstand zwischen den beiden Elektro¬ den abnimmt. Mit zunehmenden Druck vergrößert sich in Folge der pyramidalen Form des leitenden Elastomers die Abplattungsfläche, wodurch zum einen eine zunehmende An¬ zahl von Interdigitalfingern und zum anderen jeweils zwei Finger über eine größere Länge miteinander kontaktiert werden. Der Widerstand zwischen den Elektronen nimmt folg¬ lich mit zunehmendem Anpreßdruck ab. Die isolierenden Spacerstrukturen zwischen den Elektroden dienen lediglich dazu, eine Elektrodenkontaktierung in völlig unbelastetem Zustand auszuschließen.The carrier layer consisting of a non-conductive elastomer and the elastomer pyramid matrix structure applied thereon are now positioned on the surface of the base substrate in such a way that the individual pyramid tips each rest on the space between two conductor tracks, so that no current flow between the conductor track Electrodes are made over the conductive elastomer pyramid tip. If pressure is now exerted on the back of the support structure, which is also the sensor surface, the pyramid tips are pressed against the substrate and flattened accordingly. As a result of the flattening, individual electrode contact fingers of the interdigital electrodes are contacted with one another via the conductive elastomer, so that the resistance between the two electrodes decreases. With increasing pressure, the flattening surface increases as a result of the pyramidal shape of the conductive elastomer, as a result of which, on the one hand, an increasing number of interdigital fingers and, on the other hand, two fingers contact each other over a greater length become. The resistance between the electrons consequently decreases with increasing contact pressure. The insulating spacer structures between the electrodes only serve to rule out electrode contact in a completely unloaded state.
Da die einzelnen Kontaktpyramdien lediglich über eine sehr dünne Elastomermembran miteinander verbunden sind, wird das mechanische Überkoppeln einzelner Sensorelemente auf¬ einander auf ein Minimum reduziert, so daß eine hohe räum¬ liche Auflösung erreicht wird.Since the individual contact pyramids are only connected to one another via a very thin elastomer membrane, the mechanical coupling of individual sensor elements onto one another is reduced to a minimum, so that a high spatial resolution is achieved.
Kurze Beschreibung der ZeichnungBrief description of the drawing
Die Erfindung wird nachstehend anhand eines Ausführungs- beispiels unter Bezugnahme auf die Zeichnungen exempla¬ risch beschrieben. Es zeigen:The invention is described below using an exemplary embodiment with reference to the drawings. Show it:
Fig. 1 Interdigital-ElektrodenFig. 1 interdigital electrodes
Fig. 2 Ausführungsform eines erfindungsgemäßen Sen- sorarrays im unbelasteten Zustand und2 embodiment of a sensor array according to the invention in the unloaded state and
Fig. 3 Ausführungsform eines erfindungsgemäßen Sensorarrays unter Druckeinwirkung.Fig. 3 embodiment of a sensor array according to the invention under the action of pressure.
Darstellung von AusführungsbeispielenRepresentation of exemplary embodiments
Aus Figur 1 geht ein Interdigitalelektrodenpaar hervor, das jeweils aus zwei Elektrodenanordnungen El und E2 be¬ steht. Die einzelnen Elektroden weisen dabei die Form eines "F" auf. Die querverlaufenden Elektrodenabschnitte beider Elektrodenbahnen ragen dabei derart ineinander, daß sie jeweils durch eine Isolationsschicht I voneinander beabstandet sind. Figur 2 zeigt ein Ausführungsbeispiel eines erfindungsge¬ mäßen Drucksensorarrays, das im Querschnitt dargestellt ist. Das dargestellte Beispiel besteht aus 4 x 4 Druck- sensorarrayelementen, von denen in der Querschnittsdar¬ stellung vier zu sehen sind. Ein Sensorarrayelement be¬ steht aus dem Grundsubstrat 1, auf dem das in Figur 1 abgebildete Interdigitalelektrodenpaar 2 aufgebracht ist. Zwischen den Elektrodenleiterbahnstrukturen, die als schwarze Flächen in Figur 2 dargestellt sind, sind elek¬ trisch isolierende Spacerstrukturen I eingearbeitet, die in der Höhe die Elektrodenleiterbahnstrukturen etwas über¬ ragen. Über dieser Elektrodenanordnung ist die Träger¬ schicht 3 aus einem nichtleitenden Elastomer angeordnet, an deren Unterseite jeweils Elastomerpyramiden 4 aus lei¬ tendem Elastomer angebracht sind. Die Spitzen der Pyrami¬ den sind dabei derart positioniert, daß sie genau auf der Isolierschicht I aufliegen. Wird nun Druck auf die Sensor¬ oberfläche 5 ausgeübt, wie es aus der Figur 3 hervorgeht, so weitet sich die Auflagefläche der Elastomerpyramiden auf den Leiterbahnstrukturen aus, so daß die einzelnen Interdigital-Elektroden miteinander kontaktiert werden, wodurch der Widerstand zwischen den beiden Elektroden abnimmt. In dem in Figur 3 dargestellten Fall wird auf die gesamte Sensoroberfläche 5 ein gleichmäßiger Druck ausge¬ übt, so daß alle vier dargestellten Einzelsensorelemente in gleicher Weise abgeplättet werden. Aufgrund der hohen Elastizität der Trägerschicht 3 sind jedoch die einzelnen Drucksensorelemente voneinander mechanisch weitgehend abgekoppelt, so daß auch Druckunterschiede lokal aufgelöst gemessen werden können.FIG. 1 shows a pair of interdigital electrodes, each consisting of two electrode arrangements E1 and E2. The individual electrodes have the shape of an "F". The transverse electrode sections of both electrode tracks project into one another in such a way that they are spaced apart from one another by an insulation layer I. Figure 2 shows an embodiment of a pressure sensor array according to the invention, which is shown in cross section. The example shown consists of 4 x 4 pressure sensor array elements, four of which can be seen in the cross-sectional representation. A sensor array element consists of the base substrate 1, on which the interdigital electrode pair 2 shown in FIG. 1 is applied. Electrically isolating spacer structures I are incorporated between the electrode conductor structures, which are shown as black areas in FIG. 2, which slightly protrude above the electrode conductor structures. The carrier layer 3 made of a non-conductive elastomer is arranged above this electrode arrangement, and elastomer pyramids 4 made of conductive elastomer are attached to the underside thereof. The tips of the pyramids are positioned in such a way that they lie exactly on the insulating layer I. If pressure is now exerted on the sensor surface 5, as can be seen in FIG. 3, the contact surface of the elastomer pyramids on the conductor track structures expands, so that the individual interdigital electrodes are contacted with one another, as a result of which the resistance between the two electrodes decreases . In the case shown in FIG. 3, a uniform pressure is exerted on the entire sensor surface 5, so that all four individual sensor elements shown are flattened in the same way. Due to the high elasticity of the carrier layer 3, however, the individual pressure sensor elements are largely mechanically decoupled from one another, so that pressure differences can also be measured locally resolved.
Es sind Funktionsmuster hergestellt worden, die aus 4 x 4 Drucksensorarrayelementen mit jeweils einem Rastermaß von 0,76 mm x 0,51 mm bestehen. Die Umfangsmaße des gesamten Drucksensors beträgt dabei ca. 2 mm x 3 mm. Als Materia¬ lien für den Drucksensor sind ein Glassubstrat mit Gold¬ elektroden von 50 μm Leiterbahnbreite und einer Gold- Schichtdicke von 400 nm sowie einer isolierenden Polyimid- Spacerstruktur von ca. 1 μm verwendet worden. Jede ein¬ zelne Interdigitalelektrode besteht dabei aus jeweils zwei Fingern mit einer Leiterbahnbreite von 50 μm und einem Interdigitalabstand von 50 μm. Für jedes einzelne Druck¬ sensorelement wird eine der beiden Elektroden einzeln nach außen kontaktiert während die jeweilige Gegenelektrode aller Sensorelemente miteinander verbunden sind und auf einem gemeinsamen Potential geführt werden.Functional samples have been produced which consist of 4 x 4 pressure sensor array elements, each with a grid dimension of 0.76 mm x 0.51 mm. The circumference of the whole The pressure sensor is approximately 2 mm x 3 mm. A glass substrate with gold electrodes of 50 μm conductor width and a gold layer thickness of 400 nm as well as an insulating polyimide spacer structure of approx. 1 μm have been used as materials for the pressure sensor. Each individual interdigital electrode consists of two fingers with a conductor width of 50 μm and an interdigital distance of 50 μm. For each individual pressure sensor element, one of the two electrodes is individually contacted to the outside, while the respective counter electrode of all sensor elements are connected to one another and are at a common potential.
Als Elastomermaterialien sind zwei komponentige Silikon¬ kautschuke verwendet worden. Für das leitfähige Elastomer¬ material ist Elastosil LR 3162 von der Fa. Wacker und für die nicht leitende Komponente Elastosil LR 3003 ebenfalls von der Fa. Wacker verwendet worden. Die Größe der leit¬ fähigen Pyramiden beträgt an der Basis 0,56 mm x 0,41 mm, die Höhe beträgt 0,29 mra. Die Dicke der nicht leitenden Silikonkautschukschicht beträgt dabei ca. 0,2 mm.Two component silicone rubbers have been used as elastomer materials. Elastosil LR 3162 from Wacker was used for the conductive elastomer material and likewise from Wacker for the non-conductive component Elastosil LR 3003. The size of the conductive pyramids at the base is 0.56 mm x 0.41 mm, the height is 0.29 mra. The thickness of the non-conductive silicone rubber layer is approximately 0.2 mm.
Die beiden Lagen des Sensors sind unter einem Mikroskop exakt übereinander positioniert und am Sensorrand span¬ nungsfrei miteinander verklebt worden. Eine weitere Er¬ höhung der Anzahl der Arrayelemente ließe sich unter Zu¬ hilfenahme von sogenannten Reihen-Spalten-Codierung ver¬ einfachen, da diese eine Verringerung der Anzahl von Lei¬ terbahnen zulassen würde.The two layers of the sensor are positioned exactly one above the other under a microscope and bonded to one another at the sensor edge without tension. A further increase in the number of array elements could be simplified with the aid of so-called row-column coding, since this would allow a reduction in the number of conductor tracks.
Mit Hilfe des erfindungsgemäßen mechanischen Bauelementes zur Druckerfassung kann eine Meßempfindlichkeit von wenig¬ stens 14 mN/mm2 erreicht werden. Ferner ist eine hohe Toleranz gegenüber großen Kräften von wenigstens 10 N/mm2 erreichbar. Schockbelastungen, große dynamische Bereiche und hohe Auflösungsvermögen mit der vorbeschriebenen Ele¬ mentgröße sind mit dem erfindungsgemäßen Bauelement er¬ reichbar. Die Herstellungsmethode erlaubt unter Zuhilfe¬ nahme etwas aufwendigerer Standard-Maskiertechniken eine Erhöhung der erzielten räumlichen und/oder dynamischen Auflösungsvermögens um mindestens den Faktor 5. Ein zu¬ sätzlicher Vorteil des Sensorprinzips besteht darin, daß bei Verwendung eines Polyimid-Folien-Substrates ein 2- dimensional biegbarer Sensor herstellbar ist, der bei¬ spielsweise an einem künstlichen Finger mit entsprechendem Tastsinn vorgesehen werden kann. With the aid of the mechanical component for pressure detection according to the invention, a measuring sensitivity of at least 14 mN / mm 2 can be achieved. Furthermore, there is a high tolerance to large forces of at least 10 N / mm 2 reachable. Shock loads, large dynamic ranges and high resolving power with the element size described above can be achieved with the component according to the invention. With the aid of somewhat more complex standard masking techniques, the production method allows the spatial and / or dynamic resolution achieved to be increased by at least a factor of 5. An additional advantage of the sensor principle is that when using a polyimide film substrate, a 2- Dimensionally bendable sensor can be produced, which can be provided, for example, on an artificial finger with a corresponding sense of touch.

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Elektronisches Bauelement zur statischen und dyna¬ mischen Druckerfassung mit einem nichtleitfähigem Grundsubstrat, auf dem wenigstens zwei Elektroden aufge¬ bracht sind, die derart auf der Substratoberfläche ange¬ ordnet sind, daß die Elektroden gegenseitig beabstandet sind, sowie mit einer, über dem Grundsubstrat und den Elektroden-Paaren angeordneten flexiblen, nicht leitenden Trägerschicht, an deren Unterseite entsprechend der Anzahl der Elektroden-Paare, elastische, im wesentlichen mittig zu den einzelnen Elektroden-Paaren ausgerichtete, elektrisch leitende Verformelemente mit einer Querschnittsfläche, deren Durchmesser in Grundsubstratnähe kleiner als der Elektrodenabstand ist und die in Richtung der Trägerschicht kontinuierlich zunimmt und an der Trägerschicht in etwa der von den Elektroden bedeckten Substratfläche entspricht, angebracht sind, die gegen die Leiterbahnpaare drückbar sind, dadurch gekennzeichnet, daß die einzelnen Elektroden jeweils in mindestens zwei einzelne Leiterbahnen auf¬ fächernde, voneinander isolierte Leiternbahnen sind, die derart auf der Substratoberfläche aufgebracht sind daß sich paarweise jeweils eine Leiterbahn der einen mit der Leiterbahn der anderen Elektrode ab¬ wechselt.1. Electronic component for static and dynamic pressure detection with a non-conductive base substrate on which at least two electrodes are applied, which are arranged on the substrate surface in such a way that the electrodes are spaced apart, and with one above the base substrate and the flexible, non-conductive carrier layer arranged on the electrode pairs, on the underside of which, in accordance with the number of the electrode pairs, elastic, electrically conductive deforming elements aligned essentially centrally to the individual electrode pairs with a cross-sectional area whose diameter near the base substrate is smaller than that Electrode spacing and which increases continuously in the direction of the carrier layer and is approximately attached to the carrier layer and corresponds to the substrate area covered by the electrodes, which can be pressed against the conductor track pairs, characterized in that the individual electrodes each have at least one are two individual conductor tracks fanning out, mutually insulated conductor tracks which are applied to the substrate surface in such a way that in each case one conductor track of the one alternates with the conductor track of the other electrode.
2. Elektronisches Bauelement nach Anspruch 1, dadurch g e k e n n z e i c h n e t, daß die Struktur der einzelnen Leiterbahnen jeweils der Form eines "F" nachgebildet sind, eine sogenannte Interdigital- elektrodenanordnung, so daß eine Paar-Anordnung der Lei- terbahnen derart erfolgt, daß die querverlaufenden Leiter¬ bahnabschnitte nebeneinanderliegen.2. Electronic component according to claim 1, characterized in that the structure of the individual conductor tracks are each modeled in the shape of an "F", a so-called interdigital electrode arrangement, so that a pair arrangement of the leads The tracks are made in such a way that the transverse conductor track sections lie next to one another.
3. Elektronisches Bauelement nach Anspruch 1 oder 2 dadurch g e k e n n z e i c h n e t, daß eine Vielzahl von Elektroden-Paaren sowie eine entsprechende Anzahl von Verformelementen matrixförmig auf dem Grundsubstrat bzw. auf der Trägerschicht angeordnet sind.3. Electronic component according to claim 1 or 2 characterized in that a plurality of pairs of electrodes and a corresponding number of deforming elements are arranged in a matrix on the base substrate or on the carrier layer.
4. Elektronisches Bauelement nach einem der Ansprüche 1 bis 3, dadurch g e k e n n z e i c h n e t, daß die Trägerschicht aus einem isolierenden und die Verformelemente aus einem elektrisch leitfähigen Elastomer bestehen.4. Electronic component according to one of claims 1 to 3, characterized in that the carrier layer consists of an insulating and the deforming elements consist of an electrically conductive elastomer.
5. Elektronisches Bauelement nach einem der Ansprüche 1 bis 4, dadurch g e k e n n z e i c h n e t, daß die Verformele¬ mente pyramidenförmige Gestalt aufweisen, deren Basis¬ fläche mit der Trägerschicht jeweils fest verbunden sind und deren Pramidenspitzen ohne Druckbeaufschlagung an einer Stelle der Isolierschicht aufliegen, die zwischen den Leiterbahnen der einzelnen Leiterbahn-Paaren vorge¬ sehen ist.5. Electronic component according to one of claims 1 to 4, characterized in that the Verformele¬ elements have a pyramidal shape, the Basis¬ surface are firmly connected to the support layer and the pramide tips are without pressure at a point of the insulating layer, which lie between the Conductors of the individual pairs of conductor tracks is provided.
6. Elektronisches Bauelement nach einem der Ansprüceh 1 bis 5, dadurch g e k e n n z e i c h n e t, daß die Trägerschicht ein derart elastisches Material und eine Dicke aufweist, so daß bei Druckbeaufschlagung keine mechanische Überkopp¬ lung zwischen zwei benachbarten Verformelementen statt¬ findet.6. Electronic component according to one of claims 1 to 5, characterized in that the carrier layer has such an elastic material and a thickness that no mechanical coupling takes place between two adjacent deformation elements when pressure is applied.
7. Elektronisches Bauelement nach einem der Ansprüche 1 bis 6 , dadurch g e k e n n z e i c h n e t, daß die Oberseite der Trägerschicht die Sensorfläche des elektronischen Bauele¬ ments ist und kleiner und das einzelne Matrixelement klei¬ ner als 500 μm x 500 μm, vorzugsweise kleiner 100 μm x 100 μm ist.7. Electronic component according to one of claims 1 to 6, characterized in that the top of the carrier layer is the sensor surface of the electronic component and is smaller and the individual matrix element is smaller than 500 μm x 500 μm, preferably smaller than 100 μm x 100 μm.
8. Elektronisches Bauelement nach einem der Ansprüche 1 bis 7, dadurch g e k e n n z e i c h n e t, daß das Grundsubstrat starr oder flexibel ist.8. Electronic component according to one of claims 1 to 7, characterized g e k e n n z e i c h n e t that the base substrate is rigid or flexible.
9. Elektronisches Bauelement nach einem der Ansprüche 1 bis 8, dadurch g e k e n n z e i c h n e t, daß das Grundsubstrat aus Glas ist.9. Electronic component according to one of claims 1 to 8, characterized g e k e n n z e i c h n e t that the base substrate is made of glass.
10. Elektronisches Bauelement nach einem der Ansprüche 1 bis 9, dadurch g e k e n n z e i c h n e t, daß eine Isolier¬ schicht zwischen den Leiterbahnen vorgesehen ist, die etwas über die Höhe der einzelnen Leiterbahnen hinausragt.10. Electronic component according to one of claims 1 to 9, characterized in that an insulating layer is provided between the conductor tracks, which protrudes somewhat beyond the height of the individual conductor tracks.
11. Elektronisches Bauelement nach einem der Ansprüche 1 bis 10, dadurch g e k e n n z e i c h n e t, daß die Leiterbahn¬ breite 50 μm und die Leiterbahnhöhe etwa 400 nm beträgt.11. Electronic component according to one of claims 1 to 10, characterized in that the conductor track width is 50 μm and the conductor track height is approximately 400 nm.
12. Elektronisches Bauelement nach einem der Ansprüche 1 bis 11. dadurch g e k e n n z e i c h n e t, daß die zwischen den Leiterbahnen befindliche Isolierschicht eine Höhe von etwa 1 μm und eine Breite von 50 μm aufweist. 12. Electronic component according to one of claims 1 to 11, characterized in that the insulating layer located between the conductor tracks has a height of about 1 micron and a width of 50 microns.
13. Einrichtung nach einem der Ansprüche 1 bis 11, dadurch g e k e n n z e i c h n e t, daß ein Sensorarray aus einer Vielzahl nebeneinanderangeordneter elektroni¬ scher Bauelemente gebildet ist, das Teil eines taktilen Sensorsystems für einen Robotergreifer, einen Telemanipu- lator, eine künstliche Hand, eine endoskopische Faßzange oder einen endoskopischen Taststab ist. 13. Device according to one of claims 1 to 11, characterized in that a sensor array is formed from a plurality of juxtaposed electronic components, the part of a tactile sensor system for a robot gripper, a telemanipulator, an artificial hand, an endoscopic forceps or is an endoscopic probe.
PCT/DE1996/001718 1995-09-12 1996-09-12 Static and dynamic pressure sensing electronic component WO1997013130A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19533756.5 1995-09-12
DE19533756A DE19533756A1 (en) 1995-09-12 1995-09-12 Electronic component for static and dynamic pressure detection

Publications (2)

Publication Number Publication Date
WO1997013130A2 true WO1997013130A2 (en) 1997-04-10
WO1997013130A3 WO1997013130A3 (en) 1997-05-29

Family

ID=7771951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/001718 WO1997013130A2 (en) 1995-09-12 1996-09-12 Static and dynamic pressure sensing electronic component

Country Status (2)

Country Link
DE (1) DE19533756A1 (en)
WO (1) WO1997013130A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2401584A1 (en) * 2009-02-27 2012-01-04 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Protective skin for robots
CN108735889A (en) * 2017-04-14 2018-11-02 中国科学院苏州纳米技术与纳米仿生研究所 pressure sensor and preparation method thereof
JPWO2020195460A1 (en) * 2019-03-25 2020-10-01
WO2021254249A1 (en) * 2020-06-18 2021-12-23 Basf Se Piezoresistive pressure sensor based on foam structure

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2853057B1 (en) * 2003-03-26 2005-09-23 Cera DETECTION DETECTION DEVICE WITH DETECTION AMPLIFIER
GB0313794D0 (en) * 2003-06-14 2003-07-23 Univ Dundee Tactile sensor assembly
DE102006007664A1 (en) * 2006-02-18 2007-08-23 Bayerische Motoren Werke Ag Accelerator system
DE102010034712A1 (en) * 2010-08-18 2012-02-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Minimally invasive instrument used for minimally invasive surgery, has tactile sensor having planar sensor element that exhibits elastic properties in tactile sensitive surface through access channel
AT511330B1 (en) * 2011-06-03 2012-11-15 Piezocryst Advanced Sensorics SENSOR FOR MEASUREMENT OF PRESSURE AND / OR FORCE
CN103091005B (en) * 2011-11-07 2015-02-18 中国医药大学 Pressure sensing component
JP6180547B2 (en) * 2013-01-29 2017-08-16 中国科学院蘇州納米技術与納米倣生研究所Suzhou Institute Of Nano−Tech And Nano−Bionics(Sinano),Chinese Academy Of Science Electronic skin and its manufacturing method and use
CN104706335B (en) * 2013-12-17 2018-03-20 中国科学院苏州纳米技术与纳米仿生研究所 Application of the electronic skin in pulse detection, pulse detection system and method
DE102017218229A1 (en) * 2017-10-12 2019-04-18 Dr. Doll Engineering Gmbh Protective device for an industrial robot and protective element for such a protective device
DE102019114185B4 (en) * 2019-05-27 2022-08-11 Tacterion Gmbh Tactile sensor element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4479392A (en) * 1983-01-03 1984-10-30 Illinois Tool Works Inc. Force transducer
US4793193A (en) * 1984-01-31 1988-12-27 Borgudd Slim T Device for sensing loads
US5237879A (en) * 1991-10-11 1993-08-24 At&T Bell Laboratories Apparatus for dynamically varying the resolution of a tactile sensor array
US5287089A (en) * 1992-05-13 1994-02-15 Micro-Integration Corporation Hand manipulatable computer input device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694231A (en) * 1986-04-18 1987-09-15 Mecanotron Corporation Robotic skin
DE3903094A1 (en) * 1988-07-14 1990-01-18 Blomberg Gmbh Robotertechnik Tactile sensor
JPH02275603A (en) * 1988-12-29 1990-11-09 Yokohama Rubber Co Ltd:The Variable resistor and sensor using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4479392A (en) * 1983-01-03 1984-10-30 Illinois Tool Works Inc. Force transducer
US4793193A (en) * 1984-01-31 1988-12-27 Borgudd Slim T Device for sensing loads
US5237879A (en) * 1991-10-11 1993-08-24 At&T Bell Laboratories Apparatus for dynamically varying the resolution of a tactile sensor array
US5287089A (en) * 1992-05-13 1994-02-15 Micro-Integration Corporation Hand manipulatable computer input device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 036 (E-1027), 29.Januar 1991 & JP 02 275603 A (YOKOHAMA RUBBER CO LTD:THE), 9.November 1990, *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2401584A1 (en) * 2009-02-27 2012-01-04 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Protective skin for robots
CN108735889A (en) * 2017-04-14 2018-11-02 中国科学院苏州纳米技术与纳米仿生研究所 pressure sensor and preparation method thereof
CN108735889B (en) * 2017-04-14 2021-08-17 中国科学院苏州纳米技术与纳米仿生研究所 Pressure sensor and preparation method thereof
JPWO2020195460A1 (en) * 2019-03-25 2020-10-01
WO2021254249A1 (en) * 2020-06-18 2021-12-23 Basf Se Piezoresistive pressure sensor based on foam structure

Also Published As

Publication number Publication date
WO1997013130A3 (en) 1997-05-29
DE19533756A1 (en) 1997-03-13

Similar Documents

Publication Publication Date Title
EP1581787B1 (en) Pressure sensor comprising an elastic sensor layer with a microstructured surface
DE60317273T2 (en) Sensor for mechanical deformation measurement
WO1997013130A2 (en) Static and dynamic pressure sensing electronic component
EP1550349B1 (en) Membrane and method for the production thereof
DE4106288C2 (en) Sensor for measuring pressures or accelerations
US5079949A (en) Surface pressure distribution detecting element
US4986136A (en) Measuring system
DE69824377T2 (en) Detecting substance on the surface of a capacitive sensor
WO1989009477A1 (en) Micromechanical device
US20140037909A1 (en) Actuation and Control of Stamp Deformation in Microcontact Printing
EP1763660A1 (en) Sensor and method for producing said sensor
DE19743749A1 (en) Semiconductor pressure sensor for absolute pressure measurement
EP2668483B1 (en) Microelectromechanical component and method for testing a microelectromechanical component
DE19601078C2 (en) Pressure force sensor
EP0454883B1 (en) Capacitive sensor
EP1310781B1 (en) Semiconductor device ( pressure sensor ) allowing testing of diaphragm and cavity
EP2138450B1 (en) Structure of electrodes for a micromechanical device
EP3063518B1 (en) Capacitive sensor element having an integrated measuring capacitance and reference capacitance
DE102010027346A1 (en) sensor arrangement
DE102015205384A1 (en) Capacitive MEMS sensor element with bond pads for electrical contacting of the measuring capacitor electrodes
DE102007046017A1 (en) sensor element
WO2019011572A1 (en) Assembly of carbon nanotubes and a method for production thereof
DE102011105539B4 (en) Device for converting a force into an electrical signal, in particular piezoresistive force sensor
JP2750583B2 (en) Surface pressure distribution detector
DE102022121638A1 (en) Arrangement of carbon nanotubes and a method for producing the arrangement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase