WO1997033342A1 - Planar array antenna - Google Patents

Planar array antenna Download PDF

Info

Publication number
WO1997033342A1
WO1997033342A1 PCT/JP1996/000572 JP9600572W WO9733342A1 WO 1997033342 A1 WO1997033342 A1 WO 1997033342A1 JP 9600572 W JP9600572 W JP 9600572W WO 9733342 A1 WO9733342 A1 WO 9733342A1
Authority
WO
WIPO (PCT)
Prior art keywords
circularly polarized
waveguides
array antenna
planar array
waveguide
Prior art date
Application number
PCT/JP1996/000572
Other languages
French (fr)
Japanese (ja)
Inventor
Naohisa Goto
Makoto Ando
Motonobu Moriya
Makoto Ochiai
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to CA002217730A priority Critical patent/CA2217730A1/en
Priority to PCT/JP1996/000572 priority patent/WO1997033342A1/en
Publication of WO1997033342A1 publication Critical patent/WO1997033342A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • H01Q21/005Slotted waveguides arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/04Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation

Definitions

  • the present invention relates to a planar array antenna and a device including the antenna, and more specifically, to a planar array antenna suitable for receiving satellite broadcasting using both left-handed circularly polarized light and right-handed circularly polarized wave and an antenna thereof.
  • FIG. 14 is a top view thereof.
  • FIG. 14 is a top view thereof.
  • the power supply waveguide 1 has a power supply opening 2 and a branch opening 3.
  • a plurality of radiating waveguides 1 arranged at right angles to the feeding waveguide 1 and parallel to each other are connected to the feeding waveguide 1 via the branch openings 3.
  • the radiation waveguide 11 is provided with a plurality of circularly polarized cross slots 12.
  • the power fed from the feed aperture 2 passes through the feed waveguide 1, is distributed to the radiating waveguide 11 through the branch aperture 3 in phase, and is circularly polarized through the circular polarization cross slot 12. Radiated as Regarding the rotation direction of the circularly polarized wave, when the cross slot 12 is on the right side of the transmission direction of the radio wave of the radiation waveguide 11, the left-handed circularly polarized wave is obtained.
  • left-handed circularly polarized light is emitted.
  • the antenna shown in Fig. 14 can receive either left-handed or right-handed polarized light, but in the United States, etc., satellites use both left-handed and right-handed polarized waves. It provides broadcasting services, and it is no longer possible to use an antenna that receives only a single circularly polarized wave.
  • the document “Slot design of dual-polarized radial-radio slot antenna”, 1992 IEICE Spring Conference B-49 (hereinafter referred to as Reference 2) Discloses an antenna capable of transmitting or receiving both left-handed and right-handed polarized waves.
  • this antenna it is possible to radiate both left-handed and right-handed circularly polarized waves by transmitting inward and outward cylindrical waves in the radial waveguide, which is a radiation waveguide. I have to.
  • the efficiency of the antenna disclosed in Reference 2 is only about 70% even if the slot design is optimized, which is low for practical use. Disclosure of the invention
  • an object of the present invention is to provide an antenna capable of transmitting or receiving both left-handed circular polarization and right-handed circular polarization with higher efficiency, and an apparatus including the antenna.
  • a planar array antenna is a plurality of first waveguides arranged side by side so that their tube axes are parallel to each other, each of which is circular.
  • a plurality of first waveguides having a plurality of slots for radiating or receiving polarized waves at predetermined positions; and a plurality of first waveguides each having a right angle to a direction of a tube axis of the plurality of first waveguides.
  • Two second waveguides each having a tube axis oriented in the direction, each of which is connected to both ends of the plurality of first waveguides via a branch opening, each of the second waveguides further including a feed opening.
  • each of the plurality of first waveguide slots has a power, a left-handed circularly polarized wave, and a power supply opening of the two second waveguides. Emit or receive both right-handed circularly polarized radio waves.
  • the slot for radiating or receiving the circularly polarized wave is provided at each tube axis of the first waveguide. If they are arranged with a predetermined offset from each other, power is supplied to both sides of the first waveguide via the two second waveguides, so that the left-handed circularly polarized wave and the right-handed circular It is possible to emit both polarizations. Conversely, it is also possible to receive both left-handed and right-handed polarized waves from the same slot.
  • planar array antenna includes a plurality of planar lines arranged in parallel with each other, and the plurality of planar lines arranged at a predetermined interval from the plurality of planar lines.
  • a conductor plate having a plurality of slots at predetermined positions for radiating or receiving circularly polarized waves; and two power distribution circuits connected to both ends of the plurality of planar lines, respectively.
  • the radio wave of both left-handed circular polarization and right-handed circular polarization is radiated or received from each of the slots of the conductor plate via two power distribution circuits.
  • planar line such as a strip line or a microstrip line and a slot provided in a conductor case covering the planar line are used without using a waveguide.
  • a planar line such as a strip line or a microstrip line and a slot provided in a conductor case covering the planar line are used without using a waveguide. The same operation is made possible by using a mouse.
  • the planar array antenna according to the present invention has a high efficiency of 80% or more by optimizing the electrical coupling between the waveguide or the planar line and the slot, unlike the antenna disclosed in Reference 2. .
  • the antenna device for receiving satellite broadcasts using the planar array antenna according to the present invention is a plurality of first waveguides arranged side by side so that the tube axes are parallel to each other.
  • the plurality of first waveguides each having a plurality of slots at predetermined positions for receiving both the first circularly polarized wave and the second circularly polarized wave; and
  • a second waveguide having a plurality of guide portions for combining the first circular polarization received by the first waveguide of the second waveguide and transmitting the combined first circular polarization;
  • IF intermedate frequency
  • Lymph Isseki Lymph Isseki and means.
  • the antenna device according to the present invention as described above, it is possible to select one of the left-handed circularly polarized wave and the right-handed circularly polarized wave received by the planar array antenna and supply the selected one to the tuner.
  • FIG. 1 is a perspective view of a planar array antenna according to a first embodiment of the present invention
  • FIG. 2 is a plan view of a planar array antenna according to a first embodiment of the present invention
  • FIG. FIG. 4 is a plan view of a planar array antenna according to a second embodiment of the present invention.
  • FIG. 4 is a graph showing a relationship between transmitted energy and antenna efficiency in the planar array antenna of the present invention.
  • FIG. 5A is a plan view of a planar array antenna according to a third embodiment of the present invention.
  • FIG. 5B is a sectional view of the planar array antenna according to the third embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an antenna device according to a fourth embodiment of the present invention
  • FIG. 7 is a schematic diagram of an antenna device according to a fifth embodiment of the present invention
  • FIG. FIG. 10 is a schematic diagram of an antenna device S according to a sixth embodiment
  • FIG. 9 is a schematic diagram of an antenna device according to a seventh embodiment of the present invention
  • FIG. 10 is an eighth embodiment of the present invention.
  • FIG. 11A is a schematic view of an antenna device according to the present invention.
  • FIG. 11A is a plan view showing the entire antenna device according to the present invention.
  • FIG. 11B is a side view showing the entire antenna device according to the present invention.
  • FIG. 12A is a plan view of an antenna device according to a ninth embodiment of the present invention
  • FIG. 12B is a cross-sectional view of the antenna device according to the ninth embodiment of the present invention.
  • FIGS.A and 13B are plan views of a planar array antenna according to a tenth embodiment of the
  • FIG. 14 is a plan view of a conventional planar array antenna for single circular polarization.
  • FIG. 1 is a perspective view of a planar array antenna according to a first embodiment of the present invention
  • FIG. 2 is a plan view of the planar array antenna shown in FIG.
  • the power supply waveguide 1A has a power supply opening 2A and a branch opening 3A serving as guide means
  • the power supply waveguide 1B has a power supply opening 2B and a branch opening 3B serving as guide means.
  • Connection terminals 4A and 4B for connecting to an external circuit via a cable are provided near the lined electrical openings 2A and 2B.
  • the connection terminals 4A and 4B are composed of a connector part for connecting a cable and a power supply pin part for supplying power to the antenna.
  • the cold side of the connector part of the connection terminals 4A and 4B is connected to the housing of the planar array antenna, and the hot side is connected to the feed pin part. Therefore, when the cable is connected, the cold side of the cable is connected to the housing of the flat array antenna, and the hot side is connected to the feed pin.
  • the plurality of radiation waveguides 11 arranged in parallel to each other are connected at right angles to the feed waveguides 1A and 1B via branch openings 3A and 3B, respectively. These radiation waveguides 11 are provided with a plurality of cross slots 12 for radiating circularly polarized waves.
  • the radio wave fed from the feed aperture 2A propagates through the feed waveguide 1A, is distributed in phase to the multiple radiating waveguides 11 through the branch aperture 3A, and is distributed from the cross slot I2. Radiated as right-handed circularly polarized light.
  • the radio wave fed from the feed aperture 2B propagates through the feed waveguide 1B, is distributed in the same phase to a plurality of radiation waveguides 11 via the branch aperture 3B, and has the same cross slot. It is emitted as left-handed circularly polarized light from G12.
  • slots are provided at intervals of the waveguide wavelength of the waveguide to radiate radio waves to the front surface of the antenna.
  • Using a broadsided array antenna greatly reduces efficiency. This occurs because the waveguide wavelength of the waveguide is larger than the free space wavelength, that is, if the slot spacing is larger than the free space wavelength; Wide angle constant This is because a phenomenon called a grating lobe appearing in the pattern occurs.
  • the radiation direction of the radio wave is tilted not in front of the antenna, but in a direction that is greatly inclined in the direction of the tube axis of the feeding waveguide. Therefore, it is impossible to receive both right-handed and left-handed polarized waves with the antenna fixed because the beam directions of right-handed and left-handed polarized waves are tilted in opposite directions. It is.
  • FIG. 3 is a plan view of a planar antenna according to a second embodiment of the present invention. The difference from the first embodiment is that the position of the slot is shifted between the adjacent radiation waveguides 11 and the adjacent radiation waveguides 11 are fed in opposite phases.
  • a radiation waveguide can be constructed by laminating a plate-like structure and a flat plate with an open slot, and the close contact between the two is not always required.
  • a leaky wave array antenna may be used, as opposed to the case of FIG. Since the radio waves radiated from the waveguide are out of phase and weaken each other, no radiation beam is formed and the device does not operate. Therefore, we consider a broadsided array antenna.
  • the radiation cross-slots 12 are arranged along the waveguide axis of the radiation waveguide 11 at intervals of the guide wavelength, and the radiation cross-slots are arranged between adjacent radiation waveguides 11.
  • the wavelength in the waveguide of the radiation waveguide 11 1 is expressed by the following equation (2) when transmitted in the TE 10 mode, which is the fundamental mode.
  • planar array antenna according to the present embodiment is a broad-sided array antenna, its radiation direction can be made to match for right-handed circular polarization and left-handed circular polarization. Therefore, it is not necessary to rotate the antenna when switching the received signal from one of the right-handed circular polarization and the left-handed circular polarization to the other.
  • planar array antenna according to the first or second embodiment has a sufficiently high efficiency for practical use.
  • the efficiency of a planar array antenna is maximized when all radiation slots radiate radio waves with the same amplitude. In this case, this is achieved by adjusting the length and position of the slot along the pipe axis direction. Therefore, the theoretical efficiency is 100%.
  • the radiation waveguide in the planar array antenna according to the present invention, the radiation waveguide
  • slot radiation Since 1 is fed from both sides, if slot radiation is designed to be uniform with respect to power supply from one side, slot radiation will have a large slope distribution with respect to power supply from the other side, and efficiency will increase. Is significantly reduced.
  • radio waves are radiated from each slot at a fixed rate, and the remaining energy passes through the radiation waveguide 11 It is absorbed by the lined electric waveguide on the other side that is not.
  • FIG. 4 is a graph showing the result of calculating the antenna efficiency by changing the ratio of the transmitted energy. This transmitted energy is lost, but when this loss is about 8%, the maximum efficiency of the antenna is about 81%. This efficiency is higher than the radial line slot antenna shown in Reference 2 and the parabolic antenna currently in practical use, and is a value that can withstand practical use.
  • the reason that the planar array antenna according to the present invention can achieve higher efficiency than the antenna shown in Reference 2 is as follows.
  • Radial lineslot antennas emit right-handed and left-handed circularly polarized waves using waves that behave differently: inward and outward cylindrical waves transmitted in the radial waveguide for radiation. As a result, there is no condition that simultaneously increases the efficiency for both right-handed and left-handed circularly polarized waves.
  • the antenna according to the present invention since a radiation waveguide having a uniform cross section such as a rectangular waveguide is used, the waves propagating in either direction in this waveguide are exactly the same. Indicates behavior. Therefore, by arranging the slots almost symmetrically about the midpoint of the radiation waveguide, the conditions for the maximum efficiency for each of right-handed circular polarization and left-handed circular polarization are almost the same, which is high. Efficiency is obtained.
  • FIGS. 5A and 5B show a planar array antenna using a strip line as a third embodiment.
  • FIG. 5A is a plan view
  • FIG. 5B is a cross-sectional view taken along line AA shown in FIG. 5A.
  • the strip line includes a plurality of radiating lines 31 parallel to each other, and distribution circuits 21A and 21B for supplying signals to the radiating lines 31 from both sides. Further, connection terminals 24A and 24B for connecting these distribution circuits 21A and 21B to an external circuit are provided.
  • a plurality of circularly polarized radiation slots 32 each having a non-parallel linear slot aperture are formed in a conductor plate 33 opposed to the radiation line 31.
  • the signal applied to the connection terminal 24 A passes through the distribution circuit 21 A and is supplied to the radiation lines 31 in phase with the same phase. Radiated as On the other hand, the signal applied to the connection terminal 24 B is radiated from the same circularly polarized radiation slot 32 as left circularly polarized light.
  • the cross slot and the non-parallel slot are shown as examples of the circularly polarized radiation slot.
  • the present invention can be implemented with slots of other shapes. it is obvious.
  • the shape of the feeding waveguide or the distribution circuit is not limited to the above-described embodiment as long as the feeding of the radiation waveguide or the radiation line can be performed in parallel.
  • a planar array antenna that can radiate both right-handed and left-handed circularly polarized waves even if a strip dipole that is electromagnetically complementary to the slot is used. Can be realized.
  • FIG. 11A A plan view showing the entire antenna device is shown in FIG. 11A, and a side view is shown in FIG. 11B.
  • the radome serving as the cover is removed in Fig. 11A, and the cut is centered on the rhomb in Fig. 11B.
  • Reference numeral 76 denotes a rotation-side circuit unit.
  • the elevation angle of the planar array antenna 41 is adjusted by an EL driving section 77 and an EL motor 78.
  • the rotating section 71 has a slip ring for transmitting a power supply and a control signal to the rotating circuit unit 76, the EL motor 78, and the converters 42A and 42B. These elements are mounted on a base plate 79 and covered by a radome 80.
  • FIG. 6 is a schematic diagram of an antenna device according to a fourth embodiment of the present invention.
  • This device is connected to a planar array antenna 41 similar to that shown in the first embodiment, which is rotatably mounted on the roof of a car or the like, and connected to the antenna via connection terminals 4A and 4B, respectively.
  • Converters 42 A and 42 B, and DC cut capacitors 43 A and 43 B respectively connected to the converters, and a rotary coupling that is electrically equivalent to the capacity.
  • a tuner 45 is a tuner 45.
  • a DC power supply 49 power two switch circuits 48 A and 48 B, one of which is turned on by the control circuit 46, resistances 47 A and 47 B for preventing interference, and a first 1 B Slip rings and the like provided on rotating section 71 shown in the figure are connected to converters 42A and 42B via the respective slip rings.
  • the converters 4 2 A and 4 2 B convert the RF (rad iof requency) signal of the satellite broadcast from the antenna 41 1 to the IF (intermidiate frequency) signal.
  • IF intermidiate frequency
  • the IF signal output from one of the converters 42 A and 42 B to which the DC voltage is supplied is input to the tuner 45, so that the desired circular polarization is obtained.
  • the number of capacitors can be reduced by forming the capacitors 43A and 43B with a rotary coupler instead of the rotary coupler 44.
  • a desired circularly polarized wave can be selected by providing a switch circuit in the signal line instead of the power supply line.
  • two IF signals output from converters 42A and 42B are connected to each other by a switch 52 via DC cut capacitors 51A and 51B, respectively. Selected and input to tuner 45.
  • DC voltage is supplied to both converters 42A and 42B.
  • a rotary coupler is not shown in this embodiment, the rotary coupler can be shared with the DC cut capacities 51A and 51B. Alternatively, a rotary coupler may be provided between the switch 52 and the tuner 45.
  • the signal line of the converter 42A or 42B doubles as the power supply line, but it is also possible to use a converter in which these lines are separate. It is.
  • IF signals output from the two converters 42 A and 42 B are combined and input to the tuner 45 via the rotary coupler 53. Only the IF signal output from one of the converters 42 A and 42 B to which the DC voltage is supplied is input to the tuner 45. In this way, a desired circularly polarized wave can be selected.
  • the IF signals output from the two converters 42A and 42B are taken out through the DC cut capacitors 51A and 51B, respectively. One of them is selected by the switch circuit 52 and input to the tuner 45. On the other hand, DC voltage is supplied to both converters 42A and 42B.
  • a rotary coupler is not shown in this embodiment, it can be shared with the DC cut capacitors 51A and 51B. Alternatively, a rotary coupler may be provided between the switch 52 and the tuner 45. In this way, it is possible to select a desired circularly polarized wave.
  • one of right-handed circular polarization and left-handed circular polarization was selected by electrical switching, but it could also be selected by changing the direction of the antenna. Is possible.
  • the antenna device according to the eighth embodiment of the present invention shown in FIG. 10 includes an antenna rotating means 63 for rotating a planar array antenna 41 attached to a roof of an automobile or the like.
  • the antenna rotating means 63 is a rotating part shown in FIG. 11B. 1, belt 72, reducer 73, motor 74, and motor drive circuit in fixed-side circuit unit 75.
  • two IF signals output from converters 42 A and 42 B to which a DC voltage is supplied are added by an adding means 61, and a tuner is provided via a rotary coupler 53. 4 Entered in 5.
  • the adding means 61 may be a simple connection of the outputs of the two converters 42A and 42B, if the circuit form permits.
  • the control circuit 62 in the fixed-side circuit unit 75 receives the polarization information indicating the desired circular polarization and the polarization information of the reception channel from the tuner 45, and determines whether or not they match. Is determined.
  • the control circuit 62 outputs a control signal to the antenna rotating means 63, and the antenna rotating means 63 determines the antenna 4 based on the control signal. Rotate 1 approximately 180 °. As a result, a desired circularly polarized wave can be selected from the right circularly polarized wave and the left circularly polarized wave.
  • FIG. 12A is a plan view, but the upper surface of the antenna having a plurality of slots (81 in FIG. 12B) is omitted for easy viewing.
  • FIG. 12B is a cross-sectional view taken along line BB in FIG. 12A.
  • the transmission section 83 is mounted below the antenna body 82, so that operation can be performed using only a single converter 85. That is, the power supply opening of the power supply waveguide as seen in the first embodiment is provided on the lower side, and the transmission section 83 acting as the waveguide is integrally formed or connected thereto. As a result, since the feed openings on both sides of the antenna are connected, it is possible to transfer energy between the right-handed circularly polarized wave and the left-handed circularly polarized wave to the single converter 85 via the connection terminal 84. Become.
  • FIGS. 13A and 13B are plan views, and the upper surface of the antenna having a plurality of slots is omitted for simplicity and clarity.
  • the inductive bosses 93 A and 93 B shown in FIG. 13A or the first The inductive walls 94 A and 94 B shown in FIG. 3B are provided to reduce reflection.
  • inductive bosses 93A and 93B can be installed after the antenna body 92 is made. In addition, if the inductive walls 94A and 94B are formed at the same time when the antenna main body 92 is formed, no post-processing is required.
  • connection terminals 4A and 4B are provided near the power supply openings 2A and 2B, respectively, and the exchange of radio waves between the antenna body and the converter is performed by a cable.
  • the present invention is not limited to this, and can be configured as follows.
  • the feed opening itself is set to the standard opening of the waveguide, for example, the standard WR-75.
  • the role of the power supply aperture is to act as an aperture through which radio waves pass.
  • connection terminals 4A and 4B are provided in the power supply section of the converter. Also in this case, no cable is required, and the role of the power supply opening is the same as when using the connection terminals 4A and 4B in the embodiment.
  • planar array antenna and the converter are connected to the connection terminal 4.
  • connection may be made without passing through these connection terminals.
  • planar array antenna according to the present invention is useful for transmitting or receiving both left-handed and right-handed polarized waves with high efficiency.

Abstract

A plurality of slots for transmitting or receiving circularly polarized electromagnetic waves are provided at prescribed places in a plurality of waveguides so arranged that their axes are parallel with each other or in a planar line. Two waveguides for feeding or two distribution circuits are connected to both ends of the waveguides. Electromagnetic waves are fed to the two waveguides or two distribution circuits, and counterclockwise- and clockwise-rotating polarized electromagnetic waves are transmitted from each slot. A device using such an antenna is also disclosed.

Description

明 細 書 平面アレーアンテナ 技術分野  Description Planar array antenna Technical field
本発明は、 平面アレーアンテナ及びそのアンテナを含む装置に関し、 より 具体的には、 左旋円偏波と右旋円偏波の両方を用いた衛星放送の受信に適し た平面ァレーアンテナ及びそのァンテナを用いた装置に関する。 背景技術  The present invention relates to a planar array antenna and a device including the antenna, and more specifically, to a planar array antenna suitable for receiving satellite broadcasting using both left-handed circularly polarized light and right-handed circularly polarized wave and an antenna thereof. Equipment. Background art
従来の平面ァレーアンテナの例としては、 管軸方向に多数の円偏波放射ス 口ットを有する複数の直線導波管を管軸に平行に並べた導波管平面ァレーア ンテナが知られている。 これらの直線導波管には電力分配回路を介して送信 電波が供給されるが、 以下ではこのことを給電という。 文献 「漏れ波導波管 クロススロッ 卜アレーアンテナの設計」 、 電子情報通信学会技術報告 A P 9 2 - 3 7 (以下、 文献 1として参照する) は、 円偏波放射スロッ 卜としてク ロススロッ トを、 電力分配回路として 1本の給電用導波管を用いたァレーア ンテナを開示している。 図 1 4は、 その上面図である。 図 1 4において、 給 電用導波管 1は、 給電開口 2と分岐開口 3を有する。 給電用導波管 1と直角 の向きで、 互いに平行に並べられた複数の放射用導波管 1 1力く、 分岐開口 3 を介して給電用導波管 1に接続されている。 放射用導波管 1 1には、 複数の 円偏波クロススロッ ト 1 2が開けられている。 給電開口 2より給電された電 力は、 給電用導波管 1を経由し、 分岐開口 3を通じて放射用導波管 1 1に同 位相で分配され、 円偏波クロススロッ ト 1 2を通じて円偏波として放射され る。 円偏波の回転方向に関しては、 クロススロット 1 2が放射用導波管 1 1 の電波の伝送方向に向かって右側にある場合は左旋円偏波、 左側にある場合 は右旋円偏波が放射されるので、 図 1 4の例では左旋円偏波が放射される。 尚、 上記の説明においては、 アンテナの送信動作について述べたが、 相反定 理により、 同一のアンテナが受信用としても用いられることは明らかである 図 1 4に示すァンテナは左旋円偏波と右旋円偏波のどちらか一方のみを受 信できるが、 米国等においては、 左旋円偏波と右旋円偏波の両方を用いて衛 星放送のサービスを行っており、 単一の円偏波のみを受信するアンテナでは 対応できなくなつている。 As an example of a conventional planar array antenna, there is known a waveguide planar array antenna in which a plurality of linear waveguides having a large number of circularly polarized radiation ports in the tube axis direction are arranged in parallel to the tube axis. . Transmitted radio waves are supplied to these linear waveguides via a power distribution circuit, and this is referred to as power supply below. The literature “Design of a leaky-wave waveguide cross-slot array antenna”, IEICE Technical Report AP 92-37 (hereinafter referred to as reference 1), described a cross-slot as a circularly polarized radiation slot. An array antenna using one feed waveguide as a distribution circuit is disclosed. FIG. 14 is a top view thereof. In FIG. 14, the power supply waveguide 1 has a power supply opening 2 and a branch opening 3. A plurality of radiating waveguides 1 arranged at right angles to the feeding waveguide 1 and parallel to each other are connected to the feeding waveguide 1 via the branch openings 3. The radiation waveguide 11 is provided with a plurality of circularly polarized cross slots 12. The power fed from the feed aperture 2 passes through the feed waveguide 1, is distributed to the radiating waveguide 11 through the branch aperture 3 in phase, and is circularly polarized through the circular polarization cross slot 12. Radiated as Regarding the rotation direction of the circularly polarized wave, when the cross slot 12 is on the right side of the transmission direction of the radio wave of the radiation waveguide 11, the left-handed circularly polarized wave is obtained. In the example shown in Fig. 14, left-handed circularly polarized light is emitted. In the above description, the transmitting operation of the antenna has been described. However, it is clear that the same antenna is used for reception by the reciprocity principle. The antenna shown in Fig. 14 can receive either left-handed or right-handed polarized light, but in the United States, etc., satellites use both left-handed and right-handed polarized waves. It provides broadcasting services, and it is no longer possible to use an antenna that receives only a single circularly polarized wave.
このような需要に対応できるアンテナとして、 文献 「偏波共用ラジアルラ インスロッ トアンテナのスロッ ト設計」 、 1 9 9 3年電子情報通信学会春季 大会 B— 4 9 (以下、 文献 2として参照する) は、 左旋円偏波と右旋円偏波 の両方を送信または受信できるアンテナを開示している。 このァンテナにお いては、 放射導波路であるラジアル導波路内に内向きと外向きの円筒波を伝 送させることにより、 左旋円偏波と右旋円偏波の両方を放射することを可能 にしている。 しかしながら、 文献 2に開示されたアンテナの効率は、 スロッ 卜の設計を最適化しても 7 0 %程度にしかならず、 実用化するには低効率で ある。 発明の開示  As an antenna that can respond to such demands, the document “Slot design of dual-polarized radial-radio slot antenna”, 1992 IEICE Spring Conference B-49 (hereinafter referred to as Reference 2) Discloses an antenna capable of transmitting or receiving both left-handed and right-handed polarized waves. In this antenna, it is possible to radiate both left-handed and right-handed circularly polarized waves by transmitting inward and outward cylindrical waves in the radial waveguide, which is a radiation waveguide. I have to. However, the efficiency of the antenna disclosed in Reference 2 is only about 70% even if the slot design is optimized, which is low for practical use. Disclosure of the invention
そこで、 本発明は、 より高い効率で左旋円偏波と右旋円偏波の両方を送信 または受信できるアンテナ、 及び、 そのアンテナを含む装置を提供すること を目的とする。  Therefore, an object of the present invention is to provide an antenna capable of transmitting or receiving both left-handed circular polarization and right-handed circular polarization with higher efficiency, and an apparatus including the antenna.
上記目的を達成するために、 本発明の第 1の観点による平面アレーアンテ ナは、 管軸が相互に平行となるように並んで配置された複数の第 1の導波管 であつて各々が円偏波を放射または受信するための複数のスロッ トを所定の 位置に有している前記複数の第 1の導波管と、 前記複数の第 1の導波管の管 軸の向きと直角の向きの管軸を有し、 それぞれ分岐開口を介して前記複数の 第 1の導波管の両端に接続された 2つの第 2の導波管であってそれぞれ給電 開口をさらに具備している前記 2つの第 2の導波管とを含み、 前記 2つの第 2の導波管の給電開口を介して、 前記複数の第 1の導波管のスロッ 卜の各々 力、ら左旋円偏波と右旋円偏波の両方の電波を放射又は受信する。  In order to achieve the above object, a planar array antenna according to a first aspect of the present invention is a plurality of first waveguides arranged side by side so that their tube axes are parallel to each other, each of which is circular. A plurality of first waveguides having a plurality of slots for radiating or receiving polarized waves at predetermined positions; and a plurality of first waveguides each having a right angle to a direction of a tube axis of the plurality of first waveguides. Two second waveguides each having a tube axis oriented in the direction, each of which is connected to both ends of the plurality of first waveguides via a branch opening, each of the second waveguides further including a feed opening. Two second waveguides, and each of the plurality of first waveguide slots has a power, a left-handed circularly polarized wave, and a power supply opening of the two second waveguides. Emit or receive both right-handed circularly polarized radio waves.
以上述べた様な本発明の第 1の観点による平面ァレーアンテナにおいては、 円偏波を放射または受信するためのスロッ 卜が第 1の導波管の各々の管軸か ら所定のオフセッ トをもって配置されていれば、 2つの第 2の導波管を介し て第 1の導波管の両側に給電することにより、 同一のスロッ 卜から左旋円偏 波と右旋円偏波の両方を放射することが可能である。 その逆に、 同一のスロ ッ 卜から左旋円偏波と右旋円偏波の両方を受信することも可能である。 In the planar array antenna according to the first aspect of the present invention as described above, the slot for radiating or receiving the circularly polarized wave is provided at each tube axis of the first waveguide. If they are arranged with a predetermined offset from each other, power is supplied to both sides of the first waveguide via the two second waveguides, so that the left-handed circularly polarized wave and the right-handed circular It is possible to emit both polarizations. Conversely, it is also possible to receive both left-handed and right-handed polarized waves from the same slot.
また、 本発明の第 2の観点による平面アレーアンテナは、 相互に平行に並 んで配置された複数の平面線路と、 前記複数の平面線路と所定の間隔を保つ て配置され前記複数の平面線路が円偏波を放射または受信するための複数の スロッ トを所定の位置に有している導体板と、 それぞれ前記複数の平面線路 の両端に接続された 2つの電力分配回路とを含み、 前記 2つの電力分配回路 を介して、 前記導体板のスロッ 卜の各々から左旋円偏波と右旋円偏波の両方 の電波を放射又は受信する。  Further, the planar array antenna according to the second aspect of the present invention includes a plurality of planar lines arranged in parallel with each other, and the plurality of planar lines arranged at a predetermined interval from the plurality of planar lines. A conductor plate having a plurality of slots at predetermined positions for radiating or receiving circularly polarized waves; and two power distribution circuits connected to both ends of the plurality of planar lines, respectively. The radio wave of both left-handed circular polarization and right-handed circular polarization is radiated or received from each of the slots of the conductor plate via two power distribution circuits.
以上述べた様な本発明の第 2の観点による平面アレーアンテナにおいては、 導波管を用いずに、 ストリップ線路やマイクロストリップ線路等の平面線路 と、 該平面線路を覆う導体ケースに設けたスロッ 卜を利用することにより、 同様の動作を可能にしている。  In the planar array antenna according to the second aspect of the present invention as described above, a planar line such as a strip line or a microstrip line and a slot provided in a conductor case covering the planar line are used without using a waveguide. The same operation is made possible by using a mouse.
本発明による平面アレーアンテナは、 文献 2に開示されたアンテナと異な り、 導波管または平面線路とスロッ 卜との電気的結合を最適化することによ り 8 0 %以上の高い効率を有する。  The planar array antenna according to the present invention has a high efficiency of 80% or more by optimizing the electrical coupling between the waveguide or the planar line and the slot, unlike the antenna disclosed in Reference 2. .
さらに、 本発明による、 平面アレーアンテナを用いた、 衛星放送を受信す るためのアンテナ装置は、 管軸が相互に平行となるように並んで配置された 複数の第 1の導波管であって各々が第 1の円偏波と第 2の円偏波の両方を受 信するための複数のスロッ トを所定の位置に有している前記複数の第 1の導 波管と、 前記複数の第 1の導波管が受信した第 1の円偏波を合成する複数の ガイド部を有しこの合成された第 1の円偏波を伝送する第 2の導波管と、 前 記複数の第 1の導波管が受信した第 2の円偏波を合成する複数のガイ ド部を 有しこの合成された第 2の円偏波を伝送する第 3の導波管と、 前記第 2及び 第 3の導波管からそれぞれ伝送される合成された第 1及び第 2の円偏波の内 の少なくとも一方を I F ( i ntermedi ate f requency) 信号に変換するコンパ 一夕手段とを含む。 以上述べた様な本発明によるアンテナ装置においては、 上記平面ァレーア ンテナにより受信した左旋円偏波と右旋円偏波の一方を選択して、 チューナ に供給することが可能である。 図面の簡単な説明 Furthermore, the antenna device for receiving satellite broadcasts using the planar array antenna according to the present invention is a plurality of first waveguides arranged side by side so that the tube axes are parallel to each other. The plurality of first waveguides each having a plurality of slots at predetermined positions for receiving both the first circularly polarized wave and the second circularly polarized wave; and A second waveguide having a plurality of guide portions for combining the first circular polarization received by the first waveguide of the second waveguide and transmitting the combined first circular polarization; A third waveguide having a plurality of guide portions for combining the second circularly polarized waves received by the first waveguide of the third waveguide and transmitting the combined second circularly polarized waves; and Convert at least one of the combined first and second circularly polarized waves transmitted from the second and third waveguides into an IF (intermedate frequency) signal, respectively. Lymph Isseki and means. In the antenna device according to the present invention as described above, it is possible to select one of the left-handed circularly polarized wave and the right-handed circularly polarized wave received by the planar array antenna and supply the selected one to the tuner. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1実施例による平面アレーアンテナの斜視図であり、 第 2図は、 本発明の第 1実施例による平面アレーアンテナの平面図であり、 第 3図は、 本発明の第 2実施例による平面ァレーアンテナの平面図であり、 第 4図は、 本発明の平面アレーアンテナにおける、 透過エネルギーとアン テナ効率との関係を表すグラフであり、  FIG. 1 is a perspective view of a planar array antenna according to a first embodiment of the present invention, FIG. 2 is a plan view of a planar array antenna according to a first embodiment of the present invention, and FIG. FIG. 4 is a plan view of a planar array antenna according to a second embodiment of the present invention. FIG. 4 is a graph showing a relationship between transmitted energy and antenna efficiency in the planar array antenna of the present invention.
第 5 A図は、 本発明の第 3実施例による平面アレーアンテナの平面図であ 、  FIG. 5A is a plan view of a planar array antenna according to a third embodiment of the present invention,
第 5 B図は、 本発明の第 3実施例による平面アレーアンテナの断面図であ り、  FIG. 5B is a sectional view of the planar array antenna according to the third embodiment of the present invention,
第 6図は、 本発明の第 4実施例によるアンテナ装置の概略図であり、 第 7図は、 本発明の第 5実施例によるァンテナ装置の概略図であり、 第 8図は、 本発明の第 6実施例による了ンテナ装 Sの概略図であり、 W> 9図は、 本発明の第 7実施例によるァンテナ装置の概略図であり、 第 1 0図は、 本発明の第 8実施例によるアンテナ装置の概略図であり、 第 1 1 A図は、 本発明によるアンテナ装置の全体を示す平面図であり、 第 1 1 B図は、 本発明によるアンテナ装置の全体を示す側面図であり、 第 1 2 A図は、 本発明の第 9実施例によるアンテナ装置の平面図であり、 第 1 2 B図は、 本発明の第 9実施例によるアンテナ装置の断面図であり、 第 1 3 A図と第 1 3 B図は、 本発明の第 1 0実施例による平面アレーアン テナの平面図であり、  FIG. 6 is a schematic diagram of an antenna device according to a fourth embodiment of the present invention, FIG. 7 is a schematic diagram of an antenna device according to a fifth embodiment of the present invention, and FIG. FIG. 10 is a schematic diagram of an antenna device S according to a sixth embodiment, FIG. 9 is a schematic diagram of an antenna device according to a seventh embodiment of the present invention, and FIG. 10 is an eighth embodiment of the present invention. FIG. 11A is a schematic view of an antenna device according to the present invention. FIG. 11A is a plan view showing the entire antenna device according to the present invention. FIG. 11B is a side view showing the entire antenna device according to the present invention. FIG. 12A is a plan view of an antenna device according to a ninth embodiment of the present invention, and FIG. 12B is a cross-sectional view of the antenna device according to the ninth embodiment of the present invention. FIGS.A and 13B are plan views of a planar array antenna according to a tenth embodiment of the present invention,
第 1 4図は、 従来の単一円偏波用平面アレーアンテナの平面図である。 発明を実施するための最良の形態  FIG. 14 is a plan view of a conventional planar array antenna for single circular polarization. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して、 本発明の実施例を説明する。 尚、 説明の都合上、 アンテナの送信動作について述べるが、 相反定理により、 同一のアンテナが 受信用としても用いられることは明らかである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. For convenience of explanation, The transmission operation of the antenna is described, but it is clear that the same antenna is used for reception by the reciprocity theorem.
第 1図は、 本発明の第 1実施例による平面アレーアンテナの斜視図であり、 第 2図は、 第 1図に示す平面アレーアンテナの平面図である。 給電用導波管 1 Aは、 給電開口 2 A及びガイ ド手段である分岐開口 3 Aを有し、 給電用導 波管 1 Bは、 給電開口 2 B及びガイ ド手段である分岐開口 3 Bを有する。 袷電開口 2 A及び 2 Bの近傍には、 ケーブルを介して外部回路と接続する ための接続端子 4 A及び 4 Bが設けられている。 この接続端子 4 A及び 4 B は、 ケープルを接続するためのコネクタ部分とアンテナに給電するための給 電ピン部分から成り立つている。 接続端子 4 A及び 4 Bのコネクタ部分のコ ールド側は平面ァレーアンテナの筐体に接続されており、 ホッ ト側は給電ピ ン部分に接続されている。 従って、 ケーブルを接続すると、 ケーブルのコー ルド側は平面アレーアンテナの筐体に、 ホッ ト側は給電ピン部分に接続され る。  FIG. 1 is a perspective view of a planar array antenna according to a first embodiment of the present invention, and FIG. 2 is a plan view of the planar array antenna shown in FIG. The power supply waveguide 1A has a power supply opening 2A and a branch opening 3A serving as guide means, and the power supply waveguide 1B has a power supply opening 2B and a branch opening 3B serving as guide means. Having. Connection terminals 4A and 4B for connecting to an external circuit via a cable are provided near the lined electrical openings 2A and 2B. The connection terminals 4A and 4B are composed of a connector part for connecting a cable and a power supply pin part for supplying power to the antenna. The cold side of the connector part of the connection terminals 4A and 4B is connected to the housing of the planar array antenna, and the hot side is connected to the feed pin part. Therefore, when the cable is connected, the cold side of the cable is connected to the housing of the flat array antenna, and the hot side is connected to the feed pin.
互いに平行して並んでいる複数の放射用導波管 1 1は、 それぞれ分岐開口 3 A及び 3 Bを介して、 給電用導波管 1 A及び 1 Bに直角に接続されている。 これらの放射用導波管 1 1には、 円偏波を放射するための複数のクロススロ ッ ト 1 2が開けられている。 給電開口 2 Aより給電された電波は、 給電用導 波管 1 Aを伝搬し、 分岐開口 3 Aを介して複数の放射用導波管 1 1に同位相 で分配され、 クロススロット I 2から右旋円偏波として放射される。 一方、 給電開口 2 Bより給電された電波は、 給電用導波管 1 Bを伝搬し、 分岐開口 3 Bを介して複数の放射用導波管 1 1に同位相で分配され、 同じクロススロ ッ ト 1 2から左旋円偏波として放射される。  The plurality of radiation waveguides 11 arranged in parallel to each other are connected at right angles to the feed waveguides 1A and 1B via branch openings 3A and 3B, respectively. These radiation waveguides 11 are provided with a plurality of cross slots 12 for radiating circularly polarized waves. The radio wave fed from the feed aperture 2A propagates through the feed waveguide 1A, is distributed in phase to the multiple radiating waveguides 11 through the branch aperture 3A, and is distributed from the cross slot I2. Radiated as right-handed circularly polarized light. On the other hand, the radio wave fed from the feed aperture 2B propagates through the feed waveguide 1B, is distributed in the same phase to a plurality of radiation waveguides 11 via the branch aperture 3B, and has the same cross slot. It is emitted as left-handed circularly polarized light from G12.
本実施例におけるように、 放射用導波管 1 Iの各々に両端から同相で給電 する場合には、 導波管の管内波長; の間隔でスロッ トを設けてアンテナ正 面に電波を放射させるブロードサイ ドアレーアンテナを用いると、 効率が大 幅に低下する。 これは、 導波管の管内波長ス„ が自由空間波長; より大き いために生じる。 即ち、 スロッ 卜間隔が自由空間波長; より大きい場合に は、 正面方向のメインビームと同じレベルのサイ ドローブが広角方向に一定 パターンで現れるグレーティングローブと呼ばれる現象を生ずるからである。 実用的な効率を実現するためには、 スロッ トを密な間隔で配列する漏れ波 アレーアンテナとする必要がある。 漏れ波アレーアンテナにおいては、 電波 の放射方向がァンテナ正面ではなく、 給電用導波管の管軸方向に大きく傾い た方向にチルトする。 従って、 右旋円偏波と左旋円偏波のビーム方向は互い に逆向きにチルトするため、 アンテナを固定した状態で右旋円偏波と左旋円 偏波の両方を受信することは不可能である。 しかし、 文献 1に開示されてい るように、 ァンテナを自動車の屋根等に取り付けて特定面内で回転させて放 送衛星を追尾する場合には、 これらのビームの仰角が同一であるので、 右旋 円偏波と左旋円偏波の内の一方から他方に受信電波を切り替える際に、 アン テナをその特定面内で 1 8 0 ° 回転させるだけでよいため、 都合がよい。 第 3図は、 本発明の第 2実施例による平面アレーァンテナの平面図である。 第 1実施例と異なるのは、 隣接する放射用導波管 1 1の間でスロッ 卜の位置 がずらされ、 隣接する放射用導波管 1 1が互いに逆相で給電される点である。 隣接する放射用導波管が互いに逆相で給電される場合の利点は、 文献 「導波 管給電プリントアンテナ」 、 電子情報通信学会技術報告 A P 8 9 - 3に開示 されているように、 溝状構造物とスロッ トを開けた平板の張り合わせによつ て放射用導波管を構成でき、 しかも両者の密着が必ずしも要求されない点に ある。 When power is supplied to each of the radiation waveguides 1I in the same phase from both ends as in the present embodiment, slots are provided at intervals of the waveguide wavelength of the waveguide to radiate radio waves to the front surface of the antenna. Using a broadsided array antenna greatly reduces efficiency. This occurs because the waveguide wavelength of the waveguide is larger than the free space wavelength, that is, if the slot spacing is larger than the free space wavelength; Wide angle constant This is because a phenomenon called a grating lobe appearing in the pattern occurs. In order to achieve practical efficiency, it is necessary to use a leaky-wave array antenna with slots arranged at close intervals. In a leaky wave array antenna, the radiation direction of the radio wave is tilted not in front of the antenna, but in a direction that is greatly inclined in the direction of the tube axis of the feeding waveguide. Therefore, it is impossible to receive both right-handed and left-handed polarized waves with the antenna fixed because the beam directions of right-handed and left-handed polarized waves are tilted in opposite directions. It is. However, as disclosed in Reference 1, when the antenna is mounted on the roof of a car and rotated in a specific plane to track a broadcasting satellite, the elevation angles of these beams are the same, so the right When switching the received radio wave from one of the circularly polarized wave and the left circularly polarized wave to the other, it is only necessary to rotate the antenna in the specific plane by 180 °, which is convenient. FIG. 3 is a plan view of a planar antenna according to a second embodiment of the present invention. The difference from the first embodiment is that the position of the slot is shifted between the adjacent radiation waveguides 11 and the adjacent radiation waveguides 11 are fed in opposite phases. The advantage when adjacent radiation waveguides are fed out of phase with each other is the groove as disclosed in the document “Waveguide-fed Printed Antenna” and IEICE Technical Report AP 89-3. A radiation waveguide can be constructed by laminating a plate-like structure and a flat plate with an open slot, and the close contact between the two is not always required.
第 3図に示すように、 隣接する放射用導波管 1 1が互いに逆相で給電され る場合には、 第 2図の場合とは逆に、 漏れ波アレーアンテナとすると、 隣接 する放射用導波管から放射される電波が逆相となつて弱め合うため、 放射ビ ームが形成されず動作しない。 そこで、 ブロードサイ ドアレーアンテナとす ることを考える。 そのためには、 放射用クロススロッ 卜 1 2を、 放射用導波 管 1 1の管軸方向に沿って管内波長; の間隔で並べ、 隣接する放射用導波 管 1 1の間では放射用クロススロッ ト 1 2の位置を管軸方向に; / 2だけ ずらして配列する。 このとき、 放射用導波管 1 1の内部に比誘電率 ε , 力 < 1 より大きい誘電体を充塡した場合には、 第 2図の場合と異なり、 ブロードサ ィ ドアレーアンテナにしてもグレーティ ングローブが発生しないと 、う利点 がある。 その理由を、 次に説明する。 グレーティングローブは、 隣接スロッ ト列間の最大間隔が自由空間波長 λ。 よりも大きい場合に発生する。 第 3図 に示すアンテナにおいては、 図示した距離 "h" がこの最大間隔となる。 こ こで、 放射用導波管 1 1の管壁の厚さを無視して、 その幅を "a" とすると、 距離 "h" は次の式 (1 ) で表される。 ス g: h (1)As shown in FIG. 3, when adjacent radiation waveguides 11 are fed in opposite phases to each other, a leaky wave array antenna may be used, as opposed to the case of FIG. Since the radio waves radiated from the waveguide are out of phase and weaken each other, no radiation beam is formed and the device does not operate. Therefore, we consider a broadsided array antenna. For this purpose, the radiation cross-slots 12 are arranged along the waveguide axis of the radiation waveguide 11 at intervals of the guide wavelength, and the radiation cross-slots are arranged between adjacent radiation waveguides 11. Arrange the positions of 1 and 2 in the direction of the tube axis; At this time, if the dielectric waveguide 11 is filled with a dielectric material having a relative permittivity ε and a force greater than <1, unlike the case of FIG. If no gloves occur, There is. The reason will be described below. The maximum spacing between adjacent slots in the grating lobe is the free-space wavelength λ. Occurs when larger than In the antenna shown in Fig. 3, the maximum distance is the distance "h" shown. Here, assuming that the width of the radiation waveguide 11 1 is negligible and the width is “a”, the distance “h” is expressed by the following equation (1). G: h (1)
Figure imgf000009_0001
Figure imgf000009_0001
—方、 放射用導波管 1 1の管内波長; は、 基本モードである TE 1 0モー ドで伝送する場合には、 次の式 (2) で表されることが知られている。 On the other hand, it is known that the wavelength in the waveguide of the radiation waveguide 11 1 is expressed by the following equation (2) when transmitted in the TE 10 mode, which is the fundamental mode.
λε  λε
λε - (2)  λε-(2)
1 -I  1 -I
2a /  2a /
ただし、 ス εは誘電体内の波長であり、 次の式 (3) により与えられる ( λο Where ε is the wavelength in the dielectric and is given by the following equation (3) ( λο
λε = - ^ (3) 式 ( 1 ) 、 ( 2 ) を整理すると、 結局、 距離 " h" は; I εと一致するので、 比誘電率 ε , が 1よりもわずかに大きい場合には、 h< ;i。 となり、 グレー ティングローブは発生しない。 さらに、 比誘電率の温度変化等を考慮すれば、 比誘電率が約 1. 1以上であることが望ましい。  λε =-^ (3) Rearranging equations (1) and (2), after all, the distance "h" is equal to; I ε, so if the relative permittivity ε, is slightly larger than 1, h <; i. No grating lobes are generated. Further, in consideration of the temperature change of the relative dielectric constant, it is desirable that the relative dielectric constant is about 1.1 or more.
本実施例による平面アレーアンテナは、 ブロードサイ ドアレーアンテナと なるので、 その放射方向は右旋円偏波と左旋円偏波について一致させること ができる。 従って、 右旋円偏波と左旋円偏波の一方から他方に受信信号を切 り換える際にも、 アンテナを回転させる必要はない。  Since the planar array antenna according to the present embodiment is a broad-sided array antenna, its radiation direction can be made to match for right-handed circular polarization and left-handed circular polarization. Therefore, it is not necessary to rotate the antenna when switching the received signal from one of the right-handed circular polarization and the left-handed circular polarization to the other.
次に、 上記第 1あるいは第 2の実施例による平面アレーアンテナが、 実用 上十分に高い効率を有することを示す。  Next, it is shown that the planar array antenna according to the first or second embodiment has a sufficiently high efficiency for practical use.
一般に、 平面アレーアンテナの効率が最大となるのは、 全ての放射用スロ ッ 卜が同一振幅で電波を放射するときであり、 単一円偏波用アレー- の場合には、 管軸方向に沿ってスロッ 卜の長さや位置等を調整することによ つてこれを実現している。 従って、 理論効率は 1 0 0 %となる。 In general, the efficiency of a planar array antenna is maximized when all radiation slots radiate radio waves with the same amplitude. In this case, this is achieved by adjusting the length and position of the slot along the pipe axis direction. Therefore, the theoretical efficiency is 100%.
これに対し、 本発明による平面アレーアンテナにおいては、 放射用導波管 On the other hand, in the planar array antenna according to the present invention, the radiation waveguide
1 1は両側から給電されるため、 片側からの給電に対してスロット放射が一 様になるように設計すると、 反対側からの給電に対してはスロッ ト放射が傾 きの大きな分布となり、 効率が著しく低下する。 最も簡単なモデルとして、 すべて同じ形状のスロッ 卜が並んでいる場合、 各スロッ卜から一定の割合で 電波が放射され、 残ったエネルギーは、 放射用導波管 1 1を透過して、 現在 給電していない反対側の袷電用導波管に吸収される。 Since 1 is fed from both sides, if slot radiation is designed to be uniform with respect to power supply from one side, slot radiation will have a large slope distribution with respect to power supply from the other side, and efficiency will increase. Is significantly reduced. As the simplest model, when slots with the same shape are all lined up, radio waves are radiated from each slot at a fixed rate, and the remaining energy passes through the radiation waveguide 11 It is absorbed by the lined electric waveguide on the other side that is not.
第 4図は、 この透過エネルギーの割合を変化させてアンテナ効率を計算し た結果を示すグラフである。 この透過エネルギーは損失となるが、 この損失 が約 8 %のときにアンテナの効率は最大値約 8 1 %となる。 この効率は、 文 献 2に示されたラジアルラインスロッ トアンテナや、 現在実用に供されてい るパラボラアンテナよりも高く、 十分実用に耐え得る値となる。 本発明によ る平面アレーアンテナが文献 2に示されたアンテナよりも高い効率を実現で きる理由は次の通りである。  FIG. 4 is a graph showing the result of calculating the antenna efficiency by changing the ratio of the transmitted energy. This transmitted energy is lost, but when this loss is about 8%, the maximum efficiency of the antenna is about 81%. This efficiency is higher than the radial line slot antenna shown in Reference 2 and the parabolic antenna currently in practical use, and is a value that can withstand practical use. The reason that the planar array antenna according to the present invention can achieve higher efficiency than the antenna shown in Reference 2 is as follows.
ラジアルラインスロッ 卜アンテナは、 放射用ラジアル導波路内で伝送され る内向き円筒波と外向き円筒波という異なる振る舞いをする波を利用して右 旋円偏波と左旋円偏波の放射を実現しているため、 右旋円偏波と左旋円偏波 の両方で同時に効率が高くなる条件が存在しない。 これに対し、 本発明によ るァンテナにおいては、 方形導波管のような断面が一様な放射用導波路を用 いているため、 この導波路内をどちら向きに伝搬する波も全く同一の振る舞 いを示す。 従って、 スロッ 卜を放射用導波管の中間点を中心にほぼ左右対称 に配置することにより、 右旋円偏波と左旋円偏波のそれぞれに対する効率最 大の条件がほぼ一致するため、 高い効率が得られる。  Radial lineslot antennas emit right-handed and left-handed circularly polarized waves using waves that behave differently: inward and outward cylindrical waves transmitted in the radial waveguide for radiation. As a result, there is no condition that simultaneously increases the efficiency for both right-handed and left-handed circularly polarized waves. On the other hand, in the antenna according to the present invention, since a radiation waveguide having a uniform cross section such as a rectangular waveguide is used, the waves propagating in either direction in this waveguide are exactly the same. Indicates behavior. Therefore, by arranging the slots almost symmetrically about the midpoint of the radiation waveguide, the conditions for the maximum efficiency for each of right-handed circular polarization and left-handed circular polarization are almost the same, which is high. Efficiency is obtained.
次に、 本発明の第 3実施例による平面ァレーアンテナについて説明する。 これまで説明した実施例は、 導波管を用いてアレーアンテナを構成していた 力^ 本発明はこれに限定されるものでなく、 導波管のかわりに、 マイクロス トリップ線路、 ス卜リップ線路、 コプレーナ線路、 スロッ ト線路、 平行平板 線路、 又は誘電体表面波線路などの平面線路を用いてもよい。 第 3実施例と して、 ストリップ線路を用いた平面アレーアンテナを第 5 A及び 5 B図に示 す。 第 5 A図は平面図であり、 第 5 B図は、 第 5 A図に示す線 A— Aに沿つ た断面図である。 導体板 3 3及び導体ケース 3 4の内側に、 ス卜リップ線路 が間に形成された 2つの誘電体基板 3 5、 3 6が設けられている。 この構造 は、 2つの誘電体を介して 3つの導体が重なっているので、 トリプレー卜構 造と呼ばれる。 ストリップ線路は、 互いに平行している複数の放射用線路 3 1 と、 これらの放射用線路 3 1に両側から信号を供給するための分配回路 2 1 A及び 2 1 Bとを含んでいる。 また、 これらの分配回路 2 1 A及び 2 1 B を外部回路と接続するための接続端子 2 4 A及び 2 4 Bが設けられている。 放射用線路 3 1に相対する導体板 3 3に、 各々が非平行の線形スロッ 卜のぺ ァからなる複数の円偏波放射スロット 3 2が開けられている。 Next, a planar array antenna according to a third embodiment of the present invention will be described. In the embodiments described so far, an array antenna is configured using a waveguide. The present invention is not limited to this. Instead of a waveguide, a microstrip line, a strip Track, coplanar track, slot track, parallel plate A line or a planar line such as a dielectric surface wave line may be used. FIGS. 5A and 5B show a planar array antenna using a strip line as a third embodiment. FIG. 5A is a plan view, and FIG. 5B is a cross-sectional view taken along line AA shown in FIG. 5A. Inside the conductor plate 33 and the conductor case 34, two dielectric substrates 35 and 36 having a strip line formed therebetween are provided. This structure is called a triple-plate structure because three conductors overlap via two dielectrics. The strip line includes a plurality of radiating lines 31 parallel to each other, and distribution circuits 21A and 21B for supplying signals to the radiating lines 31 from both sides. Further, connection terminals 24A and 24B for connecting these distribution circuits 21A and 21B to an external circuit are provided. A plurality of circularly polarized radiation slots 32 each having a non-parallel linear slot aperture are formed in a conductor plate 33 opposed to the radiation line 31.
接続端子 2 4 Aに印加された信号は、 分配回路 2 1 Aを経由し、 複数の放 射用線路 3 1に同位相で供給され、 円偏波放射スロッ ト 3 2から右旋円偏波 として放射される。 一方、 接続端子 2 4 Bに印加された信号は、 同じ円偏波 放射スロッ ト 3 2から左旋円偏波として放射される。  The signal applied to the connection terminal 24 A passes through the distribution circuit 21 A and is supplied to the radiation lines 31 in phase with the same phase. Radiated as On the other hand, the signal applied to the connection terminal 24 B is radiated from the same circularly polarized radiation slot 32 as left circularly polarized light.
以上述べた第 1から第 3の実施例においては、 クロススロッ 卜及び非平行 ロッ トを円偏波放射スロッ 卜の例として示したが、 他の形状のスロッ 卜に よっても本発明が実施できることは明らかである。 また、 給電用導波管また は分配回路に関しても、 放射用導波管または放射用線路をパラレルに給電す ることができれば、 その形状は上記実施例に限定されない。 さらに、 平面線 路を用いる場合には、 スロッ 卜と電磁気学的に補対関係にあるストリップダ ィポールを使用しても、 右旋円偏波及び左旋円偏波の両方を放射できる平面 アレーアンテナを実現できる。  In the first to third embodiments described above, the cross slot and the non-parallel slot are shown as examples of the circularly polarized radiation slot. However, the present invention can be implemented with slots of other shapes. it is obvious. In addition, the shape of the feeding waveguide or the distribution circuit is not limited to the above-described embodiment as long as the feeding of the radiation waveguide or the radiation line can be performed in parallel. Furthermore, when using a planar line path, a planar array antenna that can radiate both right-handed and left-handed circularly polarized waves even if a strip dipole that is electromagnetically complementary to the slot is used. Can be realized.
次に、 上記実施例で説明したような平面アレーアンテナを用いたアンテナ 装置について説明する。 アンテナ装置の全体を示す平面図を第 1 1 A図に、 側面図を第 1 1 B図に示す。 ただし、 内部を見やすくするため、 第 1 1 A図 においてはカバーとなるレドームを外しており、 第 1 1 B図においてはレド —ムを中心でカツ 卜している。 アンテナを回転させる手段としては、 平面ァ レーアンテナ 4 1の下方にある回転部 7 し ベルト 7 2、 減速機 7 3、 モー タ 7 4、 固定側回路ュニッ 卜 7 5内のモータ駆動回路が組み込まれている。 また、 参照番号 7 6は、 回転側回路ュニッ トである。 平面アレーアンテナ 4 1の仰角は、 E L駆動部 7 7及び E Lモータ 7 8により調整される。 また、 回転部 7 1は、 回転側回路ュニッ ト 7 6や E Lモータ 7 8やコンバータ 4 2 A及び 4 2 Bに、 電源と制御信号を伝達するためのスリップリングを有する。 これらの要素はベース板 7 9の上に搭載され、 レドーム 8 0によって覆われ ている。 Next, an antenna device using the planar array antenna described in the above embodiment will be described. A plan view showing the entire antenna device is shown in FIG. 11A, and a side view is shown in FIG. 11B. However, to make it easier to see the inside, the radome serving as the cover is removed in Fig. 11A, and the cut is centered on the rhomb in Fig. 11B. As a means to rotate the antenna, The motor drive circuit in the rotating part 7 belt 72, reduction gear 73, motor 74, and fixed-side circuit unit 75 below the ray antenna 41 is incorporated. Reference numeral 76 denotes a rotation-side circuit unit. The elevation angle of the planar array antenna 41 is adjusted by an EL driving section 77 and an EL motor 78. Further, the rotating section 71 has a slip ring for transmitting a power supply and a control signal to the rotating circuit unit 76, the EL motor 78, and the converters 42A and 42B. These elements are mounted on a base plate 79 and covered by a radome 80.
第 6図は、 本発明の第 4実施例によるアンテナ装置の概略図である。 この 装置は、 自動車の屋根等に回転可能に取り付けられた、 第 1実施例に示した のと同様の平面アレーアンテナ 4 1と、 それぞれ接続端子 4 A及び 4 Bを介 して該アンテナに接続されているコンバータ 4 2 A及び 4 2 Bと、 該コンバ 一夕にそれぞれ接続されている D Cカツ 卜用のキャパシタ 4 3 A及び 4 3 B と、 電気的にはキャパシ夕と等価である回転結合器 4 4と、 チューナ 4 5と を含む。 さらに、 D C電源 4 9力 <、 制御回路 4 6によって一方がオンされる 2つのスィツチ回路 4 8 A及び 4 8 Bや、 干渉防止用の抵抗 4 7 A及び 4 7 Bや、 第 1 1 B図に示す回転部 7 1に設けられたスリップリング等をそれぞ れ介してコンバータ 4 2 A及び 4 2 Bに接続されている。 コンバータ 4 2 A 及び 4 2 Bは、 信号出力ラインに D C電圧が供給されたとき、 アンテナ 4 1 力ヽらの衛星放送の R F (rad i o f requency) 信号を I F ( i ntermi d i ate f requency ) 信号にダウンコンバートする。 制御回路 4 6は、 所望の円偏波 を表す与えられた偏波情報により、 スィツチ回路 4 7 A及び 4 7 Bのうち所 望の円偏波側の 1つをオンする。 従って、 本実施例によれば、 コンバータ 4 2 A及び 4 2 Bのうち D C電圧が供給された 1つから出力された I F信号の みがチューナ 4 5に入力されるので、 所望の円偏波を選択することが可能と なる。 尚、 回転桔合器 4 4のかわりに、 キャパシタ 4 3 A及び 4 3 Bを回転 結合器で構成することにより、 キャパシタの数を削減することも可能である。 また、 第 7図に示す第 5実施例のように、 電源ラインではなく信号ライン にスィツチ回路を設けることで、 所望の円偏波を選択することも可能である。 第 7図において、 コンバータ 4 2 A及び 4 2 Bから出力された 2つの I F信 号は、 D Cカッ ト用のキャパシタ 5 1 A及び 5 1 Bをそれぞれ介して、 スィ ツチ 5 2によりその一方が選択されてチューナ 4 5に入力される。 一方、 コ ンバータ 4 2 A及び 4 2 Bの両方に D C電圧が供給されている。 尚、 本実施 例においては回転結合器が図示されていないが、 D Cカッ ト用のキャパシ夕 5 1 A及び 5 1 Bと共用することができる。 または、 スィッチ 5 2とチュー ナ 4 5との間に回転結合器を設けてもよい。 FIG. 6 is a schematic diagram of an antenna device according to a fourth embodiment of the present invention. This device is connected to a planar array antenna 41 similar to that shown in the first embodiment, which is rotatably mounted on the roof of a car or the like, and connected to the antenna via connection terminals 4A and 4B, respectively. Converters 42 A and 42 B, and DC cut capacitors 43 A and 43 B respectively connected to the converters, and a rotary coupling that is electrically equivalent to the capacity. And a tuner 45. In addition, a DC power supply 49 power, two switch circuits 48 A and 48 B, one of which is turned on by the control circuit 46, resistances 47 A and 47 B for preventing interference, and a first 1 B Slip rings and the like provided on rotating section 71 shown in the figure are connected to converters 42A and 42B via the respective slip rings. When DC voltage is supplied to the signal output line, the converters 4 2 A and 4 2 B convert the RF (rad iof requency) signal of the satellite broadcast from the antenna 41 1 to the IF (intermidiate frequency) signal. Downconvert to The control circuit 46 turns on one of the switch circuits 47 A and 47 B on the desired circular polarization side based on the given polarization information representing the desired circular polarization. Therefore, according to the present embodiment, only the IF signal output from one of the converters 42 A and 42 B to which the DC voltage is supplied is input to the tuner 45, so that the desired circular polarization is obtained. Can be selected. It is to be noted that the number of capacitors can be reduced by forming the capacitors 43A and 43B with a rotary coupler instead of the rotary coupler 44. Also, as in the fifth embodiment shown in FIG. 7, a desired circularly polarized wave can be selected by providing a switch circuit in the signal line instead of the power supply line. In FIG. 7, two IF signals output from converters 42A and 42B are connected to each other by a switch 52 via DC cut capacitors 51A and 51B, respectively. Selected and input to tuner 45. On the other hand, DC voltage is supplied to both converters 42A and 42B. Although a rotary coupler is not shown in this embodiment, the rotary coupler can be shared with the DC cut capacities 51A and 51B. Alternatively, a rotary coupler may be provided between the switch 52 and the tuner 45.
第 6図や第 7図に示すアンテナ装置においては、 コンバータ 4 2 A又は 4 2 Bの信号ラインが電源ラインを兼ねていたが、 これらのラインが別々とな つているコンバータを使用することも可能である。  In the antenna device shown in Fig. 6 and Fig. 7, the signal line of the converter 42A or 42B doubles as the power supply line, but it is also possible to use a converter in which these lines are separate. It is.
第 8図に示す第 6実施例においては、 2つのコンバータ 4 2 A及び 4 2 B から出力された I F信号が結合され、 回転結合器 5 3を介してチューナ 4 5 に入力される。 これのコンバータ 4 2 A及び 4 2 Bのうち D C電圧が供給さ れた 1つから出力された I F信号のみがチューナ 4 5に入力される。 このよ うにして、 所望の円偏波を選択することが可能である。  In the sixth embodiment shown in FIG. 8, IF signals output from the two converters 42 A and 42 B are combined and input to the tuner 45 via the rotary coupler 53. Only the IF signal output from one of the converters 42 A and 42 B to which the DC voltage is supplied is input to the tuner 45. In this way, a desired circularly polarized wave can be selected.
また、 第 9図に示す第 7実施例においては、 2つのコンバータ 4 2 A及び 4 2 Bから出力された I F信号がそれぞれ D Cカツ 卜用キャパシタ 5 1 A及 び 5 1 Bを介して取り出され、 その一方がスィツチ回路 5 2により選択され てチューナ 4 5に入力される。 一方、 コンバータ 4 2 A及び 4 2 Bの両方に D C電圧が供給されている。 尚、 本実施例においては回転結合器が図示され ていないが、 D Cカツ ト用のキャパシタ 5 1 A及び 5 1 Bと共用すること力く できる。 または、 スィッチ 5 2とチューナ 4 5との間に回転結合器を設けて もよい。 このようにして、 所望の円偏波を選択することが可能である。  In the seventh embodiment shown in FIG. 9, the IF signals output from the two converters 42A and 42B are taken out through the DC cut capacitors 51A and 51B, respectively. One of them is selected by the switch circuit 52 and input to the tuner 45. On the other hand, DC voltage is supplied to both converters 42A and 42B. Although a rotary coupler is not shown in this embodiment, it can be shared with the DC cut capacitors 51A and 51B. Alternatively, a rotary coupler may be provided between the switch 52 and the tuner 45. In this way, it is possible to select a desired circularly polarized wave.
第 6図から第 9図に示すァンテナ装置においては、 電気的な切り換えによ つて右旋円偏波と左旋円偏波の内の一方を選択したが、 アンテナの方向を変 えることによっても選択が可能である。  In the antenna devices shown in Figs. 6 to 9, one of right-handed circular polarization and left-handed circular polarization was selected by electrical switching, but it could also be selected by changing the direction of the antenna. Is possible.
第 1 0図に示す本発明の第 8実施例によるアンテナ装置は、 自動車の屋根 等に取り付けられた平面アレーアンテナ 4 1を回転させるアンテナ回転手段 6 3を備えている。 このアンテナ回転手段 6 3は、 第 1 1 B図に示す回転部 1、 ベル卜 7 2、 減速機 7 3、 モータ 7 4、 固定側回路ュニッ ト 7 5内の モータ駆動回路により構成される。 The antenna device according to the eighth embodiment of the present invention shown in FIG. 10 includes an antenna rotating means 63 for rotating a planar array antenna 41 attached to a roof of an automobile or the like. The antenna rotating means 63 is a rotating part shown in FIG. 11B. 1, belt 72, reducer 73, motor 74, and motor drive circuit in fixed-side circuit unit 75.
第 1 0図を参照すると、 D C電圧が供給されているコンバータ 4 2 A及び 4 2 Bから出力された 2つの I F信号が加算手段 6 1によって加算され、 回 転結合器 5 3を介してチューナ 4 5に入力される。 ここで、 加算手段 6 1は、 その回路形式が許せば、 単に 2つのコンバータ 4 2 A及び 4 2 Bの出力を結 線したものでも構わない。 固定側回路ュニッ卜 7 5内の制御回路 6 2は、 所 望の円偏波を表す偏波情報と、 チューナ 4 5からの受信チャンネルの偏波情 報を受けて、 一致しているか否かを判定する。 これらの偏波情報が一致しな いという判定結果が得られた場合には、 制御回路 6 2は制御信号をアンテナ 回転手段 6 3に出力し、 アンテナ回転手段 6 3はこれに基づいてアンテナ 4 1をほぼ 1 8 0 ° 回転させる。 これにより、 右旋円偏波と左旋円偏波のうち 所望の円偏波を選択することが可能となる。  Referring to FIG. 10, two IF signals output from converters 42 A and 42 B to which a DC voltage is supplied are added by an adding means 61, and a tuner is provided via a rotary coupler 53. 4 Entered in 5. Here, the adding means 61 may be a simple connection of the outputs of the two converters 42A and 42B, if the circuit form permits. The control circuit 62 in the fixed-side circuit unit 75 receives the polarization information indicating the desired circular polarization and the polarization information of the reception channel from the tuner 45, and determines whether or not they match. Is determined. If a result of the determination that these pieces of polarization information do not match is obtained, the control circuit 62 outputs a control signal to the antenna rotating means 63, and the antenna rotating means 63 determines the antenna 4 based on the control signal. Rotate 1 approximately 180 °. As a result, a desired circularly polarized wave can be selected from the right circularly polarized wave and the left circularly polarized wave.
次に、 本発明の第 9実施例によるアンテナ装置について、 第 1 2 A図と第 1 2 B図を参照しながら説明する。 第 1 2 A図は平面図であるが、 見やすく するために、 複数のスロッ トを有するアンテナ上面 (第 1 2 B図の 8 1 ) は 省略されている。 第 1 2 B図は、 第 1 2 A図中の線 B— Bに沿った断面図で ある。 本実施例においては、 アンテナ本体 8 2の下方に伝送部 8 3を取り付 けたことにより、 単一のコンバータ 8 5のみを用いて動作できるようにして いる。 即ち、 第 1実施例に見られるような給電用導波管の給電開口を下側に 設け、 これに導波管として作用する伝送部 8 3を一体成型又は接続したもの である。 これにより、 アンテナ両側の給電開口は連結されるので、 右旋円偏 波と左旋円偏波の両方について接続端子 8 4を介して単一のコンバータ 8 5 との間でエネルギーの受け渡しが可能となる。  Next, an antenna device according to a ninth embodiment of the present invention will be described with reference to FIGS. 12A and 12B. FIG. 12A is a plan view, but the upper surface of the antenna having a plurality of slots (81 in FIG. 12B) is omitted for easy viewing. FIG. 12B is a cross-sectional view taken along line BB in FIG. 12A. In the present embodiment, the transmission section 83 is mounted below the antenna body 82, so that operation can be performed using only a single converter 85. That is, the power supply opening of the power supply waveguide as seen in the first embodiment is provided on the lower side, and the transmission section 83 acting as the waveguide is integrally formed or connected thereto. As a result, since the feed openings on both sides of the antenna are connected, it is possible to transfer energy between the right-handed circularly polarized wave and the left-handed circularly polarized wave to the single converter 85 via the connection terminal 84. Become.
次に、 本発明の第 1 0実施例による平面アレーアンテナについて、 第 1 3 A図と第 1 3 B図を参照しながら説明する。 第 1 3 A図と第 1 3 B図は平面 図である力く、 見やすくするために、 複数のスロッ トを有するアンテナ上面は 省略されている。 本実施例においては、 給電用導波管の分岐開口 3 A及び 3 Bの近傍に、 第 1 3 A図に示す誘導性ボス卜 9 3 A及び 9 3 B、 又は、 第 1 3 B図に示す誘導性壁 9 4 A及び 9 4 Bを設け、 これにより反射を低減した ものである。 誘導性ポスト又は誘導性壁の反射低減効果については、 文献 「同相給電導波管スロッ 卜アレーアンテナ用誘導性壁を有する導波管 7Γ分岐 の解析」 、 1 9 9 4年電子情報通信学会春季大会 B - 5 4、 及び、 文献 「誘 導性壁装荷一層構造 7Γ及び T分岐の特性」 、 1 9 9 5年電子情報通信学会総 合大会 B— 8 3に詳しい。 誘導性ボスト 9 3 A及び 9 3 Bは、 アンテナ本体 9 2を作成した後で取り付けることができる。 また、 誘導性壁 9 4 A及び 9 4 Bは、 アンテナ本体 9 2を作成する際に同時に形成すれば、 後加工が不要 となる。 Next, a planar array antenna according to a tenth embodiment of the present invention will be described with reference to FIGS. 13A and 13B. FIGS. 13A and 13B are plan views, and the upper surface of the antenna having a plurality of slots is omitted for simplicity and clarity. In this embodiment, the inductive bosses 93 A and 93 B shown in FIG. 13A or the first The inductive walls 94 A and 94 B shown in FIG. 3B are provided to reduce reflection. For the effect of reducing the reflection of an inductive post or inductive wall, see “Analysis of 7-branch waveguide with inductive wall for in-phase feed waveguide slot array antenna”, 1994 Spring of IEICE Spring Competition B-54, and the document “Characteristics of one-layer structure with inductive wall loading 7Γ and T-branch”, IEICE General Conference B-83, 1995. The inductive bosses 93A and 93B can be installed after the antenna body 92 is made. In addition, if the inductive walls 94A and 94B are formed at the same time when the antenna main body 92 is formed, no post-processing is required.
尚、 以上の実施例においては、 それぞれ給電開口 2 A及び 2 Bの近傍に接 続端子 4 A及び 4 Bを設け、 アンテナ本体とコンバータとの電波のやり取り はケ一ブルによって行っているが、 本発明はこれに限定されるものではなく、 以下の構成によることもできる。  In the above embodiment, the connection terminals 4A and 4B are provided near the power supply openings 2A and 2B, respectively, and the exchange of radio waves between the antenna body and the converter is performed by a cable. The present invention is not limited to this, and can be configured as follows.
まず、 給電開口自体を導波管の標準開口、 例えば規格 WR— 7 5にするこ とが挙げられる。 この構成にした場合、 コンバータの入力側についても導波 管の標準開口に合わせることが必要であり、 給電開口の役割は電波が通るた めの開口として働くことである。  First, the feed opening itself is set to the standard opening of the waveguide, for example, the standard WR-75. In this configuration, it is necessary to adjust the input side of the converter to the standard aperture of the waveguide, and the role of the power supply aperture is to act as an aperture through which radio waves pass.
さらに、 コンバ一夕の給電部に接続端子 4 A及び 4 Bの給電ピン部分のみ を設ける場合もある。 この場合にも、 ケーブルが不要となり、 給電開口の役 割は、 実施例中の接続端子 4 A及び 4 Bを使用する場合と同じで、 接続端子 In some cases, only the power supply pins of the connection terminals 4A and 4B are provided in the power supply section of the converter. Also in this case, no cable is required, and the role of the power supply opening is the same as when using the connection terminals 4A and 4B in the embodiment.
4 A及び 4 Bのコネクタ部分を通す穴として働くことである。 It acts as a hole for the 4A and 4B connector parts.
また、 実施例においては、 平面アレーアンテナとコンバータを接続端子 4 In the embodiment, the planar array antenna and the converter are connected to the connection terminal 4.
A及び 4 Bあるいは接続端子 8 4を介して接続している力 \ 上述したように、 これらの接続端子を介さないで接続してもよい。 産業上の利用可能性 Forces connected via A and 4B or connection terminal 84 \ As described above, connection may be made without passing through these connection terminals. Industrial applicability
以上述べた様に、 本発明に係る平面アレーアンテナは、 高い効率で左旋円 偏波と右旋円偏波の両方を送信または受信するために有用である。  As described above, the planar array antenna according to the present invention is useful for transmitting or receiving both left-handed and right-handed polarized waves with high efficiency.

Claims

請 求 の 範 囲 The scope of the claims
1. 平面アレーアンテナであって、 1. a planar array antenna,
管軸が相互に平行となるように並んで配置された複数の第 1の導波管であ つて、 各々が円偏波を放射または受信するための複数のスロッ トを所定の位 置に有している前記複数の第 1の導波管と、  A plurality of first waveguides arranged side by side so that their tube axes are parallel to each other, each having a plurality of slots at predetermined positions for emitting or receiving circularly polarized waves. Said plurality of first waveguides,
前記複数の第 1の導波管の管軸の向きと直角の向きの管軸を有し、 それぞ れ分岐開口を介して前己複数の第 1の導波管の両端に接铳された 2つの第 2 の導波管であって、 それぞれ給電開口をさらに具備している前記 2つの第 2 の導波管と、 を含み、  The plurality of first waveguides have tube axes perpendicular to the tube axes, and are respectively connected to both ends of the plurality of first waveguides through branch openings. Two second waveguides, each further comprising a feed aperture; and
前記 2つの第 2の導波管の給電開口を介して、 前記複数の第 1の導波管の スロッ 卜の各々から左旋円偏波と右旋円偏波の両方の電波を放射又は受信す る前記平面アレーアンテナ。  Through the feed openings of the two second waveguides, both left-handed and right-handed polarized waves are radiated or received from each of the plurality of first waveguide slots. The planar array antenna.
2. 平面アレーアンテナであって、  2. a planar array antenna,
相互に平行に並んで配置された複数の平面線路と、  A plurality of planar lines arranged side by side in parallel with each other;
前記複数の平面線路と所定の間隔を保つて配置され、 前記複数の平面線路 が円偏波を放射または受信するための複数のスロッ 卜を所定の位置に有して いる導体板と、  A conductor plate arranged at a predetermined position with the plurality of planar lines, wherein the plurality of planar lines have a plurality of slots at predetermined positions for emitting or receiving circularly polarized waves;
それぞれ前記複数の平面線路の両端に接続された 2つの電力分配回路と、 を含み、  Two power distribution circuits respectively connected to both ends of the plurality of planar lines,
前記 2つの電力分配回路を介して、 前記導体板のスロッ 卜の各々から左旋 円偏波と右旋円偏波の両方の電波を放射又は受信する前記平面ァレーアンテ ナ。  The planar array antenna radiates or receives both left-handed and right-handed polarized waves from each of the slots of the conductor plate via the two power distribution circuits.
3. 少なくとも 1つのコンバークに接続される平面ァレーアンテナであつ て、  3. A planar array antenna connected to at least one convertible,
管軸が相互に平行となるように並んで配置された複数の第 1の導波管であ つて、 各々が第 1の円偏波と第 2の円偏波の両方を受信するための複数のス 口ッ 卜を所定の位置に有している前記複数の第 1の導波管と、  A plurality of first waveguides arranged side by side so that their tube axes are parallel to each other, each of the plurality of first waveguides for receiving both a first circularly polarized wave and a second circularly polarized wave; Said plurality of first waveguides having said slot at a predetermined position;
前記複数の第 1の導波管が受信した第 1の円偏波を合成する複数のガイ ド 部を有し、 この合成された第 1の円偏波を前記少なくとも 1つのコンバータ へ伝送する第 2の導波管と、 A plurality of guides for combining the first circularly polarized waves received by the plurality of first waveguides A second waveguide for transmitting the combined first circularly polarized wave to the at least one converter; and
前記複数の第 1の導波管が受信した第 2の円偏波を合成する複数のガィ ド 部を有し、 この合成された第 2の円偏波を前記少なくとも 1つのコンバータ へ伝送する第 3の導波管と、  The plurality of first waveguides includes a plurality of guides for combining the second circularly polarized waves received by the plurality of first waveguides, and transmits the combined second circularly polarized waves to the at least one converter. A third waveguide,
を含む前記平面ァレーアンテナ。  The planar array antenna comprising:
4. 請求項 3に記載の平面アレーアンテナであって、 前記第 1及び第 2の 給電導波管が前記複数の導波管と同一平面上にある、 前記平面アレーアンテ ナ。  4. The planar array antenna according to claim 3, wherein the first and second feed waveguides are on the same plane as the plurality of waveguides.
5. 請求項 3に記載の平面アレーアンテナであって、  5. The planar array antenna according to claim 3, wherein
前記平面アレーアンテナは、 前記複数の第 1の導波管と離れて位置する一 つのコンバータに接続されるものであり、  The planar array antenna is connected to one converter located apart from the plurality of first waveguides,
前記第 2の導波管は、 合成された第 1の円偏波を前記コンバー夕へ伝送す る第 1の伝送手段をさらに有し、  The second waveguide further includes first transmission means for transmitting the combined first circularly polarized wave to the converter.
前記第 3の導波管は、 合成された第 2の円偏波を前記コンバータへ伝送す る第 2の伝送手段をさらに有する、 前記平面アレーアンテナ。  The planar array antenna, wherein the third waveguide further includes second transmission means for transmitting the combined second circularly polarized wave to the converter.
6. 請求項 3に記載の平面アレーアンテナであって、  6. The planar array antenna according to claim 3, wherein
前記第 1の円偏波は左旋円偏波であり、  The first circularly polarized wave is a left-handed circularly polarized wave,
前記第 2の円偏波は右旋円偏波である、 前記平面ァレーアンテナ。  The planar array antenna, wherein the second circularly polarized wave is a right-handed circularly polarized wave.
7. 請求項 3に記載の平面アレーアンテナであって、  7. The planar array antenna according to claim 3, wherein
前記複数のスロッ 卜はクロススロッ トである、 前記平面アレーアンテナ。  The planar array antenna, wherein the plurality of slots are cross slots.
8. 請求項 3に記載の平面アレーアンテナであって、 8. The planar array antenna according to claim 3, wherein
前記複数のスロッ 卜は、 前記複数の第 1の導波管の各々の片側に配置され ている、 前記平面アレーアンテナ。  The planar array antenna, wherein the plurality of slots are arranged on one side of each of the plurality of first waveguides.
9. 請求項 3に記載の平面アレーアンテナであって、  9. The planar array antenna according to claim 3, wherein
前記複数のスロッ 卜は、 前記管軸から同一のオフセッ ト量を有する、 前 記平 面アレーアンテナ。  The planar array antenna as described above, wherein the plurality of slots have the same offset from the tube axis.
1 0. 請求項 3に記載の平面アレーアンテナであって、  10. The planar array antenna according to claim 3, wherein
前記複数のスロッ トは、 前記管軸方向に前記第 1及び第 2の円偏波の管内 波長の間隔でほぼ並んで 、る、 前記平面アレーアンテナ。 The plurality of slots are provided in the first and second circularly polarized pipes in the pipe axis direction. The planar array antenna, which is substantially aligned at a wavelength interval.
1 1. 平面アレーアンテナを用いた、 衛星放送を受信するためのアンテナ装 置であって、  1 1. An antenna device for receiving satellite broadcasts using a planar array antenna,
管軸が相互に平行となるように並んで配置された複数の第 1の導波管であ つて、 各々が第 1の円偏波と第 2の円偏波の両方を受信するための複数のス 口ッ 卜を所定の位置に有している前記複数の第 1の導波管と、  A plurality of first waveguides arranged side by side so that their tube axes are parallel to each other, each of the plurality of first waveguides for receiving both a first circularly polarized wave and a second circularly polarized wave; Said plurality of first waveguides having said slot at a predetermined position;
前記複数の第 1の導波管が受信した第 1の円偏波を合成する複数のガイ ド 部を有し、 この合成された第 1の円偏波を伝送する第 2の導波管と、  A second waveguide that transmits a plurality of first circularly polarized waves received by the plurality of first waveguides and that transmits the synthesized first circularly polarized wave; ,
前記複数の第 1の導波管が受信した第 2の円偏波を合成する複数のガイ ド 部を有し、 この合成された第 2の円偏波を伝送する第 3の導波管と、  A third waveguide for transmitting the combined second circularly polarized light, the plurality of guides including a plurality of guide portions for combining the second circularly polarized waves received by the plurality of first waveguides; and ,
前記第 2及び第 3の導波管からそれぞれ伝送される合成された第 1及び第 2の円偏波の内の少なくとも一方を〖 F ( i n termed i ate f requency) 信号に 変換するコンバータ手段と、  Converter means for converting at least one of the combined first and second circularly polarized waves transmitted from the second and third waveguides into a 〖F (in termed iate f requency) signal, ,
を含む前記アンテナ装置。  The antenna device comprising:
1 2. 請求項 1 1に記載のアンテナ装置であって、  1 2. The antenna device according to claim 11, wherein
前記平面アレーアンテナ装置が前記第 1及び第 2の円偏波のどちらか一方 のみを受信するように前記コンバ一タ手段を制御する制御手段をさらに含む、 前記アンテナ装置。  The antenna device, further comprising control means for controlling the converter means so that the planar array antenna device receives only one of the first and second circularly polarized waves.
1 3. 請求項 1 2に記載のアンテナ装置であって、  1 3. The antenna device according to claim 12, wherein
前記コンバータ手段は、 前記第 2の導波管から伝送される合成された第 1 の円偏波を第 1の I F信号に変換する第 1の回路と、 前記第 3の導波管から 伝送される合成された第 2の円偏波を第 2の 1 F信号に変換する第 2の回路 とを含み、  The converter means includes: a first circuit that converts the combined first circularly polarized wave transmitted from the second waveguide into a first IF signal; and a converter that is transmitted from the third waveguide. A second circuit for converting the combined second circularly polarized wave into a second IF signal.
前記制御手段は、 前記第 1及び第 2の回路の選択された一方に電源を供給 する手段を含む、 前記アンテナ装置。  The antenna device, wherein the control means includes means for supplying power to a selected one of the first and second circuits.
1 4. 請求項 1 2に記載のアンテナ装置であって、  1 4. The antenna device according to claim 12, wherein
前記コンバータ手段は、 前記第 2の導波管から伝送される合成された第 1 の円偏波を第 1の I F信号に変換する第 1の回路と、 前記第 3の導波管から 伝送される合成された第 2の円偏波を第 2の I F信号に変換する第 2の回路 とを含み、 The converter means includes: a first circuit that converts the combined first circularly polarized wave transmitted from the second waveguide into a first IF signal; and a converter that is transmitted from the third waveguide. Second circuit for converting the combined second circularly polarized wave into a second IF signal And
前記制御手段は、 前記第 1及び第 2の回路の出力信号の内の一方を選択す る手段を含む、 前記アンテナ装置。  The antenna device, wherein the control unit includes a unit that selects one of output signals of the first and second circuits.
1 5. 請求項 1 1に記載のアンテナ装置であって、  1 5. The antenna device according to claim 11, wherein
前記第 1の導波管が前記第 1及び第 2の円偏波の内のどちらか一方を受信 できるように、 少なくとも前記第 1から第 3の導波管を回転させるアンテナ 回転手段と、  Antenna rotating means for rotating at least the first to third waveguides so that the first waveguide can receive one of the first and second circularly polarized waves; and
前記第 1の導波管が受信した円偏波が所望の円偏波であるか否かを判定し、 前記第 1の導波管が受信した円偏波が所望の円偏波でない場合に、 前記第 1の導波管が所望の円偏波を受信するように前記アンテナ回転手段を制御す る制御手段と、  Determine whether the circularly polarized wave received by the first waveguide is a desired circularly polarized wave, if the circularly polarized wave received by the first waveguide is not the desired circularly polarized wave Control means for controlling the antenna rotating means so that the first waveguide receives a desired circularly polarized wave;
をさらに含む、 前記アンテナ装置。  The antenna device, further comprising:
1 6. 請求項 1 1に記載のアンテナ装置であって、  1 6. The antenna device according to claim 11, wherein
移動体に搭載されるための筐体ををさらに含む、 前記アンテナ装置。  The antenna device, further comprising a housing to be mounted on a moving object.
1 7. 請求項 1 1に記載のァンテナ装置であつて、  1 7. The antenna device according to claim 11, wherein:
前記ガイド部は開口部である、 前記アンテナ装置。  The antenna device, wherein the guide unit is an opening.
1 8. 請求項 3に記載の平面アレーアンテナであって、  1 8. The planar array antenna according to claim 3, wherein
前記ガイ ド部は開口部である、 前記平面アレーアンテナ。  The planar array antenna, wherein the guide portion is an opening.
PCT/JP1996/000572 1996-03-08 1996-03-08 Planar array antenna WO1997033342A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA002217730A CA2217730A1 (en) 1996-03-08 1996-03-08 Planar array antenna
PCT/JP1996/000572 WO1997033342A1 (en) 1996-03-08 1996-03-08 Planar array antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA002217730A CA2217730A1 (en) 1996-03-08 1996-03-08 Planar array antenna
PCT/JP1996/000572 WO1997033342A1 (en) 1996-03-08 1996-03-08 Planar array antenna

Publications (1)

Publication Number Publication Date
WO1997033342A1 true WO1997033342A1 (en) 1997-09-12

Family

ID=25679701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000572 WO1997033342A1 (en) 1996-03-08 1996-03-08 Planar array antenna

Country Status (2)

Country Link
CA (1) CA2217730A1 (en)
WO (1) WO1997033342A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1122813A2 (en) * 2000-02-04 2001-08-08 Hughes Electronics Corporation An improved phased array terminal for equatorial satellite constellations
US7068733B2 (en) 2001-02-05 2006-06-27 The Directv Group, Inc. Sampling technique for digital beam former
WO2009084050A1 (en) 2007-12-28 2009-07-09 Selex Communications S.P.A. Slot antenna and method for operating the same
CN106711576A (en) * 2016-12-14 2017-05-24 西安电子科技大学 Solar cell and slot antenna integration device
CN110034386A (en) * 2019-03-26 2019-07-19 北京遥测技术研究所 Low axis can large-angle scanning Waveguide slot linear array antenna than high efficiency
EP3771040A4 (en) * 2018-05-14 2021-03-31 Mitsubishi Electric Corporation Array antenna device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012210314A1 (en) 2012-06-19 2013-12-19 Robert Bosch Gmbh Antenna arrangement and method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496389A (en) * 1978-01-17 1979-07-30 Toshiba Corp Radar device
JPS6236906A (en) * 1985-08-09 1987-02-17 Sharp Corp Antenna system in common use for two polarized waves
JPH02159802A (en) * 1988-12-13 1990-06-20 Nippon Steel Corp Method and apparatus for controlling attitude of reception antenna
JPH02186703A (en) * 1989-01-13 1990-07-23 Naohisa Goto Slot array antenna of waveguide
JPH03169104A (en) * 1989-11-28 1991-07-22 Matsushita Electric Ind Co Ltd Circularly polarized wave/linearly polarized wave antenna system and transmitter-receiver
JPH03169103A (en) * 1989-11-28 1991-07-22 Matsushita Electric Ind Co Ltd Circularly polarized wave receiver
JPH03174807A (en) * 1989-12-04 1991-07-30 Dx Antenna Co Ltd Planer antenna
JPH04145704A (en) * 1990-10-08 1992-05-19 Nec Corp Polarized wave common use antenna
JPH0522025A (en) * 1991-07-12 1993-01-29 Tokyo Inst Of Technol Parallel plane slot antenna
JPH0878948A (en) * 1994-09-08 1996-03-22 Nippon Steel Corp Leakage wave waveguide cross slot array antenna

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496389A (en) * 1978-01-17 1979-07-30 Toshiba Corp Radar device
JPS6236906A (en) * 1985-08-09 1987-02-17 Sharp Corp Antenna system in common use for two polarized waves
JPH02159802A (en) * 1988-12-13 1990-06-20 Nippon Steel Corp Method and apparatus for controlling attitude of reception antenna
JPH02186703A (en) * 1989-01-13 1990-07-23 Naohisa Goto Slot array antenna of waveguide
JPH03169104A (en) * 1989-11-28 1991-07-22 Matsushita Electric Ind Co Ltd Circularly polarized wave/linearly polarized wave antenna system and transmitter-receiver
JPH03169103A (en) * 1989-11-28 1991-07-22 Matsushita Electric Ind Co Ltd Circularly polarized wave receiver
JPH03174807A (en) * 1989-12-04 1991-07-30 Dx Antenna Co Ltd Planer antenna
JPH04145704A (en) * 1990-10-08 1992-05-19 Nec Corp Polarized wave common use antenna
JPH0522025A (en) * 1991-07-12 1993-01-29 Tokyo Inst Of Technol Parallel plane slot antenna
JPH0878948A (en) * 1994-09-08 1996-03-22 Nippon Steel Corp Leakage wave waveguide cross slot array antenna

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1122813A2 (en) * 2000-02-04 2001-08-08 Hughes Electronics Corporation An improved phased array terminal for equatorial satellite constellations
EP1122813A3 (en) * 2000-02-04 2004-03-10 Hughes Electronics Corporation An improved phased array terminal for equatorial satellite constellations
US7339520B2 (en) 2000-02-04 2008-03-04 The Directv Group, Inc. Phased array terminal for equatorial satellite constellations
US7068733B2 (en) 2001-02-05 2006-06-27 The Directv Group, Inc. Sampling technique for digital beam former
WO2009084050A1 (en) 2007-12-28 2009-07-09 Selex Communications S.P.A. Slot antenna and method for operating the same
CN106711576A (en) * 2016-12-14 2017-05-24 西安电子科技大学 Solar cell and slot antenna integration device
CN106711576B (en) * 2016-12-14 2019-10-25 西安电子科技大学 Solar battery and the integrated device of slot antenna
EP3771040A4 (en) * 2018-05-14 2021-03-31 Mitsubishi Electric Corporation Array antenna device
CN110034386A (en) * 2019-03-26 2019-07-19 北京遥测技术研究所 Low axis can large-angle scanning Waveguide slot linear array antenna than high efficiency
CN110034386B (en) * 2019-03-26 2020-10-23 北京遥测技术研究所 Low-axis-ratio high-efficiency wide-angle scanning waveguide slot linear array antenna

Also Published As

Publication number Publication date
CA2217730A1 (en) 1997-09-12

Similar Documents

Publication Publication Date Title
Gupta et al. 5G multi-element/port antenna design for wireless applications: a review
US20190229427A1 (en) Integrated waveguide cavity antenna and reflector dish
US7990327B2 (en) Cellular reflectarray antenna and method of making same
US5818391A (en) Microstrip array antenna
EP2248222B1 (en) Circularly polarised array antenna
JP3856835B2 (en) Dual polarization array antenna with central polarization controller
Lou et al. Compact dual-polarized continuous transverse stub array with 2-D beam scanning
US20100007573A1 (en) Multibeam antenna
CN111819731B (en) Multiband base station antenna
EP1018778B1 (en) Multi-layered patch antenna
Eid et al. A novel high power frequency beam-steering antenna array for long-range wireless power transfer
EP2304844B1 (en) Micro-strip planar array antenna for satellite telecommunications, adapted to operate at different reception and transmission frequencies and with cross-polarizations
WO1997033342A1 (en) Planar array antenna
Mei et al. A low-profile and beam-steerable transmitarray antenna: Design, fabrication, and measurement [antenna applications corner]
WO2009084050A1 (en) Slot antenna and method for operating the same
US7019703B2 (en) Antenna with Rotatable Reflector
Huang et al. A wide-band dual-polarized frequency-reconfigurable slot-ring antenna element using a diagonal feeding method for array design
Guan et al. 3D-printed cavity backed crossed dipole antenna for high gain, wideband circular polarization in sub-6 GHz
Khairnar et al. A parasitic antenna with independent pattern, beamwidth and polarization reconfigurability
JPH09307349A (en) Antenna system
Zhao et al. A compact metasurface antenna array with diverse polarizations
JP2004088185A (en) Shared antenna for circularly polarized wave
JPH08162844A (en) Plane array antenna
Mousavirazi et al. A low-profile and low-cost dual circularly polarized patch antenna
Scarselli et al. Compact Slot-Patch Antenna with Dual Circular Polarization

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

ENP Entry into the national phase

Ref document number: 2217730

Country of ref document: CA

Ref country code: CA

Ref document number: 2217730

Kind code of ref document: A

Format of ref document f/p: F

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)