WO1997037264A1 - Confocal optical apparatus - Google Patents

Confocal optical apparatus Download PDF

Info

Publication number
WO1997037264A1
WO1997037264A1 PCT/JP1997/001095 JP9701095W WO9737264A1 WO 1997037264 A1 WO1997037264 A1 WO 1997037264A1 JP 9701095 W JP9701095 W JP 9701095W WO 9737264 A1 WO9737264 A1 WO 9737264A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
light
pinhole
photodetector array
confocal optical
Prior art date
Application number
PCT/JP1997/001095
Other languages
French (fr)
Japanese (ja)
Inventor
Hideyuki Wakai
Hiroyuki Mizukami
Toru Suzuki
Masato Moriya
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Publication of WO1997037264A1 publication Critical patent/WO1997037264A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/04Measuring microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • G02B21/004Scanning details, e.g. scanning stages fixed arrays, e.g. switchable aperture arrays

Definitions

  • the present invention relates to a confocal optic used in a three-dimensional shape inspection apparatus for quickly inspecting a three-dimensional shape, for example, a shape of an object to be measured, such as a solder bump for IC mounting, whose approximate surface shape is known. It concerns equipment. Background art
  • This type of confocal optical device is configured as shown in FIG.
  • the light from the light source 1 is reflected by the mirror 40, becomes parallel light via the magnifying lenses 2a and 2b, and enters the hologram 3 as reference light.
  • the hologram 3 reproduces light equivalent to a point light source emitted from each pinhole position of the pinhole array 4 in which the pinholes are two-dimensionally arranged by diffracting the reference light.
  • Fig. 1 represents the light at one pinhole position as a representative.
  • reflected light with pinhole array 4 It shows how to form an image nearby.
  • the reflected light passes through the pinhole 4a of the pinhole array 4 only when the focal point and the surface of the object 6 are coincident (focused). That is, as shown in FIG. 2, the focal point is located after the reflecting surface (surface) of the object 6 (rear pin), or as shown in FIG. 4, when located before the reflecting surface (front pin).
  • the reflected light is shielded by the pinhole array 4 and can hardly pass therethrough, so that a so-called light receiving aperture function is performed.
  • FIG. 1 has the confocal optical system described with reference to FIGS.
  • the pinholes 4a are two-dimensionally arranged, so that while moving the object 6 in the Z direction, By measuring the amount of reflected light passing through 4a and subjecting it to peak processing, the surface shape of the object 6 corresponding to each pinhole 4a can be measured.
  • the first and second objective lenses 5a and 5b are both constituted by a telecentric system (also referred to as an afocal system or a tandem arrangement optical system), and the object 6 is formed. Instead of moving in the Z direction, move the first objective lens 5a in the Z direction and measure.
  • the light passing through the pinhole 4a is coupled to a photodetector array 8 for detecting two-dimensional light via first and second relay lenses 7a and 7b.
  • the light that passes through each pinhole 4a is imaged and measured on an independent photodetector.
  • the control device 9 controls the XY position of the stage 10 on which the object 6 is placed (if necessary, the offset position in the Z direction), determines the measurement field of view, and determines the first objective lens.
  • 5 a is moved in the Z direction, and the measured value of the photodetector array 8 is read out and peak-processed while detecting the position in the Z direction, and the result is displayed, output or recorded.
  • the light source 11 is a coherent light source such as a laser, and the light emitted from the light source 11 is split into two lights by wavefront splitting by the beam splitter 12. These are the light sources for the reference light and object light of Hologram 3, respectively.
  • the polarization direction of the linearly polarized light is rotated by rotating the first half-wave plate 13a, and the polarization beam splitter 12 By adopting a lid, the intensity ratio of the division is set to a desired value.
  • the reference light and the object light generated by the wavefront splitting by the beam splitter 12 are the first, second, third, and fourth enlarged lenses 14a, 14b, and 14c, Each of them is enlarged by 14 d and incident on the hologram 3 and the pinhole array 4 respectively.
  • the light transmitted through the pinhole array 4 is diffracted by the respective pinholes 4a, becomes light equivalent to a point light source, is converted into parallel light by the objective lens 5b, and is converted into a parallel light by the objective lens 5b. Is incident on the object as object light.
  • the second and third half-wave plates 13b and 13c the polarization directions of the reference light and the object light are set to desired directions (generally, the same direction as the same direction).
  • FIG. 6 shows the first conventional type shown in Japanese Patent Application Laid-Open No. Hei 4-26959, U.S. Pat.No. 5,239,178 (from light source 1 to light source 1).
  • the light is expanded by the magnifying lens 2 and is incident on the pinhole array 4.
  • the light diffracted by each of the pinholes 4 a passes through the beam splitter 15,
  • the first objective lenses 5b and 5a project light to the object 6.
  • FIG. 7 shows a second prior art, shown in US Pat. No. 4,806,004.
  • the light from the light source 1 is enlarged by the magnifying lens 2, passes through the half mirror 41, is incident on the pinhole array 4, and is diffracted by the pinhole 4 a, and the light diffracted by the pinhole 4 a
  • the light is projected onto the object 6 by the objective lenses 5b and 5a.
  • the light projected and reflected and scattered on the object 6 passes through the objective lenses 5a and 5b, and is condensed on the pinhole array 4 which functions as a light receiving aperture. Then, the light passing through each pinhole 4a is reflected by the half mirror 41, and forms an image on the photodetector array 8 on a one-to-one basis via the relay lens 7.
  • the pinhole array 4 that creates a point light source for projection and the pinhole array 4 that defines the receiving aperture have the same structure.However, light must be incident from behind the pinhole array 4. The extra light such as the reflected light R from the pinhole mask 4 b of the pinhole array 4 is prevented from reaching the detector array 8 by any method.
  • the pinhole 4a and the pixel of the detector array 8 do not have a one-to-one correspondence, and instead, the pinhole array 4 is scanned in the XY plane. Then, images of the pinholes 4a and 4a are obtained, and such a confocal optical system is referred to as a tandem-type scanning confocal optical system.
  • FIG. 8 shows a tandem scanning optical system of the same kind as the second conventional type described in Japanese Patent Application Laid-Open No. 1-503493 and US Pat. No. 4,927,254.
  • the system is shown.
  • a pinhole array 4 a disk called a Nipco disk (Nipk0wDisc) in which pinholes 4a are arranged in a spiral pattern on a disk is used to rotate the disk. ing. By rotating the disk-shaped pinhole array 4, an image between the pinholes 4a, 4a is obtained by scanning.
  • Nipco disk Nipk0wDisc
  • each light detection portion is very small compared to the pitch of the light detection portion of the photodetector array 8, the pinhole image protrudes from the light detection portion, and in this case, too, the pinhole 4a Cannot know the total amount of light passing through.
  • each light detection portion is much smaller than the pitch of the light detection portion 8a, that is, many have a small aperture ratio.
  • the shape of the light detection portion 8a is poorly isotropic, such as a rectangle, a letter, a convex, etc., in addition to a highly isotropic shape such as a circle or a square. It happens anisotropically depending on the direction.
  • the present invention has been made in view of the above circumstances, and facilitates alignment of a photodetector array, and further includes a photodetector array having a substantially large aperture ratio. It is an object of the present invention to provide a confocal point optical device capable of performing a focusing operation.
  • a first aspect of the confocal optical system according to the present invention for achieving the above object is as follows:
  • It has a confocal optical system including a relay lens, a pinhole array in which pinholes are arranged one-dimensionally or two-dimensionally, and a photodetector array, and measures the amount of reflected light from an object passing through each pinhole.
  • a confocal optical device for measuring with the photodetector array via the relay lens In a confocal optical device for measuring with the photodetector array via the relay lens,
  • a diffusing member that randomly diffuses the reflected light passing through each of the pinholes is disposed near the focus position of the reflected light, and the reflected light passing through each of the pinholes is filled with a certain probability.
  • the light is incident on the light detection portion of the light detector array. Further, in the above configuration, the diffusion member is arranged behind the front pinhole array.
  • the diffusing member is disposed in front of the photodetector array.
  • a second aspect of the confocal optical system according to the present invention is as follows.
  • It has a confocal optical system including a relay lens, a pinhole array in which pinholes are arranged in one or two dimensions, and a photodetector array.
  • a confocal optical device for measuring the amount of light with the photodetector array via the relay lens In a confocal optical device for measuring the amount of light with the photodetector array via the relay lens,
  • the relay lenses are arranged in tandem between the pinhole array and the photodetector array, and the reflected light passing through each of the pinholes is randomly diffused between the relay lenses.
  • a diffusing member is arranged so that the reflected light passing through each of the pinholes is evenly and uniformly incident on a light detection portion of the photodetector array.
  • the reflected light from the object passing through the pinhole of the pinhole array is placed between the relay lenses located behind the pinhole array, in front of the photodetector array, or in tandem. Since the light is randomly diffused by the arranged diffusion member, the reflected light passing through the pinhole is uniformly incident on the light detection portion of the photodetector array with a certain probability.
  • a third aspect of the confocal optical system according to the present invention is as follows.
  • One-dimensional confocal optical system including relay lens and pinhole Or a two-dimensionally arranged pinhole array and a photodetector array, and the amount of reflected light from an object passing through each pinhole is reflected by the photodetector array via the relay lens.
  • a confocal optical device that measures at
  • the relay lens is arranged in tandem between the pinhole array and the photodetector array, and the reflected light passing through each of the pinholes is regularly diffracted between the relay lenses.
  • a diffraction grating is arranged so that the reflected light passing through each of the pinholes is made incident according to the shape of the light detection portion of the light detector array.
  • the reflected light of the object that has passed through the pinhole is regularly diffracted by the diffraction grating, and is incident according to the shape of the photodetector portion of the photodetector array.
  • the positional relationship between the pinhole array and the photodetector array is set so that an image of one pinhole of the pinhole array can form an image at a plurality of light detecting portions of the photodetector array.
  • Integrating means for integrating the outputs of the plurality of light detection portions on which the images are formed may be provided.
  • a micro lens array may be arranged in front of the photodetector array. According to this configuration, the light for forming the pinhole image, which is diffused by the diffusing member and the diffraction grating, is transmitted to each photodetector of the photodetector array by the micro lens array. It is focused on the part.
  • the pinhole of the pinhole array is formed by a diffusing member arranged behind the pinhole array, in front of the photodetector array, or between tandemly arranged relay lenses. Since the reflected light from the passing object is evenly blurred and averaged, the alignment of the photodetector array becomes easy, and the aberration of the relay lens is also a problem. Therefore, the design and construction of the layout relationship between the relay lens and the photodetector array with respect to the pinhole array can be simplified.
  • the diffraction grating is arranged between the tandemly arranged relay lenses, the light passing through the pinhole according to the shape of the photodetector portion of the photodetector array is formed by the diffraction grating. By dispersing the light, the alignment of the photodetector array is facilitated, and the same effect as that obtained by using the diffusion member can be obtained.
  • the light that has passed through one pinhole is diffused, measured at multiple photodetector sections, and integrated, creating a photodetector array with a substantially large aperture ratio.
  • the diffused member or diffraction grating can uniformly diffuse the blurred pinhole image.
  • the light is condensed on each photodetector by the lens, and the light detection efficiency is improved.
  • FIG. 1 is an explanatory diagram illustrating a configuration of a conventional confocal optical device.
  • FIG. 2 is an explanatory diagram showing an image forming state of a reflected light near a pinhole in the conventional device.
  • FIG. 3 is an explanatory diagram showing an image forming state of a reflected light near a pinhole in the conventional device.
  • FIG. 4 is an explanatory diagram showing an image forming state of a reflected light near a pinhole in the conventional device.
  • FIG. 5 is an explanatory view of the configuration when exposing the hologram.
  • FIG. 6 is an explanatory diagram of a configuration of a first conventional optical system.
  • FIG. 7 is an explanatory diagram of a configuration of a second conventional optical system.
  • Fig. 8 is a configuration diagram of a conventional nip code disc type optical system.
  • FIG. 9 is an explanatory diagram showing how light passing through the pinhole is kicked by the photodetector array.
  • FIG. 10 is an explanatory diagram showing how light passing through a pinhole is kicked by a photodetector array.
  • FIG. 11 is a structural explanatory view showing a first embodiment of the confocal optical device according to the present invention.
  • FIG. 12 is an operation explanatory view of the first embodiment of the present invention.
  • FIG. 13 is an operation explanatory view of the first embodiment of the present invention.
  • FIG. 14 is an operation explanatory diagram of the first embodiment of the present invention.
  • FIGS. 15A and 15B are operation explanatory diagrams showing a volume type diffusion member and two stacked type diffusion members, respectively.
  • FIG. 16 is an explanatory diagram of the operation in a state where the thin diffusion member is brought close to the pinhole array.
  • FIG. 17 is an explanatory diagram of the operation when the thick diffusion member is separated from the pinhole array.
  • FIG. 18 is an explanatory diagram of an operation when a thicker diffusing member is used.
  • FIG. 19 is an explanatory diagram of a configuration of a second embodiment of the confocal optical device according to the present invention.
  • FIG. 20 is an operation explanatory view of the second embodiment of the present invention in a state where a focus is formed after passing through a pinhole.
  • FIG. 21 is an operation explanatory view of a second embodiment of the present invention in a state where a focus is formed at a portion passing through a pinhole.
  • FIG. 22 is an operation explanatory view of the second embodiment in a state where a focus is formed just before the pinhole.
  • FIG. 23 is a configuration explanatory view showing a third embodiment of the confocal optical device according to the present invention.
  • FIG. 24 is a configuration explanatory view showing a fourth embodiment of the confocal optical device according to the present invention.
  • FIG. 25 is a configuration explanatory view showing a fifth embodiment of the confocal optical device according to the present invention.
  • FIG. 26 is an explanatory diagram of the operation of the fifth embodiment of the present invention.
  • FIG. 27 shows a sixth embodiment of the confocal optical device according to the present invention.
  • FIG. 28 is an operation explanatory view of the sixth embodiment of the present invention.
  • FIG. 29 is an operation explanatory view showing a photodetector array according to a seventh embodiment of the confocal optical device according to the present invention.
  • FIG. 30 is a structural explanatory view showing an eighth embodiment of the confocal optical device according to the present invention.
  • FIG. 31 is an explanatory diagram of the operation of the eighth embodiment of the present invention.
  • FIG. 32 is a structural explanatory view showing an eighth embodiment of the confocal optical device according to the present invention.
  • FIG. 33 is an explanatory view showing a process for producing a polymer scattering type liquid crystal plate substrate.
  • FIG. 34 is an explanatory diagram showing a step of injecting a liquid crystal into a substrate.
  • FIG. 35 is a cross-sectional view showing an example of a configuration in which a pinhole array and a diffusion member are integrated.
  • FIG. 36 is a sectional view showing a sectional structure of the pinhole array.
  • FIGS. 1 A first embodiment of the present invention will be described with reference to FIGS.
  • This embodiment relates to an improvement over the prior art shown in FIG. 1, and the same components as those of the prior art are denoted by the same reference numerals and description thereof is omitted.
  • the diffusion member 20 is arranged behind the pinhole array 4. At this time, the pinhole array 4, the two relay lenses 7a and 7b, and the inspection The spacing between the output arrays 8 is the same as the conventional one shown in FIG.
  • the effect is as shown in Fig. 12, Fig. 13, and Fig. 14.
  • the light that has passed through the pinhole 4a of the pinhole array 4 enters the diffusion member 20 and is randomly diffused here, passes through the relay lenses 7a and 7b, and enters the photodetector array 8. Incident.
  • Fig. 12 shows the reflected light passing through the pinhole 4a and being focused at the diffusion member 20.
  • Fig. 13 shows the focus at the position of the pinhole array 4 in front of the diffusion member 20.
  • Figure 12 shows a state in which the focal point is formed before the position of the pinhole array 4, respectively.
  • the focal point is formed at the diffusion member 20 as shown in FIG. 12, the reflected light is scattered at this focal point, and the focal point is formed as shown in FIGS. I 3 and 14. It is diffused by the diffusion member 20 from the part of the slightly enlarged area later. The diffused portion is indicated by a dotted pattern with a high density. Then, the light of the diffusion center region 21 indicated by a circle in this diffusion portion is sent to one light detection portion (sensor) 8a of the photodetector array 8 via the relay lenses 7a and 7b. Received. In this way, each light that has passed through the pinhole array 4a is diffused by the diffusion member 20 and the light in the diffusion central region 21 has a certain probability of being uniformly distributed over the photodetector array 8a. The light is detected at the light detection part 8a.
  • the light in the diffusion center region 2 i becomes blurred light because the light (object image) that has passed through the pinhole 4 a is diffused. Even this diffusion center area 2 1 At this time, the light passing through the pinhole 4a is averaged and becomes uniform light, and this light is detected by the light detection portion 8a of the detector array 8.
  • the diffusion member 20 has a flat plate shape, and is a volume type having a certain thickness t as shown in FIG. 15A and a certain distance (thickness) as shown in FIG. 15B.
  • the diffusion member 20 has a flat plate shape, and is a volume type having a certain thickness t as shown in FIG. 15A and a certain distance (thickness) as shown in FIG. 15B.
  • the diffusion effect varies depending on the thickness t of the diffusion member 20, the distance D from the pinhole 4a, and the diffusion characteristics. As a general tendency, the diffusion effect increases as the thickness t increases, but the light loss increases, and the diffusion effect decreases as the thickness t decreases. Also, the diffusion effect increases as the number of diffusion plates stacked increases, but the light loss increases. The greater the distance D from the pinhole 4a, the lower the uniformity of the diffusion, and the smaller the D, the higher the uniformity of the diffusion. Also, the diffusion effect increases as the diffusion characteristic (angle) increases, and the diffusion effect decreases as the diffusion characteristic (angle) decreases. Therefore, it is only necessary to take these factors into account and make it appropriate diffusion (blur condition).
  • Fig. 16, Fig. 17, and Fig. 18 show the situation.
  • Fig. 16 In the example shown in Fig. 7, a thin diffusion member 20 is arranged at a short distance from the pinhole 4a, and the diffusion effect is small and the degree of blur is small.
  • the one shown in Fig. 17 has a thickness t larger than that shown in Fig. 16 and is farther away from the pinhole 4a by a distance D, so that the diffusion effect is larger and the degree of blur is larger. It is as large as whether or not it spans the adjacent photodetector array 8.
  • the one shown in Fig. 18 uses a thicker diffusion member 20, the diffusion effect is even greater, and the degree of blur completely spans the adjacent photodetector array 8. You.
  • Examples of the diffusion member 20 include: (1) a material in which the surface of an optical substrate made of glass or the like is subjected to processing such as grinding and etching so that the surface scatters light; The material itself has the property of scattering light (volume scattering), or (3) A material that scatters the volume in this way is coated on an optical substrate, for example, a coating or sand switch such as opal glass. There is something.
  • a well-known polymer scattering type liquid crystal plate is used as the volume scattering type diffusion member 20.
  • the diffusion member 20 is arranged behind the pinhole array 4, but as a second embodiment, it is shown by the solid line in FIG. 19.
  • FIGS. 20, 21, and 22 The operation in the second embodiment is as shown in FIGS. 20, 21, and 22. That is, as shown in FIG. 20, when light is focused after passing through the pinhole 4a of the pinhole array 4, the light is defocused by the diffusion member 20 and has a large area. Spread.
  • FIG. 21 shows a state in which light is focused on the pinhole 4a, and the light is diffused on a small surface.
  • FIG. 22 shows a state in which light is focused before the pinhole 4a, and the light is diffused out of focus.
  • the configuration according to the present invention can also be applied to the first conventional type three-dimensional shape inspection apparatus shown in FIG. 6 and the second conventional type three-dimensional shape inspection apparatus shown in FIG.
  • the configuration of the first embodiment of the present invention is applied to the first conventional type.
  • the diffusion member 20 is arranged behind the pinhole array 4 or in front of the photodetector array 8 as shown by a chain line.
  • the relay lens 7 is not arranged in tandem, but this is not an essential difference.
  • the configuration of the second embodiment of the present invention is applied to the second conventional type, in which a diffusing member 20 is disposed in front of the photodetector array 8. are doing.
  • FIG. 25 shows a fifth embodiment of the present invention, in which the parallel light between the relay lenses 7a and 7b in which the diffusion member 20 is arranged in tandem is shown. It is located in the department. In this embodiment, it is desirable that the diffusion member 20 has a very small diffusion effect such as an extremely thin diffusion member or a member having a narrow diffusion characteristic (angle).
  • a diffraction grating 22 may be used instead of the diffusion member 20.
  • FIGS. 26 and 28 show the operation of the fifth and sixth embodiments.
  • Fig. 26 shows the case where an extremely thin diffusion member 20 is used.In this case, the light passing through the pinhole 4a is diffused between the two relay lenses 7a and 7b in a tandem arrangement. The light is incident on the photodetector array 8 blurred.
  • FIG. 28 shows a case where a diffraction grating 22 is arranged in place of the diffusion member 20.
  • the diffraction grating 22 is of an amplitude type or a phase type, and the (0) th order light is used.
  • the (+1) -order light and the (-1) -order light form an image on the photodetector array 8.
  • the diffraction direction is set in accordance with the direction of the light detection portion 8a of the photodetector array 8, it is possible to obtain a directional distribution.
  • the one-dimensional diffraction grating 22 is used, but this may be diffracted in both the X and Y directions by using a two-dimensional diffraction grating. Further, when this diffraction grating 22 is used together with the above-described diffusing member 20, the distributions are not discrete distributions of the (0) -order light, the (+1) -order light, and the (1-1) -order light. Since the next light is blurred and forms an image, the image distribution becomes smooth as a whole, and more favorable results are obtained.
  • FIG. 29 shows a seventh embodiment of the present invention.
  • the pinhole image formed on the photodetector array 8 is defocused, or the pinhole image 23 is formed by the first to third diffusion members 20.
  • the light passing through one pinhole 4a is received by a plurality of light detecting portions 8a, and the light is integrated.
  • the light passing through one pinhole 4a is defocused or uniformly blurred, and the light is measured by a plurality of light detection portions.
  • the plurality of light detection portions 8a are grouped into one photodetector, there is substantially the same (approximate) effect as an increase in the aperture ratio of the photosensitive portion of the photodetector.
  • the light in the sensor cover glass is used. It is effective to remove the cover glass and fill a refraction liquid for optical matching between the cover glass and the sensor for the purpose of reducing interference.
  • FIG. 30 shows an eighth embodiment of the present invention.
  • the diffusion member 20 is arranged behind the pinhole array 4 and the microphone is arranged in front of the photodetector array 8. Place the lens array 24.
  • the light diffused uniformly in the pinhole array 4 is generated by each micro lens 24 a of the micro lens array 24. Since the light is condensed on each light detection portion 8a of the photodetector array 8, the light detection efficiency at the light detection portion 8a is improved.
  • the diffusion member 20 is arranged behind the pinhole array 4 and the photodetector array is arranged.
  • the micro lens array 24 is placed in front of the lens 8 and diffracted between the two tandem relay lenses 7a and 7b as shown by the dashed line in Fig. 32.
  • a grid 22 may be arranged.
  • a diffusion member 20 is arranged between the relay lenses 7a and 7b instead of the diffusion member 20 behind the pinhole array 4, This may be combined with the micro lens array 14 described above.
  • FIGS. 33 and 34 Shown in
  • a UV adhesive 25 curable by ultraviolet rays and glass beads 26 are mixed, (2) agitated, and (3) a dispenser 2 At 7, two optical glass plates 2 8 a,
  • the liquid crystal liquid is used for the diffusion member 20.
  • both may be integrated.
  • Fig. 35 shows an example of the structure.
  • the pinhole array 4 is sealed between the optical glass substrates 28a and 28b together with the photopolymer 30 and the liquid crystal 31.
  • the pinhole array 4 used in each of the above embodiments has a low reflectance when irradiated with light, and has a property of being hardly transmitted.
  • An example of the structure is shown in Figure 36.
  • This structure has a structure in which an intermediate layer 38 made of Cr is sandwiched between a first layer 37a made of Cr203 and a second layer 37b on BK7 glass 36. It has become.
  • the layer thickness of Cr203 of the first layer 37a is related to the magnitude of the reflectivity, and by setting this thickness to 5 Omm, the reflectivity can be made almost zero. Can be.
  • the transmittance is related to the Cr of the intermediate layer 38, and the transmittance becomes smaller from 0.1 to 0.001 as the thickness increases from 5 Omm to 90 mm.

Abstract

A confocal optical apparatus provided with a confocal optical system including relay lenses (7, 7a, 7b), a pinhole array (4) in which pinholes (4a) are linearly or two-dimensionally arranged, and a photodetector array (8), and adapted to measure the intensities of light beams reflected from an object and passing through the pinholes, via the relay lenses. A diffusion member (20) adapted to diffuse at random the reflected light which has passed through the pinholes, is disposed in the vicinity of the reflected light focal point, whereby the reflected light which has passed through the pinholes is directed to the photodetecting portion of the photodetector array uniformly with a constant probability.

Description

明細書 共焦点光学装置 技術分野  Description Confocal optical device Technical field
本発明は、 3次元形状、 例えば、 被計測物体のおよその表面形 状が既知である I C実装用ハンダバンプ等の被計測物体の形状を 高速に検査する 3次元形状検査装置に用いられる共焦点光学装置 に関するものである。 背景技術  The present invention relates to a confocal optic used in a three-dimensional shape inspection apparatus for quickly inspecting a three-dimensional shape, for example, a shape of an object to be measured, such as a solder bump for IC mounting, whose approximate surface shape is known. It concerns equipment. Background art
この種の共焦点光学装置は、 図 1 に示すよう になつている。 光 源 1 の光は、 ミ ラー 4 0で反射され、 拡大レンズ 2 a , 2 b を介 して平行光となってホログラム 3 に参照光と して入射する。 ホロ グラム 3 は、 ピンホールが 2次元的に配列された ピンホールァ レ ィ 4 の各ピンホール位置から出射する点光源と等価な光を、 上記 参照光を回析することにより再生する。  This type of confocal optical device is configured as shown in FIG. The light from the light source 1 is reflected by the mirror 40, becomes parallel light via the magnifying lenses 2a and 2b, and enters the hologram 3 as reference light. The hologram 3 reproduces light equivalent to a point light source emitted from each pinhole position of the pinhole array 4 in which the pinholes are two-dimensionally arranged by diffracting the reference light.
こ の再生光は、 第 1 対物レ ンズ 5 a を介 して物体 (被計測物 体) 6 に投光され、 物体 6で反射散乱し、 その反射光が、 第 1 対 物レンズ 5 a、 ホログラム 3 を透過し、 第 2対物レ ンズ 5 b を介 してピンホールアレイ 4 に集光する。 なお、 この図 1 は 1 つの ピ ンホール位置の光を代表して表現している。  This reconstructed light is projected onto an object (measurement object) 6 via the first objective lens 5a, is reflected and scattered by the object 6, and the reflected light is transmitted to the first object lens 5a, The light passes through the hologram 3 and is focused on the pinhole array 4 via the second objective lens 5b. Note that Fig. 1 represents the light at one pinhole position as a representative.
図 2 , 図 3 , 図 4 は、 共焦点光学系において、 物体 6 の表面の 光軸方向 ( Z方向) の位置関係に対して、 投光の第 1 対物レ ンズ 5 a による集光点の位置によ り、 反射光がピンホールア レイ 4 付 近でどのよ う に結像するかを示 した ものである。 これによれば、 図 3 に示すよ うに、 集光点と物体 6 の表面が一致 (合焦) したと きのみ反射光がピンホールア レイ 4 の ピンホール 4 a を通過する が、 それ以外のとき、 すなわち、 図 2 に示すよう に、 集光点が物 体 6の反射面 (表面) の後にある場合 (後ピン) 、 あるいは図 4 に示すように、 反射面の前にある場合 (前ピン) には、 反射光は ピンホールアレイ 4 に遮蔽されて殆ど、 通過できな く な り、 いわ ゆる受光絞り作用がなされる。 2, 3, and 4 show the relationship between the position of the condensing point of the first objective lens 5 a of the projected light with respect to the positional relationship in the optical axis direction (Z direction) of the surface of the object 6 in the confocal optical system. Depending on position, reflected light with pinhole array 4 It shows how to form an image nearby. According to this, as shown in Fig. 3, the reflected light passes through the pinhole 4a of the pinhole array 4 only when the focal point and the surface of the object 6 are coincident (focused). That is, as shown in FIG. 2, the focal point is located after the reflecting surface (surface) of the object 6 (rear pin), or as shown in FIG. 4, when located before the reflecting surface (front pin). In the meantime, the reflected light is shielded by the pinhole array 4 and can hardly pass therethrough, so that a so-called light receiving aperture function is performed.
こ の特性を利用すれば、 物体 6 を光軸方向 ( Z方向) に移動し ながら、 ピンホール 4 a を通過する反射光の光量を、 図 1 に示す ように、 第 1 , 第 2の リ レー レ ンズ 7 a , 7 bを介して 2次元用 の光検出器ア レイ 8 に入射させて計測する こ とによ り、 最大の光 量が得られた位置が物体 6 の表面であるこ と、 すなわち、 物体 6 の表面の位置が計測できるこ とになる。 これをピーク処理という。 図 1 は図 2乃至図 4 で説明 した共焦点光学系を有していて、 ピ ンホール 4 aを 2次元的に配列 したものであるから、 物体 6 を Z 方向に移動させながら、 各ピンホール 4 a を通過する反射光の光 量を計測し、 これをピーク処理してやれば、 各ピ ンホール 4 a に 対応した部分の物体 6 の表面形状を計測するこ とができる。 実際 には、 第 1 , 第 2 の対物レンズ 5 a , 5 b を共にテ レセ ン ト リ ツ ク系 (ァフ ォ ーカル系あるいはタ ンデム配置光学系と もいう ) で 構成し、 物体 6 を Z方向に移動するかわりに第 1 対物レ ンズ 5 a を Z方向へ移動して計測する。  By utilizing this characteristic, the amount of reflected light passing through the pinhole 4a while moving the object 6 in the optical axis direction (Z direction) can be reduced as shown in FIG. By measuring the light by making it incident on the two-dimensional photodetector array 8 via the ray lenses 7a and 7b, the position where the maximum amount of light is obtained is the surface of the object 6. That is, the position of the surface of the object 6 can be measured. This is called peak processing. FIG. 1 has the confocal optical system described with reference to FIGS. 2 to 4, in which the pinholes 4a are two-dimensionally arranged, so that while moving the object 6 in the Z direction, By measuring the amount of reflected light passing through 4a and subjecting it to peak processing, the surface shape of the object 6 corresponding to each pinhole 4a can be measured. In practice, the first and second objective lenses 5a and 5b are both constituted by a telecentric system (also referred to as an afocal system or a tandem arrangement optical system), and the object 6 is formed. Instead of moving in the Z direction, move the first objective lens 5a in the Z direction and measure.
ピンホール 4 a を通過する光は、 第 1 , 第 2 の リ レー レ ン ズ 7 a , 7 bを介して 2次元の光を検出する光検出器ア レイ 8 に結 像 し、 個々 の ピンホール 4 a を通過する光は、 独立 した光検出部 分に結像 して計測される。 こ の制御装置 9 は、 物体 6 を載置する ステー ジ 1 0 の X Y位置 (必要があれば Z 方向のオ フ セ ッ ト 位 置) を制御 して計測視野を決め、 第 1 対物 レ ンズ 5 a を Z方向に 移動させ且つその Z方向位置を検出 しながら光検出器ア レイ 8 の 計測値を読み出 して ピー ク処理 し、 その結果を表示、 出力ある い は記録する。 The light passing through the pinhole 4a is coupled to a photodetector array 8 for detecting two-dimensional light via first and second relay lenses 7a and 7b. The light that passes through each pinhole 4a is imaged and measured on an independent photodetector. The control device 9 controls the XY position of the stage 10 on which the object 6 is placed (if necessary, the offset position in the Z direction), determines the measurement field of view, and determines the first objective lens. 5 a is moved in the Z direction, and the measured value of the photodetector array 8 is read out and peak-processed while detecting the position in the Z direction, and the result is displayed, output or recorded.
次に、 上記ホログラム 3 の製造工程を図 5 を参照 して説明する。 光源 1 1 は レーザな どの コ ヒ ー レ ン ト な光源であ り 、 該光源 1 1 からの出射光は ビ一ムスプリ ッ タ 1 2 によ り 波面分割さ れて 二つの光にな り、 それらがそれぞれホ ロ グラ ム 3 の参照光、 物体 光の光源となる。 光源 1 1 の光が直線偏光の特性を示す場合には 第 1 の 1 / 2 波長板 1 3 a の回転によ り直線偏光の偏光方向を回 転させ、 ビームスプリ ッ タ 1 2 に偏光ビームスプ リ ッ 夕を採用す る こ とによ り、 分割の強度比を所望の値に設定する。  Next, the manufacturing process of the hologram 3 will be described with reference to FIG. The light source 11 is a coherent light source such as a laser, and the light emitted from the light source 11 is split into two lights by wavefront splitting by the beam splitter 12. These are the light sources for the reference light and object light of Hologram 3, respectively. When the light from the light source 11 exhibits the characteristic of linearly polarized light, the polarization direction of the linearly polarized light is rotated by rotating the first half-wave plate 13a, and the polarization beam splitter 12 By adopting a lid, the intensity ratio of the division is set to a desired value.
ビームスプリ ッ タ 1 2 での波面分割によ り生まれた参照光と物 体光は、 第 1 , 第 2 及び第 3 , 第 4 の拡大 レ ンズ 1 4 a , 1 4 b 及び 1 4 c , 1 4 d によ り それぞれ拡大さ れて、 ホ ロ グラ ム 3 及 びピンホールア レイ 4 にそれぞれ入射される。 ピ ンホールア レイ 4 を透過する光は、 それぞれの ピンホール 4 a で回折 して、 点光 源と等価な光にな り 、 対物 レ ンズ 5 b によ り 平行光に変換 さ れ ホロ グラ ム 3 に物体光と して入射される。 第 2 , 第 3 の 1 / 2 波 長板 1 3 b , 1 3 c の調節によ り 、 参照光、 物体光の偏光方向が 所望の方向 (一般的には同 じ方向にな る よ う にする ) に設定さ れ ホロ グラム露光の準備が完了する。 図 6 から図 8 はホロ グラ ムを用いない他の従来例を示す もので あ る。 図 6 は、 特開平 4 一 2 6 5 9 1 8 号公報、 米国特許第 5 , 2 3 9 , 1 7 8 号に示される、 第 1 の従来型の ものを示 している ( 光源 1 からの光は、 拡大 レ ンズ 2 によ り 拡大されて、 ピ ンホール ア レイ 4 に入射 し、 こ の各 ピンホール 4 a にて回折 した光は ビ一 ムスプリ ッ タ 1 5 を通過 し、 第 2 , 第 1 の対物 レ ンズ 5 b , 5 a によ って物体 6 に投光される よ う にな っている。 The reference light and the object light generated by the wavefront splitting by the beam splitter 12 are the first, second, third, and fourth enlarged lenses 14a, 14b, and 14c, Each of them is enlarged by 14 d and incident on the hologram 3 and the pinhole array 4 respectively. The light transmitted through the pinhole array 4 is diffracted by the respective pinholes 4a, becomes light equivalent to a point light source, is converted into parallel light by the objective lens 5b, and is converted into a parallel light by the objective lens 5b. Is incident on the object as object light. By adjusting the second and third half-wave plates 13b and 13c, the polarization directions of the reference light and the object light are set to desired directions (generally, the same direction as the same direction). The setting for hologram exposure is completed. Figures 6 to 8 show other conventional examples that do not use holograms. FIG. 6 shows the first conventional type shown in Japanese Patent Application Laid-Open No. Hei 4-26959, U.S. Pat.No. 5,239,178 (from light source 1 to light source 1). The light is expanded by the magnifying lens 2 and is incident on the pinhole array 4. The light diffracted by each of the pinholes 4 a passes through the beam splitter 15, The first objective lenses 5b and 5a project light to the object 6.
そ して、 物体 6 に投光されて反射散乱 した光は、 第 1 , 第 2 の 対物 レ ンズ 5 a , 5 b を逆に通っ て ビ一ムスプ リ ッ タ 1 5 に入 り . こ こで反射 して光検出器ア レイ 8 に結像する よ う にな っている。 ' 図 7 は、 米国特許第 4 , 8 0 6 , 0 0 4 号に示される、 第 2 の 従来型の ものを示している。 光源 1 からの光は、 拡大 レ ンズ 2 に よ り拡大されて、 ハー フ ミ ラ 一 4 1 を透過 して ピ ンホールア レイ 4 に入射 し、 ピンホール 4 a で回折 した光は第 2 , 第 1 の対物 レ ンズ 5 b , 5 a によ って物体 6 に投光されるよ う にな っている。 物体 6 に投光されて反射散乱 した光は、 対物 レ ンズ 5 a , 5 b を通り、 受光絞り の作用を奏する ピンホールア レイ 4 に集光され る。 そ して、 各ピンホール 4 a を通過する光をハー フ ミ ラ ー 4 1 で反射 し、 リ レー レ ンズ 7 を介 して 1 対 1 で光検出器ア レイ 8 に 結像させる。 この構成は、 投光の点光源を作る ピンホールア レイ 4 と受光絞 り の ピンホールア レイ 4 が同一の構造にな っ て いる ただし、 ピンホールア レイ 4 の背後か ら光を入射する必要があ る ので、 ピンホールア レイ 4 の ピンホールマス ク 4 b での反射光 R 等の余計な光を何 らかの方法で検出器ア レイ 8 に到達 しないよ う に している。 なお、 上記第 2 の従来型では、 ピンホール 4 a と検出器ア レイ 8 の画素は 1 対 1 で対応 してお らず、 そのかわ り 、 ピンホールァ レイ 4 を X Y面内でスキ ャニ ング して、 ピンホール 4 a , 4 a の画像を得る よ う に してお り 、 こ のよ う な共焦点光学系をタ ンデ ム型走査共焦点光学系という 。 Then, the light projected and reflected and scattered on the object 6 passes through the first and second objective lenses 5a and 5b in reverse, and enters the beam splitter 15 here. The light is reflected by the light detector and forms an image on the photodetector array 8. 'FIG. 7 shows a second prior art, shown in US Pat. No. 4,806,004. The light from the light source 1 is enlarged by the magnifying lens 2, passes through the half mirror 41, is incident on the pinhole array 4, and is diffracted by the pinhole 4 a, and the light diffracted by the pinhole 4 a The light is projected onto the object 6 by the objective lenses 5b and 5a. The light projected and reflected and scattered on the object 6 passes through the objective lenses 5a and 5b, and is condensed on the pinhole array 4 which functions as a light receiving aperture. Then, the light passing through each pinhole 4a is reflected by the half mirror 41, and forms an image on the photodetector array 8 on a one-to-one basis via the relay lens 7. In this configuration, the pinhole array 4 that creates a point light source for projection and the pinhole array 4 that defines the receiving aperture have the same structure.However, light must be incident from behind the pinhole array 4. The extra light such as the reflected light R from the pinhole mask 4 b of the pinhole array 4 is prevented from reaching the detector array 8 by any method. Note that, in the second conventional type, the pinhole 4a and the pixel of the detector array 8 do not have a one-to-one correspondence, and instead, the pinhole array 4 is scanned in the XY plane. Then, images of the pinholes 4a and 4a are obtained, and such a confocal optical system is referred to as a tandem-type scanning confocal optical system.
図 8 は 、 特 開平 1 — 5 0 3 4 9 3 号公報 、 米国特許第 4 , 9 2 7 , 2 5 4 号公報に示される、 上記第 2 の従来型のと 同種の タ ンデム型走査光学系を示 している。 ピンホールア レイ 4 と して ニ ッ プコ ゥディ スク ( N i p k 0 w D i s c ) と 呼ばれる、 円 盤上に ピンホール 4 a をスパイ ラ ル状に配置 した ものを採用 し それを回転させる よ う に している。 こ のディ ス ク状の ピンホール ア レイ 4 を回転させる こ と によ り 、 ピンホール 4 a , 4 a 間の画 像をスキャニ ングして得るよ う に している。  FIG. 8 shows a tandem scanning optical system of the same kind as the second conventional type described in Japanese Patent Application Laid-Open No. 1-503493 and US Pat. No. 4,927,254. The system is shown. As a pinhole array 4, a disk called a Nipco disk (Nipk0wDisc) in which pinholes 4a are arranged in a spiral pattern on a disk is used to rotate the disk. ing. By rotating the disk-shaped pinhole array 4, an image between the pinholes 4a, 4a is obtained by scanning.
と こ ろが、 上記従来の、 ピンホールア レイ 4 を通過する物体か らの反射光を リ レー レ ンズ 7 を介 して光検出器ア レイ 8 に結像さ せる共焦点光学装置では次のよ うな課題があった。  However, in the conventional confocal optical device that forms an image of the reflected light from the object passing through the pinhole array 4 on the photodetector array 8 via the relay lens 7, the following is required. There was a problem.
( 1 ) ピンホールア レイ 4 の各 ピンホール 4 a を通過する物体 からの反射光を リ レー レ ンズ 7 , 7 a , 7 b を介 して 1 対 1 で光 検出器ア レイ 8 に結像 (位置合わせする) ためには、 リ レー レ ン ズ 7 , 7 a , 7 b の収差を考慮する精密な設計及び製造が必要で あ り、 そのために多 く の工数、 精密部品を必要と していた。  (1) Reflected light from an object passing through each pinhole 4a of the pinhole array 4 is imaged on the photodetector array 8 in a one-to-one manner via the relay lenses 7, 7a, and 7b. In order to perform alignment, precise design and manufacture that take into account the aberrations of the relay lenses 7, 7a, and 7b are required, which requires many man-hours and precision parts. Was.
しかも、 光検出器ア レイ 8 の光検出部分の ピッ チに比べて各光 検出部分 (セ ンサ) が非常に小さ い場合、 この各光検出部分と ピ ンホール 4 a を通過 した光信号 ( ピンホールア レイ 4 の光軸と直 角方向の位置) との位置合せを精密にするのには限界がある。 ま た、 リ レー レンズ 7 , 7 a , 7 bの製造上のばらつきによ って完 全に位置合わせができない可能性があった。 In addition, when each light detection portion (sensor) is very small compared to the pitch of the light detection portion of the photodetector array 8, the light signal (pinhole array) passing through each light detection portion and the pinhole 4a is used. There is a limit to precise alignment with the optical axis of ray 4). Ma In addition, due to manufacturing variations of the relay lenses 7, 7a, and 7b, there was a possibility that complete alignment could not be performed.
この問題を解決するために、 光検出器ア レイ 8 に結像する像を、 光検出器アレイ 8の配置を Z方向にずらせるなどしてデフ ォ ー力 ス (ピンボケ) してやれば、 位置合わせが容易になるが、 これで は、 像の強度分布が一様でな く なるため、 ピンホール 4 a を通過 する光の総量を知ることができない。  In order to solve this problem, if the image formed on the photodetector array 8 is defocused by shifting the arrangement of the photodetector array 8 in the Z direction, etc. However, in this case, since the intensity distribution of the image becomes non-uniform, the total amount of light passing through the pinhole 4a cannot be known.
( 2 ) さ らに、 ピンホールア レイ 4 の ピンホール 4 a の大きさ が、 光学系 (対物レンズ) の回折限界に比較して大きい場合、  (2) If the size of the pinhole 4a of the pinhole array 4 is larger than the diffraction limit of the optical system (objective lens),
リ レー レ ンズ 7 , 7 a , 7 bの結像倍率 X ピンホール 4 a の ¾ Image magnification of relay lens 7, 7a, 7b X Pinhole 4a ¾
=検出器に結像する ピンホール像の径 = Diameter of the pinhole image formed on the detector
なので、 光検出器のアレイ 8の光検出部分のピッチに比べて各 光検出部分が非常に小さい場合にはピンホール像が光検出部分よ りはみ出 してしまい、 この場合も、 ピンホール 4 a を通過する光 の総量を知ることができない。  Therefore, if each light detection portion is very small compared to the pitch of the light detection portion of the photodetector array 8, the pinhole image protrudes from the light detection portion, and in this case, too, the pinhole 4a Cannot know the total amount of light passing through.
そ して、 この場合において、 共焦点光学系で物体に投光する集 光点と物体表面が一致する状態、 いわゆる合焦状態から、 図 9 , 図 1 0に示すようにわずかでも外れた場合には、 ピンホール 4 a を通過する光線が、 光検出器アレイ 8の非感光部で蹴られて しま い、 光検出部分 8 aが実質的な受光ピンホールと して作用 して し ま う こ とになる。 図 1 0 において、 ピンホール 4 a を通過した光 の像において、 ハッチングで示 した一側部分の像は、 こ の図 1 0 で示すよう に合焦からはずれている場合に、 光検出器ア レイ 8 の 光検出部分からはずれて しま い、 光検出部分 8 a で検出できな かった。 フ In this case, if the converging optical system projects the object on the object and the light converging point coincides with the object surface, that is, if the object deviates even slightly from the so-called in-focus state as shown in Figs. 9 and 10 In this case, the light beam passing through the pinhole 4a is kicked by the non-photosensitive portion of the photodetector array 8, and the photodetection portion 8a acts as a substantial light receiving pinhole. It will be. In FIG. 10, in the image of the light passing through the pinhole 4 a, the image on one side indicated by hatching is out of focus as shown in FIG. 10. Ray 8 deviated from the light detection part and could not be detected by light detection part 8a. H
また、 光検出器アレイ 8 と して、 例えば C C Dカメ ラのよ う な 市販の撮像用センサを流用 して低コ ス ト化しよ う とする と、 市版 の ものは光検出器ア レイ 8 の光検出部分 8 a の ピッ チに比べて各 光検出部分が非常に小さい、 すなわち開口率が小さいものが多い ので、 上記問題が重要となる。 しかも、 光検出部分 8 a の形状は 円や正方形などの等方性の高いもの以外に、 長方形やし字形、 凸 型など、 等方性に乏しいものもあるので、 その場合上記問題も X Yの方向によって異方的に起きて しまう。  If the cost of the photodetector array 8 is to be reduced by using a commercially available imaging sensor such as a CCD camera, for example, a commercial version of the photodetector array 8 will be used. The above problem is important because each light detection portion is much smaller than the pitch of the light detection portion 8a, that is, many have a small aperture ratio. In addition, the shape of the light detection portion 8a is poorly isotropic, such as a rectangle, a letter, a convex, etc., in addition to a highly isotropic shape such as a circle or a square. It happens anisotropically depending on the direction.
本発明は、 上記のこ とに鑑みなされたもので、 光検出器ア レイ の位置合わせが容易とな り、 また該光検出器ア レイを実質的に開 口率の大きな光検出器ア レイ とするこ とができるよ う に した共焦 点光学装置を提供することを目的とする ものである。  SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and facilitates alignment of a photodetector array, and further includes a photodetector array having a substantially large aperture ratio. It is an object of the present invention to provide a confocal point optical device capable of performing a focusing operation.
発明の開示 Disclosure of the invention
上記目的を達成するための本発明による共焦点光学系の第 1 の 態様は、  A first aspect of the confocal optical system according to the present invention for achieving the above object is as follows:
リ レーレンズを含む共焦点光学系と、 ピンホールを 1 次元ある いは 2次元的に配列したピンホールア レイ と、 光検出器ア レイを 備え、 各ピンホールを通過する物体からの反射光の光量を前記リ レーレンズを介して前記光検出器ア レイで計測する共焦点光学装 置において、  It has a confocal optical system including a relay lens, a pinhole array in which pinholes are arranged one-dimensionally or two-dimensionally, and a photodetector array, and measures the amount of reflected light from an object passing through each pinhole. In a confocal optical device for measuring with the photodetector array via the relay lens,
前記反射光の合焦位置の近く に前記各ピンホールを通過する前 記反射光をラ ンダムに拡散させる拡散部材を配置して、 前記各ピ ンホールを通過する前記反射光を一定の確率で満遍な く 前記光検 出器アレイの光検出部分に入射させるようにしたものである。 そ して、 上記構成において、 前記拡散部材が、 前 ピ ンホ一ル ァ レイの背後に配置されている。 A diffusing member that randomly diffuses the reflected light passing through each of the pinholes is disposed near the focus position of the reflected light, and the reflected light passing through each of the pinholes is filled with a certain probability. The light is incident on the light detection portion of the light detector array. Further, in the above configuration, the diffusion member is arranged behind the front pinhole array.
また、 前記拡散部材が、 前記光検出器ア レイ の手前に配置され ている。  Further, the diffusing member is disposed in front of the photodetector array.
本発明による共焦点光学系の第 2 の態様は、  A second aspect of the confocal optical system according to the present invention is as follows.
リ レー レ ンズを含む共焦点光学系と、 ピンホールを 1 次元ある いは 2 次元的に配列 した ピンホールア レイ と、 光検出器ア レイ を 備え、 各ピンホールを通過する物体からの反射光の光量を前記 リ レー レ ンズを介して前記光検出器ア レイ で計測する共焦点光学装 置において、  It has a confocal optical system including a relay lens, a pinhole array in which pinholes are arranged in one or two dimensions, and a photodetector array. In a confocal optical device for measuring the amount of light with the photodetector array via the relay lens,
前記 ピンホールア レイ と前記光検出器ア レイ と の間に前記 リ レー レ ンズをタ ンデムに配置 し、 前記 リ レー レ ンズの間に前記各 ピンホールを通過する前記反射光をラ ンダムに拡散させる拡散部 材を配置して、 前記各ピンホールを通過する前記反射光を一定の 確率で満遍な く 前記光検出器ア レイ の光検出部分に入射させる よ う に したものである。  The relay lenses are arranged in tandem between the pinhole array and the photodetector array, and the reflected light passing through each of the pinholes is randomly diffused between the relay lenses. A diffusing member is arranged so that the reflected light passing through each of the pinholes is evenly and uniformly incident on a light detection portion of the photodetector array.
上記構成によれば、  According to the above configuration,
ピンホールア レイ の ピンホールを通過 した物体からの反射光は ピンホールア レイ の背後に配置された、 あるいは光検出器ア レイ の手前に配置された、 あるいはタ ンデム配置される両 リ レー レ ン ズ間に配置された拡散部材にてラ ンダムに拡散されるので、 ピ ン ホールを通過した反射光は一定の確率で満遍な く 光検出器ア レイ の光検出部分に入射される。  The reflected light from the object passing through the pinhole of the pinhole array is placed between the relay lenses located behind the pinhole array, in front of the photodetector array, or in tandem. Since the light is randomly diffused by the arranged diffusion member, the reflected light passing through the pinhole is uniformly incident on the light detection portion of the photodetector array with a certain probability.
本発明による共焦点光学系の第 3 の態様は、  A third aspect of the confocal optical system according to the present invention is as follows.
リ レー レ ンズを含む共焦点光学系と、 ピンホールを 1 次元ある いは 2 次元的に配列 した ピンホールア レイ と、 光検出器ァ レイ を 備え、 各 ピンホールを通過する物体か らの反射光の光量を前記 リ レー レ ンズを介 して前記光検出器ア レイ で計測する共焦点光学装 置において、 One-dimensional confocal optical system including relay lens and pinhole Or a two-dimensionally arranged pinhole array and a photodetector array, and the amount of reflected light from an object passing through each pinhole is reflected by the photodetector array via the relay lens. In a confocal optical device that measures at
前記 ピンホールア レ イ と前記光検出器ア レイ と の間に前記 リ レー レ ンズをタ ンデムに配置 し、 前記 リ レー レ ンズの間に前記各 ピンホールを通過する前記反射光を規則的に回折させる 回折格子 を配置 して、 前記各ピンホールを通過する前記反射光を前記光検 出器ア レイの光検出部分の形状に合わせて入射させる よ う に した ものである。  The relay lens is arranged in tandem between the pinhole array and the photodetector array, and the reflected light passing through each of the pinholes is regularly diffracted between the relay lenses. A diffraction grating is arranged so that the reflected light passing through each of the pinholes is made incident according to the shape of the light detection portion of the light detector array.
この構成によれば、  According to this configuration,
上記ピンホールを通過 した物体の反射光は、 こ の回折格子にて 規則的に回折され、 光検出器ア レイ の光検出器部分の形状に合わ せて入射される。  The reflected light of the object that has passed through the pinhole is regularly diffracted by the diffraction grating, and is incident according to the shape of the photodetector portion of the photodetector array.
上記構成において、  In the above configuration,
前記ピンホールア レイ と前記光検出器ア レイ の位置関係を、 前 記ピンホールァ レイの 1 つの ピンホールの像が光検出器ァ レイ の 複数の光検出部分で結像 し得る関係に し、 該 ピンホールの像が結 像した複数の光検出部分の出力を積分する積分手段を備えていて も良い。  The positional relationship between the pinhole array and the photodetector array is set so that an image of one pinhole of the pinhole array can form an image at a plurality of light detecting portions of the photodetector array. Integrating means for integrating the outputs of the plurality of light detection portions on which the images are formed may be provided.
この構成によれば、 像の光量分布があ っ て も、 これが積分され るので、 光検出器ア レイ の光検出部分の開口率が実質的に拡大さ れる。  According to this configuration, even if there is a light amount distribution of the image, this is integrated, so that the aperture ratio of the light detecting portion of the light detector array is substantially enlarged.
ま た、 光検出器ア レイ の手前にマイ ク ロ レ ンズア レイ を配置 し て も良い。 こ の構成によれば、 拡散部材ゃ回折格子にて拡散された、 ピ ン ホール像を形成するための光が、 マイ ク ロ レ ンズア レイ に よ っ て 光検出器ア レイの各光検出器部分に集光される。 Also, a micro lens array may be arranged in front of the photodetector array. According to this configuration, the light for forming the pinhole image, which is diffused by the diffusing member and the diffraction grating, is transmitted to each photodetector of the photodetector array by the micro lens array. It is focused on the part.
従って、 本発明によれば、 ピンホールア レイの背後に、 または 光検出器ア レイの手前に、 またはタ ンデム配置 した リ レ一 レ ンズ の間に配置される拡散部材にて ピンホールア レイのピンホールを 通過する物体からの反射光が満遍な く ぼかされて平均化される こ とによ り、 光検出器ア レイ の位置合わせが容易とな り、 リ レー レ ンズの収差もあま り問題となる こ とがな く 、 ピンホールア レイ に 対する リ レーレンズと光検出器ア レイの配置関係の設計 , 施工を 簡単にすることができる。  Therefore, according to the present invention, the pinhole of the pinhole array is formed by a diffusing member arranged behind the pinhole array, in front of the photodetector array, or between tandemly arranged relay lenses. Since the reflected light from the passing object is evenly blurred and averaged, the alignment of the photodetector array becomes easy, and the aberration of the relay lens is also a problem. Therefore, the design and construction of the layout relationship between the relay lens and the photodetector array with respect to the pinhole array can be simplified.
また、 タ ンデム配置した リ レー レ ンズの間に回折格子を配置し たものにおいては、 この回折格子によ り光検出器ア レイ の光検出 器部分の形状に合わせて ピンホールを通過した光を分散される こ とにより、 光検出器ア レイ の位置合わせが容易とな り、 上記拡散 部材を用いたものと同様の効果を奏することができる。  In the case where the diffraction grating is arranged between the tandemly arranged relay lenses, the light passing through the pinhole according to the shape of the photodetector portion of the photodetector array is formed by the diffraction grating. By dispersing the light, the alignment of the photodetector array is facilitated, and the same effect as that obtained by using the diffusion member can be obtained.
さ らに、 1 つのピンホールを通過した光が拡散されて複数の光 検出器部分で計測され、 これが積分されるこ とによ り、 実質的に 開口率の大きな光検出器アレイとすることができる。  In addition, the light that has passed through one pinhole is diffused, measured at multiple photodetector sections, and integrated, creating a photodetector array with a substantially large aperture ratio. Can be.
そ してさ らに、 光検出器ア レイの手前にマイ ク ロ レ ンズア レイ を配置するこ とによ り、 拡散部材あるいは回折格子にて満遍な く ぼやけたピンホール像がマイ ク ロ レンズによ つて各光検出器部分 に集光されて光の検出効率が向上する。 図面の簡単な説明 本発明は、 以下の詳細な説明及び本発明の実施例を示す添付図 面によ り、 よ り良く 理解される ものとなろ う。 なお、 添付図面に 示す実施例は、 発明を特定する こ とを意図する ものではな く 、 単 に説明及び理解を容易とするものである。 In addition, by disposing the micro lens array in front of the photodetector array, the diffused member or diffraction grating can uniformly diffuse the blurred pinhole image. The light is condensed on each photodetector by the lens, and the light detection efficiency is improved. BRIEF DESCRIPTION OF THE FIGURES The invention will be better understood from the following detailed description and the accompanying drawings illustrating an embodiment of the invention. The embodiments shown in the accompanying drawings are not intended to specify the invention, but merely to facilitate explanation and understanding.
図中、  In the figure,
図 1 は、 従来の共焦点光学装置を示す構成説明図である。  FIG. 1 is an explanatory diagram illustrating a configuration of a conventional confocal optical device.
図 2は、 上記従来装置における反射光のピンホール付近での結 像状態を示す説明図である。  FIG. 2 is an explanatory diagram showing an image forming state of a reflected light near a pinhole in the conventional device.
図 3 は、 上記従来装置における反射光のピンホ一ル付近での結 像状態を示す説明図である。  FIG. 3 is an explanatory diagram showing an image forming state of a reflected light near a pinhole in the conventional device.
図 4 は、 上記従来装置における反射光のピンホール付近での結 像状態を示す説明図である。  FIG. 4 is an explanatory diagram showing an image forming state of a reflected light near a pinhole in the conventional device.
図 5 は、 ホログラムを露光する際の構成説明図である。  FIG. 5 is an explanatory view of the configuration when exposing the hologram.
図 6 は、 第 1 の従来型の光学系の構成説明図である。  FIG. 6 is an explanatory diagram of a configuration of a first conventional optical system.
図 7 は、 第 2の従来型の光学系の構成説明図である。  FIG. 7 is an explanatory diagram of a configuration of a second conventional optical system.
図 8 は、 従来のニップコゥディ スク型の光学系の構成説叨図で あ  Fig. 8 is a configuration diagram of a conventional nip code disc type optical system.
図 9は、 ピンホールを通過した光が光検出器ア レイで蹴られる 様子を示す説明図である。  FIG. 9 is an explanatory diagram showing how light passing through the pinhole is kicked by the photodetector array.
図 1 0 は、 ピンホールを通過した光が光検出器ア レイで蹴られ る様子を示す説明図である。  FIG. 10 is an explanatory diagram showing how light passing through a pinhole is kicked by a photodetector array.
図 1 1 は、 本発明による共焦点光学装置の第 1 の実施例を示す 構成説明図である。  FIG. 11 is a structural explanatory view showing a first embodiment of the confocal optical device according to the present invention.
図 1 2は、 本発明の第 1 の実施例における作用説明図である。 図 1 3は、 本発明の第 1 の実施例における作用説明図である。 図 1 4 は、 本発明の第 1 の実施例における作用説明図である。 図 1 5 A及び図 1 5 Bは、 それぞれ体積型の拡散部材及び 2枚 の積層型の拡散部材を示す作用説明図である。 FIG. 12 is an operation explanatory view of the first embodiment of the present invention. FIG. 13 is an operation explanatory view of the first embodiment of the present invention. FIG. 14 is an operation explanatory diagram of the first embodiment of the present invention. FIGS. 15A and 15B are operation explanatory diagrams showing a volume type diffusion member and two stacked type diffusion members, respectively.
図 1 6 は、 薄い拡散部材をピンホールア レイに近づけた状態で の作用説明図である。  FIG. 16 is an explanatory diagram of the operation in a state where the thin diffusion member is brought close to the pinhole array.
図 1 7 は、 厚い拡散部材をピンホールア レイから離間 した状態 での作用説明図である。  FIG. 17 is an explanatory diagram of the operation when the thick diffusion member is separated from the pinhole array.
図 1 8は、 さ らに厚い拡散部材を用いた場合の作用説明図であ 図 1 9 は、 本発明による共焦点光学装置の第 2 の実施例を示す 構成説明図である。  FIG. 18 is an explanatory diagram of an operation when a thicker diffusing member is used. FIG. 19 is an explanatory diagram of a configuration of a second embodiment of the confocal optical device according to the present invention.
図 2 0は、 本発明 第 2 の実施例でのピンホールを通過 してか ら焦点を結んだ状態の作用説明図である。  FIG. 20 is an operation explanatory view of the second embodiment of the present invention in a state where a focus is formed after passing through a pinhole.
図 2 1 は、 本発明の第 2 の実施例でのピンホールを通過する部 分で焦点を結んだ状態の作用説明図である。  FIG. 21 is an operation explanatory view of a second embodiment of the present invention in a state where a focus is formed at a portion passing through a pinhole.
図 2 2は、 第 2 の実施例でのピンホールの手前で焦点を結んだ 状態の作用説明図である。  FIG. 22 is an operation explanatory view of the second embodiment in a state where a focus is formed just before the pinhole.
図 2 3 は、 本発明による共焦点光学装置の第 3 の実施例を示す 構成説明図である。  FIG. 23 is a configuration explanatory view showing a third embodiment of the confocal optical device according to the present invention.
図 2 4 は、 本発明による共焦点光学装置の第 4 の実施例を示す 構成説明図である。  FIG. 24 is a configuration explanatory view showing a fourth embodiment of the confocal optical device according to the present invention.
図 2 5 は、 本発明による共焦点光学装置の第 5 の実施例を示す 構成説明図である。  FIG. 25 is a configuration explanatory view showing a fifth embodiment of the confocal optical device according to the present invention.
図 2 6は、 本発明の第 5の実施例の作用説明図である。  FIG. 26 is an explanatory diagram of the operation of the fifth embodiment of the present invention.
図 2 7 は、 本発明による共焦点光学装置の第 6 の実施例を示す 構成説明図である。 FIG. 27 shows a sixth embodiment of the confocal optical device according to the present invention. FIG.
図 2 8は、 本発明の第 6の実施例の作用説明図である。  FIG. 28 is an operation explanatory view of the sixth embodiment of the present invention.
図 2 9は、 本発明による共焦点光学装置の第 7 の実施例の光検 出器ア レイを示す作用説明図である。  FIG. 29 is an operation explanatory view showing a photodetector array according to a seventh embodiment of the confocal optical device according to the present invention.
図 3 0は、 本発明による共焦点光学装置の第 8の実施例を示す 構成説明図である。  FIG. 30 is a structural explanatory view showing an eighth embodiment of the confocal optical device according to the present invention.
図 3 1 は、 本発明の第 8の実施例の作用説明図である。  FIG. 31 is an explanatory diagram of the operation of the eighth embodiment of the present invention.
図 3 2 は、 本発明による共焦点光学装置の第 8の実施例を示す 構成説明図である。  FIG. 32 is a structural explanatory view showing an eighth embodiment of the confocal optical device according to the present invention.
図 3 3 は、 高分子散乱型液晶板の基板を作る工程を示す説明囟 である。  FIG. 33 is an explanatory view showing a process for producing a polymer scattering type liquid crystal plate substrate.
図 3 4は、 基板に液晶を注入する工程を示す説明図である。 図 3 5 は、 ピンホールア レイ と拡散部材を一体に した構成の一 例を示す断面図である。  FIG. 34 is an explanatory diagram showing a step of injecting a liquid crystal into a substrate. FIG. 35 is a cross-sectional view showing an example of a configuration in which a pinhole array and a diffusion member are integrated.
図 3 6 は、 ピンホールアレイの断面構造を示す断面図である。 発明を実施するための好適な態様  FIG. 36 is a sectional view showing a sectional structure of the pinhole array. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の好適実施例による共焦点光学系を添付図面を 参照しながら説明する。  Hereinafter, a confocal optical system according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
本発明の第 1 の実施例を図 1 1 から図 1 8に基づいて説明する。 この実施例は図 1 に示した従来の技術に対する改良に係る もの で、 この従来のものの構成部材と同一のものは同一の符号を付し てその説明を省略する。  First Embodiment A first embodiment of the present invention will be described with reference to FIGS. This embodiment relates to an improvement over the prior art shown in FIG. 1, and the same components as those of the prior art are denoted by the same reference numerals and description thereof is omitted.
ピンホールアレイ 4の背後に拡散部材 2 0 を配置する。 このと きのピンホールアレイ 4、 2つの リ レー レ ンズ 7 a , 7 b及び検 出器アレイ 8の配置間隔は、 図 1 に示す従来のものと同 じに して ある。 The diffusion member 20 is arranged behind the pinhole array 4. At this time, the pinhole array 4, the two relay lenses 7a and 7b, and the inspection The spacing between the output arrays 8 is the same as the conventional one shown in FIG.
しかして、 その作用は図 1 2 , 図 1 3 , 図 1 4 に示すよ う にな る。 ピンホールア レイ 4 のピンホール 4 a を通過した光は、 拡散 部材 2 0 に入射して、 こ こでラ ンダムに拡散されて リ レー レ ンズ 7 a . 7 bを経て光検出器ア レイ 8に入射される。  The effect is as shown in Fig. 12, Fig. 13, and Fig. 14. The light that has passed through the pinhole 4a of the pinhole array 4 enters the diffusion member 20 and is randomly diffused here, passes through the relay lenses 7a and 7b, and enters the photodetector array 8. Incident.
図 1 2は反射光がピンホール 4 a を通過して拡散部材 2 0 の部 分で焦点を結んだ状態を、 図 1 3 は拡散部材 2 0 の手前の ピ ン ホールア レイ 4 の位置で焦点を結んだ状態を、 さ らに図 1 2 はピ ンホールア レイ 4 の位置よ り手前で焦点を結んだ状態をそれぞれ 示す。  Fig. 12 shows the reflected light passing through the pinhole 4a and being focused at the diffusion member 20. Fig. 13 shows the focus at the position of the pinhole array 4 in front of the diffusion member 20. Figure 12 shows a state in which the focal point is formed before the position of the pinhole array 4, respectively.
図 1 2 に示すように拡散部材 2 0 の部分で焦点を結んだ状態で は、 この焦点の部分において上記反射光が散乱し、 また図 i 3 , 図 1 4 に示すよう に焦点を結んだ後の少し拡大した範囲の部分か 拡散部材 2 0 にて拡散される。 なお、 この拡散された部分を密度 を濃く した散点模様で示す。 そ して、 こ の拡散部分での丸で示し た拡散中心領域 2 1 の光がリ レーレンズ 7 a , 7 b を介して光検 出器アレイ 8の 1つの光検出部分 (センサ) 8 aにて受光される。 このよう に、 ピンホールア レイ 4 aを通過したそれぞれの光は 拡散部材 2 0 にて拡散されて、 その拡散中心領域 2 1 の光がある 確率をも って満遍な く 光検出器ア レイ 8 の光検出部分 8 a にて検 出される。  When the focal point is formed at the diffusion member 20 as shown in FIG. 12, the reflected light is scattered at this focal point, and the focal point is formed as shown in FIGS. I 3 and 14. It is diffused by the diffusion member 20 from the part of the slightly enlarged area later. The diffused portion is indicated by a dotted pattern with a high density. Then, the light of the diffusion center region 21 indicated by a circle in this diffusion portion is sent to one light detection portion (sensor) 8a of the photodetector array 8 via the relay lenses 7a and 7b. Received. In this way, each light that has passed through the pinhole array 4a is diffused by the diffusion member 20 and the light in the diffusion central region 21 has a certain probability of being uniformly distributed over the photodetector array 8a. The light is detected at the light detection part 8a.
このとき、 上記拡散中心領域 2 i の光は、 ピンホール 4 a を通 過した光 (物体像) が拡散されてぼやけた光となるので、 物体像 と しての光に濃淡のむらがあったと してもこの拡散中心領域 2 1 での光は ピンホール 4 a を通過 した光が平均化さ れてむらのない 光とな り 、 この光が検出器ア レイ 8 の光検出部分 8 a にて検出 さ れる。 At this time, the light in the diffusion center region 2 i becomes blurred light because the light (object image) that has passed through the pinhole 4 a is diffused. Even this diffusion center area 2 1 At this time, the light passing through the pinhole 4a is averaged and becomes uniform light, and this light is detected by the light detection portion 8a of the detector array 8.
こ のと き、 拡散部材 2 0 の リ レー レ ンズ 7 a 側の表面の像が光 検出器ア レイ 8 に正確に結像する場合と、 拡散部材 2 0 の表面の 像の結像位置の前後に光検出器ア レイ 8 がある場合の 2 通 り があ るが、 前者の場合は拡散部材 2 0 によ る拡散効果だけが利用でき るのに対 し、 後者の場合はそれに加えて ピン トずれによ るぼけの 効果が加わ り 、 ピンホール 4 a を通過 して光検出器ア レイ 8 に至 る光がさ らに均一になる。 ' 上記拡散部材 2 0 は平板状にな っていて、 図 1 5 A に示すよ う な、 ある厚さ t を有する体積型の ものと、 図 1 5 B に示すよ う な ある間隔 (厚さ) t をあけた 2 枚の拡散板 2 0 a , 2 0 b か らな る ものと、 2種類のタイ プがある。  At this time, the case where the image of the surface of the diffusion lens 20 on the relay lens 7a side is accurately formed on the photodetector array 8 and the case where the image position of the image of the surface of the diffusion member 20 is formed There are two cases in which there is a photodetector array 8 before and after.In the former case, only the diffusion effect of the diffusion member 20 can be used, whereas in the latter case, the diffusion effect is additionally provided. The effect of blurring due to defocus is added, and the light that passes through the pinhole 4a and reaches the photodetector array 8 becomes more uniform. 'The diffusion member 20 has a flat plate shape, and is a volume type having a certain thickness t as shown in FIG. 15A and a certain distance (thickness) as shown in FIG. 15B. There are two types of diffusers, 20a and 20b, which are separated by t, and two types.
拡散部材 2 0 の厚さ t 、 ピンホール 4 a からの距離 D、 拡散特 性によ って拡散効果は変化する。 一般的な傾向 と して、 厚み t が 大きい程拡散効果は大き く なるが光の損失は大き く な り 、 薄い程 拡散効果は小さ く なる。 ま た、 拡散板を重ねる枚数が多い程拡散 効果が大き く なるが、 光の損失は大き く な る。 そ して、 ピンホー ル 4 a からの距離 Dが大きい程拡散の均一性は低 く な り 、 Dが小 さい程拡散の均一性は高 く なる。 ま た、 拡散特性 (角度) が広い 程拡散効果が大き く な り 、 狭い程拡散効果は小さ く な る。 従っ て これらのこ とを考慮 して適切な拡散 (ぼけ具合) にな る よ う にす ればよい。  The diffusion effect varies depending on the thickness t of the diffusion member 20, the distance D from the pinhole 4a, and the diffusion characteristics. As a general tendency, the diffusion effect increases as the thickness t increases, but the light loss increases, and the diffusion effect decreases as the thickness t decreases. Also, the diffusion effect increases as the number of diffusion plates stacked increases, but the light loss increases. The greater the distance D from the pinhole 4a, the lower the uniformity of the diffusion, and the smaller the D, the higher the uniformity of the diffusion. Also, the diffusion effect increases as the diffusion characteristic (angle) increases, and the diffusion effect decreases as the diffusion characteristic (angle) decreases. Therefore, it is only necessary to take these factors into account and make it appropriate diffusion (blur condition).
図 1 6 , 図 1 7 , 図 1 8 はその様子を示すものである。 図 1 6 に示すものは、 薄い拡散部材 2 0をピンホ一ル 4 a からの近い距 離に配置 したもので、 拡散効果が小さ く ぼけ具合は小さい。 図 1 7に示すものは、 厚さ t が図 1 6 に示すものよ り大き く 、 しか も ピンホール 4 aからの距離 Dをあけたもので、 それだけ拡散効 果が大き く 、 ぼけ具合は隣接する光検出器ア レイ 8 にまたがるか 否かという程度に大き く なつている。 図 1 8 に示すものは、 さ ら に厚い拡散部材 2 0を用いたものであり、 拡散効果はさ らに大き く 、 ぼけ具合は隣接する光検出器ア レイ 8 に完全にまたがつてい る。 Fig. 16, Fig. 17, and Fig. 18 show the situation. Fig. 16 In the example shown in Fig. 7, a thin diffusion member 20 is arranged at a short distance from the pinhole 4a, and the diffusion effect is small and the degree of blur is small. The one shown in Fig. 17 has a thickness t larger than that shown in Fig. 16 and is farther away from the pinhole 4a by a distance D, so that the diffusion effect is larger and the degree of blur is larger. It is as large as whether or not it spans the adjacent photodetector array 8. The one shown in Fig. 18 uses a thicker diffusion member 20, the diffusion effect is even greater, and the degree of blur completely spans the adjacent photodetector array 8. You.
ぼけ具合が大き く なる程検出器アレイ 8の位置合わせは容易に なる。 特に図 1 7に示すような状態では、 厳密な検出器ア レイ 8 の位置合わせは不要になる。 しかし、 図 1 8 に示すよう に大き く ぼかす場合は、 隣接する ピンホール 4 a の光が混ざって計測され ることを考慮する必要がある。  As the degree of blur increases, the alignment of the detector array 8 becomes easier. In particular, in the state shown in FIG. 17, precise alignment of the detector array 8 becomes unnecessary. However, when blurring large as shown in Fig. 18, it is necessary to consider that the light from adjacent pinholes 4a is mixed and measured.
上記拡散部材 2 0 と しては、 ( 1 ) ガラス等の光学基板の表面 に研削、 エッチング等の加工を施して該表面が光を散乱させるよ うにしたもの、 ( 2 ) 表面ではな く部材そのものが光を散乱させ る性質をもつもの (体積散乱) 、 あるいは、 ( 3 ) このよ う に体 積散乱する材料を光学基板に、 例えばオパールガラス等のよ う に コーティ ングまたはサン ドイ ッ チ したものがある。 そ して、 上記 体積散乱型の拡散部材 2 0 と しては、 公知の高分子散乱型液晶板 がある。  Examples of the diffusion member 20 include: (1) a material in which the surface of an optical substrate made of glass or the like is subjected to processing such as grinding and etching so that the surface scatters light; The material itself has the property of scattering light (volume scattering), or (3) A material that scatters the volume in this way is coated on an optical substrate, for example, a coating or sand switch such as opal glass. There is something. A well-known polymer scattering type liquid crystal plate is used as the volume scattering type diffusion member 20.
上記実施例では図 1 1 において実線で示 したよ う に、 拡散部材 2 0をピンホールアレイ 4 の背後に配置しているが、 第 2 の実施 例と して、 図 1 9 において実線で示すよ う に、 拡散部材 2 0 を光 1フ In the above embodiment, as shown by the solid line in FIG. 11, the diffusion member 20 is arranged behind the pinhole array 4, but as a second embodiment, it is shown by the solid line in FIG. 19. Thus, the diffusion member 20 1 f
検出器アレイ 8の手前に配置してもよい。 It may be arranged before the detector array 8.
こ の第 2の実施例における作用は、 図 2 0 , 図 2 1 , 図 2 2 に 示すようになる。 すなわち、 図 2 0 で示すよ う に、 光がピンホー ルア レイ 4 のピンホール 4 a を通過してから焦点を結んだ状態で は、 該光は拡散部材 2 0でデフ ォーカスされて大きな面積で拡散 される。 図 2 1 で示すものは、 光がピンホール 4 a の部分で焦点 を結んだ状態であり、 該光は小さい面で拡散される。 図 2 2 で示 すものは、 光がピンホール 4 aの手前が焦点を結んだ状態で、 該 光は焦点がぼけた状態で拡散される。  The operation in the second embodiment is as shown in FIGS. 20, 21, and 22. That is, as shown in FIG. 20, when light is focused after passing through the pinhole 4a of the pinhole array 4, the light is defocused by the diffusion member 20 and has a large area. Spread. FIG. 21 shows a state in which light is focused on the pinhole 4a, and the light is diffused on a small surface. FIG. 22 shows a state in which light is focused before the pinhole 4a, and the light is diffused out of focus.
本発明にかかる構成は、 図 6 に示す第 1 の従来型及び図 7 に^ す第 2の従来型の 3次元形状検査装置にも適用することができる。 図 2 3 に示す第 3 の実施例は、 第 1 の従来型に本発明の第 1 の 実施例の構成を適用 したものである。 これは、 ピンホールア レイ 4の背後あるいは鎖線で示すよう に光検出器ア レイ 8の手前に拡 散部材 2 0を配置する。 この場合リ レー レンズ 7 はタ ンデム配置 になっていないが、 これは本質的な違いではない。 ただし、 本発 明の実施例では、 リ レー レ ンズはタ ンデム配置になっている方が 望ま しい。 なぜなら、 全ての共焦点ュニッ 卜において拡散部材に よる像のぼけが、 各共焦点ュニッ 卜の光線主軸を中心と して均等 に広がるからである。  The configuration according to the present invention can also be applied to the first conventional type three-dimensional shape inspection apparatus shown in FIG. 6 and the second conventional type three-dimensional shape inspection apparatus shown in FIG. In the third embodiment shown in FIG. 23, the configuration of the first embodiment of the present invention is applied to the first conventional type. In this case, the diffusion member 20 is arranged behind the pinhole array 4 or in front of the photodetector array 8 as shown by a chain line. In this case, the relay lens 7 is not arranged in tandem, but this is not an essential difference. However, in the embodiment of the present invention, it is preferable that the relay lenses have a tandem arrangement. This is because in all confocal units, the blurring of the image by the diffusing member spreads evenly around the principal axis of each confocal unit.
図 2 4 に示す第 4実施例は、 第 2の従来型に本発明の第 2実施 例の構成を適用 したもので、 これは光検出器ア レイ 8の手前に拡 散部材 2 0を配置している。  In the fourth embodiment shown in FIG. 24, the configuration of the second embodiment of the present invention is applied to the second conventional type, in which a diffusing member 20 is disposed in front of the photodetector array 8. are doing.
図 2 5は本発明の第 5 の実施例を示してお り、 これは拡散部材 2 0をタ ンデム配置した両 リ レ一レンズ 7 a , 7 b の間の平行光 部に配置している。 なお、 この実施例の場合の拡散部材 2 0 は極 めて薄いもの、 あるいは拡散特性 (角度) の狭いもの等拡散効架 が小さいものが望ま しい。 FIG. 25 shows a fifth embodiment of the present invention, in which the parallel light between the relay lenses 7a and 7b in which the diffusion member 20 is arranged in tandem is shown. It is located in the department. In this embodiment, it is desirable that the diffusion member 20 has a very small diffusion effect such as an extremely thin diffusion member or a member having a narrow diffusion characteristic (angle).
また、 図 2 7 に示す第 6の実施例のよ う に、 上記拡散部材 2 0 のかわりに回折格子 2 2を用いてもよい。  Further, as in the sixth embodiment shown in FIG. 27, a diffraction grating 22 may be used instead of the diffusion member 20.
そ してこの第 5 , 第 6実施例の作用は図 2 6 , 図 2 8 に示すよ うになる。 図 2 6 は極めて薄い拡散部材 2 0 を用いた場合を示 し ており、 この場合、 ピンホール 4 a を通過した光はタ ンデム配置 の両リ レーレンズ 7 a , 7 bの間で拡散され、 光検出器ア レイ 8 にぼやけて入射される。  The operation of the fifth and sixth embodiments is as shown in FIGS. 26 and 28. Fig. 26 shows the case where an extremely thin diffusion member 20 is used.In this case, the light passing through the pinhole 4a is diffused between the two relay lenses 7a and 7b in a tandem arrangement. The light is incident on the photodetector array 8 blurred.
図 2 8は上記拡散部材 2 0 のかわりに回折格子 2 2 を配置 した 場合を示しており、 この場合、 回折格子 2 2 は振幅型あるいは位 相型のものが用いられ、 ( 0 ) 次光と ( + 1 ) 次光と (一 1 ) 次 光とが光検出器アレイ 8 に結像する。 このとき、 光検出器ア レイ 8の光検出部分 8 aの方向に合わせて回折方向を設定すれば、 方 向性をもった分布にすることができる。  FIG. 28 shows a case where a diffraction grating 22 is arranged in place of the diffusion member 20. In this case, the diffraction grating 22 is of an amplitude type or a phase type, and the (0) th order light is used. The (+1) -order light and the (-1) -order light form an image on the photodetector array 8. At this time, if the diffraction direction is set in accordance with the direction of the light detection portion 8a of the photodetector array 8, it is possible to obtain a directional distribution.
また、 この実施例では 1 次元の回折格子 2 2 を用いたが、 これ を 2次元の回折格子を用いて X Y方向の両方向に回折するよ う に してもよい。 さ らに、 この回折格子 2 2 を上記した拡散部材 2 0 と共に用いると、 ( 0 ) 次光、 ( + 1 ) 次光、 (一 1 ) 次光とい う離散的な分布でな く 、 それぞれの次光がぼけて結像するので 全体と して滑らかな像分布になり、 よ り好ま しい結果となる。  Further, in this embodiment, the one-dimensional diffraction grating 22 is used, but this may be diffracted in both the X and Y directions by using a two-dimensional diffraction grating. Further, when this diffraction grating 22 is used together with the above-described diffusing member 20, the distributions are not discrete distributions of the (0) -order light, the (+1) -order light, and the (1-1) -order light. Since the next light is blurred and forms an image, the image distribution becomes smooth as a whole, and more favorable results are obtained.
図 2 9 は本発明の第 7 の実施例を示 している。 この場合、 光検 出器アレイ 8に結像する ピンホール像をデフ ォーカスするか、 あ るいは上記第 1 から第 3の拡散部材 2 0 によ り ピンホール像 2 3 を均一に満遍な く ぼかし、 さ らに 1 つの ピンホール 4 a を通過す る光を複数の光検出部分 8 a で受光し、 それらを積分する。 FIG. 29 shows a seventh embodiment of the present invention. In this case, the pinhole image formed on the photodetector array 8 is defocused, or the pinhole image 23 is formed by the first to third diffusion members 20. The light passing through one pinhole 4a is received by a plurality of light detecting portions 8a, and the light is integrated.
この実施例では上述 した各実施例とは異な り 、 1 つの ピンホー ル 4 a を通過する光をデフ ォ ーカスあ る いは均一にぼか して、 そ れを複数の光検出部分で計測 し、 それらを積分するので、 像の光 量分布にむらがあっ て も積分される。 従って、 複数の光検出部分 8 a をま とめて 1 つの光検出器と見れば、 実質的には光検出器の 感光部分の開口率が大き く な つ たのと同等 (近似) 効果がある。 上記各実施例において、 光源には レーザな どの干渉性の高い光 源を採用 し、 光検出器ア レイ に市販の C C Dセ ンサな どを流用す る場合、 セ ンサのカバー ガラ スでの光の干渉を低減する 目 的で カバ一ガラ スを外 した り 、 カバ一ガラ ス と セ ンサ と の間に光学 マ ッ チ ングのための屈折液を充填する こ とが効果的である。  In this embodiment, unlike the above-described embodiments, the light passing through one pinhole 4a is defocused or uniformly blurred, and the light is measured by a plurality of light detection portions. However, since they are integrated, they are integrated even if the light intensity distribution of the image is uneven. Therefore, when the plurality of light detection portions 8a are grouped into one photodetector, there is substantially the same (approximate) effect as an increase in the aperture ratio of the photosensitive portion of the photodetector. . In each of the above embodiments, when a light source with high coherence such as a laser is used as the light source and a commercially available CCD sensor or the like is used for the photodetector array, the light in the sensor cover glass is used. It is effective to remove the cover glass and fill a refraction liquid for optical matching between the cover glass and the sensor for the purpose of reducing interference.
なお上記第 1 から第 5 の実施例において、 拡散部材 2 0 を X Y 面内で振動または Z軸を中心に回転させる と、 拡散効果はよ り 高 いものとなる。  In the first to fifth embodiments, when the diffusion member 20 is vibrated in the XY plane or rotated about the Z axis, the diffusion effect becomes higher.
図 3 0 は本発明の第 8 の実施例を示 してお り 、 こ の実施例では ピンホールア レイ 4 の背後に拡散部材 2 0 を配置する と共に、 光 検出器ア レイ 8 の前側にマイ ク ロ レ ンズア レイ 2 4 を配置する。  FIG. 30 shows an eighth embodiment of the present invention. In this embodiment, the diffusion member 20 is arranged behind the pinhole array 4 and the microphone is arranged in front of the photodetector array 8. Place the lens array 24.
この実施例では、 図 3 1 に示すよ う に、 ピ ンホールア レイ 4 に て満遍な く ぼけた光がマイ ク ロ レ ンズア レイ 2 4 の各マイ ク ロ レ ンズ 2 4 a によ って光検出器ア レイ 8 の各光検出部分 8 a に集光 されるので、 光検出部分 8 aでの光の検出効率が向上する。  In this embodiment, as shown in FIG. 31, the light diffused uniformly in the pinhole array 4 is generated by each micro lens 24 a of the micro lens array 24. Since the light is condensed on each light detection portion 8a of the photodetector array 8, the light detection efficiency at the light detection portion 8a is improved.
なお、 こ の第 8 の実施例において、 上記のよ う に、 ピンホール ア レイ 4 の背後に拡散部材 2 0 を配置する と共に、 光検出器ァ レ ィ 8の手前にマイ ク ロ レ ンズア レイ 2 4 を配置し、 さ らに図 3 2 で鎖線で示すよう に、 タ ンデム配置 した 2個の リ レー レ ンズ 7 a , 7 bの間に回折格子 2 2を配置してもよい。 In the eighth embodiment, as described above, the diffusion member 20 is arranged behind the pinhole array 4 and the photodetector array is arranged. The micro lens array 24 is placed in front of the lens 8 and diffracted between the two tandem relay lenses 7a and 7b as shown by the dashed line in Fig. 32. A grid 22 may be arranged.
また、 この第 8の実施例において、 図示しないが、 ピンホール ア レイ 4 の背後の拡散部材 2 0 のかわ り に、 リ レー レ ンズ 7 a , 7 b間に拡散部材 2 0 を配置し、 これと上記マイ ク ロ レンズァ レ ィ 1 4 との組合わせでもよい。  Further, in the eighth embodiment, although not shown, a diffusion member 20 is arranged between the relay lenses 7a and 7b instead of the diffusion member 20 behind the pinhole array 4, This may be combined with the micro lens array 14 described above.
上記各実施例に用いられる拡散部材 2 0の-一例と して、 上記し たように高分子散乱型液晶板があるが、 この散乱型液晶板の製法 の一例を図 3 3 , 図 3 4 に示す。  As one example of the diffusion member 20 used in each of the above embodiments, there is a polymer scattering type liquid crystal plate as described above. One example of a method of manufacturing this scattering type liquid crystal plate is shown in FIGS. 33 and 34. Shown in
まず、 図 3 3の各工程に示すよう に、 ( 1 ) 紫外線で硬化する U V接着剤 2 5 とガラス ビーズ 2 6 とを混合し、 ( 2 ) 撹拌 し、 ( 3 ) こ れをデイ スペンザ 2 7 にて 2 枚の光学ガラ ス板 2 8 a , First, as shown in each step of Fig. 33, (1) a UV adhesive 25 curable by ultraviolet rays and glass beads 26 are mixed, (2) agitated, and (3) a dispenser 2 At 7, two optical glass plates 2 8 a,
2 8 bの一方のガラス板 2 8 a の幅方向両側部に塗布し、 ( 4 ) これに他方のガラス板 2 8 b と張り合わせ、 これに紫外線を照射 して硬化させる。 これによ り、 上記ビーズ入りの接着剤の塗布厚 分の空間を有する基板 2 9ができ上がる。 It is applied to both sides in the width direction of one glass plate 28a of 28b, and (4) bonded to the other glass plate 28b, and irradiated with ultraviolet rays to be cured. Thus, a substrate 29 having a space corresponding to the applied thickness of the adhesive containing beads is completed.
ついで、 図 3 4 の各工程に示すよ う に、 ( 1 ) フ ォ ト ポ リ マ Next, as shown in each step of Fig. 34, (1) Photopolymer
3 0 と液晶 3 1 とを電子天秤 3 2 にて計量して混合し、 ( 2 ) マ グネ ッ ト 3 3を入れた状態にスターラ 3 4 にて撹拌し、 ( 3 ) こ れを台 3 5上で上記基板 2 9 の空間に毛細管現象によ り注入する , その後、 これに紫外線を照射して硬化及び封止するこ とによ り高 分子散乱型液晶板ができ上がる。 30 and the liquid crystal 31 are weighed and mixed by an electronic balance 32, and (2) agitated with a stirrer 34 in a state where the magnet 33 is inserted. By injecting into the space of the substrate 29 on 5 by capillary action, and then irradiating it with ultraviolet rays to cure and seal it, a high molecular scattering type liquid crystal plate is completed.
拡散部材 2 0をピンホールアレイ 4 のすぐ背後、 あるいはす ぐ 手前に配置する場合、 こ の拡散部材 2 0 に上記液晶液を用いる場 合、 両者を一体状に してもよい。 その構造の一例を図 3 5 に示す。 この場合、 両光学ガラス基板 2 8 a , 2 8 bの間にフ ォ トポ リ マ 3 0 と液晶 3 1 と共にピンホールア レイ 4 を封入した構成とす る。 When the diffusion member 20 is disposed immediately behind the pinhole array 4 or shortly before, the liquid crystal liquid is used for the diffusion member 20. In this case, both may be integrated. Fig. 35 shows an example of the structure. In this case, the pinhole array 4 is sealed between the optical glass substrates 28a and 28b together with the photopolymer 30 and the liquid crystal 31.
また、 上記各実施例において用いられる ピンホールア レイ 4 は これに光を照射したときの反射率は少な く 、 また透過しに く い性 質であるこ とが望まれる。 そ して、 その構造の一例を図 3 6 に示 す。 この構造は、 B K 7 ガラス 3 6に C r 2 0 3 からなる第 1 層 3 7 a と第 2層 3 7 b の間に C r からなる中間層 3 8 をサ ン ド イ ッチした構造となっている。 この構造の場合、 第 1 層 3 7 a の C r 2 0 3 の層厚が反射率の大小に関係し、 これの厚さを 5 O m m にすることにより、 反射率を殆どゼロにすることができる。  In addition, it is desired that the pinhole array 4 used in each of the above embodiments has a low reflectance when irradiated with light, and has a property of being hardly transmitted. An example of the structure is shown in Figure 36. This structure has a structure in which an intermediate layer 38 made of Cr is sandwiched between a first layer 37a made of Cr203 and a second layer 37b on BK7 glass 36. It has become. In the case of this structure, the layer thickness of Cr203 of the first layer 37a is related to the magnitude of the reflectivity, and by setting this thickness to 5 Omm, the reflectivity can be made almost zero. Can be.
また、 透過率には中間層 3 8の C r が関係し、 これが 5 O m m から 9 0 m mと厚く なる程透過率が 0 . 1 から 0 . 0 0 1 と小さ く なる。  The transmittance is related to the Cr of the intermediate layer 38, and the transmittance becomes smaller from 0.1 to 0.001 as the thickness increases from 5 Omm to 90 mm.
なお、 本発明は例示的な実施例について説明 したが、 開示した 実施例に関 して、 本発明の要旨及び範囲を逸脱する こ と な く 種々の変更、 省略、 追加が可能である こ とは、 当業者において自 明である。 従って、 本発明は、 上記の実施例に限定される もので はな く 、 請求の範囲に記載された要素によ って規定される範關及 びその均等範囲を包含するものと して理解されなければならない。  Although the present invention has been described with reference to exemplary embodiments, various modifications, omissions, and additions can be made to the disclosed embodiments without departing from the spirit and scope of the present invention. Is obvious to those skilled in the art. Therefore, the present invention is not intended to be limited to the above embodiments, but is to be understood as including the scope defined by the elements recited in the claims and their equivalents. There must be.

Claims

請求の範囲 The scope of the claims
1 . リ レー レ ンズを含む共焦点光学系と 、 ピ ンホールを 1 次元あ るいは 2 次元的に配列 した ピンホールア レイ と、 光検出器ァ レ ィ を備え、 各 ピンホールを通過する物体からの反射光の光量を前記 リ レー レ ンズを介 して前記光検出器ア レイ で計測する共焦点光学 装置において、  1. A confocal optical system including a relay lens, a pinhole array in which pinholes are arranged one-dimensionally or two-dimensionally, and a photodetector array. A confocal optical device for measuring the amount of reflected light with the photodetector array via the relay lens,
前記反射光の合焦位置の近く に前記各 ピンホールを通過する前 記反射光をラ ンダムに拡散させる拡散部材を配置 して、 前記各 ピ ンホールを通過する前記反射光を一定の確率で満遍な く 前記光検 出器ア レイの光検出部分に入射させるよ う に した共焦点光学装置。  A diffusing member that randomly diffuses the reflected light passing through each of the pinholes is disposed near the focus position of the reflected light, and the reflected light passing through each of the pinholes is filled with a certain probability. A confocal optical device adapted to uniformly enter the light detecting portion of the light detector array.
2 . 前記拡散部材が、 前記ピンホールア レイ の背後に配置されて いる、 請求の範囲 1 に記載の共焦点光学装置。 2. The confocal optical device according to claim 1, wherein the diffusion member is disposed behind the pinhole array.
3 . 前記拡散部材が、 前記光検出器ア レイ の手前に配置されてい ている、 請求の範囲 1 に記載の共焦点光学装置。 3. The confocal optical device according to claim 1, wherein the diffusing member is disposed before the photodetector array.
4 . リ レー レ ンズを含む共焦点光学系 と、 ピンホールを 1 次元あ るいは 2 次元的に配列 した ピンホールア レイ と、 光検出器ア レイ を備え、 各 ピンホールを通過する物体か らの反射光の光量を前記 リ レー レ ンズを介 して前記光検出器ア レイ で計測する共焦点光学 装置において、 4. Equipped with a confocal optical system including a relay lens, a pinhole array in which pinholes are arranged one-dimensionally or two-dimensionally, and a photodetector array. A confocal optical device for measuring the amount of reflected light with the photodetector array via the relay lens,
前記ピ ンホールア レ イ と前記光検出器ア レ イ と の間に前記 リ レ一 レ ンズをタ ンデムに配置 し、 前記 リ レー レ ンズの間に前記各 ピンホールを通過する前記反射光をラ ンダムに拡散させる拡散部 材を配置 して、 前記各 ピンホールを通過する前記反射光を一定の 確率で満遍な く 前記光検出器ア レイ の光検出部分に入射させる よ う に した共焦点光学装置。 The relay lens is arranged in tandem between the pinhole array and the photodetector array, and the reflected light passing through each of the pinholes is relayed between the relay lenses. Diffusion part to spread randomly A confocal optical device in which a material is arranged so that the reflected light passing through each of the pinholes is uniformly incident on the light detection portion of the photodetector array with a certain probability.
5 . リ レー レ ンズを含む共焦点光学系と、 ピンホールを 1 次元あ るいは 2次元的に配列 した ピンホールア レイ と、 光検出器ア レイ を備え、 各ピンホールを通過する物体からの反射光の光量を前記 リ レー レ ンズを介して前記光検出器ア レイ で計測する共焦点光学 装置において、 5. Equipped with a confocal optical system including a relay lens, a pinhole array in which pinholes are arranged one-dimensionally or two-dimensionally, and a photodetector array, reflecting light from objects passing through each pinhole A confocal optical device for measuring the amount of light with the photodetector array via the relay lens,
前記ピンホールア レイ と前記光検出器ア レイ と の間に前記 ύ レー レ ンズをタ ンデムに配置 し、 前記 リ レー レ ンズの間に前記各 ピンホールを通過する前記反射光を規則的に回折させる回折格子 を配置 して、 前記各ピンホールを通過する前記反射光を前記光検 出器ア レイの光検出部分の形状に合わせて入射させる よ う に した 共焦点光学装置。  The micro lens is arranged in tandem between the pinhole array and the photodetector array, and the reflected light passing through each of the pinholes is regularly diffracted between the relay lenses. A confocal optical device in which a diffraction grating is arranged so that the reflected light passing through each of the pinholes is made incident according to the shape of a light detection portion of the photodetector array.
6 . 前記 ピンホールア レイ と前記光検出器ア レ イ の位置関係を 前記ピンホールア レイ の 1 つの ピンホールの像が光検出器ァ レイ の複数の光検出部分で結像 し得る関係に し、 該ピンホールの像が 結像 した複数の光検出部分の 出力を積分する積分手段を備え た 請求の範囲 1 乃至 5 のいずれかに記載の共焦点光学装置。 6. The positional relationship between the pinhole array and the photodetector array is set so that an image of one pinhole of the pinhole array can be formed at a plurality of light detection portions of the photodetector array. The confocal optical device according to any one of claims 1 to 5, further comprising integrating means for integrating outputs of the plurality of light detection portions on which the images of the holes are formed.
7 . 光検出器ア レイ の手前にマイ ク ロ レ ン ズア レ イ を配置 した 請求項 1 または 5 に記載の共焦点光学装置。 7. The confocal optical device according to claim 1, wherein a microlens array is arranged in front of the photodetector array.
PCT/JP1997/001095 1996-03-29 1997-03-28 Confocal optical apparatus WO1997037264A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/76668 1996-03-29
JP7666896A JPH09264720A (en) 1996-03-29 1996-03-29 Cofocal optical device

Publications (1)

Publication Number Publication Date
WO1997037264A1 true WO1997037264A1 (en) 1997-10-09

Family

ID=13611805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001095 WO1997037264A1 (en) 1996-03-29 1997-03-28 Confocal optical apparatus

Country Status (2)

Country Link
JP (1) JPH09264720A (en)
WO (1) WO1997037264A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000008415A1 (en) * 1998-08-05 2000-02-17 Cadent Ltd. Imaging a three-dimensional structure by confocal focussing an array of light beams

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5118580B2 (en) * 2008-08-22 2013-01-16 株式会社ディスコ Height position detection device and height position detection method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791445A (en) * 1980-10-08 1982-06-07 Zeiss Stiftung Luster microscopic spectrochemical analysis method of and apparatus for spatial distribution of sample parameter
JPS61272714A (en) * 1985-05-28 1986-12-03 Olympus Optical Co Ltd Scanning type optical microscope
US4806004A (en) * 1987-07-10 1989-02-21 California Institute Of Technology Scanning microscopy
JPH01503493A (en) * 1987-03-27 1989-11-22 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ Scanning confocal optical microscope
JPH02267512A (en) * 1989-04-10 1990-11-01 Hitachi Ltd Con-focal scanning type optical microscope
JPH04505061A (en) * 1990-01-11 1992-09-03 アイ リサーチ インスティテュート オブ レティナ ファウンデイション Apparatus and method for creating images using a scannable microlaser light source
JPH04265918A (en) * 1990-11-10 1992-09-22 Carl Zeiss:Fa Optical apparatus having equal-focal-point optical path for inspecting subtance under inspection in three dimensions
JPH04274365A (en) * 1991-03-01 1992-09-30 Nec Corp Solid-state image sensing device
JPH07181023A (en) * 1993-09-30 1995-07-18 Komatsu Ltd Cofocal optical system
JPH08152308A (en) * 1994-09-30 1996-06-11 Komatsu Ltd Confocal optical apparatus
JPH08233544A (en) * 1995-02-28 1996-09-13 Komatsu Ltd Confocal optical apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791445A (en) * 1980-10-08 1982-06-07 Zeiss Stiftung Luster microscopic spectrochemical analysis method of and apparatus for spatial distribution of sample parameter
JPS61272714A (en) * 1985-05-28 1986-12-03 Olympus Optical Co Ltd Scanning type optical microscope
JPH01503493A (en) * 1987-03-27 1989-11-22 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ Scanning confocal optical microscope
US4806004A (en) * 1987-07-10 1989-02-21 California Institute Of Technology Scanning microscopy
JPH02267512A (en) * 1989-04-10 1990-11-01 Hitachi Ltd Con-focal scanning type optical microscope
JPH04505061A (en) * 1990-01-11 1992-09-03 アイ リサーチ インスティテュート オブ レティナ ファウンデイション Apparatus and method for creating images using a scannable microlaser light source
JPH04265918A (en) * 1990-11-10 1992-09-22 Carl Zeiss:Fa Optical apparatus having equal-focal-point optical path for inspecting subtance under inspection in three dimensions
JPH04274365A (en) * 1991-03-01 1992-09-30 Nec Corp Solid-state image sensing device
JPH07181023A (en) * 1993-09-30 1995-07-18 Komatsu Ltd Cofocal optical system
JPH08152308A (en) * 1994-09-30 1996-06-11 Komatsu Ltd Confocal optical apparatus
JPH08233544A (en) * 1995-02-28 1996-09-13 Komatsu Ltd Confocal optical apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000008415A1 (en) * 1998-08-05 2000-02-17 Cadent Ltd. Imaging a three-dimensional structure by confocal focussing an array of light beams
EP1327851A1 (en) * 1998-08-05 2003-07-16 Cadent Ltd. Imaging a three-dimensional structure by confocal focussing an array of light beams
US6697164B1 (en) 1998-08-05 2004-02-24 Cadent Ltd. Imaging a three-dimensional structure by confocal focussing an array of light beams
US6940611B2 (en) 1998-08-05 2005-09-06 Cadent Ltd. Imaging a three-dimensional structure by confocal focussing an array of light beams
US7092107B2 (en) 1998-08-05 2006-08-15 Cadent Ltd. Method and apparatus for imaging three-dimensional structure
US7230725B2 (en) 1998-08-05 2007-06-12 Cadent Ltd Method and apparatus for imaging three-dimensional structure
US7477402B2 (en) 1998-08-05 2009-01-13 Cadent Ltd. Method and apparatus for imaging three-dimensional structure
US7630089B2 (en) 1998-08-05 2009-12-08 Cadent Ltd. Method and apparatus for imaging three-dimensional structure
US7796277B2 (en) 1998-08-05 2010-09-14 Cadent Ltd. Method and apparatus for imaging three-dimensional structure
US7944569B2 (en) 1998-08-05 2011-05-17 Cadent Ltd. Method and apparatus for imaging three-dimensional structure
US7990548B2 (en) 1998-08-05 2011-08-02 Cadent Ltd. Method and apparatus for imaging three-dimensional structure
US8310683B2 (en) 1998-08-05 2012-11-13 Cadent Ltd. Method and apparatus for imaging three-dimensional structure
US8638447B2 (en) 1998-08-05 2014-01-28 Cadent Ltd. Method and apparatus for imaging three-dimensional structure
US8638448B2 (en) 1998-08-05 2014-01-28 Cadent Ltd. Method and apparatus for imaging three-dimensional structure
US9089277B2 (en) 1998-08-05 2015-07-28 Align Technology, Inc. Method and apparatus for imaging three-dimensional structure
US9615901B2 (en) 1998-08-05 2017-04-11 Align Technology, Inc. Method and apparatus for imaging three-dimensional structure

Also Published As

Publication number Publication date
JPH09264720A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
KR100474100B1 (en) Confocal microscope and height measurement method using the same
US7388696B2 (en) Diffuser, wavefront source, wavefront sensor and projection exposure apparatus
US7268891B2 (en) Transmission shear grating in checkerboard configuration for EUV wavefront sensor
US7692128B2 (en) Focus control method for an optical apparatus which inspects a photo-mask or the like
US8654346B2 (en) Optical scattering disk, use thereof, and wavefront measuring apparatus
JPH0362299B2 (en)
TW200413861A (en) Lithographic apparatus and a measurement system
US7872741B2 (en) Method and apparatus for scatterfield microscopical measurement
US20090161117A1 (en) Inclined exposure lithography system
JP3208450B2 (en) Manufacture of flat panel displays
JP3564210B2 (en) Confocal optics
WO1997037264A1 (en) Confocal optical apparatus
JP2009288075A (en) Aberration measuring device and aberration measuring method
JP7275198B2 (en) Apparatus and method for characterizing microlithographic masks
WO2006035393A2 (en) Binary phase structure for the generation of a periodical light signal
JP3392708B2 (en) Image forming characteristic measuring apparatus, exposure apparatus, and methods thereof
TWI485431B (en) Apparatus for homogenizing coherent radiation
JPH09305094A (en) Telecentric optical device
JPH0210202A (en) Position detecting apparatus by double linear fresnel zone plate through illumination with multi wavelengths
Voelkel et al. Design, fabrication, and testing of micro-optical components for sensors and microsystems
JP2502483B2 (en) Optical head device
JP2502484B2 (en) Optical head device
Cox et al. Process-dependent kinoform performance
JP2502482B2 (en) Optical head device
JP3476707B2 (en) Data generator for read-only laminated waveguide hologram memory

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642