WO1998006670A1 - Oxyde composite de lithium/nickel/cobalt, procede pour sa preparation, et materiau actif de cathode pour batterie rechargeable - Google Patents

Oxyde composite de lithium/nickel/cobalt, procede pour sa preparation, et materiau actif de cathode pour batterie rechargeable Download PDF

Info

Publication number
WO1998006670A1
WO1998006670A1 PCT/JP1997/002803 JP9702803W WO9806670A1 WO 1998006670 A1 WO1998006670 A1 WO 1998006670A1 JP 9702803 W JP9702803 W JP 9702803W WO 9806670 A1 WO9806670 A1 WO 9806670A1
Authority
WO
WIPO (PCT)
Prior art keywords
chi
general formula
composite oxide
represented
aqueous medium
Prior art date
Application number
PCT/JP1997/002803
Other languages
English (en)
French (fr)
Inventor
Yukio Matsubara
Masami Ueda
Hidetoshi Inoue
Tadashi Fukami
Original Assignee
Fuji Chemical Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Chemical Industry Co., Ltd. filed Critical Fuji Chemical Industry Co., Ltd.
Priority to US09/242,308 priority Critical patent/US6395250B2/en
Priority to CA002263320A priority patent/CA2263320C/en
Priority to EP97934763A priority patent/EP0918041B1/en
Priority to JP50959598A priority patent/JP4131521B2/ja
Priority to DE69740063T priority patent/DE69740063D1/de
Publication of WO1998006670A1 publication Critical patent/WO1998006670A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium nickel cobalt composite oxide having a stable structure, a high purity, a high degree of crystallinity, a high battery capacity, and a small decrease in capacity due to an increase in the number of charge / discharge cycles. It relates to the positive electrode active material for secondary batteries.
  • Conventional technology relates to a lithium nickel cobalt composite oxide having a stable structure, a high purity, a high degree of crystallinity, a high battery capacity, and a small decrease in capacity due to an increase in the number of charge / discharge cycles.
  • Conventional technology Conventional technology
  • Li N i ⁇ 2 is expected to have higher electric capacity than Li Co C 2 .
  • Li N i 0 2 or this has also been made an attempt to'll control the physical properties of the shape and size of particles, etc. Although solid solution with other components, satisfactory outcomes can not be obtained.
  • JP-A-5-151998 discloses that the particle size distribution can be improved by specifying a 10% cumulative diameter of 3 to 15, a 50% cumulative diameter of 8 to 35, and a 90% cumulative diameter of 30 to 80.
  • pulverizing the positive electrode active material to adjust the particle distribution to such a size is not a very difficult and practical method.
  • L i N i 0 2 is L i component (L i ⁇ _H, L i 2 C 0 3, L i N_ ⁇ 3, etc.) and, N i components (hydroxide, carbonate etc.) and dry
  • N i components hydrooxide, carbonate etc.
  • An object of the present invention is to improve the above-mentioned disadvantages of the conventional LiNiO 2 and its composite oxide.
  • An object of the present invention is to provide a novel lithium nickel cobalt composite oxide having a small structure and a stable structure.
  • the present inventor has conducted intensive studies to solve the above-described problems, and as a result, has the following general formula (I) created by a method via a wet method described below.
  • the first feature is the composition represented by the general formula (I). While maintaining the high battery capacity of Li Ni 2 , it has improved its cycle characteristics (deterioration of the discharge capacity due to an increase in the number of cycles) and its stability at high temperatures. It minimized the use of slag and realized economic efficiency.
  • the second feature is the high crystallinity and high purity in X-ray diffraction. That is, the diffraction peak ratio at the (003) plane and the (104) plane at the Miller index hk 1 of the X-ray diffraction is (003) / (104) force ⁇ 1.2 or more, and the diffraction peak ratio at the (006) plane and the (101) plane Diffraction peak ratio (006) Z (101) is 0.13 or less, (NiCo3 + ) is 99% or more of all (Ni + Co), BET specific surface area is 0.1 ⁇ 2 rrf Zg, average Secondary particle diameter D is 5 to 100, 10% of the particle size distribution is 0.5D or more, 90% is 2D or less, and spherical secondary particles with irregularities on the surface observed with a scanning electron microscope (SEM).
  • the primary particle size of the spherical secondary particles is within the range of 0.2 to 30 as observed by SEM, and the average particle size of the major axis is 0.3 to 30
  • the lithium-nickel-cobalt composite oxide of the present invention is a high-purity composite oxide despite at least one solid solution selected from the group consisting of A, Fe, Mn, and B being dissolved. Can be.
  • Co and A £ and / or B can be used together to efficiently reduce the distance between layers, so that the structural instability of N 1 due to the entrance and exit of lithium ions should be eliminated.
  • the most important feature of the present invention is that lithium nickel oxide is selected from the group consisting of C0 and A, Fe, Mn and B. The at least one selected is to form a solid solution in a small amount and uniformly.
  • the primary particles have a major particle size of 0.2 to 30 /, preferably 1 to 20 ⁇ as observed by SEM, and an average major particle size of 0.3 to 30.
  • the average particle diameter D of the spherical secondary particles formed into a spherical shape by the spray-drying and baking method is 5 to 300, preferably 5 to 100, more preferably 5 to 20, and 10% of the particle size distribution is 0.5 D.
  • 90% of the particles have a uniform particle size of 2D or less, and as seen from SEM observation, are spherical secondary particles with uneven surfaces. Particles.
  • the particle diameter ratio (major axis Z minor axis) of the spherical secondary particles observed by SEM is usually the largest even if a small particle diameter ratio may be contained when unframed after firing. In the range of 1.5 or less and 1.2 or less in average, more than 90% of the particles are spherical and uniformly distributed in 1.3 or less.
  • the spherical product of the present invention preferably obtained by a spray-drying / firing step, is not only suitable for close-packing, but also when used for batteries, for example, in the form of an electrolyte, a conductive material. It can be seen that the contact area with the agent etc. increases, which is also advantageous from the entrance and exit of lithium ions with the outside.c
  • the particle size of the spherical secondary particles can be set as desired from 5 to 100. When used, those having an average particle size of about 5 to 30 are desirable from the viewpoint of processability.
  • the BET specific surface area is 0.1 to 2 nf / g or less, and when used as a battery material, the viscosity of the electrolyte does not increase, so that the dielectric constant does not decrease.
  • the above spray (or frozen) dried product can be more easily obtained by press molding.
  • These large primary particles retain the physical properties of high purity and high crystallinity, have excellent high-temperature stability, etc., and are especially expected to be used under severe conditions. It is suitably used as a positive electrode active material of.
  • the bulk density increases due to press molding, and this high bulk density is a plus for improving the battery capacity.
  • M represents at least one member selected from the group consisting of A £, Fe and Mn).
  • An amount of lithium compound corresponding to the number of moles of Li atoms represented by y is added to the basic metal salt represented by in an aqueous medium, and the resulting slurry is sprayed or freeze-dried, and then oxidized. It can be manufactured by firing at about 600 ° C under 900 ° C for about 4 hours or more.
  • M represents a combination of B and at least one of A, Fe and Mn).
  • a water-soluble lithium compound and a basic metal salt represented by the above general formula ( ⁇ ), ( ⁇ ) or (IV) (hereinafter, these basic metal salts are collectively referred to simply as “basic metal salt”) Used is one containing anions that evaporate during firing Is done.
  • lithium compound for example, L i OH, L i N0 3, L i 2 C 0; or Ru can select one or more from among such hydrates thereof.
  • boric acid As the boron compound, boric acid, lithium tetraborate and the like can be preferably used.
  • the basic metal salt Ru and A n for example, N_ ⁇ 3 2 -, C one, B r - CHa COO-, C 0 3 2 -, S 0 - selected child from Anion represented by like Can be.
  • Li0H is used as a lithium compound
  • boric acid is used as a boron compound
  • anion is used as a basic metal salt. Is particularly preferable from the viewpoint of battery characteristics.
  • a basic salt having a specific composition which is a fine particle having a primary particle size of 0.1 or less as measured by a Scherrer method, is preferred.
  • the fine particles preferably have a BET specific surface area of lOnfZg or more, preferably 40 nf / g or more, and more preferably lOOnZg or more.
  • BET specific surface area When measuring the BET specific surface area by drying a basic metal salt in an aqueous solution, primary particles, which are fine particles, are agglomerated during drying, and the BET specific surface area of the aggregate is measured. In other words, if the cohesion is strong, the value will be small without nitrogen gas entering. Therefore, the specific surface area of the basic metal salt that actually reacts with the lithium compound in the aqueous solution shows a larger value, and is set to 10 nf or more from the above-mentioned actual condition having a highly reactive surface.
  • the basic metal salt of this specific composition has a layered structure, and if the chemical composition and the crystal structure are such that M is at least one of A, Fe and Mn, Hydroxide of N i. -X C o, if M is B, hydroxide of N i, -x C ⁇ ⁇ 1 , ⁇ is ⁇ and at least one of A £ Fe and ⁇ ⁇ for the Nii-, it is those close to the hydroxides of C 0 ⁇ ⁇ ⁇ ⁇ 3, moreover surface microcrystals rich in activity.
  • Basic metal salt used here N ii C 0 xl M x2 salt, N i> - relative x C o xl salt or N io xl N x3 salt, about 0.7 0.95 equivalents, preferably about 0.8 0.95 equivalents It can be produced by adding and reacting under a reaction condition of about 80 ° C or less.
  • alkali used here include hydroxides of alkali metals such as sodium hydroxide, hydroxides of alkaline earth metals such as calcium hydroxide, amines and the like. It is more preferable that this basic metal salt be aged at 20 70 ° C for 0.1 10 hours after the synthesis.
  • Drying of the slurry obtained by such a reaction is preferably carried out by spraying. Alternatively, freeze-drying is preferred.
  • the spray drying method that can be dried instantaneously and can obtain spheroids is spherical granulation and uniformity of the composition. (The drying method that requires a long drying time transfers lithium to the surface, resulting in an uneven composition. ) It is more suitable.
  • the calcination is performed in a temperature range of 600 to 800 ° C, preferably 700 to 750 ° C, and is performed in an oxidizing atmosphere (under oxygen flow) for about 4 hours or more. Preferably 4 to 72 hours-more preferably about 4 to 20 hours. If the calcination time is 72 hours or more, not only will the cost be increased, but also the volatilization of lithium, the trivalent ratio of (N i + C o) will be rather low, resulting in poor purity.
  • the second production method is a press molding method that is effective in increasing the primary particles and further increasing the bulk density.
  • the primary particles By baking the dried product obtained by the spray drying method or the freeze drying method and then firing, the primary particles can be set freely within the range of 1 to 30 ⁇ , the bulk density is high, and the crystallinity and purity are high. A composite oxide can be obtained.
  • Spherical products which are spray-dried products, are powders with excellent fluidity, moldability, and filling properties, and are good materials that can be directly subjected to press molding according to ordinary methods.
  • the molding pressure varies depending on the press machine, the charged amount, and the like, and is not particularly limited, but is preferably about 500 to 3000 kgZcnf.
  • the press molding machine can be suitably used, such as a tableting machine, a pre-packet machine, and a roller compactor, but is not particularly limited as long as it can be pressed.
  • the density of the pressed product is preferably 1 to 4 g / cc, preferably about 2 to 3 g / cc.
  • Press molding is extremely useful in that it reduces the intermolecular travel distance and promotes crystal growth during firing. Therefore, the material used for press molding Does not necessarily have to be a spray-dried spherical product, and a freeze-dried product can also be used.
  • the calcination temperature is usually 600 to 900 ° C., preferably 700 to 800 ° C., in an oxygen stream for at least 4 hours, preferably 10 to 72 hours.
  • a method of performing two firings of pre-firing and post-firing may be used.
  • the slurry obtained by the above-mentioned manufacturing method is sprayed or freeze-dried, and is directly baked in an oxidizing atmosphere at about 600 to 900 ° C for 0.5 hours or more (preferably 0.5 to 4 hours).
  • the obtained pre-baked product is pulverized, if necessary, pressed, and further post-baked in an oxidizing atmosphere at about 600 to 900 ° C for about 1 hour or more (preferably 4 to 48 hours). It is a manufacturing method. Using this method, the total time required for firing can be reduced.
  • the composite oxide represented by the above general formula (I) of the present invention thus obtained has a high capacity of 160 to 180 mAhZ even after the 100th charge / discharge cycle, as will be apparent from Examples described later. Thus, it can be effectively used as a positive electrode active material of a secondary battery having improved high temperature cyclability (stability).
  • FIG. 1 is a powder X-ray diffraction diagram of the composite oxide obtained in Examples 1 to 4 and Comparative Examples 1 and 2.
  • FIG. 2 is an SEM photograph (X 1500 magnification) showing the primary particles of the composite oxide obtained in Example 1.
  • FIG. 3 is an SEM photograph (X 1500 magnification) showing the primary particles of the composite oxide obtained in Example 4.
  • FIG. 4 is a powder X-ray diffraction diagram of the composite oxide obtained in Example 5.
  • FIG. 5 is a powder X-ray diffraction diagram of the composite oxide obtained in Example 6.
  • FIG. 6 is a powder X-ray diffraction diagram of the composite oxide obtained in Example 7.
  • FIG. 7 is an SEM photograph (X30,000) showing the primary particles of the composite oxide obtained in Example 5.
  • FIG. 8 is a SEM photograph (X3000 magnification) showing the primary particles of the composite oxide obtained in Example 6.
  • FIG. 9 is an SEM photograph (X 10,000 magnification) showing the primary particles of the composite oxide obtained in Example 7.
  • FIG. 10 is a powder X-ray diffraction diagram of the composite oxide obtained in Example 8.
  • FIG. 11 is a powder X-ray diffraction diagram of the composite oxide obtained in Example 9.
  • FIG. 12 is a powder X-ray diffraction diagram of the composite oxide obtained in Example 10.
  • FIG. 13 is a powder X-ray diffraction diagram of the composite oxide obtained in Example 11.
  • Figure 14 is an SEM photograph showing the primary particles of the composite oxide obtained in Example 8.
  • FIG. 15 is an SEM photograph showing primary particles of the composite oxide obtained in Example 10.
  • FIG. 16 is an SEM photograph showing primary particles of the composite oxide obtained in Example 11.
  • a 2.0 M mixed aqueous solution of nickel nitrate and cobalt nitrate was prepared so that the molar ratio of Ni: C0 was 80:19. While stirring, add this mixed aqueous solution to the reaction tank. A 1.0 M aqueous sodium hydroxide solution was added using a metering pump, and a continuous reaction was performed while adjusting the liquid volume of the aqueous sodium hydroxide solution so as to maintain a pH of 8.0 at a reaction temperature of 25 ° C. . Residence time was 10 minutes on average. The reaction product that overflowed from the reaction tank in a continuous reaction was received and stored in a container, and the reaction was terminated when the required amount was collected.
  • TF-630 tubular furnace
  • the calcined product had a chemical composition of LiNioComBoOa.
  • a mixed aqueous solution of 2.0 M nickel nitrate and cobalt nitrate was prepared so that the molar ratio of Ni: C0 was 80: 19.5.
  • This mixed aqueous solution and a 1.0 M aqueous sodium hydroxide solution were added simultaneously to obtain a reaction pH of 8.0 according to Example 1, and a continuous reaction was performed at a reaction temperature of 25 ° C and a residence time of 10 minutes. .
  • the resulting reaction product is filtered, washed with water (The composition although dry part, 1 ⁇ .. 8 (:. 0 ..
  • the chemical composition of the fired product is Li Ni. 8 . C o. i e5 B. . . 5 0 was 2.
  • Example 3 The chemical composition of the fired product is Li Ni. 8 . C o. i e5 B. . . 5 0 was 2.
  • a mixed aqueous solution of 2.0 M nickel nitrate and cobalt nitrate was prepared so that the molar ratio of Ni: C0 was 80:18.
  • This mixed aqueous solution and a 1.0 M sodium hydroxide aqueous solution were simultaneously added to obtain a reaction pH of 8.0 according to Example 1, and a continuous reaction was performed at a reaction temperature of 25 ° C and a residence time of 10 minutes. went.
  • the resulting reaction product is filtered, washed with water (The composition although dry part, ⁇ ⁇ . 8 C oo 18 (OH) 1 .7 9 (N0 3) o IT ⁇ 0.
  • the chemical composition of the fired product is Li Ni. 8 . C o. 18 B. .. It was 2 ⁇ 2.
  • a mixed aqueous solution of 2.0 M niger nitrate and cobalt nitrate was prepared so that the molar ratio of Ni: C0 was 80:15.
  • This mixed aqueous solution and a 1.0 M sodium hydroxide aqueous solution were simultaneously added to obtain a reaction pH of 8.0 according to Example 1, and a continuous reaction was performed at a reaction temperature of 25 ° C and a residence time of 10 minutes. Was done.
  • the resulting reaction product is filtered, washed with water (The composition but dried partially, N i. 8 C ⁇ .
  • the chemical composition of the fired product is Li Ni. 8 . C o. 5 B. . 5 was ⁇ 2.
  • a mixed aqueous solution of 2.0 M niger nitrate and cobalt nitrate was prepared so that the molar ratio of Ni: Co was 80:10.
  • This mixed aqueous solution and a 1.0 M aqueous sodium hydroxide solution were simultaneously added to obtain a reaction pH of 8.0 according to Example 1, and a continuous reaction was performed at a reaction temperature of 25 ° (with a residence time of 10 minutes).
  • the obtained reaction product was filtered and washed with water (the composition of a partially dried product was Ni.
  • the chemical composition of the fired product was LiNio ⁇ CoQjoBoC.
  • This mixed aqueous solution and a 1.0 M aqueous sodium hydroxide solution were simultaneously added to obtain a reaction pH of 8.0 according to Example 1, and a continuous reaction was performed at a reaction temperature of 25 ° C and a residence time of 10 minutes. Obtained anti Filtered response product, washed with water (The composition but dried partially, N ". C o.
  • the chemical composition of the burned material was L i N i C oo. 0 2.
  • FIG. 1 shows powder X-ray diffraction diagrams of the composite oxides obtained in Examples 1 to 4 and Comparative Examples 1 and 2. As is clear from the figure, no peaks of by-products were observed in any of the production methods, and it was found that they had a layered structure in which the solid solution was uniformly dissolved.
  • Table 1 shows the crystal particle diameters of the basic metal salts obtained by the continuous reactions of Examples 1 to 4 and Examples 5 to 12 described later, which were determined by X-ray diffraction. In each case, the value was 0.1 or less, indicating that a basic metal salt having a fine primary particle diameter was generated.
  • Table 2 shows the physical properties such as (006) / (101), the average diameter of the secondary particles measured by a laser microtrack, and the major diameter of the primary particles obtained from SEM photograph observation.
  • the trivalent ratio of (N i + Co) was measured in accordance with Test Example 2, and the BET specific surface area was measured in accordance with Test Example 3.
  • Table 3 shows that the composite oxides of Examples 1 to 4 containing boron exhibited improved cycle characteristics as compared with Comparative Example 2 containing no boron, and further contained 0.05 to 2 mol% of boron. In the composite oxides of Examples 1 to 3, improvement in the initial discharge capacity is also observed.
  • the mixed aqueous solution and 1.0 m 01 / i sodium hydroxide solution were continuously added under the conditions of PH 8.0, reaction temperature 25 ° C, and strong stirring, and the resulting reaction solution was filtered. , washed with water, by suspending in water, N io so C oQ. ' o a io (OH) i ( N_ ⁇ 3). . I got a slurry.
  • the mixed aqueous solution and a 1.0 mol sodium hydroxide solution were continuously added under conditions of pH 8.0, a reaction temperature of 25 ° C, and strong stirring, and the obtained reaction solution was filtered. After washing with water, suspend by water. 8 . C o. Fifteen . 05 (Rei_1 1. 7 (1 ⁇ ⁇ 3) from 0. 35 to obtain a slurry scratch.
  • An amount of 3.0 mo 1 lithium hydroxide aqueous solution was added dropwise to react, followed by lyophilization and drying. It was molded at a pressure of t / cnf to form a pellet with a thickness of 014 and a thickness of two.
  • the (N i + Co) trivalent ratio of these composite oxides, the BET specific surface area, and the peak intensity ratio obtained from powder X-ray diffraction (003) / (104), (006) / (101) The physical properties such as bulk density and bulk density are shown in Table 4, and SEM photographs showing the primary particles of the composite oxide are shown in Fig. 7 (X30,000) for Example 5 and in Fig. 8 (X30,000) for Example 6.
  • Example 7 is shown in FIG. 9 ( ⁇ 10000 times). The unit of each line shown below the photo is 1.
  • the trivalent ratio of (N i + Co) was measured in accordance with Test Example 2, and the BET specific surface area was measured in accordance with Test Example 3.
  • a mixed solution of 2.0 m 0 1 Z £ of niger nitrate, cobalt nitrate, and aluminum nitrate was prepared at a molar ratio of N i: C o: A of 790 : 165 : 25.
  • the mixed aqueous solution and a 1.0 m 0/1 sodium hydroxide solution were simultaneously added at a reaction temperature of 25 ° C. under vigorous stirring so that the pH became 10.0, and a continuous reaction was performed.
  • the resulting reaction product is filtered, washed with water (The composition but dried partially, N i 5 A ⁇ 0 25 (OH) N 0 3 "C oo.”.) - 0.
  • the resulting dried gel is placed in an alumina bottle, baked at 750 ° C for 10 hours in a tubular furnace (TF-630, manufactured by Yamada Denki) under an oxygen flow, crushed in a mortar, and liNi. . 7 9 . C o. 165 A. 025 B. .. 2 . 0 obtained was a two-powder.
  • TF-630 manufactured by Yamada Denki
  • the mixed aqueous solution and 1.0 m 01 / sodium hydroxide solution were reacted simultaneously at a reaction temperature of 25 ° C under strong stirring so that the pH became 9.75.
  • the reaction was performed. ..
  • the resulting reaction product is filtered, washed with water (The composition but dried partially, N i 0 79 C O0 14 A ⁇ 0. D 5 (OH) l 86 (NO3) 01 5 -
  • the obtained dry gel was put in an alumina boat, under an oxygen flow was calcined between hours 775 ° C 10 in a tubular furnace (Yamada electrical steel TF- 630 type), pulverized in a mortar, Li Ni 0 n 0 to obtain a C o 14 o a £ o 50 B 0 2 0 2 powder.
  • a mixed solution of 2.0 mo1 / / Nigel nitrate, cobalt nitrate, and aluminum nitrate was prepared so that the molar ratio of Ni: C0: A was 790: 90: 100.
  • the mixed aqueous solution was reacted with a sodium hydroxide solution of 1.0 mol / H at a reaction temperature of 25 ° C under strong stirring to achieve a pH of 9.5, and a continuous reaction was performed. .
  • the resulting reaction product is filtered, washed with water (The composition but dried partially, was N io C oo.
  • a mixed aqueous solution of 2.0 mo ⁇ £ of Niger nitrate and cobalt nitrate, aluminum nitrate, and iron nitrate was prepared at a molar ratio of Ni: Co: A ⁇ : Fe of 800: 100: 50 : 50.
  • This mixed aqueous solution and 1.0 ml of sodium hydroxide solution were added simultaneously at a reaction temperature of 25 ° C. under strong stirring so that the reaction pH became 9.5, and a continuous sulfur reaction was performed.
  • the resulting reaction product is filtered, washed with water (The composition but dried partially, Ni 0 8 C o A 5 F e 0 5 ( ⁇ _H)! N0 3).
  • the mixed aqueous solution and a sodium hydroxide solution of 1.0 m 01 / p were added simultaneously at a reaction temperature of 25 ° C. under vigorous stirring so that the reaction pH became 9.0, and a continuous reaction was carried out.
  • the obtained reaction product was filtered, washed with water, and suspended in water to form a slurry.
  • Table 5 shows the physical properties such as (006) / (101). Further, SEM photographs showing the primary particles of the composite oxide are shown in FIG. 14 (X 1500 times) for Example 8, FIG. 15 (X 1500 times) for Example 10, and FIG. 16 (X 1500 times) for Example 11. 1500 times). The unit of each line shown below the photo is 10.
  • Table 6 shows that when the Ai content of the lithium nickel cobalt composite oxide increases and the C0 content decreases, the initial discharge capacity tends to decrease as compared with Comparative Example 2 in Table 3. Improvement of cycle characteristics is recognized by addition of boron. Furthermore, it can be seen that the addition of Fe has a greater tendency to lower the initial discharge capacity than the addition of A. However, those of the present invention are superior in both the initial discharge capacity and the cycle characteristics as compared with Comparative Examples 4 and 5 according to the dry method.
  • Table 7 shows the results of a test performed on the thermal stability of the composite oxide obtained according to the present invention in accordance with Test Example 5.
  • the lithium-nickel-cobalt composite oxide of the present invention is a positive electrode active material for a secondary battery that satisfies battery performance.
  • Test example 1 is a positive electrode active material for a secondary battery that satisfies battery performance.
  • This method is based on the following formula (1), assuming that the crystal has no distortion and the crystallite size is uniform, and that the spread of the diffraction line is based only on the crystallite size. .
  • D h is the size of the crystallite in the direction perpendicular to the (hk 1) plane
  • s is the wavelength of the X-ray
  • is the diffraction line width
  • is the number of turns.
  • K and k are constants.
  • the trivalent ratio of (N i + C 0) is the percentage of the ratio of trivalent (N i + C 0) to all (N i + C o) and is measured by redox titration. I do. Dissolve 0.2 g of the sample in 0.25M FeS0 * -3.6N sulfuric acid solution, add concentrated phosphoric acid, and titrate with 0.1N potassium permanganate. Perform a blank test in the same manner, and determine the percentage of (N i + C 0) of trivalent in the sample from the following formula. In the formula, f is the factor X of a 0.1 N permanganate ream solution, X. Is the blank test titer, X is the titer (), m is the sample volume (g), A is the Ni content (%), and B is the Co content (%).
  • the sample was heated and degassed under the flow of a gas mixture of 30% nitrogen and 70% helium. It is measured by the continuous flow method.
  • Lithium nickel composite oxide was mixed in a mixing ratio of 88% by weight, acetylene black as a conductive agent 6.0% by weight, and tetrafluoroethylen as a binder 6.0% by weight, and then compression molded on a stainless steel mesh To obtain a pellet with a diameter of 18 mm, and dried at 200 ° C for 2 hours or more to obtain a positive electrode material.
  • a rolled lithium metal sheet pressed on a stainless steel substrate is used, and as the diaphragm, a porous polypropylene membrane (Cell Guard 2502) and a glass filter paper are used.
  • a battery is prepared by the method shown in Test Example 3 and charged to 4.4 V at a constant current density of 0.4 mA / cnf. After charging, disassemble the battery, take out the positive electrode, wash the positive electrode with electrolyte, and dry it in a vacuum. The dried positive electrode material is measured with a differential thermal analyzer under a nitrogen flow at a heating rate of 2 ° C Z minutes, and the exothermic peak temperature accompanying oxygen desorption is measured.

Description

明 細 書 リチウムニッゲルコバルト複合酸化物、
その製法及び二次電池用正極活物質 技術分野
本発明は、 高純度で結晶化度が高く、 しかも電池容量が高く、 充放電 サイクル数の増加によっても容量の低下が少ない、 構造が安定なリチウ ムニッケルコバル卜複合酸化物、 その製法及び二次電池用正極活物質に 関する。 従来技術
近年、 電子機器の小型化、 携帯化に伴い、 ニッケルダカ ドミ電池、 二 ッゲル水素電池に代わり、 軽量で高エネルギー密度を有するリチウムィ ォン二次電池の需要が高まつている。 このリチウムィォン二次電池の正 極活物質としては、 リチウムイオンをインタ一力レー ト、 ディンター力 レー トすることができる層状化合物である L i N i 〇2、 L i C o〇2が 知られている。 その中でも L i N i 〇2は、 L i C o〇2より高電気容量 であるため期待されている。
しかしながら、 LiN i 02は充放電におけるサイクル特性、 貯蔵安定 性、 高温時の安定性等に問題があり、 実用化に至っていない。 実際に正 極活物質として使用されているのは、 L i C o〇2だけである。
上記 LiN i 02の欠点を改善して、 リチウム二次電池の正極活物質と して利用しょうという試みは、 種々行われているが、 未だ上記欠点を全 て解決したものは実現していない。 即ち、 Li Ni〇2では、 多くのリチウムイオンが脱離すると(充電時) 、 二次元構造であるため構造が不安定となり、 このためリチウムイオン二 次電池のサイクル性、 貯蔵安定性、 高温時の安定性が悪いことが知られ ている [例えば、 J. Electro chem . Soc . , 140 〔 7〕 ρ . 1862— 1870 (1993) 、 Solid State Ionics 69 p. 265-270 (1994) 参 照] 。 この欠点を解消.して、 構造安定性を確立するために、 例えば N i の一部を他の成分 (C o、 Mn、 F e、 T i、 V等) で置き換え構造を 安定化する試みが多数行われているが、 実際的には乾式で混合 ·焼成す る製造法であるため、 完全に固溶した高純度の結晶が工業的規模では得 られにくい。
又、 Li N i 02或いはこれに他の成分を固溶したものの粒子の形状や 大きさ等の諸物性を制御しょうとする試みもなされているが、 満足な成 果が得られていない。 例えば特開平 5 —151998号公報では粒子径分布に ついて、 10%累積径が 3〜15 、 50%累積径が 8〜35 、 90%累積径が 30〜80 であるように特定することで改善を試みているが、 正極活物質 を粉砕してこのような粒子分布径に調整することは非常にむずかしく実 際的な方法ではない。
通常、 L i N i 02は L i成分(L i 〇H、 L i 2 C 03、 L i N〇3等) と、 N i成分 (水酸化物、 炭酸化物等) とを乾式で混合した後反応させ るために、 長時間高温焼成する必要があり、 その結果結晶成長は進むが、 その反面リチウムの揮散があったり、 N i 0の副生が生じて純度の低下 を来す。 従って、 この乾式法ではどう しても一次粒子径が小さいもので は高純度のものができにく く、 他方一次粒子径が大きいものでは構造的 に格子欠陥が多く、 純度も低下してしまう。 よって、 結晶化度が高く且 つ純度が高いという物性を保持しながら粒度を適宜設定することは不可 能であった。 発明の開示
本発明の目的は、 上記従来の LiN i 02やその複合酸化物の欠点を改 善した、 つまり高純度で結晶化度が高く、 しかも電池容量が高く、 充放 電サイクル数の増加によっても容量の低下が少ない、 構造が安定な新規 なリチウム二ッケルコバル卜複合酸化物を提供することにある。
本発明の他の目的は、 従来の乾式法とは異なる湿式法を経由する方法 によって球状で二次粒子および一次粒子径の大きさを自在に設定できる 該リチウムニッケルコバルト複合酸化物の製法を提供することにある。 本発明のさらに他の目的は、 該リチウムニッケルコバルト複合酸化物 を有効成分として含有するリチウムイオン二次電池用正極活物賁を提供 することにある。
本発明者は、 上記課題を解決するために鋭意研究した結果、 後述する 湿式法を経由する方法によって創製される下記一般式( I )
L i yN i 1 C 0 ^ Mx202 ( I )
(式中、 Mは A £、 F e、 Mnおよび Bからなる群から選択された少な く とも 1種であり、 yは 0. 9 ≤ y≤ l. 3、 χ, + 2 = x. xは 0 < x≤ 0. 5、 は 0く < 0. 5、 Mが A 、 F eおよび Mnの中の少なく と も 1種の場合は χ2は 0 く χ2 0. 3、 Μが Βの場合は、 χ2は 0 く χ2く 0. 1、 Μが Βと A ^、 F eおよび Mnの中の少なく とも 1種の場合は、 χ2は 0 < χ2≤ 0. 3を示すが、 Bの占める割合は 0力、ら 0. 1の範囲であ る) で示される複合酸化物が、 上記課題に合致することを見出した。 本発明の新規な複合酸化物は以下の特徴を有する。
第一の特徴は、 上記一般式( I )表示の組成である。 Li N i 〇2の高い電池容量を維持しながら、 その欠点であるサイクル 性 (サイクル数増加に伴う放電容量の劣化) 、 高温時での安定性を改善 したことであり、 しかも高価な C 0の使用を最小限に抑え、 経済性も実 現した。
第二の特徴は、 X線回折で、 結晶化度が大きく且つ純度が高いことで ある。 即ち X線回折の.ミラー指数 h k 1 における (003) 面及び (104) 面での回折ピーク比 (003) / (104) 力《1.2以上であり、 (006) 面及び (101) 面での回折ピーク比(006)Z(101)が 0.13以下、 全(N i + C o ) に対する (N i C o3 +) が 99%以上、 B E T比表面積が 0. 1〜 2 rrf Z g、 平均二次粒径 Dが 5〜100 、 粒度分布の 10%が 0.5D以上、 90% が 2 D以下、 走査型電子顕微鏡 (S EM) で観察して表面に凸凹のある 球状二次粒子であって、 この球状二次粒子を構成する一次粒子径が、 S EMで観察して長径の粒径が 0. 2〜30 の範囲の内にあり、 且つその 長径の平均粒径が 0. 3〜30 である、 高純度な複合酸化物である。
通常 LiNi 02やその複合酸化物において、 Niの一部を他の成分で固 溶させようとすると、 従来の乾式法では均一固溶が難しく、 添加量に比 例して均一固溶が低下するため、 電気容量が低下するのは勿論のこと、 サイクル性の改善、 耐熱性、 耐電解液性等も不充分であった。
本発明のリチウムニッケルコバルト複合酸化物は、 A 、 F e、 Mn 及び Bからなる群より選択された少なく とも 1種を固溶させているにも 拘わらず、 高純度の複合酸化物とすることができる。 特に後記実施例に 示すように C oと A £及び/又は Bは併用で効率良く層間の距離を短縮 させることが実現できるため、 リチウムイオンの出入りによる N 1 の構 造不安定性を解消することができる。 本発明の最大の特徴は、 リチウム ニッケル酸化物に C 0および A 、 F e、 Mn及び Bからなる群より選 択された少なく とも 1種を少量且つ均一に固溶させることである。
このような本発明のリチウム二ッケルコバルト複合酸化物は、 後述す る湿式法により高純度且つ結晶性の高い組成物として得ることができる c 第三の特徴は、 均一な一次粒子を得ることができることと、 二次粒子 の粒子形状、 粒子の大きさを自在に調整できる点である。
一次粒子の大きさに養目した場合、 一般的に L i M 02で表される層状 化合物においては、 リチウムィォンの出入りを考えれば一次粒子の大き さが重要である。 即ち、 一次粒子が細かい程固体内部のイオン伝導度が 良く、 且つ外部とのリチウムイオンの出入りがし易い。
一方、 結晶化度という点からは小さな一次粒子では結晶が充分に発達 せず、 必然的に純度の低いものになる。 又、 一次粒子が小さいと、 貯蔵 安定性が貧弱であり、 そのため吸湿して良好な電池特性を安定して出せ ない。 更には、 高温下での耐熱性、 電解液との反応性等という観点から は、 一次粒子が大きいことが望ましい。 本発明者らは鋭意検討した結果、 後述する湿式法一噴霧 (または凍結) 乾燥法一プレス成形焼成法等を組 み合わせることにより、 一次粒子の長径の粒径が 0. 2〜30 、 好ま しく は 1〜20 までの所望の範囲の粒径を有する均一な一次粒子の複合酸化 物を製造することに成功した。
特に、 噴霧乾燥一焼成法を用いることにより、 一次粒子、 二次粒子共 に均一なものが調製できる。 一次粒子は、 S E Mで観察して長径の粒径 が 0. 2〜30/ 、 好ましくは 1〜20 ^の範囲内にあり、 且つその長径の平 均粒径が 0. 3〜30 である。 噴霧乾燥一焼成法により球状とされた球状 二次粒子の平均粒径 Dが 5〜300 、 好ましくは 5〜: 100 、 より好まし くは 5〜20 、 粒度分布の 10%が 0. 5 D以上、 90%が 2 D以下と粒度の 揃った粒子で且つ S E M観察で分かるように表面が凸凹のある球状二次 粒子である。
又、 この球状二次粒子の S E Mで観察した粒子径比 (長径 Z短径) は、 焼成後解枠した際に僅かに粒子径比の大きなものが含まれることがあつ ても、 通常は最大で 1. 5以下、 平均で 1. 2以下の範囲におさまり、 その 90%以上が 1. 3以下に分布している球形の揃った粒子である。
この様な物性から本 ¾明の球状品、 好ましくは噴霧乾燥一焼成工程に より得られる球状品は最密充塡に適しているばかりでなく、 例えば電池 に使用した場合は、 電解液、 導電剤等との接触面積が大きくなり、 外部 とのリチウムイオンの出入りということからも有利であることが分かる c この球状二次粒子の粒度は、 5 ~100 まで所望により設定できるが、 電池材料として使用する場合は、 加工性から平均粒径が 5〜30 程度の ものが望ましい。
又、 B E T比表面積が 0. 1〜2 nf / g以下であり、 電池材料として使 用した場合、 電解液の粘度を上げることがないので、 誘電率の低下を引 き起こさない。
又、 一次粒子の長径の平均粒径を 1 以上 30/ m程度にまでしたい場合 は、 上記噴霧 (または凍結) 乾燥品をプレス成形すればより簡便に得る ことができる。 この一次粒子の大きなものは、 高純度且つ結晶性が高い という物性を保持しており、 高温安定性等が優れており、 特に過酷な条 件下での使用が想定されるリチウムイオン二次電池の正極活物質として 好適に使用される。 又、 プレス成形をするため嵩密度が高くなり、 この 嵩密度が高いことは電池容量の向上にとってプラスである。
本発明の上記一般式( I )で示される複合酸化物の製造方法を以下詳細 に述べる。
前記一般式( I )で示される複合酸化物を製造するに際して、 ① Mが A ί . F eおよび Mnの中の少なく とも 1種である場合、 ② Mが Bで ある場合、 ③ Mが Bと A £ F eおよび Mnの中の少なく とも 1種と の組み合わせである場合にわけて、 それぞれ、 次の方法が適用される。 即ち、
① 前記一般式( I )
Figure imgf000009_0001
(Mが A £ , F eおよび Mnからなる群から選択された少なく とも 1種 を示す) で表される複合酸化物の製法においては、
一般式(Π )
N i 1 -X C 0 x i Mx2( 0 H) 2 (] -x + xn +3 x2 -„2( An')2 - mH20 ( Π )
〔但し、 Μは A £ F e及び Mnらなる群より選択された少なく とも 1 種であり、 Xは 0 く x ^0.5、 X lは 0く χ! <0.5 χ2は 0 く χ2≤0.3 χ + χ2 = χ An—は n価 (n = l 3 ) のァニオン、 z及び mはそれ ぞれ、 O.O3≤ z≤ 0.3 0≤mく 2の範囲を満足する正の数を示す〕 で 表される塩基性金属塩に yで示す L i原子モル数に相当する量のリチウ ム化合物を水媒体中で添加し、 得られたスラリ一を噴霧又は凍結乾燥後、 酸化雰囲気下で約 600°C 900°C、 約 4時間以上で焼成することにより製 造することができる。
② 前記一般式( I )
L i yN i ,一 XC 0 xlMx202 ( I )
(但し、 Mが Bを示す) で表される複合酸化物の製法においては、
一般式(m)
N i J -X C o χι ( OH)2 ' π ζ( An -) z · mH20 (Π) 〔式中、 xは 0 < x≤ 0.5 x i (i 0 < x i < 0.5 , 八"-は1 価 (η = 1 3 ) のァニオン、 ζ及び mはそれぞれ、 0.03≤ ζ≤ 0.3 0≤m< 2 の範囲を満足する正の数を示す〕 で示される塩基性金属塩に X 2モル
%の硼素を含有する硼素化合物 〔χ2は 0く χ2く 0.1、 上記 χ、 X l、 と Χ 2 は、 χ2 = X— Xiの関係が成立する〕 を水媒体中で添加し、 次に y で示す L i原子モル数に相当する量のリチウム化合物を添加し、 得られ たスラリーを噴霧又は凍結乾燥後、 酸化雰囲気下で約 600°C〜900°C、 約 4時間以上で焼成する.ことにより製造できる。
③ 前記一般式( I )
L i yN i! C 0 xl M x202 ( I )
(但し、 Mが Bと A 、 F eおよび Mnの中の少なく とも 1種との組み 合わせを示す) で表される複合酸化物の製法においては、
一般式(IV)
N i !-xC 0 xi Nx3( OH)2 d-x + x+3 x3-n z(An")2 · mH20 (IV) 〔式中、 Nは A £、 F e及び M nの中の少なく とも 1種であり、 この場 合の一般式( I )の Mは Bと Nを含み Bの含量を x< とすると、 Xは 0 く x≤0.5、 X,は 0 < x,く 0. 5、 χ3は 0く χ3≤ 0. 3— χ4、 x J + χ3 + Χ = χ , Απ—は η価(η = 1〜 3 ) のァニオン、 ζ及び mはそれぞれ、 0.03^ z 0.3、 0 m< 2の範囲を満足する正の数を示す〕 で示され る塩基性金属塩に χ4モル%の硼素を含有する硼素化合物 〔x<は 0 < χ4 く 0. 1、 X 4 . χ3、 χ2とは χ< + χ3 = χ2の関係が成立する〕 と yで示 すし i原子モル数に相当する量のリチウム化合物を水媒体中で添加し、 得られたスラリ一を噴霧又は凍結乾燥後、 酸化雰囲気下で約 600DC〜900 °C、 約 4時間以上で焼成することにより製造することができる。
水溶性リチウム化合物及び上記一般式(Π)、 (ΙΠ)又は(IV)で表される 塩基性金属塩 (以下、 これらの塩基性金属塩を一括して単に 「塩基性金 属塩」 という) としては、 焼成時に揮散する陰イオンを含むものが使用 される。
リチウム化合物としては、 例えば、 L i OH、 L i N03、 L i 2 C 0; 又はこれらの水和物等の中から 1種又は 2種以上を選択することができ る。
硼素化合物としては、 硼酸、 四硼酸リチウム等が好適に使用できる。 塩基性金属塩におけ.る A n しては、 例えば、 N〇3 2—、 C 一 、 B r - CHa COO—、 C 03 2—、 S 0 —等で示されるァニオンから選択するこ とができる。
これらの化合物において収率、 反応性、 資源の有効利用及び酸化促進 効果等の観点からリチウム化合物としては L i 0Hを、 硼素化合物とし ては硼酸、 又塩基性金属塩としては、 ァニオンが硝酸イオンである組み 合わせが電池特性の観点から特に好ましい。
本発明において用いる塩基性金属塩としては、 一次粒子の粒度がシェ —ラー (S c h e r r e r) 法で測定して 0. 1 以下の細かな粒子である 特定組成の塩基性塩が好ま しい。
又、 この細かな粒子は、 B ET比表面積が lOnfZg以上、 好ましくは 40nf/g以上、 より望ま しく は lOOn Z g以上のものが良い。 なお、 B ET比表面積に関しては、 水液中の塩基性金属塩を乾燥して測定する 際、 乾燥時に微粒子である一次粒子が凝集し、 この凝集体の B ET比表 面積を測定していることになり、 凝集が強固な場合は窒素ガスが入り込 まず小さな値となる。 従って、 実際に水液中でリチウム化合物と反応す る塩基性金属塩の比表面積は、 より大きな値を示し、 反応性の高い表面 となっているカ^ 上記実状より 10nf以上とした。
この特定組成の塩基性金属塩は層状構造をしており、 化学組成及び 結晶構造が Mが A 、 F e及び M nの中の少なく とも 1種の場合は N i . -x C o の水酸化物、 Mが Bである場合は N i ,-xC ο χ1の水 酸化物、 Μが Βと A £ F e及び Μ ηの中の少なく とも 1種の場合は Nii-, C 0 χι Νχ3の水酸化物に近いものであり、 しかも微結晶で表面が 活性に富んでいる。 L i OH等のリチウム化合物を加えると、 極めて良 好な L i yN i i 1 C 0 x. M x202の前駆物質を形成する。
この様な特定組成の掉基性金属塩を用いた場合のみ、 本発明の高純度 で結晶の完全度の高い LiyN i . -xC 0 xi M x202が得られる。 上記水酸 化物はリチウム化合物との反応性が塩基性金属塩に劣り、 逆に、 塩基性 金属塩において、 ァニオン量が多くなると、 層状構造から外れるてく る とともに、 焼成時にァニオンが LiyN i C 0 Mx202の生成に対し て阻害的に作用し、 高純度で結晶の完全度の高い目的化合物を得ること ができない。
ここで用いる塩基性金属塩は、 N i i C 0 xl Mx2塩、 N i >— xC oxl 塩あるいは N i oxlNx3塩に対して、 約 0.7 0.95当量、 好ましく は約 0.8 0.95当量のアル力リを約 80°C以下の反応条件下で加えて反応 させることにより、 製造することができる。 ここで用いるアルカリ とし ては、 例えば水酸化ナ ト リウム等のアルカリ金属類の水酸化物、 水酸化 カルシウム等のアルカ リ土類金属類の水酸化物、 アミ ン類等である。 な お、 この塩基性金属塩は合成後 20 70°Cで 0. 1 10時間熟成すると更に 好ま しい。 次いで、 水洗により副生成物を取り除き、 リチウム化合物そ して Bを含む複合酸化物を製造する場合にはさらに硼素化合物を加える c この様な反応によって得られたスラリ一の乾燥は、 好ましくは噴霧ま たは凍結乾燥法が望ま しい。 瞬時に乾燥でき且つ球状物を得ることがで きる噴霧乾燥法は、 球状造粒性、 組成物の均一性 (乾燥時間のかかる乾 燥法では、 表面にリチウムが移行し、 不均一な組成物となる) の観点か ら好適である。
焼成は、 600~ 800°C、 好ま しくは 700~ 750°Cの温度範囲で行い、 酸化 雰囲気下 (酸素流通下) 、 約 4時間以上で行う。 好ましく は 4〜72時間- より望ましくは、 約 4〜20時間程度が良い。 焼成時間が 72時間以上であ ればコス トアップとなるばかりでなく、 リ チウムの揮散に伴い、 (N i + C o ) の 3価の割合が却って低くなり、 純度の悪いものとなる。
この焼成に関する技術では、 乾式法等の既知の技術では、 2価から 3 価になりがたい N i に対して、 少なく とも 20時間の焼成が要求されてい たことからみると、 これより短い焼成時間でも実施し得る本発明の製法 は極めて経済的であり優位である。
第二の製法は、 一次粒子を大きく し、 更に嵩密度を高くする場合に有 利なプレス成形法である。
上記噴霧乾燥法又は凍結乾燥法で得た乾燥品をブレス成形後焼成する ことにより、 一次粒子が 1 〜30 ^の範囲で自在に設定でき、 嵩密度が 高く、 且つ結晶化度と純度が高い複合酸化物を得ることができる。
噴霧乾燥品である球状物は、 流動性、 成形性、 充填性に優れた粉体で あり、 そのまま常法に従いプレス成形するのに良好な材料である。
成形圧は、 プレス機、 仕込み量等により異なり、 特に限定されるもの ではないが、 通常 500〜3000kgZcnf程度が好適である。
プレス成形機は、 打錠機、 プリケッ トマシン、 ローラコンパクタ一等 好適に使用できるがプレスできるものであれば良く、 特に制限はない。 プレス品の密度は、 1〜 4 g /cc , 好ましくは 2〜 3 g / cc程度が好 適でめる。
プレス成形は、 分子間移動距離が短くなり、 焼成時の結晶成長を促進 するという点では極めて有用である。 従って、 プレス成形に供する材料 は必ずしも噴霧乾燥品の球状物である必要はなく、 凍結乾燥品でも同様 に使用することができる。
このプレス成形品は、 そのまま焼成される。 焼成温度は、 通常 600 〜900°C、 好ましく は 700〜800°Cで、 酸素気流下、 4時間以上、 好ま しく は 10〜72時間で行う。 焼成時間が長い程一次粒子は大きくなるので、 焼 成時間は所望の一次粒子の大きさによって決まる。
短時間で得るためには、 予備焼成と後焼成の 2回焼成を施す方法を用 いれば良い。 先ず、 前述の製造方法で得られたスラ リーを噴霧又は凍結 乾燥し、 そのまま酸化雰囲気下で約 600〜900°Cで、 0. 5時間以上 (好ま しくは 0. 5〜 4時間) 予備焼成し、 次いで得られた予備焼成品を、 必要 ならば粉砕した後、 プレス成形後、 更に酸化雰囲気下で約 600〜900°Cで 約 1 時間以上 (好ましくは 4 ~48時間) で後焼成する製造方法である。 この方法を使用すれば、 焼成に要する総時間を短くすることができる。 このようにして得られた本発明の上記一般式( I )表示の複合酸化物は、 後記実施例から明らかなよう 100回目の充放電サイ クル経過後も 160 ~ 180m A h Zの高容量化が図られると共に高温度のサイクル性(安定性) が改善された二次電池の正極活物質として有効に利用できる。 図面の簡単な説明
図 1 は実施例 1 ~ 4、 比較例 1〜 2で得た複合酸化物の粉末 X線回折 図である。
図 2 は実施例 1 で得た複合酸化物の一次粒子を示す S E M写真 ( X 1500倍) である。
図 3 は実施例 4で得た複合酸化物の一次粒子を示す S E M写真 ( X 1500倍) である。 図 4は実施例 5で得た複合酸化物の粉末 X線回折図である。
図 5は実施例 6で得た複合酸化物の粉末 X線回折図である。
図 6は実施例 7で得た複合酸化物の粉末 X線回折図である。
図 7 は実施例 5 で得た複合酸化物の一次粒子を示す S E M写真 ( X 30000倍) である。
図 8 は実施例 6 で得た複合酸化物の一次粒子を示す S E M写真 ( X 3000倍) である。
図 9 は実施例 7 で得た複合酸化物の一次粒子を示す S E M写真 ( X 10000倍) である。
図 10は実施例 8で得た複合酸化物の粉末 X線回折図である。
図 11は実施例 9で得た複合酸化物の粉末 X線回折図である。
図 12は実施例 10で得た複合酸化物の粉末 X線回折図である。
図 13は実施例 11で得た複合酸化物の粉末 X線回折図である。
図 14は実施例 8 で得た複合酸化物の一次粒子を示す S E M写真
( X 1500倍) である。
図 15は実施例 10で得た複合酸化物の一次粒子を示す S E M写真
( X 1500倍) である。
図 16は実施例 11で得た複合酸化物の一次粒子を示す S E M写真
( X 1500倍) である。 発明を実施するための最良の形態
以下の実施例により本発明について詳しく説明する。
実施例 1
N i : C 0モル比 = 80 : 19となるように 2. 0 Mの硝酸ニッケルと硝酸 コバルトの混合水溶液を調製した。 攪拌下、 反応槽にこの混合水溶液と 1.0 Mの水酸化ナトリゥム水溶液を定量ポンプを用いて添加を行い、 反 応温度 25°Cで p H 8.0を維持するように水酸化ナ ト リゥム水溶液の液量 を調整しながら連続反応を行った。 滞留時間は平均 10分で行った。 反応 生成物は連続反応で反応槽からオーバフローしてく るものを受け容器に 溜め、 必要量溜まったところで反応を終了した。 得られた反応生成物を 濾過、 水洗し (なお、 一部を乾燥したものの組成は、 N i 0 . 8 C 0 0 . 1 9 (OH) ! 833 Ν03 ) θ . 7 · 0.16H20であった) 、 水に懸濁させた後、 前記 N i C 0に対してモル比で N i : C 0 : B =80: 19: 1に相当す る量の硼酸を添加し、 スラリーとした。 このスラ リーに L i Z (N i + C o + B) =1.05のモル比に相当する量の 3.0 Mの水酸化リチウム水溶 液を滴下した後、 噴霧乾燥を行った。 得られた乾燥ゲルをアルミナ製ボ 一卜に入れ、 管状炉(山田電気製 TF— 630型)にて酸素流通下で 750°C 10時間焼成した。
焼成物の化学組成は L i N i o C om Bo Oaであった。
実施例 2
N i : C 0モル比 = 80 : 19.5となるように 2.0 Mの硝酸ニッケルと硝 酸コバルトの混合水溶液を調製した。 この混合水溶液と 1.0 Mの水酸化 ナ ト リゥム水溶液を実施例 1に準じて反応 p H 8.0となるように同時添 加を行い、 反応温度 25°C、 滞留時間 10分で連続反応を行った。 得られた 反応生成物を濾過、 水洗し (なお、 一部を乾燥したものの組成は、 1^。.8 (: 0。.1"( 01^)1.86( 1\103 0.221^ 0でぁった) 、 水に 懸濁させた後、 前記 N i C 0に対してモル比で N i C 0 : B =80: 19.5 0.5に相当する量の硼酸を添加し、 スラ リーとした。 このスラリ 一に L i / (N i + C o + B) =1.05のモル比に相当する量の 3.0 Mの 水酸化リチウム水溶液を滴下した後、 噴霧乾燥を行った。 得られた乾燥 ゲルをアルミナ製ボー トに入れ、 管状炉 (山田電気製 TF— 630型) に て酸素流通下で 750°C、 10時間焼成した。
焼成物の化学組成は L i N i。 8。 C o。 i e5 B。 。。502であった。 実施例 3
N i : C 0モル比 =80: 18となるように 2.0 Mの硝酸ニッケルと硝酸 コバル卜の混合水溶液を調製した。 この混合水溶液と 1.0 Mの水酸化ナ 卜 リゥ厶水溶液を実施例 1 に準じて反応 p H 8. 0 となるように同時添加 を行い、 反応温度 25°C、 滞留時間 10分で連続反応を行った。 得られた反 応生成物を濾過、 水洗し(なお、 一部を乾燥したものの組成は、 Ν ι。 8 C oo 18( OH) 1.79 ( N03)o I T · 0. 3 H20であった) 、 水に懸濁させ た後、 前記 N i、 C 0に対してモル比で N i : C o : B =80: 18: 2に 相当する量の硼酸を添加し、 スラ リーとした。 このスラ リーに L i Z (N i + C 0 + B) =1.05のモル比に相当する量の 3· 0 Μの水酸化リチ ゥム水溶液を滴下した後、 噴霧乾燥を行った。 得られた乾燥ゲルをアル ミナ製ボー 卜に入れ、 管状炉 (山田電気製 TF— 630型) にて酸素流通 下で 750°C、 10時間焼成した。
焼成物の化学組成は L i N i。 8。 C o。 18 B。.。22であった。
実施例 4
N i : C 0モル比 =80: 15となるように 2.0 Mの硝酸二ッゲルと硝酸 コバルトの混合水溶液を調製した。 この混合水溶液と 1. 0 Mの水酸化ナ 卜リゥム水溶液を実施例 1 に準じて反応 p H 8. 0 となるように同時添加 を行い、 反応温度 25°C、 滞留時間 10分で連続反応を行った。 得られた反 応生成物を濾過、 水洗し(なお、 一部を乾燥したものの組成は、 N i。 8 C οο.15 ( ΟΗ) 1.7β ( Ν03)ο.14 · 0.25Η2〇であった) 、 水に懸濁させ た後、 前記 N i、 C οに対してモル比で N i : C o : Bモル比 =80: 15 : 5に相当する量の硼酸を添加し、 スラ リーと した。 このスラ リーに L i / (N i + C o +B) =1.05のモル比に相当する量の 3.0 M水酸化 リチウム水溶液を滴下した後、 噴霧乾燥を行った。 得られた乾燥ゲルを アルミナ製ボー トに入れ、 管状炉 (山田電気製 T F— 630型) にて酸素 流通下で 750°C、 10時間焼成した。
焼成物の化学組成は L i N i。 8。 C o。 5 B。 。52であった。
比較例 1
N i : C oモル比 =80: 10となるように 2.0 Mの硝酸二ッゲルと硝酸 コバル卜の混合水溶液を調製した。 この混合水溶液と 1.0 Mの水酸化ナ 卜リゥム水溶液を実施例 1に準じて反応 p H 8.0 となるように同時添加 を行い、 反応温度 25° ( 、 滞留時間 10分で連続反応を行った。 得られた反 応生成物を濾過、 水洗し(なお、 一部を乾燥したものの組成は、 N i。
C oo.01(〇H)1 68( N〇3)。 12 · 0.19Η2〇であった) 、 水に懸濁させ た後、 前記 N i、 C 0に対してモル比で N i : C o : B =80: 10: 10に 相当する量の硼酸を添加し、 スラ リーとした。 このスラ リーに L i / (N i + C 0 + B) =1.05のモル比に相当する量の 3.0 Mの水酸化リチ ゥム水溶液を滴下した後、 噴霧乾燥を行った。 得られた乾燥ゲルをアル ミナ製ボー トに入れ、 管状炉 (山田電気製 TF - 630型) にて酸素流通 下で 750°C、 10時間焼成した。
焼成物の化学組成は L i N i o ^ C oQjo Bo C であった。
比較例 2
N i : C oモル比 =80: 20となるように 2.0 Mの硝酸二ッゲルと硝酸 コバル卜の混合水溶液を調製した。 この混合水溶液と 1.0 Mの水酸化ナ ト リゥム水溶液を実施例 1に準じて反応 p H 8.0 となるように同時添加 を行い、 反応温度 25°C、 滞留時間 10分で連続反応を行った。 得られた反 応生成物を濾過、 水洗し(なお、 一部を乾燥したものの組成は、 N ". C o。 2( OH) ( ΝΟ3)0 13 · 0·14Η2〇であった)、 水に懸濁させて- スラ リーとした。 このスラ リーに L i / (N i + C o) 二 1.05のモル比 に相当する量の 3.0 Mの水酸化リチウム水溶液を滴下した後、 噴霧乾燥 を行った。 得られた乾燥ゲルをアルミナ製ボー トに入れ、 管状炉 (山田 電気製 TF— 630型) fこて酸素流通下で 750° (:、 10時間焼成した。
焼成物の化学組成は L i N i C o o . 02であった。
比較例 3 (実施例 1に対応する乾式法)
水酸化リチウム 1.00モル、 水酸化ニッケル 0.80モル、 水酸化コバル ト 0.19モル及び硼酸 0.01モルを乳鉢で充分乾式混合粉砕した後、 直径 14x 厚さ 2關の大きさにペレツ ト化し、 これを酸素雰囲気中で 750°C、 48 時間焼成した。 焼成物の化学組成は LiN i。 8。 C o o . i s Bo o .02であ つた。
上記実施例 1〜 4、 比較例 1〜 2で得た複合酸化物の粉末 X線回折図 を図 1に示す。 同図より明らかなように、 いずれの製法においても副生 物のピークは認められず、 均一に固溶した層状構造を有していることが 分かる。
図 2および図 3にそれぞれ実施例 1、 実施例 4で得た複合酸化物の一 次粒子を示す S EM写真 (X 1500倍) を示す。 写真の下方に示した 一 線の単位はいずれも 10 /^である。
又、 上記実施例 1〜 4および後述する実施例 5〜12の連続反応で得ら れた塩基性金属塩の X線回折で求めた結晶粒子径を表 1に示す。 いずれ も 0. 1 以下であり、 細かな一次粒子径をもつ塩基性金属塩が生成され ていることが分かる。 表 1
Figure imgf000020_0001
更にこれら複合酸化物の (N i + C o) の 3価の割合、 B ET比表面 積、 粉末 X線回折より得られる ピーク強度比 (003) / ( 104) 、
(006) / (101) 、 レーザ式マイクロ トラックで測定した二次粒子の平 均径、 及び S EM写真観察より得た一次粒子径の長径等の物性を表 2に 示す。 (N i + C o) の 3価の割合は試験例 2、 B ET比表面積は試験 例 3に従って測定を行った。
(以下余白) 表 2
Figure imgf000021_0001
表 2に示す結果から、 一般式( I )において Μが硼素の場合、 硼素の添 加量(含有量)が 10m 0 1 %である比較例 1の複合酸化物は 3価の割合が 低く、 粉末 X線回折で得られるピーク強度比も (003) / (104) は 1.2 以下、 (006) / (101) は 0.13以上を示し結晶化度の低いものであるこ とから、 一般式 ( I ) において Mが硼素の場合、 χ2の数値が 0 < χ2^ 0.05のものがより好ましい。
その他の物性については、 いずれの実施例、 比較例 1〜2とも湿式一 噴霧乾燥法を用いて製造しているため同じような物性を示している。 更に、 上記実施例 1〜 4及び比較例 1 ~ 3の各複合酸化物を用いて 電池テス ト (充放電テス ト) を試験例 4に従って行い、 初期放電容量 (mAh/g) 、 100回目の放電容量 (mAhZg) 及び 100回目の減衰 率 (%) の結果を表 3に示す。 乾式法で得られた比較例 3と比較すると いずれもサイクル特性の改善と初期放電容量の改善が認められた。 表 3
Figure imgf000022_0001
表 3より、 硼素を含む実施例 1〜 4の複合酸化物は硼素を含まない比 較例 2と比較していずれもサイクル特性の改善が認められ、 更に硼素が 0.05〜 2 mo 1 %含有している実施例 1〜 3の複合酸化物では初期放電 容量の改善も認められる。
実施例 5
N i : C o : A £モル比 = 8 : 1 : 1 となるように 2. O mo l Z の 硝酸二ッゲルと硝酸コバルト、 硝酸アルミニゥムの混合水溶液を調製し た。 この混合水溶液と 1.0 m 0 1 / iの水酸化ナ ト リウム溶液とを反応 P H 8. 0、 反応温度 25°C、 強攪拌の条件下で連続的に添加し、 得られた 反応液を濾過、 水洗後、 水に懸濁させることにより、 N i o so C oQ. 'o A io( OH)i (N〇3) 。 。スラ リーを得た。 この懸濁液の N i + C o + Α ίに対し原子比が L i / (N i + C o + A £ ) =1.05に相当す る量の 3.0 mo 1 / 水酸化リチウム水溶液を滴下し反応させた後、 噴 霧乾燥を行った。 得られた乾燥ゲルをアルミナ製ボー トに入れ、 管状炉 にて酸素雰囲気中で 750°Cで 10時間焼成し、 乳鉢で解砕し、 Li Ni。 797 C O o. id A £o.10202粉体を得た。
実施例 6
N i : C 0 : A モル比 = 16 : 3 : 1 となるように 2. 0 m 0 1 / の 硝酸ニッケルと硝酸コバルト、 硝酸アルミニウムの混合水溶液を調製し た。 この混合水溶液と.1. 0 m 0 1 / ίの水酸化ナ ト リウム溶液とを反応 Ρ Η 8. 0、 反応温度 25° (:、 強攪拌の条件下で連続的に添加し、 得られた 反応液を濾過、 水洗後、 水に懸濁させることにより、 N i。 8。 C o。 15 A ^ o o^ OH .^ NOa スラリ一を得た。 この懸濁液の (N i + C o + A ) に対し原子比が L i Z (N i + C o + A ) =1.05に相当 する量の 3. 0 m 0 1 Z £水酸化リチウム水溶液を滴下し反応させた後、 噴霧乾燥を行った。 得られた乾燥ゲルを静的圧縮機を用い 2 tZcnfの圧 で成形し 014、 厚み 2 mmのペレツ ト状とした。 これをアルミナ製ボー 卜 に入れ、 管状炉にて酸素雰囲気中で 750°Cで 48時間焼成し、 乳鉢で解 砕し、 L i N i。 85 C 0。 61 A 。.。5402粉体を得た。
実施例 Ί
N i : C 0 : A モル比 =16: 3 : 1 となるように 2. 0 m o 1 / の 硝酸ニッゲルと硝酸コバルト、 硝酸アルミニウムの混合水溶液を調製し た。 この混合水溶液と 1. 0 m o 1 の水酸化ナ トリゥム溶液とを反応 p H 8. 0、 反応温度 25°C、 強攪拌の条件下で連続的に添加し、 得られた 反応液を濾過、 水洗後、 水に懸濁させることにより、 N i。 8。 C o。 15 八 。 05(〇1 1.7( 1^〇3)0.35スラリ一を得た。 この懸濁液の (N i + C 0 + A £ ) に対し原子比が L i / (N i + C o + A ) =1.05に相当 する量の 3. 0 m o 1 水酸化リチウム水溶液を滴下し反応させた後、 凍結乾燥により乾燥を行った。 得られた乾燥ゲルを静的圧縮機を用い 2 t/cnfの圧で成形し 014、 厚み 2翻のペレツ ト状とした。
これをアルミ ナ製ボ一 卜に入れ、 管状炉にて酸素雰囲気中で 750°C で 48時間焼成し、 乳鉢で解砕し、 L i N i 0 78 C o。 ! A .。 512 粉体を得た。
上記実施例 5, 6, 7で得た複合酸化物の粉末 X線回折図をそれぞれ 図 4, 5 , 6に示す。 .これより明らかなように、 いずれの製法において も副生物のピークは認められず、 均一に固溶した層状構造を有している こと力く分力ヽる。
更にこれら複合酸化物の (N i + C o) の 3価の割合、 B ET比表面 積、 粉末 X線回折より得られる ピーク強度比 (003) / ( 104) 、 (006) / (101) 及び嵩密度等の物性を表 4、 更に複合酸化物の一次粒 子を示す S EM写真を実施例 5については図 7 ( X 30000倍) に、 実施例 6については図 8 (X30000倍) に、 実施例 7については図 9 ( x 10000 倍) に示す。 なお、 写真の下方に示した一線の単位はいずれも 1 で ある。 (N i + C o) の 3価の割合は試験例 2、 B E T比表面積は試験 例 3に従って測定を行った。
表 4
Figure imgf000024_0001
表 4から明らかなように (Ni + C o) の 3価の割合はほぼ 100%であ り、 粉末 X線回折で得られるピーク強度比も (003) / (104) は 1. 2以 上、 (006) / (101) は 0.13以下であり、 充分に結晶化度の高いもので ある。 更に、 S EM写真よりプレス成形を施した実施例 6及び 7は一次 粒子が充分に成長しており、 嵩密度も充分に高くなっていることが分か る。
実施例 8 .
N i : C o : A ίモル比二 790 : 165 : 25となるように 2. 0 m 0 1 Z £ の硝酸二ッゲルと硝酸コバル卜、 硝酸アルミ二ゥムの混合水溶液を調製 した。 この混合水溶液と 1. 0 m 0 1 / の水酸化ナ ト リウム溶液を反応 p H10.0となるように、 反応温度 25°C、 強攪拌下で同時添加を行い連続 反応を行った。 得られた反応生成物を濾過、 水洗し (なお、 一部を乾燥 したものの組成は、 N i " C oo. "5 A ^025( OH) N 03) - 0. 2 H20であった) 、 水に懸濁させた後、 前記 N i、 C o、 A i に対しモル比で N i : C 0 : A ^ : B = 790: 165: 25: 20に相当する量 の硼酸を添加し、 スラリーとした。 このスラリーに L i / (N i + C o + A ^ + B) =1.05のモル比に相当する量の 3. 0 M水酸化リチウム水溶 液を滴下した後、 噴霧乾燥を行った。 得られた乾燥ゲルをアルミナ製ボ 一卜に入れ、 管状炉 (山田電気製 T F— 630型) にて酸素流通下で 750 °C、 10時間焼成し、 乳鉢で解砕し、 L i N i。 7 9。 C o。 165A 。 025 B。.。2。 02粉体を得た。
実施例 9
N i : C 0 : A £モル比 = 790: 140 : 50となるように 2. 0 m 0 1 / £ の硝酸ニッケルと硝酸コバル卜、 硝酸アルミニウムの混合水溶液を調製 した。 この混合水溶液と 1.0 m 0 1 / の水酸化ナ ト リゥ厶溶液を反応 P H9.75となるように、 反応温度 25°C、 強撹拌下で同時添加を行い連続 反応を行った。 得られた反応生成物を濾過、 水洗し (なお、 一部を乾燥 したものの組成は、 N i 0 79 C O0.14 A ^ 0. D5( OH) l. 86( NO3) 01 5 -
0.24H2 Oであった) 、 水に懸濁させた後、 前記 Ni C o A に対し モル比で N i : C 0 : A ^ : B -790: 140: 50: 20に相当する量の硼酸 を添加し、 スラリーとした。 このスラリーに L i / (N i + C o + A + B) 1.05のモル比に相当する量の 3.0 M水酸化リチウム水溶液を滴 下した後、 噴霧乾燥を行った。 得られた乾燥ゲルをアルミナ製ボー トに 入れ、 管状炉(山田電気製 T F— 630型) にて酸素流通下で 775°C 10時 間焼成し、 乳鉢で解砕し、 Li Ni0 n0 C o 14o A £o 50 B0 2 02 粉体を得た。
実施例 10
N i : C 0 : A £モル比 = 790: 90: 100となるように 2. 0 m o 1 / ί の硝酸二ッゲルと硝酸コバルト、 硝酸アルミニゥムの混合水溶液を調製 した。 この混合水溶液と 1. 0 m ο 1 / Hの水酸化ナ 卜 リウム溶液を反応 p H 9. 5 となるように、 反応温度 25°C、 強攪拌下で同時添加を行い連続 反応を行った。 得られた反応生成物を濾過、 水洗し (なお、 一部を乾燥 したものの組成は、 N i o C oo. Q ii A ^ o i^ OH o^ NO o" · 0·18Η2 Οであった) 、 水に懸濁させた後、 前記 Ni C o A に対し モル比で N i : C 0 : A ί : Β =790: 90: 100: 20に相当する量の硼酸 を添加し、 スラリーとした。 このスラリーに L i / (N i + C o + A ^ + B) =1.05のモル比に相当する量の 3.0 M水酸化リチウム水溶液を滴 下した後、 噴霧乾燥を行った。 得られた乾燥ゲルをアルミナ製ボー トに 入れ、 管状炉(山田電気製 T F— 630型) にて酸素流通下で 775° (:、 10時 間焼成し、 乳鉢で解砕し、 Li Ni . C o。 。9 A 0 1。。 B。 。2 O2 粉体を得た。 実施例 11
N i : C o : A ^ : F eモル比 = 800: 100: 50 : 50となるように 2.0 m o \ £の硝酸二ッゲルと硝酸コバルト、 硝酸アルミニゥム及び硝酸 鉄の混合水溶液を調製した。 この混合水溶液と 1.0 m 0 1ノ の水酸化 ナ ト リウム溶液を反応 p H 9.5となるように、 反応温度 25°C、 強攪拌下 で同時添加を行い連続 S応を行った。 得られた反応生成物を濾過、 水洗 し (なお、 一部を乾燥したものの組成は、 Ni0 8 C o A 5 F e 0 5 (〇H) ! N03)。H · 0.18H2 Oであった)、 水に懸濁させスラリ 一とした。 このスラリーに L i / (N i + C o +A ^ + F e) =1.05の モル比に相当する量の 3.0 M水酸化リチウム水溶液を滴下した後、 噴霧 乾燥を行った。 得られた乾燥ゲルをアルミナ製ボー トに入れ、 管状炉 (山田電気製 TF—630型) にて酸素流通下で 725°C、 15時間焼成し、 乳 鉢で解砕し、 LiN i D eoo C oo !ocA ^o so F e。 。5。〇2粉体を得た c 実施例 12
N i : C 0 : Mnモル比 = 800: 150: 50なるように 2.0 m o 1 Z の 硝酸二ッゲルと硝酸コバル卜、 硝酸マンガンの混合水溶液を調製した。 この混合水溶液と 1.0 m 0 1 / £の水酸化ナ 卜 リウム溶液を反応 p H 9.0となるように、 反応温度 25C、 強攪拌下で同時添加を行い連続反応 を行った。 得られた反応生成物を濾過、 水洗し、 水に懸濁させスラリー とした。 このスラリーに L i Z (N i +C o +Mn) =1.05のモル比に 相当する量の 3.0 M水酸化リチウム水溶液を滴下した後、 噴霧乾燥を行 つた。 得られた乾燥ゲルをアルミナ製ボー トに人れ、 管状炉 (山田電気 製 T F— 630型)にて酸素流通下で 750° ( 、 10時間焼成し、 乳鉢で解砕し、 L i N i。. 8。。 C o。. i s。Mn。.。5 Q 02粉体を得た。 比較例 4 (実施例 5に対応する乾式法)
水酸化リチウム 1.00モル、 水酸化ニッケル 0.80モル、 水酸化コバルト
0.10モル及び水酸化アルミニウム 0.01モルを乳鉢で充分乾式混合粉砕し た後、 直径 14 X厚さ 2咖の大きさにペレツ トイヒし、 これを酸素雰囲気中 で ?50°C、 48時間焼成した。 焼成物の化学組成は L i N i。 . 8 。 C o。. >。
A 。.:。〇2であった。.
比較例 5 (実施例 8に対応する乾式法)
水酸化リチウム 1.00モル、 水酸化ニッケル 0.79モル、 水酸化コバル ト
0.165モル、 水酸化アルミニゥム 0.025モル及び硼酸 0.02モルを乳鉢で充 分乾式混合粉砕した後、 直径 14x厚さ 2 の大きさにペレツ トイヒし、 これを酸素雰囲気中で 750°C、 48時間焼成した。 焼成物の化学組成は
L 1 N i o.7s C 00. 1" A j^ 0 . 02 5 B o.0202でめった o
上記実施例 8〜11で得た複合酸化物の粉末 X線回折図を図 10〜13に示 す。 これより明らかなように、 いずれの製法においても副生物のピーク は認められず、 均一に固溶した層状構造を有していることが分かる。 更にこれら複合酸化物の (N i + C 0 ) の 3価の割合、 B ET比表面 積、 粉末 X線回折より得られる ピーク強度比 (003) / (104) 、
(006) / (101) 等の物性を表 5に示す。 更に複合酸化物の一次粒子を 示す S EM写真を実施例 8については図 14 (X 1500倍) に、 実施例 10に ついては図 15 (X 1500倍) に、 実施例 11については図 16 (X 1500倍) に 示す。 なお、 写真の下方に示した 一 線の単位はいずれも 10 である。
(N i + C 0 ) の 3価の割合は試験例 2、 B E T比表面積は試験例 3 (N i + C 0) の 3価の割合は試験例 2、 B E T比表面積は試験例 3に 従って測定を行った。 表 5
Figure imgf000029_0001
表 5より明らかなように、 いずれの実施例も請求項で示す範囲に充分 に対応した物性値を示しており、 結晶化度の高いものが得られている。 更に、 上記実施例 5〜; 11及び比較例 4〜 5の各複合酸化物を用いて電 池テス ト (充放電テス 卜) を試験例 4に従って行い、 初期放電容量 (m A h/g) 、 100回目の放電容量 (mA hZg) 及び 100回目の減衰 率 (%) の結果を表 6に示す。
(以下余白)
表 6
Figure imgf000030_0001
表 6より、 リチウムニッケルコバル卜複合酸化物の A i含量が増加し、 C 0含量が低下すると表 3の比較例 2 と比較し初期放電容量が低下する 傾向が認められる。 硼素添加によりサイクル特性の改善が認められる。 更に、 F e添加は A 添加より初期放電容量を低下させる傾向が大きい ことが分かる。 しかし、 本発明のものは乾式法に係る比較例 4 , 5 と比 較して初期放電容量、 サイクル特性ともに優れている。
上記結果より、 A 添加は高価な C 0の使用量を減少させるという点 で意味があるが、 電池性能の面からマイナスという結果となった。
し力、し、 リチウムイオン二次電池材料では、 従来用いられた正極材料 の熱安定性に問題があつたが、 本発明で得られた複合酸化物では良好な 熱安定性改善効果を奏する。
正極材料の熱安定性の指標としては、 充電状態の正極材料の示差熱測 定を行い、 酸素脱離に伴う発熱温度を調べる方法がある。 そこで、 試験 例 5に従って本発明で得られた複合酸化物の熱安定性について行った試 験結果を表 7に示す。
表 7
Figure imgf000031_0001
表 7より、 比較例 2 と比較してリチウム二ッケルコバルト複合酸化物 に A ^が置換することにより酸素脱離に伴う発熱温度が上昇し、 更に実 施例 6及び 7のように一次粒子が大きいものも発熱温度が上昇し、 正極 材料の熱安定性が改善されていることが分かる。
以上により、 本発明のリチウムニッケルコバルト複合酸化物、 特に A 及び 又は Bを完全に固溶したものは電池性能として満足する二次 電池用正極活物質である。 試験例 1
シェ一ラー法 :
結晶に歪みがなくて結晶子の大きさが均一で、 回折線の幅の拡がりが 結晶子の大きさだけに基づく と仮定し、 下記式 (1)より結晶子の大きさを 求める方法である。
Dh K , = (k λ) ( cos0) …… (式 1 )
式中、 Dh (オングス トローム) は、 (h k 1 ) 面に垂直方向の結晶 子の大きさ、 ス (オングス トローム) は X線の波長、 β ( r a d) は回 折線幅、 Θ ) は回折角、 kは定数を示す。
試験例 2
(N i + C o ) の 3価の測定法 :
(N i + C 0 ) の 3価の割合とは、 全 (N i + C o ) に対する 3価の (N i + C 0 ) の割合を百分率で示した値であり、 酸化還元滴定により 測定する。 試料 0.2 gを 0.25Mの F e S 0* - 3.6 N硫酸溶液に溶解し、 濃燐酸 を加えた後、 0. 1 Nの過マンガン酸カリウムで滴定する。 同 様に空試験を行い、 下記式より試料中の 3価の (N i + C 0 ) の%を求 める。 式において f は 0. 1 Nの過マンガン酸力 リゥム溶液のファクタ一、 X。は空試験滴定量 、 Xは滴定量 ( ) 、 mは試料量 (g) 、 Aは N iの含量 (%) 、 Bは C oの含量 (%) である。
試料中の (N i + C 0 ) の 3価の割合 (%) 二
10 f (X。— X) /m (A/5.871+ B/5.893) 試験例 3
B ET比表面積測定法 :
試料を窒素 30%、 ヘリゥム 70%の混合ガスの流動下において加熱脱気 し、 M0N0S0RB 〔ュアサアイォニクス㈱製〕 を用いて B ET 1点連 続流動法により測定する。
試験例 4
電池テス 卜法 :
リチウムニッケル複合酸化物を 88重量%、 導電剤としてアセチレンブ ラック 6. 0重量%、 結合剤としてテ トラフルォロェチレン 6. 0重量%の 混合比で混合し、 次いでステンレスメ ッシュ上に圧縮成形を行い直径 18 mmのペレ ツ トを得、 200°Cで 2時間以上乾燥し正極材料とする。 負極 材料には圧延リチウム金属シ一 卜をステンレス基盤上に圧着したものを 用い、 隔膜にはポリプロピレン製多孔質膜 (セルガー ド 2502) とグラス フィルタ一ろ紙を用いる。 電解液には 1 M L i C £ 04を溶解させたェ チレンカーボネート ジメチルメ トキシェタン ( 1 : 1 ) を用い、 試験 用セル (半解放型セル) の組立から仕上げまでをアルゴン置換した ドラ ィボックス中で行う。 このリチウム電池を 0. 4 m A /cnfの定電流密度に て、 3. 0〜 4. 3 Vの間で充放電を行う。
試験例 5
熱安定性試験法 :
試験例 3で示される方法で電池を作製し、 0. 4 m A /cnfの定電流密度 にて 4. 4 Vまで充電を行う。 充電終了後、 電池を分解し正極を取り出し、 正極を電解液で洗浄後、 真空乾燥を行う。 乾燥した正極材料を示差熱測 定装置にて窒素流通下、 昇温速度 2 °C Z分で測定を行い酸素脱離に伴う 発熱ピーク温度を測定する。 産業上の利用可能性
以上説明したように本発明によれば、 一般式( I )
L i y N i C o χ 1 Μ κ 2 02 ( I ) で示される新規な複合酸化物であって、 充放電サイクル特性に優れ、 サ ィクル数の増加によっても従来の L i N i 〇2に匹敵し得る高い電池容量 を維持し、 高温時でのサイクル性 (安定性) の改善された二次電池用正 極活物質を提供することができる。 また、 Mで示される金属の導入によ り高価な C 0の使用量を最小限に抑えることができるので、 コス ト的に 有利である。

Claims

1. 一般式( I )
Figure imgf000035_0001
ヨロ
(式中、 Mは A 、 F主 Hee、 Mn及び Bからなる群より選択された少なく とも 1種であり、 yは 0.9≤ y≤1.3、 xは 0 < χ≤0·5、 X lは 0 く く 0. 5、 ! + Χ 2 = , Μが Α の、 F e及び M nの中の少なく とも 1種の 場合は、 χ2は 0く χ2 0. 3、 Μが Βの場合は、 χ2は 0 く χ2く 0. 1 、 Μが Βと A ^、 F e及び Μ ηの中の少なとも 1種の場合は、 χ2 は 0 く χ2 <0.3を示すが、 Βの占める割合は 0か囲ら 0. 1 の範囲である) で示さ れる複合酸化物。
2. 一般式( I )
Figure imgf000035_0002
(式中、 Mは A 、 F e、 Mn及び Bからなる群より選択された少なく とも 1種であり、 yは 0.9≤ y ^l.3、 xは 0 く x ^O,5、 X lは 0 く X l < 0. 5、 χ> + χ2 = χ、 Μが A _g、 F e及び M nの中の少なく とも 1種の 場合は、 χ2は 0 く χ2≤ 0· 3、 Μが Βの場合は、 χ2は 0 く χ2く 0. 1 、 Μが Βと A 、 F e及び Mnの中の少なとも 1種の場合は、 χ2 は 0 < χ2く 0.3を示すが、 Βの占める割合は 0力、ら 0. 1の範囲である) で示さ れ、 X線回折のミラー指数 h k 1 における (003) 面及び (104) 面での 回折ピーク比 (003) / (104) が 1. 2以上、 (006) 面及び (101) 面で の回折ピーク比 (006) / (101) が 0.13以下、 全 (N i + C o ) に対す る 3価の (N i + C 0 ) の割合が 99%以上、 B E T比表面積が 0. 1 〜 2 m , 平均二次粒径 Dが 5〜: 100 、 粒度分布の 10%が 0.5 D以上、 90 %が 2 D以下、 走査型電子顕微鏡 (S EM) で観察して表面に凸凹のあ る球状二次粒子であって、 この球状二次粒子を構成する一次粒子径が、 S EMで観察して長径の粒径が 0.2〜30 の範囲内にあり、 且つその長 径の平均粒径が 0.3 ~30 であることを特徴とする複合酸化物。
3. 一般式( I ) .
L i yN i -x C o Mx202 ( I )
(式中、 Mは A ^、 F e、 Μη及び Βからなる群より選択された少なく とも 1種であり、 yは 0.9^ y≤1.3、 χは 0く x≤0.5、 X lは 0く x,く 0.5. X 1 + 2 = X . Mが A 、 F e及び M nの中の少なく とも 1種の 場合は、 χ2は 0く χ2≤ 0.3、 Μが Βの場合は、 χ2は 0く χ2 < 0. 1、 Μが Βと A £、 F e及び Μ ηの中の少なとも 1種の場合は、 χ2 は 0く χ2く 0.3を示すが、 Βの占める割合は 0から 0. 1の範囲である) で示さ れ、 X線回折のミラー指数 h k 1 における (003) 面及び (104) 面での 回折ピーク比 (003) / (104) が 1.2以上、 (006) 面及び (101) 面で の回折ピーク比 (006) Z (101) が 0.13以下、 全 (N i + C o) に対す る 3価の (N i + C o) の割合が 99%以上、 B E T比表面積が 0. 1〜 2 m g. 走査型電子顕微鏡 (S EM) で観察した一次粒子の平均長径が 1.0〜30imであることを特徴とする複合酸化物。
4. 前記 Mが A ^及び Bからなる群から選択された少なく とも i種で ある請求項 1〜 3記載の複合酸化物。
5. 一般式( I )
L i v i .-,C 0 χΐΜχ202 ( I ) (式中、 Mは A 、 F e及び Mnからなる群より選択された少なく とも 1種を示し、 Xは 0 < x≤ 0.5、 xiは 0 < χ )く 0.5、 ! + Χ2 = , χ2は 0 < χ2 < 0.5、 yは 0.9≤ y≤ 1.3を示す) で示される複合酸化 物の製造において、 一般式(Π )
Nii - X C 0 x i Μχ2( OH) 2 (1 -χ + χι, +3 Χ2 -„2( Α - mH20 ( Π )
〔式中、 Mは A 、 F.e及び Mnからなる群より選択された少なく とも 1種であり、 Xは 0く x≤ 0.5、 X ,は O x!く 0.5、 χ2は 0く χ2≤ 0.3、 ι + Χ2 - X, Απ—は η価 (η= 1〜 3 ) のァニオン、 ζ及び m はそれぞれ、 0.03 z≤0.3、 0≤mく 2の範囲を満足する正の数を示 す〕 で示される塩基性金属塩に yで示す L i原子モル数に相当する量の リチウム化合物を水媒体中で添加し、 得られたスラ リ一を噴霧又は凍結 乾燥後、 酸化雰囲気下で約 600C~900て、 約 4時間以上焼成することを 特徴とする複合酸化物の製造方法。
6. 一般式( I )
Figure imgf000037_0001
(式中、 Mは Bを示し、 Xは 0く χ≤ 0· 5、 X,は 0く x! O.5、 x, + χ2 = χ、 χ2は 0く χ2く 0. 1、 yは 0.9≤ y≤ 1.3を示す)で示され る複合酸化物の製造において、 一般式(m)
Nii-xC 0 χ1( ΟΗ)2„-χ + χ ΐ ) - π2η-)2 · mH20 (IE)
〔式中、 Xは 0く x≤0.5、 X!は 0く x O.5、 Απ は n価 (n = l ~ 3 ) のァニオン、 z及び mはそれぞれ、 0.03≤ z 0· 3、 0≤m< 2 の範囲を満足する正の数を示す〕 で示される塩基性金属塩に χ2 モル% の硼素を含有する硼素化合物 〔χ2は 0 < χ2く 0.1、 上記 x、 X lと χ2 は、 χ2 = - ! の関係が成立する〕 を水媒体中で添加し、 yで示す L i原子モル数に相当する量のリチウム化合物を水媒体中で添加し、 得 られたスラ リ一を噴霧又は凍結乾燥後、 酸化雰囲気下で約 600°C〜900°C、 約 4時間以上で焼成することを特徴とする複合酸化物の製造方法。
7. —般式( I )
L i yN i: - .C o M x202 ( I )
(式中、 Mは Bと A 、 F e及び Mnの中の少なく とも 1種との組み合 わせを示し、 Xは 0 < x≤ 0. 5、 X!は 0く X!く 0. 5、 χ ι + χ 2 = χ、 χ2は 0く χ2く 0. 5、 yは 0. 9 ≤ y≤ 1.3を示す) で示される複合酸化 物の製造において、 一般式(W)
Ni. C o χ1 Ν,3( ΟΗ)2 (An-)z · mH2〇 (IV) 〔式中、 Nは A £、 F e及び Mnの中の少なく とも 1種であり、 この場 合の一般式( I )の Mは Bと Nを含み Bの含量を χ 4 とすると、 Xは 0 く χ≤ 0.5、 χ】は O xiく 0.5、 χ3は 0く χ 3≤ 0.3 — X " ι + χ3 + χ4 = χ、 Αη は η価(η = 1〜 3 ) のァニオン、 ζ及び mはそれぞれ、 0.03≤ z≤ 0.3、 0≤m< 2の範囲を満足する正の数を示す〕 で示され る塩基性金属塩に X *モル%の硼素を含有する硼素化合物 〔X 4は 0 < χ 4 く 0. 1、 Χ 4、 χ3、 χ2とは χ4 + χ3 = χ2の関係が成立する〕 と yで示 す i原子モル数に相当する量のリチウム化合物を水媒体中で添加し、 得られたスラ リーを噴霧又は凍結乾燥後、 酸化雰囲気下で約 600°C〜900 。C、 約 4時間以上で焼成することを特徴とする複合酸化物の製造方法。
8. 一般式( I )
Figure imgf000038_0001
(式中、 Mは A ^、 F e及び Mnからなる群より選択された少なく とも 1種を示し、 Xは 0 < x≤ 0.5、 X ,は 0く x ! O.5、 + X 2 = X χ 2は 0く χ 2く 0.5、 yは 0.9 y≤ 1.3を示す) で示される複合酸化 物の製造において、 一般式(Π )
Nii-.C 0 χΐ Μ χ2 ( ΟΗ)2 (ι -χ + χ1) +3 x2-„z(An-)z · mH20 (II) 〔式中、 Mは A £、 F e及び Mnからなる群より選択された少なく とも 1種であり、 Xは 0く. x≤ 0.5、 X ,は 0く x ! O.5、 χ 2は 0く χ 2 ≤ 0.3、 ι + Χ 2 = , Απ_は n価 (n = l〜3 ) のァニオン、 z及び m はそれぞれ、 0.03^ ζ≤ 0.3、 0≤m< 2の範囲を満足する正の数を示 す〕 で示される塩基性金属塩に yで示す L i原子モル数に相当する量の リチウム化合物を水媒体中で添加し、 得られたスラリ一を噴霧又は凍結 乾燥後、 乾燥物をプレス成形後、 酸化雰囲気下で約 600°C〜900°C、 約 4 時間以上焼成することを特徴とする複合酸化物の製造方法。
9. 一般式( I )
L i yN i C 0 Mx202 ( I )
(式中、 Mは Bを示し、 Xは 0く x≤ 0.5、 X! (i 0 < X < 0.5. X l + χ 2 = χ、 χ 2は 0く χ 2く 0. 1、 yは 0.9≤ y≤ 1.3を示す)で示され る複合酸化物の製造において、 一般式(ΠΙ)
Ni:-xC 0 xi ( OH) 2 -x + x - n2(An")2 · mH20 ( ΙΠ ) 〔式中、 Xは 0 < χ≤ 0.5、 X ,は 0く χ < 0· 5、 Αη-は η価 (η = 1 ~3 ) のァニオン、 ζ及び mはそれぞれ、 z ^ 0.3、 0≤ m < 2 の範囲を満足する正の数を示す〕 で示される塩基性金属塩に χ 2 モル% の硼素を含有する硼素化合物 〔χ2は 0く χ2く 0. 1上記 x、 X l, と χ2 は、 χ 2 = X - ) の関係が成立する〕 を水媒体中で添加し、 yで示す L i原子モル数に相当する量のリチウム化合物を水媒体中で添加し、 得 られたスラ リーを噴霧又は凍結乾燥後、 乾燥物をプレス成形後、 酸化雰 囲気下で約 600aC~900°C、 約 4時間以上焼成することを特徴とする複合 酸化物の製造方法。
10. 一般式( I )
L i ,N i i - x.C ο χΙ Μχ2 Οί ( I )
(式中、 Μは Βと Α 、 F e及び Mnの中の少なく とも 1種との組み合 わせを示し、 Xは 0く x 0.5、 X!は 0く x! O.5、 χ】 + χ2 = χ、 χ2は 0 < χ2く 0.5、 yは 0.9≤ y≤ 1.3を示す) で示される複合酸化 物の製造において、 一般式(W)
Nii- x C 0 χ ! Νχ3( ΟΗ)2 -χ + χ Μ +a Χ3 - η 2 ( Α η")2 · mH20 (IV) 〔式中、 Νは Α £、 F e及び Μηの中の少なく とも i種であり、 この場 合の一般式( I )の Mは Bと Nを含み Bの含量を χ4 とすると、 Xは 0く χ≤ 0· 5、 χ】は 0く xiく 0.5、 χ3は 0く χ3 ^ 0.3— X χ ι + χ ζ + = χ、 Αη—は η価(η = 1〜3 ) のァニオン、 ζ及び mはそれぞれ, 0.03≤ z≤ 0.3. 0≤m< 2の範囲を満足する正の数を示す〕 で示され る塩基性金属塩に モル%の硼素を含有する硼素化合物 〔χ4は 0 < χ4 く 0. 1、 , χ3、 χ2とは + χ3 = χ2の関係が成立する〕 と yで示 すし i原子モル数に相当する量のリチウム化合物を水媒体中で添加し、 得られたスラ リーを噴霧又は凍結乾燥後、 乾燥物をプレス成形後、 酸化 雰囲気下で約 600°C〜900°C、 約 4時間以上焼成することを特徴とする複 合酸化物の製造方法。
11. 一般式( I )
L i yN i! C 0 χΙ Μχ202 ( I ) (式中、 Mは A ^、 F e及び Μηからなる群より選択された少なく とも 1種を示し、 Xは 0 < χ≤ 0.5、 X iは 0 く 5^ < 0. 5、 χ, + χ2 = χ、 χ2は 0 く χ2く 0. 5、 yは 0.9 y 1. 3を示す) で示される複合酸化 物の製造において、 一般式(Π )
Ni! - x C 0 Μχ2( 0 H) 2 -χ + χ A - mH20 ( Π ) 〔式中、 Μは Α 、 F,e及び Mnからなる群より選択された少なく とも 1種であり、 Xは 0く χ ^ Ο. 5、 x>は 0 く x! O, 5、 χ2は 0く χ2 ≤ 0.3、 xi + Χ 2 = X , Απ-は η価 (η = 1〜 3 ) のァニオン、 ζ及び m はそれぞれ、 0.03≤ z≤ 0. 3、 0 ≤m< 2の範囲を満足する正の数を示 す〕 で示される塩基性金属塩に yで示す L i原子モル数に相当する量の リチウム化合物を水媒体中で添加し、 得られたスラリ一を噴霧又は凍結 乾燥後、 乾燥物をそのまま酸化雰囲気下で約 600°C〜900°C、 約 0. 5時間 以上で予備焼成し、 次いで得られた予備焼成品をプレス成形し、 更に酸 化雰囲気下で約 600て〜900 、 約 1時間以上焼成することを特徴とする 複合酸化物の製造方法。
12. 一般式( I )
Figure imgf000041_0001
(式中、 Mは Bを示し、 Xは 0 く X≤ 0. 5、 X ,は 0 く x】く 0. 5、 x】 + χ2 = χ、 χ2は 0 く χ2く 0, 1、 yは 0.9≤ y≤ 1. 3を示す)で示され る複合酸化物の製造において、 一般式(ΠΙ)
Nii-xC 0 xl( OH)2 (1_x十 ,…(A "一) z · mH20 (Π) 〔式中、 xは 0 く x≤ 0.5、 x! 0 < i < 0.5 は n価 (n = l 〜 3 ) のァニオン、 z及び mはそれぞれ、 0.03≤ z≤ 0.3、 0≤m < 2 の範囲を満足する正の数を示す〕 で示される塩基性金属塩に χ 2 モル% の硼素を含有する硼素化合物 〔χ 2は 0 < χ 2 < 0. 1上記 χ、 X , Ν と χ 2 は、 χ 2 - X - ) の関係が成立する〕 を水媒体中で添加し、 yで示す L i原子モル数に相当する量のリチウム化合物を水媒体中で添加し、 得 られたスラ リ一を噴霧又は凍結乾燥後、 乾燥物をそのまま酸化雰囲気下 で約 600° (:〜 900°C、 約 0.5時間以上で予備焼成し、 次いで得られた予備 焼成品をプレス成形し, 更に酸化雰囲気下で約 600°C〜900て、 約 1時間 以上焼成することを特徴とする複合酸化物の製造方法。
13. 一般式( I )
L i yN i C o Mx20: ( I )
(式中、 Mは Bと Α ί、 F e及び Μηの中の少なく とも 1種との組み合 わせを示し、 Xは 0く χ ^ Ο.5、 は 0く x! O.5、 ! + X 2 = X . χ 2は 0く χ 2く 0.5、 yは 0.9≤ y≤ 1.3を示す) で示される複合酸化 物の製造において、 一般式(IV)
Niい 0 xl N (〇H)2 (1-x + xl> +3 nz(An— )z · mH20 (IV)
〔式中、 Nは A 、 F e及び Mnの中の少なく とも 1種であり、 この場 合の一般式( I )の Mは Bと Nを含み Bの含量を χ4 とすると、 Xは 0 く χ≤ 0· 5、 Xュは 0く χ, < 0.5、 χ 3は 0 < χ3≤ 0.3— χ 4、 χ】 + χ 3 + χ4二 χ、 Αη—は η価( η = 1〜 3 ) のァニオン、 ζ及び mはそれぞれ、 0.03≤ z≤ 0.3 , 0≤m< 2の範囲を満足する正の数を示す〕 で示され る塩基性金属塩に χ4モル%の硼素を含有する硼素化合物 〔χ 4は 0 < χ4 < 0. Κ Χ 4、 χ3、 χ2とは + χ3 = χ2の関係が成立する〕 と yで示 すし i原子モル数に相当する量のリチウム化合物を水媒体中で添加し、 得られたスラリ一を噴霧又は凍結乾後、 乾燥物をそのまま酸化雰囲気下 で約 600°C〜900°C、 約 0.5時間以上で予備焼成し、 次いで得られた予備 焼成品をプレス成形し、 更に酸化雰囲気下で約 600° (:〜 900°C、 約 1 時間 以上焼成することを特徴とする複合酸化物の製造方法。
14. 請求項 1、 2、 3又は 4記載の複合酸化物を有効成分として含有 することを特徴とする二次電池用正極活物質。
PCT/JP1997/002803 1996-08-12 1997-08-11 Oxyde composite de lithium/nickel/cobalt, procede pour sa preparation, et materiau actif de cathode pour batterie rechargeable WO1998006670A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/242,308 US6395250B2 (en) 1996-08-12 1997-08-11 Lithium/nickel/cobalt composite oxide, process for preparing the same, and cathode active material for rechargeable battery
CA002263320A CA2263320C (en) 1996-08-12 1997-08-11 A lithium nickel cobalt complex oxide, a process for preparing the same and a positive electrode active material for a secondary battery
EP97934763A EP0918041B1 (en) 1996-08-12 1997-08-11 Lithium/nickel/cobalt composite oxide, process for preparing the same, and cathode active material for rechargeable battery
JP50959598A JP4131521B2 (ja) 1996-08-12 1997-08-11 リチウムニッケルコバルト複合酸化物、その製法及び二次電池用正極活物質
DE69740063T DE69740063D1 (de) 1996-08-12 1997-08-11 Lithium/nickel/kobalt verbundoxid, verfahren zur herstellung und kathode-aktives material für wiederaufladbare batterie

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8/231396 1996-08-12
JP23139696 1996-08-12
JP35512096 1996-12-20
JP8/355120 1996-12-20

Publications (1)

Publication Number Publication Date
WO1998006670A1 true WO1998006670A1 (fr) 1998-02-19

Family

ID=26529841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002803 WO1998006670A1 (fr) 1996-08-12 1997-08-11 Oxyde composite de lithium/nickel/cobalt, procede pour sa preparation, et materiau actif de cathode pour batterie rechargeable

Country Status (9)

Country Link
US (1) US6395250B2 (ja)
EP (2) EP0918041B1 (ja)
JP (1) JP4131521B2 (ja)
KR (1) KR100490708B1 (ja)
CN (1) CN1155525C (ja)
CA (1) CA2263320C (ja)
DE (1) DE69740063D1 (ja)
TW (1) TW363940B (ja)
WO (1) WO1998006670A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0872450A1 (en) * 1997-04-15 1998-10-21 SANYO ELECTRIC Co., Ltd. Positive electrode material for use in non-aqueous electrolyte battery, process for preparing the same, and non-aqueous electrolyte battery
EP0944125A1 (en) * 1998-03-19 1999-09-22 Sanyo Electric Co., Ltd. Positive electrode material for lithium secondary battery
US5989744A (en) * 1996-07-31 1999-11-23 Sony Corporation Non-aqueous electrolyte secondary cell
EP0973217A2 (en) * 1998-07-13 2000-01-19 Ngk Insulators, Ltd. Lithium transition metal compound for lithium secondary battery
JP2001192208A (ja) * 1999-06-03 2001-07-17 Titan Kogyo Kk リチウムチタン複合酸化物及びその製造方法、並びにその用途
JP2002170562A (ja) * 2000-11-30 2002-06-14 Nikko Materials Co Ltd リチウム二次電池用正極材料及び及びその製造方法
JP2002211931A (ja) * 2001-01-10 2002-07-31 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウムニッケル複合酸化物
EP0782206B1 (en) * 1995-12-29 2003-04-16 Japan Storage Battery Company Limited Positive electrode active material for lithium secondary battery, method of producing thereof, and lithium secondary battery
JP2004006277A (ja) * 2002-03-28 2004-01-08 Mitsubishi Chemicals Corp リチウム二次電池用正極材料およびそれを用いた二次電池ならびにリチウム二次電池用正極材料の製造方法
JPWO2003044881A1 (ja) * 2001-11-22 2005-03-24 株式会社ユアサコーポレーション リチウム二次電池用正極活物質及びリチウム二次電池
US6998069B1 (en) * 1999-12-03 2006-02-14 Ferro Gmbh Electrode material for positive electrodes of rechargeable lithium batteries
JP2008195608A (ja) * 2000-11-06 2008-08-28 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
JP2008195610A (ja) * 1997-05-19 2008-08-28 Showa Denko Kk リチウム含有複合金属酸化物、その製造方法及び用途
JP2009245949A (ja) * 2002-03-28 2009-10-22 Mitsubishi Chemicals Corp リチウム二次電池用正極材料およびそれを用いた二次電池ならびにリチウム二次電池用正極材料の製造方法
US7824807B2 (en) 2004-12-10 2010-11-02 Shin-Kobe Electric Machinery Co., Ltd. Positive electrode material for lithium secondary battery and lithium secondary battery
US7923147B2 (en) 2003-05-13 2011-04-12 Mitsubishi Chemical Corporation Layered lithium-nickel-based compound oxide powder and its prodution process
US7998619B2 (en) 2002-03-28 2011-08-16 Mitsubishi Chemical Corporation Positive-electrode material for lithium secondary battery, secondary battery employing the same, and process for producing positive-electrode material for lithium secondary battery
WO2014133064A1 (ja) * 2013-02-28 2014-09-04 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池
JP2017500685A (ja) * 2013-10-24 2017-01-05 ダウ グローバル テクノロジーズ エルエルシー 改善されたリチウム金属酸化物カソード材料及びそれらを作製するための方法
US9843033B2 (en) 2013-02-28 2017-12-12 Nissan Motor Co., Ltd. Positive electrode active substance, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery
WO2020145116A1 (ja) 2019-01-10 2020-07-16 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質の製造方法、及び、成形体

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289261A (ja) * 2001-01-16 2002-10-04 Matsushita Electric Ind Co Ltd 非水電解質二次電池
ATE238241T1 (de) 1998-11-13 2003-05-15 Fmc Corp Schichtgitterstruktur besitzende lithiumhaltige metalloxide, die frei von lokalen kubisch-spinell-artigen phasen sind, und herstellung derselben
US7608365B1 (en) * 1999-05-25 2009-10-27 Samsung Sdi Co., Ltd. Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
US6660432B2 (en) 2000-09-14 2003-12-09 Ilion Technology Corporation Lithiated oxide materials and methods of manufacture
EP1295851A4 (en) * 2000-11-16 2008-08-20 Hitachi Maxell LITHIUM CONTENT COMPOSITE OXIDE AND NONAQUEOUS SECONDARY CELL USING THE SAME, AND METHOD FOR MANUFACTURING THE SAME
WO2002073718A1 (fr) * 2001-03-14 2002-09-19 Yuasa Corporation Matiere active pour electrode positive et accumulateur a electrolyte non aqueux comportant ladite matiere
US6964828B2 (en) * 2001-04-27 2005-11-15 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
CA2388936C (en) * 2001-06-07 2006-07-18 Kawatetsu Mining Co., Ltd. Cathode material for use in lithium secondary battery and manufacturing method thereof
GB0117235D0 (en) * 2001-07-14 2001-09-05 Univ St Andrews Improvements in or relating to electrochemical cells
AU2002355544A1 (en) * 2001-08-07 2003-02-24 3M Innovative Properties Company Cathode compositions for lithium ion batteries
US7410511B2 (en) * 2002-08-08 2008-08-12 Matsushita Electric Industrial Co., Ltd. Production method of positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material
KR100895225B1 (ko) * 2002-09-26 2009-05-04 에이지씨 세이미 케미칼 가부시키가이샤 리튬 2차 전지용 양극 활성 물질 및 그 제조방법
US20040121234A1 (en) * 2002-12-23 2004-06-24 3M Innovative Properties Company Cathode composition for rechargeable lithium battery
JP5236878B2 (ja) * 2003-05-28 2013-07-17 ナショナル リサーチ カウンシル オブ カナダ リチウムセルおよびバッテリー用の酸化リチウム電極
US7211237B2 (en) * 2003-11-26 2007-05-01 3M Innovative Properties Company Solid state synthesis of lithium ion battery cathode material
JP2005339887A (ja) * 2004-05-25 2005-12-08 Sanyo Electric Co Ltd 非水電解質二次電池
US7608332B2 (en) * 2004-06-14 2009-10-27 Industrial Technology Research Institute Cathode material particle comprising of plurality of cores of coated grains
DE102004044557B3 (de) * 2004-09-15 2006-06-14 Bayer Inc., Sarnia Mischmetallhydroxide, deren Herstellung und Verwendung
CN101048898B (zh) * 2004-10-29 2012-02-01 麦德托尼克公司 锂离子电池及医疗装置
TWI262618B (en) * 2004-11-03 2006-09-21 Tatung Co A co-precipitation method for Li1+xNi1-yCoyO2-based cathode materials
US8187748B2 (en) * 2004-12-24 2012-05-29 Panasonic Corporation Non-aqueous electrolyte secondary battery
WO2006068143A1 (ja) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. 非水電解質二次電池
US20070072082A1 (en) * 2005-09-27 2007-03-29 Scott Erik R Battery having a highly compressed positive electrode
WO2007094645A1 (en) * 2006-02-17 2007-08-23 Lg Chem, Ltd. Lithium-metal composite oxides and electrochemical device using the same
JP5405126B2 (ja) * 2006-02-17 2014-02-05 エルジー・ケム・リミテッド リチウム−金属複合酸化物の製造方法
JP5128779B2 (ja) * 2006-03-06 2013-01-23 パナソニック株式会社 リチウムイオン二次電池
KR100822012B1 (ko) 2006-03-30 2008-04-14 한양대학교 산학협력단 리튬 전지용 양극 활물질, 그 제조 방법 및 그를 포함하는리튬 이차 전지
CN100502106C (zh) 2006-05-12 2009-06-17 盐光科技(嘉兴)有限公司 二次电池正极材料及制备方法
JP4211865B2 (ja) * 2006-12-06 2009-01-21 戸田工業株式会社 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
US20080280205A1 (en) * 2007-05-07 2008-11-13 3M Innovative Properties Company Lithium mixed metal oxide cathode compositions and lithium-ion electrochemical cells incorporating same
BRPI0813288A2 (pt) 2007-06-22 2014-12-30 Boston Power Inc Dispositivo de interrupção de corrente, bateria, bateria de íons de lítio, métodos para manufaturar um dispositivo de interrupção de corrente, uma bateria, e uma bateria de íons de lítio.
CN102007626B (zh) * 2008-04-17 2014-10-15 日矿金属株式会社 锂离子电池用正极活性物质、二次电池用正极和锂离子电池
US8153301B2 (en) * 2008-07-21 2012-04-10 3M Innovative Properties Company Cathode compositions for lithium-ion electrochemical cells
EP2368851B1 (en) * 2008-12-04 2018-05-16 Toda Kogyo Corp. Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
US20110065002A1 (en) * 2008-12-05 2011-03-17 Jx Nippon Mining & Metals Corporation Positive Electrode Active Material for Lithium Ion Battery, Positive Electrode for Secondary Battery using said Positive Electrode Active Material, and Lithium Ion Secondary Battery using Secondary Battery Positive Electrode
JP5389620B2 (ja) * 2009-11-27 2014-01-15 株式会社日立製作所 リチウムイオン二次電池用正極材料およびそれを用いたリチウムイオン二次電池
JP5661646B2 (ja) 2009-12-18 2015-01-28 Jx日鉱日石金属株式会社 リチウムイオン電池用正極及びその製造方法、並びに、リチウムイオン電池
US9039926B2 (en) 2010-02-08 2015-05-26 Kabushiki Kaisha Toyota Jidoshokki Production process for composite oxide, positive-electrode active material for lithium-ion secondary battery and lithium-ion secondary battery
KR101430839B1 (ko) 2010-12-03 2014-08-18 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
JP5812682B2 (ja) * 2011-05-19 2015-11-17 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質及びその製造方法
CN103582968B (zh) 2011-06-03 2016-05-11 株式会社半导体能源研究所 电极的制造方法
US9218916B2 (en) 2011-06-24 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Graphene, power storage device, and electric device
US9249524B2 (en) 2011-08-31 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
KR102514830B1 (ko) 2011-09-30 2023-03-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극, 리튬 이차 전지, 전기 자동차, 하이브리드 자동차, 이동체, 시스템, 및 전기 기기
CN103035922B (zh) 2011-10-07 2019-02-19 株式会社半导体能源研究所 蓄电装置
WO2013077441A1 (ja) * 2011-11-25 2013-05-30 三井金属鉱業株式会社 層構造を有するリチウム金属複合酸化物
US9487880B2 (en) 2011-11-25 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Flexible substrate processing apparatus
JP6016597B2 (ja) 2011-12-16 2016-10-26 株式会社半導体エネルギー研究所 リチウムイオン二次電池用正極の製造方法
US9553312B2 (en) * 2012-02-23 2017-01-24 Sumitomo Metal Mining Co., Ltd Nickel composite hydroxide and production method thereof, cathode active material for a non-aqueous electrolyte secondary battery and production method thereof, and a nonaqueous electrolyte secondary battery
JP5719859B2 (ja) 2012-02-29 2015-05-20 株式会社半導体エネルギー研究所 蓄電装置
CN104247102B (zh) 2012-03-31 2017-01-25 汉阳大学校产学协力团 锂二次电池用正极活性物质前驱体的制备方法、由此制备的锂二次电池用正极活性物质前驱体及包括其在内的锂二次电池用正极活性物质
US9225003B2 (en) 2012-06-15 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing storage battery electrode, storage battery electrode, storage battery, and electronic device
CN104335396B (zh) 2012-09-28 2018-01-05 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极和锂离子电池
EP2910528B1 (en) * 2012-10-17 2019-07-03 Toda Kogyo Corp. Li-Ni COMPLEX OXIDE PARTICLE POWDER AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
US9698420B2 (en) * 2012-10-17 2017-07-04 Toda Kogyo Corp. Li-Ni composite oxide particles and process for producing the same, and non-aqueous electrolyte secondary battery
JP6159228B2 (ja) 2012-11-07 2017-07-05 株式会社半導体エネルギー研究所 非水系二次電池用正極の製造方法
US9673454B2 (en) 2013-02-18 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Sodium-ion secondary battery
US9490472B2 (en) 2013-03-28 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing electrode for storage battery
DE112014002346B4 (de) 2013-05-10 2021-07-29 Semiconductor Energy Laboratory Co., Ltd. Speicherbatterie mit Lithiummanganoxid-Verbundstoff und deren Verwendung
EP3020083B1 (en) 2013-07-09 2020-04-29 Dow Global Technologies LLC Mixed positive active material comprising lithium metal oxide and lithium metal phosphate
US9293236B2 (en) 2013-07-15 2016-03-22 Semidonconductor Energy Laboratory Co., Ltd. Lithium—manganese composite oxide, secondary battery, and electric device
US9865867B2 (en) 2013-10-04 2018-01-09 Semiconductor Energy Laboratory Co., Ltd. Lithium manganese composite oxide, secondary battery, and electrical device
KR102406423B1 (ko) 2013-10-04 2022-06-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 리튬 망가니즈 복합 산화물, 이차 전지, 및 전자 기기, 및 층의 형성 방법
KR102353681B1 (ko) 2013-11-29 2022-01-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 리튬 망가니즈 복합 산화물 및 이차 전지
KR20220148309A (ko) 2014-05-09 2022-11-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 리튬 이온 이차 전지 및 전자 장치
US11205776B2 (en) 2014-05-27 2021-12-21 Dow Global Technologies Llc Lithium metal oxide cathode materials and method to make them
JP6745587B2 (ja) 2014-05-29 2020-08-26 株式会社半導体エネルギー研究所 電極の製造方法
KR101568263B1 (ko) 2014-08-07 2015-11-11 주식회사 에코프로 리튬 이차 전지용 양극활물질 및 이를 포함하는 리튬 이차 전지
KR101577179B1 (ko) 2014-09-11 2015-12-16 주식회사 에코프로 리튬 이차 전지용 양극활물질 및 이를 포함하는 리튬 이차 전지
KR101555594B1 (ko) 2014-10-02 2015-10-06 주식회사 에코프로 리튬 이차 전지용 양극활물질 및 이를 포함하는 리튬 이차 전지
US11251419B2 (en) 2014-12-18 2022-02-15 Dow Global Technologies Llc Lithium ion battery having improved thermal stability
US10256470B2 (en) 2014-12-26 2019-04-09 Semiconductor Energy Laboratory Co., Ltd. Electrode, power storage device, electronic device, and manufacturing method of electrode
KR20160090580A (ko) * 2015-01-22 2016-08-01 삼성에스디아이 주식회사 양극 활물질, 그 제조방법 및 이를 포함하는 리튬이차전지
US20180026265A1 (en) 2015-02-17 2018-01-25 Toda Kogyo Corp. Positive electrode active substance for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP6580886B2 (ja) * 2015-06-30 2019-09-25 株式会社エンビジョンAescジャパン リチウムイオン二次電池
US10622629B2 (en) 2016-03-31 2020-04-14 Honda Motor Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery
WO2017169129A1 (ja) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 非水電解質二次電池
JP6250853B2 (ja) * 2016-03-31 2017-12-20 本田技研工業株式会社 非水系電解質二次電池用正極活物質
KR20230079485A (ko) 2016-07-05 2023-06-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지
CN109565041B (zh) * 2016-08-02 2022-08-19 苹果公司 基于涂覆镍的阴极材料和制备方法
JP6862727B2 (ja) * 2016-09-13 2021-04-21 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
CN116387601A (zh) 2016-10-12 2023-07-04 株式会社半导体能源研究所 正极活性物质粒子以及正极活性物质粒子的制造方法
JP6836369B2 (ja) 2016-10-31 2021-03-03 住友化学株式会社 リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質の製造方法
CN106784801A (zh) * 2016-12-30 2017-05-31 惠州龙为科技有限公司 一种动力型、高容量改性nca正极材料的制备方法
CN111682188A (zh) 2017-05-12 2020-09-18 株式会社半导体能源研究所 正极活性物质粒子
CN117096337A (zh) 2017-05-19 2023-11-21 株式会社半导体能源研究所 锂离子二次电池
KR101826612B1 (ko) 2017-06-07 2018-02-07 주식회사 엘 앤 에프 양극 활물질, 및 이를 포함하는 리튬 이차 전지
WO2019003025A1 (en) 2017-06-26 2019-01-03 Semiconductor Energy Laboratory Co., Ltd. METHOD FOR MANUFACTURING POSITIVE ELECTRODE ACTIVE MATERIAL, AND SECONDARY BATTERY
KR102130484B1 (ko) 2017-11-15 2020-07-06 주식회사 에코프로비엠 이차전지용 양극 활물질 및 이의 제조 방법
US10862119B2 (en) 2017-11-15 2020-12-08 Ecopro Bm Co., Ltd. Cathode active material and manufacturing method thereof
US10787368B2 (en) 2018-06-06 2020-09-29 Basf Corporation Process for producing lithiated transition metal oxides
KR20200071989A (ko) 2018-12-12 2020-06-22 한국교통대학교산학협력단 코어-쉘-쉘' 삼중층 구조를 가지는 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 이용한 리튬 이차전지
WO2020180408A2 (en) * 2019-01-23 2020-09-10 Ut-Battelle, Llc Cobalt-free layered oxide cathodes
KR102172381B1 (ko) * 2019-02-14 2020-10-30 울산과학기술원 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
KR20210070933A (ko) * 2019-12-05 2021-06-15 주식회사 엘지에너지솔루션 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법
US11764355B2 (en) 2020-01-22 2023-09-19 Uchicago Argonne, Llc Cathode active materials for secondary batteries
US20230108718A1 (en) 2020-03-27 2023-04-06 Board Of Regents, The University Of Texas System Low-cobalt and cobalt-free, high-energy cathode materials for lithium batteries
MX2023003168A (es) * 2020-09-22 2023-03-27 Tesla Inc Elementos sinterizados de material activo de catodo y metodos de los mismos.
CN114426313A (zh) * 2022-01-07 2022-05-03 云南大学 一种高能量密度三元正极材料及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151998A (ja) 1991-11-30 1993-06-18 Sony Corp 非水電解液二次電池
JPH06342657A (ja) * 1990-07-23 1994-12-13 Her Majesty The Queen In Right Of The Province Of British Columbia As Represented By The Minister リチウム化二酸化ニッケルカソード活性物質とその製造方法および電気化学的電池
JPH0837007A (ja) * 1994-05-16 1996-02-06 Tosoh Corp リチウム含有遷移金属複合酸化物及びその製造方法並びにその用途
JPH0855624A (ja) * 1994-03-07 1996-02-27 Tdk Corp 層状構造酸化物および二次電池
JPH08130013A (ja) * 1993-04-01 1996-05-21 Fuji Chem Ind Co Ltd LiM3+O2 またはLiMn2 O4 の製造方法及び 2次電池正極材用LiNi3+O2
JPH08213052A (ja) * 1994-08-04 1996-08-20 Seiko Instr Inc 非水電解質二次電池
JPH08217452A (ja) * 1995-02-14 1996-08-27 Tosoh Corp マンガン複合酸化物及びその製造方法並びにその用途
JPH08298115A (ja) * 1995-04-26 1996-11-12 Japan Storage Battery Co Ltd リチウム電池用正極活物質およびその製造法
JPH08319120A (ja) * 1995-05-19 1996-12-03 Nippon Chem Ind Co Ltd リチウム複合酸化物、その製造方法およびリチウム二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275275A (ja) * 1993-03-17 1994-09-30 Sanyo Electric Co Ltd 非水系電池
CA2209933C (en) * 1995-11-24 2005-04-12 Fuji Chemical Industry Co., Ltd. A lithium nickel complex oxide, a process for preparing the same and a positive electrode active material for a secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342657A (ja) * 1990-07-23 1994-12-13 Her Majesty The Queen In Right Of The Province Of British Columbia As Represented By The Minister リチウム化二酸化ニッケルカソード活性物質とその製造方法および電気化学的電池
JPH05151998A (ja) 1991-11-30 1993-06-18 Sony Corp 非水電解液二次電池
JPH08130013A (ja) * 1993-04-01 1996-05-21 Fuji Chem Ind Co Ltd LiM3+O2 またはLiMn2 O4 の製造方法及び 2次電池正極材用LiNi3+O2
JPH0855624A (ja) * 1994-03-07 1996-02-27 Tdk Corp 層状構造酸化物および二次電池
JPH0837007A (ja) * 1994-05-16 1996-02-06 Tosoh Corp リチウム含有遷移金属複合酸化物及びその製造方法並びにその用途
JPH08213052A (ja) * 1994-08-04 1996-08-20 Seiko Instr Inc 非水電解質二次電池
JPH08217452A (ja) * 1995-02-14 1996-08-27 Tosoh Corp マンガン複合酸化物及びその製造方法並びにその用途
JPH08298115A (ja) * 1995-04-26 1996-11-12 Japan Storage Battery Co Ltd リチウム電池用正極活物質およびその製造法
JPH08319120A (ja) * 1995-05-19 1996-12-03 Nippon Chem Ind Co Ltd リチウム複合酸化物、その製造方法およびリチウム二次電池

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0782206B1 (en) * 1995-12-29 2003-04-16 Japan Storage Battery Company Limited Positive electrode active material for lithium secondary battery, method of producing thereof, and lithium secondary battery
US5989744A (en) * 1996-07-31 1999-11-23 Sony Corporation Non-aqueous electrolyte secondary cell
US6040090A (en) * 1997-04-15 2000-03-21 Sanyo Electric Co., Ltd. Positive electrode material for use in non-aqueous electrolyte battery, process for preparing the same, and non-aqueous electrolyte battery
EP0872450A1 (en) * 1997-04-15 1998-10-21 SANYO ELECTRIC Co., Ltd. Positive electrode material for use in non-aqueous electrolyte battery, process for preparing the same, and non-aqueous electrolyte battery
JP2008195610A (ja) * 1997-05-19 2008-08-28 Showa Denko Kk リチウム含有複合金属酸化物、その製造方法及び用途
US6333128B1 (en) 1998-03-19 2001-12-25 Sanyo Electric Co., Ltd. Lithium secondary battery
EP0944125A1 (en) * 1998-03-19 1999-09-22 Sanyo Electric Co., Ltd. Positive electrode material for lithium secondary battery
US6368750B1 (en) 1998-07-13 2002-04-09 Ngk Insulators, Ltd. Lithium secondary battery
EP0973217A3 (en) * 1998-07-13 2000-06-28 Ngk Insulators, Ltd. Lithium transition metal compound for lithium secondary battery
EP0973217A2 (en) * 1998-07-13 2000-01-19 Ngk Insulators, Ltd. Lithium transition metal compound for lithium secondary battery
JP2001192208A (ja) * 1999-06-03 2001-07-17 Titan Kogyo Kk リチウムチタン複合酸化物及びその製造方法、並びにその用途
US6998069B1 (en) * 1999-12-03 2006-02-14 Ferro Gmbh Electrode material for positive electrodes of rechargeable lithium batteries
JP2008195608A (ja) * 2000-11-06 2008-08-28 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
JP4592931B2 (ja) * 2000-11-30 2010-12-08 Jx日鉱日石金属株式会社 リチウム二次電池用正極材料及び及びその製造方法
JP2002170562A (ja) * 2000-11-30 2002-06-14 Nikko Materials Co Ltd リチウム二次電池用正極材料及び及びその製造方法
JP2002211931A (ja) * 2001-01-10 2002-07-31 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウムニッケル複合酸化物
JP4697504B2 (ja) * 2001-01-10 2011-06-08 株式会社豊田中央研究所 リチウム二次電池正極活物質用リチウムニッケル複合酸化物及びその製造方法
JP4956883B2 (ja) * 2001-11-22 2012-06-20 株式会社Gsユアサ リチウム二次電池用正極活物質及びリチウム二次電池
JPWO2003044881A1 (ja) * 2001-11-22 2005-03-24 株式会社ユアサコーポレーション リチウム二次電池用正極活物質及びリチウム二次電池
JP4655453B2 (ja) * 2002-03-28 2011-03-23 三菱化学株式会社 リチウム二次電池用正極材料およびそれを用いた二次電池ならびにリチウム二次電池用正極材料の製造方法
JP2009245949A (ja) * 2002-03-28 2009-10-22 Mitsubishi Chemicals Corp リチウム二次電池用正極材料およびそれを用いた二次電池ならびにリチウム二次電池用正極材料の製造方法
US7998619B2 (en) 2002-03-28 2011-08-16 Mitsubishi Chemical Corporation Positive-electrode material for lithium secondary battery, secondary battery employing the same, and process for producing positive-electrode material for lithium secondary battery
JP2004006277A (ja) * 2002-03-28 2004-01-08 Mitsubishi Chemicals Corp リチウム二次電池用正極材料およびそれを用いた二次電池ならびにリチウム二次電池用正極材料の製造方法
US8383270B2 (en) 2002-03-28 2013-02-26 Mitsubishi Chemical Corporation Positive-electrode material for lithium secondary battery, secondary battery employing the same, and process for producing positive-electrode material for lithium secondary battery
US7923147B2 (en) 2003-05-13 2011-04-12 Mitsubishi Chemical Corporation Layered lithium-nickel-based compound oxide powder and its prodution process
US7824807B2 (en) 2004-12-10 2010-11-02 Shin-Kobe Electric Machinery Co., Ltd. Positive electrode material for lithium secondary battery and lithium secondary battery
WO2014133064A1 (ja) * 2013-02-28 2014-09-04 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池
US9537148B2 (en) 2013-02-28 2017-01-03 Nissan Motor Co., Ltd. Positive electrode active substance, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery
JPWO2014133064A1 (ja) * 2013-02-28 2017-02-02 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池
US9843033B2 (en) 2013-02-28 2017-12-12 Nissan Motor Co., Ltd. Positive electrode active substance, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery
JP2017500685A (ja) * 2013-10-24 2017-01-05 ダウ グローバル テクノロジーズ エルエルシー 改善されたリチウム金属酸化物カソード材料及びそれらを作製するための方法
WO2020145116A1 (ja) 2019-01-10 2020-07-16 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質の製造方法、及び、成形体

Also Published As

Publication number Publication date
EP2058281A3 (en) 2009-12-23
CA2263320C (en) 2006-08-08
DE69740063D1 (de) 2011-01-05
CN1232438A (zh) 1999-10-20
JP4131521B2 (ja) 2008-08-13
EP0918041A4 (en) 2006-05-17
US6395250B2 (en) 2002-05-28
CN1155525C (zh) 2004-06-30
EP0918041B1 (en) 2010-11-24
EP2058281A2 (en) 2009-05-13
TW363940B (en) 1999-07-11
EP2058281B1 (en) 2012-09-19
KR100490708B1 (ko) 2005-05-24
EP0918041A1 (en) 1999-05-26
CA2263320A1 (en) 1998-02-19
KR20000029966A (ko) 2000-05-25
US20010010807A1 (en) 2001-08-02

Similar Documents

Publication Publication Date Title
WO1998006670A1 (fr) Oxyde composite de lithium/nickel/cobalt, procede pour sa preparation, et materiau actif de cathode pour batterie rechargeable
JP3130813B2 (ja) リチウムニッケル複合酸化物、その製造方法および二次電池用正極活物質
Oh et al. Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis
WO1997019023A1 (fr) Oxyde composite lithium-nickel, son procede de preparation, et materiau actif positif destine a une batterie secondaire
CN102763247B (zh) 锂离子电池用正极活性物质、锂离子电池用正极以及锂离子电池
WO2023184960A1 (zh) 磷酸锰铁锂的制备方法,正极材料及锂离子电池
KR20100041721A (ko) 리튬-금속 복합산화물의 제조방법
CN104078669B (zh) 一种多元正极材料的制备方法
WO2015025795A1 (ja) 異方性構造を有するアルカリ金属チタン酸化物及びチタン酸化物並びにこれらの酸化物を含む電極活物質及び蓄電デバイス
JPH08130013A (ja) LiM3+O2 またはLiMn2 O4 の製造方法及び 2次電池正極材用LiNi3+O2
JP3922040B2 (ja) リチウムマンガン複合酸化物とその製造方法並びにその用途
JP4760805B2 (ja) リチウムニッケルコバルト複合酸化物その製法及び二次電池用正極活物質
JP5701863B2 (ja) 新規チタン酸リチウム及びその製造方法、並びに該チタン酸リチウムを含む電極活物質、該電極活物質を用いてなる蓄電デバイス
JP4066472B2 (ja) 板状水酸化ニッケル粒子、その製造方法及びこれを原料とするリチウム・ニッケル複合酸化物粒子の製造方法
JP6128303B2 (ja) リチウムマンガン系複合酸化物およびその製造方法
JP2022174094A (ja) 非水系電解質二次電池用正極活物質の製造方法、及び、成形体
JP3609229B2 (ja) 非水系二次電池用正極活物質の製造方法及びそれを使用したリチウム二次電池
JP2001122628A (ja) リチウムマンガン複合酸化物粒子状組成物とその製造方法及び二次電池
WO2019124943A1 (ko) 리튬 이차전지용 양극 활물질 및 그 제조방법, 리튬 이차전지
JP5099328B2 (ja) リチウムニッケルコバルト複合酸化物その製法及び二次電池用正極活物質
KR100668051B1 (ko) 공침법을 이용한 망간산화물, 이를 이용한 리튬이차전지스피넬형 양극 활물질 및 그 제조방법
JPH11121006A (ja) リチウム二次電池用正極活物質
KR100668050B1 (ko) 망간복합산화물, 이를 이용한 리튬이차전지 스피넬형양극활물질 및 그 제조방법
JP4055269B2 (ja) マンガン酸化物及びその製造方法、並びにマンガン酸化物を用いたリチウムマンガン複合酸化物及びその製造方法
JPWO2018066633A1 (ja) チタン及び/又はゲルマニウム置換リチウムマンガン系複合酸化物及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97198469.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2263320

Country of ref document: CA

Ref document number: 2263320

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09242308

Country of ref document: US

Ref document number: 1019997001211

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1997934763

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997934763

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997001211

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997001211

Country of ref document: KR