WO1997047334A1 - Procede de preparation d'un materiau composite implantable, materiau obtenu, implant comprenant ce materiau et kit de mise en oeuvre - Google Patents

Procede de preparation d'un materiau composite implantable, materiau obtenu, implant comprenant ce materiau et kit de mise en oeuvre Download PDF

Info

Publication number
WO1997047334A1
WO1997047334A1 PCT/FR1997/001045 FR9701045W WO9747334A1 WO 1997047334 A1 WO1997047334 A1 WO 1997047334A1 FR 9701045 W FR9701045 W FR 9701045W WO 9747334 A1 WO9747334 A1 WO 9747334A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
material according
calcium
mpa
solid composition
Prior art date
Application number
PCT/FR1997/001045
Other languages
English (en)
Inventor
Alain Lerch
Patrick Frayssinet
Original Assignee
Bioland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bioland filed Critical Bioland
Priority to AT97928334T priority Critical patent/ATE224742T1/de
Priority to EP97928334A priority patent/EP0881920B1/fr
Priority to JP50130498A priority patent/JP4278179B2/ja
Priority to DE69715824T priority patent/DE69715824T2/de
Priority to US08/983,562 priority patent/US6018095A/en
Priority to DK97928334T priority patent/DK0881920T3/da
Publication of WO1997047334A1 publication Critical patent/WO1997047334A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/42Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
    • A61L27/425Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix of phosphorus containing material, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/026Ceramic or ceramic-like structures, e.g. glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L31/121Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
    • A61L31/123Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix of phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00293Ceramics or ceramic-like structures containing a phosphorus-containing compound, e.g. apatite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/92Method or apparatus for preparing or treating prosthetic

Definitions

  • the invention relates to a process for preparing a solid composite material intended to be implanted in a human or animal biological medium, in particular as a bone or dental substitute; a material thus obtained; an implant comprising such a material and an extemporaneous implementation kit for this process.
  • the term “implant” designates any device, apparatus, mechanism, part or set of parts, of natural or artificial origin, organic or inorganic, in the solid state, biocompatible and implantable in the human or animal body, excluding fluid, pasty or divided compositions.
  • implants include bone, dental or maxillofacial prostheses, filling, filling or interface mserts, etc.
  • porous ceramics with interconnected pores as implantable solid material for bone substitute has already been described (see for example EP-A-0 360 244 and "Osseointegration of macroporous calcium phosphate ceramics having a different chemical composition" Frayssinet et al ., Biomaterials 1993, Vol. 14, n ° 6, p 423 - 429). Because of their macroporosity, implantable biocompatible porous solid matrices such as ceramics, and more particularly interconnected pore matrices, have the advantage of increasing the exchange surface with the biological medium, of being bioresorbable, of facilitate tissue revascularization and possess excellent osteoconductive properties. In addition, growth agents can be deposited in the pores by precipitation.
  • porous ceramics have a low mechanical strength (2 to 4 MPa in compression), insufficient in many applications, for example when a reloading of the implantation site before healing is necessary.
  • implantable biocompatible phosphocalcic hydraulic cements that is to say curable fluid or pasty compositions, making it possible to produce prosthetic assemblies or fillings during operations. orthopedic surgery.
  • These cements are easily malleable by the practitioner, but cannot be used to produce solid implants such as bone prostheses, the general shape of which must be predefined, which must withstand strong constraints upon implantation and / or in which must tighten screws for fixing other elements or organs.
  • these cements are only used to bond implants or organs to each other, or sometimes as filling material in sites not exposed to high stresses.
  • the invention aims to propose a composite material and its preparation process, which is intended to be implanted in a biological medium (human or animal body), which has the advantages of porous ceramics with interconnected pores (rapid absorption and complete, osteoconduction %), but which has improved mechanical properties.
  • the invention aims in particular to propose an implantable composite material suitable for use in the composition of an implant, and which can be easily shaped, cut, cut, milled. ,., in particular by the practitioner during the placement of the implant.
  • the invention also aims to propose such a material capable of undergoing stresses from implantation.
  • the invention also aims to provide such a material in which one can insert and fix dowels or screws such as self-drilling screws and which provides good retention of these screws.
  • the invention also aims to propose an implantable composite material resorbable by a biological medium, and whose compressive strength is equivalent to that of natural bone, in particular greater than 10 MPa, more particularly of the order of 20 MPa.
  • the invention also aims to propose such a composite material whose kinetics of resorption in the biological medium can be known and adjusted before one implantation.
  • the invention also aims to propose a process for the preparation of such a composite material.
  • the invention also aims to propose a bone prosthetic implant comprising a material having the above-mentioned advantages.
  • the invention also aims to propose a method for manufacturing this implant.
  • the invention aims more particularly to propose a process for the preparation of a composite material and a process for the manufacture of implants, in particular bone or dental substitutes, which are particularly simple, rapid and which can be implemented at least partially by the practitioner. shortly before the operation, or even during the operation.
  • the invention relates to a process for preparing a composite material intended to be implanted in a human or animal biological medium, characterized in that:
  • At least one block of a biocompatible porous solid matrix is chosen or prepared beforehand mainly comprising at least one calcium salt chosen from calcium phosphates, calcium sulfates and calcium carbonates,
  • a curable liquid solution is prepared, independently of the solid matrix, suitable for forming, after hardening, a hardened biocompatible solid composition of a hydraulic cement mainly comprising at least one calcium salt chosen from calcium phosphates, calcium sulfates and calcium carbonates, and which is adapted to be fully absorbable by the medium in which the implant is to be implanted, the matrix block is immersed in the liquid solution, before hardening, for a period suitable for the latter to permeate and fills the pore volume of the core matrix block,
  • the liquid solution is then dried and hardened into a solid composition.
  • each block of composite material thus obtained is then shaped.
  • one chooses or prepares at least one entirely porous block - in particular macroporous - and preferably of porosity at least substantially homogeneous throughout the volume of the block.
  • the invention also relates to a composite material obtained by a method according to the invention.
  • the invention relates to a composite material intended to be implanted in a human or animal biological medium, characterized in that it comprises: a) a porous solid biocompatible matrix having a chemical composition mainly comprising at least one calcium salt chosen from calcium phosphates, calcium sulfates and calcium carbonates, b) a solid, compact, undivided, biocompatible composition of a hardened hydraulic cement mainly comprising at least one calcium salt chosen from calcium phosphates, calcium sulfates and calcium carbonates, this solid composition filling the pore volume of the matrix and being adapted to be fully absorbable in said medium.
  • the solid composition is chosen to itself present a compressive strength greater than 10 MPa, in particular between 20 MPa and 50 MPa.
  • the solid composition is chosen to present a Young's model of between 700 MPa and 1000 MPa.
  • the solid composition mainly comprises dicalcium phosphate dihydrate CaHP0 4 , 2H 2 0 (DCPD).
  • the solid composition is of the type obtained by mixing a powder of ⁇ -tricalcium phosphate in a solution of orthophosphoric acid which is allowed to harden at room temperature.
  • the matrix is also adapted to be fully absorbable in said medium, and the solid composition is adapted to present kinetics of resorption in said medium faster than that of the matrix; and the solid composition is suitable for being absorbable in said medium in a period of less than three months, in particular of the order of a few weeks.
  • the matrix is a fully porous mineral matrix, in particular a macroporous ceramic (that is to say one whose porosity is greater than its theoretical porosity and whose pores have an average dimension of between 50 ⁇ m and 2000 ⁇ m), preferably with interconnected pores.
  • the average pore size is advantageously between 200 ⁇ m and 500 ⁇ m.
  • the matrix has an porosity at least substantially homogeneous throughout its volume, which can be between 5% and 85%, in particular between 50% and 85 I.
  • the matrix is chosen to have a compressive strength between 1 MPa and 6 MPa, and a Young's modulus between 10 MPa and 200 MPa.
  • the matrix comprises a proportion X by weight of hydroxyapatite (PAH) Ca-
  • X is of the order of 75% and Y is of the order of 25%.
  • the matrix and / or the solid composition (cement) incorporates at least one bioactive agent.
  • the kinetics of release m in situ of such a bioactive agent can be easily controlled since it corresponds at least substantially to the kinetics of resorption of the matrix and / or of the solid composition. According to the invention, it is therefore possible to incorporate into the matrix a bioactive agent whose release kinetics must be slow, for example prolonged over several months, and in cement a bioactive agent whose release kinetics must be rapid, for example limited a few weeks.
  • the invention also relates to an implant, and more particularly a solid bone or dental substitute, which is characterized in that it comprises a material according to the invention.
  • an implant according to the invention is characterized in that it comprises at least a portion made of a material according to the invention intended to be placed in contact with a human or animal biological medium, in particular bone tissue .
  • the invention also relates to a kit for extemporaneous implementation of a method according to the invention, characterized in that it comprises at least one block of a biocompatible porous solid matrix and a dose of each of the constituents necessary to obtain said liquid solution forming, after hardening, the biocompatible solid composition.
  • the kit according to the invention comprises, for example, a block of macroporous phosphocalcic ceramic, a dose of ⁇ -tricalcium phosphate powder with 2.5% anhydrous sodium pyrophosphate and a dose of orthophospho ⁇ que acid solution with a concentration of between 1 and 5. mol / 1, especially between 3.5 and 4.5 mol / 1.
  • the ratio of the mass (in g) of powder to the volume (in ml) of the acid dose is between 0.5 and 5, in particular between 1 and 2.
  • the invention also relates to a material, an implant, a method, and a kit, comprising in combination all or part of the characteristics mentioned above or below.
  • EXAMPLE 1 1 A bubbler is prepared in a 15 L mixer comprising 1625 g of powdered hydroxyapatite and 875 g of powdered ⁇ -tricalcium phosphate, 45 g of synthetic polyelectrolite without alkali (liquid dispersant), 30 g of polyoxide ethylene powder (organic binder), and 1165 ml of water.
  • Cylinders of 10 mm in diameter and 10 mm in height of polyurethane foam are immersed in this bubble and each cylinder of foam is impregnated by kneading until a rate of impregnation is obtained (ratio of the weight of bubble) on the foam mass) of 25.
  • the impregnated foam is placed in an oven at a temperature of 1150 ° C. for 15 min. After cooling the oven, a macroporous ceramic is obtained, the organic components having evaporated. This ceramic has a porosity of 75%. It is known that this ceramic is fully absorbable in a biological medium after approximately 18 months.
  • the compressive strength of the ceramic is measured by subjecting a cylinder 10 mm in diameter and 10 mm in height to a compression test. The compressive strength is 1 MPa and the Young's modulus is 20 MPa.
  • a ⁇ tricalcium phosphate (TCP) powder is prepared by reaction at 1150 ° C. for 180 min of hydroxyapatite and dicalcium phosphate dihydrate.
  • a pilot hole is made by drilling in a cylinder and a osteosynthesis screw is introduced into this pilot hole using a screwdriver. It is found that the material retains its cohesion and is not damaged, in particular around the screw which is perfectly held in place.
  • the curable solution is used obtained in 2) to prepare cylinders 5 mm in diameter and 10 mm in height which are implanted in the condyles of a series of 12 rabbits.
  • the rabbits were killed 15 days, 6 weeks, 10 weeks and 16 weeks after implantation and the implantation sites were examined histologically.
  • the cylinders are fragmented and bony trabeculae have penetrated the entire volume of the cylinders surrounding the fragments. These fragments are in contact with the newly formed bone tissue without any fibrous interposition. Many fragments are in the process of being fully integrated into the bone tissue. At thirteen weeks, the phenomenon of fragmentation is accentuated as well as that of bone integration. More than half of the volume of the implant disappeared on this date.
  • the solid composition impregnating the pores is fully absorbable in a biological medium and has a faster absorption kinetics than the matrix.
  • EXAMPLE 2 1 A mixture comprising 1625 g of powdered hydroxyapatite and 875 g of powdered ⁇ -tricalcium phosphate, 45 g of synthetic polyelectric without alkali (liquid dispersant), 30 g of polyoxide is prepared in a 15 L mixer. Powdered ethylene (organic binder), and 1165 ml of water. Cylinders 10 mm in diameter and 10 mm in height are immersed in polyurethane foam in this bubble and each cylinder of foam is impregnated by kneading until a rate is obtained. impregnation (ratio of the mass of slip to the mass of foam) of 30.
  • the impregnated foam is placed in an oven at a temperature of 1150 ° C. for 15 min. After cooling the oven, a macroporous ceramic is obtained, the organic components having evaporated.
  • This ceramic has a porosity of 68%.
  • the compressive strength of the ceramic is measured by subjecting a cylinder 10 mm in diameter and 10 mm in height to a compression test.
  • the compressive strength is 3 MPa and the Young's modulus is 80 MPa.
  • Example 1 a composite material according to the invention is prepared.
  • the same tests and observations as those mentioned in 4) and 5) in example 1 are made, with the same results, with the composite material obtained in this example 2.
  • the compressive strength obtained is 20 MPa and the Young's modulus is 500 MPa.
  • a composite material according to the invention is prepared as in Example 2, from a macroporous matrix of calcium phosphate consisting of 75% (by weight) of hydroxyapatite, and 25% (by weight) of ⁇ tricalcium phosphate .
  • the porosity of this matrix is 70% and the average pore size measured is 500 ⁇ m. All the pores are interconnected.
  • This matrix is immersed in a curable liquid solution of DCPD.
  • the composite material obtained after hardening is formed by cylinders 8 mm in diameter and 15 mm in length which are implanted in 9 mm holes made in the external condyles of 12 sheep.
  • a cylinder of composite material according to the invention is implanted in a femoral condyle, and on the other condyle, a cylinder of the same dimension formed solely from the macroporous ceramic matrix of calcium phosphate used to make the composite material according to the invention, that is to say, as it occurs before immersion in the solution of the curable liquid.
  • Four sheep are sacrificed successively at 20 days, 60 days, 120 days after implantation, and the implantation sites are examined histologically.
  • trabeculae of bone tissue form in the tissue surrounding the implants. These trabeculae generally originate from the edges of the bone cavity and extend towards the implant. The pores of implants formed from a matrix alone are invaded by fibrous tissue, and trabeculae are sometimes found in contact with the external surface of the ceramic matrix.
  • bone trabeculae are often formed on the surface of the implant and some are inserted into the cement which shows signs of degradation in these areas. Some grains with a dimension of a few micrometers have been eliminated, which forms voids in the cemented pores in which an extracellular matrix has formed. These grains were phagocytosed by mononuclear macrophages at the periphery of the implant.
  • the matrix implants alone are partially integrated, with bone growth on the surface of the external pores.
  • the central part of the matrix always contains fibrous tissue in which mononuclear cells containing ceramic particles are visible.
  • composition material according to the invention there is a gradual growth of bone tissue in the external pores within which the cement has been slowly replaced by the bone tissue.
  • Most cement crystallites near the surface are coated with a substance protein. These crystallites have been phagocytosed and degraded by macrophages.
  • Many osteoblasts stand out on the surface of mineral aggregates. The localization of osteoblasts on the surface seems to demonstrate a process of preferential differentiation. Not all of the cement fragments have been degraded by macrophages. Some are incorporated into the bone matrix that has formed in the pores. Some degradation of the ceramic matrix is also noted.
  • Histomorphometric measurements indicate that the quantity of bone and the rate of ossification are greater in the implants of composite material according to the invention than in the implants formed of porous ceramic matrix alone.
  • the bone formation process is very active in areas of cement degradation.
  • the presence macrophages which had phagocytosed the calcium phosphate crystals did not trigger the activation of the osteoclasts as demonstrated by the absence of osteolysis of the bone tissue which invaded the ceramic.
  • bone formation has been increased by the presence of cement without one being able to give a clear explanation for this phenomenon.
  • This phenomenon is linked to the degradation of calcium phosphate cement.
  • the complexity of macrophage activation and the large number of products that can be synthesized by these cells could also partially explain these results.
  • the composite material according to the invention exhibits both mechanical properties and improved biological properties.

Abstract

L'invention concerne un procédé de préparation d'un matériau composite destiné à être implanté dans un milieu biologique. On prépare au moins un bloc de matrice solide poreuse comprenant au moins un sel de calcium; on prépare une solution liquide durcissable en composition solide comprenant au moins un sel de calcium; on plonge le bloc de matrice dans la solution liquide, et on fait sécher et durcir la solution liquide. L'invention concerne aussi le matériau composite obtenu, un implant comprenant ce matériau et un kit de mise en oeuvre extemporanée du procédé.

Description

PROCEDE DE PREPARATION D'UN MATERIAU COMPOSITE IMPLANTABLE, MATERIAU OBTENU, IMPLANT COMPRENANT CE MATERIAU ET KIT DE MISE EN OEUVRE
L'invention concerne un procédé de préparation d'un matériau composite solide destiné à être implanté dans un milieu biologique humain ou animal, notamment à titre de substitut osseux ou dentaire ; un matériau ainsi obtenu ; un implant comprenant un tel matériau et un kit de mise en oeuvre extemporanee de ce procédé.
Dans tout le texte de la présente demande, le terme "implant" désigne tout dispositif, appareil, mécanisme, pièce ou ensemble de pièces, d'origine naturelle ou artificielle, organique ou inorganique, à l'état solide, biocompatible et implantable dans le corps humain ou animal, à l'exclusion des compositions fluides, pâteuses ou divisées .
A titre d'exemples d'implants, on peut citer les prothèses osseuses, dentaires ou maxillo- faciales, les mserts de comblement, d'obturation ou d' interface, ...
L'utilisation de céramiques poreuses à pores interconnectés à titre de matériau solide implantable pour substitut osseux a déjà été décrite (voir par exemple EP-A-0 360 244 et "Osseointegration of macroporous calcium phosphate ceramics having a différent chemical composition" Frayssinet et al., Biomaterials 1993, Vol. 14, n°6, p 423 - 429). En raison même de leur macroporosité, les matrices solides poreuses biocompatibles implantables telles que les céramiques, et plus particulièrement les matrices à pores interconnectés, présentent l'avantage d'augmenter la surface d'échange avec le milieu biologique, d'être biorésorbables, de faciliter la revascularisation des tissus et de posséder d'excellentes propriétés ostéoconductπces. En outre, on peut déposer par précipitation des agents de croissance dans les pores.
Néanmoins, ces céramiques poreuses sont par nature fragiles et friables et ne peuvent pas aisément être mises en forme par le praticien lors de l'opération. En outre, il n'est pas non plus possible de fixer des vis ou chevilles dans ces céramiques. De ce fait, l'utilisation pratique de ces céramiques est aujourd'hui limitée aux rares cas où il est certain, à l'avance, que le matériau n'aura pas à être retaillé et ajusté extemporanément, ni à supporter des vis de fixation.
En outre, les céramiques poreuses présentent une faible résistance mécanique (2 à 4 MPa en compression), insuffisante dans de nombreuses applications, par exemple lorsqu'une remise en charge du site d'implantation avant cicatrisation est nécessaire.
Par ailleurs, on connaît (par exemple EP-A- 0 639 366) des ciments hydrauliques phosphocalciques biocompatibles implantables, c'est-à-dire des compositions fluides ou pâteuses durcissables, permettant de réaliser des montages prothétiques ou des comblements lors d'opérations chirurgicales orthopédiques. Ces ciments sont facilement malléables par le praticien, mais ne peuvent pas être utilisés pour réaliser des implants solides tels que des prothèses osseuses dont la forme générale doit être prédéfinie, qui doivent résister dès l'implantation à de fortes contraintes et/ou dans lesquels on doit visser des vis pour la fixation d'autres éléments ou organes. Ainsi, ces ciments ne sont utilisés que pour coller des implants ou organes entre eux, ou parfois comme matériau de comblement dans les sites non exposés à de fortes contraintes. Dans ce contexte, l'invention vise à proposer un matériau composite et son procédé de préparation, qui est destiné à être implanté dans un milieu biologique (corps humain ou animal), qui présente les avantages des céramiques poreuses à pores interconnectés (résorption rapide et complète, ostéoconduction... ) , mais qui présente des propriétés mécaniques améliorées.
L'invention vise en particulier à proposer un matériau composite implantable apte à être utilisé dans la composition d'un implant, et qui peut être facilement mis en forme, taillé, coupé, fraisé. ,., notamment par le praticien lors de la pose de l'implant.
L'invention vise aussi à proposer un tel matériau apte à subir des contraintes dès l'implantation.
L'invention vise aussi à proposer un tel matériau dans lequel on peut insérer et fixer des chevilles ou des vis telles que des vis auto-foreuses et qui procure un bon maintien de ces vis. L'invention vise aussi à proposer un matériau composite implantable résorbable par un milieu biologique, et dont la résistance en compression est équivalente à celle de l'os naturel, notamment supérieure à 10 MPa, plus particulièrement de l'ordre de 20 MPa. L'invention vise aussi à proposer un tel matériau composite dont la cinétique de résorption dans le milieu biologique peut être connue et ajustée avant 1 ' implantation.
L'invention vise aussi à proposer un procédé de préparation d'un tel matériau composite.
L'invention vise également à proposer un implant prothétique osseux comprenant un matériau présentant les avantages sus-mentionnés .
L'invention vise également à proposer un procédé de fabrication de cet implant.
L'invention vise plus particulièrement à proposer un procédé de préparation d'un matériau composite et un procédé de fabrication d'implants, notamment de substituts osseux ou dentaires, particulièrement simples, rapides et qui peuvent être mis en oeuvre au moins partiellement par le praticien peu de temps avant l'opération, voire même pendant l'opération.
Pour ce faire, l'invention concerne un procédé de préparation d'un matériau composite destiné à être implanté dans un milieu biologique humain ou animal, caractérisé en ce que :
. on choisit ou on prépare préalablement au moins un bloc d'une matrice solide poreuse biocompatible comprenant majoritairement au moins un sel de calcium choisi parmi les phosphates de calcium, les sulfates de calcium et les carbonates de calcium,
. on prépare, indépendamment de la matrice solide, une solution liquide durcissable adaptée pour former, après durcissement, une composition solide biocompatible durcie d'un ciment hydraulique comprenant majoritairement au moins un sel de calcium choisi parmi les phosphates de calcium, les sulfates de calcium et les carbonates de calcium, et qui est adaptée pour être entièrement résorbable par le milieu dans lequel l'implant doit être implanté, on plonge le bloc de matrice dans la solution liquide, avant son durcissement, pendant une durée adaptée pour que celle-ci imprègne et remplisse le volume poreux du bloc de matrice à coeur,
. on fait ensuite sécher et durcir la solution liquide en composition solide.
Avantageusement et selon l'invention, on met ensuite en forme chaque bloc de matériau composite ainsi obtenu.
Avantageusement et selon l'invention, on choisit ou on prépare au moins un bloc entièrement poreux - notamment macroporeux- et de préférence de porosité au moins sensiblement homogène dans tout le volume du bloc.
L'invention concerne aussi un matériau composite obtenu par un procédé selon l'invention. Ainsi, l'invention concerne un matériau composite destiné à être implanté dans un milieu biologique humain ou animal caractérisé en ce qu'il comprend : a) une matrice solide poreuse biocompatible ayant une composition chimique comprenant majoritairement au moins un sel de calcium choisi parmi les phosphates de calcium, les sulfates de calcium et les carbonates de calcium, b) une composition solide, compacte, non divisée, biocompatible d'un ciment hydraulique durci comprenant majoritairement au moins un sel de calcium choisi parmi les phosphates de calcium, les sulfates de calcium et les carbonates de calcium, cette composition solide remplissant le volume poreux de la matrice et étant adaptée pour être entièrement résorbable dans ledit milieu. Avantageusement et selon l'invention, la composition solide est choisie pour présenter elle-même une résistance à la compression supérieure a 10 MPa, notamment comprise entre 20 MPa et 50 MPa.
Par ailleurs, avantageusement et selon l'invention, la composition solide est choisie pour présenter un modèle d ' Young compris entre 700 MPa et 1000 MPa.
Plus particulièrement et selon l'invention, la composition solide comprend majoritairement du phosphate dicalcique dihydraté CaHP04, 2H20 (DCPD).
En outre, avantageusement et selon l'invention, la composition solide est du type obtenu par mélange d'une poudre de phosphate tricalcique β dans une solution d'acide orthophosphorique que l'on laisse durcir à température ambiante.
Avantageusement et selon l'invention, la matrice est également adaptée pour être entièrement résorbable dans ledit milieu, et la composition solide est adaptée pour présenter une cinétique de résorption dans ledit milieu plus rapide que celle de la matrice ; et la composition solide est adaptée pour être résorbable dans ledit milieu en une durée inférieure à trois mois, notamment de l'ordre de quelques semaines.
Avantageusement et selon l'invention, la matrice est une matrice minérale entièrement poreuse, notamment une céramique macroporeuse (c' est—à-dire dont la porosité est supérieure à sa porosité théorique et dont les pores ont une dimension moyenne comprise entre 50 μm et 2000 μm), de préférence à pores interconnectés. La dimension moyenne des pores est avantageusement comprise entre 200 μm et 500 μm.
Avantageusement et selon l'invention, la matrice présente une porosité au moins sensiblement homogène dans tout son volume, qui peut être comprise entre 5 % et 85 %, notamment entre 50 % et 85 I.
Avantageusement et selon l'invention, la matrice est choisie pour présenter une résistance à la compression comprise entre 1 MPa et 6 MPa, et un module d'Young compris entre 10 MPa et 200 MPa.
Ainsi, avantageusement et selon l'invention, la matrice comprend une proportion X en poids d' hydroxyapatite (HAP) Ca-|Q (PC>4)6 (0H)2, et une proportion Y en poids de phosphate tricalcique Ca3 (PÛ4)2 Avantageusement et selon l'invention, le matériau est caractérisé en ce que X + Y = 100 %. Par exemple et selon l'invention, X est de l'ordre de 75 % et Y de l'ordre de 25 %. Avantageusement et selon l'invention, la matrice et/ou la composition solide (ciment) mcorpore(nt) au moins un agent bioactif. Grâce à l'invention, la cinétique de libération m situ d'un tel agent bioactif peut être contrôlée aisément puisqu'elle correspond au moins sensiblement a la cinétique de résorption de la matrice et/ou de la composition solide. Selon l'invention, on peut donc incorporer dans la matrice un agent bioactif dont la cinétique de libération doit être lente, par exemple prolongée sur plusieurs mois, et dans le ciment un agent bioactif dont la cinétique de libération doit être rapide, par exemple limitée a quelques semaines.
L'invention concerne également un implant, et plus particulièrement un substitut osseux ou dentaire solide, qui est caractérisé en ce qu'il comprend un matériau selon l'invention.
Avantageusement, un implant selon l'invention est caractérisé en ce qu'il comprend au moins une portion constituée d'un matériau selon l'invention destinée à être placée au contact d'un milieu biologique humain ou animal, notamment d'un tissu osseux.
L'invention concerne aussi un kit de mise en oeuvre extemporanee d'un procédé selon l'invention, caractérisé en ce qu'il comprend au moins un bloc d'une matrice solide poreux biocompatible et une dose de chacun des constituants nécessaires pour obtenir ladite solution liquide formant, après durcissement, la composition solide biocompatible. Le kit selon l'invention comprend par exemple un bloc de céramique macroporeuse phosphocalcique, une dose de poudre de phosphate tricalcique β avec 2,5 % de pyrophosphate de sodium anhydre et une dose de solution d'acide orthophosphoπque de concentration comprise entre 1 et 5 mol/1, notamment entre 3,5 et 4,5 mol/1. Le rapport de la masse (en g) de poudre sur le volume (en ml) de la dose d'acide est compris entre 0,5 et 5, notamment entre 1 et 2.
L'invention concerne aussi un matériau, un implant, un procédé, et un kit, comprenant en combinaison tout ou partie des caractéristiques mentionnées ci-dessus ou ci-après .
La description qui suit présente des exemples de préparation d'un matériau et d'un implant conformes à l'invention.
EXEMPLE 1 : 1 ) On prépare dans un mélangeur de 15 1, une barbotme comprenant 1625 g d'hydroxyapatite en poudre et 875 g de phosphate tricalcique β en poudre, 45 g de polyélectrolite synthétique sans alcalis (dispersant liquide), 30 g de polyoxyde d'éthylène en poudre (liant organique), et 1165 ml d'eau.
On plonge des cylindres de 10 mm de diamètre et 10 mm de hauteur d'une mousse de polyuréthanne dans cette barbotme et on imprègne chaque cylindre de mousse à coeur par malaxage jusqu'à obtenir un taux d'imprégnation (rapport de la masse de barbotme sur la masse de mousse) de 25.
On place la mousse imprégnée dans un four à une température de 1150 °C pendant 15 min. Après refroidissement du four, on obtient une céramique macroporeuse, les composants organiques s 'étant évaporés. Cette céramique présente une porosité de 75 %. Il est connu que cette céramique est entièrement résorbable en milieu biologique au bout d'environ 18 mois. La résistance à la compression de la céramique est mesurée en soumettant un cylindre de 10 mm de diamètre et 10 mm de hauteur à un essai de compression. La résistance à la compression est de 1 MPa et le module d'Young est de 20 MPa.
2) On prépare une poudre de phosphate tricalcique β (TCP) par réaction à 1150 °C pendant 180 min d'hydroxyapatite et de phosphate dicalcique dihydraté.
On mélange 2,954 g de TCP avec 0,046 g de pyrophosphate de sodium anhydre en poudre.
On verse ces 3 g de poudre dans 2,3 ml de solution aqueuse d'acide orthophosphorique 4 M et d'acide suifurique 0,1 M.
Après 30 s à 1 min de réaction, on obtient un mélange homogène de solution liquide durcissable.
3) On immerge 4 cylindres de la céramique macroporeuse préparée en 1 ) dans cette solution liquide durcissable pendant une durée de l'ordre de 20 s, jusqu'à ce que toutes les bulles d'air soient évacuées des pores. 4) On retire les cylindres imprégnés de la solution et on les laisse sécher à l'air libre. On constate un durcissement de la solution au bout d'environ 5 mm en une composition solide, compacte, non divisée remplissant le volume poreux de la céramique. Après cinq jours (evaporation de l'eau), on réalise des essais de compression. La résistance en compression obtenue est de 15 MPa et le module d' Young est de 400 MPa.
5) On constate que les cylindres peuvent être coupés à la scie en laissant un état de surface parfait .
On réalise un avant-trou par perçage dans un cylindre et on introduit une vis d'ostéosynthèse dans cet avant-trou à l'aide d'un tourne-vis. On constate que le matériau conserve sa cohésion et n'est pas détérioré, notamment autour de la vis qui est parfaitement maintenue en place.
6) On utilise la solution durcissable obtenue en 2) pour préparer des cylindres de 5 mm de diamètre et 10 mm de hauteur que l'on implante dans les condyles d'une série de 12 lapins.
Les lapins ont été sacrifiés à 15 jours, 6 semaines, 10 semaines et 16 semaines après implantation et les sites d'implantation ont été examinés histologiquement.
Il a été constaté que dans les deux premières semaines, une apposition de trabécules osseux se fait à la surface de l'implant. Des grains de matériaux sont retrouvés dans le tissu stomal présent entre les trabécules ainsi que dans les trabécules néoformés.
A six et neuf semaines, les cylindres sont fragmentés et des trabécules osseux ont pénétré dans tout le volume des cylindres entourant les fragments. Ces fragments sont en contact du tissu osseux néoformé sans aucune interposition fibreuse. De très nombreux fragments sont en voie d'être totalement intégrés dans le tissu osseux. A treize semaines, le phénomène de fragmentation est accentué ainsi que celui d'intégration osseuse. Plus de la moitié du volume de l'implant a disparu à cette date.
En conclusion, la composition solide imprégnant des pores est entièrement résorbable dans un milieu biologique et présente une cinétique de résorption plus rapide que la matrice.
EXEMPLE 2 : 1) On prépare dans un mélangeur de 15 1, une barbotme comprenant 1625 g d' hydroxyapatite en poudre et 875 g de phosphate tricalcique β en poudre, 45 g de polyélectrique synthétique sans alcalis (dispersant liquide), 30 g de polyoxyde d'éthylène en poudre (liant organique), et 1165 ml d'eau. On plonge des cylindres de 10 mm de diamètre et 10 mm de hauteur d'une mousse de polyuréthanne dans cette barbotme et on imprègne chaque cylindre de mousse à coeur par malaxage jusqu'à obtenir un taux d'imprégnation (rapport de la masse de barbotine sur la masse de mousse) de 30.
On place la mousse imprégnée dans un four à une température de 1150 °C pendant 15 min. Après refroidissement du four, on obtient une céramique macroporeuse, les composants organiques s'étant évaporés.
Cette céramique présente une porosité de 68 %.
La résistance à la compression de la céramique est mesurée en soumettant un cylindre de 10 mm de diamètre et 10 mm de hauteur à un essai de compression. La résistance à la compression est de 3 MPa et le module d 'Young est de 80 MPa.
On prépare ensuite, suivant les mêmes étapes 2) 3), et 4) que dans l'exemple 1, un matériau composite selon l'invention. Les mêmes essais et constatations que celles mentionnées en 4) et 5) dans l'exemple 1 sont faits, avec les mêmes résultats, avec le matériau composite obtenu dans cet exemple 2. Après cinq jours (evaporation de l'eau), on réalise des essais de compression. La résistance en compression obtenue est de 20 MPa et le module d' Young est de 500 MPa.
EXEMPLE 3 :
On prépare un matériau composite selon l'invention comme à l'exemple 2, à partir d'une matrice macroporeuse de phosphate de calcium constituée de 75 % (en poids) d' hydroxhyapatite, et 25 % (en poids) de phosphate tricalcique β. La porosité de cette matrice est de 70 % et la taille moyenne des pores mesurée est de 500 μm. Tous les pores sont interconnectés. Cette matrice est immergée dans une solution liquide durcissable de DCPD.
Le matériau composite obtenu après durcissement est formé de cylindres de 8 mm de diamètre et 15 mm de longueur que 1 ' on implante dans des trous de 9 mm réalisés dans les condyles externes de 12 moutons. Sur chaque animal, on implante dans un condyle fémoral un cylindre de matériau composite selon l'invention, et sur l'autre condyle, un cylindre de même dimension formé uniquement de la matrice de céramique macroporeuse de phosphate de calcium utilisée pour réaliser le matériau composite selon l'invention, c'est-à-dire, telle qu'elle se présente avant immersion dans la solution du liquide durcissable. Quatre moutons sont sacrifiés successivement à 20 jours, 60 jours, 120 jours après l'implantation, et les sites d'implantation sont examinés histologiquement.
Au bout de 20 jours, aucun des implants n'a été ostéomtégré. Quelques trabécules de tissu osseux se forment dans le tissu entourant les implants. Ces trabécules proviennent généralement des bords de la cavité osseuse et s'étendent vers l'implant. Les pores des implants formés de matrice seule sont envahis par du tissu fibreux, et des trabécules sont parfois trouvés en contact avec la surface externe de la matrice céramique.
Concernant les cylindres de matériau composite selon l'invention, des trabécules osseux sont souvent formés à la surface de 1 ' implant et certains sont insérés dans le ciment qui montre des marques de dégradation dans ces zones. Quelques grains ayant une dimension de quelques micromètres ont été éliminés, ce qui forme des vides dans les pores cimentés dans lesquels une matrice extra-cellulaire s'est formée. Ces grains ont été phagocytés par des macrophages mononucléés à la périphérie de 1 ' implant.
A 60 jours, les implants de matrice seule sont partiellement intégrés, avec une croissance osseuse à la surface des pores externes. La partie centrale de la matrice contient toujours du tissu fibreux dans lequel des cellules mononucléées contenant des particules de céramiques sont visibles.
Concernant les implants de matériau composition selon l'invention, on constate une croissance progressive de tissu osseux dans les pores externes au sein desquels le ciment a été lentement remplacé par le tissu osseux. La plupart des cristallites de ciment situées à proximité de la surface sont revêtues d'une substance protéique. Ces cristallites ont été phagocytées et dégradées par des macrophages. De nombreux ostéoblastes se distinguent à la surface des agrégats minéraux. La localisation des ostéoblastes à la surface semble démontrer un processus de différenciation préférentielle. Tous les fragments de ciment n'ont pas été dégradés par les macrophages. Certains sont incorporés dans la matrice osseuse qui a été formée dans les pores. Une certaine dégradation de la matrice céramique est également constatée.
A 120 jours, une croissance du tissu osseux dans la totalité des cylindres a été constatée avec une dégradation majeure. La totalité des pores des implants de matériau selon l'invention ne comprennent plus de ciment, celui-ci se retrouvant dans les particules minérales dans des macrophages. Quelques îlots de macrophages sont présents dans la cavité de moelle osseuse du tissu osseux. Des îlots de macrophage ont phagocyté le tissu osseux, mais aucune résorption exagérée d'os n'a pu être constatée à proximité immédiate des implants.
Par contre, les implants de matrice céramique seule sont totalement intégrés et présentent des signes de résorption.
Les mesures histomorphométriques indiquent que la quantité d'os et le taux d'ossification sont plus importants dans les implants de matériau composite selon l'invention que dans les implants formés de matrice céramique poreuse seule.
Ces essais démontrent que la formation d'un tissu osseux à la surface du matériau selon 1 ' invention est précédée d'un dépôt de matrice de protéines qui pourrait n'être pas toujours associé à une synthèse par des cellules ostéogéniques à proximité immédiate. Cette matrice qui a pénétré les micropores du matériau n'était pas minéralisée et semblait être un préalable à la formation osseuse par les ostéoblastes.
Le processus de formation osseuse est très actif dans les zones de dégradation du ciment. La présence des macrophages qui avaient phagocyté les cristaux de phosphate de calcium n'a pas déclenché 1 ' activation des ostéoclastes comme le démontre l'absence d'osteolyse du tissu osseux qui a envahi la céramique. De plus, il semble que la formation d'os a été accrue par la présence du ciment sans que l'on puisse donner une explication claire à ce phénomène. Une explication possible serait que ce phénomène soit lié à la dégradation du ciment de phosphate de calcium. La complexité de l' activation des macrophages et le grand nombre de produits qui peuvent être synthétisés par ces cellules pourrait expliquer également partiellement ces résultats.
En conclusion, le matériau composite selon l'invention présente aussi bien des propriétés mécaniques que des propriétés biologiques améliorées .

Claims

REVENDICATIONS 1/ - Procédé de préparation d'un matériau composite destiné à être implanté dans un milieu biologique humain ou animal, caractérisé en ce que : . on choisit ou on prépare préalablement au moins un bloc d'une matrice solide poreuse biocompatible comprenant majoritairement au moins un sel de calcium choisi parmi les phosphates de calcium, les sulfates de calcium et les carbonates de calcium, . on prépare, indépendamment de la matrice solide, une solution liquide durcissable adaptée pour former, après durcissement, une composition solide biocompatible durcie d'un ciment hydraulique comprenant majoritairement au moins un sel de calcium choisi parmi les phosphates de calcium, les sulfates de calcium et les carbonates de calcium, et qui est adaptée pour être entièrement résorbable par le milieu dans lequel l'implant doit être implanté, on plonge le bloc de matrice dans la solution liquide, avant son durcissement, pendant une durée adaptée pour que celle-ci imprègne et remplisse le volume poreux du bloc de matrice à coeur,
. on fait ensuite sécher et durcir la solution liquide en composition solide. 2/ - Procédé selon la revendication 1 , caractérisé en ce qu'on met ensuite en forme chaque bloc de matériau composite ainsi obtenu.
3/ - Matériau composite destiné à être implanté dans un milieu biologique humain ou animal, susceptible d'être obtenu par un procédé selon l'une des revendications 1 et 2, caractérisé en ce qu'il comprend : a) une matrice solide poreuse biocompatible ayant une composition chimique comprenant majoritairement au moins un sel de calcium choisi parmi les phosphates de calcium, les sulfates de calcium et les carbonates de calcium, b) une composition solide, compacte, non divisée, biocompatible d'un ciment hydraulique durci comprenant majoritairement au moins un sel de calcium choisi parmi les phosphates de calcium, les sulfates de calcium et les carbonates de calcium, cette composition solide remplissant le volume poreux de la matrice et étant adaptée pour être entièrement résorbable dans ledit milieu.
4/ - Matériau selon la revendication 3, caractérisé en ce que la composition solide est choisie pour présenter une résistance à la compression supérieure à 10 MPa, notamment comprise entre 20 MPa et 50 MPa. 5/ - Matériau selon l'une des revendications 3 et 4, caractérisé en ce que la composition solide est choisie pour présenter un module d' Young compris entre 700 MPa et 1000 MPa.
6/ - Matériau selon l'une des revendications 3 à 5, caractérisé en ce que la composition solide comprend majoritairement du phosphate dicalcique dihydraté CaHP04, 2H20.
7/ - Matériau selon l'une des revendications 3 à 6, caractérisé en ce que la composition solide est du type obtenu par mélange d'une poudre de phosphate tricalcique β dans une solution d'acide orthophosphorique.
8/ - Matériau selon l'une des revendications 3 à 7, caractérisé en ce que la matrice est adaptée pour être entièrement résorbable dans ledit milieu, et en ce que la composition solide est adaptée pour présenter une cinétique de résorption dans ledit milieu plus rapide que celle de la matrice.
9/ - Matériau selon l'une des revendications 3 à 8, caractérisé en ce que la composition solide est adaptée pour être résorbable dans ledit milieu en une durée inférieure à trois mois.
10/ - Matériau selon l'une des revendications 3 à 9, caractérisé en ce que la matrice est une céramique macroporeuse.
11/ - Matériau selon la revendication 10, caractérisé en ce que la matrice présente des pores interconnectés. 12/ - Matériau selon l'une des revendications 3 à 11, caractérisé en ce que la matrice présente une porosité comprise entre 5 % et 85 %.
13/ - Matériau selon l'une des revendications 3 à 12, caractérisé en ce que la matrice est choisie pour présenter une résistance à la compression comprise entre 1 MPa et 6 MPa.
14/ - Matériau selon l'une des revendications 3 à 12, caractérisé en ce que la matrice est choisie pour présenter un module d'Young compris entre 10 MPa et 200 Mpa.
15/ - Matériau selon l'une des revendications 1 à 14, caractérisé en ce que la matrice comprend une proportion X en poids d ' hydroxyapatite Ca-| g (Pθ4)g (0H)2 et une proportion Y en poids de phosphate tricalcique Ca3 (PÛ4)2-
16/ - Matériau selon la revendication 15, caractérisé en ce que :
X + Y = 100 % 17/ Matériau selon la revendication 16, caractérisé en ce que X est de l'ordre de 75% et Y de l'ordre de 25%.
18/ - Implant caractérisé en ce qu'il comprend un matériau selon l'une des revendications 3 à 17. 19/ - Implant caractérisé en ce qu'il comprend au moins une portion en un matériau selon l'une des revendications 3 à 17, destinée à être placée au contact d'un milieu biologique humain ou animal, notamment d'un tissu osseux. 20/ - Kit de mise en oeuvre extemporanee d'un procédé selon l'une des revendications 1 et 2, caractérisé en ce qu'il comprend au moins un bloc d'une matrice solide poreuse biocompatible, et une dose de chacun des constituants nécessaires pour obtenir la solution liquide formant la composition solide biocompatible.
PCT/FR1997/001045 1996-06-14 1997-06-11 Procede de preparation d'un materiau composite implantable, materiau obtenu, implant comprenant ce materiau et kit de mise en oeuvre WO1997047334A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT97928334T ATE224742T1 (de) 1996-06-14 1997-06-11 Verfahren zur herstellung eines implantierbaren verbundwerkstoffs, so hergestellte werkstoffe, und kit zur durchführung des verfahrens
EP97928334A EP0881920B1 (fr) 1996-06-14 1997-06-11 Procede de preparation d'un materiau composite implantable, materiau obtenu, implant comprenant ce materiau et kit de mise en oeuvre
JP50130498A JP4278179B2 (ja) 1996-06-14 1997-06-11 埋込可能な複合材料の調製方法、得られた材料、この材料を含むインプラントと、その使用のためのキット
DE69715824T DE69715824T2 (de) 1996-06-14 1997-06-11 Verfahren zur herstellung eines implantierbaren verbundwerkstoffs, so hergestellte werkstoffe, und kit zur durchführung des verfahrens
US08/983,562 US6018095A (en) 1996-06-14 1997-06-11 Method for preparing an implantable composite material, resulting material, implant including said material, and kit therefor
DK97928334T DK0881920T3 (da) 1996-06-14 1997-06-11 Fremgangsmåde til fremstilling at et implanterbart kompositmateriale, sådant materiale, implantat indbefattende sådant materiale og kit til udøvelse af fremgangsmåden

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR96/07590 1996-06-14
FR9607590A FR2749756B1 (fr) 1996-06-14 1996-06-14 Procede de preparation d'un materiau composite implantable, materiau obtenu, implant comprenant ce materiau et kit de mise en oeuvre

Publications (1)

Publication Number Publication Date
WO1997047334A1 true WO1997047334A1 (fr) 1997-12-18

Family

ID=9493185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/001045 WO1997047334A1 (fr) 1996-06-14 1997-06-11 Procede de preparation d'un materiau composite implantable, materiau obtenu, implant comprenant ce materiau et kit de mise en oeuvre

Country Status (11)

Country Link
US (1) US6018095A (fr)
EP (1) EP0881920B1 (fr)
JP (1) JP4278179B2 (fr)
CN (1) CN1131075C (fr)
AT (1) ATE224742T1 (fr)
DE (1) DE69715824T2 (fr)
DK (1) DK0881920T3 (fr)
ES (1) ES2183187T3 (fr)
FR (1) FR2749756B1 (fr)
PT (1) PT881920E (fr)
WO (1) WO1997047334A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2178556A1 (es) * 2000-06-30 2002-12-16 Univ Catalunya Politecnica Cemento de sulfato de calcio con biodegradacion controlada.
WO2006062518A2 (fr) * 2004-12-08 2006-06-15 Interpore Spine Ltd. Composite a phase continue pour reparation musculosquelettique
US7417077B2 (en) 2000-07-17 2008-08-26 Bone Support Ab Composition for an injectable bone mineral substitute material
US7935121B2 (en) 2003-11-11 2011-05-03 Bone Support Ab Device for providing spongy bone with bone substitute and/or bone reinforcing material, bone substitute and/or bone reinforcing material and method
US7938572B2 (en) 2004-06-22 2011-05-10 Bone Support Ab Device for producing a hardenable mass
US8124118B2 (en) 2003-10-22 2012-02-28 Lidds Ab Composition comprising biodegradable hydrating ceramics for controlled drug delivery
US9180137B2 (en) 2010-02-09 2015-11-10 Bone Support Ab Preparation of bone cement compositions
US9211184B2 (en) 2004-12-09 2015-12-15 Biomet Sports Medicine, Llc Continuous phase compositions for ACL repair
US10294107B2 (en) 2013-02-20 2019-05-21 Bone Support Ab Setting of hardenable bone substitute

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2776282B1 (fr) * 1998-03-20 2000-05-19 Toulouse Inst Nat Polytech Procede de preparation d'un biomateriau a base d'hydroxyapatite, biomateriau obtenu et application chirurgicale ou dentaire
US6840995B2 (en) * 1999-07-14 2005-01-11 Calcitec, Inc. Process for producing fast-setting, bioresorbable calcium phosphate cements
US7094282B2 (en) * 2000-07-13 2006-08-22 Calcitec, Inc. Calcium phosphate cement, use and preparation thereof
US7169373B2 (en) * 1999-07-14 2007-01-30 Calcitec, Inc. Tetracalcium phosphate (TTCP) having calcium phosphate whisker on surface and process for preparing the same
US7270705B2 (en) * 1999-07-14 2007-09-18 Jiin-Huey Chern Lin Method of increasing working time of tetracalcium phosphate cement paste
SE520688C2 (sv) * 2000-04-11 2003-08-12 Bone Support Ab Ett injicerbart ersättningsmaterial för benmineral
US20020114795A1 (en) * 2000-12-22 2002-08-22 Thorne Kevin J. Composition and process for bone growth and repair
US6949251B2 (en) * 2001-03-02 2005-09-27 Stryker Corporation Porous β-tricalcium phosphate granules for regeneration of bone tissue
WO2002083194A1 (fr) * 2001-04-12 2002-10-24 Therics, Inc. Procede et appareil destines a des biostructures de regeneration techniques
US20050177237A1 (en) * 2001-04-12 2005-08-11 Ben Shappley Spinal cage insert, filler piece and method of manufacturing
SE522098C2 (sv) * 2001-12-20 2004-01-13 Bone Support Ab Ett nytt benmineralsubstitut
US7008227B2 (en) * 2002-03-04 2006-03-07 Carmichael Robert P Self-drilling implant
GB0222291D0 (en) * 2002-09-26 2002-10-30 Smith & Nephew Adhesive bone cement
SE0300620D0 (sv) * 2003-03-05 2003-03-05 Bone Support Ab A new bone substitute composition
US7163651B2 (en) 2004-02-19 2007-01-16 Calcitec, Inc. Method for making a porous calcium phosphate article
US6994726B2 (en) * 2004-05-25 2006-02-07 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
US7118705B2 (en) * 2003-08-05 2006-10-10 Calcitec, Inc. Method for making a molded calcium phosphate article
US8529625B2 (en) * 2003-08-22 2013-09-10 Smith & Nephew, Inc. Tissue repair and replacement
US20050085922A1 (en) * 2003-10-17 2005-04-21 Shappley Ben R. Shaped filler for implantation into a bone void and methods of manufacture and use thereof
CA2535169A1 (fr) 2003-12-31 2005-07-21 Osteotech, Inc. Compositions de matrice osseuse ameliorees et methodes associees
US20070231788A1 (en) * 2003-12-31 2007-10-04 Keyvan Behnam Method for In Vitro Assay of Demineralized Bone Matrix
US7473678B2 (en) 2004-10-14 2009-01-06 Biomimetic Therapeutics, Inc. Platelet-derived growth factor compositions and methods of use thereof
JP3857295B2 (ja) * 2004-11-10 2006-12-13 三菱電機株式会社 半導体発光素子
US20060276875A1 (en) * 2005-05-27 2006-12-07 Stinson Jonathan S Medical devices
CN101365499A (zh) * 2005-11-01 2009-02-11 骨骼技术股份有限公司 骨基质组合物和方法
KR20080084808A (ko) 2005-11-17 2008-09-19 바이오미메틱 세라퓨틱스, 인크. rhPDGF-BB 및 생체적합성 매트릭스를 사용하는상악안면골 보강
EP2311505B1 (fr) 2006-02-09 2013-11-06 BioMimetic Therapeutics, LLC Compositions et méthodes pour le traitement d'os
AU2007269712B2 (en) 2006-06-30 2013-02-07 Biomimetic Therapeutics, Llc PDGF-biomatrix compositions and methods for treating rotator cuff injuries
US9161967B2 (en) 2006-06-30 2015-10-20 Biomimetic Therapeutics, Llc Compositions and methods for treating the vertebral column
EP2462895B1 (fr) 2006-11-03 2016-11-02 BioMimetic Therapeutics, LLC Compositions et procédé pour des procédures arthrodétiques
US7718616B2 (en) 2006-12-21 2010-05-18 Zimmer Orthobiologics, Inc. Bone growth particles and osteoinductive composition thereof
US20080195476A1 (en) * 2007-02-09 2008-08-14 Marchese Michael A Abandonment remarketing system
CA2690457C (fr) 2007-06-15 2018-02-20 Osteotech, Inc. Compositions de matrice osseuse et methodes
US8642061B2 (en) * 2007-06-15 2014-02-04 Warsaw Orthopedic, Inc. Method of treating bone tissue
US9554920B2 (en) * 2007-06-15 2017-01-31 Warsaw Orthopedic, Inc. Bone matrix compositions having nanoscale textured surfaces
WO2008157492A2 (fr) 2007-06-15 2008-12-24 Osteotech, Inc. Os spongieux déminéralisé ostéo-inducteur
US9358113B2 (en) * 2007-07-10 2016-06-07 Warsaw Orthopedic, Inc. Delivery system
US20110054408A1 (en) * 2007-07-10 2011-03-03 Guobao Wei Delivery systems, devices, tools, and methods of use
ES2446544T3 (es) 2007-10-19 2014-03-10 Warsaw Orthopedic, Inc. Composiciones de matrices óseas desmineralizadas y métodos
CN102014977B (zh) * 2008-02-07 2015-09-02 生物模拟治疗有限责任公司 用于牵引成骨术的组合物和方法
MX2011002555A (es) * 2008-09-09 2011-08-03 Biomimetic Therapeutics Inc Composiciones de factor de crecimiento derivadas de plaquetas y metodo para el tratamiento de lesiones de tendon y ligamentos.
US9101475B2 (en) * 2009-02-12 2015-08-11 Warsaw Orthopedic, Inc. Segmented delivery system
KR20110135949A (ko) * 2009-03-05 2011-12-20 바이오미메틱 세라퓨틱스, 인크. 혈소판-유래 성장 인자 조성물 및 골연골성 결함의 치료 방법
US9163212B2 (en) * 2010-01-25 2015-10-20 Warsaw Orthopedic, Inc. Osteogenic cell delivery matrix
US8758791B2 (en) 2010-01-26 2014-06-24 Warsaw Orthopedic, Inc. Highly compression resistant matrix with porous skeleton
HUE026240T2 (en) * 2010-02-19 2016-06-28 Irpd Ag Method and means for producing patient-specific implants
AU2011217784B2 (en) 2010-02-22 2014-10-09 Biomimetic Therapeutics, Llc. Platelet-derived growth factor compositions and methods for the treatment of tendinopathies
CA2798710C (fr) 2010-05-11 2019-08-27 Venkat R. Garigapati Composes metalliques multivalents organophosphores et compositions de reseau interpenetrant d'adhesif polymere et procedes
CA2817584C (fr) 2010-11-15 2018-01-02 Zimmer Orthobiologics, Inc. Substances de remplissage de vides osseux
WO2012158527A2 (fr) 2011-05-13 2012-11-22 Howmedica Osteonics Compositions à base de composés métalliques multivalents et organophosphorés et procédés associés
US9381112B1 (en) 2011-10-06 2016-07-05 William Eric Sponsell Bleb drainage device, ophthalmological product and methods
US8632489B1 (en) 2011-12-22 2014-01-21 A. Mateen Ahmed Implantable medical assembly and methods
GB201200868D0 (en) 2012-01-19 2012-02-29 Depuy Int Ltd Bone filler composition
WO2020161898A1 (fr) * 2019-02-08 2020-08-13 オリンパス株式会社 Corps poreux en céramique et procédé de production d'un corps poreux en céramique

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626392A (en) * 1984-03-28 1986-12-02 Ngk Spark Plug Co., Ltd. Process for producing ceramic body for surgical implantation
EP0360244A1 (fr) * 1988-09-20 1990-03-28 Asahi Kogaku Kogyo Kabushiki Kaisha Matériau céramique fritté poreux et procédé de sa production
JPH03242364A (ja) * 1990-02-16 1991-10-29 Asahi Optical Co Ltd リン酸カルシウム系生体材料の製造方法
US5091344A (en) * 1988-01-30 1992-02-25 Ibiden Corporation Fiber reinforced ceramics of calcium phosphate series compounds and method of producing the same
DE4302072A1 (de) * 1993-01-26 1994-07-28 Herbst Bremer Goldschlaegerei Keramisches Material für Zahnfüllungen und/oder Zahnersatz und Verfahren zur Herstellung desselben
EP0639366A1 (fr) * 1993-08-19 1995-02-22 Kingstar Technology Limited (Uk) Ciment d'hydroxyapatite pour les prothèses dentaires ou osseuses

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880610A (en) * 1988-04-20 1989-11-14 Norian Corporation In situ calcium phosphate minerals--method and composition
JP2706467B2 (ja) * 1988-05-27 1998-01-28 住友大阪セメント株式会社 骨移植用人工骨構造体
FR2633638B1 (fr) * 1988-06-29 1991-04-19 Inst Francais Du Petrole Formulations d'additifs azotes pour carburants moteurs et les carburants moteurs les contenant
US5769897A (en) * 1991-12-13 1998-06-23 Haerle; Anton Synthetic bone

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626392A (en) * 1984-03-28 1986-12-02 Ngk Spark Plug Co., Ltd. Process for producing ceramic body for surgical implantation
US5091344A (en) * 1988-01-30 1992-02-25 Ibiden Corporation Fiber reinforced ceramics of calcium phosphate series compounds and method of producing the same
EP0360244A1 (fr) * 1988-09-20 1990-03-28 Asahi Kogaku Kogyo Kabushiki Kaisha Matériau céramique fritté poreux et procédé de sa production
JPH03242364A (ja) * 1990-02-16 1991-10-29 Asahi Optical Co Ltd リン酸カルシウム系生体材料の製造方法
DE4302072A1 (de) * 1993-01-26 1994-07-28 Herbst Bremer Goldschlaegerei Keramisches Material für Zahnfüllungen und/oder Zahnersatz und Verfahren zur Herstellung desselben
EP0639366A1 (fr) * 1993-08-19 1995-02-22 Kingstar Technology Limited (Uk) Ciment d'hydroxyapatite pour les prothèses dentaires ou osseuses

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 029 (C - 0904) 24 January 1992 (1992-01-24) *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2178556A1 (es) * 2000-06-30 2002-12-16 Univ Catalunya Politecnica Cemento de sulfato de calcio con biodegradacion controlada.
US7417077B2 (en) 2000-07-17 2008-08-26 Bone Support Ab Composition for an injectable bone mineral substitute material
US8124118B2 (en) 2003-10-22 2012-02-28 Lidds Ab Composition comprising biodegradable hydrating ceramics for controlled drug delivery
US9034359B2 (en) 2003-10-22 2015-05-19 Lidds Ab Composition comprising biodegradable hydrating ceramics for controlled drug delivery
US7935121B2 (en) 2003-11-11 2011-05-03 Bone Support Ab Device for providing spongy bone with bone substitute and/or bone reinforcing material, bone substitute and/or bone reinforcing material and method
US7938572B2 (en) 2004-06-22 2011-05-10 Bone Support Ab Device for producing a hardenable mass
US8297831B2 (en) 2004-06-22 2012-10-30 Bone Support Ab Device for producing a hardenable mass
WO2006062518A3 (fr) * 2004-12-08 2006-08-03 Interpore Spine Ltd Composite a phase continue pour reparation musculosquelettique
WO2006062518A2 (fr) * 2004-12-08 2006-06-15 Interpore Spine Ltd. Composite a phase continue pour reparation musculosquelettique
US9456905B2 (en) 2004-12-08 2016-10-04 Biomet Manufacturing, Llc Continuous phase composite for musculoskeletal repair
US9211184B2 (en) 2004-12-09 2015-12-15 Biomet Sports Medicine, Llc Continuous phase compositions for ACL repair
US9180137B2 (en) 2010-02-09 2015-11-10 Bone Support Ab Preparation of bone cement compositions
US10294107B2 (en) 2013-02-20 2019-05-21 Bone Support Ab Setting of hardenable bone substitute
US10994998B2 (en) 2013-02-20 2021-05-04 Bone Support Ab Setting of hardenable bone substitute

Also Published As

Publication number Publication date
ES2183187T3 (es) 2003-03-16
FR2749756A1 (fr) 1997-12-19
DE69715824D1 (de) 2002-10-31
CN1198682A (zh) 1998-11-11
JPH11510723A (ja) 1999-09-21
CN1131075C (zh) 2003-12-17
ATE224742T1 (de) 2002-10-15
JP4278179B2 (ja) 2009-06-10
EP0881920B1 (fr) 2002-09-25
US6018095A (en) 2000-01-25
PT881920E (pt) 2002-12-31
EP0881920A1 (fr) 1998-12-09
DE69715824T2 (de) 2003-05-15
FR2749756B1 (fr) 1998-09-11
DK0881920T3 (da) 2002-12-30

Similar Documents

Publication Publication Date Title
EP0881920B1 (fr) Procede de preparation d'un materiau composite implantable, materiau obtenu, implant comprenant ce materiau et kit de mise en oeuvre
EP0984902B1 (fr) Procede de preparation d'un biomateriau a base d'hydroxyapatite, biomateriau obtenu et application chirurgicale ou dentaire
EP1742676B1 (fr) Composition pour ciment injectable, utile comme substitut osseux
EP0022724B1 (fr) Implant biodégradable utilisable comme pièce de prothèse osseuse
Dorozhkin Bioceramics of calcium orthophosphates
US6051247A (en) Moldable bioactive compositions
EP2365994B1 (fr) Compositions organophosphorées à base de phosphate tétracalcique et procédés d'utilisation de celles-ci
WO2006115398B1 (fr) Procédé d'amélioration de l'aptitude à induire une formation osseuse du phosphate de calcium
Yoshimine et al. Biocompatibility of tetracalcium phosphate cement when used as a bone substitute
WO2012039592A1 (fr) Procede d'elaboration d'un ciment biphasé macroporeux a base de bioverre d'une apatite, bioactif, bioresorbable a usage biomedical
AU736846B2 (en) Moldable bioactive compositions
CN111773432A (zh) 镁基非晶-磷酸钙/硅酸钙复合填充物及其制备与应用
EP0559508B1 (fr) Nouveau revêtement pour système prothétique
EP3568166B1 (fr) Materiau de regeneration osseuse
TWI275386B (en) Methods for preparing medical implants from calcium phosphate cement and medical implants
EP2307064B1 (fr) Biomateriaux a base de phosphate de calcium
EP2121056B1 (fr) Matériaux, procédés et dispositifs de remplacement osseux
EP3111967A1 (fr) Os synthetique a haute resistance pour substitution osseuse visant a augmenter la resistance a la compression et a faciliter la circulation sanguine, et procede de fabrication associe
Yuan et al. Experimental study of natural hydroxyapatite/chitosan composite on reconstructing bone defects
EP2331151B1 (fr) Substitut osseux à base de bioverre poreux et de sulfate de calcium
EP1060731A1 (fr) Matériau de comblement bio-actif, procédé d'utilisation de ce matériau et appareil pour la mise en oeuvre du procédé
JPH01107769A (ja) 骨補填材
EP3714912A1 (fr) Matériau de greffe en gel
JP2808300B2 (ja) 骨補填材用接着剤及びこれを用いた骨補填材
Park et al. A study on the safety and efficacy of bovine bone-derived bone graft material (OCS-B)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97191076.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1997928334

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08983562

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1998 501304

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997928334

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997928334

Country of ref document: EP