WO1997037241A1 - Detecteur de vitesse de vehicule - Google Patents

Detecteur de vitesse de vehicule Download PDF

Info

Publication number
WO1997037241A1
WO1997037241A1 PCT/JP1997/001015 JP9701015W WO9737241A1 WO 1997037241 A1 WO1997037241 A1 WO 1997037241A1 JP 9701015 W JP9701015 W JP 9701015W WO 9737241 A1 WO9737241 A1 WO 9737241A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
center
vehicle speed
doppler sensor
ground
Prior art date
Application number
PCT/JP1997/001015
Other languages
English (en)
French (fr)
Inventor
Shigeru Yamamoto
Hidekazu Nagase
Yasuo Kitahara
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP07786096A external-priority patent/JP3722544B2/ja
Priority claimed from JP07786196A external-priority patent/JP3722545B2/ja
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to US09/137,848 priority Critical patent/US6230107B1/en
Publication of WO1997037241A1 publication Critical patent/WO1997037241A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/66Devices characterised by the determination of the time taken to traverse a fixed distance using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • G01P21/02Testing or calibrating of apparatus or devices covered by the preceding groups of speedometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/60Velocity or trajectory determination systems; Sense-of-movement determination systems wherein the transmitter and receiver are mounted on the moving object, e.g. for determining ground speed, drift angle, ground track

Definitions

  • the present invention relates to a vehicle speed detection device, and more particularly to a vehicle speed detection device mounted on a construction machine such as a bulldozer and detecting a ground vehicle speed using a Doppler sensor.
  • a vehicle speed detecting device for detecting a ground speed of a vehicle
  • a device using a Doppler sensor radiates electromagnetic waves (radio waves or ultrasonic waves) from a vehicle to the ground at a predetermined beam depression angle of 0, and receives electromagnetic waves reflected from the ground
  • the Doppler shift frequency (beat wave frequency) fd is calculated from the following equation based on these emitted and received waves.
  • Electromagnetic wave propagation speed (speed of light or sound)
  • the mounting height of the above-mentioned Doppler sensor when it is mounted on the vehicle is conventionally selected according to the sensor specifications determined by the output intensity of the Doppler sensor. .
  • this Doppler sensor if this Doppler sensor is mounted on the body of a construction machine such as a bulldozer, if it is mounted at a height that conforms to the sensor specifications described above, it will not adhere to mud, etc. As a result, problems occur when the signal strength is reduced or when there is a high possibility of damage due to contact with rocks.
  • the present invention has been made in order to solve the above-described problems, and it is a first object of the present invention to provide a vehicle speed detecting device capable of accurately correcting the pitching operation of a vehicle body at a low cost. It is the purpose. It is a second object of the present invention to provide a vehicle speed detecting device capable of attaching a Doppler sensor to a high part of a vehicle body without increasing output. Disclosure of the invention
  • a vehicle speed detecting device is
  • angular velocity detecting means for detecting the angular velocity around the center of gravity of the vehicle due to the vehicle pitching
  • vehicle speed correction means for correcting the ground vehicle speed value obtained from the Doppler sensor based on the detection value obtained from the angular speed detection means and taking into account the detection value obtained from the rotation center detection means
  • the ground vehicle speed value obtained by the Doppler sensor is based on the angular velocity around the center of gravity of the vehicle detected by the angular velocity detecting means.
  • the vehicle speed is corrected by the vehicle speed correcting means on the basis of the vehicle speed.
  • the rotation center of the vehicle due to the vehicle pitching detected by the rotation center detecting means is taken into account, and the correction is executed in accordance with the actual position of the vehicle rotation center.
  • the correction accuracy can be improved, and it becomes possible to calculate an accurate ground vehicle speed excluding the effect of vehicle pitching.
  • the quantitative value of the crawler belt slip rate in tracked vehicles can be accurately obtained, and the control performance of working machines, engines, etc., based on the use slip (crawler track slip) rate can be improved. .
  • the vehicle speed detecting device is:
  • Angular velocity detecting means for detecting the angular velocity around the center of gravity of the vehicle due to vehicle pitching, and detecting the rotational angular velocity of the Doppler sensor itself;
  • Vehicle speed correction means for correcting a ground vehicle speed value obtained from the Doppler sensor based on a detection value obtained from the angular speed detection means.
  • the ground vehicle speed value obtained by the Doppler sensor is corrected by the vehicle speed correcting means based on the angular velocity around the center of gravity of the vehicle detected by the angular velocity detecting means.
  • the Doppler sensor itself rotates with the pitching operation of the vehicle, so that the correction is executed taking into account the rotation of the Doppler sensor itself. In this way, the correction accuracy can be improved, and it becomes possible to calculate an accurate ground vehicle speed excluding the effect of vehicle pitching.
  • the vehicle speed detector S according to the third invention is
  • angular velocity detecting means for detecting the angular velocity around the center of gravity of the vehicle due to vehicle pitching, and detecting the rotational angular velocity of the Doppler sensor itself;
  • vehicle speed correction means for correcting the ground vehicle speed value obtained from the Doppler sensor based on the detection value obtained from the angular speed detection means and taking into account the detection value obtained from the rotation center detection means.
  • the ground vehicle speed value obtained by the Doppler sensor is corrected by the vehicle speed correction means based on the angular velocity around the center of gravity of the vehicle detected by the angular velocity detection means.
  • the rotation center of the vehicle due to the vehicle pitching detected by the rotation center detecting means is taken into account, and the rotation of the Doppler sensor itself is taken into account to perform the correction.
  • the vehicle is a tracked vehicle
  • the rotation center detecting means detects a contact point below the crawler sprocket center when a traction force of the tracked vehicle exceeds a predetermined value.
  • the point is detected as the center of rotation of the vehicle, and when the traction force is equal to or less than a predetermined value, the contact point below the center of gravity of the vehicle is detected as the center of rotation of the vehicle. In this way, for example, a state in which the blade is subjected to a predetermined load during the dozing work is determined by the tractive force of the tracked vehicle exceeding a predetermined value.
  • the vehicle speed correcting means detects the ground contact point below the center of the crawler sprocket as the center of rotation of the vehicle. In this case, it is preferable that the ground vehicle speed value is corrected based on a value obtained by adding the inclination angle of the vehicle to the beam depression angle of the Doppler sensor.
  • the vehicle is a tracked vehicle rain
  • the rotation center detecting means includes a brake having a ground point below a track center sprocket center as a fulcrum.
  • the moment due to the reaction force applied to the blade is larger than the moment due to the weight of the vehicle, the contact point below the center of the crawler sprocket is detected as the rotation center of the vehicle, and the reaction applied to the blade is detected.
  • the moment due to the force is equal to or less than the moment due to the weight of the vehicle, it is preferable to detect the contact point below the center of gravity of the vehicle as the rotation center of the vehicle.
  • the center of the crawler idler will be It is judged that the vehicle is being driven with the ground point below the center of the track crawler sprocket as the center of vehicle rotation. Therefore, the accuracy of the correction can be improved by calculating the correction value in consideration of the center of tillage.
  • the vehicle speed correction means determines that the ground contact point below the center of the crawler sprocket is equal to the center of rotation of the vehicle.
  • the ground vehicle speed value When detected, it is preferable to correct the ground vehicle speed value based on a value obtained by adding the inclination angle of the vehicle to the beam depression angle of the Doppler sensor.
  • the reaction force applied to the blade is determined by the blade posture calculated from the stroke of the blade drift cylinder and the blade posture. It can be calculated based on the cylinder axial force calculated from the hydraulic pressure of the drift cylinder.
  • the vehicle is a tracked vehicle
  • the rotation center detecting means uses a ground point below the center of the crawler block as a fulcrum.
  • the reaction force applied to the collar is an upward force and the moment due to the reaction force is greater than the moment due to the weight of the vehicle
  • the contact point below the center of the crawler idler is detected as the rotation center of the vehicle.
  • the moment due to the reaction force applied to the rivet is less than the moment due to the weight of the vehicle, it is preferable to detect the ground contact point below the center of gravity of the vehicle as the rotation center of the vehicle.
  • the vehicle is a tracked vehicle
  • the rotation center detecting means is configured such that a reaction force applied to the tsuba having a ground point below the center of the crawler sprocket as a fulcrum is a downward force, and the reaction force is a downward force. If the ground is larger than the moment due to the weight of the vehicle, the contact point below the center of the crawler sprocket is detected as the center of rotation of the vehicle, and the moment due to the reaction force applied to the ripper is due to the weight of the vehicle. It is preferable to detect the ground point below the center of gravity of the vehicle as the center of rotation of the vehicle when the moment is below £ 1.
  • the vehicle speed correction means is provided with a contact point below the center of the crawler idler or for the crawler track.
  • the ground point below the center of the sprocket is detected as the rotation center of the vehicle, it is preferable to correct the ground vehicle speed value based on a value obtained by adding the inclination angle of the vehicle to the beam depression angle of the Doppler sensor.
  • the reaction force applied to the ripper is calculated from the stroke of the ripper / tilt cylinder, the lip position calculated from the stroke of the ripper, and those of the ri / no tilt cylinder. Calculated based on cylinder axial force generated from hydraulic pressure o
  • the output device is
  • the beam depression angle correction amount is calculated based on a function stored in the storage means in advance, and the ground vehicle speed of the vehicle is corrected based on the beam depression angle in consideration of the beam depression angle correction amount.
  • the predetermined function is a function in which, based on the regular mounting height, the beam depression angle correction amount gradually increases as the mounting height increases. Thus, a highly accurate ground speed can be obtained.
  • the vehicle is a bulldozer
  • the Doppler sensor is Preferably, it is attached to a ripper frame that supports the bulldozer ripper.
  • the Doppler sensor can be provided at a position where the influence of the work on the Doppler sensor is small and as low as possible.
  • FIG. 1 is a configuration diagram of a vehicle speed detection device according to the first embodiment
  • 2 (a), 2 (b) and 2 (c) are explanatory diagrams of the correction logic of the vehicle speed detecting device according to the i-th embodiment.
  • FIG. 3 is a flowchart showing a processing flow for calculating the vehicle speed in the first embodiment
  • FIG. 4 is a diagram illustrating the moment balance of the vehicle.
  • Figure 5 is a diagram explaining the movement of the vehicle rotation center during dozing work.
  • Fig. 6 is a diagram illustrating the movement of the center of rotation of the vehicle during the ribbing operation.
  • Fig. 7 is a diagram explaining the movement of the center of rotation of the vehicle during the rubbing operation.
  • FIG. 8 is a flowchart showing a processing flow for calculating the vehicle speed in the second embodiment.
  • Figure 9 is a graph showing the relationship between the sensor mounting height and the depression angle correction amount.
  • FIG. 10 is a diagram for explaining a mounting position of the Doppler sensor. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present embodiment is applied to a vehicle speed detection device that detects the speed of a tracked vehicle such as a bulldozer.
  • a doppler sensor 2 is attached to a rear portion of a bulldozer 1 (for example, a lip frame) (attachment height h), and the doppler sensor 2 is attached.
  • the electromagnetic wave beam 4 is emitted at a predetermined beam depression angle (sensor depression angle) 0, and the reflected wave from the ground 3 is received by the Doppler sensor 2, and these radiation waves are emitted.
  • is the beam direction angle, which is usually about ⁇ 5 °.
  • the Doppler sensor 2 makes an arc motion around the center of the vehicle tilling due to the body pitching, and the Doppler sensor moves along with this arc motion.
  • the circular motion and the Doppler sensor 2 Consideration is given to the correction term due to rotation and rotation.
  • indicates that the vehicle is moving forward
  • + indicates that the vehicle is moving backward
  • L changes according to the position of the center of rotation of the vehicle when the center of rotation of the vehicle changes, such as when work is performed with one of the crawler belts 7 lifted up, and 0 indicates such a vehicle. It changes according to the rising angle when the surface rises.
  • the lift angle a of the vehicle is calculated from the blade attitude described above and the vehicle tilt angle obtained from the pitch inclinometer, and the lift angle a is set to a predetermined beam depression angle 0 of the Doppler sensor 2.
  • the added value is the corrected beam depression angle 0.
  • the ground contact point 11 below the center of the crawler sprocket 10 is used as the center of rotation of the vehicle, and based on this, the Doppler sensor 2 and its rotation are used. Set the horizontal distance L from the center.
  • step S 2 If the vehicle is in the reverse state in the judgment of step S 2, the correction code in the vehicle speed calculation (the above formula) is set to + (brass), and thereafter the center of gravity of the vehicle 1 Set 3 as the center of rotation.
  • step S 16 When the bulldozer 1 is in the ribbing operation state in the judgment of step S4, the ripper 15 and the tilt cylinder stroke sensor detect the ripper 15 (see FIG. 6). Then, the cylinder axial force of the ripper / tilt cylinder is calculated from the hydraulic pressure supplied to the ripper / tilt cylinder (not shown). From the ripper posture and cylinder axial force thus output, the Calculate the reaction force (ripper reaction force) FV 'that 15 receives from the ground 3.
  • the moment Fv' ⁇ LB is the weight of the vehicle due to the reaction force FV 'applied to the ripper 15
  • Moment due to W is larger than W.Lw, for example, when the ground 3 is hard and the tip of the ripper 15 does not penetrate the ground, and as shown in FIG. It is determined that the ground surface 3 is floating (sprocket mounting).
  • the lifting angle a (negative value) of the vehicle is calculated from the above-mentioned ripper posture and the vehicle inclination angle obtained from the pitch inclinometer, and the beam depression angle of the Doppler sensor 2 set in advance is calculated.
  • the value obtained by adding the rising angle a to 0 is defined as the corrected beam depression angle 0.
  • the ground contact point 16 below the center of the crawler idler 14 is used as the center of the cultivation of the vehicle, and based on this, the Doppler sensor 2 and its cultivation are used.
  • the crawler idler 14 side floats above the ground 3 as shown in Fig. 7. It is determined to be in the state (idle floating).
  • the lifting angle a of the vehicle is calculated from the above-mentioned ripper posture and the vehicle inclination angle obtained from the pitch inclinometer, and the lifting angle a is set to a predetermined beam depression angle 0 of the Doppler sensor 2. The value obtained by adding a is defined as the corrected beam depression angle 0.
  • the ground contact point 11 below the center of the crawler sprocket 10 is set as the rotation center of the vehicle. It should be noted that when the above equation (2) is not satisfied, neither the idler floating nor the sprocket floating is occurring, so the center of gravity 13 of the vehicle is set as the center of rotation.
  • the reason why the lifting angle a of the vehicle is calculated based on both the blade attitude (or the ridge attitude) and the vehicle body inclination angle is that, for example, dozing work or the like is performed on an inclined surface. This is in order to distinguish the case where the vehicle is driven from the case where the vehicle simply runs on a slope.
  • the work machine using the attitude of the blade (or ripper) and the cylinder axial force to determine the reaction force
  • the detection value of the mounting pin load sensor of the lift cylinder can also be used. This detection value may be used alone or in combination with, for example, cylinder axial force. The accuracy may be improved by using these.
  • the attitude of the blade (or ripper) may be calculated by detecting the angle of the lift cylinder.
  • the reaction force applied to the blade 8 or the reaction force applied to the re- tribute 15 is calculated, and the rotation center of the vehicle is detected based on the moment balance of the vehicle.
  • the movement of the rotation center of the vehicle is detected based on the magnitude of the traction force of the bulldozer 1.
  • T1 Read various data.
  • T2 to T3 Determine whether the bulldozer 1 is in the forward state or the reverse state based on the speed state obtained from the transmission speed sensor, and when the vehicle is in the forward state, the vehicle speed
  • the correction code in the calculation (Equation (1)) is set to 1 (minus).
  • ⁇ 4 to ⁇ 5 If the tractive force calculated by the tractive force detection means exceeds the set value, the center of rotation is moving in the dosing work state, and the crawler idler 14 rises above the ground 3.
  • the center of rotation of the vehicle is defined as the ground point 11 below the center of the crawler sprocket 10 and the horizontal distance between the Doppler sensor 2 and the center of rotation is determined based on this.
  • Set L the traction force detecting means, for example, it is preferable to use the means disclosed in Japanese Patent Application Laid-Open No. Hei 5-10639.
  • ⁇ 6 to ⁇ 7 When the vehicle is in reverse, the correction sign in the vehicle speed calculation (the above formula) is set to + (brass), and then the center of gravity 13 of the vehicle is set to the center of rotation. Based on the Doppler sensor 2 and its Set the horizontal distance L from the rotation center. In addition, even when the traction force is equal to or less than the set value in the determination in step T4, the vehicle is in a self-propelled state and no lifting of the vehicle has occurred. And
  • T8 to T10 Calculate the pitch angular velocity ⁇ of the vehicle using the pitching gyroscope (angular velocimeter), and then detect the Doppler transition frequency (beat wave frequency) f d using the Doppler sensor 2. Then, based on the values of 0), fo, the values of 0, L, and the values of C, ft, h, the vehicle speed V is calculated by the above equation (2).
  • the lift angle of the vehicle is not corrected when the idler floats.
  • the lift angle a of the vehicle is determined by the blade attitude and the vehicle inclination angle. It is also possible to calculate and correct the beam depression angle 0 according to the rising angle a.
  • the present embodiment relates to an embodiment that provides a device for enabling a Doppler sensor to be mounted at a high place of a vehicle body.
  • the actual vehicle speed V is given by the following equation.
  • v f d C / 2 ftcos ⁇ . ⁇ ⁇ ⁇ ⁇
  • the mounting height h of the Doppler sensor 2 is limited by the sensor specification value determined by the output intensity of the beam 4 and the reception sensitivity of the reflected wave. It is. If this mounting height h exceeds the specified value, the reflected wave outside the beam 4 becomes weaker due to the effect of the spread of the beam 4, in other words, the reflected wave outside the beam 4 becomes relatively 0 + 0/2, In other words, more reflected waves inside beam 4 are received, and as a result, the depression angle increases.
  • the correlation between the mounting height h and the effective depression angle is obtained in advance, and is corrected in the above equation according to the actual mounting height. . More specifically, as shown in Fig. 9, the regular mounting height h is between the mounting height h and the beam depression angle correction amount. Since there is a relationship that the beam depression angle correction amount ⁇ gradually increases as this mounting height h increases, a correction table showing the relationship between these mounting height h and the beam depression angle correction amount is set in advance for the vehicle speed.
  • the data is stored in the storage device in the detection device, and when the Doppler sensor 2 is actually mounted on the vehicle, the correction table is referred to according to the value of the mounting height h input when the Doppler sensor 2 is mounted on the vehicle.
  • the value of a value obtained by adding the beam depression angle correction amount ⁇ is used.
  • the beam depression angle correction amount ⁇ is calculated based on the difference with respect to, and the value ⁇ + obtained by adding the beam depression angle correction amount is used as the value of the beam depression angle 0, and the actual vehicle speed V is calculated based on the value of the beam depression angle 0. Therefore, even when the Doppler sensor 2 is mounted on a high place of the vehicle body where the intensity of the reflected wave from the ground 3 is not sufficient, an accurate ground vehicle speed can be obtained.
  • the correction table stores the relation of the beam depression angle correction amount ⁇ to the sensor mounting height h.
  • the relation of the beam depression angle 0 to the sensor mounting height h is directly stored in the table data. You can also memorize it.
  • the Doppler sensor 2 is attached to a ripper frame that supports the ripper 5, as shown in FIG. By doing so, the Doppler sensor 2 can be provided at a position where the influence of the ground work on the Doppler sensor 2 is small and as low as possible.
  • the Doppler sensor used in each of the above embodiments may be of various types, such as a sensor using a microwave, a sensor using an ultrasonic wave, and a sensor using a light wave.

Description

明細書
車速検出装置 技術分野
本発明は、 車速検出装置に関し、 よ り詳し く は特にブル ドーザ等 の建設機械に搭載されて ドッ プラーセンサを用いて対地車速を検出 する車速検出装置に関する ものである。
背景技術
従来、 車両の対地速度を検出する車速検出装置と して、 ドッ ブラ 一センサを用いるものが知られている。 この検出装置は、 車両上か ら地面に対して所定のビーム俯角 0で電磁波 (電波も し く は超音波 ) を放射するとと もに、 地面から反射されてきた電磁波を受信する よ うにされ、 これら放^波と受信波とに基づいて次式により ドッ ブ ラー変移周波数 (ビー ト波周波数) f d を演算する ものである。 f d 2 f v c o s 0ノ C ① で、
f t : 送信周波数
C : 電磁波伝播速度 (光速も しく は音速)
V : 旱 M 速度
ところで、 この従来の車速検出装置においては、 ドッ プラーセン サを車体に取り付けて車両の実速度を検出する際に、 車体の動揺 ( ピッチング, 上下動, ョーイ ング) による影響によって速度検出誤 差が生じるために、 正確な対地車速を検出する ことができないとい う問題点があつた。
そこで、 このような問題点に対処するために、 最も影響の大きい ピッチング角速度による速度検出誤差への影響を排除するよう に し たものが、 特開昭 5 3 — 1 7 3 7 6号公報, 特開昭 6 1 — 2 0 1 1 7 6号公報等において提案されている。 このう ち、 特開昭 5 3 — 1 7 3 7 6号公報に開示されているものでは、 移動体に複数個の ドッ ブラーセンサを設け、 これら複数個の ドッ プラーセンサによ り検出 される複数の ドップラー信号を相互補償的に平均するこ とによ り前 記移動体の速度を検出するように構成されている。 また、 特開昭 6 1 — 2 0 1 1 7 6号公報に開示されている ものでは、 ドッ プラーセ ンサの車両重心回りの角速度から速度検出誤差を算出し、 この算出 値に基づいて対地車速値を補正するように構成されている。
一方、 前述のよ うな ドッ プラーセンサを車体に取り付ける際のそ の取付け高さに関しては、 従来、 その ドッ プラーセンサの出力強度 によつて決ま るセンサ仕様に応じて選定されるよ うになつている。
しかしながら、 車体のピッチング動作の影響に基づく 速度検出誤 差に対処する方法と して採られている特開昭 5 3 - 1 7 3 7 6号公 報に開示されている方式では、 複数個の ドッ プラーセンサを使用す る必要があるために、 システムが全体と して髙価になるという問題 点がある。 また、 前記特開昭 6 1 — 2 0 1 1 7 6号公報に開示され ている方式では、 特にブル ドーザのような装軌式車両に適用 した場 合に、 作業種別も しく は地面形状によって車両の回転中心が変化す ることから、 十分な補正精度が得られないという問題点がある。
—方、 ドッ プラーセ ンサの取付け高さに関して、 この ドッ プラー センサをブル ドーザ等の建設機械の車体に取り付ける場合、 前記セ ンサ仕様に適合した高さに取り付けよ う とすると、 泥などの付着に よ って信号強度が低下したり、 岩石などと接触して破損する可能性 が高いといつた問題点が発生する。
そこで、 このよ うな問題点を回避するために、 出力強度の大きな センサを使用するとと もにそのセンサを車体の高所部分に取り付け るこ とが考えられる。 と ころが、 このよう にセンサ自体の出力アツ プを図ると、 コス ト高を招く だけでなく 、 このセンサから放射され る電磁波が他の作業車両への外乱になるという問題点がある。 また、 このセンサの所定以上の出力アッ プは法規制の範囲を満たさなく な る可能性もある。
本発明は、 前述のよ うな問題点を解消するためになされたもので、 車体のピッチング動作による補正を精度良く 、 かつ低コス トで行う ことのできる車速検出装置を提供することを第 1 の目的とするもの である。 また、 本発明は、 出力アッ プを図ることなく ドップラーセ ンサを車体の高所部分に取り付けることのできる車速検出装置を提 供することを第 2 の目的とするものである。 発明の開示
前記第 1 の目的を達成するために、 第 1 発明による車速検出装置 は、
ドッ プラーセンサを用いる対地車速検出装置において、
( a ) 車両ピッチングによるその車両の重心回りの角速度を検出す る角速度検出手段、
( b ) 車両ピッチングによるその車両の回転中心を検出する回転中 心検出手段および
( c ) 前記ドップラーセンサよ り得られる対地車速値を、 前記角速 度検出手段より得られる検出値に基づきかつ前記回転中心検出手段 より得られる検出値を加味して補正する車速補正手段
を備える ことを特徴とするものである。
この第 1 発明において、 ドッ プラーセンサにより得られる対地車 速値は、 角速度検出手段よ り検出される車両の重心回りの角速度に 基づいて車速補正手段によって補正される。 この補正に際して、 回 転中心検出手段によ り検出される車両ピッチングによる車両の回転 中心が加味されて、 現実の車両回転中心位置に則した形で補正が実 行される。 こ う して、 補正精度を向上させるこ とができ、 車両ピッ チングの影響を排除した正確な対地車速を算出するこ とが可能とな る。 この結果、 例えば装軌車両における履帯のス リ ッ プ率の定量値 が正確に求められ、 シユース リ ッ プ (履帯滑り) 率に基づく 作業機, エンジン等の制御性能の向上を図ることができる。
次に、 同第 1 の目的を達成するために、 第 2 発明による車速検出 装置は、
ドッ プラーセンサを用いる対地車速検出装置において、
( a ) 車両ピッ チングによるその車両の重心回りの角速度を検出す るとと もに、 この ドッ プラーセンサ自体の回転角速度を検出する角 速度検出手段および ―
( b ) 前記 ドッ プラーセンサよ り得られる対地車速値を、 前記角速 度検出手段よ り得られる検出値に基づき補正する車速補正手段 を備えることを特徴とする ものである。
この第 2発明において、 ドッ プラーセンサにより得られる対地車 速値は、 角速度検出手段より検出される車両の重心回りの角速度に 基づいて車速補正手段によって補正される。 この補正に際して、 車 両のピッチング動作に伴い ドッ プラーセンサ自体が回転するこ とか ら、 この ドッ プラーセンサ自体の回転が加味されて補正が実行され る。 こ う して、 補正精度を向上させるこ とができ、 車両ピッチング の影響を排除した正確な対地車速を算出する こ とが可能となる。
さ らに、 同第 1 の目的を達成するために、 第 3発明による車速検 出装 Sは、
ドッ プラーセンサを用いる対地車速検出装置において、 ( a ) 車両ピッチングによるその車両の重心回りの角速度を検出す るとと もに、 この ドッ プラーセンサ自体の回転角速度を検出する角 速度検出手段、
( b ) 車両ピッチングによるその車両の回転中心を検出する回転中 心検出手段および
( c ) 前記 ドッ プラーセ ンサよ り得られる対地車速値を、 前記角速 度検出手段よ り得られる検出値に基づきかつ前記回転中心検出手段 より得られる検出値を加味して補正する車速補正手段
を備えることを特徴とするものである。
この第 3発明において、 ドッ プラーセンサによ り得られる対地車 速値は、 角速度検出手段よ り検出される車両の重心回りの角速度に 基づいて車速補正手段によって補正される。 この補正に際して、 回 転中心検出手段により検出される車両ピッ チングによる車両の回転 中心が加味されるとと もに、 ドップラーセンサ自体の回転が加味さ れて補正が実行される。 こ う して、 前記第 1 発明および第 2発明の それぞれの有する効果の相乗効果によって補正精度の更なる向上を 図った車速検出装置を得る こ とが可能となる。
前記第 1 発明も し く は第 3発明において、 前記車両は装軌車両で あり、 前記回転中心検出手段は、 この装軌車両の牽引力が所定値を 越える場合に履帯用スプロケッ ト中心下方の接地点を車両の回転中 心と検出し、 前記牽引力が所定値以下の場合に車両の重心下方の接 地点を車両の回転中心と検出するのが好適である。 このよ うに ドー ジング作業の実行中で例えばブレー ドに所定 1上の負荷がかかる状 態は装軌車両の牽引力が所定値を越える ことによって判定される こ とから、 この判定によって当該車両における履帯用アイ ドラ中心が 浮き上がるとと もに、 履帯用スプロケッ ト中心下方の接地点を車両 回転中心と して運転されている状態にあると判断できる。 したがつ て、 この回転中心を加味して補正値を算出するこ とでその補正の精 度を向上させる こ とができる。 こ こで、 車両の回転中心が変化する ことによって ドッ プラーセ ンサの ビーム俯角が変化する ことから、 前記車速補正手段は、 前記履帯用スプロケッ 卜中心下方の接地点が 車両の回転中心と検出される場合に、 車両の傾斜角を前記 ドッ ブラ 一センサのビーム俯角に加算した値に基づいて前記対地車速値を補 正するのが好ま しい。
この車両の回転中心を判定するための他の実施態様と して、 前記 車両は装軌車雨であり、 前記回転中心検出手段は、 履帯用スプロケ ッ ト中心下方の接地点を支点とするブレー ドに加わる反力によるモ —メ ン トが車両の重量によるモーメ ン トよ り大きい場合に履帯用ス プロケッ ト中心下方の接地点を車両の回転中心と検出し、 前記ブレ 一ドに加わる反力によるモ一メ ン トが車両の重量によるモーメ ン ト 以下の場合に車両の重心下方の接地点を車両の回転中心と検出する のが好適である。 このよ う に展帯用スプロケッ ト中心下方の接地点 を支点とするブレー ドに加わる反力によるモ一メ ン トが車両の重量 によるモーメ ン トよ り大きい場合には履帯用アイ ドラ中心が浮き上 がると と もに、 履帯用スプロケッ ト中心下方の接地点を車両回転中 心と して運転されている状態にあると判断される。 したがって、 こ の回耘中心を加味して補正値を算出するこ とでその補正の精度を向 上させることができる。 こ こで、 車両の回転中心が変化するこ とに よって ドッ プラーセンサのビーム俯角が変化することから、 前記車 速補正手段は、 前記履帯用スプロケッ ト中心下方の接地点が車両の 回転中心と検出される場合に、 車両の傾斜角を前記 ドップラーセン ザのビーム俯角に加算した値に基づいて前記対地車速値を補正する のが好ま しい。 また、 前記ブレー ドに加わる反力は、 ブレー ドリ フ ト シリ ンダのス ト ロークから算出されるブレー ド姿勢とそのブレー ドリ フ ト シ リ ンダの油圧から算出されるシリ ンダ軸力とに基づいて 演算され得る。
この車両の回転中心を判定するための更に他の実施態様と して、 前記車両は装軌車両であり、 前記回転中心検出手段は、 履帯用スプ ロケッ ト中心下方の接地点を支点とする リ ツバに加わる反力が上向 き力であってその反力によるモーメ ン トが車両の重量によるモーメ ン トより大きい場合に履帯用アイ ドラ中心下方の接地点を車両の回 転中心と検出し、 前記リ ツバに加わる反力によるモーメ ン トが車両 の重量によるモーメ ン ト £1下の場合に車両の重心下方の接地点を車 両の回転中心と検出するのが好適である。 また、 前記車両は装軌車 両であり、 前記回転中心検出手段は、 履帯用スプロケッ ト中心下方 の接地点を支点とする リ ツバに加わる反力が下向き力であってその 反力によるモーメ ン 卜が車両の重量によるモーメ ン 卜よ り大きい場 合に履帯用スプロケッ ト中心下方の接地点を車両の回転中心と検出 し、 前記リ ッパに加わる反力によるモーメ ン トが車両の重量による モーメ ン ト £1下の場合に車両の重心下方の接地点を車両の回転中心 と検出するのが好適である。 こ こで、 車両の回転中心が変化するこ とによって ドップラーセンサのビーム俯角が変化するこ とから、 前 記車速補正手段は、 前記履帯用アイ ドラ中心下方の接地点も し く は 前記履帯用スプロケッ ト中心下方の接地点が車両の回転中心と検出 される場合に、 車両の傾斜角を前記 ドッ プラーセンサのビーム俯角 に加算した値に基づいて前記対地車速値を補正するのが好ま しい。 また、 前記リ ッパに加わる反力は、 リ ッパリ フ ト ♦ チル ト シリ ンダ のス トロ一クから算出される リ ツバ姿勢とそれら リ ッノ、 'リ フ ト ♦ チ ル ト シリ ンダの油圧から箅出されるシリ ンダ軸力とに基づいて渲算 れ侍る o
次に、 前記第 2の目的を達成するために、 第 4発明による車速検 出装置は、
ドッ プラーセンサを用いる対地車速検出装置において、
( a ) 前記 ドッ プラーセンサの取付け高さ と正規の取付け高さとの 差分に対するその ドッ プラーセンサのビーム俯角補正量を所定の関 数と して記憶する記憶手段、
( b ) 前記 ドッ プラーセ ンサが実際の車両に取り付けられている状 態でのビーム俯角の値を、 前記記憶手段に記億されている ビーム俯 角補正量を加味して渲箅する ビーム俯角演算手段および
( c ) このビーム俯角演算手段によ り渲箅される ビーム俯角に基づ いて車両の対地車速を補正する補正手段
を備えるこ とを特徴とする ものである。
この第 4 発明においては、 予め記憶手段に記憶されている関数に 基づいてビーム俯角補正量が演算され、 このビーム俯角補正量を加 味したビーム俯角に基づいて車両の対地車速が補正されるので、 ド ッ プラーセンサを地面からの反射波強度が十分でないような高所に 取り付けた場合でも、 正確な対地車速を得るこ とができ る。 したが つて、 ドップラーセンサに泥などが付着するこ とによつて信号強度 が低下したり、 岩石などと接触して破損する危険性がなく なると と もに、 このセンサの出力アッ プの必要がなく なるのでコス ト髙を招 く ことがなく 、 法規制も満足する こ とができる。 また、 このように 検出精度が向上する結果、 例えば装軌車両における履帯のスリ ップ 率の定量値が正確に求められ、 シユースリ ッ プ (履帯滑り) 率に基 づく作業機, エンジン等の制御性能の向上を図ることが可能となる, 前記所定の関数は、 前記正規の取付け高さを基準にして、 この取 付け高さが増加するにしたがって前記ビーム俯角補正量が漸増する 関数とするこ とで、 精度の高い対地車速を得ることができる。
こ こで、 前記車両はブル ドーザであり、 前記ドッ ブラーセンサは そのブルドーザのリ ッパを支持する リ ッパフ レームに取り付けられ るのが好ま しい。 こうすることで、 この ドップラーセンサに対する 作業による影響が少ない位置で、 かつ可能な限り低い位置にその ド ップラーセンサを設けることができる。 図面の簡単な説明
図 1 は、 第 1 実施例に係る車速検出装置の構成図、
図 2 ( a ) ( b ) ( c ) は、 第 i 実施例に係る車速検出装置の補 正ロジック説明図①、
図 3 は、 第 1 実施例における車速算出のための処理フローを示す フ ロ一チヤ一ト、
図 4 は、 車両のモーメ ン トバラ ンスを説明する図、
図 5 は、 ドー ジ ング作業時における車両回転中心の移動状態を説 明する図、
図 6 は、 リ ッ ビング作業時における車両回転中心の移動状態を説 明する図①、
図 7 は、 リ ツ ビング作業時における車両回転中心の移動状態を説 明する図②、
図 8 は、 第 2実施例における車速算出のための処理フ ローを示す フ ロ ーチ ヤ 一 ト、
図 9 は、 セ ンサ取付け高さに対する俯角補正量の関係を示すグラ フ、
図 1 0 は、 ドップラーセ ンサの取付け位置を説明する図である。 発明を実施するための最良の形態
次に、 本発明による車速検出装置の具体的実施例について、 図面 を参照しつつ説明する。
Θ (第 1 実施例)
本実施例はブル ドーザのような装軌車両の速度を検出する車速検 出装置に適用 したものである。 図 1 に示されているように、 この車 速検出装置においては、 ブル ドーザ 1 の車体後部 (例えばリ ツパフ レーム) に ドッ プラーセ ンサ 2が取り付けられ (取り付け高さ h ) 、 この ドッ プラーセ ンサ 2 から地面 3 に対して所定のビーム俯角 (セ ンサ俯角) 0で電磁波ビーム 4 を放射すると と もに、 地面 3 からの 反射波をその ドッ プラーセ ンサ 2 にて受信するようにされ、 これら 放射波と受信波とに基づいてブル ドーザ 1 の対地車速を演算するよ うに構成されている。 なお、 図 1 において ^はビーム方向角であつ て、 通常 ± 5 ° 程度の値である。
次に、 この車速検出装置において、 車両のピッチング角速度によ る影饗を除去するための補正口 ジッ クについて図 2 を参照しながら 説明する。
図 2 ( a ) に示されているよう に、 ブル ドーザ 1 の実車速を V と すると、 電磁波放射方向の速度は V C O S 0であるから、 ドッ ブラ —変移周波数 (ビー ト波周波数) f d と実速度 V との関係は前述の ように次式で与えられる。 f d = 2 f t - V C O S 0 / C · · · ① こ こで、
f t : 送信周波数
C : 電磁波伝播速度 (光速も しく は音速) 本実施例においては、 車体ピッチングによって ドップラーセンサ 2が車両回耘中心回り に円弧運動を行う とと もに、 この円弧運動に 伴ってその ドッ プラーセ ンサ 2 自体が回転運動を行う点に鑑み、 前 記①式に対して次に示すように ドッ プラーセンサ 2 の円弧運動およ び回転運動による補正項を加味するこ とが考慮されている。
( 1 ) 円弧運動による補正項 A I
図 2 ( b ) に示されているよ う に、 車両が回転中心 5 の回りに回 転する場合を考えると、 ドップラーセンサ 2 とその回転中心 5 との 水平距離を L と した場合、 この ドッ プラーセンサ 2 の回転中心 5 回 りの実効回転半径 r は次式で与えられる。 r = h c o s + L s i η θ
したがって、 この円弧運動による補正項 A , は次式で与えられる,
A 1 = 2 f t · ( h c o s 0 + L s i ) 6)ノ C
• … ②
( 2 ) 回転運動による補正項 A 2
図 2 ( c ) に示されているように、 電磁波ビーム 4 の反射点 6 の 移動速度は h ωで与えられので、 この移動速度の電磁波放射方向の 速度成分は h o> c o s 0で与えられる。 したがって、 この回転運動 による補正項 A 2 は次式で与えられる。
A 2 = 2 f t ' h it) c o s 0 ZC · · · ③
これら各補正項を加味すると、 ①式は次式のよ うに書き換え られ o f d = 2 f t ' V C O S 0 /C土 A , ± A 2
= ( 2 f t / C ) { v c o s 0 ± ( h c o s 0 + L s i n 0 ) aj ± h £u c o s e ) · ♦ · ④ この④式より、 次式が成り立つ。 v = ( f d C / 2 f t c o s O ) ± 2 h o)土 L w t a n 0
• … ©
この⑤式において、 —は車両の前進時, +は車両の後進時を表す。 また、 Lは、 履帯 7 の一方が浮き上がった状態で作業等がなされる 場合のように車両の回転中心が変わったときにその回転中心位置に 応じて変化し、 また 0 は、 このよ うな車両の浮き上がり時にその浮 き上がり角度に応じて変化する。
次に、 本実施例の車速検出装置による車速算出のための処理フロ 一を図 3 に示されるフローチヤ一 トによって説明する。
S 1 : 各種データを読み込む。
S 2〜S 3 : トラ ンス ミ ッ シ ョ ン速度段センサから得られる速度 段状態よ りブル ドーザ 1 が前進状態にあるのか後進状態にあるのか を判定し、 前進状態にあるときには、 後述の車速計算 (前記⑤式) における補正符号を一 (マイナス) とする。
S 4〜 S 7 : 作業機操作検出スィ ツチによ り、 ブル ドーザ 1 がブ レー ド操作状態、 言い換えれば ドージング作業状態にあるのか、 リ ツバ操作状態、 言い換えれぱリ ッ ビング作業状態にあるのかを判定 する。 そ して、 ドージング作業状態にあるときには、 ブレー ドリ フ ト シリ ンダス トロークセンサより ブレー ド 8 の姿勢を算出し、 次い でそのブレー ドリ フ ト シリ ンダ 9 に供給される油圧からそのブレー ドリ フ ト シリ ンダ 9のシリ ンダ軸力を算出し、 こ う して算出される ブレー ド姿勢およびシ リ ンダ軸カからブレー ド 8が地面 3 より受け る反力 (ブレー ド反力) F v を算出する。
S 8〜S 1 1 : 図 4 に示されているよう に、 履帯用スプロケッ 卜 1 0中心下方の接地点 1 1 とブレー ド 8 の接地点 1 2 との水平距離 を L B , この接地点 1 1 と車両の重心 1 3 との水平距離を L W , 車 両の重量を Wとすると き、 次式が成立するか否かを判定する。 F v - L B + W - L W > 0 · ♦ · ⑥ この式が成立するときには、 ブレー ド 8 に加わる反力 F による モーメ ン ト F v * L B が車両の重量 Wによるモーメ ン ト W ' L w よ り大き く 、 例えば地面 3 が固く てブレー ド 8 の先端が地面に貫入せ ず、 図 5 に示されているよ うに履帯用アイ ドラ 1 4 側が地面 3 から 浮き上がつている状態 (アイ ドラ浮き) であると判断される。 この 場合には、 前述のブレー ド姿勢と ピッチ傾斜計より得られる車両傾 斜角とにより車両の浮き上がり角 aを算出し、 予め設定される ドッ ブラーセンサ 2 のビーム俯角 0 にその浮き上がり角 aを加算した値 を補正後のビーム俯角 0 とする。 そ して、 このように車両が浮き上 がっているときには、 履帯用スプロケッ ト 1 0 の中心下方の接地点 1 1 を車両の回転中心と し、 これに基づいて ドッ プラーセンサ 2 と その回転中心との水平距離 Lを設定する。
5 1 2 : —方、 前記⑥式が成立しないときには、 車両の浮き上が り状態が発生していないという ことなので、 車両の重心 1 3 を回転 中心と し、 これに基づいて ドッ プラーセンサ 2 とその回転中心との 水平距離 Lを設定する。
5 1 3 : ステッ プ S 2 の判定において、 車両が後進状態にあると きには、 後述の車速計算 (前記⑤式) における補正符号を + (ブラ ス) と し、 この後に車両の重心 1 3 を回転中心に設定する。
5 1 4 ~ S 1 6 : ステッ プ S 4 の判定においてブル ドーザ 1 がリ ッ ビング作業状態にあるときには、 リ ッパリ フ ト, チル ト シ リ ンダ ス トロークセンサより リ ッパ 1 5 (図 6参照) の姿勢を算出し、 次 いでそのリ ッパリ フ ト, チル ト シリ ンダ (図示せず) に供給される 油圧からそのリ ッパリ フ ト, チル ト シリ ンダのシリ ンダ軸力を算出 し、 こ う して箅出される リ ッパ姿勢およびシリ ンダ軸力から リ ツバ 1 5 が地面 3 よ り受ける反力 (リ ッパ反力) F V ' を算出する。
S 1 7〜 S 2 1 : リ ッパ反力 F V ' が正値 ( F V ' > 0 ) の場合、 言い換えればリ ッパ 1 5 が地面 3から上向きの反力を受ける場合に は、 次に次式が成立するか否かを判定する。
F v ' « L B - W - L W > 0 · · · ⑦ この式が成立すると きには、 リ ッパ 1 5 に加わる反力 F V ' によ るモーメ ン ト F v ' · L B が車両の重量 Wによるモーメ ン ト W . L w より大き く 、 例えば地面 3が固く てリ ッパ 1 5 の先端が地面に贯 入せず、 図 6 に示されているよう に履帯用スプロケッ ト 1 0側が地 面 3から浮き上がつている状態 (スプロケッ ト浮き) であると判断 される。 この場合には、 前述のリ ッパ姿勢と ピッチ傾斜計より得ら れる車両傾斜角とによ り車両の浮き上がり角 a (負値) を算出し、 予め設定される ドッ プラーセンサ 2 のビーム俯角 0にその浮き上が り角 aを加算した値を補正後のビーム俯角 0 とする。 そして、 この ように車両が浮き上がつているときには、 履帯用アイ ドラ 1 4 の中 心下方の接地点 1 6 を車両の回耘中心と し、 これに基づいて ドッ ブ ラーセンサ 2 とその回耘中心との水平距離 Lを設定する。 なお、 前 記式⑦が成立していないときには、 アイ ドラ浮き も し く はスプロケ ッ ト浮きのいずれも発生していないという ことなので、 車両の重心 1 3 を回転中心とする。
S 2 2 〜 S 2 3 : リ ッパ反力 F v ' が負値 ( F v ' < 0 ) の場合 言い換えればリ ツバ 1 5 が地面 3 から下向きの反力を受ける場合に は、 次に次式が成立するか否かを判定する。
F V ' . L B — W * L w > 0 · · · ⑦ この式が成立するときには、 リ ッパ 1 5 に加わる反力 F V ' によ るモーメ ン ト F V ' · L B が車両の重量 Wによるモーメ ン ト W * L
W より大き く 、 例えば岩を下から上へ持ち上げるようにリ ツ ビング が行われる場合などにおいて、 図 7 に示されているよ うに履帯用ァ ィ ドラ 1 4側が地面 3 から浮き上がつている状態 (アイ ドラ浮き) であると判断される。 この場合には、 前述のリ ッパ姿勢と ピッチ傾 斜計より得られる車両傾斜角とにより車両の浮き上がり角 aを算出 し、 予め設定される ドッ プラーセンサ 2 のビーム俯角 0 にその浮き 上がり角 aを加算した値を補正後のビーム俯角 0 とする。 そ して、 このように車両が浮き上がつているときには、 履帯用スプロケッ ト 1 0の中心下方の接地点 1 1 を車両の回転中心とする。 なお、 前記 式⑦が成立していないときには、 アイ ドラ浮き も し く はスプロケッ ト浮きのいずれも発生していないという こ となので、 車両の重心 1 3 を回転中心とする。
S 2 4〜 S 2 6 : ピッチングレー ト ジャイ ロ (角速度計) により 車両のピッチ角速度 ωを算出し、 次いで ドッ プラーセンサ 2 により ドッ プラー変移周波数 (ビー ト波周波数) f d を検出し、 これら , f d の値および 0 , Lの値、 更には C , f t , hの値に基づいて 前記式⑤により車速 Vを計算する。
本実施例において、 車両の浮き上がり角 aをブレー ド姿勢 (も し く はリ ツバ姿勢) および車体傾斜角の両者に基づいて算出するよう にしている理由は、 例えば傾斜面で ドージング作業等が行われる場 合を、 単に傾斜面を自走する場合と区別するためである。
本実施例においては、 作業機 (ブレー ドも し く はリ ッパ) 反力を 求めるのに、 ブレー ド (も し く はリ ッパ) 姿勢と シリ ンダ軸力とを 用いるものを説明したが、 この他に、 リ フ ト シリ ンダの取付けョー ク ピン荷重センサの検出値を用いること もできる。 なお、 この検出 値は、 単独で用いても良いし、 例えばシリ ンダ軸力等と組み合わせ て用いることにより精度向上を図っても良い。 また、 ブレー ド (も し く はリ ッパ) 姿勢はリ フ ト シ リ ンダの角度を検出する こ とによ り 算出しても良い。
(第 2実施例)
前記第 1 実施例においては、 ブレー ド 8 に加わる反力も し く はリ ツバ 1 5 に加わる反力を算出して車両のモーメ ン トバラ ンスにより その車両の回転中心を検出するものと したが、 本第 2 実施例におい ては、 ドージング作業に関し、 ブル ドーザ 1 の牽引力の大きさによ つて車両の回転中心の移動を検出するよ うに構成されている。 次に、 本実施例の車速検出装置による車速箅出のための処理フローを図 8 に示されるフローチヤ一トによって説明する。
T 1 : 各種データを読み込む。
T 2〜T 3 : トラ ンス ミ ツ シ ョ ン速度段センサから得られる速度 段状態より ブル ドーザ 1 前進状態にあるのか後進状態にあるのか を判定し、 前進状態にあると きには、 車速計算 (前記⑤式) におけ る補正符号を一 (マイナス) とする。
Τ 4〜Τ 5 : 牽引力検出手段によ り算出される牽引力が設定値を 越える場合には、 ドージング作業状態にあって回転中心が移動して いて履帯用アイ ドラ 1 4側が地面 3から浮き上がつている状態にあ ると判定されるので、 履帯用スプロケッ ト 1 0 の中心下方の接地点 1 1 を車両の回転中心と し、 これに基づいて ドップラーセンサ 2 と その回転中心との水平距離 Lを設定する。 こ こで、 牽引力検出手段 と しては、 例えば特開平 5 — 1 0 6 2 3 9号公報に開示されている 手段を用いるのが好ま しい。
Τ 6〜Τ 7 : 車両が後進状態にあると きには、 車速計算 (前記⑤ 式) における補正符号を + (ブラス) と し、 この後に車両の重心 1 3 を回転中心に設定し、 これに基づいて ドッ プラーセ ンサ 2 とその 回転中心との水平距離 Lを設定する。 また、 ステッ プ T 4 の判定に おいて牽引力が設定値以下のときにも、 自走状態にあって車両の浮 き上がりが発生していないという ことなので、 車両の重心 1 3 を回 転中心とする。
T 8 ~ T 1 0 : ピッチングレー ト ジャイ ロ (角速度計) によ り車 両のピッチ角速度 ωを算出し、 次いで ドッ プラーセンサ 2 により ド ッ プラー変移周波数 (ビー ト波周波数) f d を検出し、 これら 0) , f o の値および 0 , Lの値、 更には C , f t , hの値に基づいて前 記式⑤によ り車速 Vを計算する。
本実施例においては、 アイ ドラ浮きの場合に車両の浮き上がり角 の補正が行われていないが、 第 1 実施例と同様に、 ブレー ド姿勢と 車両傾斜角とによ り車両の浮き上がり角 aを算出してその浮き上が り角 a に応じてビーム俯角 0を補正するよ うにするこ と もできる。
(第 3実施例)
本実施例は、 ドップラーセンサを車体の高所部分に取付け可能と するための装置を提供する実施例に関する ものである。
ドップラー変移周波数 f d と実速度 V との関係を示す前述の①式 より、 実車速 V は次式で与えられる。 v = f d C / 2 f t c o s ^ . · · ⑧ 前記 ドッ ブラーセンサ 2 の取付け高さ h は、 ビーム 4 の出力強度 と反射波の受信感度とによ って決まるセンサ仕様値で制限される も のである。 この取付け高さ hがその仕様値を越えると、 ビーム 4 の 広がりによる影響で 0 — ノ 2側、 言い換えればビーム 4 の外側の 反射波が弱く なつて、 相対的に 0 + 0 / 2側、 言い換えればビーム 4 の内側の反射波を多く 受信するようになり、 この結果俯角 が増 加したのと等価な状態になる。 このこ とに鑑み、 本実施例では、 予 め取付け高さ h と実効俯角 との相関関係を求めておき、 実際の取付 け高さに応じて前記⑧式における を補正するよ うにされている。 より具体的には、 取付け高さ h と ビーム俯角補正量ひ との間には、 図 9 に示されるよ うに、 正規の取付け高さ h 。 を基準にして、 この 取付け高さ hが増加するに したがってビーム俯角補正量 αが漸増す る関係があるこ とから、 これら取付け高さ h と ビーム俯角補正量 との関係を示す補正テーブルを予め車速検出装置内の記憶装置に記 憶させておき、 実際に ドッ プラーセンサ 2が車両に取り付けられた ときに入力される取付け高さ hの値に応じてその補正テーブルを参 照し、 ビーム俯角 0の値と してそのビーム俯角補正量 αを加算した 値 +なを用いるよ うにされている。
こ う して、 実車速 V は次式によって算出される。 v = f d C / 2 f t c o s ( Θ + a ) · · · ⑨ 本実施例においては、 前述のように ドッ プラーセンサ 2 の現実の 取付け高さ hの正規の取付け高さ h 。 に対する差分に基づいてビー ム俯角補正量 αが求められ、 このビーム俯角補正量 を加算した値 Θ + がビーム俯角 0の値と して用いられ、 このビーム俯角 0の値 に基づいて実車速 Vが演算されるので、 この ドッ プラーセンサ 2を 地面 3からの反射波強度が十分でない車体の高所部分に取り付けた 場合でも、 正確な対地車速を得るこ とができる。
本実施例においては、 センサ取付け高さ hに対する ビーム俯角補 正量 αの関係を補正テーブルに記憶させる ものを説明したが、 セン サ取付け高さ h に対する ビーム俯角 0の関係を直接にテーブルデー 夕 と して記憶させるこ と もできる。 本実施例において、 ドッ プラーセンサ 2 の取付け位置と しては、 図 1 0 に示されるように、 リ ッパ 5 を支持する リ ッパフ レームに取 り付けられるのが好ま しい。 こ うするこ とで、 この ドッ プラーセン サ 2 に対する対地作業による影響が少ない位置で、 かつ可能な限り 低い位置にその ドッ プラーセンサ 2 を設ける こ とができる。
前記各実施例においては、 装軌車両に適用 したものを説明したが 本発明は、 例えばホイル式ブル ドーザのような他の建設機械に対し ても適用することができる。
前記各実施例において用いられる ドッ プラーセンサは、 マイ ク ロ 波を用いるもの、 超音波を用いる もの、 光波を用いるものなど、 い ろいろなタイプのものであり得る。

Claims

請求の範囲
ドップラーセンサを用いる対地車速検出装置において、 ( a ) 車両ピッチングによるその車両の重心回りの角速度を検 出する角速度検出手段、
( b ) 車両ピッチングによるその車両の回転中心を検出する回 転中心検出手段および
( c ) 前記ドップラーセンサより得られる対地車速値を、 前記 角速度検出手段より得られる検出値に基づきかつ前記回転中心 検出手段より得られる検出値を加味して補正する車速補正手段 を備えることを特徴とする車速検出装置。
ドッブラーセンサを用いる対地車速検出装置において、
( a ) 車両ピッチングによるその車両の重心回りの角速度を検 出するとと もに、 この ドッ プラーセンサ自体の回転角速度を検 出する角速度検出手段および
( b ) 前記ドップラーセンサより得られる対地車速値を、 前記 角速度検出手段より得られる検出値に基づき補正する車速補正 手段
を備えることを特激とする車速検出装置。
ドップラーセンサを用いる対地車速検出装置において、
( a ) 車両ピッチングによるその車両の重心回りの角速度を検 出するとともに、 この ドップラーセンサ自体の回転角速度を検 出する角速度検出手段、
( b ) 車両ピッチングによるその車両の回転中心を検出する回 転中心検出手段および
( c ) 前記ドップラーセ ンサより得られる対地車速値を、 前記 角速度検出手段より得られる検出値に基づきかつ前記回転中心 検出手段より得られる検出値を加味して補正する車速補正手段 を備えるこ とを特徴とする車速検出装置。
前記車両は装軌車両であり、 前記回転中心検出手段は、 この 装軌車両の牽引力が所定値を越える場合に履帯用スプロケッ ト 中心下方の接地点を車両の回転中心と検出し、 前記牽引力が所 定値以下の場合に車両の重心下方の接地点を車両の回転中心と 検出することを特徴とする請求項 1 または 3 に記載の車速検出 装置。
前記車速補正手段は、 前記履帯用スプロケッ ト中心下方の接 地点が車両の回転中心と検出される場合に、 車両の傾斜角を前 記 ドッ ブラーセンサのビーム俯角に加算した値に基づいて前記 対地車速値を補正する ことを特徴とする請求項 4 に記載の車速 検出装置。
前記車両は装軌車両であり、 前記回転中心検出手段は、 履帯 用スプロケッ ト中心下方の接地点を支点とするブレー ドに加わ る反力によるモ一メ ン トが車両の重量によるモーメ ン トよ り大 きい場合に履帯用スプロケッ ト中心下方の接地点を車両の回転 中心と検出し、 前記ブレー ドに加わる反力によるモーメ ン トが 車両の重量によるモーメ ン 卜以下の場合に車両の重心下方の接 地点を車両の回転中心と検出することを特徴とする請求項 1 ま たは 3 に記載の車速検出装置。
前記車速補正手段は、 前記履帯用スプロケッ ト中心下方の接 地点が車両の回転中心と検出される場合に、 車両の傾斜角を前 記 ドッ プラーセンサのビーム俯角に加算した値に基づいて前記 対地車速値を補正することを特徴とする請求項 6 に記載の車速 検出装置。
前記ブレー ドに加わる反力は、 ブレー ドリ フ ト シ リ ンダのス ト ロークから算出されるブレー ド姿勢とそのブレー ドリ フ ト シ リ ンダの油圧から算出されるシリ ンダ軸力とに基づいて渲算さ れるこ とを特徴とする請求項 6 または 7 に記載の車速検出装置。 前記車両は装軌車両であり、 前記回転中心検出手段は、 履帯 用スプロケッ ト中心下方の接地点を支点とする リ ツバに加わる 反力が上向き力であってその反力によるモーメ ン 卜が車両の重 量によるモーメ ン ト よ り大きい場合に履帯用アイ ドラ中心下方 の接地点を車両の回転中心と検出し、 前記リ ッパに加わる反力 によるモ一メ ン 卜が車両の重量によるモーメ ン ト 1下の場合に 車両の重心下方の接地点を車両の回転中心と検出するこ とを特 徴とする請求項 1 または 3 に記載の車速検出装置。
. 前記車両は装軌車両であり、 前記回転中心検出手段は、 履 帯用スプロケッ ト中心下方の接地点を支点とする リ ツバに加わ る反力が下向き力であってその反力によるモ一メ ン 卜が車両の 重量によるモ一メ ン—卜より大きい場合に履帯用スプロケッ ト中 心下方の接地点を車両の回転中心と検出し、 前記リ ッパに加わ る反力によるモ一メ ン トが車両の重量によるモーメ ン 卜以下の 場合に車両の重心下方の接地点を車両の回転中心と検出するこ とを特徴とする請求項 9 に記載の車速検出装置。
. 前記車速補正手段は、 前記履帯用アイ ドラ中心下方の接地 点もしく は前記履帯用ス ロケッ ト中心下方の接地点が車両の 回転中心と検出される場合に、 車両の傾斜角を前記 ドッ プラー セ ンサのビーム俯角に加算した値に基づいて前記対地車速値を 補正することを特徴とする請求項 9 または 1 0 に記載の車速検 出装置。
. 前記リ ッパに加わる反力は、 リ ッパリ フ ト ' チル ト シ リ ン ダのス 卜 ロークから算出される リ ツバ姿勢とそれら リ ッパリ フ ト ' チル ト シリ ンダの油圧から算出されるシリ ンダ軸カとに基 づいて演算されるこ とを特徴とする請求項 9 , 1 0 , 1 1 のう ちのいずれかに記載の車速検出装置。
. ドッ プラーセンサを用いる対地車速検出装置において、
( a ) 前記 ドッ プラーセンサの取付け高さ と正規の取付け高さ との差分に対するその ドッ プラーセンサのビーム俯角補正量を 所定の関数と して記憶する記憶手段、
( b ) 前記 ドッ プラーセンサが実際の車両に取り付けられてい る状態でのビーム俯角の値を、 前記記憶手段に記憶されている ビーム俯角補正量を加味して演算する ビーム俯角演算手段およ び
( c ) このビーム俯角演箅手段により演算される ビーム俯角に 基づいて車両の対地車速を補正する補正手段
を傭えることを特徴とする車速検出装置。
. 前記所定の関数は、 前記正規の取付け高さを基準にして、 この取付け高さが増加するにしたがって前記ビーム俯角補正量 が漸増する関数であることを特徴とする請求項 1 3 に記載の車 速検出装置。
. 前記車両はブル ドーザであり、 前記 ドッ プラーセンサはそ のブル ドーザのリ ッパを支持する リ ッパフ レームに取り付けら れる こ とを特徴とする請求項 1 3 または 1 4 に記載の車速検出 装置。
PCT/JP1997/001015 1996-03-29 1997-03-24 Detecteur de vitesse de vehicule WO1997037241A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/137,848 US6230107B1 (en) 1996-03-29 1997-03-24 Vehicle speed detection system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP07786096A JP3722544B2 (ja) 1996-03-29 1996-03-29 車速検出装置
JP8/77860 1996-03-29
JP07786196A JP3722545B2 (ja) 1996-03-29 1996-03-29 車速検出装置
JP8/77861 1996-03-29

Publications (1)

Publication Number Publication Date
WO1997037241A1 true WO1997037241A1 (fr) 1997-10-09

Family

ID=26418915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001015 WO1997037241A1 (fr) 1996-03-29 1997-03-24 Detecteur de vitesse de vehicule

Country Status (3)

Country Link
US (1) US6230107B1 (ja)
CN (1) CN1215475A (ja)
WO (1) WO1997037241A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885968B2 (en) * 2000-05-08 2005-04-26 Automotive Technologies International, Inc. Vehicular exterior identification and monitoring system-agricultural product distribution
DE10019182A1 (de) * 2000-04-17 2001-10-25 Bosch Gmbh Robert Verfahren und Vorrichtung zum Ermitteln einer Fehlausrichtung der Strahlungscharakteristik eines Sensors zur Geschwindigkeits- und Abstandsregelung eines Fahrzeugs
US7769520B2 (en) * 2003-10-27 2010-08-03 Ford Global Technologies, Llc Tractive force map
DE10350920A1 (de) * 2003-10-31 2005-05-25 Robert Bosch Gmbh Vorrichtung zur Bestimmung eines Drehpunkts eines Fahrzeugs um eine Fahrzeughochachse
JP4456998B2 (ja) * 2004-12-28 2010-04-28 日立オートモティブシステムズ株式会社 速度センサおよびそれを用いた対地車速センサ
US7529319B2 (en) * 2006-04-13 2009-05-05 Mediatek Inc. Speed estimation method for telecommunication system
DE102008038615A1 (de) * 2007-09-18 2009-03-19 Continental Teves Ag & Co. Ohg Sensoreinrichtung und Verfahren zum Erfassen der Bewegung eines Fahrzeugs
DE102009052687A1 (de) * 2009-11-11 2011-05-12 Robert Bosch Gmbh Kalibrierverfahren und hydraulischer Fahrantrieb
US8720595B2 (en) 2011-06-20 2014-05-13 Deere & Company Depth limiting of ripper attachment by electronically limiting cylinder length
US8333248B1 (en) * 2011-06-20 2012-12-18 Bryan D Sulzer Automatic pitch hold of a electrohydraulically controlled ripper
DE102011079522A1 (de) * 2011-07-21 2013-01-24 Robert Bosch Gmbh Erkennung einer dejustage eines radarsensors eines fahrzeugs
US8879051B2 (en) * 2011-12-23 2014-11-04 Optical Air Data Systems, Llc High power laser doppler velocimeter with multiple amplification stages
US9500747B2 (en) * 2012-01-10 2016-11-22 Mitsubishi Electric Corporation Travel distance measurement device
WO2013142916A1 (en) * 2012-03-29 2013-10-03 Commonwealth Scientific And Industrial Research Organisation A system for determining a velocity and a navigation system
ITMI20120922A1 (it) * 2012-05-28 2013-11-29 Snowgrolic S A R L Metodo di controllo, programma per elaboratore elettronico e dispositivo di controllo di un veicolo cingolato
CN103569164B (zh) * 2012-07-26 2015-12-02 上海工程技术大学 一种用于城市轨道交通工务检测车定位的容错检测方法
US9423498B1 (en) * 2012-09-25 2016-08-23 Google Inc. Use of motion data in the processing of automotive radar image processing
WO2015118804A1 (ja) * 2014-02-05 2015-08-13 パナソニックIpマネジメント株式会社 物体検知装置
CN106405535B (zh) * 2015-07-31 2021-10-08 株式会社京三制作所 列车速度检测装置及列车速度检测方法
CN107310642A (zh) * 2017-07-03 2017-11-03 农业部南京农业机械化研究所 一种履带车辆履带速度检测装置
CN107310643A (zh) * 2017-07-03 2017-11-03 农业部南京农业机械化研究所 水田履带车履带速度检测装置
US11264706B2 (en) * 2018-10-04 2022-03-01 Aptiv Technologies Limited Object sensor including pitch compensation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713503Y2 (ja) * 1975-12-04 1982-03-18
JPS61201176A (ja) * 1985-03-04 1986-09-05 Komatsu Ltd ドプラレ−ダ式対地車速検出器の誤差低減方法
JPH0552934A (ja) * 1991-08-21 1993-03-02 Mazda Motor Corp 車両の接触防止装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317376A (en) 1976-07-30 1978-02-17 Mitsubishi Electric Corp Measuring method for speed of running object
DE2833074A1 (de) * 1977-07-28 1979-02-08 Petrovskij Doppler-effekt-funkmessgeschwindigkeitsmesser fuer sich bewegende objekte
JPS56665A (en) * 1979-06-15 1981-01-07 Nissan Motor Co Ltd Protective device of ground speed radar for vehicle
US4414548A (en) * 1981-03-30 1983-11-08 Trw Inc. Doppler speed sensing apparatus
DE3122963C2 (de) * 1981-06-10 1985-08-08 Krone Gmbh, 1000 Berlin Meßeinrichtung zum selbsttätigen Messen von Geschwindigkeit und Weg eines beweglichen Körpers
EP0095300B1 (en) * 1982-05-25 1987-10-21 Plessey Overseas Limited Vehicle mounted doppler radar system
DE3909644A1 (de) * 1989-03-23 1990-09-27 Vdo Schindling Verfahren und vorrichtung zur eigengeschwindigkeitsmessung eines fahrzeugs nach dem dopplerradarprinzip
JPH02280077A (ja) 1989-04-21 1990-11-16 Mazda Motor Corp 車両姿勢検出装置
JP2687066B2 (ja) * 1992-04-13 1997-12-08 トヨタ自動車株式会社 ドップラ式対地車速検出装置
DE4420432C2 (de) * 1994-06-10 1996-05-15 Siemens Ag Anordnung zur ortsselektiven Geschwindigkeitsmessung nach dem Doppler-Prinzip
US5560431A (en) * 1995-07-21 1996-10-01 Caterpillar Inc. Site profile based control system and method for an earthmoving implement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713503Y2 (ja) * 1975-12-04 1982-03-18
JPS61201176A (ja) * 1985-03-04 1986-09-05 Komatsu Ltd ドプラレ−ダ式対地車速検出器の誤差低減方法
JPH0552934A (ja) * 1991-08-21 1993-03-02 Mazda Motor Corp 車両の接触防止装置

Also Published As

Publication number Publication date
US6230107B1 (en) 2001-05-08
CN1215475A (zh) 1999-04-28

Similar Documents

Publication Publication Date Title
WO1997037241A1 (fr) Detecteur de vitesse de vehicule
JP3266827B2 (ja) 車両の物体検知装置
JP3710451B2 (ja) 移動体の位置計測方法及び装置
WO2017175361A1 (ja) 走行車両及び走行車両の制御方法
US6035249A (en) System for determining the position of a bulldozer
US11835643B2 (en) Work machine control system, work machine, and work machine control method
JP3722544B2 (ja) 車速検出装置
JPH10159125A (ja) 浚渫装置
JP2023098881A (ja) 作業車両
WO2002048736A1 (fr) Radar d&#39;exploration
AU2019313721B2 (en) Work machine control system, work machine, and work machine control method
JP7229109B2 (ja) 作業機械および作業機械の制御方法
US11846650B2 (en) Acceleration detection device, work machine, and acceleration detection method
US20190018122A1 (en) Sensor mounting state determination device and sensor mounting state determination method
JP3722545B2 (ja) 車速検出装置
JP2673599B2 (ja) 装軌車両のブレード位置制御装置
JPH11142518A (ja) 水中航走体の運動制御方式および運動制御装置
JP6988547B2 (ja) 走行制御装置
WO2022255362A1 (ja) 電子制御装置
JPH0795074B2 (ja) ブルドーザの履帯スリップ検知装置
JP2994111B2 (ja) 潮流計
JPH0778443B2 (ja) 運搬船内に積載された積載物の体積測定方法
JP2020050257A (ja) 車両走行状態決定装置
JP2004301764A (ja) 車載用障害物検知装置
JPH0545459A (ja) ドツプラ式対地車速検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97193519.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09137848

Country of ref document: US