WO1997030219A1 - Production of filled paper and compositions for use in this - Google Patents

Production of filled paper and compositions for use in this Download PDF

Info

Publication number
WO1997030219A1
WO1997030219A1 PCT/GB1997/000392 GB9700392W WO9730219A1 WO 1997030219 A1 WO1997030219 A1 WO 1997030219A1 GB 9700392 W GB9700392 W GB 9700392W WO 9730219 A1 WO9730219 A1 WO 9730219A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcc
cationic
suspension
polymer
slurry
Prior art date
Application number
PCT/GB1997/000392
Other languages
French (fr)
Inventor
Thomas Cauley
David Depasquale
Bruce Evans
Brian Frederic Satterfield
Original Assignee
Allied Colloids Limited
Minerals Technologies Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Colloids Limited, Minerals Technologies Inc. filed Critical Allied Colloids Limited
Priority to AU17998/97A priority Critical patent/AU1799897A/en
Publication of WO1997030219A1 publication Critical patent/WO1997030219A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/76Processes or apparatus for adding material to the pulp or to the paper characterised by choice of auxiliary compounds which are added separately from at least one other compound, e.g. to improve the incorporation of the latter or to obtain an enhanced combined effect
    • D21H23/765Addition of all compounds to the pulp
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • D21H17/29Starch cationic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • D21H17/375Poly(meth)acrylamide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • D21H17/455Nitrogen-containing groups comprising tertiary amine or being at least partially quaternised
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/53Polyethers; Polyesters
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/55Polyamides; Polyaminoamides; Polyester-amides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/56Polyamines; Polyimines; Polyester-imides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/675Oxides, hydroxides or carbonates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers

Definitions

  • This invention relates broadly to the manufacture of filled paper and to filler compositions for use in this. More particularly, the invention relates to the manufacture of paper filled with precipitated calcium carbonate (PCC) and slurries of PCC.
  • PCC precipitated calcium carbonate
  • Background of the Invention It is standard practice to make filled paper by mixing filler with a cellulosic suspension and forming a thin stock, mixing a polymeric retention aid into the thin stock, draining the thin stock on a screen to form a sheet and drying the sheet. The quality of the resultant paper depends in part on the nature of the initial cellulosic suspension and the amount and nature of filler and other additives. Fine papers may be highly filled and sized and formed from a relatively pure suspension.
  • paper such as newsprint
  • newsprint is made from cellulosic suspension which is frequently referred to as being "dirty” or as containing “anionic trash".
  • Typical of such suspensions are those which contain a significant proportion of groundwood or other mechanically derived pulp, or de-inked pulp or broke.
  • paper such as newsprint was generally substantially unfilled while fine paper was filled, but there is now a demand for papers such as newsprint to include some filler.
  • the purpose of the polymeric retention aid is to promote the retention of paper fines, and filler i f present.
  • a single polymer, or a combination of materials may be used, and the nature of the retention system has to be selected according to the nature of the suspension in order to obtain optimum results. It is desirable to achieve the maximum possible retention of filler, irrespective of the nature of the filler.
  • U.S 4,874,466, U.S. 5,126,010, U.S. 5,126,014 and GB 2,251,254 are other disclosures of processes in which cationic coagulant is added with the intention of improving retention of filler.
  • PCC is generally made at the paper mill by injecting carbon dioxide into an aqueous lime solution to form a slurry typically having a PCC content typically of 13-20%.
  • PCC retention in the dirty pulps with which we are concerned is always very much less, and is frequently in the range 0% to 15%.
  • the resultant paper is usually unsized.
  • Pretreatment with a cationic polymer can increase retention but the value is still unacceptably low.
  • One object of the invention is to provide a paper ⁇ making process which utilises PCC and which can give significantly improved retention of PCC. Another object is to achieve this when the cellulosic suspension is a groundwood or other "dirty" suspension.
  • Another object of the invention is to achieve this when the paper is a material such as newsprint, supercalendered, mechanically finished, mechanically finished coated or lightweight coated paper, wherein the paper is typically unsized. Another object is to make paper which is filled with PCC and which has improved properties, for instance as regards formation and linting.
  • Another object of the invention is to provide PCC slurries capable of giving good retention.
  • Filled paper is made by forming a PCC-containing thin stock by a process comprising mixing a slurry of PCC with a cellulosic suspension, mixing polymeric retention aid into the PCC-containing thin stock, draining the thin stock on a screen to form a sheet and drying the sheet.
  • a cationising amount of water soluble cationic polymer is added into the slurry of PCC before the slurry is mixed with the cellulosic suspension.
  • the preferred slurry is an unsized slurry of PCC (typically about 10 to 70%, preferably 10- 40%, by weight PCC) and cationic polymer which can be a small amount (typically about 0.01 to 0.3%) of a synthetic cationic polymer which has a high charge density (typically above about 4meq/g) and low intrinsic viscosity (typically below about 3dl/g) but can be a larger amount (typically up to about 1%) of a cationic starch.
  • PCC typically about 10 to 70%, preferably 10- 40%, by weight PCC
  • cationic polymer which can be a small amount (typically about 0.01 to 0.3%) of a synthetic cationic polymer which has a high charge density (typically above about 4meq/g) and low intrinsic viscosity (typically below about 3dl/g) but can be a larger amount (typically up to about 1%) of a cationic starch.
  • the precipitated calcium carbonate which is used in the invention can be made
  • Such techniques usually involve passing carbon dioxide through an aqueous solution of slaked lime, calcium oxide, to form an aqueous slurry of precipitated calcium carbonate.
  • the slurry generally has a PCC content of at least about 5% and usually at least about 10%.
  • PCC content is not more than about 70%, often is below 40% and usually it is below about 30%.
  • a PCC content of around 20% (eg 15-25%) is typical.
  • Dispersants and other conventional additives may be included in the slurry to promote stability, in conventional manner.
  • the crystal structure of the slurry is usually scalenohedral or rhombohedral but other precipitated calcium carbonates suitable for paper filling grades may be used. Variations in the quality of the water and the method of manufacture and other process conditions can influence the crystal structure and the performance and properties of the PCC in known manner, for instance to vary capacity, brightness or gloss.
  • the PCC slurry may have been treated in known manner to render it acid tolerant, for instance as described in U.S. 5,043,017 and 5,156,719.
  • the PCC slurry which is used in paper making preferably is substantially the slurry formed initially by the precipitation process, without any intervening drying and reslurrying stage. However if desired it is possible to recover PCC from a slurry as powder and then reslurry it prior to use in paper making.
  • the average particle size (50% PSD) of the PCC particles in the slurry is usually within the range about
  • the invention is of particular value when applied to PCC grades which give particularly poor retention in the particular furnish which is being used.
  • the combination of pulp and the PCC is preferably such that the first pass PCC retention (as measured by a Britt Dynamic Drainage Retention Jar) would be 0-20%, often 0-15% in the absence of the cationic pretreatment and the anionic microparticulate treatment but is raised by at least 15 points, often 25-60 points, by the invention to a value of at least 35% and usually 50-70% or more.
  • the cellulosic suspension can be formed from any suitable source of cellulosic fibres.
  • the suspension can be a relatively clean suspension, for instance for the production of fine paper. For instance it may be made from chemical pulp.
  • the invention can also be applied to processes where the suspension is made and used in an integrated pulp and paper mill.
  • the invention can be used on clean cellulosic suspensions, the suspension can be one that would be classified as being a relatively "dirty" suspension or as a suspension containing significant amounts of "anionic trash".
  • the suspensions can contain a significant amount, usually at least 30% by weight and preferably at least 50% by weight (based on the dry weight of the cellulosic feed to the suspension) selected from one or more mechanically derived pulps including thermomechanical pulp, chemiraechanical pulp, and groundwood pulp, including recycled paper formed from such pulps.
  • mechanically derived pulps including thermomechanical pulp, chemiraechanical pulp, and groundwood pulp, including recycled paper formed from such pulps.
  • Other dirty pulps include pulps containing coated broke and deinked pulps and peroxide-bleached and mechanical pulps.
  • the paper-making process generally includes prolonged recycling of white water, and this also can contribute to the suspension being "dirty".
  • One analytical technique for indicating preferred "dirty" suspensions is by measuring conductivity, since such suspensions tend to contain ionic trash and other electrolyte.
  • This electrolyte may originate from the initial groundwood (such as lignin compounds, extractives and hemi-celluloses) or from other sources, such as the gradual buildup of alkaline and alkaline earth metals dissolved from the suspension and recycled in white water.
  • the dirty suspension can be such that white water (i.e., the water drained through the screen when the filled suspension containing retention aid is drained to make a sheet) has conductivity of above about 1,000, and preferably above about 1,500 micro Siemens, often 2,000 to 3,000 micro Siemens or more. Conductivity of the white water can be determined by conventional conductivity- measuring techniques.
  • Suitable clean suspensions that can be used in the invention have a conductivity below 1000 microsiemen and often below 500 or 300 microsiemen.
  • the anionic trash component of suitable suspensions is usually such that a relatively large amount of cationic polymer has to be added to the suspension (in the absence of PCC or other filler or retention aid additions) in order to achieve significant retention of the fibres.
  • This is the "cationic demand”.
  • the cationic demand of the thin stock in the absence of any of the additions defined in the invention, namely filler, cationic polymer, polymeric retention aid and inorganic anionic polymeric material
  • the cationic demand of the thin stock is such that it is necessary to add at least about 0.06%, and often at least about 0.1%, by weight of polyethylene imine (600 or l,000g/t) in order to obtain a significant improvement in retention.
  • Another way of indicating a dirty suspension of the type which can be used in the invention is to filter a sample of the thin stock (without any of the additions) through a fast filter paper and titrate the filtrate against a standardised solution of poly diallyl dimethyl ammonium chloride, for instance using a Mutek particle charge detector.
  • concentration of anionic charge in the filtrate is then usually above 0.01, and often above 0.05 or 0.1, millimoles per litre.
  • the pH of the suspension can be conventional, thus it can be substantially neutral or alkaline, but if the PCC has been treated to render it acid tolerant then the pH can be acidic, for instance 4 to 7, often around 6-7.
  • the papers that are made by the invention are those which are conventionally made from relatively dirty suspensions.
  • the invention is of particular value to the production of newsprint and machine-finished (MF) grades but is also of value for super calendered papers, and machine-finished coated papers, and also for lightweight- coated papers.
  • the paper can be of any conventional weight, and so can be board, including bleached board.
  • PCC is preferably substantially the only filler and so may be the only filler that is deliberately added, although other filler may be included, for instance as a result of incorporation of recycled paper in the suspension or as a result of deliberate addition of filler such as anhydrous or calcined clays or speciality pigments.
  • the amount of PCC, and the total amount of filler, in the suspension that is drained is generally at least 3% or 5% (dry weight filler based on dry weight of suspension) and usually at least 10%. It can be up to 45% or even 60% in some instances but is usually below 30%.
  • the amount of filler in the paper is generally in the range 1% to 20% or 30% (dry weight filler based on dry weight paper) .
  • the PCC is often 50 to 100% of the total filler content of the suspension and the paper.
  • the invention is of particular value in the production of newsprint typically containing above 1% to 10% filler, super calendered and machine-finished papers typically containing about 5 to 40% filler, and lightweight coated papers typically containing about 2 to 10% by weight filler.
  • the cellulosic suspension used in the invention is generally made by initially providing a thick stock and then diluting this to a thin stock, in conventional manner.
  • the thick stock generally has a total solids content in the range about 2.5 to 10%, often around 3 to 6%
  • the thin stock usually has a total solids content in the range about 0.25 to 2%, often around 0.5 to 1.5% by weight.
  • the slurry of PCC can be incorporated in the suspension while in the form of a thin stock, or the slurry can be incorporated while the suspension is in the form of a thick stock, and the thick stock can be diluted to a thin stock simultaneously with or after mixing the slurry of PCC into the suspension.
  • the slurry of PCC is added into a thin stock suspension.
  • a cationising amount of a cationic polymer Before mixing the PCC slurry with the suspension it is necessary to mix into the PCC slurry a cationising amount of a cationic polymer.
  • the amount that is used must be sufficient to render the PCC in the slurry sufficiently cationic to achieve significantly improved retention in the process compared to the retention obtained if the same process is conducted in the absence of the cationic polymer.
  • the amount which is selected is usually the amount which gives optimum retention.
  • a suitable amount can be found by routine experimentation in that Britt Jar or other routine laboratory tests can be conducted at varying levels of addition so as to determine which is the optimum.
  • the amount is generally in the range about 0.005% to 2%, dry weight polymer based on the dry weight of PCC in the slurry.
  • the cationic polymer can be a cationic naturally- occurring polymer, such as cationic starch. With a modified natural polymer such as this, the amount is usually of about 0.05% to 1%, preferably in the range about 0.1 to 1%, more preferably about 0.3 to 0.7%. Routine testing of a range of cationic starches will allow selection of grades (degree of substitution and origin of starch) which are suitable. Potato or other relatively low molecular weight starches are preferred. Low DS starches are preferred.
  • a synthetic cationic polymer When a synthetic cationic polymer is used, it is preferred that it should have a relatively low molecular weight and a high charge density, in which event suitable amounts are generally in the range about 0.005 to 0.2%, often around about 0.01 to 0.1%.
  • the synthetic polymer generally has intrinsic viscosity below about 3dl/g. Intrinsic viscosity is measured by a suspended level viscometer at 25°C in one molar sodium chloride buffered to pH7. It can be below ldl/g but it is often preferable for it to be above ldl/g e.g., 1.5 to 2.5dl/g or more.
  • Some suitable polymers have IV below ldl/g and some have such low molecular weight that it may not be appropriate to determine it as IV, but if IV is measurable then the value is usually at least about 0.1 or 0.2dl/g. If the molecular weight is measured by gel permeation chromatography, the value is usually below 2 or 3 million, often below 1 million. It is usually above 100,000 and can be as low as, for instance, about 10,00 0 for some polymers such as dicyandiamides.
  • the synthetic polymer generally has a relatively high cationic charge density of at least 2meq/g and often at least 4meq/g, for instance 6meq/g or more.
  • the cationic polymer should be used in itr conventional, free polymer, form and should not be complexed or otherwise associated with a diluent which would undesirably reduce the cationic charge or increase the molecular weight of the cationic polymer that is added to the PCC.
  • the polymer must not be complexed with a sizing component as in U.S. 5,147,507 since the sizing component undesirably reduces the effectiveness of the polymer for treating the PCC.
  • the synthetic polymer can be a polyethylene imine, a dicyandiamide or a polyamine (e.g., made by condensation of epichlorhydrin with an amine) but is preferably a polymer of an ethylenically unsaturated cationic monomer, optionally copolymerised with one or more other ethylenically unsaturated monomers, generally non-ionic monomers.
  • Suitable cationic monomers are dialkyl diallyl quaternary monomers (especially diallyl dimethyl ammonium chloride, DADMAC) and dialkylaminoalkyl -(meth) acrylamides and -(meth) acrylates usually as acid addition or quaternary ammonium salts.
  • Preferred cationic polymers are polymers of diallyl dimethyl ammonium chloride or quaternised di ethylaminoethyl acrylate or methacrylate, either as homopolymers or copolymers with acrylamide.
  • the copolymer is formed of 50 to 100%, often 80 to 100%, cationic monomer with the balance being acrylamide or other water soluble non-ionic ethylenically unsaturated monomer.
  • the slurry of PCC may contain a mixture of the cationic polymers, for instance a mixture of cationic starch and a low molecular weight, high charge density, synthetic cationic polymer.
  • the cationic polymer should be water soluble at the concentrations at which it is used.
  • the cationic polymer can be mixed by batch or in-line addition into the PCC as it is being pumped towards the point where it is added to the cellulosic suspension, or it can be mixed into the PCC in a storage vessel. Sufficient mixing must be applied to distribute the polymer substantially uniformly over the PCC before addition to the cellulosic suspension.
  • the cationic polymer can be provided as an aqueous solution which is mixed with the filler, or a powdered or reverse phase form of the cationic polymer may be used.
  • the microparticulate material can be included in the suspension before adding the PCC slurry.
  • the microparticulate material can be mixed into thin stock before adding the PCC slurry or it can be mixed into thick stock at some earlier stage, generally just before adding the PCC slurry.
  • the microparticulate material is added to the thin stock just after adding the PCC slurry. In the present invention however this inclusion of anionic microparticulate material can be eliminated, thereby avoiding the cost and inconvenience of an extra dosing material.
  • the thin stock containing cationised PCC, and usually with addition of anionic particulate material may be subjected to conventional papermaking procedures involving the addition of a polymeric retention aid to the thin stock.
  • the retention aid can be non-ionic, in which event it can be polyethylene oxide having a molecular weight above 2 million and usually about 4 to 8 million, or it can be a water soluble addition polymer of an ethylenically unsaturated monomer or monomer blend which can be non- ionic, anionic or cationic.
  • the retention aid is a synthetic polymer having intrinsic viscosity above 4dl/g and often above 6dl/g.
  • the monomer or monomer blend used for forming the retention aid can be non-ionic or it can be anionic or cationic. If it is ionic the amount of ionic monomer can be up to, for instance about 80 weight percent of the blend but in some processes the amount of ionic monomer is relatively low. Thus the polymer may be formed from at least about 60 or 70 mole percent, and often at least about
  • non-ionic monomer 80 or 90 mole percent non-ionic monomer with any balance being ionic monomer.
  • the polymer can contain up to about 15 mole percent, usually only up to about 10 mole percent ionic groups and generally can contain up to about 5 mole percent cationic groups and/or up to 8 mole percent anionic groups.
  • Typical low ionic polymers are formed of 90-100% by weight acrylamide and 0-10% sodium acrylate.
  • the polymer is a conventional paper ⁇ making cationic or anionic retention aid, for instance formed from nonionic monomer together with 3 to 50 mole % cationic or anionic monomer, and typically having IV 8 - 18 dl/g when cationic or 10 - 30 dl/g when anionic. IV is measured by suspended level viscometer on a solution in IN NaOH buffered to pH 7 at 25°C.
  • the preferred non-ionic monomer is acrylamide and so a preferred non-ionic polymer is polyacrylamide homopolymer (which may be contaminated with up to about 1 or 2% sodium acrylate) .
  • Suitable anionic monomers are ethylenically unsaturated carboxylic or sulphonic monomers, usually ethylenically unsaturated carboxylic monomers such as sodium acrylate or other suitable alkali metal salt of such a monomer.
  • Suitable cationic monomers are dialkylaminoalkyl (meth) -acrylates and -acrylamides, generally as acid addition or quaternary ammonium salts.
  • Preferred cationic monomers are dialkylaminoethyl (meth) acrylate acid addition or quaternary salts, usually dimethylaminoethyl acrylate quaternary salt.
  • the amount of polymeric retention aid that is required can be found by routine experimentation and is usually in the range about 0.005% to 1% (dry weight polymer based on dry weight feedstock, 0.05 to lOkg/ton) , often around about 0.01 to 0.1%.
  • the polymeric retention aid can be the last additive in the process in which event it is preferably added during or after the last point of high shear, for instance at the head box. It can be desirable, however, to add anionic microparticulate material after the polymer. Generally the floes formed by the retention aid are broken down to microflocs by turbulence or other shear and the microparticulate material is then added, for instance at the head box, for instance as described in EP 235893 or 308752.
  • the anionic microparticulate material is usually inorganic. It can be a colloidal silica or other synthetic microparticulate silica material such as polysilicic acid or a synthetic polyalumino silicate, but is preferably an inorganic swelling clay of the type usually referred to colloquially as a bentonite. Usually it is a smectite or montmorillonite or hectorite. The materials commercially available under names such as bentonite and Fullers Earth are suitable. Zeolites can be used provided their particle size is sufficiently small. It should be below 3 ⁇ m and preferably below 0.3 ⁇ m or even O.l ⁇ m.
  • organic microparticulate material for instance an emulsion of relatively water-insoluble anionic polymer particles in water or in a non-aqueous liquid.
  • anionic polymer particles can be of cross-linked water-swellable anionic polymer or can be of linear or cross-linked water insoluble polymer. Again the particle size should be very small and can be below 0.3 or O.l ⁇ m.
  • anionic microparticulate material that is added will depend upon the materials being used but can be selected by routine experimentation to give suitable results. Generally it is in the range about 0.05 to 1%, often about 0.1 to 0.5% (ie 1 to 5 kg/t dry weight of suspension) .
  • the suspension may be drained through a screen and the resultant wet sheet dried and subject to conventional post- treatments such as calendering in conventional manner.
  • the paper can be subjected to external or internal sizing although the paper is usually substantially unsized cellulosic suspension and there is substantially no external sizing. Thus preferably no ketene dimer or other internal size is included deliberately in the cellulosic suspension although it is permissible for small amounts of size to be introduced into the suspension as a result of recycling waste paper.
  • the process of the invention can give a very large improvement in retention, as discussed above.
  • the process can result in a valuable reduction in dusting or linting.
  • the process can result in an improvement in paper quality.
  • Example 1 A cellulosic thin stock having a dry content of 1% was formed from a 0.8% cellulosic suspension based mainly on chemi-thermomechanical pulp and 0.2% (based on the suspension) of an acid tolerant PCC slurry giving a filler content in the suspension of 0.3%. In some tests the PCC slurry was pretreated with cationic polymer.
  • First pass PCC retention data was determined broadly as in Example l in processes in which acid tolerant PCC (usually after treatment with 0.05% polydadmac IV 1.5 - 2 dl/g) was mixed into a thin stock under agitation followed by the addition of a retention system.

Abstract

Filled paper is made by adding a cationising amount of cationic polymer to a slurry of precipitated calcium carbonate, mixing this slurry into a cellulosic suspension and forming a thin stock, mixing a polymeric retention aid into the thin stock which includes the precipitated calcium carbonate draining the thin stock on a screen to form a sheet and drying the sheet.

Description

Production of Filled Paper and Compositions For Use in This Field of the Invention
This invention relates broadly to the manufacture of filled paper and to filler compositions for use in this. More particularly, the invention relates to the manufacture of paper filled with precipitated calcium carbonate (PCC) and slurries of PCC. Background of the Invention It is standard practice to make filled paper by mixing filler with a cellulosic suspension and forming a thin stock, mixing a polymeric retention aid into the thin stock, draining the thin stock on a screen to form a sheet and drying the sheet. The quality of the resultant paper depends in part on the nature of the initial cellulosic suspension and the amount and nature of filler and other additives. Fine papers may be highly filled and sized and formed from a relatively pure suspension. Other paper, such as newsprint, is made from cellulosic suspension which is frequently referred to as being "dirty" or as containing "anionic trash". Typical of such suspensions are those which contain a significant proportion of groundwood or other mechanically derived pulp, or de-inked pulp or broke. Originally paper such as newsprint was generally substantially unfilled while fine paper was filled, but there is now a demand for papers such as newsprint to include some filler.
The purpose of the polymeric retention aid is to promote the retention of paper fines, and filler if present. A single polymer, or a combination of materials may be used, and the nature of the retention system has to be selected according to the nature of the suspension in order to obtain optimum results. It is desirable to achieve the maximum possible retention of filler, irrespective of the nature of the filler. There are some proposals in the literature suggesting particular ways of improving retention of some fillers by treatment with, for instance, a relatively low molecular weight cationic polymer prior to the addition of polymeric retention aid into the thin stock.
For instance in EP-A-608,986 it is proposed to coagulate filler in a thick stock feed suspension by adding cationic coagulant to the feed suspension and forming thin stock from this, adding bentonite to the thin stock or to the thick stock before it is converted to the thin stock, subsequently adding polymeric retention aid to the thin stock and forming paper from the thin stock. The process is intended mainly for dirty suspensions. Fillers which are mentioned are china clay, calcium carbonate and kaolin. However all the experimental data relates to the use of calcined clay and shows that treatment of the calcined clay with cationic coagulant before addition to the thick stock is much less effective than adding the coagulant to a preformed mixture of the cellulosic suspension and clay. In fact, the data shows that retention of the clay is not improved by pretreatment of the clay with the cationic coagulant.
U.S 4,874,466, U.S. 5,126,010, U.S. 5,126,014 and GB 2,251,254 are other disclosures of processes in which cationic coagulant is added with the intention of improving retention of filler.
It can be difficult to achieve good retention of PCC, and a particular problem is that the retention properties are liable to vary somewhat unpredictably, for instance from one manufacturing plant to another. Accordingly there is an urgent need to achieve reasonably consistent and good retention of PCC. The problem of poor and/or variable PCC retention is particularly significant when using "dirty" cellulosic suspensions. PCC is generally made at the paper mill by injecting carbon dioxide into an aqueous lime solution to form a slurry typically having a PCC content typically of 13-20%. It has already been proposed that it can be desirable to provide a cationic surface charge to aid retention of PCC and other fillers, see for instance the abstract of Tappi 1990 Neutral/Alkaline Papermaking, Tappi Short Course Notes, pages 92 to 97 by Gill, in which the author states that the zeta potential of a filler is important to retention. Other disclosures about the retention of filler are in the references listed in that paper.
In U.S. 5,147,507 Gill is concerned with the manufacture of sized paper from a clean pulp. He describes treating PCC with a ketene dimer size which has been made cationic by treating the dimer with a polyaraino-amide or a polyamine polymer reacted with an epoxinised halohydrin compound. The use of 0.25 to 2% of this cationic polymeric size material is said to produce a filler having a reduced sizing demand. It is also shown to achieve a small improvement in the filler retention. For instance it is shown in one fine paper example that filler retention can be increased from 72% to 77.4% by the described treatment of PCC.
PCC retention in the dirty pulps with which we are concerned is always very much less, and is frequently in the range 0% to 15%. The resultant paper is usually unsized. Pretreatment with a cationic polymer can increase retention but the value is still unacceptably low. Object of the Invention
One object of the invention is to provide a paper¬ making process which utilises PCC and which can give significantly improved retention of PCC. Another object is to achieve this when the cellulosic suspension is a groundwood or other "dirty" suspension.
Another object of the invention is to achieve this when the paper is a material such as newsprint, supercalendered, mechanically finished, mechanically finished coated or lightweight coated paper, wherein the paper is typically unsized. Another object is to make paper which is filled with PCC and which has improved properties, for instance as regards formation and linting.
Another object of the invention is to provide PCC slurries capable of giving good retention. Summary of the Invention
Filled paper is made by forming a PCC-containing thin stock by a process comprising mixing a slurry of PCC with a cellulosic suspension, mixing polymeric retention aid into the PCC-containing thin stock, draining the thin stock on a screen to form a sheet and drying the sheet. In this process a cationising amount of water soluble cationic polymer is added into the slurry of PCC before the slurry is mixed with the cellulosic suspension. We have found that the described combination of cationising the PCC before mixing it with the cellulosic suspension and then adding the polymeric retention aid gives unexpectedly large, and very valuable, improvement in PCC retention, especially in dirty suspensions. This surprising result is opposite to what would be expected if PCC performed in a similar manner to the clay used in the Examples of EP-A-608986. The large improvement in retention is in contrast to the small improvement shown for a sized, fine, paper in U.S. 5,147,507. The invention also provides a PCC slurry suitable for use in this process. The preferred slurry is an unsized slurry of PCC (typically about 10 to 70%, preferably 10- 40%, by weight PCC) and cationic polymer which can be a small amount (typically about 0.01 to 0.3%) of a synthetic cationic polymer which has a high charge density (typically above about 4meq/g) and low intrinsic viscosity (typically below about 3dl/g) but can be a larger amount (typically up to about 1%) of a cationic starch. Description of Preferred Embodiments The precipitated calcium carbonate which is used in the invention can be made by any of the known techniques for the manufacture of PCC. Such techniques usually involve passing carbon dioxide through an aqueous solution of slaked lime, calcium oxide, to form an aqueous slurry of precipitated calcium carbonate. The slurry generally has a PCC content of at least about 5% and usually at least about 10%. Usually the PCC content is not more than about 70%, often is below 40% and usually it is below about 30%. A PCC content of around 20% (eg 15-25%) is typical. Dispersants and other conventional additives may be included in the slurry to promote stability, in conventional manner.
The crystal structure of the slurry is usually scalenohedral or rhombohedral but other precipitated calcium carbonates suitable for paper filling grades may be used. Variations in the quality of the water and the method of manufacture and other process conditions can influence the crystal structure and the performance and properties of the PCC in known manner, for instance to vary capacity, brightness or gloss.
The PCC slurry may have been treated in known manner to render it acid tolerant, for instance as described in U.S. 5,043,017 and 5,156,719. The PCC slurry which is used in paper making preferably is substantially the slurry formed initially by the precipitation process, without any intervening drying and reslurrying stage. However if desired it is possible to recover PCC from a slurry as powder and then reslurry it prior to use in paper making.
The average particle size (50% PSD) of the PCC particles in the slurry is usually within the range about
0.25μm to 3μm. The invention is of particular value when applied to PCC grades which give particularly poor retention in the particular furnish which is being used. For instance the combination of pulp and the PCC is preferably such that the first pass PCC retention (as measured by a Britt Dynamic Drainage Retention Jar) would be 0-20%, often 0-15% in the absence of the cationic pretreatment and the anionic microparticulate treatment but is raised by at least 15 points, often 25-60 points, by the invention to a value of at least 35% and usually 50-70% or more.
The cellulosic suspension can be formed from any suitable source of cellulosic fibres. The suspension can be a relatively clean suspension, for instance for the production of fine paper. For instance it may be made from chemical pulp. However the invention can also be applied to processes where the suspension is made and used in an integrated pulp and paper mill. Although the invention can be used on clean cellulosic suspensions, the suspension can be one that would be classified as being a relatively "dirty" suspension or as a suspension containing significant amounts of "anionic trash". The suspensions can contain a significant amount, usually at least 30% by weight and preferably at least 50% by weight (based on the dry weight of the cellulosic feed to the suspension) selected from one or more mechanically derived pulps including thermomechanical pulp, chemiraechanical pulp, and groundwood pulp, including recycled paper formed from such pulps. Other dirty pulps include pulps containing coated broke and deinked pulps and peroxide-bleached and mechanical pulps. The paper-making process generally includes prolonged recycling of white water, and this also can contribute to the suspension being "dirty".
One analytical technique for indicating preferred "dirty" suspensions is by measuring conductivity, since such suspensions tend to contain ionic trash and other electrolyte. This electrolyte may originate from the initial groundwood (such as lignin compounds, extractives and hemi-celluloses) or from other sources, such as the gradual buildup of alkaline and alkaline earth metals dissolved from the suspension and recycled in white water. The dirty suspension can be such that white water (i.e., the water drained through the screen when the filled suspension containing retention aid is drained to make a sheet) has conductivity of above about 1,000, and preferably above about 1,500 micro Siemens, often 2,000 to 3,000 micro Siemens or more. Conductivity of the white water can be determined by conventional conductivity- measuring techniques.
Suitable clean suspensions that can be used in the invention have a conductivity below 1000 microsiemen and often below 500 or 300 microsiemen.
The anionic trash component of suitable suspensions is usually such that a relatively large amount of cationic polymer has to be added to the suspension (in the absence of PCC or other filler or retention aid additions) in order to achieve significant retention of the fibres. This is the "cationic demand". Preferably the cationic demand of the thin stock (in the absence of any of the additions defined in the invention, namely filler, cationic polymer, polymeric retention aid and inorganic anionic polymeric material) is such that it is necessary to add at least about 0.06%, and often at least about 0.1%, by weight of polyethylene imine (600 or l,000g/t) in order to obtain a significant improvement in retention.
Another way of indicating a dirty suspension of the type which can be used in the invention is to filter a sample of the thin stock (without any of the additions) through a fast filter paper and titrate the filtrate against a standardised solution of poly diallyl dimethyl ammonium chloride, for instance using a Mutek particle charge detector. The concentration of anionic charge in the filtrate is then usually above 0.01, and often above 0.05 or 0.1, millimoles per litre.
The pH of the suspension can be conventional, thus it can be substantially neutral or alkaline, but if the PCC has been treated to render it acid tolerant then the pH can be acidic, for instance 4 to 7, often around 6-7. The papers that are made by the invention are those which are conventionally made from relatively dirty suspensions. The invention is of particular value to the production of newsprint and machine-finished (MF) grades but is also of value for super calendered papers, and machine-finished coated papers, and also for lightweight- coated papers. The paper can be of any conventional weight, and so can be board, including bleached board.
PCC is preferably substantially the only filler and so may be the only filler that is deliberately added, although other filler may be included, for instance as a result of incorporation of recycled paper in the suspension or as a result of deliberate addition of filler such as anhydrous or calcined clays or speciality pigments. The amount of PCC, and the total amount of filler, in the suspension that is drained is generally at least 3% or 5% (dry weight filler based on dry weight of suspension) and usually at least 10%. It can be up to 45% or even 60% in some instances but is usually below 30%. The amount of filler in the paper is generally in the range 1% to 20% or 30% (dry weight filler based on dry weight paper) . The PCC is often 50 to 100% of the total filler content of the suspension and the paper.
The invention is of particular value in the production of newsprint typically containing above 1% to 10% filler, super calendered and machine-finished papers typically containing about 5 to 40% filler, and lightweight coated papers typically containing about 2 to 10% by weight filler.
The cellulosic suspension used in the invention is generally made by initially providing a thick stock and then diluting this to a thin stock, in conventional manner. The thick stock generally has a total solids content in the range about 2.5 to 10%, often around 3 to 6%, and the thin stock usually has a total solids content in the range about 0.25 to 2%, often around 0.5 to 1.5% by weight.
The slurry of PCC can be incorporated in the suspension while in the form of a thin stock, or the slurry can be incorporated while the suspension is in the form of a thick stock, and the thick stock can be diluted to a thin stock simultaneously with or after mixing the slurry of PCC into the suspension. Preferably the slurry of PCC is added into a thin stock suspension.
Before mixing the PCC slurry with the suspension it is necessary to mix into the PCC slurry a cationising amount of a cationic polymer. The amount that is used must be sufficient to render the PCC in the slurry sufficiently cationic to achieve significantly improved retention in the process compared to the retention obtained if the same process is conducted in the absence of the cationic polymer. The amount which is selected is usually the amount which gives optimum retention. A suitable amount can be found by routine experimentation in that Britt Jar or other routine laboratory tests can be conducted at varying levels of addition so as to determine which is the optimum.
The amount is generally in the range about 0.005% to 2%, dry weight polymer based on the dry weight of PCC in the slurry. The cationic polymer can be a cationic naturally- occurring polymer, such as cationic starch. With a modified natural polymer such as this, the amount is usually of about 0.05% to 1%, preferably in the range about 0.1 to 1%, more preferably about 0.3 to 0.7%. Routine testing of a range of cationic starches will allow selection of grades (degree of substitution and origin of starch) which are suitable. Potato or other relatively low molecular weight starches are preferred. Low DS starches are preferred. When a synthetic cationic polymer is used, it is preferred that it should have a relatively low molecular weight and a high charge density, in which event suitable amounts are generally in the range about 0.005 to 0.2%, often around about 0.01 to 0.1%. The synthetic polymer generally has intrinsic viscosity below about 3dl/g. Intrinsic viscosity is measured by a suspended level viscometer at 25°C in one molar sodium chloride buffered to pH7. It can be below ldl/g but it is often preferable for it to be above ldl/g e.g., 1.5 to 2.5dl/g or more. Some suitable polymers have IV below ldl/g and some have such low molecular weight that it may not be appropriate to determine it as IV, but if IV is measurable then the value is usually at least about 0.1 or 0.2dl/g. If the molecular weight is measured by gel permeation chromatography, the value is usually below 2 or 3 million, often below 1 million. It is usually above 100,000 and can be as low as, for instance, about 10,000 for some polymers such as dicyandiamides.
The synthetic polymer generally has a relatively high cationic charge density of at least 2meq/g and often at least 4meq/g, for instance 6meq/g or more. The cationic polymer should be used in itr conventional, free polymer, form and should not be complexed or otherwise associated with a diluent which would undesirably reduce the cationic charge or increase the molecular weight of the cationic polymer that is added to the PCC. In particular the polymer must not be complexed with a sizing component as in U.S. 5,147,507 since the sizing component undesirably reduces the effectiveness of the polymer for treating the PCC.
The synthetic polymer can be a polyethylene imine, a dicyandiamide or a polyamine (e.g., made by condensation of epichlorhydrin with an amine) but is preferably a polymer of an ethylenically unsaturated cationic monomer, optionally copolymerised with one or more other ethylenically unsaturated monomers, generally non-ionic monomers. Suitable cationic monomers are dialkyl diallyl quaternary monomers (especially diallyl dimethyl ammonium chloride, DADMAC) and dialkylaminoalkyl -(meth) acrylamides and -(meth) acrylates usually as acid addition or quaternary ammonium salts. Preferred cationic polymers are polymers of diallyl dimethyl ammonium chloride or quaternised di ethylaminoethyl acrylate or methacrylate, either as homopolymers or copolymers with acrylamide. Generally the copolymer is formed of 50 to 100%, often 80 to 100%, cationic monomer with the balance being acrylamide or other water soluble non-ionic ethylenically unsaturated monomer. DADMAC homopolymers and copolymers with 0-30% by weight acrylamide, generally having IV from 1 to 3dl/g, are preferred. It is also possible in the invention to use, for pretreating the PCC, a cationic polymer having IV above 3dl/g. For instance copolymers of acrylamide and DADMAC (or other cationic ethylenically unsaturated monomer) having IV up to 6 or 7dl/g are sometimes suitable.
If desired, the slurry of PCC may contain a mixture of the cationic polymers, for instance a mixture of cationic starch and a low molecular weight, high charge density, synthetic cationic polymer. Naturally the cationic polymer should be water soluble at the concentrations at which it is used.
The cationic polymer can be mixed by batch or in-line addition into the PCC as it is being pumped towards the point where it is added to the cellulosic suspension, or it can be mixed into the PCC in a storage vessel. Sufficient mixing must be applied to distribute the polymer substantially uniformly over the PCC before addition to the cellulosic suspension. The cationic polymer can be provided as an aqueous solution which is mixed with the filler, or a powdered or reverse phase form of the cationic polymer may be used.
After forming the thinstock containing the cationised PCC, it can be desirable to add anionic microparticulate material before adding polymeric retention aid. This is described and claimed in our application filed even date herewith. The microparticulate material can be included in the suspension before adding the PCC slurry. For instance the microparticulate material can be mixed into thin stock before adding the PCC slurry or it can be mixed into thick stock at some earlier stage, generally just before adding the PCC slurry. The microparticulate material is added to the thin stock just after adding the PCC slurry. In the present invention however this inclusion of anionic microparticulate material can be eliminated, thereby avoiding the cost and inconvenience of an extra dosing material.
The thin stock containing cationised PCC, and usually with addition of anionic particulate material, may be subjected to conventional papermaking procedures involving the addition of a polymeric retention aid to the thin stock. The retention aid can be non-ionic, in which event it can be polyethylene oxide having a molecular weight above 2 million and usually about 4 to 8 million, or it can be a water soluble addition polymer of an ethylenically unsaturated monomer or monomer blend which can be non- ionic, anionic or cationic. Generally the retention aid is a synthetic polymer having intrinsic viscosity above 4dl/g and often above 6dl/g. Although good results in the form of improved paper formation while obtaining good retention can be obtained at medium IV values, e.g. 6 - 9 dl/g, it is often preferred to use a very high molecular weight polymer for instance cationic polymers having IV up to I2dl/g, 15dl/g or even higher, or IV up to 20 or 30 dl/g for anionic or nonionic polymers.
These retention aids are all useful on a "clean" thinstock. If the stock is dirty, PEO followed by a PSR resin can be used as described in USSN 08/191930 filed 4
February 1994 by Brian Satterfield et al, the entire disclosure of which is herein incorporated by reference.
The monomer or monomer blend used for forming the retention aid can be non-ionic or it can be anionic or cationic. If it is ionic the amount of ionic monomer can be up to, for instance about 80 weight percent of the blend but in some processes the amount of ionic monomer is relatively low. Thus the polymer may be formed from at least about 60 or 70 mole percent, and often at least about
80 or 90 mole percent non-ionic monomer with any balance being ionic monomer. For instance the polymer can contain up to about 15 mole percent, usually only up to about 10 mole percent ionic groups and generally can contain up to about 5 mole percent cationic groups and/or up to 8 mole percent anionic groups. Typical low ionic polymers are formed of 90-100% by weight acrylamide and 0-10% sodium acrylate.
Generally however the polymer is a conventional paper¬ making cationic or anionic retention aid, for instance formed from nonionic monomer together with 3 to 50 mole % cationic or anionic monomer, and typically having IV 8 - 18 dl/g when cationic or 10 - 30 dl/g when anionic. IV is measured by suspended level viscometer on a solution in IN NaOH buffered to pH 7 at 25°C.
The preferred non-ionic monomer is acrylamide and so a preferred non-ionic polymer is polyacrylamide homopolymer (which may be contaminated with up to about 1 or 2% sodium acrylate) .
Suitable anionic monomers are ethylenically unsaturated carboxylic or sulphonic monomers, usually ethylenically unsaturated carboxylic monomers such as sodium acrylate or other suitable alkali metal salt of such a monomer.
Suitable cationic monomers are dialkylaminoalkyl (meth) -acrylates and -acrylamides, generally as acid addition or quaternary ammonium salts. Preferred cationic monomers are dialkylaminoethyl (meth) acrylate acid addition or quaternary salts, usually dimethylaminoethyl acrylate quaternary salt.
The amount of polymeric retention aid that is required can be found by routine experimentation and is usually in the range about 0.005% to 1% (dry weight polymer based on dry weight feedstock, 0.05 to lOkg/ton) , often around about 0.01 to 0.1%.
The polymeric retention aid can be the last additive in the process in which event it is preferably added during or after the last point of high shear, for instance at the head box. It can be desirable, however, to add anionic microparticulate material after the polymer. Generally the floes formed by the retention aid are broken down to microflocs by turbulence or other shear and the microparticulate material is then added, for instance at the head box, for instance as described in EP 235893 or 308752.
The anionic microparticulate material is usually inorganic. It can be a colloidal silica or other synthetic microparticulate silica material such as polysilicic acid or a synthetic polyalumino silicate, but is preferably an inorganic swelling clay of the type usually referred to colloquially as a bentonite. Usually it is a smectite or montmorillonite or hectorite. The materials commercially available under names such as bentonite and Fullers Earth are suitable. Zeolites can be used provided their particle size is sufficiently small. It should be below 3μm and preferably below 0.3μm or even O.lμm.
Instead of using inorganic anionic microparticulate material it is also possible to use organic microparticulate material, for instance an emulsion of relatively water-insoluble anionic polymer particles in water or in a non-aqueous liquid. For instance the anionic polymer particles can be of cross-linked water-swellable anionic polymer or can be of linear or cross-linked water insoluble polymer. Again the particle size should be very small and can be below 0.3 or O.lμm.
The amount of anionic microparticulate material that is added will depend upon the materials being used but can be selected by routine experimentation to give suitable results. Generally it is in the range about 0.05 to 1%, often about 0.1 to 0.5% (ie 1 to 5 kg/t dry weight of suspension) .
The suspension may be drained through a screen and the resultant wet sheet dried and subject to conventional post- treatments such as calendering in conventional manner. The paper can be subjected to external or internal sizing although the paper is usually substantially unsized cellulosic suspension and there is substantially no external sizing. Thus preferably no ketene dimer or other internal size is included deliberately in the cellulosic suspension although it is permissible for small amounts of size to be introduced into the suspension as a result of recycling waste paper.
The process of the invention can give a very large improvement in retention, as discussed above. The process can result in a valuable reduction in dusting or linting. The process can result in an improvement in paper quality.
The following are examples of the invention. Example 1 A cellulosic thin stock having a dry content of 1% was formed from a 0.8% cellulosic suspension based mainly on chemi-thermomechanical pulp and 0.2% (based on the suspension) of an acid tolerant PCC slurry giving a filler content in the suspension of 0.3%. In some tests the PCC slurry was pretreated with cationic polymer.
In some tests bentonite was added to the thin stock before or after the addition of PCC.
All the tests were conducted on a Britt Jar and the suspension was drained through a screen under agitation to form a wet sheet, and the first pass PCC retention was recorded.
The results are summarised in the following table in which dosages of the cationising polymer for PCC are expressed as kilograms dry weight of polymer per tonne dry weight of PCC, while dosages of the retention aid and anionic particulate material (bentonite) are expressed as kilograms dry weight per tonne dry weight of cellulosic suspension. The following abbreviations are used:- B - bentonite
C - polydiallyldimethyl ammonium chloride molecular weight below 500,000 and cationic charge density of about 6meq/g D - cationic starch available from Staley Corporation under the trade name Stalok 410
E - non-ionic polyacrylamide intrinsic viscosity about 14dl/g
F - cationic copolymer of 5% dimethyl aminoethylacrylate (MeCl quaternised) with acrylamide, IV above 8
Table 1
Experiment Cationising Addition order % First Pass Polymer on and amounts PCC Retention PCC
1 - PCC/0.5E 15
2 0.6C PCC/0.5E 34
3 4.5D PCC/0.5E 37
4 4.5D PCC/2.3F 59
5 4.5D PCC/2.3F/2.3B 50
Example 2
First pass PCC retention data was determined broadly as in Example l in processes in which acid tolerant PCC (usually after treatment with 0.05% polydadmac IV 1.5 - 2 dl/g) was mixed into a thin stock under agitation followed by the addition of a retention system.
The following results were obtained:
Experiment PCC Retention First Pass PCC Retention
1 Untreated F/B 18
2 Treated F/B 25
3 Untreated F 21
4 Treated F 32
5 Untreated PEO 9
6 Treated PEO 26
7 Untreated PEO/PSR 11
8 Treated PEO/PSR 56

Claims

1. In a process for making filled paper comprising forming a thin stock which contains precipitated calcium carbonate (PCC) by a process comprising mixing a slurry of PCC with a cellulosic suspension, mixing polymeric retention aid into the thin stock which includes the PCC, draining the thin stock on a screen to form a sheet and drying the sheet, the improvement consisting of adding a cationising amount of a cationic polymer into the slurry of PCC before the slurry is mixed with the cellulosic suspension.
2. A process for making filled paper comprising slurrying precipitated calcium carbonate with a cationic polymer, mixing the cationised slurry of PCC with a cellulosic suspension and forming a thinstock, mixing polymeric retention aid into the thinstock, draining the thinstock on a screen to form a sheet, and drying the sheet.
3. A process according to claim 2 in which the retention aid is selected from polyethyleneoxide and water soluble copolymers of acrylamide with an ethylenically unsaturated anionic or cationic monomer having intrinsic viscosity at least about 4 dl/g.
4. A process according to claim 2 in which the polymeric retention aid is a water soluble polymer of acrylamide and an ethylenically unsaturated cationic monomer and has intrinsic viscosity at least about 6 dl/g.
5. A process according to claim 4 in which anionic microparticulate material is added to the suspension after the polymeric retention aid.
6. A process according to claim 4 in which bentonite is added to the suspension after the polymeric retention aid.
7. A process according to claim 2 in which the cationic polymer is selected from about 0.05 to 1% cationic starch and about 0.005 to 0.2% of a synthetic cationic polymer which has a cationic charge density of at least about 4meq/g and intrinsic viscosity of below about 3dl/g.
8. A process according to claim 2 in which the cationic polymer is selected from cationic starch, polyethylene imines, dicyandiamides, polyamines and polymers of dialkylaminoalkyl (meth) - acrylate or -acrylamide and polymers of diallyl quaternary monomers.
9. A process according to claim 2 in which the cationic polymer is a polymer of diallyldimethyl ammonium chloride optionally copolymerised with acrylamide.
10. A process according to claim 1 in which the PCC is substantially the only filler and the total amount of filler in the suspension is from about 3 to 60% by weight.
PCT/GB1997/000392 1996-02-13 1997-02-12 Production of filled paper and compositions for use in this WO1997030219A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU17998/97A AU1799897A (en) 1996-02-13 1997-02-12 Production of filled paper and compositions for use in this

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US60053796A 1996-02-13 1996-02-13
US08/600,537 1996-02-13

Publications (1)

Publication Number Publication Date
WO1997030219A1 true WO1997030219A1 (en) 1997-08-21

Family

ID=24404000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1997/000392 WO1997030219A1 (en) 1996-02-13 1997-02-12 Production of filled paper and compositions for use in this

Country Status (4)

Country Link
AU (1) AU1799897A (en)
CA (1) CA2180371A1 (en)
WO (1) WO1997030219A1 (en)
ZA (1) ZA971222B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0335575A2 (en) * 1988-03-28 1989-10-04 Ciba Specialty Chemicals Water Treatments Limited Production of paper and paper board
EP0445953A1 (en) * 1990-03-08 1991-09-11 Minerals Technologies Inc. Cationic polymer-modified filler material, process for its preparation and method for its use in papermaking
US5126014A (en) * 1991-07-16 1992-06-30 Nalco Chemical Company Retention and drainage aid for alkaline fine papermaking process
EP0608986A1 (en) * 1993-01-26 1994-08-03 Ciba Specialty Chemicals Water Treatments Limited Production of filled paper
US5411639A (en) * 1993-10-15 1995-05-02 Westvaco Corporation Process for enhancing sizing efficiency in filled papers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0335575A2 (en) * 1988-03-28 1989-10-04 Ciba Specialty Chemicals Water Treatments Limited Production of paper and paper board
EP0445953A1 (en) * 1990-03-08 1991-09-11 Minerals Technologies Inc. Cationic polymer-modified filler material, process for its preparation and method for its use in papermaking
US5126014A (en) * 1991-07-16 1992-06-30 Nalco Chemical Company Retention and drainage aid for alkaline fine papermaking process
EP0608986A1 (en) * 1993-01-26 1994-08-03 Ciba Specialty Chemicals Water Treatments Limited Production of filled paper
US5411639A (en) * 1993-10-15 1995-05-02 Westvaco Corporation Process for enhancing sizing efficiency in filled papers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIYAMOTO S: "MANUFACTURE OF FILLER-CONTAINING PAPER", ABSTRACT BULLETIN OF THE INSTITUTE OF PAPER CHEMISTRY, vol. 58, no. 8, February 1988 (1988-02-01), pages 1088, XP000028462 *

Also Published As

Publication number Publication date
ZA971222B (en) 1998-02-16
AU1799897A (en) 1997-09-02
CA2180371A1 (en) 1997-08-14

Similar Documents

Publication Publication Date Title
AU716839B2 (en) Production of filled paper and compositions for use in this
EP0880620B1 (en) Process for making filled paper
US5501774A (en) Production of filled paper
EP1039026B1 (en) Manufacture of paper
CA1322435C (en) Production of paper and paper board
US4913775A (en) Production of paper and paper board
EP0408567B1 (en) Retention and drainage aid for papermaking
CA2405649C (en) Papermaking furnish comprising solventless cationic polymer retention aid combined with phenolic resin and polyethylene oxide
WO1997030219A1 (en) Production of filled paper and compositions for use in this
JPH11247089A (en) Production of paper

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97529090

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase