WO1997048557A2 - Impression et formation de structures en trois dimensions - Google Patents

Impression et formation de structures en trois dimensions Download PDF

Info

Publication number
WO1997048557A2
WO1997048557A2 PCT/GB1997/001509 GB9701509W WO9748557A2 WO 1997048557 A2 WO1997048557 A2 WO 1997048557A2 GB 9701509 W GB9701509 W GB 9701509W WO 9748557 A2 WO9748557 A2 WO 9748557A2
Authority
WO
WIPO (PCT)
Prior art keywords
deposition
chamber
nozzle
droplet
actuator means
Prior art date
Application number
PCT/GB1997/001509
Other languages
English (en)
Other versions
WO1997048557A3 (fr
Inventor
Stuart Speakman
Original Assignee
Thin Film Technology (Consultancy) Limited
Patterning Technologies Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thin Film Technology (Consultancy) Limited, Patterning Technologies Limited filed Critical Thin Film Technology (Consultancy) Limited
Priority to AT97924173T priority Critical patent/ATE217580T1/de
Priority to EP97924173A priority patent/EP0915760B1/fr
Priority to DE69712622T priority patent/DE69712622T2/de
Priority to US09/194,850 priority patent/US6164850A/en
Priority to DK97924173T priority patent/DK0915760T3/da
Priority to AU29735/97A priority patent/AU2973597A/en
Publication of WO1997048557A2 publication Critical patent/WO1997048557A2/fr
Publication of WO1997048557A3 publication Critical patent/WO1997048557A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2121Ink jet for multi-colour printing characterised by dot size, e.g. combinations of printed dots of different diameter
    • B41J2/2125Ink jet for multi-colour printing characterised by dot size, e.g. combinations of printed dots of different diameter by means of nozzle diameter selection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/32Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for printing in Braille or with keyboards specially adapted for use by blind or disabled persons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/16Braille printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • B41M7/0081After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using electromagnetic radiation or waves, e.g. ultraviolet radiation, electron beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • B41M7/009After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using thermal means, e.g. infrared radiation, heat

Definitions

  • the present invention relates to 3D printing and to a method and apparatus for the forming of 3D structures onto surfaces.
  • the present invention addresses the problem of accurate and fast formation of 3D features onto a surface. This problem is a concern in a wide range of areas, a number of which are described below.
  • Drop-on-demand printing is a known printing technique whereby a droplet of ink is ejected from a inkjet printer head.
  • the droplet impacts with a printing surface, dries and forms a spot which forms a recognisable pattern such as type.
  • This technique has proved to be an efficient and economical way of printing using ink and its use is now widespread.
  • a method of forming a three dimensional feature on a surface using the technique of drop ejection to deposit droplets of deposition material comprising depositing a plurality of droplets on said surface to form a feature comprising multiple discrete portions, at least two adjoining portions being formed from different deposition material.
  • the plurality of droplets comprise at least one droplet of one material and at least one droplet of another material.
  • the present invention provides a method of forming a Braille character on a surface using the technique of drop ejection to deposit droplets of deposition material, said method comprising depositing a plurality of droplets on said surface to form a character comprising multiple discrete portions, at least two adjoining portions being formed from different deposition material.
  • Conventional printing tasks may be performed using the present invention including, for example, warning symbols, product advertising, Thermographic' printing or wall paper printing. Tactile digital photography is possible for the production, say, of relief maps.
  • the photograph is constructed from digital data including the height of the ground stored as discrete steps which defines the size or number of drops of print material applied. Upon ejecting or curing of the deposition material the individual drops combine with neighbouring drops so that the height varies continuously and not in discrete steps. Different deposition materials may be dropped onto the surface to give different textures.
  • Another application is textile patterning where, for instance, names or emblems can be printed directly on to teeshirts or sweatshirts. Alternatively a roll of fabric or carpet can be printed with a recurring pattern.
  • Another application is in coating of whole areas whereby the thickness of a laminate may be controlled. Particular use may be found in PCB production, adhesives, transparent electrodes (e.g. using co- polyaniline based solutions), optical elements (e.g. the anti-reflective coating of ophthalmic lenses) and protection of display windows. Alternatively the coating may be on a selected area only. For instance the direct writing of masks on PCBs, selective adhesives and discrete transparent electrodes.
  • the nozzles may be adapted to spray the deposition material, the deposition area being dictated by the number of nozzles that are fired. High precision coatings are possible using this method of ejecting a blanket area of material.
  • the present invention provides a method of forming a multi-layer optical device on a surface using the technique of drop ejection to deposit droplets of deposition material, said method comprising depositing a plurality of droplets on said surface to form a device comprising multiple discrete portions.
  • the deposition materials comprise between 20% and 60% solid material.
  • the deposition material comprises between 30% and 50% solid material and more advantageously the deposition material comprises substantially 40% solid material.
  • the method allows application of a multiplicity of drops, co-incident upon one point in order to build up the required feature.
  • the deposition material has a dynamic viscosity in the range 1 cps and 1000 cps and more preferably between 1 cps and 200 cps.
  • the method further comprises the step of subjecting the deposition material to radiation treatment before, during or after deposition.
  • the print surface may be subjected to radiation to prepare it for the deposition material.
  • Employing in-situ UV and infrared radiation exposure provides considerable scope for modifying the reaction of the drop in order to achieve the required feature and profile.
  • the radiation is ultraviolet light.
  • the deposition material suitably comprises oligomers such as epoxy acrylics or urethane acrylics and more suitably said epoxy acrylics are silicone loaded.
  • the silicon loading decreases the surface energy of the print material and renders the print material non-stick.
  • the deposition material suitably comprises urethane acrylics.
  • the radiation is infrared light.
  • the deposition materials suitably comprises water miscible partially reacted polymers.
  • one of said layers comprises a printing surface treatment layer, preferably comprising epoxy acrylic.
  • the method further comprises the step of raising the temperature of the deposition material prior to deposition. This decreases the dynamic viscosity of a deposition material so that it may be used in the drop-on-demand method.
  • a material is a hot melt material.
  • the method further comprises utilising one or coincident droplets of a cross-linkable polymeric materials and initiating the cross-linking in-flight or immediately after deposition.
  • the initiating of the cross-linking may be by chemical means using a further coincident drop or by the radiation treatment.
  • the present invention provides droplet deposition apparatus having multiple droplet deposition nozzles for the deposition of different deposition materials on a printing surface to form a three dimensional feature comprising multiple discrete portions, adjoining portions being formed from different deposition material.
  • the nozzles may be directed towards at a single droplet deposition site.
  • the nozzles deposit different deposition materials to form a feature comprising three or more portions, said portions comprising a sealant portion, a body portion and a portion formed from non-stick material.
  • the droplet deposition apparatus further comprises electromagnetic means for establishing an electromagnetic field for treatment of material ejected from the nozzles.
  • the electromagnetic means may comprise at least one waveguide or optical fibre communicating with a continuous or pulsed ultraviolet, visible light or infrared source.
  • the electromagnetic means may be operable at at least two discrete wavelengths.
  • the electromagnetic means may further comprise a focus arrangement for directing the electromagnetic radiation.
  • the electromagnetic means may further comprise a scanning arrangement such as a rotating mirror.
  • the apparatus comprises a deposition chamber and a shutter actuable to shield material within the chamber from an electromagnetic field.
  • the apparatus further comprises a deposition chamber and actuator means in or adjacent the deposition chamber for the application of a pressure pulse to the deposition chamber, wherein the actuator means comprises a bimorph laminate including at least two layers of piezoelectric material and at least two metal layers.
  • the actuator means may comprise at least three actuators arranged so as together to define the wall of at least part of the chamber.
  • the apparatus may further comprise a deposition chamber and actuator means in or adjacent the deposition chamber for the application of a pressure pulse to the deposition chamber, wherein the actuator means comprises at least three actuators arranged so as together to define the wall of at least part of the chamber.
  • the actuator means may comprise four actuators providing a rectangular cross-section for said part of the chamber
  • the apparatus may further comprise means for the simultaneous firing of the actuators.
  • the apparatus further comprises a nozzle shutter associated with each respective nozzle for closing that nozzle.
  • the nozzle shutter may comprise a plunger housed in the deposition chamber and moveable between a closed position in which the head of the plunger aligns with the aperture of the nozzle and an open position in which the plunger is retracted into the deposition chamber.
  • the nozzle shutter comprises a bimorph laminate including at least two layers of piezoelectric material.
  • the apparatus may further comprise means for varying the size of the aperture of at least one of said nozzles.
  • the means may comprise an iris-type diaphragm associated with the or each nozzle.
  • the present invention provides a method of printing employing drop on demand ink jet apparatus comprising a droplet deposition head comprising a deposition chamber, actuator means associated in or adjacent the chamber for the application of pressure, a second, down-stream chamber and corresponding actuator means, said method comprising the steps of: actuating the actuator means associated with or adjacent to said down-stream chamber to create a pressure pulse in droplet deposition material contained in the deposition chamber; and actuating the actuator means associated with or adjacent to said deposition chamber to create a pressure pulse in droplet deposition material contained in the deposition chamber to cause droplet ejection from the deposition chamber.
  • the pressure pulses create standing waves of different frequency in droplet deposition material contained in the droplet deposition head.
  • the present invention provides droplet deposition apparatus comprising a deposition chamber, actuator means associated in or adjacent the chamber for the application of pressure, wherein there is provided a second, down-stream chamber and corresponding actuator means whereby pressure pulses are appliable independently to the down ⁇ stream chamber.
  • the pressure pulses are appliable synchronously to the deposition chamber by both said actuator means.
  • the actuators may be adapted to create standing waves of different frequency in droplet deposition material contained in the droplet deposition head.
  • Figure 1 shows multiple layers of deposition material at a coincident drop site on a print surface
  • Figure 2 shows three deposition heads directed to a coincident drop site on a print surface
  • Figure 3 shows three deposition heads directed to a coincident point above a print surface
  • Figure 4 shows an array of deposition heads
  • Figure 5 shows a Brave character with surface texture
  • Figure 6(a), 6(b) and 6(c) show stages in the formation of a tapered nozzle by etching
  • Figure 7 shows a 45° mirror
  • Figures 8A, 8B and 8C show cross sections of a dual-in-line deposition head according to a first embodiment
  • Figures 9(a), 9(b), 9(c) and 9(d) show finite difference software model graphics showing pressure pulses in a feed chamber and a deposition chamber;
  • Figures 10A and 10B show a plan and cross section respectively of an end shooter of a deposition head according to a second embodiment;
  • Figure 11 shows a perspective view of a deposition head according to a fourth embodiment;
  • Figure 12 shows a plan view of a four plate actuator deposition head according to a third embodiment
  • Figure 13A and 13B shows a plan and cross section view of an array of deposition heads
  • Figure 14 shows various cross section views of a stack actuator
  • Figure 15 shows a cross section view of a deposition head in combination with a UV light source
  • Figure 16 shows an exploded perspective view of a further embodiment.
  • the first layer 10 (lowest layer) is a surface pretreatme ⁇ t layer of epoxy acrylic which is absorbed into the paper surface to provide good adhesion for the next layer.
  • the second 12, third 14 and fourth 16 layers above the first layer are build-up layers.
  • the fifth layer 18 (highest layer) is a silicone- loaded layer providing a non-stick surface.
  • the 3D feature is formed on a printing surface using drop-on-demand technique to drop multiple droplets 20 of a deposition material from a deposition head 22 ( Figure 2).
  • the deposition head 22 has a height above the printing surface between 5//m and 1000 ⁇ m.
  • the deposition head 22 holds the deposition material and ejects it a drop at a time on demand onto the print surface.
  • the deposition materials comprises in excess of 40% solid matter and may be any one of the materials discussed in the introduction.
  • the 3D feature is formed with at least three different deposition materials and therefore at least three deposition heads 22A, 22B, 22C are needed.
  • Figure 2 shows an schematic array of three deposition heads 22 which direct their respective droplets to a coincident drop site 24 on a print surface.
  • a deposition head 22 comprises a pressure generation cavity 26 with a profiled cylindrical nozzle 28 in one wall of the cavity and a PZT bimorph actuator 30 in an opposite wall.
  • Each nozzle 28 defines a line of ejection which is representative of the path a droplet of deposition material will take upon ejection.
  • the three nozzles 28 are shaped so that their respective lines of ejection coincide at a point on the print surface a known height below the deposition heads.
  • a coincident drop site 24 allows the 3D feature to be formed without moving the array of heads. This solves the problem of aligning different deposition heads 22 to one drop site 24.
  • a first deposition head 22A drops the first layer 10 and a short time later the second deposition head 22B drops the second 12, third 14 and fourth 16 layers respectively. After this the third deposition head 22C drops the fifth 18 and final layer.
  • FIG. 3 three schematic deposition heads 32A, 32B, 32C directed to a coincident point 34 above a print surface are shown. This arrangement provides 'in-flight' mixing of different dispensing materials.
  • Figure 4 shows an 2D array of schematic deposition heads 36, each directed to respective drop sites rather like a convention printer head.
  • the 2D array provides for the simultaneous deposition of multiple drops to form characters such as Braille characters.
  • the nozzle may comprise means for directly varying the size of the nozzle aperture, such as an iris type arrangement.
  • the deposition apparatus may deposit droplets of varying size. This allows for the creation of a 3D feature, for example, a
  • Braille character having a controlled surface texture.
  • Figure 5 shows such a feature, in which surface portions 40, 42, 44 and 46 are deposited on the surface of portion 48 formed on substrate 50.
  • Portion 48 may be formed in a similar manner to the 3D feature shown in Figure 1.
  • Surface portions 40, 42, 44 and 46 are deposited from respective nozzles having either the same or different nozzle apertures, and may be formed from the same deposition material.
  • this deposition material has a controlled solubility in the deposition material forming portion 48.
  • 3D features having a wide range of surface textures may be formed. This finds particular utility in the production of Braille maps, in which features representing roads, rivers, coastlines and such like may be formed with respective surface textures.
  • FIG. 6 shows, by way of example, the formation of a tapered nozzle in a substrate.
  • Figure 6(a) shows two layers 60 and 62 deposited on the surface of a substrate 64 for the formation of such a nozzle.
  • the materials that may be deposited to form the layers 60 and 62 include photoresists, organically modified ceramics, ormosils, metallo-organic solutions (e.g. aluminium butoxide), radiation curable polymers (such as acrylates, urethanes, epoxies) and polyimides. Suitable etchants for these materials depend upon the nature of the application, such as the material to be etched and the desired resultant structure.
  • Typical etchants include plasmas based on inert gases (argon, helium, etc.), fluorinated gases (CH 4 , CHF 3 , etc.), chlorinated gases (CCI 2 , Cl 2 , etc), iodinated gases and brominated gases.
  • a region 66 of the upper surface 68 of the substrate remains uncovered.
  • the deposition material from which layer 60 is formed has a lower etching rate than that from which layer 62 is formed and a lower etching rate than the material from which substrate 64 is formed.
  • Layer 60 is deposited to a substantially uniform thickness on the surface of layer 62.
  • Layer 62 is deposited such that the thickness of the layer decreases towards region 66 of the substrate 64; the thickness of this layer is selected to provide a specific delay time to control the desired profile of the etched feature.
  • layer 62 remains unexposed until layer 60 has been removed by the etchant, at which point a well 70 has been formed in the substrate 64 by the etchant.
  • etching of layer 62 commences, an increased area of the upper surface 68 of the substrate becomes exposed to the etchant, resulting in tapering of the side walls of the well 70, as shown in Figure 6(c).
  • a further application lies in the formation of multi-layer optical devices, such as a 45° mirror as shown in Figure 7.
  • the mirror comprises a first surface layer 80 deposited on the substrate 82 to promote adhesion of the mirror to the substrate and/or to control surface wetting.
  • Layers 84, 86, 88... are subsequently sequentially deposited in a stepped arrangement such that the side wall 90, 92, 94... of each layer is spaced in the direction of arrow 96 from that of the adjacent layer(s).
  • the layer thickness and the spacing of the side walls influence the angle of the mirror and the nature of the scattering of light incident on the side walls; it may be necessary to subject the resultant structure to a heat treatment to coalesce the individual side walls 90, 92, 94... to provide a smooth walled structure in order to produce the desired reflections. It is therefore possible, using the above deposition techniques, to deposit a feature with a variable angled wall to deviate light, such as a surface collector.
  • Complex refractive index patterns can also be achieved with the deposition of regions of materials having different refractive indices, which may provide a means of filtering or semi-filtering of light incident thereon.
  • Figure 8A, 8B and 8C show a first embodiment of deposition head, this being a dual-in-line deposition head 100.
  • the dual-in-line head 100 comprises a chamber body 102 having a deposition chamber 104 and feed chamber 106 formed therein and connected by a channel 108.
  • the deposition chamber comprises an outlet or nozzle 110 in a wall at one end of the deposition chamber as in Figure 8A (an 'end-shooter') in one variation of the embodiment.
  • the outlet or nozzle 110 is in a wall on the side of the deposition chamber in Figure 8B and 8C (a 'side-shooter').
  • the feed chamber 106 comprises an inlet 112 for the deposition material which is stored in a larger reservoir (not shown).
  • top and bottom membranes 114, 116 which are connected to and are supported by the chamber body.
  • the membranes 114, 116 are flexible and resilient so that a pressure pulse may be transmitted through them into the cavities.
  • the top membrane 114 of the deposition chamber 104 supports a deposition actuator 118
  • the top membrane of the feed chamber supports a feed actuator 120
  • the bottom membrane 116 of the feed chamber supports a bottom actuator 122.
  • Each actuator 118, 120, 122 comprises a bimorph laminate including two layers of piezoelectric material arranged such that when a potential difference is applied across them one expands and the other contracts providing a flexing action rather like a bi-metallic strip.
  • dual actuators 124, 126, 128 are provided on the membranes as in Figure 8C. Using more than one actuator in parallel reduces the voltage required for a given pressure pulse.
  • one actuator is positioned on each side of the membrane but it is also possible to have composite actuators as shown in Figure 14. It is advantageous to have an actuator comprising several thinner layers of piezoelectric material than one thick layer as the thinner layers will assure large capacitances promoting a high energy transfer at low operating voltages.
  • a deposition cycle is as follows.
  • the cavities are initially full of deposition material.
  • a potential difference is applied across the deposition control actuator and a pressure pulse is transmitted into the deposition chamber 104.
  • the pressure pulse forces a droplet of deposition material from the deposition chamber 104 through the outlet 110 and onto a print surface adjacent the outlet 110.
  • a synchronous signal pulses the feed actuator 120 and bottom actuator 122 which forces deposition material from the feed chamber 106 into the vacant space in the deposition chamber 104 left by the ejected droplet.
  • the feed chamber 106 is replenished from the reservoir and a new deposition cycle is ready to start.
  • deposition material may be forced into the feed chamber 106 as well as through the outlet 110.
  • pressure induced in the deposition chamber 104 will be transferred into the feed chamber 106 through the duct 108, as represented schematically in the finite difference software model diagram shown in Figure 9(a), in which the height of the columns represents the pressure in the deposition chamber 104, feed chamber 106 and the duct 108.
  • This detrimental "loss" of pressure in the deposition chamber 104 may be obviated by actuating the feed chamber 106 a short period of time in advance of the actuation of the deposition chamber 104, as shown in Figure 9(b). This creates a pressure pulse which flows through the duct 108 into the deposition chamber 104. This pressure pulse allows for control of the deposition material in the deposition chamber 104, in particular the meniscus of the deposition material at the aperture of the outlet 110, the resultant shape of the meniscus depending on the size of the pressure pulse.
  • the actuation of the deposition control actuator 118 can be timed to coincide with a particular pressure condition induced in the deposition chamber 104 by the actuation of the feed actuator 106.
  • Figure 9(c) shows the pressure in the deposition chamber 104 and the feed chamber 106 when equal pressures are applied to both chambers. Pressure equalization occurs on both sides of the duct 108, resulting in no net flow of deposition material through the duct. By applying a greater pressure pulse to the feed chamber 106, a flow of deposition material through the duct 108 towards the outlet 110 can be ensured.
  • Figure 9(d) shows the effect of the pressure pulse shown schematically in Figure 9(b) on the droplet deposition material reservoir 140. Whilst some pressure is transferred from the feed chamber 106 to the reservoir 140, this loss of pressure can be controlled by controlling the geometry of the inlet 112.
  • the frequency of the pressure pulse applied to the deposition chamber 104 and the feed chamber 106 may be different; it is preferred that the frequency of the pressure pulse applied to the feed chamber 106 is greater than that of the pressure pulse applied to the deposition chamber 104 in order to eliminate fluid inertia! effects on drop firing.
  • a deposition head 150 comprises an elongate chamber tapering from a wide reservoir section 152 through a pressure generation section 154 to a narrow nozzle section 156.
  • Three actuators are provided: a transport assist actuator 158 acting on the reservoir section 152, a pressure generation actuator 160 acting on the pressure generation section 154 and a droplet control actuator 162 acting on the nozzle section 156.
  • the nozzle section 156 communicates with the pressure generation section 154 through a throttle 164 acting as a one way valve for the deposition material.
  • the nozzle is a constrained cylindrical nozzle 1mm diameter.
  • the reservoir section communicates with the pressure generation section 60B by ducting 66.
  • the deposition cycle is similar to that of the first embodiment.
  • the cavities are initially full and a pressure pulse is applied to the nozzle section 156 to eject a droplet therefrom.
  • Synchronised pulses are applied to the pressure generation 154 and reservoir section 152 respectively so that a flow of deposition material is set up through the chamber to replenish the nozzle section 156.
  • a third embodiment provides a dual chamber deposition head comprising a deposition chamber 167 and a feed chamber 168 as shown in Figure 11.
  • the deposition chamber 167 has a deposition actuator 170 positioned in a top wall of the chamber and a nozzle in the opposite bottom wall. The side walls taper from a wide top section to a narrow bottom section.
  • a deposition material reservoir comprises an actuator in a wall and a manifold section 172 which communicates with deposition chamber through two ducts 174 connecting with the top and bottom sections of the deposition chamber 167. Similar pressure pulses may be applied to this deposition head as described with reference to the dual-in line deposition head 100.
  • the feed chamber 168 may form part of a sealed "cavity" that need not be filled with droplet deposition material but with any suitable material for the efficient transmission of acoustic energy to the deposition chamber.
  • droplet deposition material may be fed directly into the deposition chamber.
  • a fourth embodiment provides a dual-in-line deposition head having a reservoir chamber including four actuators 176A, 176B, 176C, 176D on side walls as shown in plan in Figure 12.
  • the feed chamber 168 communicates with a deposition chamber 167 through a restriction throttle 178.
  • the four actuators can be adapted to maximise the volume change in the reservoir chamber or minimize the drive voltage by pulsing all four actuators simultaneously.
  • Figure 13 shows how a first 180A and second 180B 2D array of deposition heads are positioned in a staggered arrangement to achieve 250 dots per inch resolution 183 with a nozzle diameter of 150 ⁇ m.
  • the first array 180A comprises gaps or holes 182 between the deposition heads and the second array 180B is staggered above the first.
  • the gaps or holes 182 of the first array 180A are aligned with the nozzles in the second array so that droplets can pass through without obstruction.
  • Figure 14 shows a composite actuator structure. As mentioned in connection with Figure 8C, more than one actuator in parallel reduces the voltage required for a given pressure pulse.
  • a transformer stack 184 provides an increased efficiency actuator, comprising six layered actuators 30.
  • a voltage applied to parallel connections 190 causes displacement of the actuator.
  • the transformer stack 184 is supported by a metal membrane 196.
  • the cavity 26 is bounded by the membrane 196 and a nozzle plate 192 having a multiple nozzle output 194.
  • Figure 15 shows a deposition head 22 as part of a X-Y plotter system 198.
  • the plotter 198 includes a quartz-halogen lamp 200 supplying UV light through an optical fibre 202 to the printing surface 204 onto which the droplets 206 are deposited.
  • This system 198 subjects the deposition material to radiation treatment after it has been deposited for the purposes of curing the material or other processing.
  • the nozzle 28 has a great influence on the way in which deposition material is deposited.
  • the angle of the nozzle 28 with respect to the chamber body defines the line of ejection of the droplet 206 as is discussed with reference to Figures 2 and 3.
  • the shape and surface of the nozzle 28 determines the energy needed to eject the droplet from the nozzle.
  • a polished nozzle 28 will have a lower surface energy than an unpolished nozzle and therefore will more easily release a droplet.
  • a low surface energy nozzle exit can be achieved using a variety of liquid coatings (i.e Montedison Galydene), however a more practical route is to gravure print a silicone loaded acrylic UV curing film on to the front of the nozzle plate (this exhibits a surface energy of less than or equal to 19 dyn cm (190//joules) ). This is essentially non-wetting to epoxy and urethane acrylic deposit materials.
  • One advantage of using such coating materials is that the nozzle can be made of both copper (wetting) and laminate material
  • the nozzle may incorporate an integral piezoelectric bimorph nozzle shutter (not shown) to act as a sealant for the deposition material retained in the nozzle.
  • This feature prevents ultraviolet light and water vapour from entering the nozzle when not in use.
  • the shutter may comprise a plunger retained in the deposition chamber of the deposition head.
  • Such a plunger means has a relative coaxial sliding fit with the nozzle whereby a plunger head aligns with the nozzle aperture to close the nozzle and in an open position the plunger is retracted into the chamber.
  • FIG 16 shows a further embodiment of a deposition head in an exploded perspective view.
  • Lower support structures 214 comprise reservoir section 152, a pressure generation section 154 and a nozzle section 156.
  • the sections have a common top wall comprising an actuator membrane 216 and overlying the membrane are electrode layers 218A, 218B, 218C for the activation of the membrane.
  • Top support structure 220 comprises an ink reservoir supplying the reservoir section 152.
  • a deposition control electric field generator (not shown). This generates an electric field in the vicinity of the nozzle to control the shape of a meniscus of the electrically responsive deposit materials. This is used to exert a pulling force on the droplets so that less energy is required by the actuators to eject the droplets from the nozzle chamber.
  • the desk-top plotter of Figure 15 employs digital deposition servo drive motors for x-axis and y-axis transport motion.
  • a replaceable polymer deposition head 22, along with its associated polymer reservoir cartridge(s) 208, resides on the axis drive carriage plate.
  • Integrated into the carriage plate is a set of annular fibres 202 that permit close proximity UV and infrared radiation for surface pre-treatment, in-flight treatment and/or post deposition treatment.
  • the annular radiation emitters are fed from a fibre optic 202 that is coupled at the opposite end to a suitable light source 200.
  • the surface 204 to be coated is electrostatically secured to the plotter deposition frame.
  • the use of a cooling fan 210 and cooling air directional ducting 212 maintains the x-y plotter at a working temperature.
  • the finished map is digitised and the appropriate x-y co-ordinates are fed to the plotter interface so that the required surface feature is formed at the location requested.
  • the drive waveform to the drop dispense pressure generator (polymer dispense head) is synchronised to the x-y placement co ⁇ ordinates, so that the required 3-D features are accurately placed.
  • an adhesion enhancing liquid pre- treatment prior to depositing the required polymeric pattern.
  • the droplet deposition apparatus may further comprise an integral continuous or pulsed UV (also in conjunction with infrared radiation - thermally assisted curing) light source with illumination of the dispensing drop via a fibre-optically fed focusing annulus located in close proximity to, or surrounding, the dispensing head (or nozzle array).
  • this light source could be an excimer laser that employs a rotating mirror arrangement to create a fine line UV light beam that is continuously rotating around a selectable circular radius or more complex elliptical shape.
  • the annulus can be formed by using a suitable retaining mould in the Y-spider plate, and with the use of a pre-shaped top casting cap, PMMA or alternative polymer can be injected into the unit for a UV transmitting annulus with a particular optical focusing. It is envisaged that a suitable light source can be manufactured that would enable the annulus to be fed from a source that is also integrated onto the y-axis carriage plate.
  • the deposition materials that are of primary interest are based on epoxy and urethane acrylics (oligomers), cationic resins, and probimide and thioline aromatic polymers. Such materials are employed in the manufacture of paints, varnishes, organically modified ceramics (ORMOCERS), organically modified silicates (ORMOSILS), liquid crystal siloxanes, photoresists, and other liquid plastics and polymers.
  • the viscosity range of interest is 1 to 10,000 centipoise (cps) based on 100% solids and diluted systems.
  • the surface energy (tension) of such materials is typically in the range 30 to 75 dynes cm “1 and consequently a low surface energy nozzle is required to minimise surface wetting and the voltage needed to expel a drop from the nozzle.
  • Such a nozzle may be a cavity nozzle channel in the deposition head with an integral extended PTFE-based low surface wetting energy to achieve control over the degree of surface that can be wetted by the exiting polymer.
  • the PTFE being applied as a thin film which is the photolithographically patterned and subsequently dry etched to achieve the desired variable wall thickness cylinder. This ensures reproducible and reliable drop firing and placement.
  • Multiple duct polymer supply feed to the pressure generation and droplet control (feedback loop) cavities may provide flow conductance control (critical damping), whilst minimising acoustic impedance mismatch.
  • Polymer reservoir inlet cavity actuation may be provided to facilitate control over the polymer replenishment process.
  • An enhancement to the embodiments is provided by dispensing the material in a vacuum to facilitate the deposition of droplets of diameter substantially less than or equal to 1 ⁇ m. If this were attempted in air then the drag induced by air resistance would distort the drop and impair its dimensional stability and placement accuracy. This would necessitate the fabrication of a thin film piezo electric actuator for the nano jetting of polymer-based materials and other dispensable solutions.
  • This actuator design employs thin and thick film ferroelectric material to form the pressure generation cavity.
  • A. Silicon micro-electromechanical structure machining This is the favoured method and the steps are as follows. 1. Prepare and polish both sides of Cz float zone silicon substrate which is to form the chamber body.
  • the substrate is p- type boron doped, 100mm diameter and ⁇ 110> orientation wafer.
  • the wafer is preferably edge accurate to +/- 0.1 and has an M1-92 SEMI surface finish.
  • the thickness of the wafer is preferably 525 +/-15 ⁇ m thick.
  • Preparation includes treatment with a degreasant and D.I water rinse, a solvent rinse and D.I. water rinse and then a buffered HF surface oxide wet etch.
  • boron is thermally in-diffused into the wafer for etch stop patterning using a conventional thermal diffusion tube process at 1000°C.
  • a polyimide membrane is deposited by spin coating Toray Photoneece or equivalent photoactive liquid polyimide to a thickness 25 ⁇ m.
  • the membrane layer and PZT base contact are deposited on the polyimide by, for example, magnetron sputter deposition of a Ti-Cu- Au trilayer. Thicknesses are preferably Ti - 10 ⁇ A, Cu - 30A, Au - 100A.
  • Photolithographic patterning of the base contact layer is achieved by, for example, spin coating with photoactive AZ 1350J resist and then exposing the base metal pattern. The resist is developed and rinsed before dry or wet etching the pattern. 6. A silicon nitride protective coating may then be deposited by
  • PECVD PECVD.
  • Platen power 200watts
  • film thickness 1//m.
  • High density, stoichiometric, ECR-CVD grown silicon nitride is available as an alternative protective barrier.
  • the rear of the substrate is spin coated with a photoactive AZ 1350J resit.
  • Photolithographic patterning of crystallographic etch pattern is carried by exposing crystallographic etch windows pattern and developing/rinsing and wet etching using BHF solution - 10:1 etch at 25'C.
  • Crystallographic etching of cavities and transport ducting and nozzle is carried out using an orientational alignment to better than 0.05°. Pattern transfer accuracy should be better than O. ⁇ m.
  • Etched wafer should be acid cleaned after crystallographic etching is complete then reverse flush rinsed in D.I. water.
  • the silicon nitride coating is stripped off from both surfaces using a H 3 P0 4 or HF based etching solution dependent upon the method used to deposit the silicon nitride protective coating.
  • the PZT (piezoelectric actuators) stack are bonded to patterned base contact using Epo-Tek H31 electrically conductive one component epoxy. Roller transfer adhesive and apply pressure to ensure very thin bond line and cure at 120°C for 2 hours.
  • Electrostatically bond two halves of a silicon support plate (which seals the structure) by depositing alkali loaded oxide on to support plate surface and locating the two halves in register using suitable jigging and optical/infrared alignment. Apply pressure and high (about 450 volts) DC potential for 5 minutes.
  • Actuator protective cover is an extruded plastic cover and is bonded or clipped over the whole printhead assembly to prevent accidental damage to the actuators and their external contact bonds.
  • This fabrication method will make use of a polycarbonate or similar extruded section material so designed as to provide the support columns and the flexing membranes from one mould. It is possible that aluminium might be a possible candidate material.
  • PCB micro lithographic - polyimide sculptured body with integral nozzles A device is fabricated as follows:
  • Thick (100 ⁇ m to 500> ⁇ /m) polyimide sheet metallised on one side.
  • UBE "S" polyimide sheet is the preferred material but any polyimide (e.g., Du Pont Kapton) would be acceptable.
  • Pattern to include one or more of the following: Reservoir chamber - secondary actuator location; Pressure generation chamber - primary actuator location; Fluid transport ducting - variable cross section to control fluid flow including reverse tapered cross-section to avoid clogging; Recessed nozzle exit - formation of minimal annulus area to assist drop detachment; Elongated recess beyond nozzle - location of electrostatic field electrodes. 6. Excimer laser etching of ejection nozzles. Pattering to include:
  • a device may be fabricated as follows:
  • mould polymer e.e. polymethyl methacrylate [PMMA] or polyurethane, polyester, acrylic
  • PMMA polymethyl methacrylate
  • synchrotron high intensity parallel X-rays - wavelength 0.2 nm to 0.5 nm
  • Magnetron sputter deposit titanium as the seed metal and oxidize, which permits the electrodeposition of the metallic mould material.
  • Electrodeposit metal e.g., nickel, copper. Formation of a metallic mould.
  • This fabrication method might be a candidate for the manufacture of micro-moulded filters with pores of precise, predefined size and constructed so that they taper away from the input side to avoid clogging.
  • Piezoelectric bimorph driven 3-D shaped cantilevers could be employed in the structure design to effect dynamically controlled sealing of fluid transport ducting adjacent to the pressure generation pulse.

Abstract

L'invention concerne un procédé permettant de former sur une surface une structure tridimentionnelle en utilisant la technique du jet de gouttes pour le dépôt de la matière de dépôt. Le procédé consiste à déposer sur ladite surface plusieurs gouttelettes pour former une structure constituée de multiples parties fines, et à juxtaposer des parties formées avec différentes matières de dépôt. Des exemples d'une telle structure incluent un caractère en braille et un dispositif optique multicouche.
PCT/GB1997/001509 1996-06-04 1997-06-04 Impression et formation de structures en trois dimensions WO1997048557A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT97924173T ATE217580T1 (de) 1996-06-04 1997-06-04 Dreidimensionales drucken und herstellen von strukturen
EP97924173A EP0915760B1 (fr) 1996-06-04 1997-06-04 Impression et formation de structures en trois dimensions
DE69712622T DE69712622T2 (de) 1996-06-04 1997-06-04 Dreidimensionales drucken und herstellen von strukturen
US09/194,850 US6164850A (en) 1996-06-04 1997-06-04 3D printing and forming of structures
DK97924173T DK0915760T3 (da) 1996-06-04 1997-06-04 Tredimensionel trykning og fremstilling af strukturer
AU29735/97A AU2973597A (en) 1996-06-04 1997-06-04 3d printing and forming of structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB9611582.9A GB9611582D0 (en) 1996-06-04 1996-06-04 3D printing and forming of structures
GB9611582.9 1996-06-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/670,138 Continuation US6402403B1 (en) 1996-06-04 2000-09-26 3D printing and forming of structures

Publications (2)

Publication Number Publication Date
WO1997048557A2 true WO1997048557A2 (fr) 1997-12-24
WO1997048557A3 WO1997048557A3 (fr) 1998-03-12

Family

ID=10794695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1997/001509 WO1997048557A2 (fr) 1996-06-04 1997-06-04 Impression et formation de structures en trois dimensions

Country Status (10)

Country Link
US (2) US6164850A (fr)
EP (1) EP0915760B1 (fr)
AT (1) ATE217580T1 (fr)
AU (1) AU2973597A (fr)
DE (1) DE69712622T2 (fr)
DK (1) DK0915760T3 (fr)
ES (1) ES2176742T3 (fr)
GB (1) GB9611582D0 (fr)
PT (1) PT915760E (fr)
WO (1) WO1997048557A2 (fr)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2345869A (en) * 1998-11-27 2000-07-26 Aea Technology Plc Formation of monodisperse particles
EP1057631A1 (fr) * 1999-06-03 2000-12-06 Eastman Kodak Company Appareil pour former des couches texturées sur des images
US6164850A (en) * 1996-06-04 2000-12-26 Speakman; Stuart 3D printing and forming of structures
WO2001002173A1 (fr) * 1999-07-06 2001-01-11 Ekra Eduard Kraft Gmbh Procede de production d'un microcomposant, utilisation d'une tete d'impression fonctionnant selon le principe d'impression par jet d'encre et destinee a la production d'un microcomposant et dispositif de production de ce microcomposant
WO2002022366A1 (fr) * 2000-09-15 2002-03-21 Durst Phototechnik Ag Unite de nettoyage pour dispositif d'impression a jet d'encre
GB2369087A (en) * 1997-10-14 2002-05-22 Patterning Technologies Ltd Method of forming a circuit element on a surface using droplet deposition of an organically-modified polymeric-based or inorganic-based fluid
DE10153208A1 (de) * 2001-10-27 2003-05-15 Bosch Gmbh Robert Verfahren zur Herstellung eines Sensorelementes und dessen Verwendung
EP1163552B1 (fr) * 1999-05-27 2003-08-27 Patterning Technologies Limited Procede de formation d'un motif de masquage sur une surface
EP1405723A1 (fr) * 2002-03-26 2004-04-07 Mastermind Co., Ltd. Procede de creation d'image imprimee tridimensionnelle et article imprime tridimensionnel
EP1683826A2 (fr) 2005-01-25 2006-07-26 Hansgeorg Neubig Procédé de fabrication d'une structure en relief tridimensionnel sur la surface d'un support, composite stratifié pour la préparation d'un tel procédé et utilisation d'une structure en relief préparée au moyen de ce procédé
US7129166B2 (en) 1997-10-14 2006-10-31 Patterning Technologies Limited Method of forming an electronic device
WO2007045335A2 (fr) * 2005-09-28 2007-04-26 August Ludwig Procede de production d'une image lenticulaire, procede de production d'une ecriture braille, produits realises au moyen de ces procedes et machine d'impression pour la production d'images lenticulaires, de lentilles optiques ou de caracteres braille
US7323634B2 (en) 1998-10-14 2008-01-29 Patterning Technologies Limited Method of forming an electronic device
US7416764B2 (en) 2001-11-13 2008-08-26 Huntsman Advanced Materials Americas Inc. Production of composites articles composed of thin layers
EP2199082A1 (fr) * 2008-12-19 2010-06-23 Agfa Graphics N.V. Appareil d'imagerie et procédé pour la fabrication de supports d'impression flexographique
EP2042332A3 (fr) * 2007-09-25 2010-07-14 The Boeing Company Surfaces texturées
EP2221183A1 (fr) * 2005-06-14 2010-08-25 Mgi France Machine numérique à jet pour dépose d`un revêtement sur un substrat
EP2305483A1 (fr) * 2009-10-05 2011-04-06 Raunjak Intermedias GmbH Procédé de fabrication de produits d'impression à l'aide d'une surimpression tactile
EP2392473A1 (fr) * 2010-06-07 2011-12-07 LUXeXcel Holding BV. Tête d'impression, kit de mise à jour d'une imprimante à jet d'encre conventionnelle, imprimante à jet d'encre et procédé d'impression de structures optiques
EP2669088A1 (fr) * 2012-05-30 2013-12-04 Till GmbH Dispositif d'obturation pour têtes d'impression
WO2014082382A1 (fr) * 2012-11-30 2014-06-05 Li Huarong Imprimante numérique tridimensionnelle et son procédé d'impression d'images stéréoscopiques
US8846778B2 (en) 2008-12-22 2014-09-30 Canadian Bank Note Company, Limited Method and composition for printing tactile marks and security document formed therefrom
WO2014193961A1 (fr) * 2013-05-31 2014-12-04 Johnson Controls Technology Company Système et procédé permettant de former un composant de garniture de véhicule par l'intermédiaire d'une impression en trois dimensions, et véhicule
WO2016049640A1 (fr) * 2014-09-26 2016-03-31 Stratasys, Inc. Ensemble d'impression pour un système de fabrication additive et ses procédés d'utilisation
EP3495114A1 (fr) * 2017-12-05 2019-06-12 Medizinische Hochschule Hannover Procédé de fabrication d'une composant ainsi qu'installation associée
US10365413B2 (en) 2009-02-14 2019-07-30 Luxexcel Holding B.V. Device for directing light beams, illustration device, method for producing a device and an illustration device
US10974444B1 (en) 2020-09-21 2021-04-13 United Arab Emirates University Product and method to manufacture multi-layered, multi-material composite sandwich structure with hyper elasticity rubber like core made by fusion deposition modeling

Families Citing this family (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11348261A (ja) * 1998-06-10 1999-12-21 Canon Inc 液体噴射記録ヘッドにおける液体吐出状態検査方法および液体吐出状態検査装置
JP3620316B2 (ja) * 1998-11-16 2005-02-16 株式会社日立製作所 マイクロポンプとその製造方法
US6612824B2 (en) * 1999-03-29 2003-09-02 Minolta Co., Ltd. Three-dimensional object molding apparatus
JP2001150556A (ja) * 1999-09-14 2001-06-05 Minolta Co Ltd 三次元造形装置および三次元造形方法
JP3943320B2 (ja) 1999-10-27 2007-07-11 富士通株式会社 半導体装置及びその製造方法
JP3578162B2 (ja) * 2002-04-16 2004-10-20 セイコーエプソン株式会社 パターンの形成方法、パターン形成装置、導電膜配線、デバイスの製造方法、電気光学装置、並びに電子機器
US20080050524A1 (en) * 2006-04-07 2008-02-28 Microfabrica Inc. Methods of Forming Three-Dimensional Structures Having Reduced Stress and/or Curvature
JP4228621B2 (ja) * 2002-08-20 2009-02-25 富士ゼロックス株式会社 画像形成装置、及び画像処理装置
JP3719431B2 (ja) * 2002-09-25 2005-11-24 セイコーエプソン株式会社 光学部品およびその製造方法、表示装置および撮像素子
AU2003290929A1 (en) * 2002-11-15 2004-06-15 Markem Corporation Radiation-curable inks
US7700020B2 (en) * 2003-01-09 2010-04-20 Hewlett-Packard Development Company, L.P. Methods for producing an object through solid freeform fabrication
JP2006517329A (ja) * 2003-01-10 2006-07-20 キネテイツク・ナノマテリアルズ・リミテツド 構造体の付着の改良およびその関連の改良
AU2003900180A0 (en) * 2003-01-16 2003-01-30 Silverbrook Research Pty Ltd Method and apparatus (dam001)
US20040151828A1 (en) * 2003-02-04 2004-08-05 Anis Zribi Method for fabrication and alignment of micro and nanoscale optics using surface tension gradients
EP1462266B1 (fr) * 2003-02-26 2006-05-17 Fuji Photo Film Co., Ltd. Procédé et dispositif pour former une image tri-dimensionnelle
GB2400077A (en) * 2003-03-27 2004-10-06 Saygrove Product Mfg Ltd Apparatus for producing a three dimensional image on a substrate
JP4425559B2 (ja) * 2003-04-08 2010-03-03 セーレン株式会社 紫外線硬化型インクを用いた布帛のインクジェット記録方法および記録装置
US7051654B2 (en) * 2003-05-30 2006-05-30 Clemson University Ink-jet printing of viable cells
WO2004112151A2 (fr) * 2003-06-12 2004-12-23 Patterning Technologies Limited Structures conductrices transparentes et leurs procedes de production
US20050006339A1 (en) * 2003-07-11 2005-01-13 Peter Mardilovich Electroless deposition methods and systems
US20050012247A1 (en) * 2003-07-18 2005-01-20 Laura Kramer Systems and methods for using multi-part curable materials
US20050069718A1 (en) * 2003-09-30 2005-03-31 Voss-Kehl Jessica L. Printable insulating compositions and printable articles
US7112463B2 (en) * 2003-11-13 2006-09-26 Honeywell International Inc. Method for making devices using ink jet printing
JP4266842B2 (ja) * 2004-02-02 2009-05-20 セイコーエプソン株式会社 電気光学装置用基板の製造方法及び電気光学装置の製造方法
JP2005319634A (ja) * 2004-05-07 2005-11-17 Roland Dg Corp 三次元造形装置および三次元造形方法
DE102004025374A1 (de) * 2004-05-24 2006-02-09 Technische Universität Berlin Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Artikels
JP4239915B2 (ja) * 2004-07-16 2009-03-18 セイコーエプソン株式会社 マイクロレンズの製造方法およびマイクロレンズの製造装置
US7021340B2 (en) * 2004-07-20 2006-04-04 Blind Faith School Of Music And Art Method of and loom for teaching Braille
JP4539222B2 (ja) * 2004-08-16 2010-09-08 富士フイルム株式会社 画像形成装置及び画像形成方法
JP4052295B2 (ja) * 2004-08-25 2008-02-27 セイコーエプソン株式会社 多層配線基板の製造方法、電子デバイス及び電子機器
FR2876057A1 (fr) * 2004-10-04 2006-04-07 Blondeau Marc Sarl Procede de marquage en relief, a froid, sur un materiau verrier a surface lisse
WO2006051484A2 (fr) * 2004-11-10 2006-05-18 Koninklijke Philips Electronics N.V. Dispositif imprimante permettant d'imprimer des informations tactiles
WO2006067996A1 (fr) * 2004-12-21 2006-06-29 Ntn Corporation Procede de formation d’une partie generatrice de pression dynamique
US7134457B2 (en) * 2005-03-04 2006-11-14 Blind Faith School Of Music And Art Method of weaving braille and woven braille textile
US7674564B2 (en) * 2005-04-11 2010-03-09 Hewlett-Packard Development Company, L.P. Color filter
US7695998B2 (en) * 2005-07-02 2010-04-13 Hewlett-Packard Development Company, L.P. Methods for making and using high-mobility inorganic semiconductive films
US20070068898A1 (en) * 2005-09-29 2007-03-29 Lorenz Glen D Multi-level etching method and product
US10226919B2 (en) 2007-07-18 2019-03-12 Voxeljet Ag Articles and structures prepared by three-dimensional printing method
US20090091591A1 (en) * 2007-10-07 2009-04-09 Yohanan Sivan Printing Systems And Methods For Generating Relief Images
DE102007050953A1 (de) 2007-10-23 2009-04-30 Voxeljet Technology Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
US8623467B2 (en) * 2007-12-17 2014-01-07 Ricoh Co., Ltd. Tactile printing
US8282999B2 (en) * 2008-04-04 2012-10-09 Micron Technology, Inc. Spin-on film processing using acoustic radiation pressure
CN102119252B (zh) 2008-06-06 2015-02-18 拜耳医疗保健公司 用于向患者递送流体注射药丸以及处理有害流体的装置和方法
US20130323432A1 (en) * 2008-12-22 2013-12-05 Canadian Bank Note Company, Limited Composition for printing tactile features on a security document
US8556373B2 (en) 2009-06-19 2013-10-15 Burkhard Buestgens Multichannel-printhead or dosing head
DE102009029946A1 (de) * 2009-06-19 2010-12-30 Epainters GbR (vertretungsberechtigte Gesellschafter Burkhard Büstgens, 79194 Gundelfingen und Suheel Roland Georges, 79102 Freiburg) Druckkopf oder Dosierkopf
CH701491B1 (de) * 2009-07-17 2014-05-15 Fritz Gyger Drucken und lesen punktbasierter Codes.
US20110113976A1 (en) * 2009-11-18 2011-05-19 Xerox Corporation Security printing with curable toners
DE102009044802B4 (de) 2009-11-30 2017-11-23 Hymmen GmbH Maschinen- und Anlagenbau Verfahren und Vorrichtung zur Erzeugung einer dreidimensionalen Oberflächenstruktur auf einem Werkstück
DE102010006939A1 (de) 2010-02-04 2011-08-04 Voxeljet Technology GmbH, 86167 Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010013732A1 (de) 2010-03-31 2011-10-06 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010014969A1 (de) 2010-04-14 2011-10-20 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010015451A1 (de) 2010-04-17 2011-10-20 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Herstellen dreidimensionaler Objekte
US9108047B2 (en) 2010-06-04 2015-08-18 Bayer Medical Care Inc. System and method for planning and monitoring multi-dose radiopharmaceutical usage on radiopharmaceutical injectors
US9875670B2 (en) 2010-07-08 2018-01-23 King Abdulaziz City For Science And Technology Braille copy machine using image processing techniques
DE102010056346A1 (de) 2010-12-29 2012-07-05 Technische Universität München Verfahren zum schichtweisen Aufbau von Modellen
DE102011007957A1 (de) 2011-01-05 2012-07-05 Voxeljet Technology Gmbh Vorrichtung und Verfahren zum Aufbauen eines Schichtenkörpers mit wenigstens einem das Baufeld begrenzenden und hinsichtlich seiner Lage einstellbaren Körper
WO2013016547A2 (fr) 2011-07-26 2013-01-31 The Curators Of The University Of Missouri Viande comestible transformée
DE102011111498A1 (de) 2011-08-31 2013-02-28 Voxeljet Technology Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
US9636941B2 (en) * 2011-10-27 2017-05-02 Hewlett-Packard Indigo B.V. Embossing die creation
US20140290508A1 (en) * 2011-10-31 2014-10-02 Itzik Shaul In-line integrated raised printing
CN104010822A (zh) * 2011-10-31 2014-08-27 惠普发展公司,有限责任合伙企业 在线集成浮凸打印
US20130194366A1 (en) * 2012-01-26 2013-08-01 Xerox Corporation Systems and methods for digital raised printing
DE102012004213A1 (de) 2012-03-06 2013-09-12 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102012010272A1 (de) 2012-05-25 2013-11-28 Voxeljet Technology Gmbh Verfahren zum Herstellen dreidimensionaler Modelle mit speziellen Bauplattformen und Antriebssystemen
US9233776B2 (en) 2012-06-07 2016-01-12 Bayer Healthcare Llc Molecular imaging vial transport container and fluid injection system interface
US9125976B2 (en) 2012-06-07 2015-09-08 Bayer Medical Care Inc. Shield adapters
US9889288B2 (en) 2012-06-07 2018-02-13 Bayer Healthcare Llc Tubing connectors
US9393441B2 (en) 2012-06-07 2016-07-19 Bayer Healthcare Llc Radiopharmaceutical delivery and tube management system
DE102012012363A1 (de) 2012-06-22 2013-12-24 Voxeljet Technology Gmbh Vorrichtung zum Aufbauen eines Schichtenkörpers mit entlang des Austragbehälters bewegbarem Vorrats- oder Befüllbehälter
US9005710B2 (en) 2012-07-19 2015-04-14 Nike, Inc. Footwear assembly method with 3D printing
US9694389B2 (en) * 2012-07-24 2017-07-04 Integrated Deposition Solutions, Inc. Methods for producing coaxial structures using a microfluidic jet
US9332779B2 (en) 2014-02-05 2016-05-10 Modern Meadow, Inc. Dried food products formed from cultured muscle cells
DE102012020000A1 (de) 2012-10-12 2014-04-17 Voxeljet Ag 3D-Mehrstufenverfahren
DE102013004940A1 (de) 2012-10-15 2014-04-17 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit temperiertem Druckkopf
CN103722924B (zh) * 2012-10-16 2016-01-20 北京美科艺数码科技发展有限公司 一种彩色凹凸图像或文字打印方法
DE102012022859A1 (de) 2012-11-25 2014-05-28 Voxeljet Ag Aufbau eines 3D-Druckgerätes zur Herstellung von Bauteilen
US9050820B2 (en) 2012-12-29 2015-06-09 Atasheh Soleimani-Gorgani Three-dimensional ink-jet printing by home and office ink-jet printer
DE102013003303A1 (de) 2013-02-28 2014-08-28 FluidSolids AG Verfahren zum Herstellen eines Formteils mit einer wasserlöslichen Gussform sowie Materialsystem zu deren Herstellung
DE102013204168A1 (de) * 2013-03-11 2014-09-25 H. Marahrens Schilderwerk Siebdruckerei Stempel GbR(vertretungsberechtigte Gesellschafter Frau Janina Marahrens-Hashagen, 28757 Bremen; Herr Jörg Marahrens, 28217 Bremen) Verfahren zur Herstellung von Hinweisschildern mit einer Anzahl erhabener Zeichen
US9327886B2 (en) 2013-03-13 2016-05-03 Bayer Healthcare Llc Vial container with collar cap
US9757306B2 (en) 2013-03-13 2017-09-12 Bayer Healthcare Llc Vial container with collar cap
WO2014160778A1 (fr) * 2013-03-26 2014-10-02 Direct Color Systems Llc Imprimante de signes en braille compatible ada et un procédé d'impression d'encre durcissable par del uv à l'aide d'une imprimante à jet d'encre à plat
US9757961B2 (en) 2013-03-26 2017-09-12 Direct Color Llc ADA/Braille-compliant signage printer and a method of printing UV LED curable ink using a flat bed ink jet printer
US9969930B2 (en) 2013-08-15 2018-05-15 Halliburton Energy Services, Inc. Additive fabrication of proppants
WO2015038988A1 (fr) 2013-09-13 2015-03-19 Modern Meadow, Inc. Microsupports comestibles et exempts de produits d'origine animale pour viande transformée
DE102013018182A1 (de) 2013-10-30 2015-04-30 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit Bindersystem
DE102013018031A1 (de) 2013-12-02 2015-06-03 Voxeljet Ag Wechselbehälter mit verfahrbarer Seitenwand
DE102013020491A1 (de) 2013-12-11 2015-06-11 Voxeljet Ag 3D-Infiltrationsverfahren
EP2886307A1 (fr) 2013-12-20 2015-06-24 Voxeljet AG Dispositif, papier spécial et procédé de fabrication de pièces moulées
US10239229B2 (en) 2014-02-18 2019-03-26 Halliburton Energy Services, Inc. System and method for generating formation cores with realistic geological composition and geometry
US20160325487A1 (en) * 2014-02-24 2016-11-10 Empire Technology Development Llc Increased interlayer adhesion of three-dimensional printed articles
ES2544510B1 (es) * 2014-02-28 2016-07-13 Bsh Electrodomésticos España, S.A. Dispositivo de aparato doméstico
JP5931948B2 (ja) * 2014-03-18 2016-06-08 株式会社東芝 ノズル、積層造形装置、および積層造形物の製造方法
DE102014004692A1 (de) 2014-03-31 2015-10-15 Voxeljet Ag Verfahren und Vorrichtung für den 3D-Druck mit klimatisierter Verfahrensführung
DE102014007584A1 (de) 2014-05-26 2015-11-26 Voxeljet Ag 3D-Umkehrdruckverfahren und Vorrichtung
EP3174651B1 (fr) 2014-08-02 2020-06-17 voxeljet AG Procédé et moule de fonte s'utilisant en particulier dans un procédé de reprise
WO2016077473A1 (fr) * 2014-11-14 2016-05-19 Nielsen-Cole Cole Techniques et systèmes d'impression en 3d pour former des matériaux composites
DE102015006533A1 (de) 2014-12-22 2016-06-23 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Schichtaufbautechnik
DE102015102180A1 (de) * 2015-02-16 2016-08-18 Wemhöner Surface Technologies GmbH & Co. KG Verfahren zur Erzeugung einer Oberflächenstruktur auf einer Oberfläche eines Werkstückes und damit erzeugtes Werkstück
DE102015003372A1 (de) 2015-03-17 2016-09-22 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Doppelrecoater
DE102015206813A1 (de) * 2015-04-15 2016-10-20 Robert Bosch Gmbh Vorrichtung und Verfahren zum Auftragen eines Fluids auf einen Werkstückträger zum Erzeugen eines Werkstücks und System zum Erzeugen eines Werkstücks
DE102015006363A1 (de) 2015-05-20 2016-12-15 Voxeljet Ag Phenolharzverfahren
US20170291261A1 (en) * 2015-06-12 2017-10-12 Ashok Chand Mathur Method And Apparatus Of Very Much Faster 3D Printer
DE102015011503A1 (de) 2015-09-09 2017-03-09 Voxeljet Ag Verfahren zum Auftragen von Fluiden
DE102015011790A1 (de) 2015-09-16 2017-03-16 Voxeljet Ag Vorrichtung und Verfahren zum Herstellen dreidimensionaler Formteile
US11913166B2 (en) 2015-09-21 2024-02-27 Modern Meadow, Inc. Fiber reinforced tissue composites
JP6642790B2 (ja) * 2015-10-15 2020-02-12 セイコーエプソン株式会社 三次元造形物の製造方法及び三次元造形物の製造装置
DE102015015353A1 (de) 2015-12-01 2017-06-01 Voxeljet Ag Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Bauteilen mittels Überschussmengensensor
KR102162854B1 (ko) 2015-12-21 2020-10-08 와커 헤미 아게 3d 인쇄 디바이스를 사용하여 대상물을 생산하는 방법 및 디바이스
US11542374B2 (en) 2016-02-15 2023-01-03 Modern Meadow, Inc. Composite biofabricated material
WO2017212529A1 (fr) * 2016-06-06 2017-12-14 オリンパス株式会社 Procédé de fabrication d'un élément optique et appareil de fabrication d'un élément optique
FR3055818A1 (fr) * 2016-09-14 2018-03-16 Exel Industries Dispositif de mise en rotation d'un fluide a l'interieur d'une buse, ensemble comprenant un tel dispositif et dispositif d'application
DE102016013610A1 (de) 2016-11-15 2018-05-17 Voxeljet Ag Intregierte Druckkopfwartungsstation für das pulverbettbasierte 3D-Drucken
JP2018122564A (ja) * 2017-02-03 2018-08-09 凸版印刷株式会社 点字形成方法ならびに情報媒体
DE102017006860A1 (de) 2017-07-21 2019-01-24 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Spektrumswandler
JP6991015B2 (ja) * 2017-08-29 2022-01-12 株式会社ミマキエンジニアリング 点字体、インクジェットプリンタ、および、点字体の形成方法
WO2019078809A1 (fr) 2017-10-16 2019-04-25 Hewlett-Packard Development Company, L.P. Évents pour ensembles de distribution de fluide
AU2018253595A1 (en) 2017-11-13 2019-05-30 Modern Meadow, Inc. Biofabricated leather articles having zonal properties
US10682816B2 (en) 2017-11-20 2020-06-16 Xerox Corporation System and method for adjusting the speed of a multi-nozzle extruder during additive manufacturing with reference to an angular orientation of the extruder
US10957967B2 (en) 2018-03-21 2021-03-23 Aecom Support structures for transportation systems
WO2019200042A1 (fr) 2018-04-11 2019-10-17 Trustees Of Boston University Plate-forme modifiée pour générer des tissus cardiaques 3d
US11559918B2 (en) * 2018-10-10 2023-01-24 Rolls-Royce Corporation Additively manufactured composite components
JP7135751B2 (ja) * 2018-11-13 2022-09-13 株式会社リコー 液体循環装置、液体を吐出する装置
MX2021008462A (es) 2019-01-17 2021-08-19 Modern Meadow Inc Materiales de colageno estratificados y metodos para fabricarlos.
DE102019000796A1 (de) 2019-02-05 2020-08-06 Voxeljet Ag Wechselbare Prozesseinheit
US11318679B2 (en) 2019-06-25 2022-05-03 Mighty Buildings, Inc. 3D printer print head system with curing module on rotation platform
DE102019007595A1 (de) 2019-11-01 2021-05-06 Voxeljet Ag 3d-druckverfahren und damit hergestelltes formteil unter verwendung von ligninsulfat
CN111014667B (zh) * 2019-11-07 2022-03-29 上海汉邦联航激光科技有限公司 一种节流器的制备方法
JP6972096B2 (ja) * 2019-12-27 2021-11-24 俊一 朝野 立体印刷物、及び立体印刷物の形成方法
US11504879B2 (en) 2020-04-17 2022-11-22 Beehive Industries, LLC Powder spreading apparatus and system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4104645A (en) * 1975-10-28 1978-08-01 Xerox Corporation Coincidence ink jet
US4291316A (en) * 1975-06-03 1981-09-22 Ricoh Co., Ltd. System for driving ink drop generator of ink-jet printer
DE3126372A1 (de) * 1980-07-04 1982-09-02 Hitachi Koki Co., Ltd., Tokyo Tintenstrahlschreiber
US4523199A (en) * 1982-09-29 1985-06-11 Exxon Research & Engineering Co. High stability demand ink jet apparatus and method of operating same
JPH0357625A (ja) * 1989-07-25 1991-03-13 Brother Ind Ltd 3次元成形装置
US5059266A (en) * 1989-05-23 1991-10-22 Brother Kogyo Kabushiki Kaisha Apparatus and method for forming three-dimensional article
JPH0499646A (ja) * 1990-08-17 1992-03-31 Nec Corp インクジェットヘッド
US5149548A (en) * 1989-07-03 1992-09-22 Brother Kogyo Kabushiki Kaisha Apparatus for forming three-dimension article
US5182571A (en) * 1990-02-26 1993-01-26 Spectra, Inc. Hot melt ink jet transparency
WO1995005943A1 (fr) * 1993-08-26 1995-03-02 Sanders Prototypes, Inc. Realisateur de modeles en trois dimensions
CA2116875A1 (fr) * 1994-03-01 1995-09-02 Barrie Peter Keyworth Procede et dispositif de fabrication d'elements optiques par distribution directe d'un liquide durcissable
FR2717420A1 (fr) * 1994-03-16 1995-09-22 Reynaud Guy Procédé d'impression en relief, notamment de caractères Braille.

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5459174A (en) * 1988-05-27 1995-10-17 Merrill; Natalie A. Radiation curable isoolefin copolymers
WO1992011322A2 (fr) * 1990-12-20 1992-07-09 Exxon Chemical Patents Inc. Copolymeres butyles durcissables par ultraviolets et/ou faisceau electronique pour revetements resistant a la corrosion
US5512122A (en) * 1991-10-17 1996-04-30 Luminart Inc. Printing method
US5369261A (en) * 1992-02-12 1994-11-29 Shamir; Harry Multi-color information encoding system
CN1064357A (zh) * 1992-02-25 1992-09-09 中国科学院上海技术物理研究所 光晶体管
US5510066A (en) * 1992-08-14 1996-04-23 Guild Associates, Inc. Method for free-formation of a free-standing, three-dimensional body
US5231450A (en) * 1992-08-27 1993-07-27 Daniels John J Three-dimensional color image printer
US5380769A (en) * 1993-01-19 1995-01-10 Tektronix Inc. Reactive ink compositions and systems
US5539100A (en) * 1993-07-01 1996-07-23 The United States Of America As Represented By The United States Department Of Energy Organic solid state switches incorporating porphyrin compounds and method for producing organic solid state optical switches
JP3057625B2 (ja) 1993-12-07 2000-07-04 黒沢建設株式会社 グラウンドアンカー
US5609919A (en) * 1994-04-21 1997-03-11 Altamat Inc. Method for producing droplets
EP0807014B1 (fr) * 1995-02-01 2002-05-02 3D Systems, Inc. Reenduction rapide d'objets tridimensionnels formes sur une base de coupe transversale
US5627578A (en) * 1995-02-02 1997-05-06 Thermotek, Inc. Desk top printing of raised text, graphics, and braille
US5649480A (en) * 1995-06-07 1997-07-22 Yim; Joan Marilyn Touch-readable product and associated process
US6120588A (en) * 1996-07-19 2000-09-19 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
JPH0966603A (ja) * 1995-08-31 1997-03-11 Brother Ind Ltd インク噴射装置の駆動方法
US5740287A (en) * 1995-12-07 1998-04-14 The United States Of America As Represented By The Secretary Of The Army Optical switch that utilizes one-dimensional, nonlinear, multilayer dielectric stacks
US6053596A (en) * 1996-03-22 2000-04-25 Ricoh Company, Ltd. Ink-jet printing device and driving circuit used in the ink-jet printing device
DE19712233C2 (de) * 1996-03-26 2003-12-11 Lg Philips Lcd Co Flüssigkristallanzeige und Herstellungsverfahren dafür
GB9611582D0 (en) * 1996-06-04 1996-08-07 Thin Film Technology Consultan 3D printing and forming of structures

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291316A (en) * 1975-06-03 1981-09-22 Ricoh Co., Ltd. System for driving ink drop generator of ink-jet printer
US4104645A (en) * 1975-10-28 1978-08-01 Xerox Corporation Coincidence ink jet
DE3126372A1 (de) * 1980-07-04 1982-09-02 Hitachi Koki Co., Ltd., Tokyo Tintenstrahlschreiber
US4523199A (en) * 1982-09-29 1985-06-11 Exxon Research & Engineering Co. High stability demand ink jet apparatus and method of operating same
US5059266A (en) * 1989-05-23 1991-10-22 Brother Kogyo Kabushiki Kaisha Apparatus and method for forming three-dimensional article
US5149548A (en) * 1989-07-03 1992-09-22 Brother Kogyo Kabushiki Kaisha Apparatus for forming three-dimension article
JPH0357625A (ja) * 1989-07-25 1991-03-13 Brother Ind Ltd 3次元成形装置
US5182571A (en) * 1990-02-26 1993-01-26 Spectra, Inc. Hot melt ink jet transparency
JPH0499646A (ja) * 1990-08-17 1992-03-31 Nec Corp インクジェットヘッド
WO1995005943A1 (fr) * 1993-08-26 1995-03-02 Sanders Prototypes, Inc. Realisateur de modeles en trois dimensions
CA2116875A1 (fr) * 1994-03-01 1995-09-02 Barrie Peter Keyworth Procede et dispositif de fabrication d'elements optiques par distribution directe d'un liquide durcissable
FR2717420A1 (fr) * 1994-03-16 1995-09-22 Reynaud Guy Procédé d'impression en relief, notamment de caractères Braille.

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Braille Printed Dot Configuration. August 1977." IBM TECHNICAL DISCLOSURE BULLETIN, vol. 20, no. 3, August 1977, NEW YORK, US, page 1204 XP002041660 *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 208 (M-1117), 28 May 1991 -& JP 03 057625 A (BROTHER IND LTD), 13 March 1991, *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 335 (M-1283), 21 July 1992 -& JP 04 099646 A (NEC CORP), 31 March 1992, *

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6164850A (en) * 1996-06-04 2000-12-26 Speakman; Stuart 3D printing and forming of structures
US6402403B1 (en) 1996-06-04 2002-06-11 Stuart Speakman 3D printing and forming of structures
GB2369087A (en) * 1997-10-14 2002-05-22 Patterning Technologies Ltd Method of forming a circuit element on a surface using droplet deposition of an organically-modified polymeric-based or inorganic-based fluid
US7129166B2 (en) 1997-10-14 2006-10-31 Patterning Technologies Limited Method of forming an electronic device
GB2369087B (en) * 1997-10-14 2002-10-02 Patterning Technologies Ltd Method of forming a circuit element on a surface
US7323634B2 (en) 1998-10-14 2008-01-29 Patterning Technologies Limited Method of forming an electronic device
GB2345869A (en) * 1998-11-27 2000-07-26 Aea Technology Plc Formation of monodisperse particles
GB2345869B (en) * 1998-11-27 2002-06-05 Aea Technology Plc Formation of monodisperse particles
US6331290B1 (en) 1998-11-27 2001-12-18 Accentus Plc Formation of monodisperse particles
US6849308B1 (en) 1999-05-27 2005-02-01 Stuart Speakman Method of forming a masking pattern on a surface
EP1163552B1 (fr) * 1999-05-27 2003-08-27 Patterning Technologies Limited Procede de formation d'un motif de masquage sur une surface
EP1057631A1 (fr) * 1999-06-03 2000-12-06 Eastman Kodak Company Appareil pour former des couches texturées sur des images
DE19931112A1 (de) * 1999-07-06 2001-01-25 Ekra Eduard Kraft Gmbh Verfahren zur Herstellung eines Mikrobauelements, Verwendung eines nach dem Tintendruckprinzip arbeitenden Druckkopfes zur Herstellung eines Mikrobauelements und Vorrichtung zum Herstellen eines Mikrobauelements
WO2001002173A1 (fr) * 1999-07-06 2001-01-11 Ekra Eduard Kraft Gmbh Procede de production d'un microcomposant, utilisation d'une tete d'impression fonctionnant selon le principe d'impression par jet d'encre et destinee a la production d'un microcomposant et dispositif de production de ce microcomposant
WO2002022366A1 (fr) * 2000-09-15 2002-03-21 Durst Phototechnik Ag Unite de nettoyage pour dispositif d'impression a jet d'encre
DE10153208A1 (de) * 2001-10-27 2003-05-15 Bosch Gmbh Robert Verfahren zur Herstellung eines Sensorelementes und dessen Verwendung
US7416764B2 (en) 2001-11-13 2008-08-26 Huntsman Advanced Materials Americas Inc. Production of composites articles composed of thin layers
EP1405723A1 (fr) * 2002-03-26 2004-04-07 Mastermind Co., Ltd. Procede de creation d'image imprimee tridimensionnelle et article imprime tridimensionnel
EP1405723A4 (fr) * 2002-03-26 2010-03-10 Mastermind Co Ltd Procede de creation d'image imprimee tridimensionnelle et article imprime tridimensionnel
EP1683826A2 (fr) 2005-01-25 2006-07-26 Hansgeorg Neubig Procédé de fabrication d'une structure en relief tridimensionnel sur la surface d'un support, composite stratifié pour la préparation d'un tel procédé et utilisation d'une structure en relief préparée au moyen de ce procédé
EP1683826A3 (fr) * 2005-01-25 2009-01-28 Hansgeorg Neubig Procédé de fabrication d'une structure en relief tridimensionnel sur la surface d'un support, composite stratifié pour la préparation d'un tel procédé et utilisation d'une structure en relief préparée au moyen de ce procédé
USRE45067E1 (en) 2005-06-14 2014-08-12 Mgi France Numerical jet machine for the application of a coating onto a substrate
EP1749670B1 (fr) * 2005-06-14 2012-03-21 Mgi France Machine numérique à jet pour la pose d'un revêtement sur un substrat
EP2221183A1 (fr) * 2005-06-14 2010-08-25 Mgi France Machine numérique à jet pour dépose d`un revêtement sur un substrat
WO2007045335A2 (fr) * 2005-09-28 2007-04-26 August Ludwig Procede de production d'une image lenticulaire, procede de production d'une ecriture braille, produits realises au moyen de ces procedes et machine d'impression pour la production d'images lenticulaires, de lentilles optiques ou de caracteres braille
WO2007045335A3 (fr) * 2005-09-28 2007-06-07 August Ludwig Procede de production d'une image lenticulaire, procede de production d'une ecriture braille, produits realises au moyen de ces procedes et machine d'impression pour la production d'images lenticulaires, de lentilles optiques ou de caracteres braille
EP2042332A3 (fr) * 2007-09-25 2010-07-14 The Boeing Company Surfaces texturées
US8540914B2 (en) 2007-09-25 2013-09-24 The Boeing Company Textured surfaces
US7824590B2 (en) 2007-09-25 2010-11-02 The Boeing Company Textured surfaces
US9216566B2 (en) 2008-12-19 2015-12-22 Agfa Graphics Nv Imaging apparatus and method for making flexographic printing masters
WO2010069748A1 (fr) * 2008-12-19 2010-06-24 Agfa Graphics Nv Appareil et procédé d'imagerie pour réaliser des matrices d'impression flexographiques
EP2199082A1 (fr) * 2008-12-19 2010-06-23 Agfa Graphics N.V. Appareil d'imagerie et procédé pour la fabrication de supports d'impression flexographique
US8846778B2 (en) 2008-12-22 2014-09-30 Canadian Bank Note Company, Limited Method and composition for printing tactile marks and security document formed therefrom
US10365413B2 (en) 2009-02-14 2019-07-30 Luxexcel Holding B.V. Device for directing light beams, illustration device, method for producing a device and an illustration device
EP2305483A1 (fr) * 2009-10-05 2011-04-06 Raunjak Intermedias GmbH Procédé de fabrication de produits d'impression à l'aide d'une surimpression tactile
EP2392473A1 (fr) * 2010-06-07 2011-12-07 LUXeXcel Holding BV. Tête d'impression, kit de mise à jour d'une imprimante à jet d'encre conventionnelle, imprimante à jet d'encre et procédé d'impression de structures optiques
EP2636534A1 (fr) * 2010-06-07 2013-09-11 LUXeXcel Holding BV. Procédé d'impression de structures optiques
US8840235B2 (en) 2010-06-07 2014-09-23 Luxexcel Holding Bv. Print head, upgrade kit for a conventional inkjet printer, inkjet printer and method for printing optical structures
EP2669088A1 (fr) * 2012-05-30 2013-12-04 Till GmbH Dispositif d'obturation pour têtes d'impression
WO2014082382A1 (fr) * 2012-11-30 2014-06-05 Li Huarong Imprimante numérique tridimensionnelle et son procédé d'impression d'images stéréoscopiques
WO2014193961A1 (fr) * 2013-05-31 2014-12-04 Johnson Controls Technology Company Système et procédé permettant de former un composant de garniture de véhicule par l'intermédiaire d'une impression en trois dimensions, et véhicule
US10744753B2 (en) 2014-09-26 2020-08-18 Stratasys, Inc. Print assembly for additive manufacturing system, and methods of use thereof
CN106794626A (zh) * 2014-09-26 2017-05-31 斯特塔思有限公司 用于增材制造系统的液化器组件及其使用方法
US20170217089A1 (en) * 2014-09-26 2017-08-03 Stratasys, Inc. Liquefier assemblies for additive manufacturing systems, and methods of use thereof
WO2016049642A1 (fr) * 2014-09-26 2016-03-31 Stratasys, Inc. Ensembles liquéfacteurs pour systèmes de fabrication additive, et leurs procédés d'utilisation
CN106794626B (zh) * 2014-09-26 2019-08-27 斯特塔思有限公司 用于增材制造系统的液化器组件及其使用方法
WO2016049640A1 (fr) * 2014-09-26 2016-03-31 Stratasys, Inc. Ensemble d'impression pour un système de fabrication additive et ses procédés d'utilisation
US11213998B2 (en) 2014-09-26 2022-01-04 Stratasys, Inc. Liquefier assemblies for additive manufacturing systems, and methods of use thereof
US11433599B2 (en) 2014-09-26 2022-09-06 Stratasys, Inc. Print assembly for additive manufacturing system, and methods of use thereof
US11485069B2 (en) 2014-09-26 2022-11-01 Stratasys, Inc. Print assembly for additive manufacturing system, and methods of use thereof
EP3495114A1 (fr) * 2017-12-05 2019-06-12 Medizinische Hochschule Hannover Procédé de fabrication d'une composant ainsi qu'installation associée
WO2019110329A1 (fr) * 2017-12-05 2019-06-13 Medizinische Hochschule Hannover Procédé pour la fabrication d'un composant et installation correspondante
US10974444B1 (en) 2020-09-21 2021-04-13 United Arab Emirates University Product and method to manufacture multi-layered, multi-material composite sandwich structure with hyper elasticity rubber like core made by fusion deposition modeling
US11235514B1 (en) 2020-09-21 2022-02-01 United Arab Emirates University High flexible sandwich panel made of glass fibre reinforced nylon with super elastic rubber core using fused filament fabrication (FFF)

Also Published As

Publication number Publication date
EP0915760B1 (fr) 2002-05-15
DK0915760T3 (da) 2002-09-09
AU2973597A (en) 1998-01-07
US6402403B1 (en) 2002-06-11
EP0915760A2 (fr) 1999-05-19
DE69712622D1 (de) 2002-06-20
PT915760E (pt) 2002-10-31
ES2176742T3 (es) 2002-12-01
ATE217580T1 (de) 2002-06-15
DE69712622T2 (de) 2003-01-02
GB9611582D0 (en) 1996-08-07
US6164850A (en) 2000-12-26
WO1997048557A3 (fr) 1998-03-12

Similar Documents

Publication Publication Date Title
US6164850A (en) 3D printing and forming of structures
CN100352652C (zh) 打印头
US5631678A (en) Acoustic printheads with optical alignment
GB2350321A (en) Method of forming a masking or spacer pattern on a substrate using inkjet droplet deposition
KR100435020B1 (ko) 잉크 제트 기록 헤드 및 그의 제조 방법
Wang et al. Maskless lithography using drop-on-demand inkjet printing method
US5948290A (en) Method of fabricating an ink jet recording head
TW589253B (en) Method for producing nozzle plate of ink-jet print head by photolithography
GB2330331A (en) Method of forming a circuit element by droplet deposition
WO2007117929A2 (fr) Module d'impression à jet liquide
JP2980128B2 (ja) 液体墳射記録ヘッド
US20130100212A1 (en) Process for Adding Thermoset Layer to Piezoelectric Printhead
US20120242747A1 (en) Liquid ejection head and manufacturing method thereof
CN1408552A (zh) 热泡式喷墨打印头及其喷嘴板的反向显影法
JP3652022B2 (ja) インクジェット記録ヘッド及びインクジェット記録ヘッドの製造方法
US20080088673A1 (en) Method of producing inkjet channels using photoimageable materials and inkjet printhead produced thereby
JPH0367659A (ja) インクジェット記録装置
US20110232089A1 (en) Method of manufacturing inkjet print head
JP2006001215A (ja) ノズルプレートの製造方法、液滴吐出ヘッドおよび液滴吐出装置
JPH05261925A (ja) インクジェット記録方法及び記録ヘッド
Tomotake Technology of Konica Minolta's Inkjet Printhead
KR100565808B1 (ko) 잉크분사장치의 노즐부 제작방법
KR20050016688A (ko) 프린트헤드
JP2021053879A (ja) ノズル部材の製造方法、液体吐出ヘッドの製造方法、液体を吐出する装置の製造方法
EP4025431A1 (fr) Protection d'orifice

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997924173

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 98502469

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1997924173

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09194850

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1997924173

Country of ref document: EP