WO1998000495A1 - Cleansing compositions - Google Patents

Cleansing compositions Download PDF

Info

Publication number
WO1998000495A1
WO1998000495A1 PCT/US1997/011591 US9711591W WO9800495A1 WO 1998000495 A1 WO1998000495 A1 WO 1998000495A1 US 9711591 W US9711591 W US 9711591W WO 9800495 A1 WO9800495 A1 WO 9800495A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
composition according
soluble
alkyl
weight
Prior art date
Application number
PCT/US1997/011591
Other languages
French (fr)
Inventor
Alan Brooks
Charles Marie Alain Du Reau
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to US09/214,205 priority Critical patent/US6191083B1/en
Priority to EP97931537A priority patent/EP1019470A4/en
Priority to JP10504462A priority patent/JPH11514032A/en
Priority to BR9710139A priority patent/BR9710139A/en
Publication of WO1998000495A1 publication Critical patent/WO1998000495A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/342Alcohols having more than seven atoms in an unbroken chain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/39Derivatives containing from 2 to 10 oxyalkylene groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • A61K8/442Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof substituted by amido group(s)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/46Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
    • A61K8/463Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfuric acid derivatives, e.g. sodium lauryl sulfate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/87Polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/54Polymers characterized by specific structures/properties
    • A61K2800/542Polymers characterized by specific structures/properties characterized by the charge
    • A61K2800/5426Polymers characterized by specific structures/properties characterized by the charge cationic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair

Definitions

  • the present invention relates to cleansing compositions.
  • mild personal cleansing compositions which display improved thickening and rheological properties in combination with good skin feel attributes, rinsing behaviour and foaming properties which are suitable for simultaneously cleansing and conditioning the skin and/or the hair and which may be used, for example, in the form of foam bath preparations, shower products, skin cleansers, hand, face and body cleansers, shampoos, etc.
  • Mild cosmetic compositions must satisfy a number of criteria including cleansing power, foaming properties and mildness/low irritancy/good feel with respect to the skin, hair and the ocular mucosae.
  • Skin is made up of several layers of cells which coat and protect the keratin and collagen fibrous proteins that form the skeleton of its structure. The outermost of these layers, referred to as the stratum corneum, is known to be composed of 250 A protein bundles surrounded by 80 A thick layers. Hair similarly has a protective outer coating enclosing the hair fibre which is called the cuticle.
  • Anionic surfactants can penetrate the stratum corneum membrane and the cuticle and, by delipidization destroy membrane integrity. This interference with skin and hair protective membranes can lead to a rough skin feel and eye irritation and may eventually permit the surfactant to interact with the keratin and hair proteins creating irritation and loss of barrier and water retention functions.
  • Ideal cosmetic cleansers should cleanse the skin or hair gently, without defatting and/or drying the hair and skin and without irritating the ocular mucosae or leaving skin taut after frequent use.
  • Most lathering soaps, shower and bath products, shampoos and bars fail in this respect.
  • Certain synthetic surfactants are known to be mild.
  • a major drawback of most mild synthetic surfactant systems when formulated for shampooing or personal cleansing is poor lather performance compared to the highest shampoo and bar soap standards.
  • surfactants that are among the mildest are marginal in lather.
  • the use of known high sudsing anionic surfactants such as alkyl sulphates with lather boosters can yield acceptable lather volume and quality but at the expense of clinical skin mildness.
  • water-soluble polymers can be used to provide desirable product thickening attributes in surfactant systems and, furthermore, that hydrophobic modification of water-soluble polymers can improve their thickening efficacy.
  • hydrophobic modification of water-soluble polymers can improve their thickening efficacy.
  • the thickening properties of such hydrophobically modified water-soluble polymers can be significantly reduced in non-dilute, water-soluble surfactant systems (as discussed in Sau and Landoll 'Polymers in Aqueous Media', Advances in Chemistry Series No. 223, Chapters 8, 17, 18, edited by J.E. Glass).
  • Non-dilute means systems comprising greater than about 1% by weight of water- soluble surfactant.
  • Water-soluble as defined herein, means a surfactant having a molecular weight of less than about 20,000 wherein the surfactant is capable of forming a clear, isotropic solution when dissolved in water at 0.2 % w/w under ambient conditions (25°C).
  • fatty alcohol ethoxylates and fatty alcohols can thicken systems containing both water-soluble surfactant and electrolyte (as illustrated, for example, in Hoechst Surfactants, published Trade Literature).
  • fatty alcohol ethoxylates and fatty alcohols modify the micellar structure of the water-soluble surfactant system, resulting in undesirable effects on product characteristics such as the lather profile, rinsing behaviour and in-use product feel attributes.
  • Applicant has also found, that, in order to achieve good product thickening in non-dilute, water-soluble surfactant systems via the exclusive use of a fatty alcohol ethoxylate and/or fatty alcohol thickening agent, the amount of fatty thickener required to deliver acceptable thickening attributes results in reduced lather and rinsing performance.
  • compositions having excellent product thickening and rheology attributes, both " under product storage and in-use conditions are provided by the combination of a thickening system consisting essentially of associative polymer and polar oil in combination with a non-dilute, water-soluble surfactant system. Furthermore it has also been found that the thickening system of the present invention can deliver desirable thickening effects from a significantly lower level of total thickener than previously utilised in surfactant compositions.
  • thickening system of the present invention is particularly valuable for thickening certain mild water- soluble nonionic surfactants such as polyhydroxy fatty acid amide surfactant.
  • a liquid personal cleansing composition comprising:
  • the polar oil has an average carbon chain length of from about 10 to about 18 carbon atoms and wherein the water-soluble surfactants have an average carbon chain length of from about 10 to about 18 carbon atoms.
  • a personal cleansing composition comprising:
  • the polar oil has an average carbon chain length of from about 10 to about 18 carbon atoms and wherein the water-soluble surfactants have an average carbon chain length of from about 10 to about 18 carbon atoms.
  • a personal cleansing composition comprising:
  • a thickening system consisting essentially of hydrophobically modified water-soluble nonionic polymer selected from hydrophobically modified alkoxy urethanes, hydrophobically modified hydroxy alkyl celluloses, hydrophobically modified nonionic polyols and mixtures thereof and polar oil having a required HLB of at least 12;
  • a thickening system consisting essentially of hydrophobically modified water-soluble nonionic polymer selected from hydrophobically modified alkoxy urethanes, hydrophobically modified hydroxy alkyl celluloses, hydrophobically modified nonionic polyols and mixtures thereof and polar oil having a required HLB of at least 12;
  • water-soluble surfactant selected from anionic surfactant, nonionic, zwitterionic and amphoteric surfactants and mixtures thereof;
  • the polar oil has an average carbon chain length of from about 12 to about 14 carbon atoms and wherein the water-soluble surfactants have an average carbon chain length of from about 12 to about 14 carbon atoms.
  • R is C5-C31 hydrocarbyl
  • R9 is hydrogen, C ⁇ -C& alkyl or hydroxyalkyl
  • Z2 is a polyhydroxyhydrocarbyl moiety
  • auxiliary surfactant other than the polyhydroxy fatty acid amide surfactant of (b), selected from anionic surfactant, nonionic, zwitterionic and amphoteric surfactants and mixtures thereof;
  • the average carbon chain length of the polar oil is from about 10 to about 18 carbon atoms and is substantially similar to the average carbon chain length of the combined polyhydroxy fatty acid amide and other mild surfactants in the water-soluble, non-dilute surfactant matrix.
  • the invention takes the form of a non-dilute, foam producing liquid cleansing composition having good product thickening and rheological properties.
  • liquid cleansing compositions herein combine a thickening system consisting essentially of associative polymer and polar oil in combination with surfactants and, optionally, polymeric skin conditioning agents. Preferred embodiments also contain perfume or cosmetic oils.
  • the liquid cleansing compositions herein are based on a thickening system consisting essentially of associative polymer, preferably hydrophobically modified water-soluble, nonionic polymer, and polar oil having a required HLB value of at least about 12, in combination with a water-soluble, non-dilute surfactant system, and optionally polymeric skin conditioning agents.
  • the total level of associative polymer and polar oil in the thickening system according to the present invention is from about 0.01% to about 15%, preferably about 0.01% to about 10%, more preferably from about 0.05% to about 8%, most preferably from about 0.1% to about 4%, especially from about 0.1% to about 2%, most especially from about 0.5% to about 1.5% by weight.
  • the preferred ratio of associative polymer to polar oil is in the range of from about 1 :5 to about 5:1, more preferably from about 1:3 to about 3:1, most preferably from about 1 :2 to about 1:2.
  • the thickening system of the invention is valuable for the delivery of good product thickening and rheological attributes during product storage, dispensing and use.
  • a further benefit of the thickening systems of the present invention is that the product thickening is not dependant of the presence of electrolyte in the surfactant matrix.
  • the product thickening is not dependant of the presence of electrolyte in the surfactant matrix.
  • the thickening systems of the present invention contain, as an essential component, an associative polymer at a level of from about 0.01% to about 12%, preferably from about 0.01% to about 10%, more preferably from about 0.05% to about 8%, most preferably from about 0.1% to about 4%, especially from about 0.1% to about 2%, most especially from about 0.5% to about 1.5% by weight.
  • Associative polymers are valuable, in the compositions herein, in combination with polar oils having a required HLB of at least 12, for the delivery of good product thickening and rheological attributes in non-dilute, water-soluble surfactant systems.
  • preferred associative polymers are nonionic associative polymers having an average molecular weight in the range of from about 2,000 to about 2,000,000, preferably from about 10,000 to about 1,000,000, more preferably from about 20,000 to about 800,000.
  • Associative polymers are a subclass of water-soluble polymers and are generally water-soluble macromolecular structures having both hydrophilic and hydrophobic components. Associative polymers can thicken surfactant solutions as a result of intermolecular association between the various water-insoluble hydrophobic components which for a part of, or are bonded to (directly or indirectly) a water-soluble polymer backbone (discussed in detail by G. D. Shay in Polymers in Aqueous Media, Advances in Chemistry series 223, pp467. Edited by J. E. Glass).
  • associative polymers are known to build viscosity in the presence of low levels of water-soluble surfactants (i.e., less than about 1% w/w), as described in EP-A-0,412,706, and the literature reports on the interaction of such associative thickeners with specific surfactants (Sau and Landoll, 'Polymers in Aqueous Media', Advances in Chemistry Series No. 223, pp 343-364, Edited by J.E. Glass).
  • Hydrophobically modifed polymer means, a water soluble (hydrophilic) associative polymer which has been modified by the addition of hydrophobic groups to enhance its thickening potential (as discussed in Sau and Landoll 'Polymers in Aqueous Media', Advances in Chemistry Series No. 223, Chapters 8, 17, 18, edited by J.E. Glass).
  • the generally accepted model of product thickening, in terms of hydrophobically modified water-soluble nonionic polymers, is that thickening results from intermolecular association between the hydrophobic groups on the polymer (Sau and Landoll, 'Polymers in Aqueous Media', Advances in Chemistry Series No. 223, pp 343-364, edited by J.E. Glass).
  • HHEC hydrophobically modified hydroxy ethyl cellulose
  • HEUR hydrophobically modified ethoxy urethane
  • Preferred liquid cleansing compositions herein are based on a thickening system consisting essentially of hydrophobically modified water-soluble, nonionic polymer and polar oil having a required HLB value of at least about 12, in combination with a water-soluble, non-dilute surfactant system, and optionally polymeric skin conditioning agents.
  • Water-soluble, in terms of hydrophobically modified water-soluble nonionic polymer, as defined herein, means, polymer having at least a water-soluble backbone and/or linkages.
  • hydrophobically modified water-soluble nonionic polymer and polar oil thickeners of the present invention interact, in the presence of non-dilute, water-soluble surfactant systems to deliver excellent product thickening characteristics.
  • Hydrophobically modified water-soluble nonionic polymers suitable for use in the thickening systems of the present invention include hydrophobically modified hydroxyalkyl cellulose polymers such as hydrophobically modified hydroxyethyl cellulose (HMHEC), hydrophobically modified alkoxylated urethane polymers, such as hydrophobically modified ethoxylated urethane (HEUR), and hydrophobically modified nonionic polyols.
  • hydrophobically modified hydroxyalkyl cellulose polymers such as hydrophobically modified hydroxyethyl cellulose (HMHEC), hydrophobically modified alkoxylated urethane polymers, such as hydrophobically modified ethoxylated urethane (HEUR), and hydrophobically modified nonionic polyols.
  • HHEC hydrophobically modified hydroxyethyl cellulose
  • HEUR hydrophobically modified alkoxylated urethane
  • nonionic polyols such as hydrophobically modified
  • Cellulose ethers suitable for use herein have, prior to hydrophobic modification, a sufficient degree of nonionic substitution selected from methyl, ethyl, hydroxyethyl and hydroxypropyl to cause them to be water-soluble.
  • the preferred degree of nonionic substitution is in the range of from about 1.8 to about 4.0, preferably from about 2 to about 3, and especially from about 2.2 to about 2.8 by weight.
  • the cellulose ethers are then further substituted with alkyl or alkenyl groups having from about 10 to about 24, preferably from about 14 to about 18 carbon atoms in an amount of from about 0.1 to about 1, preferably from about 0.3 to about 0.8, and especially from about 0.4 to about 0.6 weight percent.
  • the cellulose ether to be modified is preferably one of low to medium molecular weight, i.e., less than 800,000 and preferably between 20,000 and 700,000 (75 to 2500 D.P.).
  • Degree of polymerisation (D.P.) as defined herein, means, the average number of glycoside units in the polymer.
  • Preferred cellulose ethers for use herein are selected from commercially available nonionic cellulose ethers such as hydroxy ethyl cellulose, hydroxy propyl methyl cellulose, hydroxy methyl cellulose, ethyl hydroxy ethyl cellulose and mixtures thereof.
  • the preferred cellulose ether substrate for use herein, is a hydroxyethyl cellulose (HEC) of from about 50,000 to about 700,000 molecular weight. Hydroxyethyl cellulose of this molecular weight level is the most hydrophilic of the materials completed. Accordingly, control of the modification process and control of the properties of the modified product can be more precise with this substrate. Hydrophilicity of the most commonly used nonionic cellulose ethers varies in the general direction: hydroxyethyl > hydroxypropyl > hydroxypropyl methyl > methyl.
  • the long chain alkyl modifier for the cellulose ether, can be attached to the cellulose ether substrate via an ether, ester or urethane linkage.
  • the ether linkage is preferred.
  • the modified cellulose ether materials are referred to as being "alkyl modified ", (the term alkyl as used generally herein also includes using alkenyl) it will be recognised that except in the case where modification is effected with an alkyl halide, the modifier is not a simple long chain alkyl group.
  • the group is actually an alphahydroxyalkyl radical in the case of an epoxide, a urethane radical in the case of an isocyanate, or an acyl radical in the case of an acid or acyl chloride.
  • Landoll ('277) at column 2, lines 36-65.
  • Highly preferred hydrophobically modified hydroxy ethyl cellulose (HMHEC) polymers suitable for use herein have a 1% aqueous viscosity in the range of from about 8,000 to about 50,000 mPas (Brookfield LVT viscometer, spindle No. 4, speed 4).
  • NATROSOL PLUS Grade 330 CS TM
  • This material has a C ⁇ alkyl substitution of from 0.4% to 0.8% by weight.
  • the hydroxyethyl molar substitution for this material is from 3.0 to 3.7.
  • the average molecular weight for the water-soluble cellulose prior to modification is approximately 300,000.
  • NATROSOL PLUS Grade 430 CS TM
  • NATROSOL PLUS CS Grade D-67 TM
  • This material has a Cj6 substitution of from 0.50% to 0.95%, by weight.
  • the hydroxyethyl molar substitution for this material is from 2.3 to 3.7.
  • the average molecular weight for the water soluble cellulose prior to modification is approximately 700,000.
  • C14 - Ci8 alkyl and alkenyl modified hydroxy ethyl cellulose polymers having a degree of ethoxylation of from about 1.8 to about 3.2, preferably from about 2.0 to about 3.0, more preferably from about 2.2 to about 2.8 and an alkyl and alkenyl substitution level of from about 0.3 to about 0.8, preferably from about 0.4 " to about 0.7, most preferably from about 5.5 to about 0.7 and especially about 0.65.
  • cetyl modified hydroxy ethyl cellulose polymers as available from the Aqualon Co. under the trade names Polysurf 67 (TM) having a molecular weight of about 700,000. Hydrophobically Modified Alkoxylate Urethane Thickener
  • Hydrophobically modified water-soluble nonionic alkoxylated urethane polymers suitable for use herein are particularly valuable for providing excellent stability characteristics over normal temperature ranges (5°C to about 50°C) as well as delivering near Newtonian rheology behaviour at low shear rates in matrices comprising high surfactant levels, and for delivery of improved product thickening characteristics and rheological behaviour in combination with polar oil, having a required HLB of at least 12, in a non-dilute, water-soluble surfactant system.
  • Hydrophobically modified water-soluble nonionic alkoxylated urethane polymers are made by prepolymerisation of a diisocyanate with a polyol followed by end capping with primary amines or primary alcohols; The resulting molecule is usually a linear block copolymer, with internal and terminal hydrophobes but branched and cross linked polymer can also be obtained.
  • hydrophobically modified water-soluble nonionic alkoxylated urethane polymers as thickeners are discussed in the paper titled 'Polymers in Cosmetics', presented by Rohm & Haas as part of 'The Proceedings of the 20th National Congress of the Society of Italian Cosmetic Chemists 1993' at p29.
  • Preferred hydrophobically modified water-soluble nonionic alkoxylated urethane polymers for use herein are described by Kaczmarski et al. as linear block copolymers (which can be obtained by a step - growth process) and can have the following general structures:
  • En is a polyol having the general formula, (CH2 CH2 O) n , n can vary from 10 to 10,000, preferably from 10 to 1,000, and more preferably from 50 to 500;
  • Rl includes straight or branched chain alkyl, alkenyl or aromatic groups containing pending functional groups e.g. COOH;
  • R2 includes straight or branched chain alkyl, alkenyl or aromatic groups containing pending functional groups e.g. COOH and wherein R 2 is preferably selected from NH2 or OH and wherein x represents the degree of polymerisation.
  • Preferred hydrophobically modified water-soluble nonionic alkoxylated urethane polymers suitable for use herein are those sold by Rohm & Haas under Acrysol 44 (TM), by Berol Nobel under Bermodol 2101 (TM), 2130 (TM) and Bermodol Pur 2100 (TM) and by Servo under the name Ser-Ad-FX-100 (TM).
  • hydrophobically modified water-soluble nonionic polyols are also suitable for use herein as thickeners.
  • Suitable hydrophobically modified water-soluble nonionic polyols for use herein are fatty acid esters of glucosides such as PEG 120 methyl glucoside dioleate (available from Amercol under the trade name Glucamate DOE 120), PEG- 150 pentaerythrityl tetrastearate (available from Croda under the trade name Crothix (TM)), PEG-75 dioleate (available from Kessco under the trade name PEG-4000 dioleate (TM)) and PEG- 150 distearate (available from Witco under the trade name Witconal L32 (TM)).
  • PEG 120 methyl glucoside dioleate available from Amercol under the trade name Glucamate DOE 120
  • PEG- 150 pentaerythrityl tetrastearate available from Croda under the trade name Crothix (TM
  • a further essential feature of the thickening systems of the present invention is polar oil having a required HLB of at least 12.
  • Polar oil is present in the cleansing compositions herein at a level of from about 0.01% to about 3%, preferably from about 0.01% to about 2%, more preferably from about 0.1% to about 1%, most preferably from about 0.2% to about 0.8% by weight.
  • Polar oil as defined herein, means, an organic oil, in liquid or waxy form, having one or more hydrophilic or polar functionalities, and which, can interact with associative polymer, in the presence of a non-dilute water-soluble surfactant system to deliver excellent product thickening and rheology attributes.
  • Polar oils suitable for use as thickeners herein have a required HLB value of about at least 12, preferably from about 12 to about 15, more preferably from about 12 to about 14.
  • Required HLB value represents the "Required Hydrophile / Lipophile Balance” and can be assessed by the standard technique well known in the art. The HLB concept in general, and specifically the required HLB, is also described more fully in "The HLB System", published by ICI Americas Inc., Wilmington, Delaware.
  • Exemplary polar oils suitable for use in the compositions according to the present invention include natural and synthetic fatty alcohols and fatty acids having an average carbon chain length of from about 10 to 18 carbon atoms.
  • Fatty alcohols suitable for use herein include decyl alcohol, lauryl alcohol, cetyl alcohol, stearyl alcohol and mixtures thereof.
  • Additional polar oils include fatty acids having an average carbon chain length of from about 12 to 16 carbon atoms, such as lauric acid and myristic acid.
  • preferred polar oils suitable for use herein have an average carbon chain length which is in the range of from about 10 to about 18, preferably from about 12 to about 16 and especially from about 12 to about 14 carbon atoms.
  • Particularly preferred for use herein are systems wherein the average carbon chain length of the polar oil is substantially similar to the average carbon chain length of the non-dilute, water-soluble surfactant system.
  • substantially similar average carbon chain length as defined herein, means, carbon chain lengths within two, preferably one, carbon units difference, i.e, Cj2 is defined herein as substantially similar to Cj
  • Polar oils having an average carbon chain length of from about 12 to about 14 carbon atoms on the alkyl chain are preferred in the cleansing compositions according to the invention, as surfactants having an average carbon chain length of from about 12 to about 14 carbon atoms are highly desirable for the delivery of good foaming properties.
  • polar oils having a chain length substanitally similar to that of the chosen surfactant system.
  • Preferred polar oils for use herein are Cj2 to C14 alcohols such as Lauryl Alcohol (Laurex NC (RTM) from Albright & Wilson), C12 to C13 alcohols (Dobanol 23 from Shell UK) and C12 to C15 alcohols (Dobanol 25 from Shell UK) and , C14 to C15 alcohols (Dobanol 45 from Shell UK) also available under the Neodol trademark from Shell US Inc.
  • the level of polar oil thickener present in the thickening system of the invention has a finite effect on the increase in product thickening (i.e., as the level of polar oil increases, relative to the total surfactant level, the degree of thickening achieved in the surfactant matrix eventually reaches a plateau).
  • compositions can also comprise an auxiliary nonionic or anionic polymeric thickening component, especially a water-soluble polymeric materials, having a molecular weight greater than about 20,000.
  • auxiliary nonionic or anionic polymeric thickening component especially a water-soluble polymeric materials, having a molecular weight greater than about 20,000.
  • water-soluble polymer is meant that the material will form a substantially clear solution in water at a 1% concentration at 25°C and the material will increase the viscosity of the water.
  • water- soluble polymers which may desirably be used as an additional thickening component in the present compositions, are hydroxyethylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, polyethylene glycol, polyacrylamide, polyacrylic acid, polyvinyl alcohol (examples include PVA 217 from Kurary Chemical Co., Japan), polyvinyl pyrrolidone K-120, dextrans, for example Dextran purified crude Grade 2P, available from D&O Chemicals, carboxymethyl cellulose, plant exudates such as acacia, ghatti, and tragacanth, seaweed extracts such as sodium alginate, propylene glycol alginate and sodium carrageenan.
  • Preferred as the additional thickeners for the present compositions are natural polysaccharide materials.
  • examples of such materials are guar gum, locust bean gum, and xanthan gum.
  • hydroxyethyl cellulose having a molecular weight of about 700,000.
  • compositions of the present invention comprise a non-dilute surfactant system of water-soluble surfactants.
  • Water-soluble as defined herein, means a urfactant having a molecular weight of less than about 20,000 wherein the surfactant is capable of forming a clear isotropic solution when dissolved in water at 0.2 % w/w under ambient conditions.
  • Surfactants suitable for inclusion in compositions according to the present invention generally have a lipophilic chain length of from about 8 to about 22 carbon atoms and can be selected from anionic, nonionic, zwitterionic and amphoteric surfactants and mixtures thereof.
  • the total level of surfactant is preferably from about 2% to about 40%, more preferably from about 3% to about 15% by weight.
  • the compositions preferably comprise a mixture of anionic with zwitterionic and/or amphoteric surfactants.
  • the level of the individual anionic, zwitterionic and amphoteric surfactant components, where present, is in the range from about 1% to about 15%, and " especially from about 1% to about 10% by weight of the composition, while the level of nonionic surfactant, where present, is in the range from about 0.1% to about 20% by weight, preferably from about 0.5% to about 16%, more preferably from about 1% to about 12% by weight.
  • the weight ratio of anionic surfactant: zwitterionic and/or amphoteric surfactant is in the range from about 1:10 to about 10: 1, preferably from about 1 :5 to about 5: 1, more preferably from about 1 :3 to about 3: 1.
  • Other suitable compositions within the scope of the invention comprise mixtures of anionic, zwitterionic and/or amphoteric surfactants with one or more nonionic surfactants.
  • Preferred for use herein are soluble or dispersible nonionic surfactants selected from ethoxylated animal and vegetable oils and fats and mixtures thereof, sometimes referred to herein as "oil-derived" nonionic surfactants.
  • compositions of the invention can comprise a water-soluble anionic surfactant at levels from about 0.1% to about 20%, more preferably from about 0.1% to about 10%, and especially from about 1% to about 8% by weight.
  • Water soluble anionic surfactants suitable for inclusion in the compositions of the invention can generally be described as mild synthetic detergent surfactants and include alkyl sulphates, ethoxylated alkyl sulfates, alkyl ethoxy carboxylates, alkyl glyceryl ether sulfonates, methyl acyl taurates, fatty acyl glycinates, N-acyl glutamates, acyl isethionates, alkyl sulfosuccinates, alkyl ethoxysulphosuccinates, alpha- sulfonated fatty acids, their salts and/or their esters, alkyl phosphate esters, ethoxylated alkyl phosphate esters, alkyl sulphates, acyl sarcosinates and fatty acid/protein condensates, and mixtures thereof.
  • Alkyl and or acyl chain lengths for these surfactants are C12-C22
  • Surfactants of this class include short-chain alkyl sulphate surfactants where 'short chain' as defined herein means an average carbon chain length of C10 or less.
  • the short chain alkyl sulphate surfactants of the present invention are valuable in shower gel compositions for the delivery of improved skin mildness attributes and product rinsing benefits in combination with a desirable lather profile.
  • Alkyl sulphate surfactants suitable for inclusion in the compositions of the present invention have the general formula (II);
  • R is straight or branched chain alkyl, preferably straight chain, containing on average from about 8 to about 10 carbon atoms, preferably about 10 carbon atoms and wherein M is selected from alkali metals, ammomum or other suitable monovalent cation or mixtures thereof.
  • Cg is an average value and as such may contain certain proportions of both higher and lower carbon chain lengths as a direct function of its synthesis. The level of such material can be achieved by modification of the process and the nature of the starting materials. While C ⁇ Q alkyl sulphate is the preferred surfactant in the compositions of the invention mixtures of short chain alkyl sulphates may also be used.
  • CJO alkyl sulphate material containing at least about 80% by weight of the C ⁇ Q, preferably at least about 90% CJO, more preferably at least about 95% C ⁇ Q and especially at least about 99% C ⁇ Q alkyl sulphate.
  • Suitable short chain alkyl sulphate materials are available from Albright and Wilson under the trade names Empicol LC35 and Empicol 0758F.
  • Additional water-soluble anionic surfactants suitable for use in the compositions according to the present invention are the salts of sulfuric acid esters of the reaction product of 1 mole of a higher fatty alcohol and from about 1 to about 12 moles of ethylene oxide, with sodium, ammonium and magnesium being the preferred counterions.
  • Particularly preferred are the alkyl ethoxy sulphates containing from about 2 to 6, preferably 2 to 4 moles of ethylene oxide, such as sodium laureth-2 sulphate, sodium laureth-3 sulphate and magnesium sodium laureth-3.6 sulphate.
  • the anionic surfactant contains at least about 50% especially at least about 75% by weight of ethoxylated alkyl sulphate.
  • ethoxylated alkyl sulphates obtained from narrow range ethoxylates are also suitable water-soluble anionic surfactants for use in the present compositions.
  • Narrow range ethoxylated alkyl sulphates suitable for use herein are selected from sulphated alkyl ethoxylates containing on average from about 1 to about 6, preferably from about 2 to about 4 and especially about 3 moles of ethylene oxide such as NRE sodium laureth-3 sulphate.
  • NRE materials suitable for use herein contain distributions of the desired ethylene oxide (EOn) in the ranges of from 15% to about 30% by weight of EO n , from about 10% to about 20% by weight of EO n + ⁇ and from about 10% to about 20% by weight of EO n _ ⁇ .
  • Highly preferred NRE materials contain less than about 9% by weight of ethoxylated alkyl sulphate having 7 or more moles of ethylene oxide and less than about 13% by weight of non- ethoxylated alkyl sulphate.
  • Suitable laureth 3 sulphate NRE materials are available from Hoechst under the trade names GENAPOL ZRO Narrow Range and GENAPOL Narrow Range.
  • compositions of the present invention may contain, as a water- soluble anionic surfactant alkyl ethoxy carboxylate surfactant at a level of from about 0.5% to about 15%, preferably from about 1% to about 10%, more preferably from about 1% to about 6% and especially from about 1% to about 4% by weight.
  • alkyl ethoxy carboxylate surfactant is particularly valuable in the compositions according to the present invention for the delivery of excellent skin mildness attributes in combination with excellent rinsing performance and desirable lather characteristics.
  • Alkyl ethoxy carboxylates suitable for use herein have the general formula (I):
  • R 3 is a Cjo to C15 alkyl or alkenyl group, preferably a Cn_ C]5, more preferably a C12-C14 alkyl or C12-C13 alkyl group
  • k is an average value of ethoxylation ranging from 2 to about 7, preferably from about 3 to about 6, more preferably from about 3.5 to about 5.5, especially from about 4 to about 5, most preferably from about 4 to about 4.5
  • M is a water-solubilizing cation, preferably an alkali metal, alkaline earth metal, ammonium, lower alkanol ammomum, and mono-, di-, and tri-ethanol ammonium, more preferably sodium, potassium and ammomum, most preferably sodium and ammonium and mixtures thereof with magnesium and calcium ions.
  • alkyl ethoxy carboxylate surfactants suitable for use herein are alkyl ethoxy carboxylate surfactants having a selected distribution of alkyl chain length and/or ethoxylate.
  • the alkyl ethoxy carboxylate surfactants suitable for use in the compositions according to the present invention may comprise a distribution of alkyl ethoxy carboxylates having different average values of R 3 and/or k.
  • the average value of k will generally fall in the range of from about 3 to about 6 when the average R 3 is C ⁇ ⁇ , C]2, C13 or C14.
  • Preferred water-soluble anionic alkyl ethoxy carboxylate surfactants suitable for use herein are the C12 to C14 (average EO 3-6) ethoxy carboxylates and the C 12 to C 13 (average EO 3-6) ethoxy carboxylates.
  • Suitable materials include salts of NEODOX 23-4 (RTM) available from Shell Inc. (Houston, Texas, USA).
  • alkyl ethoxy carboxylate surfactants wherein, when R 3 is a C 2 ⁇ C ⁇ 4 or 2-C13 alkyl group and the average value of k is in the range of from about 3 to about 6, more preferably from about 3.5 to about 5.5, especially from about 4 to about 5 and most preferably from about 4 to about 4.5.
  • compositions according to the present invention may additionally comprise water-soluble nonionic surfactant at levels from about 0.1% to about 20%, more preferably from about 0.1% to about 10%, and especially from about 1% to about 8% by weight.
  • surfactants of this class include C12-C14 fatty acid mono-and dialkanolamides such as cocoethanolamide, cocomonoisopropylamide, cocodiethanolamide and ethoxylated derivatives thereof, sucrose polyester surfactants, C10-C1 alkyl polyglycosides and polyhydroxy fatty acid amide surfactants having the general formula (III).
  • N-alkyl, N-alkoxy or N-aryloxy, polyhydroxy fatty acid amide surfactants according to formula (III) are those in which Rs is C5-C31 hydrocarbyl, preferably C6-C19 hydrocarbyl, including straight- chain and branched chain alkyl and alkenyl, or mixtures thereof and R9 is typically, hydrogen, Cj-Cs alkyl or hydroxyalkyl, preferably methyl, or a group of formula -R -0-R2 wherein Rl is C2-C8 hydrocarbyl including straight-chain, branched-chain and cyclic (including aryl), and is preferably C2-C4 alkylene, R 2 is Ci-Cs straight-chain, branched-chain and cyclic hydrocarbyl including aryl and oxyhydrocarbyl, and is preferably C1-C4 alkyl, especially methyl, or phenyl.
  • Z2 is a polyhydroxyhydrocarbyl moiety having a linear hydrocarbyl chain with at least 2 (in the case of glyceraldehyde) or at least 3 hydroxyls (in the case of other reducing sugars) directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof.
  • Z2 preferably will be derived from a reducing sugar in a reductive ammination reaction, most preferably Z2 is a glycityl moiety.
  • Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose, and xylose, as well as glyceraldehyde.
  • Z2 preferably will be selected from the group consisting of - CH2-(CHOH) n -CH2 ⁇ H, -CH(CH2 ⁇ H)-(CHOH) n .1 -CH2H,
  • n is an integer from 1 to 5, inclusive, and R' is H or a cyclic mono- or poly-saccharide, and alkoxylated derivatives thereof.
  • R' is H or a cyclic mono- or poly-saccharide, and alkoxylated derivatives thereof.
  • glycityls wherein n is 4, particularly -CH2-(CHOH)4-CH2 ⁇ H.
  • the most preferred polyhydroxy fatty acid amide has the formula R8(CO)N(CH3)CH2(CHOH)4CH OH wherein Rg is a C ⁇ -C 19 straight chain alkyl or alkenyl group.
  • R - CO-N ⁇ can be, for example, cocoamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmiamide, tallowamide, etc.
  • a preferred process for making the above compounds having formula (III) comprises reacting a fatty acid triglyceride with an N- substituted polyhydroxy amine in the substantial absence of lower (C ⁇ - C4) alcoholic solvent, but preferably with an alkoxylated alcohol or alkoxylated alkyl phenol such as NEODOL and using an alkoxide catalyst at temperatures of from about 50°C to about 140°C to provide high yields (90-98%) of the desired products.
  • Suitable processes for making the desired polyhydroxy fatty acid amide compounds are outlined in US-A-5, 194,639 and US-A-5,380,891.
  • nonionic surfactants such as polyhydroxy fatty acid amides and alkyl polyglycosides can deliver excellent skin mildness characteristics in combination with good lather and cleansing attributes.
  • non-dilute, water-soluble surfactant systems comprising such materials at high (>1% w/w) levels can be relatively unresponsive or unstable in the presence of conventional thickening agents, such as electrolyte.
  • conventional thickening agents such as electrolyte.
  • non-dilute, water-soluble surfactant systems comprising polyhydroxy fatty acid amide surfactants and electrolyte are water-thin and difficult to thicken.
  • thickening system of the present invention is valuable for the delivery of excellent product thickening and rheology attributes in combination with good lather performance and skin mildness attributes in non-dilute, water-soluble surfactant systems comprising mild, nonionic surfactants such as polyhydroxy fatty acid amide and alkyl polyglycoside.
  • a personal cleansing composition comprising: (a) from about 0.01% to about 15% by weight of a thickening system which consists essentially of associative polymer and polar oil having a required HLB of at least 12.
  • R9 is hydrogen, Cj-Cs alkyl or hydroxyalkyl and Z2 is a polyhydroxyhydrocarbyl moiety;
  • auxiliary surfactant other than the polyhydroxy fatty acid amide surfactant of (b), selected from anionic surfactant, nonionic, zwitterionic and amphoteric surfactants and mixtures thereof;
  • the average carbon chain length of the polar oil is from about 10 to about 18 carbon atoms and is substantially similar to the average carbon chain length of the combined polyhydroxy fatty acid amide and other mild surfactants in the water-soluble, non-dilute surfactant matrix.
  • compositions for use herein may also contain a water-soluble amphoteric surfactant.
  • Amphoteric surfactants suitable for use in the compositions of the invention include: (a) imidazolinium surfactants of formula (IV)
  • R ⁇ is C7-C22 alkyl or alkenyl
  • R2 is hydrogen or CH2Z
  • each Z is independently CO2 or CH2CO2M
  • M is H, alkali metal, alkaline earth metal, ammomum or alkanolammomum; and/or ammonium derivatives of formula (V)
  • R ⁇ , R2 and Z are as defined above;
  • n, m, p, and q are numbers from 1 to 4, and Ri and M are independently selected from the groups specified above;
  • Suitable amphoteric surfactants of type (a) are marketed under the trade name Miranol and Empigen and are understood to comprise a complex mixture of species.
  • Miranols have been described as having the general formula IV, although the CTFA Cosmetic Ingredient Dictionary, 3rd Edition indicates the non-cyclic structure V while the 4th Edition indicates yet another structural isomer in which R2 is O-linked rather than N-linked.
  • CTFA Cosmetic Ingredient Dictionary, 3rd Edition indicates the non-cyclic structure V while the 4th Edition indicates yet another structural isomer in which R2 is O-linked rather than N-linked.
  • a complex mixture of cyclic and non-cyclic species is likely to exist and both definitions are given here for sake of completeness. Preferred for use herein, however, are the non-cyclic species.
  • amphoteric surfactants of type (a) include compounds of formula IV and/or V in which Rj is CsHj (especially iso-capryl), C9H19 and C11H23 alkyl. Especially preferred are the compounds in which R ⁇ is C9H19, Z is CO2M and R2 is H; the compounds in which R ⁇ is Cj 1H23, Z is CO2M and R2 is CH2CO2M; and the compounds in which R ⁇ is Cj 1H23, Z is CO2M and R2 is H.
  • materials suitable for use in the present invention include cocoamphocarboxypropionate, cocoamphocarboxy propionic acid, and especially cocoamphoacetate and cocoamphodiacetate (otherwise referred to as coc ⁇ amphocarboxyglycinate).
  • Specific commercial products include those sold under the trade names of Ampholak 7TX (sodium carboxy methyl tallow polypropyl amine), Empigen CDL60 and CDR 60 (Albright & Wilson), Miranol H2M Cone. Miranol C2M Cone. N.P., Miranol C2M Cone.
  • Miranol C2M SF Miranol CM Special (Rh ⁇ ne-Poulenc); Alkateric 2CIB (Alkaril Chemicals); Amphoterge W-2 (Lonza, Inc.); Monateric CDX-38, Monateric CSH-32 (Mona Industries); Rewoteric AM-2C (Rewo Chemical Group); and Schercotic MS-2 (Scher Chemicals).
  • amphoteric surfactants of this type are manufactured and sold in the form of electroneutral complexes with, for example, hydroxide counterions or with anionic sulfate or sulfonate surfactants, especially those of the sulfated Cg-C ⁇ g alcohol, C8-Cj 8 ethoxylated alcohol or C -Cj acyl giyceride types.
  • anionic sulfate or sulfonate surfactants especially those of the sulfated Cg-C ⁇ g alcohol, C8-Cj 8 ethoxylated alcohol or C -Cj acyl giyceride types.
  • compositions which are essentially free of (non- ethoxylated) sulfated alcohol surfactants are based herein on the uncomplexed forms of the surfactants, any anionic surfactant counterions being considered as part of the overall anionic surfactant component content.
  • amphoteric surfactants of type (b) include N-alkyl polytrimethylene poly-, carboxymethylamines sold under the trade names Ampholak X07 and Ampholak 7CX by Berol Nobel and also salts, especially the triethanolammonium salts and salts of N-lauryl-beta- amino propionic acid and N-lauryl- ino-dipropionic acid.
  • Such materials are sold under the trade name Deriphat by Henkel and Mirataine by Rh ⁇ ne-Poulenc.
  • compositions herein can also contain from about 0.1% to about 20%, more preferably from about 0.1% to about 10%, and especially from about 1% to about 8% by weight of a zwitterionic surfactant.
  • Water-soluble betaine surfactants suitable for inclusion in the compositions of the present invention include alkyl betaines of the formula RsR ⁇ R N "1" (CH2) n C02M and amido betaines of the formula (IX)
  • R- wherein R5 is C11-C22 alkyl or alkenyl, R and R7 are independently C1-C3 alkyl, M is H, alkali metal, alkaline earth metal, ammonium or alkanolammomum, and n, m are each numbers from 1 to 4.
  • Preferred betaines include cocoamidopropyldimethylcarboxymethyl betaine, laurylamidopropyldimethylcarboxymethyl betaine and Tego betaine (RTM).
  • Water-soluble sultaine surfactants suitable for inclusion in the compositions of the present invention include alkylamido sultaines of the formula;
  • R ⁇ is C7 to C22 alkyl or alkenyl
  • R2 and R3 are independently C ⁇ to C3 alkyl
  • M is H, alkali metal, alkaline earth metal, ammonium or alkanolammomum
  • m and n are numbers from 1 to 4.
  • Preferred for use herein is coco amido propylhydroxy sultaine.
  • Water-soluble amine oxide surfactants suitable for inclusion in the compositions of the present invention include alkyl amine oxide R5R6R7NO and amido amine oxides of the formula
  • R5 is C ⁇ ⁇ to C22 alkyl or alkenyl
  • R and R7 are independently Ci to C3 alkyl
  • M is H, alkali metal, alkaline earth metal, ammonium or alkanolammomum
  • m is a number from 1 to 4.
  • Preferred amine oxides include cocoamidopropylamine oxide, lauryl dimethyl amine oxide and myristyl dimethyl amine oxide.
  • compositions according to the present invention can optionally include a polymeric cationic conditioning agent.
  • Polymeric cationic conditioning agents are valuable in the compositions according to the present invention for provision of desirable skin feel attributes.
  • the polymeric skin conditioning agent is preferably present at a level from about 0.01% to about 5%, preferably from about 0.01% to about 3% and especially from about 0.01% to about 2% by weight.
  • Suitable polymers are high molecular weight materials (mass- average molecular weight determined, for instance, by light scattering, being generally from about 2,000 to about 5,000,000, preferably from about 5,000 to about 3,000,000 more preferably from 100,000 to about 1,000,000).
  • Representative classes of polymers include cationic polysaccharides; cationic homopolymers and copolymers derived from acrylic and/or methacrylic acid; cationic cellulose resins; cationic copolymers of dimethyldiallylammomum chloride and acrylamide and or acrylic acid; cationic homopolymers of dimethyldiallylammomum chloride; cationic polyalkylene and ethoxypolyalkylene imines; quatemized silicones, and mixtures thereof.
  • cationic polymers suitable for use herein include cationic guar gums such as hydroxypropyl trimethyl ammonium guar gum (d.s. of from 0.11 to 0.22) available commercially under the trade names Jaguar C-14-S(RTM) and Jaguar C-17(RTM) and also Jaguar C-16(RTM), which contains hydroxypropyl substituents (d.s. of from 0.8-1.1) in addition to the above-specified cationic groups, and quatemized hydroxy ethyl cellulose ethers available commercially under the trade names Ucare Polymer JR-30M, JR-400, Catanal (RTM) and Celquat.
  • quatemized hydroxy ethyl cellulose ethers available commercially under the trade names Ucare Polymer JR-30M, JR-400, Catanal (RTM) and Celquat.
  • Suitable cationic polymers are homopolymers of dimethyldiallylammonium chloride available commercially under the trade name Merquat 100, copolymers of dimethyl aminoethylmethacrylate and acrylamide, copolymers of dimethyldiallylammonium chloride and acrylamide, available commercially under the trade names Merquat 550 and Merquat S, acrylic acid/dimethyldiallylammonium chloride/acrylamide copolymers available under the trade name Merquat 3330, quatemized vinyl pyrrolidone acrylate or methacrylate copolymers of amino alcohol available commercially under the trade name Gafquat, for example Polyquaternium 11, 23 and 28 (quatemized copolymers of vinyl pyrrolidone and dimethyl aminoethylmethacrylate - Gafquat 755N and quatemized copolymers of vinyl pyrrolidone and dimethyl aminoethylmethacrylamide - HS-100), vinyl pyrrolidone
  • compositions of the invention may also contain from about 0.1% to about 20%, preferably from about 1% to about 15%, and more preferably from about 2% to about 10% by weight of an oil derived nonionic surfactant or mixture of oil derived nonionic surfactants.
  • Oil derived nonionic surfactants are valuable in compositions according to the invention for the provision of skin feel benefits both in use and after use.
  • Suitable oil derived nonionic surfactants for use herein include water soluble vegetable and animal-derived emollients such as triglycerides with a polyethyleneglycol chain inserted; ethoxylated mono and di-glycerides, polyethoxylated lanolins and ethoxylated butter derivatives.
  • One preferred class of oil-derived nonionic surfactants for use herein have the general formula (XII)
  • n is from about 5 to about 200, preferably from about 20 to about 100, more preferably from about 30 to about 85, and wherein R comprises an aliphatic radical having on average from about 5 to 20 carbon atoms, preferably from about 7 to 18 carbon atoms.
  • Suitable ethoxylated oils and fats of this class include polyethyleneglycol derivatives of glyceryl cocoate, glyceryl caproate, glyceryl caprylate, glyceryl tallowate, glyceryl palmate, glyceryl stearate, glyceryl laurate, glyceryl oleate, glyceryl ricinoleate, and glyceryl fatty esters derived from triglycerides, such as palm oil, almond oil, and com oil, preferably glyceryl tallowate and glyceryl cocoate.
  • Suitable oil derived nonionic surfactants of this class are available from Croda Inc. (New York, USA) under their Crovol line of materials such as Crovol EP40 (PEG 20 evening primrose giyceride), Crovol EP 70 (PEG 60 evening primrose giyceride) Crovol A-40 (PEG 20 almond giyceride), Crovol A-70 (PEG 60 almond giyceride), Crovol M-40 (PEG 20 maize giyceride), Crovol M-70 (PEG 60 maize giyceride), Crovol PK- 40 (PEG 12 palm kernel giyceride), and Crovol PK-70 (PEG 45 palm kernel giyceride) and under their Solan range of materials such as Solan E, E50 and X polyethoxylated lanolins and Aqualose L-20 (PEG 24 lanolin alcohol) and Aqualose W15 (PEG 15 lanolin alcohol) available from Westbrook Lanolin.
  • Varonic LI 48 polyethylene glycol (n
  • nonionic surfactants derived from composite vegetable fats extracted from the fruit of the Shea Tree (Butyrospermum Karkii Kotschy) and derivatives thereof.
  • This vegetable fat known as Shea Butter is widely used in Central Africa for a variety of means such as soap making and as a barrier cream, it is marketed by Sederma (78610 Le Perray En Yvelines, France).
  • Particularly suitable are ethoxylated derivatives of Shea butter available from Karlshamn Chemical Co. (Columbos, Ohio, USA) under their Lipex range of chemicals, such as Lipex 102 E-75 and Lipex 102 E-3 (ethoxylated mono, di-glycerides of Shea butter) and from Croda Inc.
  • Crovol SB-70 ethoxylated mono, di-glycerides of Shea butter
  • ethoxylated derivatives of Mango, Cocoa and Illipe butter may be used in compositions according to the invention. Although these are classified as ethoxylated nonionic surfactants it is understood that a certain proportion may remain as non-ethoxylated vegetable oil or fat.
  • suitable oil-derived nonionic surfactants include ethoxylated derivatives of almond oil, peanut oil, rice bran oil, wheat germ oil, linseed oil, jojoba oil, oil of apricot pits, walnuts, palm nuts, pistachio nuts, sesame seeds, rapeseed, cade oil, com oil, peach pit oil, poppyseed oil, pine oil, castor oil, soybean oil, avocado oil, safflower oil, coconut oil, hazelnut oil, olive oil, grapeseed oil, and sunflower seed oil.
  • Oil derived nonionic surfactants highly preferred for use herein from the viewpoint of optimum mildness and skin feel characteristics are Lipex 102-3 (RTM) (PEG-3 ethoxylated derivatives of Shea Butter) and Softigen 767 (RTM) (PEG-6 caprylic/capric glycerides).
  • compositions according to the present invention may contain as an optional feature a hydrotrope.
  • hydrotropes Suitable for use herein as hydrotropes are those well known in the art, including sodium xylene sulphonate, ammomum xylene sulphonate, sodium cumene sulphonate, short chain alkyl sulphate and mixtures thereof.
  • Hydrotrope may be present in the compositions according to the invention at a level of from about 0.01% to about 5%, preferably from about 0.1% to about 4%, more preferably from about 0.5% to about 3% by weight.
  • Hydrotrope as defined herein, means, a material which, when added to a non-dilute, water-soluble surfactant system can modify its viscosity and rheological profile.
  • thickening system of the present invention is valuable for the delivery of good product thckening and rheology attributes in non-dilute, water-soluble surfactant systems in the presence of hydrotrope.
  • excellent product thickening is delivered when the ratio of total water-soluble surfactant level to total hydrotrope level is in the range of from about 5 : 1 to about 1 : 5, preferably from about 3 : 1 to about 1 : 3, more preferably from about 1.5 : 1 to about 1 : 1.5.
  • a personal cleansing composition comprising:
  • compositions according to the present invention can also comprise lipophilic emulsifiers as skin care actives.
  • Suitable lipophilic skin care actives include anionic food grade emulsifiers which comprise a di-acid mixed with a monoglyceride such as succinylated monoglycerides, monostearyl citrate, glyceryl monostearate diacetyl tartrate and mixtures thereof.
  • compositions of the invention may also include an insoluble perfume or cosmetic oil or wax or a mixture thereof at a level up to about 10%, preferably up to about 3% by weight wherein the oil or wax is insoluble in the sense of being insoluble in the product matrix at a temperature of 25°C.
  • Addition of such oils or waxes can provide emolliency, mildness and rinsibility characteristics to personal cleansing compositions according to the invention. It is a feature of the invention, however, that compositions having excellent emolliency and mildness together with desirable physical attributes (clarity etc.) can be delivered which contain less than about 1%, preferably less than 0.5% by weight of an added oil phase (other than the polar oil).
  • compositions of this type take the form of an optically-clear solution or micfoemulsion.
  • compositions including an additional perfume or cosmetic oil or wax preferably the weight ratio of oil-derived nonionic surfactant to added oil is at least about 1 :2, more especially at least about 3:1.
  • Suitable insoluble cosmetic oils and waxes for use herein can be selected from water-insoluble silicones inclusive of non-volatile polyalkyl and polyaryl siloxane gums and fluids, volatile cyclic and linear polyalkylsiloxanes, polyalkoxylated silicones, amino and quaternary ammomum modified silicones, rigid cross-linked and reinforced silicones and mixtures thereof, C1-C24 esters of C -C30 fatty acids such as isopropyl myristate, myristyl myristate and cetyl ricinoleate, C8-C30 esters of benzoic acid, beeswax, saturated and unsaturated fatty alcohols such as behenyl alcohol, hydrocarbons such as mineral oils, petrolatum squalane and squalene, polybutene, fatty sorbitan esters (see US-A- 3988255, Seiden, issued October 26th 1976), lanolin and oil-like lanolin derivatives
  • the viscosity of the final composition (Brookfield DV II, 1 rpm with Cone CP41 or CP52, 25°C, neat) is preferably at least about 500 cps, more preferably from about 1,000 to about 50,000 cps, especially from about 1,000 to about 30,000 cps, more especially from about 1,000 to about 15,000 cps.
  • the cleansing compositions can optionally include other hair or skin moisturizers which are soluble in the cleansing composition matrix.
  • the preferred level of such moisturizers is from about 0.5% to about 20% by weight.
  • the moisturizer is selected from essential amino acid compounds found naturally occurring in the stratum corneum of the skin and water-soluble nonpolyol nonocclusives and mixtures thereof.
  • compositions according to the present invention may also include an opacifier or pearlescing agent. Such materials may be included at a level of from about 0.01% to about 5%, preferably from about 0.2% to about 1.3% by weight.
  • a suitable opacifier for inclusion in the present compositions is a polystyrene dispersion available under the trade names Lytron 621 & 631 (RTM) from Morton International.
  • Additional opacifiers/pearlescers suitable for inclusion in the compositions of the present invention include: titanium dioxide, Ti ⁇ 2 EUPERLAN 810 (RTM); TEGO-PEARL (RTM); long chain (C ⁇ - C22) acyl derivatives such as glycol or polyethylene glycol esters of fatty acid having from about 16 to about 22 carbon atoms and up to 7 ethyleneoxy units; alkanolamides of fatty acids, having from about 16 to about 22 carbon atoms, preferably about 16 to 18 carbon atoms such as stearic monoethanolamide, stearic diethanolamide, stearic monoisopropanolamide and stearic monoethanolamide and alkyl (Cj6 - C22) dimethyl amine oxides such as stearyl dimethyl amine oxide.
  • RTM Ti ⁇ 2 EUPERLAN 810
  • RTM TEGO-PEARL
  • C ⁇ - C22) acyl derivatives such as glycol or polyethylene glycol esters of fatty
  • the opacifier/pearlescer is present in the form of crystals.
  • the opacifier/pearlescer is a particulate polystyrene dispersion having a particle size of from about 0.05 microns to about 0.45 microns, preferably from about 0.17 microns to about 0.3 microns, such dispersions being preferred from the viewpoint of providing optimum rheology and shear-thinning behaviour.
  • Highly preferred is styrene PVP copolymer and Lyton 631 (RTM).
  • a number of additional optional materials can be added to the cleansing compositions each at a level of from about 0.1% to about 2% by weight.
  • Such materials include proteins and polypeptides and derivatives thereof; water-soluble or solubilizable preservatives such as DMDM Hydantoin, Germall 115, methyl, ethyl, propyl and butyl esters of hydroxybenzoic acid, EDTA, Euxyl (RTM) K400, natural preservatives such as benzyl alcohol, potassium sorbate and bisabalol; sodium benzoate and 2-phenoxyethanol; other moisturizing agents such as hyaluronic acid, chitin , and starch-grafted sodium polyacrylates such as Sanwet (RTM) IM-1000, IM-1500 and IM-2500 available from Celanese Superabsorbent Materials, Portsmith, VA, USA and described in US-A-4,076,663; solvents ; suitable anti-bacterial agents such as Oxeco (phenoxy iso
  • viscosity control agents such as magnesium sulfate and other electrolytes; colouring agents; Ti ⁇ 2 and Ti ⁇ 2-coated mica; perfumes and perfume solubilizers; and zeolites such as Valfour BV400 and derivatives thereof and Ca2 + /Mg2+ sequesverss such as polycarboxylates, amino polycarboxylates, polyphosphonates, amino polyphosphonates, EDTA etc, water softening agents such as sodium citrate and insoluble particulates such as zinc stearate and fumed silica. Water is also present at a level preferably of from about 20% to about 99.89%, preferably from about 40% to about 90%, more preferably at least about 75% by weight of the compositions herein.
  • the pH of the compositions is preferably from about 4 to about 10, more preferably from about 6 to about 9, especially from about 5 to about 8 and most preferably from about 5 to 7.
  • compositions according to the present invention are illustrated by the following non-limiting examples.
  • all concentrations are on a 100% active basis and the abbreviations have the following designation:
  • Anionic 1 Sodium C ⁇ 2- ⁇ 2 Pareth-4-carboxylate (the sodium salt derived from the alkyl ether carboxylic acid NEODOX 23-4 from Shell US Inc.)
  • Anionic 2 Sodium Laureth-4 Carboxylate
  • compositions in the form of shower gel or bath foam products and which are representative of the present invention:
  • Compositions I to VIII can be prepared by firstly dispersing the water-soluble or colloidally water-soluble associative polymer in water at up to about 70 °C either in a Tri-blender (TM) or by extended stirring and hydration. The surfactants are added to this mixture with mild agitation (continued heating at up to about 70°C can be used). It is preferable to add the polar oil following the surfactants. Skin care agents (where present) can then be added along with the remaining water- soluble, oil-insoluble ingredients and finally the remaining water, preservative, opacifier and perfume are added.
  • TM Tri-blender
  • compositions have a viscosity (Brookfield DV II, 1 m with Cone CP41 or CP52, 25°C, neat) in the range of from 500 to 50,000 cps, preferably from 1,000 to 15,000 cps.
  • the products provide excellent product thickening and rheological attributes, in storage, in dispensing and in-use, in combination with good efficacy benefits including excellent rinsibility, mildness, skin conditioning, skin moisturising, good product stability, cleansing and lathering.

Abstract

A liquid personal cleansing composition comprising: (a) from about 0.01 % to about 15 % by weight of a thickening system consisting essentially of associative polymer and polar oil having a required HLB of at least 12; (b) from about 1 % to about 60 % by weight of water-soluble surfactant selected from anionic surfactant, nonionic, zwitterionic and amphoteric surfactants and mixtures thereof; (c) optionally, from about 0.01 % to about 5 % by weight of cationic polymeric skin conditioning agent; and (d) water, wherein the polar oil has an average carbon chain length of from about 10 to about 18 carbon atoms and wherein the water-soluble surfactants have an average carbon chain length of from 10 to about 18 carbon atoms. The products provide excellent product thickening and rheological attributes, in storage, in dispensing and in-use, in combination with good efficacy benefits including excellent rinsibility, mildness, skin conditionning, skin moisturising, good product stability, cleansing and lathering.

Description

CLEANSING COMPOSITIONS
TECHNICAL FIELD
The present invention relates to cleansing compositions. In particular it relates to mild personal cleansing compositions which display improved thickening and rheological properties in combination with good skin feel attributes, rinsing behaviour and foaming properties which are suitable for simultaneously cleansing and conditioning the skin and/or the hair and which may be used, for example, in the form of foam bath preparations, shower products, skin cleansers, hand, face and body cleansers, shampoos, etc.
Background Of The Invention
Mild cosmetic compositions must satisfy a number of criteria including cleansing power, foaming properties and mildness/low irritancy/good feel with respect to the skin, hair and the ocular mucosae. Skin is made up of several layers of cells which coat and protect the keratin and collagen fibrous proteins that form the skeleton of its structure. The outermost of these layers, referred to as the stratum corneum, is known to be composed of 250 A protein bundles surrounded by 80 A thick layers. Hair similarly has a protective outer coating enclosing the hair fibre which is called the cuticle. Anionic surfactants can penetrate the stratum corneum membrane and the cuticle and, by delipidization destroy membrane integrity. This interference with skin and hair protective membranes can lead to a rough skin feel and eye irritation and may eventually permit the surfactant to interact with the keratin and hair proteins creating irritation and loss of barrier and water retention functions.
Ideal cosmetic cleansers should cleanse the skin or hair gently, without defatting and/or drying the hair and skin and without irritating the ocular mucosae or leaving skin taut after frequent use. Most lathering soaps, shower and bath products, shampoos and bars fail in this respect. Certain synthetic surfactants are known to be mild. However, a major drawback of most mild synthetic surfactant systems when formulated for shampooing or personal cleansing is poor lather performance compared to the highest shampoo and bar soap standards. Thus, surfactants that are among the mildest are marginal in lather. The use of known high sudsing anionic surfactants such as alkyl sulphates with lather boosters, on the other hand, can yield acceptable lather volume and quality but at the expense of clinical skin mildness. These two facts make the selection of suitable surfactants in the lather and mildness benefit formulation process a delicate balancing act.
In addition to the mildness, cleansing and lathering performance attributes desired by consumers it is important that personal cleansing products further have good thickening and rheological properties, in product storage, in dispensing and in-use.
It is known that water-soluble polymers can be used to provide desirable product thickening attributes in surfactant systems and, furthermore, that hydrophobic modification of water-soluble polymers can improve their thickening efficacy. However, it is also known that the thickening properties of such hydrophobically modified water-soluble polymers can be significantly reduced in non-dilute, water-soluble surfactant systems (as discussed in Sau and Landoll 'Polymers in Aqueous Media', Advances in Chemistry Series No. 223, Chapters 8, 17, 18, edited by J.E. Glass). In particular, Applicant has found that in non- dilute, water-soluble surfactant systems, hydrophobically modified polymers, such as hydrophobically modified hydroxy ethyl cellulose, do not deliver good product thickening. Non-dilute, as defined herein, means systems comprising greater than about 1% by weight of water- soluble surfactant. Water-soluble, as defined herein, means a surfactant having a molecular weight of less than about 20,000 wherein the surfactant is capable of forming a clear, isotropic solution when dissolved in water at 0.2 % w/w under ambient conditions (25°C).
It is also well known that fatty alcohol ethoxylates and fatty alcohols can thicken systems containing both water-soluble surfactant and electrolyte (as illustrated, for example, in Hoechst Surfactants, published Trade Literature). However, fatty alcohol ethoxylates and fatty alcohols modify the micellar structure of the water-soluble surfactant system, resulting in undesirable effects on product characteristics such as the lather profile, rinsing behaviour and in-use product feel attributes. Applicant has also found, that, in order to achieve good product thickening in non-dilute, water-soluble surfactant systems via the exclusive use of a fatty alcohol ethoxylate and/or fatty alcohol thickening agent, the amount of fatty thickener required to deliver acceptable thickening attributes results in reduced lather and rinsing performance.
It is known that an additional difficulty associated with the use of fatty alcohol ethoxylate and/or fatty alcohol and electrolyte based thickening systems is that the thickening effect of such materials is highly dependant upon the purity and quality of the raw materials used. This can lead to unpredictability in thickening performance, such as thin products with non-recoverable low viscosity. This unpredictability makes it difficult to efficiently formulate systems using water-soluble surfactants which have predictable viscosity profiles when using these fatty materials.
Thus a need exists for effective thickening systems for non-dilute, water-soluble surfactant systems which deliver good product thickening and rheology attributes both in storage, in dispensing and in-use in combination with the delivery of excellent product characteristics such as lather, cleanisng, rinsing, skin mildness and in-use skin feel attributres.
Surprisingly, it has now been found that personal cleansing compositions having excellent product thickening and rheology attributes, both" under product storage and in-use conditions are provided by the combination of a thickening system consisting essentially of associative polymer and polar oil in combination with a non-dilute, water-soluble surfactant system. Furthermore it has also been found that the thickening system of the present invention can deliver desirable thickening effects from a significantly lower level of total thickener than previously utilised in surfactant compositions. In addition to the product thinning difficulties faced when attempting to thicken systems containing high levels of surfactant using fatty thickeners, applicant has found that mild, water-soluble nonionic surfactants, such as polyhydroxy fatty acid amides and alkyl polyglycosides are difficult to thicken using fatty thickeners and electrolyte based thickening systems.
Applicant has also found that the thickening system of the present invention is particularly valuable for thickening certain mild water- soluble nonionic surfactants such as polyhydroxy fatty acid amide surfactant.
Summary Of The Invention
The subject of the present invention is non-dilute, foam-producing, easily rinsed, cleansing products suitable for personal cleansing of the skin or hair which have good thickening and rheology properties and which may be used as shower products, skin cleansers and shampoos etc. According to one aspect of the invention, there is provided a liquid personal cleansing composition comprising:
(a) from about 0.01% to about 15% by weight of a thickening system consisting essentially of associative polymer and polar oil having a required HLB of at least 12;
(b) from about 1% to about 60% by weight of water-soluble surfactant selected from anionic surfactant, nonionic, zwitterionic and amphoteric surfactants and mixtures thereof;
(c) optionally, from about 0.01% to about 5% by weight of cationic polymeric skin conditioning agent; and
(d) water.
wherein the polar oil has an average carbon chain length of from about 10 to about 18 carbon atoms and wherein the water-soluble surfactants have an average carbon chain length of from about 10 to about 18 carbon atoms.
According to another aspect of the invention there is provided a personal cleansing composition comprising:
(a) from about 0.01% to about 15% by weight of a thickening system consisting essentially of hydrophobically modified water-soluble nonionic polymer and polar oil having a required HLB of at least 12;
(b) from about 1% to about 60% by weight of water-soluble surfactant selected from anionic surfactant, nonionic, zwitterionic and amphoteric surfactants and mixtures thereof;
(c) optionally, from about 0.01% to about 5% by weight of cationic polymeric skin conditioning agent; and
(d) water.
wherein the polar oil has an average carbon chain length of from about 10 to about 18 carbon atoms and wherein the water-soluble surfactants have an average carbon chain length of from about 10 to about 18 carbon atoms.
According to another aspect of the invention there is provided a personal cleansing composition comprising:
(a) from about 0.01% to about 15% by weight of a thickening system consisting essentially of hydrophobically modified water-soluble nonionic polymer selected from hydrophobically modified alkoxy urethanes, hydrophobically modified hydroxy alkyl celluloses, hydrophobically modified nonionic polyols and mixtures thereof and polar oil having a required HLB of at least 12; (b) from about 1% to about 60% by weight of water-soluble surfactant selected from anionic surfactant, nonionic, zwitterionic and amphoteric surfactants and mixtures thereof;
(c) optionally, from about 0.01% to about 5% by weight of cationic polymeric skin conditioning agent; and
(d) water.
wherein the polar oil has an average carbon chain length of from about 12 to about 14 carbon atoms and wherein the water-soluble surfactants have an average carbon chain length of from about 12 to about 14 carbon atoms.
According to a further embodiment of the invention there is provided a personal cleansing composition comprising :
(a) from about 0.01% to about 15% by weight of a thickening system which consists essentially of associative polymer and polar oil having a required HLB of at least 12.
(b) from about 0.1% to about 20% by weight of a nonionic polyhydroxy fatty acid amide surfactant having the general formula (III):
O Rq
II ι y R8 — C — N — Z2
wherein R is C5-C31 hydrocarbyl, R9 is hydrogen, C\-C& alkyl or hydroxyalkyl and Z2 is a polyhydroxyhydrocarbyl moiety;
(c) from about 1% to about 60% by weight of water-soluble auxiliary surfactant other than the polyhydroxy fatty acid amide surfactant of (b), selected from anionic surfactant, nonionic, zwitterionic and amphoteric surfactants and mixtures thereof; and
(d) water.
wherein the average carbon chain length of the polar oil is from about 10 to about 18 carbon atoms and is substantially similar to the average carbon chain length of the combined polyhydroxy fatty acid amide and other mild surfactants in the water-soluble, non-dilute surfactant matrix.
In a highly preferred embodiment, the invention takes the form of a non-dilute, foam producing liquid cleansing composition having good product thickening and rheological properties.
All concentrations and ratios herein are by weight of the cleansing composition, unless otherwise specified. Surfactant chain lengths are also on a weight average chain length basis, unless otherwise specified.
Detailed Description of the Invention
The liquid cleansing compositions herein combine a thickening system consisting essentially of associative polymer and polar oil in combination with surfactants and, optionally, polymeric skin conditioning agents. Preferred embodiments also contain perfume or cosmetic oils.
Thickening System
The liquid cleansing compositions herein are based on a thickening system consisting essentially of associative polymer, preferably hydrophobically modified water-soluble, nonionic polymer, and polar oil having a required HLB value of at least about 12, in combination with a water-soluble, non-dilute surfactant system, and optionally polymeric skin conditioning agents. The total level of associative polymer and polar oil in the thickening system according to the present invention is from about 0.01% to about 15%, preferably about 0.01% to about 10%, more preferably from about 0.05% to about 8%, most preferably from about 0.1% to about 4%, especially from about 0.1% to about 2%, most especially from about 0.5% to about 1.5% by weight. The preferred ratio of associative polymer to polar oil is in the range of from about 1 :5 to about 5:1, more preferably from about 1:3 to about 3:1, most preferably from about 1 :2 to about 1:2.
The thickening system of the invention is valuable for the delivery of good product thickening and rheological attributes during product storage, dispensing and use.
A further benefit of the thickening systems of the present invention is that the product thickening is not dependant of the presence of electrolyte in the surfactant matrix. Thus, it is now possible to formulate a non-dilute surfactant matrix having desirable product thickening and rheological attributes without the use of an electrolyte.
Applicant has found that this independence from electrolyte is particularly valuable for the delivery of desirable thickening properties when formulating mild, non-dilute, water-soluble surfactant systems comprising polyhydroxy fatty acid amide surfactants (as discussed hereinafter).
Associative Polymers
The thickening systems of the present invention contain, as an essential component, an associative polymer at a level of from about 0.01% to about 12%, preferably from about 0.01% to about 10%, more preferably from about 0.05% to about 8%, most preferably from about 0.1% to about 4%, especially from about 0.1% to about 2%, most especially from about 0.5% to about 1.5% by weight. Associative polymers are valuable, in the compositions herein, in combination with polar oils having a required HLB of at least 12, for the delivery of good product thickening and rheological attributes in non-dilute, water-soluble surfactant systems.
In the compositions according to the present invention preferred associative polymers are nonionic associative polymers having an average molecular weight in the range of from about 2,000 to about 2,000,000, preferably from about 10,000 to about 1,000,000, more preferably from about 20,000 to about 800,000.
Associative polymers are a subclass of water-soluble polymers and are generally water-soluble macromolecular structures having both hydrophilic and hydrophobic components. Associative polymers can thicken surfactant solutions as a result of intermolecular association between the various water-insoluble hydrophobic components which for a part of, or are bonded to (directly or indirectly) a water-soluble polymer backbone (discussed in detail by G. D. Shay in Polymers in Aqueous Media, Advances in Chemistry series 223, pp467. Edited by J. E. Glass).
As discussed in herein before, associative polymers are known to build viscosity in the presence of low levels of water-soluble surfactants (i.e., less than about 1% w/w), as described in EP-A-0,412,706, and the literature reports on the interaction of such associative thickeners with specific surfactants (Sau and Landoll, 'Polymers in Aqueous Media', Advances in Chemistry Series No. 223, pp 343-364, Edited by J.E. Glass).
Hydrophobically modifed polymer, as defined herein, means, a water soluble (hydrophilic) associative polymer which has been modified by the addition of hydrophobic groups to enhance its thickening potential (as discussed in Sau and Landoll 'Polymers in Aqueous Media', Advances in Chemistry Series No. 223, Chapters 8, 17, 18, edited by J.E. Glass). The generally accepted model of product thickening, in terms of hydrophobically modified water-soluble nonionic polymers, is that thickening results from intermolecular association between the hydrophobic groups on the polymer (Sau and Landoll, 'Polymers in Aqueous Media', Advances in Chemistry Series No. 223, pp 343-364, edited by J.E. Glass). In particular, the effect of simple anionic surfactant, e.g. SDS, and nonionic surfactant, e.g. CxEy, on hydrophobically modified hydroxy ethyl cellulose (HMHEC) (as discussed in Sau & Landoll in Polymers in Aqueous Media', Advances in Chemistry Series No. 223, pp 343-364 and Tanaka et al. in Macromolecules, 1992, 25, pp 1304-1310) and hydrophobically modified ethoxy urethane (HEUR) (Hulden, Colloids & Surfaces, 82 (1994), 263- 277).
Preferred liquid cleansing compositions herein are based on a thickening system consisting essentially of hydrophobically modified water-soluble, nonionic polymer and polar oil having a required HLB value of at least about 12, in combination with a water-soluble, non-dilute surfactant system, and optionally polymeric skin conditioning agents. Water-soluble, in terms of hydrophobically modified water-soluble nonionic polymer, as defined herein, means, polymer having at least a water-soluble backbone and/or linkages.
While not wishing to be bound to any particular theory, it is proposed herein that the hydrophobically modified water-soluble nonionic polymer and polar oil thickeners of the present invention, interact, in the presence of non-dilute, water-soluble surfactant systems to deliver excellent product thickening characteristics.
Hydrophobically modified water-soluble nonionic polymers suitable for use in the thickening systems of the present invention include hydrophobically modified hydroxyalkyl cellulose polymers such as hydrophobically modified hydroxyethyl cellulose (HMHEC), hydrophobically modified alkoxylated urethane polymers, such as hydrophobically modified ethoxylated urethane (HEUR), and hydrophobically modified nonionic polyols.
Hydrophobically Modified Hydroxyalkyl Cellulose Thickener
Cellulose ethers suitable for use herein, have, prior to hydrophobic modification, a sufficient degree of nonionic substitution selected from methyl, ethyl, hydroxyethyl and hydroxypropyl to cause them to be water-soluble. The preferred degree of nonionic substitution is in the range of from about 1.8 to about 4.0, preferably from about 2 to about 3, and especially from about 2.2 to about 2.8 by weight. The cellulose ethers are then further substituted with alkyl or alkenyl groups having from about 10 to about 24, preferably from about 14 to about 18 carbon atoms in an amount of from about 0.1 to about 1, preferably from about 0.3 to about 0.8, and especially from about 0.4 to about 0.6 weight percent. The cellulose ether to be modified is preferably one of low to medium molecular weight, i.e., less than 800,000 and preferably between 20,000 and 700,000 (75 to 2500 D.P.). Degree of polymerisation (D.P.) as defined herein, means, the average number of glycoside units in the polymer.
Preferred cellulose ethers for use herein are selected from commercially available nonionic cellulose ethers such as hydroxy ethyl cellulose, hydroxy propyl methyl cellulose, hydroxy methyl cellulose, ethyl hydroxy ethyl cellulose and mixtures thereof.
The preferred cellulose ether substrate, for use herein, is a hydroxyethyl cellulose (HEC) of from about 50,000 to about 700,000 molecular weight. Hydroxyethyl cellulose of this molecular weight level is the most hydrophilic of the materials completed. Accordingly, control of the modification process and control of the properties of the modified product can be more precise with this substrate. Hydrophilicity of the most commonly used nonionic cellulose ethers varies in the general direction: hydroxyethyl > hydroxypropyl > hydroxypropyl methyl > methyl.
The long chain alkyl modifier, for the cellulose ether, can be attached to the cellulose ether substrate via an ether, ester or urethane linkage. The ether linkage is preferred. Although the modified cellulose ether materials are referred to as being "alkyl modified ", (the term alkyl as used generally herein also includes using alkenyl) it will be recognised that except in the case where modification is effected with an alkyl halide, the modifier is not a simple long chain alkyl group. The group is actually an alphahydroxyalkyl radical in the case of an epoxide, a urethane radical in the case of an isocyanate, or an acyl radical in the case of an acid or acyl chloride. General methods for making modified cellulose ethers are taught in Landoll ('277) at column 2, lines 36-65.
Highly preferred hydrophobically modified hydroxy ethyl cellulose (HMHEC) polymers suitable for use herein have a 1% aqueous viscosity in the range of from about 8,000 to about 50,000 mPas (Brookfield LVT viscometer, spindle No. 4, speed 4).
Commercially available materials preferred for use herein include NATROSOL PLUS Grade 330 CS (TM), a hydrophobically modified hydroxyethylcellulose available from Aqualon Company, Wilmington, Delaware. This material has a C\ alkyl substitution of from 0.4% to 0.8% by weight. The hydroxyethyl molar substitution for this material is from 3.0 to 3.7. The average molecular weight for the water-soluble cellulose prior to modification is approximately 300,000. Also suitable for use herein is NATROSOL PLUS Grade 430 CS (TM)
Another material of this type is sold under the trade name NATROSOL PLUS CS Grade D-67 (TM), by Aqualon Company, Wilmington, Delaware. This material has a Cj6 substitution of from 0.50% to 0.95%, by weight. The hydroxyethyl molar substitution for this material is from 2.3 to 3.7. The average molecular weight for the water soluble cellulose prior to modification is approximately 700,000. Highly preferred for use herein are C14 - Ci8 alkyl and alkenyl modified hydroxy ethyl cellulose polymers having a degree of ethoxylation of from about 1.8 to about 3.2, preferably from about 2.0 to about 3.0, more preferably from about 2.2 to about 2.8 and an alkyl and alkenyl substitution level of from about 0.3 to about 0.8, preferably from about 0.4 "to about 0.7, most preferably from about 5.5 to about 0.7 and especially about 0.65. Highly preferred are cetyl modified hydroxy ethyl cellulose polymers as available from the Aqualon Co. under the trade names Polysurf 67 (TM) having a molecular weight of about 700,000. Hydrophobically Modified Alkoxylate Urethane Thickener
Hydrophobically modified water-soluble nonionic alkoxylated urethane polymers suitable for use herein are particularly valuable for providing excellent stability characteristics over normal temperature ranges (5°C to about 50°C) as well as delivering near Newtonian rheology behaviour at low shear rates in matrices comprising high surfactant levels, and for delivery of improved product thickening characteristics and rheological behaviour in combination with polar oil, having a required HLB of at least 12, in a non-dilute, water-soluble surfactant system.
Hydrophobically modified water-soluble nonionic alkoxylated urethane polymers are made by prepolymerisation of a diisocyanate with a polyol followed by end capping with primary amines or primary alcohols; The resulting molecule is usually a linear block copolymer, with internal and terminal hydrophobes but branched and cross linked polymer can also be obtained.
The polymerisation process is very complex and various resulting polymer structures can be formed as reviewed in the literature by Hulden (Colloids & Surfaces, 82, 263-277), Kaczmarski et al. (Polym. Mater. Sci. Eng., 67, 282-283), and Karunasena et al. (Polymers in aqueous media, Advances in Chemistry Series, 223, 495-525). Further details on hydrophobically modified water-soluble nonionic alkoxylated urethane polymers as thickeners are discussed in the paper titled 'Polymers in Cosmetics', presented by Rohm & Haas as part of 'The Proceedings of the 20th National Congress of the Society of Italian Cosmetic Chemists 1993' at p29.
Preferred hydrophobically modified water-soluble nonionic alkoxylated urethane polymers for use herein are described by Kaczmarski et al. as linear block copolymers (which can be obtained by a step - growth process) and can have the following general structures:
R2-NHCO-NH-R 1 [NH-CO-0-Eπ-CH2CH2θCONH-R 1 ]x-NHCO-NH- R2 R2-0-CONH-R 1 [NH-CO-0-En-CH2CH2θCONH-R 1 ]x-NH-CO-0-R2
wherein: En is a polyol having the general formula, (CH2 CH2 O) n, n can vary from 10 to 10,000, preferably from 10 to 1,000, and more preferably from 50 to 500; Rl includes straight or branched chain alkyl, alkenyl or aromatic groups containing pending functional groups e.g. COOH; R2 includes straight or branched chain alkyl, alkenyl or aromatic groups containing pending functional groups e.g. COOH and wherein R2 is preferably selected from NH2 or OH and wherein x represents the degree of polymerisation.
Preferred hydrophobically modified water-soluble nonionic alkoxylated urethane polymers suitable for use herein are those sold by Rohm & Haas under Acrysol 44 (TM), by Berol Nobel under Bermodol 2101 (TM), 2130 (TM) and Bermodol Pur 2100 (TM) and by Servo under the name Ser-Ad-FX-100 (TM).
Hydrophobically Modified Nonionic Polvols
Also suitable for use herein as thickeners are hydrophobically modified water-soluble nonionic polyols. Suitable hydrophobically modified water-soluble nonionic polyols for use herein are fatty acid esters of glucosides such as PEG 120 methyl glucoside dioleate (available from Amercol under the trade name Glucamate DOE 120), PEG- 150 pentaerythrityl tetrastearate (available from Croda under the trade name Crothix (TM)), PEG-75 dioleate (available from Kessco under the trade name PEG-4000 dioleate (TM)) and PEG- 150 distearate (available from Witco under the trade name Witconal L32 (TM)).
Polar Oil
A further essential feature of the thickening systems of the present invention is polar oil having a required HLB of at least 12. Polar oil is present in the cleansing compositions herein at a level of from about 0.01% to about 3%, preferably from about 0.01% to about 2%, more preferably from about 0.1% to about 1%, most preferably from about 0.2% to about 0.8% by weight.
Polar oil as defined herein, means, an organic oil, in liquid or waxy form, having one or more hydrophilic or polar functionalities, and which, can interact with associative polymer, in the presence of a non-dilute water-soluble surfactant system to deliver excellent product thickening and rheology attributes.
Polar oils suitable for use as thickeners herein have a required HLB value of about at least 12, preferably from about 12 to about 15, more preferably from about 12 to about 14. Required HLB value, as defined herein, represents the "Required Hydrophile / Lipophile Balance" and can be assessed by the standard technique well known in the art. The HLB concept in general, and specifically the required HLB, is also described more fully in "The HLB System", published by ICI Americas Inc., Wilmington, Delaware.
Exemplary polar oils suitable for use in the compositions according to the present invention include natural and synthetic fatty alcohols and fatty acids having an average carbon chain length of from about 10 to 18 carbon atoms. Fatty alcohols suitable for use herein include decyl alcohol, lauryl alcohol, cetyl alcohol, stearyl alcohol and mixtures thereof. Additional polar oils include fatty acids having an average carbon chain length of from about 12 to 16 carbon atoms, such as lauric acid and myristic acid.
Applicant has also found that the carbon chain length of the polar oil has an impact on the degree of product thickening delivered to non- dilute, water-soluble surfactant matrices by the thickening systems of the present invention. In general, preferred polar oils suitable for use herein have an average carbon chain length which is in the range of from about 10 to about 18, preferably from about 12 to about 16 and especially from about 12 to about 14 carbon atoms. Particularly preferred for use herein are systems wherein the average carbon chain length of the polar oil is substantially similar to the average carbon chain length of the non-dilute, water-soluble surfactant system. Substantially similar average carbon chain length, as defined herein, means, carbon chain lengths within two, preferably one, carbon units difference, i.e, Cj2 is defined herein as substantially similar to Cj
Polar oils having an average carbon chain length of from about 12 to about 14 carbon atoms on the alkyl chain are preferred in the cleansing compositions according to the invention, as surfactants having an average carbon chain length of from about 12 to about 14 carbon atoms are highly desirable for the delivery of good foaming properties.
As herein before discussed, particularly suitable for use in the thickening system of the present invention are polar oils having a chain length substanitally similar to that of the chosen surfactant system. Preferred polar oils for use herein are Cj2 to C14 alcohols such as Lauryl Alcohol (Laurex NC (RTM) from Albright & Wilson), C12 to C13 alcohols (Dobanol 23 from Shell UK) and C12 to C15 alcohols (Dobanol 25 from Shell UK) and , C14 to C15 alcohols (Dobanol 45 from Shell UK) also available under the Neodol trademark from Shell US Inc.
Applicant has also found that the level of polar oil thickener present in the thickening system of the invention has a finite effect on the increase in product thickening (i.e., as the level of polar oil increases, relative to the total surfactant level, the degree of thickening achieved in the surfactant matrix eventually reaches a plateau).
The present compositions can also comprise an auxiliary nonionic or anionic polymeric thickening component, especially a water-soluble polymeric materials, having a molecular weight greater than about 20,000. By "water-soluble polymer" is meant that the material will form a substantially clear solution in water at a 1% concentration at 25°C and the material will increase the viscosity of the water. Examples of water- soluble polymers which may desirably be used as an additional thickening component in the present compositions, are hydroxyethylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, polyethylene glycol, polyacrylamide, polyacrylic acid, polyvinyl alcohol (examples include PVA 217 from Kurary Chemical Co., Japan), polyvinyl pyrrolidone K-120, dextrans, for example Dextran purified crude Grade 2P, available from D&O Chemicals, carboxymethyl cellulose, plant exudates such as acacia, ghatti, and tragacanth, seaweed extracts such as sodium alginate, propylene glycol alginate and sodium carrageenan. Preferred as the additional thickeners for the present compositions are natural polysaccharide materials. Examples of such materials are guar gum, locust bean gum, and xanthan gum. Also suitable herein preferred is hydroxyethyl cellulose having a molecular weight of about 700,000.
Surfactant System
As a further essential feature the compositions of the present invention comprise a non-dilute surfactant system of water-soluble surfactants. Water-soluble, as defined herein, means a urfactant having a molecular weight of less than about 20,000 wherein the surfactant is capable of forming a clear isotropic solution when dissolved in water at 0.2 % w/w under ambient conditions. Surfactants suitable for inclusion in compositions according to the present invention generally have a lipophilic chain length of from about 8 to about 22 carbon atoms and can be selected from anionic, nonionic, zwitterionic and amphoteric surfactants and mixtures thereof. The total level of surfactant is preferably from about 2% to about 40%, more preferably from about 3% to about 15% by weight. The compositions preferably comprise a mixture of anionic with zwitterionic and/or amphoteric surfactants. The level of the individual anionic, zwitterionic and amphoteric surfactant components, where present, is in the range from about 1% to about 15%, and " especially from about 1% to about 10% by weight of the composition, while the level of nonionic surfactant, where present, is in the range from about 0.1% to about 20% by weight, preferably from about 0.5% to about 16%, more preferably from about 1% to about 12% by weight. The weight ratio of anionic surfactant: zwitterionic and/or amphoteric surfactant is in the range from about 1:10 to about 10: 1, preferably from about 1 :5 to about 5: 1, more preferably from about 1 :3 to about 3: 1. Other suitable compositions within the scope of the invention comprise mixtures of anionic, zwitterionic and/or amphoteric surfactants with one or more nonionic surfactants. Preferred for use herein are soluble or dispersible nonionic surfactants selected from ethoxylated animal and vegetable oils and fats and mixtures thereof, sometimes referred to herein as "oil-derived" nonionic surfactants.
The compositions of the invention can comprise a water-soluble anionic surfactant at levels from about 0.1% to about 20%, more preferably from about 0.1% to about 10%, and especially from about 1% to about 8% by weight.
Water soluble anionic surfactants suitable for inclusion in the compositions of the invention can generally be described as mild synthetic detergent surfactants and include alkyl sulphates, ethoxylated alkyl sulfates, alkyl ethoxy carboxylates, alkyl glyceryl ether sulfonates, methyl acyl taurates, fatty acyl glycinates, N-acyl glutamates, acyl isethionates, alkyl sulfosuccinates, alkyl ethoxysulphosuccinates, alpha- sulfonated fatty acids, their salts and/or their esters, alkyl phosphate esters, ethoxylated alkyl phosphate esters, alkyl sulphates, acyl sarcosinates and fatty acid/protein condensates, and mixtures thereof. Alkyl and or acyl chain lengths for these surfactants are C12-C22-. preferably C12-CI8 more preferably C12-C14.
Surfactants of this class include short-chain alkyl sulphate surfactants where 'short chain' as defined herein means an average carbon chain length of C10 or less. The short chain alkyl sulphate surfactants of the present invention are valuable in shower gel compositions for the delivery of improved skin mildness attributes and product rinsing benefits in combination with a desirable lather profile. Alkyl sulphate surfactants suitable for inclusion in the compositions of the present invention have the general formula (II);
R - SO3 - M
wherein R is straight or branched chain alkyl, preferably straight chain, containing on average from about 8 to about 10 carbon atoms, preferably about 10 carbon atoms and wherein M is selected from alkali metals, ammomum or other suitable monovalent cation or mixtures thereof. It should be understood that the definition of any particular carbon chain length, say Cg is an average value and as such may contain certain proportions of both higher and lower carbon chain lengths as a direct function of its synthesis. The level of such material can be achieved by modification of the process and the nature of the starting materials. While C\Q alkyl sulphate is the preferred surfactant in the compositions of the invention mixtures of short chain alkyl sulphates may also be used. Especially preferred in the compositions herein is CJO alkyl sulphate material containing at least about 80% by weight of the C\Q, preferably at least about 90% CJO, more preferably at least about 95% C\Q and especially at least about 99% C\Q alkyl sulphate. Suitable short chain alkyl sulphate materials are available from Albright and Wilson under the trade names Empicol LC35 and Empicol 0758F.
Additional water-soluble anionic surfactants suitable for use in the compositions according to the present invention are the salts of sulfuric acid esters of the reaction product of 1 mole of a higher fatty alcohol and from about 1 to about 12 moles of ethylene oxide, with sodium, ammonium and magnesium being the preferred counterions. Particularly preferred are the alkyl ethoxy sulphates containing from about 2 to 6, preferably 2 to 4 moles of ethylene oxide, such as sodium laureth-2 sulphate, sodium laureth-3 sulphate and magnesium sodium laureth-3.6 sulphate. In preferred embodiments, the anionic surfactant contains at least about 50% especially at least about 75% by weight of ethoxylated alkyl sulphate.
In addition to the broad range ethoxylated alkyl sulphates obtained via conventional sodium catalysed ethoxylation techniques and subsequent sulphation processes, ethoxylated alkyl sulphates obtained from narrow range ethoxylates (NREs) are also suitable water-soluble anionic surfactants for use in the present compositions. Narrow range ethoxylated alkyl sulphates suitable for use herein are selected from sulphated alkyl ethoxylates containing on average from about 1 to about 6, preferably from about 2 to about 4 and especially about 3 moles of ethylene oxide such as NRE sodium laureth-3 sulphate. NRE materials suitable for use herein contain distributions of the desired ethylene oxide (EOn) in the ranges of from 15% to about 30% by weight of EOn, from about 10% to about 20% by weight of EOn+ι and from about 10% to about 20% by weight of EOn_ι . Highly preferred NRE materials contain less than about 9% by weight of ethoxylated alkyl sulphate having 7 or more moles of ethylene oxide and less than about 13% by weight of non- ethoxylated alkyl sulphate. Suitable laureth 3 sulphate NRE materials are available from Hoechst under the trade names GENAPOL ZRO Narrow Range and GENAPOL Narrow Range.
The compositions of the present invention may contain, as a water- soluble anionic surfactant alkyl ethoxy carboxylate surfactant at a level of from about 0.5% to about 15%, preferably from about 1% to about 10%, more preferably from about 1% to about 6% and especially from about 1% to about 4% by weight. Alkyl ethoxy carboxylate surfactant is particularly valuable in the compositions according to the present invention for the delivery of excellent skin mildness attributes in combination with excellent rinsing performance and desirable lather characteristics.
Alkyl ethoxy carboxylates suitable for use herein have the general formula (I):
R30(CH2CH2θ) CH2COO"M+
wherein R3 is a Cjo to C15 alkyl or alkenyl group, preferably a Cn_ C]5, more preferably a C12-C14 alkyl or C12-C13 alkyl group, k is an average value of ethoxylation ranging from 2 to about 7, preferably from about 3 to about 6, more preferably from about 3.5 to about 5.5, especially from about 4 to about 5, most preferably from about 4 to about 4.5," and M is a water-solubilizing cation, preferably an alkali metal, alkaline earth metal, ammonium, lower alkanol ammomum, and mono-, di-, and tri-ethanol ammonium, more preferably sodium, potassium and ammomum, most preferably sodium and ammonium and mixtures thereof with magnesium and calcium ions.
Particularly preferred as water-soluble anionic surfactants suitable for use herein are alkyl ethoxy carboxylate surfactants having a selected distribution of alkyl chain length and/or ethoxylate. Thus, the alkyl ethoxy carboxylate surfactants suitable for use in the compositions according to the present invention may comprise a distribution of alkyl ethoxy carboxylates having different average values of R3 and/or k.
The average value of k will generally fall in the range of from about 3 to about 6 when the average R3 is C\ \ , C]2, C13 or C14. Preferred water-soluble anionic alkyl ethoxy carboxylate surfactants suitable for use herein are the C12 to C14 (average EO 3-6) ethoxy carboxylates and the C 12 to C 13 (average EO 3-6) ethoxy carboxylates. Suitable materials include salts of NEODOX 23-4 (RTM) available from Shell Inc. (Houston, Texas, USA). Highly preferred for use herein are alkyl ethoxy carboxylate surfactants wherein, when R3 is a C 2~C\4 or 2-C13 alkyl group and the average value of k is in the range of from about 3 to about 6, more preferably from about 3.5 to about 5.5, especially from about 4 to about 5 and most preferably from about 4 to about 4.5.
The compositions according to the present invention may additionally comprise water-soluble nonionic surfactant at levels from about 0.1% to about 20%, more preferably from about 0.1% to about 10%, and especially from about 1% to about 8% by weight. Surfactants of this class include C12-C14 fatty acid mono-and dialkanolamides such as cocoethanolamide, cocomonoisopropylamide, cocodiethanolamide and ethoxylated derivatives thereof, sucrose polyester surfactants, C10-C1 alkyl polyglycosides and polyhydroxy fatty acid amide surfactants having the general formula (III).
Figure imgf000023_0001
Rg - C — N — Z2
The preferred N-alkyl, N-alkoxy or N-aryloxy, polyhydroxy fatty acid amide surfactants according to formula (III) are those in which Rs is C5-C31 hydrocarbyl, preferably C6-C19 hydrocarbyl, including straight- chain and branched chain alkyl and alkenyl, or mixtures thereof and R9 is typically, hydrogen, Cj-Cs alkyl or hydroxyalkyl, preferably methyl, or a group of formula -R -0-R2 wherein Rl is C2-C8 hydrocarbyl including straight-chain, branched-chain and cyclic (including aryl), and is preferably C2-C4 alkylene, R2 is Ci-Cs straight-chain, branched-chain and cyclic hydrocarbyl including aryl and oxyhydrocarbyl, and is preferably C1-C4 alkyl, especially methyl, or phenyl. Z2 is a polyhydroxyhydrocarbyl moiety having a linear hydrocarbyl chain with at least 2 (in the case of glyceraldehyde) or at least 3 hydroxyls (in the case of other reducing sugars) directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof. Z2 preferably will be derived from a reducing sugar in a reductive ammination reaction, most preferably Z2 is a glycityl moiety. Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose, and xylose, as well as glyceraldehyde. As raw materials, high dextrose corn syrup, high fructose corn syrup, and high maltose corn syrup can be utilised as well as the individual sugars listed above. These corn syrups may yield a mix of sugar components for Z2. It should be understood that it is by no means intended to exclude other suitable raw materials. Z2 preferably will be selected from the group consisting of - CH2-(CHOH)n-CH2θH, -CH(CH2θH)-(CHOH)n.1 -CH2H,
CH2(CHOH)2(CHOR')CHOH)-CH2θH, where n is an integer from 1 to 5, inclusive, and R' is H or a cyclic mono- or poly-saccharide, and alkoxylated derivatives thereof. As noted, most preferred are glycityls wherein n is 4, particularly -CH2-(CHOH)4-CH2θH.
The most preferred polyhydroxy fatty acid amide has the formula R8(CO)N(CH3)CH2(CHOH)4CH OH wherein Rg is a Cβ-C 19 straight chain alkyl or alkenyl group. In compounds of the above formula, R - CO-N< can be, for example, cocoamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmiamide, tallowamide, etc.
A preferred process for making the above compounds having formula (III) comprises reacting a fatty acid triglyceride with an N- substituted polyhydroxy amine in the substantial absence of lower (C\- C4) alcoholic solvent, but preferably with an alkoxylated alcohol or alkoxylated alkyl phenol such as NEODOL and using an alkoxide catalyst at temperatures of from about 50°C to about 140°C to provide high yields (90-98%) of the desired products. Suitable processes for making the desired polyhydroxy fatty acid amide compounds are outlined in US-A-5, 194,639 and US-A-5,380,891. It is known that mild, nonionic surfactants such as polyhydroxy fatty acid amides and alkyl polyglycosides can deliver excellent skin mildness characteristics in combination with good lather and cleansing attributes. However, Applicant has found that non-dilute, water-soluble surfactant systems comprising such materials at high (>1% w/w) levels can be relatively unresponsive or unstable in the presence of conventional thickening agents, such as electrolyte. For example, when improperly formulated, non-dilute, water-soluble surfactant systems comprising polyhydroxy fatty acid amide surfactants and electrolyte are water-thin and difficult to thicken.
In addition to the product thinning and stability limitations of such conventional thickening agents, Applicant has also found that incorporation of alternative thickening agents, such as hydroxy ethyl cellulose, xanthan gum, guar gum, polymer JR 30M (TM), into non- dilute, water-soluble surfactant matrices comprising polyhydroxy fatty acid amide surfactant can provide some thickening but at the expense of lather and rinsing performance.
Thus, it would be desirable to develop a thickening system for the formulation of mild, non-dilute, water-soluble surfactant systems comprising polyhydroxy fatty acid amide and/or alkyl polyglycoside which deliver good product thickening, rheology and stability attributes in combination with good lather and rinsing performance.
Applicant has now found that the thickening system of the present invention is valuable for the delivery of excellent product thickening and rheology attributes in combination with good lather performance and skin mildness attributes in non-dilute, water-soluble surfactant systems comprising mild, nonionic surfactants such as polyhydroxy fatty acid amide and alkyl polyglycoside.
According to another aspect of the invention there is provided a personal cleansing composition comprising: (a) from about 0.01% to about 15% by weight of a thickening system which consists essentially of associative polymer and polar oil having a required HLB of at least 12.
(b) from about 0.1% to about 20% by weight of a nonionic polyhydroxy fatty acid amide surfactant having the general formula (III):
O Rq
I I I 9 g — C — N — Z2
wherein Rs is C5-C31 hydrocarbyl, R9 is hydrogen, Cj-Cs alkyl or hydroxyalkyl and Z2 is a polyhydroxyhydrocarbyl moiety;
(c) from about 1% to about 60% by weight of water-soluble auxiliary surfactant other than the polyhydroxy fatty acid amide surfactant of (b), selected from anionic surfactant, nonionic, zwitterionic and amphoteric surfactants and mixtures thereof; and
(d) water.
wherein the average carbon chain length of the polar oil is from about 10 to about 18 carbon atoms and is substantially similar to the average carbon chain length of the combined polyhydroxy fatty acid amide and other mild surfactants in the water-soluble, non-dilute surfactant matrix.
The compositions for use herein may also contain a water-soluble amphoteric surfactant. Amphoteric surfactants suitable for use in the compositions of the invention include: (a) imidazolinium surfactants of formula (IV)
C2H 4 OR2
CH 2 Z
R .
+
N
wherein R\ is C7-C22 alkyl or alkenyl, R2 is hydrogen or CH2Z, each Z is independently CO2 or CH2CO2M, and M is H, alkali metal, alkaline earth metal, ammomum or alkanolammomum; and/or ammonium derivatives of formula (V)
C2H4OH R1CONH(CH2) 2N+CH2Z
R2
wherein R\ , R2 and Z are as defined above;
(b) aminoalkanoates of formula (VI)
RlNH(CH2)nC02M
iminodialkanoates of formula (VII)
RlN[(CH2)mC02M]2
and iminopolyalkanoates of formula (VIII)
Rl -[N(CH2)p]qN[CH2C02M]2
I I
CH2C02M wherein n, m, p, and q are numbers from 1 to 4, and Ri and M are independently selected from the groups specified above; and
(c) mixtures thereof.
Suitable amphoteric surfactants of type (a) are marketed under the trade name Miranol and Empigen and are understood to comprise a complex mixture of species. Traditionally, the Miranols have been described as having the general formula IV, although the CTFA Cosmetic Ingredient Dictionary, 3rd Edition indicates the non-cyclic structure V while the 4th Edition indicates yet another structural isomer in which R2 is O-linked rather than N-linked. In practice, a complex mixture of cyclic and non-cyclic species is likely to exist and both definitions are given here for sake of completeness. Preferred for use herein, however, are the non-cyclic species.
Examples of suitable amphoteric surfactants of type (a) include compounds of formula IV and/or V in which Rj is CsHj (especially iso-capryl), C9H19 and C11H23 alkyl. Especially preferred are the compounds in which R\ is C9H19, Z is CO2M and R2 is H; the compounds in which R\ is Cj 1H23, Z is CO2M and R2 is CH2CO2M; and the compounds in which R\ is Cj 1H23, Z is CO2M and R2 is H.
In CTFA nomenclature, materials suitable for use in the present invention include cocoamphocarboxypropionate, cocoamphocarboxy propionic acid, and especially cocoamphoacetate and cocoamphodiacetate (otherwise referred to as cocόamphocarboxyglycinate). Specific commercial products include those sold under the trade names of Ampholak 7TX (sodium carboxy methyl tallow polypropyl amine), Empigen CDL60 and CDR 60 (Albright & Wilson), Miranol H2M Cone. Miranol C2M Cone. N.P., Miranol C2M Cone. O.P., Miranol C2M SF, Miranol CM Special (Rhόne-Poulenc); Alkateric 2CIB (Alkaril Chemicals); Amphoterge W-2 (Lonza, Inc.); Monateric CDX-38, Monateric CSH-32 (Mona Industries); Rewoteric AM-2C (Rewo Chemical Group); and Schercotic MS-2 (Scher Chemicals). It will be understood that a number of commercially-available amphoteric surfactants of this type are manufactured and sold in the form of electroneutral complexes with, for example, hydroxide counterions or with anionic sulfate or sulfonate surfactants, especially those of the sulfated Cg-C\g alcohol, C8-Cj 8 ethoxylated alcohol or C -Cj acyl giyceride types. Preferred from the viewpoint of mildness and product stability, however, are compositions which are essentially free of (non- ethoxylated) sulfated alcohol surfactants. Note also that the concentrations and weight ratios of the amphoteric surfactants are based herein on the uncomplexed forms of the surfactants, any anionic surfactant counterions being considered as part of the overall anionic surfactant component content.
Examples of preferred amphoteric surfactants of type (b) include N-alkyl polytrimethylene poly-, carboxymethylamines sold under the trade names Ampholak X07 and Ampholak 7CX by Berol Nobel and also salts, especially the triethanolammonium salts and salts of N-lauryl-beta- amino propionic acid and N-lauryl- ino-dipropionic acid. Such materials are sold under the trade name Deriphat by Henkel and Mirataine by Rhόne-Poulenc.
The compositions herein can also contain from about 0.1% to about 20%, more preferably from about 0.1% to about 10%, and especially from about 1% to about 8% by weight of a zwitterionic surfactant.
Water-soluble betaine surfactants suitable for inclusion in the compositions of the present invention include alkyl betaines of the formula RsRόR N"1" (CH2)nC02M and amido betaines of the formula (IX)
R5CON ( CH2 ) mN ι6(CH2 ) nC02M
R-, wherein R5 is C11-C22 alkyl or alkenyl, R and R7 are independently C1-C3 alkyl, M is H, alkali metal, alkaline earth metal, ammonium or alkanolammomum, and n, m are each numbers from 1 to 4. Preferred betaines include cocoamidopropyldimethylcarboxymethyl betaine, laurylamidopropyldimethylcarboxymethyl betaine and Tego betaine (RTM).
Water-soluble sultaine surfactants suitable for inclusion in the compositions of the present invention include alkylamido sultaines of the formula;
R1CON(CH2)mN+(CH2)nCH(OH)CH2Sθ3- +
R3
wherein R\ is C7 to C22 alkyl or alkenyl, R2 and R3 are independently C\ to C3 alkyl, M is H, alkali metal, alkaline earth metal, ammonium or alkanolammomum and m and n are numbers from 1 to 4. Preferred for use herein is coco amido propylhydroxy sultaine.
Water-soluble amine oxide surfactants suitable for inclusion in the compositions of the present invention include alkyl amine oxide R5R6R7NO and amido amine oxides of the formula
R6
R5CON(CH2)mN ► O
Figure imgf000030_0001
wherein R5 is C\ \ to C22 alkyl or alkenyl, R and R7 are independently Ci to C3 alkyl, M is H, alkali metal, alkaline earth metal, ammonium or alkanolammomum and m is a number from 1 to 4. Preferred amine oxides include cocoamidopropylamine oxide, lauryl dimethyl amine oxide and myristyl dimethyl amine oxide.
Polymeric Cationic Conditioning Agent
The compositions according to the present invention can optionally include a polymeric cationic conditioning agent. Polymeric cationic conditioning agents are valuable in the compositions according to the present invention for provision of desirable skin feel attributes. The polymeric skin conditioning agent is preferably present at a level from about 0.01% to about 5%, preferably from about 0.01% to about 3% and especially from about 0.01% to about 2% by weight.
Suitable polymers are high molecular weight materials (mass- average molecular weight determined, for instance, by light scattering, being generally from about 2,000 to about 5,000,000, preferably from about 5,000 to about 3,000,000 more preferably from 100,000 to about 1,000,000).
Representative classes of polymers include cationic polysaccharides; cationic homopolymers and copolymers derived from acrylic and/or methacrylic acid; cationic cellulose resins; cationic copolymers of dimethyldiallylammomum chloride and acrylamide and or acrylic acid; cationic homopolymers of dimethyldiallylammomum chloride; cationic polyalkylene and ethoxypolyalkylene imines; quatemized silicones, and mixtures thereof.
By way of exemplification, cationic polymers suitable for use herein include cationic guar gums such as hydroxypropyl trimethyl ammonium guar gum (d.s. of from 0.11 to 0.22) available commercially under the trade names Jaguar C-14-S(RTM) and Jaguar C-17(RTM) and also Jaguar C-16(RTM), which contains hydroxypropyl substituents (d.s. of from 0.8-1.1) in addition to the above-specified cationic groups, and quatemized hydroxy ethyl cellulose ethers available commercially under the trade names Ucare Polymer JR-30M, JR-400, Catanal (RTM) and Celquat. Other suitable cationic polymers are homopolymers of dimethyldiallylammonium chloride available commercially under the trade name Merquat 100, copolymers of dimethyl aminoethylmethacrylate and acrylamide, copolymers of dimethyldiallylammonium chloride and acrylamide, available commercially under the trade names Merquat 550 and Merquat S, acrylic acid/dimethyldiallylammonium chloride/acrylamide copolymers available under the trade name Merquat 3330, quatemized vinyl pyrrolidone acrylate or methacrylate copolymers of amino alcohol available commercially under the trade name Gafquat, for example Polyquaternium 11, 23 and 28 (quatemized copolymers of vinyl pyrrolidone and dimethyl aminoethylmethacrylate - Gafquat 755N and quatemized copolymers of vinyl pyrrolidone and dimethyl aminoethylmethacrylamide - HS-100), vinyl pyrrolidone/vinyl imidazolium methochloride copolymers available under the trade names Luviquat FC370, Polyquaternium 2, and polyalkyleneimines such as polyethylenimine and ethoxylated polyethylenimine.
The compositions of the invention may also contain from about 0.1% to about 20%, preferably from about 1% to about 15%, and more preferably from about 2% to about 10% by weight of an oil derived nonionic surfactant or mixture of oil derived nonionic surfactants. Oil derived nonionic surfactants are valuable in compositions according to the invention for the provision of skin feel benefits both in use and after use. Suitable oil derived nonionic surfactants for use herein include water soluble vegetable and animal-derived emollients such as triglycerides with a polyethyleneglycol chain inserted; ethoxylated mono and di-glycerides, polyethoxylated lanolins and ethoxylated butter derivatives. One preferred class of oil-derived nonionic surfactants for use herein have the general formula (XII)
RCOCH2CH (OH) CH2 (OCH2CH2 ) nOH
wherein n is from about 5 to about 200, preferably from about 20 to about 100, more preferably from about 30 to about 85, and wherein R comprises an aliphatic radical having on average from about 5 to 20 carbon atoms, preferably from about 7 to 18 carbon atoms. Suitable ethoxylated oils and fats of this class include polyethyleneglycol derivatives of glyceryl cocoate, glyceryl caproate, glyceryl caprylate, glyceryl tallowate, glyceryl palmate, glyceryl stearate, glyceryl laurate, glyceryl oleate, glyceryl ricinoleate, and glyceryl fatty esters derived from triglycerides, such as palm oil, almond oil, and com oil, preferably glyceryl tallowate and glyceryl cocoate.
Suitable oil derived nonionic surfactants of this class are available from Croda Inc. (New York, USA) under their Crovol line of materials such as Crovol EP40 (PEG 20 evening primrose giyceride), Crovol EP 70 (PEG 60 evening primrose giyceride) Crovol A-40 (PEG 20 almond giyceride), Crovol A-70 (PEG 60 almond giyceride), Crovol M-40 (PEG 20 maize giyceride), Crovol M-70 (PEG 60 maize giyceride), Crovol PK- 40 (PEG 12 palm kernel giyceride), and Crovol PK-70 (PEG 45 palm kernel giyceride) and under their Solan range of materials such as Solan E, E50 and X polyethoxylated lanolins and Aqualose L-20 (PEG 24 lanolin alcohol) and Aqualose W15 (PEG 15 lanolin alcohol) available from Westbrook Lanolin. Further suitable surfactants of this class are commercially available from Sherex Chemical Co. (Dublin, Ohio, USA) under their Varonic LI line of surfactants and from Rewo under their Rewoderm line of surfactants. These include, for example, Varonic LI 48 (polyethylene glycol (n=80) glyceryl tallowate, alternatively referred to as PEG 80 glyceryl tallowate), Varonic LI 2 (PEG 28 glyceryl tallowate), Varonic LI 420 (PEG 200 glyceryl tallowate), and Varonic LI 63 and 67 (PEG 30 and PEG 80 glyceryl cocoates), Rewoderm LI5-20 (PEG-200 palmitate), Rewoderm LIS-80 (PEG-200 palmitate with PEG- 7 glyceryl cocoate) and Rewoderm LIS-75 (PEG-200 palmitate with PEG-7 glyceryl cocoate) and mixtures thereof. Other oil-derived emollients suitable for use are PEG derivatives of com, avocado, and babassu oil, as well as Softigen 767 (PEG(6) caprylic/capric glycerides).
Also suitable for use herein are nonionic surfactants derived from composite vegetable fats extracted from the fruit of the Shea Tree (Butyrospermum Karkii Kotschy) and derivatives thereof. This vegetable fat, known as Shea Butter is widely used in Central Africa for a variety of means such as soap making and as a barrier cream, it is marketed by Sederma (78610 Le Perray En Yvelines, France). Particularly suitable are ethoxylated derivatives of Shea butter available from Karlshamn Chemical Co. (Columbos, Ohio, USA) under their Lipex range of chemicals, such as Lipex 102 E-75 and Lipex 102 E-3 (ethoxylated mono, di-glycerides of Shea butter) and from Croda Inc. (New York, USA) under their Crovol line of materials such as Crovol SB-70 (ethoxylated mono, di-glycerides of Shea butter). Similarly, ethoxylated derivatives of Mango, Cocoa and Illipe butter may be used in compositions according to the invention. Although these are classified as ethoxylated nonionic surfactants it is understood that a certain proportion may remain as non-ethoxylated vegetable oil or fat.
Other suitable oil-derived nonionic surfactants include ethoxylated derivatives of almond oil, peanut oil, rice bran oil, wheat germ oil, linseed oil, jojoba oil, oil of apricot pits, walnuts, palm nuts, pistachio nuts, sesame seeds, rapeseed, cade oil, com oil, peach pit oil, poppyseed oil, pine oil, castor oil, soybean oil, avocado oil, safflower oil, coconut oil, hazelnut oil, olive oil, grapeseed oil, and sunflower seed oil.
Oil derived nonionic surfactants highly preferred for use herein from the viewpoint of optimum mildness and skin feel characteristics are Lipex 102-3 (RTM) (PEG-3 ethoxylated derivatives of Shea Butter) and Softigen 767 (RTM) (PEG-6 caprylic/capric glycerides).
Hydrotrope
The compositions according to the present invention may contain as an optional feature a hydrotrope. Suitable for use herein as hydrotropes are those well known in the art, including sodium xylene sulphonate, ammomum xylene sulphonate, sodium cumene sulphonate, short chain alkyl sulphate and mixtures thereof. Hydrotrope may be present in the compositions according to the invention at a level of from about 0.01% to about 5%, preferably from about 0.1% to about 4%, more preferably from about 0.5% to about 3% by weight. Hydrotrope, as defined herein, means, a material which, when added to a non-dilute, water-soluble surfactant system can modify its viscosity and rheological profile. To achieve both good product thickening and rheological attributes in non-dilute, water-soluble surfactant matrices in the presence of hydrotrope can be a challenging process. Thus it would be desirable to develop a thickening system for the delivery of both good product thickening and rheological attributes in non-dilute, water-soluble surfactant systems which comprise a hydrotrope.
Applicant has found that thickening system of the present invention is valuable for the delivery of good product thckening and rheology attributes in non-dilute, water-soluble surfactant systems in the presence of hydrotrope. Applicant has also found that excellent product thickening is delivered when the ratio of total water-soluble surfactant level to total hydrotrope level is in the range of from about 5 : 1 to about 1 : 5, preferably from about 3 : 1 to about 1 : 3, more preferably from about 1.5 : 1 to about 1 : 1.5.
According to a further aspect of the invention there is provided a personal cleansing composition comprising:
(a) from about 0.01% to about 15% by weight of a thickening system consisting essentially of associative polymer and polar oil having a required HLB of at least 12;
(b) from about 1% to about 60% by weight of water-soluble surfactant selected from anionic surfactant, nonionic, zwitterionic and amphoteric surfactants and mixtures thereof;
(c) optionally, from about 0.01% to about 5% by weight of hydrotrope;
(d) optionally, from about 0.01% to about 5% by weight of cationic polymeric skin conditioning agent; and
(e) water. wherein the polar oil has an average carbon chain length of from about 10 to about 18 carbon atoms and wherein the water-soluble surfactants have an average carbon chain length of from about 10 to about 18 carbon atoms and wherein the ratio of total water-soluble surfactant level to total hydrotrope level is in the range of from about 5 : 1 to about 1 : 5.
The compositions according to the present invention can also comprise lipophilic emulsifiers as skin care actives. Suitable lipophilic skin care actives include anionic food grade emulsifiers which comprise a di-acid mixed with a monoglyceride such as succinylated monoglycerides, monostearyl citrate, glyceryl monostearate diacetyl tartrate and mixtures thereof.
The compositions of the invention may also include an insoluble perfume or cosmetic oil or wax or a mixture thereof at a level up to about 10%, preferably up to about 3% by weight wherein the oil or wax is insoluble in the sense of being insoluble in the product matrix at a temperature of 25°C. Addition of such oils or waxes can provide emolliency, mildness and rinsibility characteristics to personal cleansing compositions according to the invention. It is a feature of the invention, however, that compositions having excellent emolliency and mildness together with desirable physical attributes (clarity etc.) can be delivered which contain less than about 1%, preferably less than 0.5% by weight of an added oil phase (other than the polar oil). Physically, preferred compositions of this type take the form of an optically-clear solution or micfoemulsion. In compositions including an additional perfume or cosmetic oil or wax, preferably the weight ratio of oil-derived nonionic surfactant to added oil is at least about 1 :2, more especially at least about 3:1.
Suitable insoluble cosmetic oils and waxes for use herein can be selected from water-insoluble silicones inclusive of non-volatile polyalkyl and polyaryl siloxane gums and fluids, volatile cyclic and linear polyalkylsiloxanes, polyalkoxylated silicones, amino and quaternary ammomum modified silicones, rigid cross-linked and reinforced silicones and mixtures thereof, C1-C24 esters of C -C30 fatty acids such as isopropyl myristate, myristyl myristate and cetyl ricinoleate, C8-C30 esters of benzoic acid, beeswax, saturated and unsaturated fatty alcohols such as behenyl alcohol, hydrocarbons such as mineral oils, petrolatum squalane and squalene, polybutene, fatty sorbitan esters (see US-A- 3988255, Seiden, issued October 26th 1976), lanolin and oil-like lanolin derivatives, animal and vegetable triglycerides such as almond oil, peanut oil, wheat germ oil, rice bran oil, linseed oil, jojoba oil, oil of apricot pits, walnuts, palm nuts, pistachio nuts, sesame seeds, rapeseed, cade oil, com oil, peach pit oil, poppyseed oil, pine oil, castor oil, soyabean oil, avocado oil, safflower oil, coconut oil, hazelnut oil, olive oil, grapeseed oil, and sunflower seed oil, and C1-C24 esters of dimer and trimer acids such as diisopropyl dimerate, diisostearylmalate, diisostearyldimerate and triisosteary ltrimerate .
The viscosity of the final composition (Brookfield DV II, 1 rpm with Cone CP41 or CP52, 25°C, neat) is preferably at least about 500 cps, more preferably from about 1,000 to about 50,000 cps, especially from about 1,000 to about 30,000 cps, more especially from about 1,000 to about 15,000 cps.
The cleansing compositions can optionally include other hair or skin moisturizers which are soluble in the cleansing composition matrix. The preferred level of such moisturizers is from about 0.5% to about 20% by weight. In preferred embodiments, the moisturizer is selected from essential amino acid compounds found naturally occurring in the stratum corneum of the skin and water-soluble nonpolyol nonocclusives and mixtures thereof.
Some examples of more preferred nonocclusive moisturizers are polybutene, squalane, sodium pyrrolidone carboxylic acid, D-panthenol, lactic acid, L-proline, guanidine, pyrrolidone, hydrolyzed protein and other collagen-derived proteins, aloe vera gel, acetamide MEA and lactamide MEA and mixtures thereof. Compositions according to the present invention may also include an opacifier or pearlescing agent. Such materials may be included at a level of from about 0.01% to about 5%, preferably from about 0.2% to about 1.3% by weight. A suitable opacifier for inclusion in the present compositions is a polystyrene dispersion available under the trade names Lytron 621 & 631 (RTM) from Morton International.
Additional opacifiers/pearlescers suitable for inclusion in the compositions of the present invention include: titanium dioxide, Tiθ2 EUPERLAN 810 (RTM); TEGO-PEARL (RTM); long chain (C\β - C22) acyl derivatives such as glycol or polyethylene glycol esters of fatty acid having from about 16 to about 22 carbon atoms and up to 7 ethyleneoxy units; alkanolamides of fatty acids, having from about 16 to about 22 carbon atoms, preferably about 16 to 18 carbon atoms such as stearic monoethanolamide, stearic diethanolamide, stearic monoisopropanolamide and stearic monoethanolamide and alkyl (Cj6 - C22) dimethyl amine oxides such as stearyl dimethyl amine oxide.
In preferred compositions the opacifier/pearlescer is present in the form of crystals. In highly preferred compositions the opacifier/pearlescer is a particulate polystyrene dispersion having a particle size of from about 0.05 microns to about 0.45 microns, preferably from about 0.17 microns to about 0.3 microns, such dispersions being preferred from the viewpoint of providing optimum rheology and shear-thinning behaviour. Highly preferred is styrene PVP copolymer and Lyton 631 (RTM).
A number of additional optional materials can be added to the cleansing compositions each at a level of from about 0.1% to about 2% by weight. Such materials include proteins and polypeptides and derivatives thereof; water-soluble or solubilizable preservatives such as DMDM Hydantoin, Germall 115, methyl, ethyl, propyl and butyl esters of hydroxybenzoic acid, EDTA, Euxyl (RTM) K400, natural preservatives such as benzyl alcohol, potassium sorbate and bisabalol; sodium benzoate and 2-phenoxyethanol; other moisturizing agents such as hyaluronic acid, chitin , and starch-grafted sodium polyacrylates such as Sanwet (RTM) IM-1000, IM-1500 and IM-2500 available from Celanese Superabsorbent Materials, Portsmith, VA, USA and described in US-A-4,076,663; solvents ; suitable anti-bacterial agents such as Oxeco (phenoxy isopropanol), Trichlorcarbanilide (TCC) and Triclosan and ; low temperature phase modifiers such as ammonium ion sources (e.g. NH4 Cl); viscosity control agents such as magnesium sulfate and other electrolytes; colouring agents; Tiθ2 and Tiθ2-coated mica; perfumes and perfume solubilizers; and zeolites such as Valfour BV400 and derivatives thereof and Ca2+/Mg2+ sequesfrants such as polycarboxylates, amino polycarboxylates, polyphosphonates, amino polyphosphonates, EDTA etc, water softening agents such as sodium citrate and insoluble particulates such as zinc stearate and fumed silica. Water is also present at a level preferably of from about 20% to about 99.89%, preferably from about 40% to about 90%, more preferably at least about 75% by weight of the compositions herein.
The pH of the compositions is preferably from about 4 to about 10, more preferably from about 6 to about 9, especially from about 5 to about 8 and most preferably from about 5 to 7.
EXPERIMENTAL RESULTS
All viscosities are measured in mPa.s (cps) at 26.7°Celcius. All level mentioned below are percentages weight by weight.
Method:
Brookfield Cone & Plate Model DV II with Spindle CP41. Measurements are performed at 1 φm or at the appropriate speed to get the correct torque value. All measurements are given ± 50 cps
SURFACTANT SYSTEM:
Anionic (Sodium C12-13 Pareth-5 Carboxylate), Sodium Decyl Sulphate
(Empicol LC 35); Nonionic (C12-14 N-Methyl Glucose Amide);
Amphoteric (Cocoamphodiacetate).
Total level of surfactants: 12 % by weight. TABLE I
Interaction between associative polymers and polar oil
Polymer Level Polar Oil Level Viscosity
(cps) Natrosol Plus 430 0.5 C 12- 13 Alcohol 0.0 350
Natrosol Plus 430 0.0 C12-13 Alcohol 0.6 350
Natrosol Plus 430 0.5 C 12- 13 Alcohol 0.6 3,500
Acrysol 44 0.5 C12-13 Alcohol 0.0 150
Acrysol 44 0.0 C12-13 Alcohol 0.6 350
Acrysol 44 0.5 C 12- 13 Alcohol 0.6 1,000
TABLE II Effect of degree (X) of ethoxylation of polar oil Polymer Level Polar Oil Level Viscosity
(cps) Acrysol 44 1.0 C 12-14 0 EO (Laurex NC) 0.7 1,200
Acrysol 44 1.0 C12-14 3 EO (Genapol L3) 0.7 300
Acrysol 44 1.0 C12-14 7 EO (Empicol KBE 7) 0.7 50
The compositions according to the present invention are illustrated by the following non-limiting examples. In the examples, all concentrations are on a 100% active basis and the abbreviations have the following designation:
Anionic 1 Sodium C\2- \2 Pareth-4-carboxylate (the sodium salt derived from the alkyl ether carboxylic acid NEODOX 23-4 from Shell US Inc.) Anionic 2 Sodium Laureth-4 Carboxylate
Anionic 3 Sodium decyl alkyl sulphate
Anionic 4 Sodium Laureth-2 sulphate
Amphoteric Disodium Cocoamphodiacetate
Betaine Cocoamidopropylbetaine.
Nonionic Polyhydroxy fatty acid amide of formula IX in which R8 is C\ \-C\η alkyl, R9 is methyl, and Z2 is CH2(CHOH)4CH2OH
HEUR 1 Acrysol 44.
HEUR 2 Bermodol 2130
HMHEC 1 Natrosol Plus 430
HMHEC 2 Polysurf 67
HNP Glucamate DOE
Polar Oil 1 Dobanol 23
Polar Oil 2 Laurex NC/E
Examples I to VIII
The following are personal cleansing compositions in the form of shower gel or bath foam products and which are representative of the present invention:
Figure imgf000041_0001
Anionic 1 4.0 6.0 4.0 3.0 - Anionic 2 - - - - 4.0 6.0 -
Anionic 3 2.0 3.0 1.5 2.5 3.0 -
Anionic 4 3.0 12.0 8.0
Amphoteric 1.0 1.0 0.5 0.2 1.0 1.0
Betaine 3.0 3.0
Nonionic 4.0 2.0 2.5 3.0 3.0 2.0
HEUR 1 0.7 - - - 1.0 0.5
HEUR 2 . . . 0.6 - - 0.5
HMHEC 1 0.5
HMHEC 2 - - 0.8 - - 0.5 - 0.5
HNP . . . 0.5 - -
Polar Oil 1 0.6 0.3 0.5 1.0 - - 0.3 0.8
Polar Oil 2 - . . . 0.4 0.6 -
Water to 100
Compositions I to VIII can be prepared by firstly dispersing the water-soluble or colloidally water-soluble associative polymer in water at up to about 70 °C either in a Tri-blender (TM) or by extended stirring and hydration. The surfactants are added to this mixture with mild agitation (continued heating at up to about 70°C can be used). It is preferable to add the polar oil following the surfactants. Skin care agents (where present) can then be added along with the remaining water- soluble, oil-insoluble ingredients and finally the remaining water, preservative, opacifier and perfume are added. The compositions have a viscosity (Brookfield DV II, 1 m with Cone CP41 or CP52, 25°C, neat) in the range of from 500 to 50,000 cps, preferably from 1,000 to 15,000 cps.
The products provide excellent product thickening and rheological attributes, in storage, in dispensing and in-use, in combination with good efficacy benefits including excellent rinsibility, mildness, skin conditioning, skin moisturising, good product stability, cleansing and lathering.

Claims

What is claimed is:
1. A liquid personal cleansing composition comprising:
(a) from about 0.01% to about 15% by weight of a thickening system consisting essentially of associative polymer and polar oil having a required HLB of at least 12;
(b) from about 1% to about 60% by weight of water-soluble surfactant selected from anionic surfactant, nonionic, zwitterionic and amphoteric surfactants and mixtures thereof;
(c) optionally, from about 0.01% to about 5% by weight of cationic polymeric skin conditioning agent; and
(d) water.
wherein the polar oil has an average carbon chain length of from about 10 to about 18 carbon atoms and wherein the water-soluble surfactants have an average carbon chain length of from about 10 to about 18 carbon atoms.
2. A composition according to Claim 1 wherein the total level of the thickening system is from about 0.01% to about 10%, preferably from about 0.05% to about 8%, more preferably from about 0.1%% to about 4%, most preferably from about 0.1% to about 2%, especially from about 0.5% to 1.5% by weight.
3. A composition according to Claim 1 or 2 wherein the ratio of associative polymer to polar oil is in the range of from about 1 :5 to about 5:1, more preferably from about 1 :3 to about 3:1, most preferably from about 1 :2 to about 1:2.
4. A composition according to any of Claims 1 to 3 wherein associative polymer is present at a level of from about 0.01% to about 12%, preferably from about 0.01% to about 10%, more preferably from about 0.05% to about 8%, most preferably from about 0.1% to about 4%, especially from about 0.1% to about 2% and most especially from about 0.5% to about 1.5% by weight..
5. A composition according to any of Claims 1 to 4 wherein the associative polymer has an average molecular weight in the range of from about 2,000 to about 2,000,000, preferably from about 10,000 to about 1,000,000, more preferably from about 20,000 to about 800,000.
6. A composition according to any of Claims 1 to 5 wherein the associative polymer is a hydrophobically modified water-soluble nonionic polymer selected from hydrophobically modified hydroxyalkyl cellulose polymers, hydrophobically modified alkoxylated urethane polymers, hydrophobically modified nonionic polyols and mixtures thereof.
7. A composition according to any of Claims 1 to 6 wherein the polar oil is present at a level of from about 0.01% to about 3%, preferably from about 0.01% to about 2%, more preferably from about 0.1% to about 1%, most preferably from about 0.2% to about 0.8% by weight.
8. A composition according to any of Claims 1 to 7 wherein the polar oil has a required HLB value of from about 12 to about 15, more preferably from about 12 to about 14..
9. A composition according to any of Claims 1 to 8 wherein the polar oil is selected from natural and synthetic fatty alcohols and acids having an average carbon chain length in the range of from about 10 to 18 carbon atoms, preferably from about 12 to about 16 , more preferably from about 12 to about 14 carbon atoms.
10. A composition according to any of Claims 1 to 9 wherein the average carbon chain length of the polar oil is substantially similar to the average carbon chain length of the non-dilute, water-soluble surfactant system.
11. A composition according to any of the Claims 1 to 10 wherein the polar oil is lauryl alcohol.
12. A composition according to any of Claims 1 to 11 wherein the composition has a viscosity (Brookfield DV-II, 1 φm with Cone CP41 or CP52, 25°C, neat) in the range from 500 to 50,000 cps, preferably 1,000 to 15,000 cps.
13. A composition according to any of Claims 1 to 12 wherein the total level of water-soluble surfactant is from about 2% to about 40%, preferably from about 3% to about 15%.
14. A composition according to any of Claims 1 to 13 wherein the water-soluble anionic surfactant is selected from alkyl sulphates, ethoxylated alkyl sulfates, alkyl glyceryl ether sulfonates, methyl acyl taurates, fatty acyl glycinates, alkyl ethoxy carboxylates, N- acyl glutamates, acyl isethionates, alkyl sulfosuccinates, alkyl ethoxy sulphosuccinates, alpha-sulfonated fatty acids, their salts and/or their esters, alkyl phosphate esters, ethoxylated alkyl phosphate esters, acyl sarcosinates and fatty acid/protein condensates, and mixtures thereof.
15. A composition according to any of Claims 1 to 14 wherein the water-soluble anionic surfactant is selected from alkyl sulfate, ethoxylated alkyl sulphate, alkyl ethoxy carboxylate and mixtures thereof.
16. A composition according to any of Claims 1 to 15 which additionally comprises from about 0.1% to about 20% by weight of a water-soluble nonionic surfactant selected from C12-C14 fatty acid mono-and di-ethanolamides, such as cocoethanolamide, cocomonoisopropylamide, cocodiethanolamide and ethoxylated derivatives thereof, sucrose polyester surfactants, Cjo-Ci δ alkyl polyglycosides and polyhydroxy fatty acid amide surfactants.
17. A composition according to any of Claims 1 to 16 wherein the water-soluble amphoteric surfactant is selected from:
(a) imidazolinium derivatives of formula [IV]
Figure imgf000047_0001
wherein R\ is C7-C22 alkyl or alkenyl, R2 is hydrogen of CH2Z, each Z is independently CO2 or CH2 CO2M, and M is H, alkali metal, alkaline earth metal, ammonium or alkanolammonium; and/or ammomum derivatives of formula [V]
Figure imgf000047_0002
R2
wherein Ri , R2 and Z are as defined above:
(b) aminoalkanoates of formula [VI]
RlNH(CH2)nC02M
iminodialkanoates of formula [VII]
RlN[(CH2)mC02M]2 and iminopolyalkanoates of formula (VIII)
Rl[N(CH2)p]q - N [CH2C02M]2
I
I
CH2C02M wherein n, m, p, and q are numbers from 1 to 4, and R\ and M are independently selected from the groups specified above; and
(c) mixtures thereof.
18. A composition according to Claim 17 wherein the water-soluble amphoteric surfactant is selected from imidazolinium derivatives of formula IV and/or ammomum derivatives of formula V.
19. A composition according to any of Claims 1 to 18 wherein the water-soluble zwitterionic surfactant is selected from alkyl betaine, amido betaine, alkyl sultaine and mixtures thereof.
20. A composition according to any of Claims 1 to 19 comprising an optional polymeric cationic conditioning agent having a mass average molecular weight in the range from about 2000 to about 5,000,000 preferably between about 5000 to about 3,000,000.
21. A composition according to Claim 20 wherein the polymeric cationic conditioning agent is selected from cationic polysaccharides; cationic homopolymers and copolymers derived form acrylic and/or methacrylic acid; cationic cellulose resins; cationic copolymers of dimethyldiallylammonium chloride and acrylic acid; cationic homopolymers of dimethyldiallylammomum chloride; cationic polyalkylene and ethoxypolyalkylene imines; quatemized silicones, and mixtures thereof.
22. A composition according to any of Claims 20 and 21 wherein the polymeric cationic conditioning agent is present at a level of from about 0.05% to about 4%, preferably from about 0.1% to about 2% and especially from about 0.5% to about 1.5% by weight.
23. A composition according to any of Claims 1 to 22 comprising from about 0.1% to about 20% by weight of nonionic surfactant selected from ethoxylated oils or fats having the formula (XII)
RCOCH2CH(OH) CH2 (0CH2CH2 ) nOH
wherein n is from about 5 to 200, preferably from about 20 to about 100, more preferably from about 30 to about 85, and wherein R comprises an aliphatic radical having an average from about 5 to 20 carbon atoms, preferably from about 9 to 20 atoms, more preferably from about 11 to 18 carbon atoms, most preferably from about 12 to 16 carbon atoms.
24. A composition according to any of Claims 1 to 23 additionally comprising up to about 20% by weight of perfume or cosmetic oil.
25. A composition according to any of Claims 1 to 25 additionally comprising hydrotrope at a level of from about 0.01% to about 5% by weight.
PCT/US1997/011591 1996-07-03 1997-07-02 Cleansing compositions WO1998000495A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/214,205 US6191083B1 (en) 1996-07-03 1997-07-02 Cleansing compositions
EP97931537A EP1019470A4 (en) 1996-07-03 1997-07-02 Cleansing compositions
JP10504462A JPH11514032A (en) 1996-07-03 1997-07-02 Cleansing composition
BR9710139A BR9710139A (en) 1996-07-03 1997-07-02 Cleaning compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB9613968.8A GB9613968D0 (en) 1996-07-03 1996-07-03 Cleansing compositions
GB9613968.8 1996-07-03

Publications (1)

Publication Number Publication Date
WO1998000495A1 true WO1998000495A1 (en) 1998-01-08

Family

ID=10796288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/011591 WO1998000495A1 (en) 1996-07-03 1997-07-02 Cleansing compositions

Country Status (7)

Country Link
EP (1) EP1019470A4 (en)
JP (1) JPH11514032A (en)
CN (1) CN1227596A (en)
BR (1) BR9710139A (en)
CA (1) CA2259453A1 (en)
GB (1) GB9613968D0 (en)
WO (1) WO1998000495A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916967A (en) * 1997-05-02 1999-06-29 Rohm And Haas Company Mixed surfactant and hydrophobically-modified polymer compositions
EP0970692A1 (en) * 1998-07-07 2000-01-12 L'oreal Novel cosmetic compositions containing a filmforming polymer
DE19835239A1 (en) * 1998-08-04 2000-02-24 Johnson & Johnson Gmbh Foaming oil preparation and its use
WO2001022927A1 (en) * 1999-09-30 2001-04-05 The Procter & Gamble Company Hair care compositions
EP1199064A2 (en) * 2000-10-20 2002-04-24 Wella Aktiengesellschaft Hair care product in the form of a solid and dimensionally stable gel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4596689B2 (en) * 2000-06-26 2010-12-08 株式会社資生堂 Cleaning composition
WO2005023969A1 (en) * 2003-08-28 2005-03-17 Johnson & Johnson Consumer Companies, Inc. Methods of reducing irritation in personal care compositions
TWI542364B (en) * 2011-12-08 2016-07-21 Kao Corp Skin detergent composition
KR20160110768A (en) * 2015-03-12 2016-09-22 코스맥스 주식회사 Cleansing composition comprising nonionic surfactant
EP3829528B1 (en) * 2018-07-30 2024-03-20 Unilever Global IP Limited Enhanced moisturizer deposition in cleansing liquids containing hydrophobically or non-hydrophobically modified anionic polymers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4228277A (en) * 1979-02-12 1980-10-14 Hercules Incorporated Modified nonionic cellulose ethers
US4677152A (en) * 1984-08-15 1987-06-30 Allied Colloids Limited Polymeric compositions
US4702844A (en) * 1984-08-15 1987-10-27 Allied Colloids Limited Flocculants and their use
EP0412706A2 (en) * 1989-08-07 1991-02-13 The Procter & Gamble Company Vehicle systems for use in cosmetic compostions
US5292828A (en) * 1992-05-29 1994-03-08 Union Carbide Chemicals & Plastics Technology Corporation Polymers containing complex hydrophobic groups
US5393454A (en) * 1994-02-03 1995-02-28 Colgate Palmolive Co. Thickened composition containing polymeric thickener and aliphatic hydrocarbon
US5461100A (en) * 1992-05-29 1995-10-24 Union Carbide Chemicals & Plastics Technology Corporation Aircraft anti-icing fluids
US5510452A (en) * 1994-07-11 1996-04-23 Rheox, Inc. Pourable liquid polyesteramide rheological additives and the use thererof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4997641A (en) * 1990-04-09 1991-03-05 Colgate-Palmolive Company Hair conditioning shampoo containing C6 -C10 alkyl sulfate or alkyl alkoxy sulfate
US5100657A (en) * 1990-05-01 1992-03-31 The Procter & Gamble Company Clean conditioning compositions for hair
GB9424476D0 (en) * 1994-12-03 1995-01-18 Procter & Gamble Cleansing compositions
CN1173127A (en) * 1994-12-06 1998-02-11 普罗克特和甘保尔公司 Shelf stable skin cleansing liquid with gel forming polymer and lipid

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4228277A (en) * 1979-02-12 1980-10-14 Hercules Incorporated Modified nonionic cellulose ethers
US4228277B1 (en) * 1979-02-12 1992-10-20 Aqualon Co
US4677152A (en) * 1984-08-15 1987-06-30 Allied Colloids Limited Polymeric compositions
US4702844A (en) * 1984-08-15 1987-10-27 Allied Colloids Limited Flocculants and their use
US4940763A (en) * 1984-08-15 1990-07-10 Allied Colloids Limited Water soluble polymers
EP0412706A2 (en) * 1989-08-07 1991-02-13 The Procter & Gamble Company Vehicle systems for use in cosmetic compostions
US5104646A (en) * 1989-08-07 1992-04-14 The Procter & Gamble Company Vehicle systems for use in cosmetic compositions
US5292828A (en) * 1992-05-29 1994-03-08 Union Carbide Chemicals & Plastics Technology Corporation Polymers containing complex hydrophobic groups
US5461100A (en) * 1992-05-29 1995-10-24 Union Carbide Chemicals & Plastics Technology Corporation Aircraft anti-icing fluids
US5393454A (en) * 1994-02-03 1995-02-28 Colgate Palmolive Co. Thickened composition containing polymeric thickener and aliphatic hydrocarbon
US5510452A (en) * 1994-07-11 1996-04-23 Rheox, Inc. Pourable liquid polyesteramide rheological additives and the use thererof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF APPLIED POLYMER SCIENCE, 58(2), (10 October 1995), JENKINS et al., "Synthesis and Characterization of Model Associative Polymers", pages 209-230. *
JOURNAL OF PHYSICAL CHEMISTRY, 97(31), (05 August 1993), WALDERHAUG HARALD et al., "Associative Thickeners", pages 8336-8342. *
See also references of EP1019470A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916967A (en) * 1997-05-02 1999-06-29 Rohm And Haas Company Mixed surfactant and hydrophobically-modified polymer compositions
EP0970692A1 (en) * 1998-07-07 2000-01-12 L'oreal Novel cosmetic compositions containing a filmforming polymer
FR2781370A1 (en) * 1998-07-07 2000-01-28 Oreal NOVEL COSMETIC COMPOSITIONS COMPRISING A FILM-FORMING POLYMER
DE19835239A1 (en) * 1998-08-04 2000-02-24 Johnson & Johnson Gmbh Foaming oil preparation and its use
US6620773B1 (en) 1998-08-04 2003-09-16 Johnson & Johnson Gmbh Foaming oil preparation and its use
WO2001022927A1 (en) * 1999-09-30 2001-04-05 The Procter & Gamble Company Hair care compositions
EP1199064A2 (en) * 2000-10-20 2002-04-24 Wella Aktiengesellschaft Hair care product in the form of a solid and dimensionally stable gel
EP1199064A3 (en) * 2000-10-20 2003-09-17 Wella Aktiengesellschaft Hair care product in the form of a solid and dimensionally stable gel

Also Published As

Publication number Publication date
JPH11514032A (en) 1999-11-30
CN1227596A (en) 1999-09-01
BR9710139A (en) 1999-08-10
GB9613968D0 (en) 1996-09-04
EP1019470A4 (en) 2002-08-14
EP1019470A1 (en) 2000-07-19
CA2259453A1 (en) 1998-01-08

Similar Documents

Publication Publication Date Title
US6191083B1 (en) Cleansing compositions
CA2222424C (en) Cleansing compositions
US6074996A (en) Liquid personal cleansing composition containing cationic polymeric skin conditioning agent
US6218345B1 (en) Cleansing compositions
EP1019469A1 (en) Cleansing compositions
WO1996017916A1 (en) Cleansing compositions
US5910472A (en) Cleansing compositions
EP0828807A1 (en) Cleansing composition containing polyhydroxy fatty acid amide surfactants
US5858342A (en) Cleansing compositions
US5905062A (en) Cleansing compositions technical field
WO1996037595A1 (en) Aqueous personal cleansing compositions comprising specific nonocclusive liquid polyol fatty acid polyester
EP0799292A1 (en) Cleansing compositions
WO1998000496A1 (en) Cleansing compositions
EP1019470A1 (en) Cleansing compositions
WO1998000499A1 (en) Cleansing compositions
WO1996021425A1 (en) Cleansing compositions
WO1998000486A1 (en) Cleansing compositions
WO1999020243A2 (en) Cleansing compositions
WO1996020993A1 (en) Cleansing compositions
WO1998000487A1 (en) Cleansing compositions
CA2206339C (en) Cleansing compositions
MXPA97009177A (en) Liquid composition for personal cleaning containing a cationic polymeric conditioning agent for the p
MXPA97004084A (en) Compositions for personal cleaning

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97197051.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN JP MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 1998 504462

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2259453

Country of ref document: CA

Ref document number: 2259453

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09214205

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/000172

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1997931537

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997931537

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997931537

Country of ref document: EP