WO1997033534A1 - Radiopaque stent markers - Google Patents

Radiopaque stent markers Download PDF

Info

Publication number
WO1997033534A1
WO1997033534A1 PCT/US1997/003923 US9703923W WO9733534A1 WO 1997033534 A1 WO1997033534 A1 WO 1997033534A1 US 9703923 W US9703923 W US 9703923W WO 9733534 A1 WO9733534 A1 WO 9733534A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
stent
rivet
openings
radiopacity
Prior art date
Application number
PCT/US1997/003923
Other languages
French (fr)
Inventor
Oren Globerman
Mordechay Beyar
Rafael Beyar
Ofer Dor
Amir David Loshakove
Original Assignee
Medtronic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from IL11747296A external-priority patent/IL117472A0/en
Application filed by Medtronic, Inc. filed Critical Medtronic, Inc.
Priority to AU22087/97A priority Critical patent/AU2208797A/en
Priority to EP97915040A priority patent/EP0891166B1/en
Priority to DE69732353T priority patent/DE69732353T2/en
Publication of WO1997033534A1 publication Critical patent/WO1997033534A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91583Adjacent bands being connected to each other by a bridge, whereby at least one of its ends is connected along the length of a strut between two consecutive apices within a band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0013Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0096Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
    • A61F2250/0098Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers

Definitions

  • This invention relates to endoprosthesis devices, generally called stents, and, more particularly, to radiopaque markers for use with endoprosthesis devices.
  • Stents are generally tubular shaped devices that function to hold open a segment of a blood vessel or other anatomical lumen and are useful in the treatment of atherosclerotic stenoses in blood vessels. Stents are particularly suitable for use in supporting and holding back a dissected arterial lining that can occlude the fluid passageway therethrough.
  • stents To accomplish precise placement of stents, various means are employed for identifying the position of the stent within a blood vessel.
  • One means used for accomplishing precise placement of a stent is the attachment to the stent of radiopaque markers so that, through the use of fluoroscopy, the position of the stent within a blood vessel can be identified. Once the stent with its radiopaque markers has been implanted, identification of the stent position during subsequent checkups of the treated segment is easily accomplished because the markers remain visible under fluoroscopy.
  • tantalum is a relatively soft material and it is, therefore, necessary to use more of this metal to achieve sufficient support from the stent.
  • the radiopaque markers described below are designed for stents produced from a material that is not sufficiently radiopaque to be seen through the use of fluoroscopy, e.g., a material such as Stainless Steel 316L, nitinol, or a cobalt- chromium alloy.
  • fluoroscopy e.g., a material such as Stainless Steel 316L, nitinol, or a cobalt- chromium alloy.
  • the edges of the stents are marked by inserting rivets through the ends or edges of the stents, which rivets are made of a material that is more radiopaque than the stent material.
  • the rivets can be made of gold, gold alloy, tantalum, tantalum alloy, platinum, or platinum alloy.
  • FIG. 1 shows a side elevational view of a portion of a balloon-expandable stent structure having a round opening at each distal end or edge in accordance with an embodiment of this invention
  • FIG. 2 shows a cross-sectional view taken along line A-A of FIG. 1 across the entire stent
  • FIG. 3 shows a cross-sectional view of a first embodiment of a rivet inserted through the opening of FIG. 1;
  • FIG. 4 shows a cross-sectional view of a second embodiment of a rivet inserted through the opening of FIG. 1;
  • FIG. 5 shows a cross-sectional view of a third embodiment of a rivet inserted through the opening of FIG. 1
  • FIG. 6 shows a cross-sectional view of a fourth embodiment of a rivet inserted through the opening of FIG. 1;
  • FIG. 7 shows a cross-sectional view of a fifth embodiment of a rivet inserted through the opening of FIG. 1;
  • FIG. 8 shows a side elevational view of a portion of a balloon-expandable stent structure having a second embodiment of an opening at each edge;
  • FIG. 9 shows a side elevational view of a portion of a balloon expandable stent structure having a third embodiment of an opening and showing a marker inserted through the opening;
  • Fig. 10 is a perspective view of an embodiment of the invention on a mandril with two exploded sections showing the end portions;
  • Fig. 11 is a perspective exploded view of a marker according to the invention, prior to heat treatment.
  • Fig. 12 is a perspective exploded view of a marker according to the invention, after heat treatment.
  • Balloon-expandable stent structures are well known in the art.
  • a balloon- expandable stent structure 1 has an opening 2 at each stent end or edge.
  • the openings 2 are round.
  • FIG. 2 shows a cross-section of the stent 1 and shows opening 2 passing radially from the external stent surface into the internal stent surface.
  • a marker having radiopaque qualities is inserted through the opening at each end or edge of the stent to mark the ends of the stent so that the position of the stent can be determined by the location of its ends when the markers are seen under X-ray. Because the markers are placed securely into and through holes or openings, they are referred to as "rivets" .
  • FIG. 3 illustrates the placement of a rivet 3 into a stent opening 2.
  • Rivet 3 comprises a short rod made from a radiopaque material, which is compressed into the opening 2 in the axial direction 4, thereby compressing the radiopaque material and causing a circumferential force 5 that enables rivet 3 to be held within opening 2 of stent 6.
  • the preferred location of the marker rivet is a region of the stent that is not deformed during expansion of the stent. In particular, for a balloon-expandable stent, this will usually be at an edge of the stent, at the end of the stent' s lattice-like structure.
  • an alternative manner of assuring that the rivet remains in the stent opening 2 is to form the rivet edges 7 with a cone-like, outwardly radiating shape, i.e., with beveled edges. Then, after the radiopaque rivet 8 is compressed into opening 2, the rivet 3 cannot leave the stent due to the friction between the edges 7 of the rivet and the outer edges of the inner walls of opening 2.
  • FIG. 5 Another means of securing the rivet within the lumen is shown in FIG. 5, in which the marker rivet 9 is made with chamfered edges 10. After rivet 9 is inserted into the opening 2, the stent 1 is pressed at points 11 so the marker rivet 9 cannot displace from the stent.
  • an enlarged head portion 13 of rivet 12 protrudes from opening 2 on one side of the stent in a diameter larger than that of the rivet portion situated within opening 2.
  • FIG. 7 illustrates a variation of this embodiment of the rivet in which the enlarged head portion 13 protrudes from both sides of the stent, achieving even larger height and greater diameter of the rivet and still better visualization of the rivet, and thus the stent ends, under X-ray.
  • FIG. 8 illustrates a second embodiment of the invention, in which an opening 14 of stent 17 is non-round, such as oval.
  • the non-round opening 14 allows a non-round rivet to be inserted therein. This serves to enlarge the rivet surface without interfering with the fluid flow within the stent.
  • marker rivets are completely surrounded by the stent material so that they either are contained within the stent material or project only from the external and internal surfaces of the stent.
  • Another embodiment of the invention and an additional type of marker rivet is shown in FIG.
  • the rivets are preferably compressed into the stent material.
  • the surface between the rivets and the stent can be heated to weld or fuse the rivets into position.
  • heating would be focused heating, for example, with a laser, where only the rivet and stent material would be present.
  • a marker 25 is preferably positioned at each end 26 of an expandable stent 27, which is shown on a mandril 24.
  • the markers 25 are positioned within ring structures 29 in the lattice of stent 27.
  • stent 27 and marker 25 be comprised of materials suitable for securely positioning each marker 25 within a ring structure 29 after heat treatment.
  • the marker 25 and ring structure 29 comprise gold and stainless steel 316L, respectively, as shown in Fig. 11, there will be migration during suitable heating. Gold from marker 25 will tend to migrate into the stainless steel 316L of ring structure 29, and components of the stainless steel 316L of ring structure 29 will migrate into marker 25, optionally forming stainless steel components on the surface of gold solid solution.
  • the gold markers are solute and adhesive with stainless steel 316L, and the result is a thin cover layer of stainless steel components with grains of gold solution on the surface of the gold of member 25.
  • This surface composite will behave like stainless steel in protecting the surface from, e.g., corrosion in an aggressive chemical environment and/or during an electropolishing process.
  • a gold solution is formed within the ring structure 29 while a matrix 33 of gold and stainless steel components is found on the outer surface 23 of member 25, as shown in Fig. 12. Any grains of gold solution, which tend to appear in small amounts, disappear.
  • the outer surface 23 of marker 25 will be flush with the outer surface of ring structure 29.
  • the marker of the embodiment of Fig. 12 is prepared by force fitting a substantially cylindrical marker 25 into a hole 35, which extends through ring structure 29. Marker 25 extends beyond either or both of outer ring structure surfaces 37. After appropriate heat treatment, for example, from about 700° to 1200°C, for from about 1 minute to 2 hours, preferably from about 1050° to 1100°C, for from about 2 to 30 minutes, under high vacuum, such as from about 10 "4 to 10" 6 torr in Argon atmosphere, gold within marker 25 will migrate, or diffuse, into ring structure 29, preferably from about 10 to 1000 A. Similarly, atoms of components from the stainless steel 316L may migrate similar distances into marker 25. Also, components of the stainless steel, and/or crystals of the stainless steel
  • 316L may appear on one or both outer surfaces 23 of marker 25.
  • the process described above is particularly advantageous for at least two reasons. First, more gold can be put into each marker, which results in a better x-ray or fluoroscopic image. And second, the migration of gold into the ring structure results in a more secure fit of the marker 25 in the ring structure 29, as compared to compression or welded marker situations. To demonstrate this last point stents were prepared with markers according to the processed described above and then the force required to separate the markers from the holes in the ring structures was measured. The results were as follows:
  • a stent could have, for example, from 2 to 20 marker rivets, located from about 0.5 to 5 cm apart longitudinally and/or from 1 to 4 rivets spaced radially, preferably equidistantly, or a combination thereof.
  • This invention is intended primarily for use with balloon- expandable stents, although it is envisioned that the technology disclosed herein is applicable to other medical devices, including, but not limited to, self-expanding stents.
  • An important factor is that the material of the rivet be more radiopaque than the primary material used in the device. For example, if a balloon-expandable stent is comprised of stainless steel or nitinol, then rivets comprised of gold, platinum, or titanium would be useful.
  • the invention herein is not limited to a particular lattice-work for a balloon-expandable stent. However, the invention is especially useful with the balloon-expandable stents described in co-pending U.S. Patent application Serial No. 08/543,337, filed October 16, 1995, incorporated herein by reference.

Abstract

Stents which are inserted into a body lumen preferably are made of materials which are not radiopaque enough, such as stainless steel 316L. X-ray visualization of a stent enables an accurate positioning of the stent and also a follow-up of its functioning within the patient's body. The radiopaque markers described here are rivets made of a material which is more radiopaque than the stent substance so the location of the stent can be identified. Preferably the stents are heat treated so that atoms from the stent material migrate into the marker material and vice versa.

Description

RADIOPAQUE STENT MARKERS
FIELD OF THE INVENTION
This invention relates to endoprosthesis devices, generally called stents, and, more particularly, to radiopaque markers for use with endoprosthesis devices.
BACKGROUND OF THE INVENTION
Stents are generally tubular shaped devices that function to hold open a segment of a blood vessel or other anatomical lumen and are useful in the treatment of atherosclerotic stenoses in blood vessels. Stents are particularly suitable for use in supporting and holding back a dissected arterial lining that can occlude the fluid passageway therethrough.
To accomplish precise placement of stents, various means are employed for identifying the position of the stent within a blood vessel. One means used for accomplishing precise placement of a stent is the attachment to the stent of radiopaque markers so that, through the use of fluoroscopy, the position of the stent within a blood vessel can be identified. Once the stent with its radiopaque markers has been implanted, identification of the stent position during subsequent checkups of the treated segment is easily accomplished because the markers remain visible under fluoroscopy.
In European patent application No. 95302708, assigned to ACS, Inc., a method of coating the stent edges as markers is described. However, this method has several practical disadvantages. First, heavy coating of radiopaque markers onto a stent is somewhat difficult to accomplish. In addition, the radiopaque material might not be attached properly to the stent material and may detach, leaving no way of identifying the position of the stent within the blood vessel. Furthermore, the radiopaque coating may increase the rigidity of the stent, thereby making it difficult to open the stent and decreasing the stent's effectiveness.
In another method for enabling the precise identification of a stent location using radiopaque markers, commonly assigned U.S. patent application Serial No. 08/394,799, filed February 27, 1995, discloses a hollow stent having radiopaque material inserted within the hollow stent wire. Because this method of providing radiopaque marking requires that the stent wire is hollow, this method might not be useful where a hollow stent is not desirable.
Another well-known method for enabling the precise identification of a stent location within a blood vessel is producing the stent itself from a radiopaque material such as tantalum. However, a disadvantage of this method is that tantalum is a relatively soft material and it is, therefore, necessary to use more of this metal to achieve sufficient support from the stent.
OBJECTS OF THE INVENTION
It is an object of the invention to provide improved stents.
It is also an object of the invention to provide stents having radiopaque markers.
It is a further object of the invention to provide stents where the distal ends of the stents comprise rivets of material that is more radiopaque than the material from which the stents are made.
These and other objects of the invention will become more apparent in the discussion below.
SUMMARY OF THE INVENTION The radiopaque markers described below are designed for stents produced from a material that is not sufficiently radiopaque to be seen through the use of fluoroscopy, e.g., a material such as Stainless Steel 316L, nitinol, or a cobalt- chromium alloy. In order to identify the position of the stent during its insertion into the body and after it has been implanted, however, it is enough to mark the stent edges so that they may be seen under X-ray. The location of the stent will thus be evident based upon the pinpoint locations of its two ends. According to this invention the edges of the stents are marked by inserting rivets through the ends or edges of the stents, which rivets are made of a material that is more radiopaque than the stent material. For example, if the stent material is S.S. 316L, the rivets can be made of gold, gold alloy, tantalum, tantalum alloy, platinum, or platinum alloy.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objects and advantages of the invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which the reference characters refer to like parts throughout and in which:
FIG. 1 shows a side elevational view of a portion of a balloon-expandable stent structure having a round opening at each distal end or edge in accordance with an embodiment of this invention;
FIG. 2 shows a cross-sectional view taken along line A-A of FIG. 1 across the entire stent;
FIG. 3 shows a cross-sectional view of a first embodiment of a rivet inserted through the opening of FIG. 1;
FIG. 4 shows a cross-sectional view of a second embodiment of a rivet inserted through the opening of FIG. 1;
FIG. 5 shows a cross-sectional view of a third embodiment of a rivet inserted through the opening of FIG. 1; FIG. 6 shows a cross-sectional view of a fourth embodiment of a rivet inserted through the opening of FIG. 1;
FIG. 7 shows a cross-sectional view of a fifth embodiment of a rivet inserted through the opening of FIG. 1;
FIG. 8 shows a side elevational view of a portion of a balloon-expandable stent structure having a second embodiment of an opening at each edge;
FIG. 9 shows a side elevational view of a portion of a balloon expandable stent structure having a third embodiment of an opening and showing a marker inserted through the opening; Fig. 10 is a perspective view of an embodiment of the invention on a mandril with two exploded sections showing the end portions;
Fig. 11 is a perspective exploded view of a marker according to the invention, prior to heat treatment; and
Fig. 12 is a perspective exploded view of a marker according to the invention, after heat treatment.
DETAILED DESCRIPTION OF THE INVENTION
Balloon-expandable stent structures are well known in the art. In this invention, as illustrated in FIG. 1, a balloon- expandable stent structure 1 has an opening 2 at each stent end or edge. In a first embodiment of the invention, the openings 2 are round. FIG. 2 shows a cross-section of the stent 1 and shows opening 2 passing radially from the external stent surface into the internal stent surface.
According to the invention a marker having radiopaque qualities is inserted through the opening at each end or edge of the stent to mark the ends of the stent so that the position of the stent can be determined by the location of its ends when the markers are seen under X-ray. Because the markers are placed securely into and through holes or openings, they are referred to as "rivets" .
FIG. 3 illustrates the placement of a rivet 3 into a stent opening 2. Rivet 3 comprises a short rod made from a radiopaque material, which is compressed into the opening 2 in the axial direction 4, thereby compressing the radiopaque material and causing a circumferential force 5 that enables rivet 3 to be held within opening 2 of stent 6. Because retention of the marker rivet requires an opening whose aperture size does not vary while the rivet is inserted therein, the preferred location of the marker rivet is a region of the stent that is not deformed during expansion of the stent. In particular, for a balloon-expandable stent, this will usually be at an edge of the stent, at the end of the stent' s lattice-like structure. As shown in FIG. 4, an alternative manner of assuring that the rivet remains in the stent opening 2 is to form the rivet edges 7 with a cone-like, outwardly radiating shape, i.e., with beveled edges. Then, after the radiopaque rivet 8 is compressed into opening 2, the rivet 3 cannot leave the stent due to the friction between the edges 7 of the rivet and the outer edges of the inner walls of opening 2.
Another means of securing the rivet within the lumen is shown in FIG. 5, in which the marker rivet 9 is made with chamfered edges 10. After rivet 9 is inserted into the opening 2, the stent 1 is pressed at points 11 so the marker rivet 9 cannot displace from the stent.
In a further embodiment of the invention illustrated in FIG. 6, an enlarged head portion 13 of rivet 12 protrudes from opening 2 on one side of the stent in a diameter larger than that of the rivet portion situated within opening 2. Thus, when the stent is viewed through X-ray, a larger height and greater diameter of the rivets and, therefore, a better visualization of the markers of the ends of the stent, is achieved. FIG. 7 illustrates a variation of this embodiment of the rivet in which the enlarged head portion 13 protrudes from both sides of the stent, achieving even larger height and greater diameter of the rivet and still better visualization of the rivet, and thus the stent ends, under X-ray. FIG. 8 illustrates a second embodiment of the invention, in which an opening 14 of stent 17 is non-round, such as oval. The non-round opening 14 allows a non-round rivet to be inserted therein. This serves to enlarge the rivet surface without interfering with the fluid flow within the stent. In the embodiments of this invention illustrated in FIGS. 1 through FIG. 8, marker rivets are completely surrounded by the stent material so that they either are contained within the stent material or project only from the external and internal surfaces of the stent. Another embodiment of the invention and an additional type of marker rivet is shown in FIG. 9, in which the place of insertion of the marker is not a loop or an opening passing radially through the stent material 18 but is rather a circumferential space encompassed by two circumferential detent projections 16. The corresponding marker 15 is pressed circumferentially into the space and is held there by specially designed projections 16 into adequate shape in the marker. This method enables an insertion of a marker with larger visible surface area by allowing the larger surface area to fit along and be co-extensive with the stent circumference as opposed to projecting radially into and out of the stent shape.
As described above, the rivets are preferably compressed into the stent material. Optionally, in addition to or in place of compression, the surface between the rivets and the stent can be heated to weld or fuse the rivets into position. Preferably such heating would be focused heating, for example, with a laser, where only the rivet and stent material would be present. In the embodiment of the invention set forth in Figs. 10 to 12, a marker 25 is preferably positioned at each end 26 of an expandable stent 27, which is shown on a mandril 24. The markers 25 are positioned within ring structures 29 in the lattice of stent 27. It is especially preferred that stent 27 and marker 25 be comprised of materials suitable for securely positioning each marker 25 within a ring structure 29 after heat treatment. For example, if the marker 25 and ring structure 29 comprise gold and stainless steel 316L, respectively, as shown in Fig. 11, there will be migration during suitable heating. Gold from marker 25 will tend to migrate into the stainless steel 316L of ring structure 29, and components of the stainless steel 316L of ring structure 29 will migrate into marker 25, optionally forming stainless steel components on the surface of gold solid solution. The gold markers are solute and adhesive with stainless steel 316L, and the result is a thin cover layer of stainless steel components with grains of gold solution on the surface of the gold of member 25. This surface composite will behave like stainless steel in protecting the surface from, e.g., corrosion in an aggressive chemical environment and/or during an electropolishing process. After heat treatment and electropolishing, a gold solution is formed within the ring structure 29 while a matrix 33 of gold and stainless steel components is found on the outer surface 23 of member 25, as shown in Fig. 12. Any grains of gold solution, which tend to appear in small amounts, disappear. The outer surface 23 of marker 25 will be flush with the outer surface of ring structure 29.
The marker of the embodiment of Fig. 12 is prepared by force fitting a substantially cylindrical marker 25 into a hole 35, which extends through ring structure 29. Marker 25 extends beyond either or both of outer ring structure surfaces 37. After appropriate heat treatment, for example, from about 700° to 1200°C, for from about 1 minute to 2 hours, preferably from about 1050° to 1100°C, for from about 2 to 30 minutes, under high vacuum, such as from about 10"4 to 10"6 torr in Argon atmosphere, gold within marker 25 will migrate, or diffuse, into ring structure 29, preferably from about 10 to 1000 A. Similarly, atoms of components from the stainless steel 316L may migrate similar distances into marker 25. Also, components of the stainless steel, and/or crystals of the stainless steel
316L, may appear on one or both outer surfaces 23 of marker 25.
The process described above is particularly advantageous for at least two reasons. First, more gold can be put into each marker, which results in a better x-ray or fluoroscopic image. And second, the migration of gold into the ring structure results in a more secure fit of the marker 25 in the ring structure 29, as compared to compression or welded marker situations. To demonstrate this last point stents were prepared with markers according to the processed described above and then the force required to separate the markers from the holes in the ring structures was measured. The results were as follows:
Table Process Separation Force
Compression 250 gr Compression plus welding 400 gr
Heat treatment 1-4 Kg Thus, the heat treatment resulted in a much more secure marker fitting.
The above-described markers are designed for both stent extremities in order to define the ends of the stent during fluoroscopy. Nonetheless these markers can be combined onto the entire stent length and also on several places located along the stent circumference, so that the stent diameter can be detected during fluoroscopy, as well. It is within the scope of the invention that a stent could have, for example, from 2 to 20 marker rivets, located from about 0.5 to 5 cm apart longitudinally and/or from 1 to 4 rivets spaced radially, preferably equidistantly, or a combination thereof.
This invention is intended primarily for use with balloon- expandable stents, although it is envisioned that the technology disclosed herein is applicable to other medical devices, including, but not limited to, self-expanding stents. An important factor is that the material of the rivet be more radiopaque than the primary material used in the device. For example, if a balloon-expandable stent is comprised of stainless steel or nitinol, then rivets comprised of gold, platinum, or titanium would be useful.
The invention herein is not limited to a particular lattice-work for a balloon-expandable stent. However, the invention is especially useful with the balloon-expandable stents described in co-pending U.S. Patent application Serial No. 08/543,337, filed October 16, 1995, incorporated herein by reference.
It will be further apparent to one skilled in this art that the improvements provided for in the present invention, while described with relation to certain specific physical embodiments also lend themselves to being applied in other physical arrangements not specifically provided for herein, which are nonetheless within the spirit and scope of the invention taught here.

Claims

WE CLAIM :
1. A method for increasing the radiopacity of an implantable medical device, which comprises the steps of forming openings in at least the distal edges or ends of the device and compressing material with greater radiopacity into said openings to form a rivet in each opening.
2. The method of Claim 1, wherein the medical device is a stent.
3. The method of Claim 2, wherein there are at least two openings with a rivet in each opening.
4. The method of Claim 2, wherein each opening is round and the rivet in each opening does not protrude from the outer surface of the stent.
5. The method of Claim 2, wherein the respective edges of the opening are beveled.
6. The method of Claim 2, wherein the respective edges of the opening are chamfered toward the center of the opening.
7. The method of Claim 2, wherein one or both ends of the rivet may protrude from the surface of the stent.
8. The method of Claim 1 which comprises the additional step of heating each rivet to cause the rivets and the medical device to fuse together.
9. A method for increasing the radiopacity of an implantable medical device, which comprises the steps of forming openings in at least the distal edges or ends of the device, inserting material with greater radiopacity into said openings to form a rivet in each opening, and heating the surface of the medical device adjacent the rivets to cause the rivets and the medical device to fuse together.
10. An implantable medical device with increased radiopacity, which comprises openings formed in at least the distal edges or ends of the device and material with greater radiopacity compressed into said openings to form a rivet in each opening.
11. The device of Claim 10, which is a stent.
12. The device of Claim 11, wherein there are at least two openings with a rivet in each opening.
13. The device of Claim 11, wherein each opening is round and the rivet in each opening does not protrude from the outer surface of the stent.
14. The device of Claim 11, wherein the respective edges of the opening are beveled.
15. The device of Claim 11, wherein the respective edges of the opening are chamfered toward the center of the opening.
16. The device of Claim 11, wherein one or both ends of the rivet may protrude from the surface of the stent.
17. An implantable medical device with increased radiopacity, which comprises openings formed in at least the distal edges or ends of the device and material with greater radiopacity fused into said openings to form a rivet in each opening.
18. In an implantable medical device, the improvement wherein the ends or edges of the device have openings and the openings contain rivets comprised of material more radiopaque than the material of the device.
19. A method for increasing the radiopacity of an implantable medical device, which comprises the steps of
(a) forming openings in at least the distal edges or ends of the device, (b) inserting marker material with greater radiopacity into said openings to form a rivet in each opening, and
(c) heating the device from step (b) for a sufficient temperature and for a sufficient time to cause atoms from the device to migrate into the marker material and atoms from the marker material to migrate into the device.
20. The method of claim 19, wherein the heating in step (c) is under vacuum.
21. The method of Claim 20, wherein the heating is at from about 10"4 to 10"6 torr.
22. The method of Claim 19, wherein the heating in step (c) is from about 700° to 1200°C and for from about 1 minute to 2 hours.
23. A product prepared by the process of Claim 19.
24. An implantable medical device with increased radiopacity, which comprises openings formed in at least the distal edges or ends of the device and marker material with greater radiopacity compressed into said openings to form a rivet in each opening, wherein atoms from the device have migrated into the marker material and atoms from the marker material have migrated into the device.
25. The device of Claim 24, wherein the atoms have migrated from 10 to 1000 A
26. The device of Claim 24, which is a stent.
27. The device of Claim 24, wherein there are at least two openings with a rivet in each opening.
28. The device of Claim 24, wherein each opening is round and the rivet in each opening does not protrude from the outer surface of the stent.
29. The device of Claim 24, wherein the respective edges of the opening are beveled.
30. In an implantable medical device, the improvement wherein the ends or edges of the device have openings and the openings contain markers comprised of material more radiopaque than the material of the device, wherein the devices have been heat treated so that atoms from the device migrate into the marker material and atoms from the marker material migrate into the device material.
PCT/US1997/003923 1996-03-13 1997-03-13 Radiopaque stent markers WO1997033534A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU22087/97A AU2208797A (en) 1996-03-13 1997-03-13 Radiopaque stent markers
EP97915040A EP0891166B1 (en) 1996-03-13 1997-03-13 Radiopaque stent markers
DE69732353T DE69732353T2 (en) 1996-03-13 1997-03-13 RADIATOR-UNIQUE STENT MARKINGS

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
IL11747296A IL117472A0 (en) 1996-03-13 1996-03-13 Radiopaque stent markers
IL117,472 1996-03-13
US63273996A 1996-04-15 1996-04-15
US08/632,739 1996-04-15
US08/697,989 1996-09-03
US08/697,989 US6334871B1 (en) 1996-03-13 1996-09-03 Radiopaque stent markers

Publications (1)

Publication Number Publication Date
WO1997033534A1 true WO1997033534A1 (en) 1997-09-18

Family

ID=27271759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/003923 WO1997033534A1 (en) 1996-03-13 1997-03-13 Radiopaque stent markers

Country Status (4)

Country Link
US (1) US6334871B1 (en)
EP (1) EP0891166B1 (en)
AU (1) AU2208797A (en)
WO (1) WO1997033534A1 (en)

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999015108A2 (en) * 1997-09-24 1999-04-01 Med Institute, Inc. Radially expandable stent
FR2768919A1 (en) * 1997-10-01 1999-04-02 Braun Celsa Sa EXPANDABLE SUPPORT FOR ANATOMICAL DUCT
WO1999018888A1 (en) * 1997-10-09 1999-04-22 Scimed Life Systems, Inc. Improved stent configurations
WO1999065417A1 (en) * 1998-06-16 1999-12-23 Mind-Guard Ltd. Implantable blood filtering device
WO2000002502A1 (en) * 1998-07-08 2000-01-20 Scimed Life Systems, Inc. An improved stent
US6033433A (en) * 1997-04-25 2000-03-07 Scimed Life Systems, Inc. Stent configurations including spirals
US6071308A (en) * 1997-10-01 2000-06-06 Boston Scientific Corporation Flexible metal wire stent
WO2000062710A1 (en) * 1999-04-16 2000-10-26 Medtronic, Inc. Medical device for intraluminal endovascular stenting
WO2000069366A1 (en) * 1999-05-18 2000-11-23 Med-Xcor Tubular stent-type endoprosthesis with a slight resistance to crushing
US6273913B1 (en) 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
WO2001072349A1 (en) * 2000-03-24 2001-10-04 Advanced Cardiovascular Systems, Inc. Radiopaque intraluminal stent
US6325821B1 (en) 1997-04-29 2001-12-04 Sorin Biomedica Cardio S.P.A. Stent for angioplasty
EP1216665A1 (en) 2000-12-18 2002-06-26 BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin Method for joining a marker element to an implant
WO2002078762A1 (en) * 2001-03-29 2002-10-10 Cordis Corporation Radiopaque intraluminal medical device
US6485508B1 (en) 2000-10-13 2002-11-26 Mcguinness Colm P. Low profile stent
US6492615B1 (en) 2000-10-12 2002-12-10 Scimed Life Systems, Inc. Laser polishing of medical devices
US6503271B2 (en) 1998-01-09 2003-01-07 Cordis Corporation Intravascular device with improved radiopacity
WO2003061502A1 (en) * 2000-10-26 2003-07-31 Scimed Life Systems, Inc. Stent having radiopaque markers and method of fabricating the same
EP1356789A1 (en) * 2002-04-22 2003-10-29 Cordis Corporation Intraluminal medical device with radiopaque markers
US6776796B2 (en) 2000-05-12 2004-08-17 Cordis Corportation Antiinflammatory drug and delivery device
US6814746B2 (en) 2002-11-01 2004-11-09 Ev3 Peripheral, Inc. Implant delivery system with marker interlock
US6896696B2 (en) 1998-11-20 2005-05-24 Scimed Life Systems, Inc. Flexible and expandable stent
US6998060B2 (en) 2001-03-01 2006-02-14 Cordis Corporation Flexible stent and method of manufacture
WO2006055533A3 (en) * 2004-11-19 2006-08-24 Abbott Lab Endoprosthesis having foot extensions
DE19753123B4 (en) * 1997-11-29 2006-11-09 B. Braun Melsungen Ag stent
WO2007005800A1 (en) * 2005-06-30 2007-01-11 Abbott Laboratories Endoprosthesis having foot extensions
US7273494B2 (en) 1997-04-29 2007-09-25 Sorin Biomedica Cardio S.R.L. Stents for angioplasty
WO2008140985A1 (en) * 2007-05-16 2008-11-20 Boston Scientific Limited Method of attaching radiopaque markers to intraluminal medical devices, and devices formed using the same
US7462190B2 (en) * 2000-02-14 2008-12-09 Angiomed Gmbh & Co. Medizintechnik Kg Stent matrix
US7789907B2 (en) 2000-03-06 2010-09-07 Boston Scientific Scimed, Inc. Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof
US7819912B2 (en) 1998-03-30 2010-10-26 Innovational Holdings Llc Expandable medical device with beneficial agent delivery mechanism
US7842083B2 (en) 2001-08-20 2010-11-30 Innovational Holdings, Llc. Expandable medical device with improved spatial distribution
US7850728B2 (en) 2000-10-16 2010-12-14 Innovational Holdings Llc Expandable medical device for delivery of beneficial agent
US7850727B2 (en) 2001-08-20 2010-12-14 Innovational Holdings, Llc Expandable medical device for delivery of beneficial agent
US8043364B2 (en) 2000-08-18 2011-10-25 Angiomed Gmbh & Co. Medizintechnik Kg Implant with attached element and method of making such an implant
US8182527B2 (en) 2001-05-07 2012-05-22 Cordis Corporation Heparin barrier coating for controlled drug release
EP1296615B2 (en) 2000-06-05 2012-06-13 Boston Scientific Limited INTRAVASCULAR STENT WITH improved COATING RETAINING CAPACITY
US8236048B2 (en) 2000-05-12 2012-08-07 Cordis Corporation Drug/drug delivery systems for the prevention and treatment of vascular disease
US8292950B2 (en) 2007-02-21 2012-10-23 C. R. Bard, Inc. Stent with radiopaque marker
US8303609B2 (en) 2000-09-29 2012-11-06 Cordis Corporation Coated medical devices
US8322593B2 (en) 2006-08-23 2012-12-04 C. R. Bard, Inc. Method of welding a component to a shape memory alloy workpiece with provision of an extra cut for compensating the variations of dimension of workpiece and component
WO2013045000A1 (en) * 2011-09-28 2013-04-04 Admedes Schuessler Gmbh Body implant with improved x-ray visibility, and method for producing same
US8475520B2 (en) 2006-12-06 2013-07-02 C. R. Bard, Inc. Stenting ring with marker
US8500793B2 (en) 2006-09-07 2013-08-06 C. R. Bard, Inc. Helical implant having different ends
US8518101B2 (en) 2007-04-03 2013-08-27 C. R. Bard, Inc. Bendable stent
US8551156B2 (en) 2006-11-10 2013-10-08 C. R. Bard, Inc. Stent
US8562665B2 (en) 1998-02-02 2013-10-22 Boston Scientific Scimed, Inc. Tubular stent consists of chevron-shape expansion struts and contralaterally attached diagonal-connectors
US8574286B2 (en) 2006-05-18 2013-11-05 C. R. Bard, Inc. Bend-capable stent prosthesis
US8721709B2 (en) 2007-09-07 2014-05-13 C. R. Bard, Inc. Self-expansible stent with radiopaque markers and method of making such a stent
US8998923B2 (en) 2005-08-31 2015-04-07 Spinealign Medical, Inc. Threaded bone filling material plunger
US9039755B2 (en) 2003-06-27 2015-05-26 Medinol Ltd. Helical hybrid stent
US9078778B2 (en) 1996-04-26 2015-07-14 Boston Scientific Scimed, Inc. Intravascular stent
CN104918585A (en) * 2012-10-25 2015-09-16 动脉再造技术股份有限公司 Radiopaque marker for bioresorbable stents
US9155642B2 (en) 2006-05-17 2015-10-13 C.R. Bard, Inc. Bend-capable tubular prosthesis
US9254207B2 (en) 2006-08-29 2016-02-09 C.R. Bard, Inc. Annular mesh
US9445924B2 (en) 2006-07-10 2016-09-20 C. R. Bard, Inc. Tubular metal prosthesis and method of making it
US9445926B2 (en) 1996-04-26 2016-09-20 Boston Scientific Scimed, Inc. Intravascular stent
US9456910B2 (en) 2003-06-27 2016-10-04 Medinol Ltd. Helical hybrid stent
US9566147B2 (en) 2010-11-17 2017-02-14 Abbott Cardiovascular Systems, Inc. Radiopaque intraluminal stents comprising cobalt-based alloys containing one or more platinum group metals, refractory metals, or combinations thereof
US9827120B2 (en) 2000-09-22 2017-11-28 Boston Scientific Scimed, Inc. Stent
CN107847329A (en) * 2015-06-12 2018-03-27 雅培心血管系统公司 Supporting structure with radiopaque label and the method that label is attached to supporting structure
US10052185B2 (en) 2016-02-12 2018-08-21 Covidien Lp Vascular device marker attachment
US10265089B2 (en) 2016-02-12 2019-04-23 Covidien Lp Vascular device visibility
US11298251B2 (en) 2010-11-17 2022-04-12 Abbott Cardiovascular Systems, Inc. Radiopaque intraluminal stents comprising cobalt-based alloys with primarily single-phase supersaturated tungsten content
US11806488B2 (en) 2011-06-29 2023-11-07 Abbott Cardiovascular Systems, Inc. Medical device including a solderable linear elastic nickel-titanium distal end section and methods of preparation therefor

Families Citing this family (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8728143B2 (en) * 1996-06-06 2014-05-20 Biosensors International Group, Ltd. Endoprosthesis deployment system for treating vascular bifurcations
US7238197B2 (en) 2000-05-30 2007-07-03 Devax, Inc. Endoprosthesis deployment system for treating vascular bifurcations
US7686846B2 (en) * 1996-06-06 2010-03-30 Devax, Inc. Bifurcation stent and method of positioning in a body lumen
US7179289B2 (en) * 1998-03-30 2007-02-20 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US20030139803A1 (en) * 2000-05-30 2003-07-24 Jacques Sequin Method of stenting a vessel with stent lumenal diameter increasing distally
US7261735B2 (en) * 2001-05-07 2007-08-28 Cordis Corporation Local drug delivery devices and methods for maintaining the drug coatings thereon
US6758859B1 (en) * 2000-10-30 2004-07-06 Kenny L. Dang Increased drug-loading and reduced stress drug delivery device
US6569194B1 (en) 2000-12-28 2003-05-27 Advanced Cardiovascular Systems, Inc. Thermoelastic and superelastic Ni-Ti-W alloy
US20040073294A1 (en) * 2002-09-20 2004-04-15 Conor Medsystems, Inc. Method and apparatus for loading a beneficial agent into an expandable medical device
US6926733B2 (en) * 2001-08-02 2005-08-09 Boston Scientific Scimed, Inc. Method for enhancing sheet or tubing metal stent radiopacity
US7056338B2 (en) * 2003-03-28 2006-06-06 Conor Medsystems, Inc. Therapeutic agent delivery device with controlled therapeutic agent release rates
GB0121980D0 (en) 2001-09-11 2001-10-31 Cathnet Science Holding As Expandable stent
US7137993B2 (en) 2001-12-03 2006-11-21 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US7892273B2 (en) * 2001-12-03 2011-02-22 Xtent, Inc. Custom length stent apparatus
US8080048B2 (en) * 2001-12-03 2011-12-20 Xtent, Inc. Stent delivery for bifurcated vessels
US7351255B2 (en) * 2001-12-03 2008-04-01 Xtent, Inc. Stent delivery apparatus and method
US7309350B2 (en) * 2001-12-03 2007-12-18 Xtent, Inc. Apparatus and methods for deployment of vascular prostheses
US7147656B2 (en) * 2001-12-03 2006-12-12 Xtent, Inc. Apparatus and methods for delivery of braided prostheses
US7182779B2 (en) * 2001-12-03 2007-02-27 Xtent, Inc. Apparatus and methods for positioning prostheses for deployment from a catheter
US20040186551A1 (en) 2003-01-17 2004-09-23 Xtent, Inc. Multiple independent nested stent structures and methods for their preparation and deployment
US20030135266A1 (en) * 2001-12-03 2003-07-17 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US7294146B2 (en) 2001-12-03 2007-11-13 Xtent, Inc. Apparatus and methods for delivery of variable length stents
US7083822B2 (en) * 2002-04-26 2006-08-01 Medtronic Vascular, Inc. Overlapping coated stents
EP2529707B1 (en) * 2002-05-08 2015-04-15 Abbott Laboratories Endoprosthesis having foot extensions
US20030225448A1 (en) * 2002-05-28 2003-12-04 Scimed Life Systems, Inc. Polar radiopaque marker for stent
US7357854B1 (en) 2002-08-19 2008-04-15 Advanced Cardiovascular Systems, Inc. Process for electropolishing a device made from cobalt-chromium
US20040054398A1 (en) * 2002-09-13 2004-03-18 Cully Edward H. Stent device with multiple helix construction
EP2668933A1 (en) * 2002-09-20 2013-12-04 Innovational Holdings, LLC Expandable medical device with openings for delivery of multiple beneficial agents
US7758636B2 (en) * 2002-09-20 2010-07-20 Innovational Holdings Llc Expandable medical device with openings for delivery of multiple beneficial agents
US7001422B2 (en) * 2002-09-23 2006-02-21 Cordis Neurovascular, Inc Expandable stent and delivery system
US6638301B1 (en) * 2002-10-02 2003-10-28 Scimed Life Systems, Inc. Medical device with radiopacity
US7331986B2 (en) * 2002-10-09 2008-02-19 Boston Scientific Scimed, Inc. Intraluminal medical device having improved visibility
DE60231843D1 (en) * 2002-11-08 2009-05-14 Jacques Seguin ENDOPROTHESIS FOR VESSEL FORKING
WO2004075789A2 (en) * 2003-02-26 2004-09-10 Cook Incorporated PROTHESIS ADAPTED FOR PLACEDd UNDER EXTERNAL IMAGING
DE602004030671D1 (en) * 2003-03-19 2011-02-03 Advanced Bio Prothestic Surfaces Ltd ENDOLUMINAL STENT WITH MEDIUM CONNECTING MEMBERS
AU2004226327A1 (en) * 2003-03-28 2004-10-14 Innovational Holdings, Llc Implantable medical device with beneficial agent concentration gradient
US7625398B2 (en) * 2003-05-06 2009-12-01 Abbott Laboratories Endoprosthesis having foot extensions
US20040236409A1 (en) * 2003-05-20 2004-11-25 Pelton Alan R. Radiopacity intraluminal medical device
US7241308B2 (en) * 2003-06-09 2007-07-10 Xtent, Inc. Stent deployment systems and methods
US20050060025A1 (en) * 2003-09-12 2005-03-17 Mackiewicz David A. Radiopaque markers for medical devices
US7247166B2 (en) * 2003-09-29 2007-07-24 Advanced Cardiovascular Systems, Inc. Intravascular stent with extendible end rings
US7553324B2 (en) * 2003-10-14 2009-06-30 Xtent, Inc. Fixed stent delivery devices and methods
US20050080475A1 (en) * 2003-10-14 2005-04-14 Xtent, Inc. A Delaware Corporation Stent delivery devices and methods
US7326236B2 (en) 2003-12-23 2008-02-05 Xtent, Inc. Devices and methods for controlling and indicating the length of an interventional element
US20070156225A1 (en) * 2003-12-23 2007-07-05 Xtent, Inc. Automated control mechanisms and methods for custom length stent apparatus
US20070106374A1 (en) * 2004-01-22 2007-05-10 Isoflux, Inc. Radiopaque coating for biomedical devices
US20050165472A1 (en) * 2004-01-22 2005-07-28 Glocker David A. Radiopaque coating for biomedical devices
US8002822B2 (en) * 2004-01-22 2011-08-23 Isoflux, Inc. Radiopaque coating for biomedical devices
US7243408B2 (en) * 2004-02-09 2007-07-17 Boston Scientific Scimed, Inc. Process method for attaching radio opaque markers to shape memory stent
CA2556212C (en) * 2004-02-13 2013-05-28 Conor Medsystems, Inc. Implantable drug delivery device including wire filaments
FR2867059B1 (en) * 2004-03-03 2006-05-26 Braun Medical ENDOPROTHESIS WITH MARKERS FOR CONDUCTING A LIVING BODY
US7761138B2 (en) * 2004-03-12 2010-07-20 Boston Scientific Scimed, Inc. MRI and X-ray visualization
US7323006B2 (en) * 2004-03-30 2008-01-29 Xtent, Inc. Rapid exchange interventional devices and methods
US20050228477A1 (en) * 2004-04-09 2005-10-13 Xtent, Inc. Topographic coatings and coating methods for medical devices
WO2010120926A1 (en) 2004-05-25 2010-10-21 Chestnut Medical Technologies, Inc. Vascular stenting for aneurysms
US8617234B2 (en) * 2004-05-25 2013-12-31 Covidien Lp Flexible vascular occluding device
US8628564B2 (en) 2004-05-25 2014-01-14 Covidien Lp Methods and apparatus for luminal stenting
JP2008502378A (en) 2004-05-25 2008-01-31 チェストナット メディカル テクノロジーズ インコーポレイテッド Flexible vascular closure device
US20060206200A1 (en) 2004-05-25 2006-09-14 Chestnut Medical Technologies, Inc. Flexible vascular occluding device
WO2006004645A2 (en) * 2004-06-28 2006-01-12 Isoflux, Inc. Porous coatings for biomedical implants
US20050288766A1 (en) * 2004-06-28 2005-12-29 Xtent, Inc. Devices and methods for controlling expandable prostheses during deployment
US8317859B2 (en) 2004-06-28 2012-11-27 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
CA2573329A1 (en) * 2004-07-13 2006-02-16 Isoflux, Inc. Porous coatings on electrodes for biomedical implants
US7303580B2 (en) * 2004-07-26 2007-12-04 Cook Incorporated Stent delivery system allowing controlled release of a stent
US20060069424A1 (en) * 2004-09-27 2006-03-30 Xtent, Inc. Self-constrained segmented stents and methods for their deployment
US7578838B2 (en) * 2005-01-12 2009-08-25 Cook Incorporated Delivery system with helical shaft
DE102005013547B4 (en) * 2005-03-23 2009-02-05 Admedes Schuessler Gmbh Aneurysm stent and process for its preparation
JP5523700B2 (en) 2005-04-04 2014-06-18 フレキシブル ステンティング ソリューションズ,インク. Flexible stent
DE102005019612B4 (en) * 2005-04-27 2010-11-25 Admedes Schuessler Gmbh Mechanical locking of an X-ray marker in the eyelet of a stent or in another body implant
AU2005332044B2 (en) 2005-05-25 2012-01-19 Covidien Lp System and method for delivering and deploying and occluding device within a vessel
DE102005039136B4 (en) * 2005-08-18 2011-07-28 Admedes Schuessler GmbH, 75179 Improving the radiopacity and corrosion resistance of NiTi stents using sandwiched rivets
US20070067034A1 (en) * 2005-08-31 2007-03-22 Chirico Paul E Implantable devices and methods for treating micro-architecture deterioration of bone tissue
US20070156230A1 (en) * 2006-01-04 2007-07-05 Dugan Stephen R Stents with radiopaque markers
US20070179587A1 (en) * 2006-01-30 2007-08-02 Xtent, Inc. Apparatus and methods for deployment of custom-length prostheses
WO2007100556A1 (en) 2006-02-22 2007-09-07 Ev3 Inc. Embolic protection systems having radiopaque filter mesh
JP2009530060A (en) 2006-03-20 2009-08-27 エックステント・インコーポレーテッド Apparatus and method for deploying connected prosthetic segments
WO2007126931A2 (en) * 2006-03-31 2007-11-08 Ev3 Inc. Embolic protection devices having radiopaque markers
US8752268B2 (en) * 2006-05-26 2014-06-17 Abbott Cardiovascular Systems Inc. Method of making stents with radiopaque markers
US20070281117A1 (en) * 2006-06-02 2007-12-06 Xtent, Inc. Use of plasma in formation of biodegradable stent coating
US20080015684A1 (en) 2006-07-11 2008-01-17 Wu Patrick P Method And Apparatus For Attaching Radiopaque Markers To A Stent
US20080269865A1 (en) * 2006-08-07 2008-10-30 Xtent, Inc. Custom Length Stent Apparatus
US20080294204A1 (en) * 2007-03-07 2008-11-27 Spineworks Medical, Inc. Systems, methods, and devices for soft tissue attachment to bone
US20100217335A1 (en) * 2008-12-31 2010-08-26 Chirico Paul E Self-expanding bone stabilization devices
US8414637B2 (en) * 2006-09-08 2013-04-09 Boston Scientific Scimed, Inc. Stent
US20080166526A1 (en) * 2007-01-08 2008-07-10 Monk Russell A Formed panel structure
US20080199510A1 (en) 2007-02-20 2008-08-21 Xtent, Inc. Thermo-mechanically controlled implants and methods of use
DE602008006537D1 (en) * 2007-03-02 2011-06-09 Spinealign Medical Inc FRACTURE-FIXATION SYSTEM
US8974514B2 (en) * 2007-03-13 2015-03-10 Abbott Cardiovascular Systems Inc. Intravascular stent with integrated link and ring strut
US8486132B2 (en) 2007-03-22 2013-07-16 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US8545548B2 (en) * 2007-03-30 2013-10-01 DePuy Synthes Products, LLC Radiopaque markers for implantable stents and methods for manufacturing the same
US20090276048A1 (en) * 2007-05-08 2009-11-05 Chirico Paul E Devices and method for bilateral support of a compression-fractured vertebral body
US8500786B2 (en) * 2007-05-15 2013-08-06 Abbott Laboratories Radiopaque markers comprising binary alloys of titanium
US8500787B2 (en) * 2007-05-15 2013-08-06 Abbott Laboratories Radiopaque markers and medical devices comprising binary alloys of titanium
US9149610B2 (en) 2007-05-31 2015-10-06 Abbott Cardiovascular Systems Inc. Method and apparatus for improving delivery of an agent to a kidney
US9144509B2 (en) * 2007-05-31 2015-09-29 Abbott Cardiovascular Systems Inc. Method and apparatus for delivering an agent to a kidney
US8216209B2 (en) 2007-05-31 2012-07-10 Abbott Cardiovascular Systems Inc. Method and apparatus for delivering an agent to a kidney
US9364586B2 (en) * 2007-05-31 2016-06-14 Abbott Cardiovascular Systems Inc. Method and apparatus for improving delivery of an agent to a kidney
US20090005853A1 (en) * 2007-06-26 2009-01-01 Karim Osman Integration Of Markers Into Bar Arms
US7988723B2 (en) 2007-08-02 2011-08-02 Flexible Stenting Solutions, Inc. Flexible stent
US20090076584A1 (en) * 2007-09-19 2009-03-19 Xtent, Inc. Apparatus and methods for deployment of multiple custom-length prostheses
EP2254512B1 (en) * 2008-01-24 2016-01-06 Medtronic, Inc. Markers for prosthetic heart valves
US20090204203A1 (en) * 2008-02-07 2009-08-13 Medtronic Vascular, Inc. Bioabsorbable Stent Having a Radiopaque Marker
US20090216260A1 (en) * 2008-02-20 2009-08-27 Souza Alison M Interlocking handle
US9101503B2 (en) * 2008-03-06 2015-08-11 J.W. Medical Systems Ltd. Apparatus having variable strut length and methods of use
US20100168748A1 (en) * 2008-07-16 2010-07-01 Knopp Peter G Morselizer
US8821562B2 (en) 2008-09-25 2014-09-02 Advanced Bifurcation Systems, Inc. Partially crimped stent
US8769796B2 (en) 2008-09-25 2014-07-08 Advanced Bifurcation Systems, Inc. Selective stent crimping
US11298252B2 (en) 2008-09-25 2022-04-12 Advanced Bifurcation Systems Inc. Stent alignment during treatment of a bifurcation
CN102215780B (en) 2008-09-25 2015-10-14 高级分支系统股份有限公司 Part crimped stent
US8795347B2 (en) 2008-09-25 2014-08-05 Advanced Bifurcation Systems, Inc. Methods and systems for treating a bifurcation with provisional side branch stenting
US9149376B2 (en) 2008-10-06 2015-10-06 Cordis Corporation Reconstrainable stent delivery system
US9199066B2 (en) 2010-03-12 2015-12-01 Quattro Vascular Pte Ltd. Device and method for compartmental vessel treatment
CA2794080A1 (en) 2010-03-24 2011-09-29 Advanced Bifurcation Systems, Inc. System and methods for treating a bifurcation
WO2011119883A1 (en) 2010-03-24 2011-09-29 Advanced Bifurcation Systems, Inc. Stent alignment during treatment of a bifurcation
US8348993B2 (en) * 2010-03-29 2013-01-08 Boston Scientific Scimed, Inc. Flexible stent design
US8658006B2 (en) 2010-04-12 2014-02-25 Abbott Cardiovascular Systems Inc. System and method for electropolising devices
CN202027751U (en) * 2010-05-10 2011-11-09 谢建 Developing mark for enabling polymer support clearly seen in x-ray
US8920486B2 (en) 2010-05-18 2014-12-30 RBKPark, LLC Medical device
JP2014508559A (en) 2010-12-30 2014-04-10 ボストン サイエンティフィック サイムド,インコーポレイテッド Multi-stage open stent design
WO2012109382A2 (en) 2011-02-08 2012-08-16 Advanced Bifurcation Systems, Inc. Multi-stent and multi-balloon apparatus for treating bifurcations and methods of use
EP2672932B1 (en) 2011-02-08 2018-09-19 Advanced Bifurcation Systems, Inc. System for treating a bifurcation with a fully crimped stent
US8790388B2 (en) 2011-03-03 2014-07-29 Boston Scientific Scimed, Inc. Stent with reduced profile
WO2012118526A1 (en) 2011-03-03 2012-09-07 Boston Scientific Scimed, Inc. Low strain high strength stent
CN102429750B (en) 2011-08-15 2015-05-20 上海微创医疗器械(集团)有限公司 Intravascular stent with improved developing performance and method for improving developing performance of intravascular stent
WO2013119735A1 (en) 2012-02-08 2013-08-15 Tanhum Feld Constraining structure with non-linear axial struts
US9216033B2 (en) * 2012-02-08 2015-12-22 Quattro Vascular Pte Ltd. System and method for treating biological vessels
US10940167B2 (en) 2012-02-10 2021-03-09 Cvdevices, Llc Methods and uses of biological tissues for various stent and other medical applications
US20140013574A1 (en) * 2012-07-11 2014-01-16 Intact Vascular, Inc. Systems and methods for attaching radiopaque markers to a medical device
US9114001B2 (en) 2012-10-30 2015-08-25 Covidien Lp Systems for attaining a predetermined porosity of a vascular device
US9452070B2 (en) 2012-10-31 2016-09-27 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US9943427B2 (en) 2012-11-06 2018-04-17 Covidien Lp Shaped occluding devices and methods of using the same
US9220824B2 (en) 2013-01-08 2015-12-29 AdjuCor GmbH Implanting cardiac devices
DE102013200151A1 (en) 2013-01-08 2014-07-10 AdjuCor GmbH Heart support device with markings
DE102013200148A1 (en) 2013-01-08 2014-07-10 AdjuCor GmbH Plug system for a cardiac assist device
EP2777604B1 (en) 2013-01-23 2018-10-03 Cook Medical Technologies LLC Stent with positioning arms
US9157174B2 (en) 2013-02-05 2015-10-13 Covidien Lp Vascular device for aneurysm treatment and providing blood flow into a perforator vessel
AU2014214700B2 (en) 2013-02-11 2018-01-18 Cook Medical Technologies Llc Expandable support frame and medical device
WO2014169261A1 (en) 2013-04-11 2014-10-16 Blockade Medical, LLC Radiopaque devices for cerebral aneurysm repair
EP2995281B1 (en) * 2013-05-07 2019-12-11 Kaneka Corporation Stent, method for producing same and device for producing same
JP6081948B2 (en) * 2014-03-25 2017-02-15 株式会社World Medish Technology Flexible stent
WO2016079649A1 (en) 2014-11-17 2016-05-26 Quattro Vascular Pte Ltd. Balloon catheter system
US9999527B2 (en) * 2015-02-11 2018-06-19 Abbott Cardiovascular Systems Inc. Scaffolds having radiopaque markers
US9737368B2 (en) 2015-02-24 2017-08-22 Abbott Cardiovascular Systems Inc. System and method for attaching a radiopaque marker bead to an endoprosthesis
CN108464879B (en) * 2017-02-21 2020-04-10 上海微创医疗器械(集团)有限公司 Support frame
WO2020219567A1 (en) * 2019-04-25 2020-10-29 Intact Vascular, Inc. Intravascular implant
US11406403B2 (en) * 2019-06-14 2022-08-09 Neuravi Limited Visibility of mechanical thrombectomy device during diagnostic imaging
US11147694B1 (en) 2021-03-26 2021-10-19 Vesper Medical, Inc. Medical implants with structural members having barbs for retaining radiopaque markers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1205743A (en) * 1966-07-15 1970-09-16 Nat Res Dev Surgical dilator
WO1995003010A1 (en) * 1993-07-23 1995-02-02 Cook Incorporated A flexible stent having a pattern formed from a sheet of material

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US264502A (en) 1882-09-19 Rivet-joint
US3902501A (en) 1973-06-21 1975-09-02 Medtronic Inc Endocardial electrode
US4051592A (en) 1975-12-29 1977-10-04 Briles Franklin S Expanding head riveting method
CH656526A5 (en) * 1982-10-05 1986-07-15 Sulzer Ag ARTIFICIAL ACETS.
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
CH668903A5 (en) * 1986-02-18 1989-02-15 Sulzer Ag SHAFT FOR A HIP JOINT PROSTHESIS.
US5080674A (en) * 1988-09-08 1992-01-14 Zimmer, Inc. Attachment mechanism for securing an additional portion to an implant
CA2026604A1 (en) 1989-10-02 1991-04-03 Rodney G. Wolff Articulated stent
CA2079417C (en) 1991-10-28 2003-01-07 Lilip Lau Expandable stents and method of making same
JPH07505316A (en) 1992-03-31 1995-06-15 ボストン サイエンティフィック コーポレーション medical wire
US5306250A (en) * 1992-04-02 1994-04-26 Indiana University Foundation Method and apparatus for intravascular drug delivery
US5366473A (en) * 1992-08-18 1994-11-22 Ultrasonic Sensing And Monitoring Systems, Inc. Method and apparatus for applying vascular grafts
ES2110463T3 (en) * 1992-12-07 1998-02-16 Plus Endoprothetik Ag METAL ANCHOR COVER FOR THE ACCOMMODATION OF A PLASTIC ACETABULAR BODY OF A SYNTHETIC COTILOID CAVITY.
ES2166370T3 (en) 1993-01-19 2002-04-16 Schneider Usa Inc IMPLANTABLE FILAMENT IN COMPOSITE MATERIAL.
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5556413A (en) 1994-03-11 1996-09-17 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
JP2825452B2 (en) 1994-04-25 1998-11-18 アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド Radiopak stent marker
US5607442A (en) 1995-11-13 1997-03-04 Isostent, Inc. Stent with improved radiopacity and appearance characteristics
US6203569B1 (en) 1996-01-04 2001-03-20 Bandula Wijay Flexible stent
US5824042A (en) 1996-04-05 1998-10-20 Medtronic, Inc. Endoluminal prostheses having position indicating markers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1205743A (en) * 1966-07-15 1970-09-16 Nat Res Dev Surgical dilator
WO1995003010A1 (en) * 1993-07-23 1995-02-02 Cook Incorporated A flexible stent having a pattern formed from a sheet of material

Cited By (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9078778B2 (en) 1996-04-26 2015-07-14 Boston Scientific Scimed, Inc. Intravascular stent
US9445926B2 (en) 1996-04-26 2016-09-20 Boston Scientific Scimed, Inc. Intravascular stent
US7666222B2 (en) 1997-04-18 2010-02-23 Cordis Corporation Methods and devices for delivering therapeutic agents to target vessels
US6273913B1 (en) 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
US6585764B2 (en) 1997-04-18 2003-07-01 Cordis Corporation Stent with therapeutically active dosage of rapamycin coated thereon
US6808536B2 (en) 1997-04-18 2004-10-26 Carol Wright Stent containing rapamycin or its analogs using a modified stent
US6334870B1 (en) 1997-04-25 2002-01-01 Scimed Life Systems, Inc. Stent configurations including spirals
US7905912B2 (en) 1997-04-25 2011-03-15 Boston Scientfic Scimed, Inc. Stent configurations
US8430924B2 (en) 1997-04-25 2013-04-30 Boston Scientific Scimed, Inc. Stent configurations
US6033433A (en) * 1997-04-25 2000-03-07 Scimed Life Systems, Inc. Stent configurations including spirals
US6746479B2 (en) 1997-04-25 2004-06-08 Scimed Life Systems, Inc. Stent cell configurations including spirals
US6325821B1 (en) 1997-04-29 2001-12-04 Sorin Biomedica Cardio S.P.A. Stent for angioplasty
US7273494B2 (en) 1997-04-29 2007-09-25 Sorin Biomedica Cardio S.R.L. Stents for angioplasty
EP0875215B1 (en) * 1997-04-29 2002-11-06 SORIN BIOMEDICA CARDIO S.p.A. "A stent for angioplasty"
US6464720B2 (en) 1997-09-24 2002-10-15 Cook Incorporated Radially expandable stent
WO1999015108A3 (en) * 1997-09-24 1999-07-01 Med Inst Inc Radially expandable stent
AU738502B2 (en) * 1997-09-24 2001-09-20 Cook Medical Technologies Llc Radially expandable stent
WO1999015108A2 (en) * 1997-09-24 1999-04-01 Med Institute, Inc. Radially expandable stent
US6231598B1 (en) 1997-09-24 2001-05-15 Med Institute, Inc. Radially expandable stent
US6976994B2 (en) 1997-10-01 2005-12-20 Boston Scientific Scimed, Inc. Flexible metal wire stent
US6071308A (en) * 1997-10-01 2000-06-06 Boston Scientific Corporation Flexible metal wire stent
US6723118B1 (en) 1997-10-01 2004-04-20 Scimed Life Systems, Inc. Flexible metal wire stent
FR2768919A1 (en) * 1997-10-01 1999-04-02 Braun Celsa Sa EXPANDABLE SUPPORT FOR ANATOMICAL DUCT
WO1999016383A1 (en) * 1997-10-01 1999-04-08 B. Braun Celsa Expansible support for anatomical duct
US7335225B2 (en) 1997-10-09 2008-02-26 Boston Scientific Scimed, Inc Stent configurations
EP1844741A3 (en) * 1997-10-09 2007-10-24 Boston Scientific Limited Improved stent configurations
EP1844741A2 (en) * 1997-10-09 2007-10-17 Boston Scientific Limited Improved stent configurations
US6013091A (en) * 1997-10-09 2000-01-11 Scimed Life Systems, Inc. Stent configurations
US6416538B1 (en) 1997-10-09 2002-07-09 Scimed Life Systems, Inc. Stent configurations
US7951187B2 (en) 1997-10-09 2011-05-31 Boston Scientific Scimed, Inc. Stent configurations
WO1999018888A1 (en) * 1997-10-09 1999-04-22 Scimed Life Systems, Inc. Improved stent configurations
DE19753123B4 (en) * 1997-11-29 2006-11-09 B. Braun Melsungen Ag stent
US6503271B2 (en) 1998-01-09 2003-01-07 Cordis Corporation Intravascular device with improved radiopacity
US6935404B2 (en) 1998-01-09 2005-08-30 Thomas Duerig Intravascular device with improved radiopacity
US8562665B2 (en) 1998-02-02 2013-10-22 Boston Scientific Scimed, Inc. Tubular stent consists of chevron-shape expansion struts and contralaterally attached diagonal-connectors
US7896912B2 (en) 1998-03-30 2011-03-01 Innovational Holdings, Llc Expandable medical device with S-shaped bridging elements
US7819912B2 (en) 1998-03-30 2010-10-26 Innovational Holdings Llc Expandable medical device with beneficial agent delivery mechanism
US8052734B2 (en) 1998-03-30 2011-11-08 Innovational Holdings, Llc Expandable medical device with beneficial agent delivery mechanism
US8439968B2 (en) 1998-03-30 2013-05-14 Innovational Holdings, Llc Expandable medical device for delivery of beneficial agent
US8052735B2 (en) 1998-03-30 2011-11-08 Innovational Holdings, Llc Expandable medical device with ductile hinges
WO1999065417A1 (en) * 1998-06-16 1999-12-23 Mind-Guard Ltd. Implantable blood filtering device
US7731746B2 (en) 1998-07-08 2010-06-08 Boston Scientific Scimed, Inc. Stent
US8986367B2 (en) 1998-07-08 2015-03-24 Boston Scientific Scimed, Inc. Stent
US6945993B2 (en) 1998-07-08 2005-09-20 Boston Scientific Scimed, Inc. Stent
US6261319B1 (en) 1998-07-08 2001-07-17 Scimed Life Systems, Inc. Stent
US8206432B2 (en) 1998-07-08 2012-06-26 Boston Scientific Scimed, Inc. Stent
US8668731B2 (en) 1998-07-08 2014-03-11 Boston Scientific Scimed, Inc. Stent
EP1477135A2 (en) * 1998-07-08 2004-11-17 Boston Scientific Limited An improved stent
US7326243B2 (en) 1998-07-08 2008-02-05 Boston Scientific Scimed, Inc. Stent
WO2000002502A1 (en) * 1998-07-08 2000-01-20 Scimed Life Systems, Inc. An improved stent
US6478816B2 (en) 1998-07-08 2002-11-12 Scimed Life Systems, Inc. Stent
EP1477135A3 (en) * 1998-07-08 2004-12-22 Boston Scientific Limited An improved stent
US6896696B2 (en) 1998-11-20 2005-05-24 Scimed Life Systems, Inc. Flexible and expandable stent
US7491228B2 (en) 1998-11-20 2009-02-17 Boston Scientific Scimed, Inc. Flexible and expandable stent
WO2000062710A1 (en) * 1999-04-16 2000-10-26 Medtronic, Inc. Medical device for intraluminal endovascular stenting
FR2793673A1 (en) * 1999-05-18 2000-11-24 Jean Marie Lefebvre Tubular stent-type endoprosthesis for use in cardiovascular surgery is cut out from stainless steel tube and has radial force slightly greater than the elastic retraction of blood vessel in which it is implanted
WO2000069366A1 (en) * 1999-05-18 2000-11-23 Med-Xcor Tubular stent-type endoprosthesis with a slight resistance to crushing
US7462190B2 (en) * 2000-02-14 2008-12-09 Angiomed Gmbh & Co. Medizintechnik Kg Stent matrix
US7789907B2 (en) 2000-03-06 2010-09-07 Boston Scientific Scimed, Inc. Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof
US8267991B2 (en) 2000-03-06 2012-09-18 Boston Scientific Scimed, Inc. Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof
US7250058B1 (en) 2000-03-24 2007-07-31 Abbott Cardiovascular Systems Inc. Radiopaque intraluminal stent
WO2001072349A1 (en) * 2000-03-24 2001-10-04 Advanced Cardiovascular Systems, Inc. Radiopaque intraluminal stent
US8852264B2 (en) 2000-03-24 2014-10-07 Abbott Cardiovascular Systems, Inc. Radiopaque intraluminal stent
US8430923B2 (en) 2000-03-24 2013-04-30 Abbott Cardiovascular Systems, Inc. Radiopaque intraluminal stent
US6776796B2 (en) 2000-05-12 2004-08-17 Cordis Corportation Antiinflammatory drug and delivery device
US8236048B2 (en) 2000-05-12 2012-08-07 Cordis Corporation Drug/drug delivery systems for the prevention and treatment of vascular disease
EP1296615B2 (en) 2000-06-05 2012-06-13 Boston Scientific Limited INTRAVASCULAR STENT WITH improved COATING RETAINING CAPACITY
US9480587B2 (en) 2000-08-17 2016-11-01 Angiomed Gmbh & Co. Medizintechnik Kg Implant with attached element and method of making such an implant
US10213327B2 (en) 2000-08-17 2019-02-26 Angiomed Gmbh & Co. Medizintechnik Kg Implant with attached element and method of making such an implant
US8900290B2 (en) 2000-08-17 2014-12-02 Angiomed Gmbh & Co. Medizintechnik Kg Implant with attached element and method of making such an implant
USRE44463E1 (en) 2000-08-18 2013-08-27 Angiomed Gmbh & Co. Medizintechnik Kg Implant with attached element and method of making such an implant
US8043364B2 (en) 2000-08-18 2011-10-25 Angiomed Gmbh & Co. Medizintechnik Kg Implant with attached element and method of making such an implant
US9827120B2 (en) 2000-09-22 2017-11-28 Boston Scientific Scimed, Inc. Stent
US8303609B2 (en) 2000-09-29 2012-11-06 Cordis Corporation Coated medical devices
US6492615B1 (en) 2000-10-12 2002-12-10 Scimed Life Systems, Inc. Laser polishing of medical devices
US6485508B1 (en) 2000-10-13 2002-11-26 Mcguinness Colm P. Low profile stent
US7850728B2 (en) 2000-10-16 2010-12-14 Innovational Holdings Llc Expandable medical device for delivery of beneficial agent
US8187321B2 (en) 2000-10-16 2012-05-29 Innovational Holdings, Llc Expandable medical device for delivery of beneficial agent
WO2003061502A1 (en) * 2000-10-26 2003-07-31 Scimed Life Systems, Inc. Stent having radiopaque markers and method of fabricating the same
US7291167B2 (en) 2000-10-26 2007-11-06 Boston Scientific Scimed, Inc. Stent having radiopaque markers and method of fabricating the same
EP1216665A1 (en) 2000-12-18 2002-06-26 BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin Method for joining a marker element to an implant
US6899914B2 (en) 2000-12-18 2005-05-31 Biotronik Mess-Und Therapiegeraete Gmbh Ingeniurbuero Berlin Method of applying a marker element to an implant and an implant provided with a marker element
US6998060B2 (en) 2001-03-01 2006-02-14 Cordis Corporation Flexible stent and method of manufacture
AU2002303157B2 (en) * 2001-03-29 2006-12-21 Cardinal Health 529, Llc Radiopaque intraluminal medical device
US6863685B2 (en) 2001-03-29 2005-03-08 Cordis Corporation Radiopacity intraluminal medical device
WO2002078762A1 (en) * 2001-03-29 2002-10-10 Cordis Corporation Radiopaque intraluminal medical device
US8182527B2 (en) 2001-05-07 2012-05-22 Cordis Corporation Heparin barrier coating for controlled drug release
US8882829B2 (en) 2001-06-19 2014-11-11 Cordis Corporation Low profile improved radiopacity intraluminal medical device
US8197535B2 (en) 2001-06-19 2012-06-12 Cordis Corporation Low profile improved radiopacity intraluminal medical device
US7842083B2 (en) 2001-08-20 2010-11-30 Innovational Holdings, Llc. Expandable medical device with improved spatial distribution
US7850727B2 (en) 2001-08-20 2010-12-14 Innovational Holdings, Llc Expandable medical device for delivery of beneficial agent
EP1356789A1 (en) * 2002-04-22 2003-10-29 Cordis Corporation Intraluminal medical device with radiopaque markers
AU2003203791B2 (en) * 2002-04-22 2008-07-03 Cardinal Health 529, Llc Low profile improved radiopacity intraluminal medical device
US9597212B2 (en) 2002-11-01 2017-03-21 Covidien Lp Implant delivery system with marker interlock
US8696729B2 (en) 2002-11-01 2014-04-15 Covidien Lp Implant delivery system with marker interlock
US6814746B2 (en) 2002-11-01 2004-11-09 Ev3 Peripheral, Inc. Implant delivery system with marker interlock
US8915954B2 (en) 2003-05-06 2014-12-23 Abbott Laboratories Endoprosthesis having foot extensions
US10363152B2 (en) 2003-06-27 2019-07-30 Medinol Ltd. Helical hybrid stent
US9456910B2 (en) 2003-06-27 2016-10-04 Medinol Ltd. Helical hybrid stent
US9039755B2 (en) 2003-06-27 2015-05-26 Medinol Ltd. Helical hybrid stent
EP2272464A3 (en) * 2004-11-19 2011-04-20 Abbott Laboratories Method for inserting a radiopaque marker in an endoprosthesis
WO2006055533A3 (en) * 2004-11-19 2006-08-24 Abbott Lab Endoprosthesis having foot extensions
WO2007005800A1 (en) * 2005-06-30 2007-01-11 Abbott Laboratories Endoprosthesis having foot extensions
US8998923B2 (en) 2005-08-31 2015-04-07 Spinealign Medical, Inc. Threaded bone filling material plunger
US10849770B2 (en) 2006-05-17 2020-12-01 C. R. Bard, Inc. Bend-capable tubular prosthesis
US9155642B2 (en) 2006-05-17 2015-10-13 C.R. Bard, Inc. Bend-capable tubular prosthesis
US8574286B2 (en) 2006-05-18 2013-11-05 C. R. Bard, Inc. Bend-capable stent prosthesis
US10231854B2 (en) 2006-05-18 2019-03-19 C. R. Bard, Inc. Bend-capable stent prosthesis
US9364353B2 (en) 2006-05-18 2016-06-14 C.R. Bard, Inc. Bend-capable stent prosthesis
US9445924B2 (en) 2006-07-10 2016-09-20 C. R. Bard, Inc. Tubular metal prosthesis and method of making it
US8322593B2 (en) 2006-08-23 2012-12-04 C. R. Bard, Inc. Method of welding a component to a shape memory alloy workpiece with provision of an extra cut for compensating the variations of dimension of workpiece and component
US9254207B2 (en) 2006-08-29 2016-02-09 C.R. Bard, Inc. Annular mesh
US8500793B2 (en) 2006-09-07 2013-08-06 C. R. Bard, Inc. Helical implant having different ends
US9084691B2 (en) 2006-11-10 2015-07-21 C. R. Bard, Inc. Stent
US10500075B2 (en) 2006-11-10 2019-12-10 C. R. Bard, Inc. Stent
US8551156B2 (en) 2006-11-10 2013-10-08 C. R. Bard, Inc. Stent
US8475520B2 (en) 2006-12-06 2013-07-02 C. R. Bard, Inc. Stenting ring with marker
US8292950B2 (en) 2007-02-21 2012-10-23 C. R. Bard, Inc. Stent with radiopaque marker
US8518101B2 (en) 2007-04-03 2013-08-27 C. R. Bard, Inc. Bendable stent
US9050203B2 (en) 2007-04-03 2015-06-09 C. R. Bard, Inc. Bendable stent
WO2008140985A1 (en) * 2007-05-16 2008-11-20 Boston Scientific Limited Method of attaching radiopaque markers to intraluminal medical devices, and devices formed using the same
US7810223B2 (en) 2007-05-16 2010-10-12 Boston Scientific Scimed, Inc. Method of attaching radiopaque markers to intraluminal medical devices, and devices formed using the same
US8721709B2 (en) 2007-09-07 2014-05-13 C. R. Bard, Inc. Self-expansible stent with radiopaque markers and method of making such a stent
US10016291B2 (en) 2007-09-07 2018-07-10 C. R. Bard, Inc. Self-expansible stent with radiopaque markers and method of making such a stent
US9566147B2 (en) 2010-11-17 2017-02-14 Abbott Cardiovascular Systems, Inc. Radiopaque intraluminal stents comprising cobalt-based alloys containing one or more platinum group metals, refractory metals, or combinations thereof
US11779477B2 (en) 2010-11-17 2023-10-10 Abbott Cardiovascular Systems, Inc. Radiopaque intraluminal stents
US11298251B2 (en) 2010-11-17 2022-04-12 Abbott Cardiovascular Systems, Inc. Radiopaque intraluminal stents comprising cobalt-based alloys with primarily single-phase supersaturated tungsten content
US10441445B2 (en) 2010-11-17 2019-10-15 Abbott Cardiovascular Systems, Inc. Radiopaque intraluminal stents comprising cobalt-based alloys containing one or more platinum group metals, refractory metals, or combinations thereof
US11806488B2 (en) 2011-06-29 2023-11-07 Abbott Cardiovascular Systems, Inc. Medical device including a solderable linear elastic nickel-titanium distal end section and methods of preparation therefor
WO2013045000A1 (en) * 2011-09-28 2013-04-04 Admedes Schuessler Gmbh Body implant with improved x-ray visibility, and method for producing same
DE102011115238B4 (en) 2011-09-28 2019-10-02 Admedes Schuessler Gmbh A body implant with improved radiopacity, combination of a catheter, a guide wire, and a body implant and method for increasing the radiopacity of a body implant
US10058436B2 (en) 2012-10-25 2018-08-28 Arterial Remodeling Technologies Sa Radiopaque marker for bioresorbable stents
CN104918585A (en) * 2012-10-25 2015-09-16 动脉再造技术股份有限公司 Radiopaque marker for bioresorbable stents
CN107847329A (en) * 2015-06-12 2018-03-27 雅培心血管系统公司 Supporting structure with radiopaque label and the method that label is attached to supporting structure
US10799332B2 (en) 2016-02-12 2020-10-13 Covidien Lp Vascular device marker attachment
US10265089B2 (en) 2016-02-12 2019-04-23 Covidien Lp Vascular device visibility
US11045215B2 (en) 2016-02-12 2021-06-29 Covidien Lp Vascular device visibility
US10052185B2 (en) 2016-02-12 2018-08-21 Covidien Lp Vascular device marker attachment
US11801116B2 (en) 2016-02-12 2023-10-31 Covidien Lp Vascular device marker attachment

Also Published As

Publication number Publication date
AU2208797A (en) 1997-10-01
EP0891166A1 (en) 1999-01-20
US6334871B1 (en) 2002-01-01
EP0891166B1 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
US6334871B1 (en) Radiopaque stent markers
US6402777B1 (en) Radiopaque stent markers
EP1974701B1 (en) Stents incorporating radiopaque markers
US6464723B1 (en) Radiopaque stents
US6471721B1 (en) Vascular stent having increased radiopacity and method for making same
US6585757B1 (en) Endovascular stent with radiopaque spine
EP1488763B1 (en) Stent with attached sleeve marker
EP0679372B1 (en) Radiopaque stent markers
US4830003A (en) Compressive stent and delivery system
JP4416514B2 (en) Metal structure having compatibility with magnetic resonance imaging and method of manufacturing the metal structure
CA2365162C (en) Stent having a multiplicity of undulating longitudinals
US6096071A (en) Ostial stent
US7226475B2 (en) Stent with variable properties
US5354310A (en) Expandable temporary graft
US20040015229A1 (en) Vascular stent with radiopaque markers
US20030121148A1 (en) Stent having radiopaque markers and method of fabricating the same
EP0821920A1 (en) Stent having a multiplicity of closed circular structures
US20030045923A1 (en) Hybrid balloon expandable/self expanding stent
US20030060872A1 (en) Stent with radiopaque characteristics
CA2525780A1 (en) Medical devices and methods of making the same
EP0830108A1 (en) Endovascular stent
CA2392250A1 (en) Detachable covering for an implantable medical device
JP2008513109A (en) Atraumatic bonding for multicomponent stents
US20100292778A1 (en) Expandable stent comprising end members having an interlocking configuration
US20040143320A1 (en) Stent

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1997915040

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97532819

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1997915040

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1997915040

Country of ref document: EP