WO1998011553A1 - Ram speicheranordnung - Google Patents

Ram speicheranordnung Download PDF

Info

Publication number
WO1998011553A1
WO1998011553A1 PCT/EP1997/005013 EP9705013W WO9811553A1 WO 1998011553 A1 WO1998011553 A1 WO 1998011553A1 EP 9705013 W EP9705013 W EP 9705013W WO 9811553 A1 WO9811553 A1 WO 9811553A1
Authority
WO
WIPO (PCT)
Prior art keywords
supply voltage
data line
ram
vvdd
memory cell
Prior art date
Application number
PCT/EP1997/005013
Other languages
English (en)
French (fr)
Inventor
Michael Bruhnke
Original Assignee
Temic Telefunken Microelectronic Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Temic Telefunken Microelectronic Gmbh filed Critical Temic Telefunken Microelectronic Gmbh
Priority to AU44583/97A priority Critical patent/AU4458397A/en
Publication of WO1998011553A1 publication Critical patent/WO1998011553A1/de

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F7/00Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
    • G07F7/08Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
    • G07F7/10Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means together with a coded signal, e.g. in the form of personal identification information, like personal identification number [PIN] or biometric data
    • G07F7/1008Active credit-cards provided with means to personalise their use, e.g. with PIN-introduction/comparison system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • G06K19/0726Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs the arrangement including a circuit for tuning the resonance frequency of an antenna on the record carrier
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0008General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/34Payment architectures, schemes or protocols characterised by the use of specific devices or networks using cards, e.g. integrated circuit [IC] cards or magnetic cards
    • G06Q20/341Active cards, i.e. cards including their own processing means, e.g. including an IC or chip
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • G06Q20/40Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists
    • G06Q20/409Device specific authentication in transaction processing
    • G06Q20/4097Device specific authentication in transaction processing using mutual authentication between devices and transaction partners
    • G06Q20/40975Device specific authentication in transaction processing using mutual authentication between devices and transaction partners using encryption therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
    • G11C11/419Read-write [R-W] circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1048Data bus control circuits, e.g. precharging, presetting, equalising
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1051Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits

Definitions

  • the invention relates to a RAM memory arrangement according to the preamble of claim 1.
  • a system has proven itself in the identification of people, animals and objects in recent years, in which a (stationary or portable) reading device supplies a transponder connected to the object to be identified with energy via an alternating field, whereupon the transponder transmits the data stored in it responds. Because of the frequency range used, one speaks of radio frequency identification systems, or RFID for short.
  • An RFID transponder generally consists of an antenna coil and an integrated circuit that contains all the necessary electronic circuit blocks, such as. B. for power supply, clock generation, sequence control and for storing the data necessary for identification, includes.
  • the capacitance connected in parallel to the antenna coil is also often part of the integrated circuit. However, it can also be formed by a discrete component.
  • the RFID reader consists of an oscillating circuit with a transmitter coil and a capacitance, which is controlled by a driver stage with a signal with a generally fixed frequency (e.g. 125 kHz). Furthermore, the reading device contains electronic circuit blocks in order to recognize the data sent by the absorption modulation from the transponder and to process data and commands, e.g. B. by modulating the field to send to the transponder.
  • the reader and transponder form a loosely coupled transformer for data and energy transmission. The energy transfer is therefore relatively low.
  • the supply voltage is obtained from the field. Therefore, it is not constant, as with battery-operated ICS, but fluctuates in some cases by a few 100 mV.
  • the object of the invention is therefore to provide a RAM memory arrangement which is correctly described and read even when the supply voltage fluctuates.
  • a RAM memory arrangement with at least one memory cell, the complementary outputs of which are connected to a first and a second data line (d (x), db (x)
  • the source drain path of a first further p-channel transistor ( pla) the first data line (d (x)) connects to the supply voltage potential (vvdd)
  • the source drain path of the second further p-channel transistor (p2a) connects the second data line (db (x)) to the supply voltage potential (vvdd).
  • one output can always be immediately updated to the current value of the supply voltage. Downstream gates correctly evaluate the output signal even when the supply voltage fluctuates.
  • the memory cell consists of two p-channel transistors (cpl, cp2) and two n-channel transistors (cm, cn2), which are connected to cross-coupled inverters.
  • Two further n-channel transistors (cnd, cndb) connect the outputs of the memory cell to the two data lines (dfx), db (xshire It is advantageous if the output of the memory cell arrangement (dout (x)) is formed by a series connection of two inverters (invoutb, invout), the input of the first inverter (invoutb) via a first transmission gate (TG1) with the second data line (dbfx)) is connected.
  • the output of the second inverter (invout) is fed back to the input of the first inverter (invoutb) via a second transmission gate ⁇ TG2) and the two transmission gates (TG1, TG2) are arranged antiparallel to one another.
  • This arrangement has proven to be advantageous for RAM circuits in transponders in RFID systems.
  • Figure 1 shows a RAM memory arrangement according to the invention.
  • the level of this line is incorrectly evaluated by the inverter invoutb, which is directly connected to VDD. Since the other data line dfx) is connected to VSS, the transistor p2a is turned on and VDD is "quickly" connected to the line db (x), so that the evaluation by the inverter invoutb is carried out correctly at all times.
  • FIG. 1 shows a circuit arrangement with such a RAM memory cell.
  • the memory cell itself consists of two p-channel transistors cpl, cp2 and two n-channel transistors cm, cn2 and another two further n-channel transistors cnd, cndb for selecting the cell by means of a signal on the selection line wl (y).
  • the two p-channel transistors cpl, cp2 and the two n-channel transistors cm, cn2 are cross-coupled inverters which form a flip-flop.
  • This known static CMOS RAM memory cell is also arranged in rows and rows to form a memory array in a known manner. For the sake of a better overview, only one column (line) of the memory field is shown in FIG. 1 and only the memory cell of one row is shown within the column.
  • the two RAM data lines dfx), dbfx) of each column in the memory field are each connected to the two further p-channel transistors pla, p2a with the supply voltage potential vvdd, in particular the source drain path of the first further p-channel transistor pla connects the first data line dfx ) with the supply voltage potential vvdd and the source drain path of the second further p-channel transistor p2a the second data line dbfx)) with the supply voltage potential vvdd.
  • the gate of the first further p-channel transistor pla is with the second data line dbfx) and the gate of the second further p-channel transistor p2a is with the first data line d (x).
  • Supply voltage potential vvdd the RAM cell does not immediately follow the level and one of the two data lines dfx), dbfx) is temporarily at an intermediate level, so that one data line is quickly connected to the other of the two other p-channel transistors current value of the supply voltage potential vvdd drawn.
  • the evaluation of the two data lines d (x), db (x) by downstream circuit parts is then carried out correctly at all times. Since the evaluation of a RAM cell only via the two n-channel transistors cnd, cndb and not using transmission gates, for which an additional two p-channel transistors would be required, this is particularly important from the point of view of the minimal area of the RAM cell judgment.
  • the memory cell is read out using the second data line dbfx) connected, series-connected inverters invoutb, invout.
  • the input of the first inverter invoutb is connected to the second data line db (x) via a first transmission gate TG1; to stabilize the output signal dout (x), the output of the second inverter is invout via a second transmission gate TG2 to the input of the first inverter invoutb fed back.
  • the two transmission gates TG1, TG2 are arranged antiparallel to one another, they are operated in push-pull mode, ie a value is led from the memory cell to the output dout when the first transmission gate TG1 is switched on, and held at the output as long as the second transmission gate TG2 is switched on or the first locks.

Abstract

Bei kontaktlosen ID-Systemen wird die Versorgungsspannung aus dem Feld gewonnen. Deshalb ist sie nicht konstant, wie bei batteriebetriebenen ICs, sondern schwankt teilweise um einige 100 mV. Bekannte RAM Speicheranordnung arbeiten fehlerhaft, wenn die Versorgungsspannung Schwankungen unterworfen ist. Daher ist es bei einer RAM Speicheranordnung mit mindestens einer Speicherzelle, deren komplementäre Ausgänge mit einer ersten und einer zweiten Datenleitung (d(x), db(x)) verbunden sind, vorgesehen, daß die Source Drain Strecke eines ersten weiteren p-Kanal Transistors (p1a) die erste Datenleitung (d(x)) mit dem Versorgungsspannungspotential (vvdd) und die Source Drain Strecke des zweiten weiteren p-Kanal Transistors (p2a) die zweite Datenleitung (db(x)) mit dem Versorgungsspannungspotential (vvdd) verbindet. Dadurch kann bei Schwankungen der Versorgungsspannung der eine Ausgang immer sofort auf den aktuellen Wert der Versorgungsspannung nachgeführt werden.

Description

Beschreibung
RAM speicheranordnunα
Die Erfindung betrifft eine RAM Speicheranordnung nach dem Oberbegriff des Anspruchs 1.
Bei der Identifikation von Personen, Tieren und Objekten hat sich in den letzten Jahren ein System bewährt, bei dem ein (stationäres bzw. tragbares) Lesegerät einen mit dem zu identifizierenden Objekt verbundenen Transponder über ein Wechselfeld mit Energie versorgt, woraufhin der Transponder mit dem Aussenden der in ihm gespeicherten Daten antwortet. Aufgrund des verwendeten Frequenzbereichs spricht man auch von Radiofrequenz-Identifikations-Svstemen, kurz RFID.
Ein RFlD-Transponder besteht im allgemeinen aus einer Antennenspule und einem integrierten Schaltkreis, der alle notwendigen elektronischen Schaltungsblöcke, wie z. B. zur Spannungsversorgung, zur Taktgenerierung, zur Ablaufsteuerung und zur speicherung der für die Identifizierung notwendigen Daten, beinhaltet. Die zur Antennenspule parallel geschaltete Kapazität ist ebenfalls häufig Bestandteil des integrierten Schaltkreises. Sie kann jedoch auch durch ein diskretes Bauelement gebildet werden.
Das RFID-Lesegerät besteht aus einem Schwingkreis mit einer Sendespule und einer Kapazität, der von einer Treiberstufe mit einem Signal mit einer im allgemeinen festen Frequenz (z. B. 125 kHz) angesteuert wird. Weiterhin enthält das Lesegerät elektronische Schaltungsblöcke, um die durch die Absorptionsmodulation vom Transponder gesendeten Daten zu erkennen und um Daten und Befehle, z. B. durch Modulation des Feldes, an den Transponder zu senden. Lesegerät und Transponder bilden bei der Daten- bzw. bei der Energieübertragung einen lose gekoppelten Transformator. Deshalb ist die Energieübertragung relativ gering.
Bei kontaktlosen ID-Systemen wird die Versorgungsspannung aus dem Feld gewonnen. Deshalb ist sie nicht konstant, wie bei batteriebetriebenen ICS, sondern schwankt teilweise um einige 100 mV.
Bei bekannten RAM Speicheranordnung treten beim Lesen und Schreiben häufig Fehler auf, wenn die Versorgungsspannung Schwankungen unterworfen ist.
Aufgabe der Erfindung ist es daher, eine RAM Speicheranordnung anzugeben, die auch bei schwankender Versorgungsspannung korrekt beschrieben und ausgelesen wird.
Diese Aufgabe wird durch eine RAM Speicheranordnung mit den Merkmalen des Anspruchs 1 gelöst. Die vorteilhafte Ausgestaltung erfolgt gemäß den Merkmalen der abhängigen Ansprüche.
Bei einer RAM Speicheranordnung mit mindestens einer Speicherzelle, deren komplementäre Ausgänge mit einer ersten und einer zweiten Datenleitung (d(x), db(x)) verbunden sind, ist es vorgesehen, daß die source Drain strecke eines ersten weiteren p-Kanal Transistors (pla) die erste Datenleitung (d(x)) mit dem versorgungsspannungspotential (vvdd) und die source Drain strecke des zweiten weiteren p-Kanal Transistors (p2a) die zweite Datenleitung (db(x)) mit dem Versorgungsspannungspotential (vvdd) verbindet. Dadurch kann bei Schwankungen der Versorgungsspannung der eine Ausgang immer sofort auf den aktuellen Wert der Versorgungsspannung nachgeführt werden. Nachgeschaltete Gatter bewerten das Ausgangssignal also auch bei Schwankungen der Versorgungsspannung richtig.
Die Speicherzelle besteht aus zwei p-Kanal Transistoren (cpl, cp2) und zwei n-Kanal Transistoren (cm, cn2), die zu über kreuz gekoppelten invertern geschaltet sind. Zwei weitere n-Kanal Transistoren (cnd, cndb) verbinden die Ausgänge der Speicherzelle mit den beiden Datenleitungen (dfx), db(x». Es ist vorteilhaft, wenn der Ausgang der Speicherzelienanordnung (dout(x)) von einer Reihenschaltung von zwei Invertern (invoutb, invout) gebildet wird, wobei der Eingang des ersten Inverters (invoutb) über ein erstes Transmission Gate (TG1) mit der zweiten Datenleitung (dbfx)) verbundenen ist. Der Ausgang des zweiten inverters (invout) ist über ein zweites Transmission Gate <TG2) auf den Eingang des ersten inverters (invoutb) zurückgekoppelt und die beiden Transmission Gates (TG1, TG2) antiparallel zueinander angeordnet sind. Diese Anordnung hat sich für RAM Schaltungen bei Transpondern in RFID Systemen als vorteilhaft erwiesen.
Kurze Beschreibung der Figur:
Figur 1 zeigt eine RAM Speicheranordnung nach der Erfindung.
Bei kontaktlosen ID-Systemen wird die Versorgungsspannung aus dem Feld gewonnen. Deshalb ist sie nicht konstant, wie bei batteriebetriebenen ics, sondern schwankt teilweise um einige 100 mV. Damit ein RAM auch unter diesen umständen korrekt beschrieben und ausgelesen wird, wurde eine spezielle Schaltung entworfen, bei der die beiden RAM-Datenleitungen dfx), db(x) über Kreuz aufeinander rückwirken (Transistoren pla und p2a). Da diese beiden Leitungen immer die komplementären Signale aufweisen, ist eine Leitung immer definiert auf VSS, während die andere an VDD liegt. Wenn VDD schwankt, so folgt die RAM-Zelle nicht sofort dem Pegel und eine Datenleitung, z. B. db(x), könnte kurzzeitig auf einen Zwischenpegel (dem alten VDD-Wert) liegen. Dadurch wird der Pegel dieser Leitung von dem inverter invoutb, der direkt an VDD liegt, ggf. falsch ausgewertet. Da die andere Datenleitung dfx) an VSS liegt, wird der Transistor p2a durchgeschaltet und VDD „schnell" an die Leitung db(x) gelegt, so daß die Auswertung durch den inverter invoutb zu jedem Zeitpunkt korrekt erfolgt.
Die Figur 1 zeigt eine Schaltungsanordnung mit einer derartigen RAM Speicherzelle. Die Speicherzelle an sich besteht aus zwei p-κanal Transistoren cpl, cp2 und zwei n-Kanal Transistoren cm, cn2 und nochmals zwei weiteren n-Kanal Transistoren cnd, cndb zur Auswahl der Zelle mittels eines Signals auf der Auswahlleitung wl(y). Die beiden p-Kanal Transistoren cpl, cp2 und die beiden n-Kanal Transistoren cm, cn2 sind über kreuz gekoppelte inverter, die ein Flip Flop bilden. Diese an sich bekannt statische CMOS RAM Speicherzelle ist in ebenfalls bekannter weise in Zeilen (rows) und Spalten (lines) zu einem Speicherfeld angeordnet. Wegen der besseren Übersicht ist in der Figur 1 nur eine Spalte (line) des Speicherfeldes und innerhalb der spalte nur die Speicherzelle einer Zeile dargestellt.
Die beiden RAM Datenleitungen dfx), dbfx) jeder spalte im Speicherfeld sind mit den zwei weiteren p-Kanal Transistoren pla, p2a jeweils mit dem versorgungsspannungspotential vvdd verbunden, insbesondere verbindet die source Drain strecke des ersten weiteren p-Kanal Transistors pla die erste Datenleitung dfx) mit dem versorgungsspannungspotential vvdd und die source Drain strecke des zweiten weiteren p-Kanal Transistors p2a die zweite Datenleitung dbfx) mit dem versorgungsspannungspotential vvdd. Das Gate des ersten weiteren p-Kanal Transistors pla ist mit der zweiten Datenleitung dbfx) und das Gate des zweiten weiteren p-Kanal Transistors p2a ist mit der ersten Datenleitung d(x).
Da diese beiden Datenleitungen immer die komplementären Signale aufweisen, ist eine immer definiert auf VSS, während die andere an VDD liegt. Sollte aufgrund von Schwankungen des
Versorgungsspannungspotentials vvdd die RAM-Zelle nicht sofort dem Pegel folgen und so einer der beiden Datenleitung dfx), dbfx) kurzzeitig auf einen Zwischenpegel liegen, so wird die eine Datenleitung von der jeweils anderen mitteis des einen der beiden weiteren p-Kanal Transistoren schnell auf den aktuellen wert des versorgungsspannungspotentials vvdd gezogen. Die Auswertung der beiden Datenleitungen d(x), db(x) durch nachgeschaltete schaltungsteile erfolgt dann zu jedem Zeitpunkt korrekt. Da die Auswertung einer RAM Zelle lediglich über die beiden n-Kanal Transistoren cnd, cndb und nicht unter Verwendung von Transmission Gates, für die noch zusätzlich zwei p-Kanal Transistoren erforderlich wären, ist dies unter dem Gesichtspunkt der minimalen Fläche der RAM Zelle von besonderem orteil.
Gemäß der in der Figur 1 gezeigten RAM Speicheranordnung erfolgt das Auslesen der Speicherzelle anhand von mit der zweiten Datenleitung dbfx) verbundenen, in Reihe geschalteten invertern invoutb, invout. Der Eingang des ersten Inverters invoutb ist über ein erstes Transmission Gate TG1 mit der zweiten Datenleitung db(x) verbundenen, zur Stabilisierung des Ausgangssignals dout(x) ist der Ausgang des zweiten inverters invout über ein zweites Transmission Gate TG2 auf den Eingang des ersten inverters invoutb zurückgekoppelt. Da die beiden Transmission Gates TG1, TG2 antiparallel zueinander angeordnet sind, werden sie im Gegentakt betrieben, d.h. ein Wert wird von der Speicherzelle zum Ausgang dout geführt, wenn das erste Transmission Gate TG1 durchschaltet, und am Ausgang gehalten solange das zweite Transmission Gate TG2 durchschaltet bzw. das erste sperrt.
Mit dieser RAM Speicheranordnung ist ein sicherer schreib- und Lesebetrieb auch bei schwankender und sehr geringer Versorgungsspannung möglich.

Claims

Patentanspruche
1 RAM Speicheranordnung mit mindestens einer Speicherzelle, deren komplementäre Ausgange mit einer ersten und einer zweiten Datenleitung
(dfx), dbfx» verbunden sind, dadurch gekennzeichnet, daß die Source Drain Strecke eines ersten weiteren p-Kanal Transistors (pla) die erste Datenleitung (dfx)) mit dem versorgungsspannungspotential (vvdd) und die source Drain Strecke des zweiten weiteren p-Kanal Transistors fp2a) die zweite Datenleitung (dbfx)) mit dem versorgungsspannungspotential (vvdd) verbindet
2 RAM speicheranordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Speicherzelle aus zwei p-Kanal Transistoren (cp1, cp2) und zwei n-Kanal Transistoren (cm, cn2) besteht, die zu über kreuz gekoppelten invertern geschaltet sind
3 RAM Speicheranordnung nach Anspruch 2, dadurch gekennzeichnet, daß die Speicherzelle zwei weitere n-Kanal Transistoren (cnd, cndb) aufweist, die die Ausgange der Speicherzelle mit den beiden Datenleitungen (d(x), db(x)) verbinden
4 RAM speicheranordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Ausgang der Speicherzeilenanordnung (dout(x)) von einer Reihenschaltung von zwei invertern (invoutb, invout) gebildet wird, wobei der Eingang des ersten inverters (invoutb) über ein erstes Transmission Gate (TGD mit der zweiten Datenleitung (dbfx)) verbundenen ist
5 RAM Speicheranordnung nach Anspruch 4, dadurch gekennzeichnet, daß Ausgang des zweiten inverters (invout) über ein zweites Transmission Gate (TG2) auf den Eingang des ersten inverters (invoutb) zuruckgekoppelt ist und die beiden Transmission Gates (TG1, TG2) antiparallel zueinander angeordnet sind
PCT/EP1997/005013 1996-09-13 1997-09-13 Ram speicheranordnung WO1998011553A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU44583/97A AU4458397A (en) 1996-09-13 1997-09-13 Ram storage assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19637319.0 1996-09-13
DE19637319 1996-09-13

Publications (1)

Publication Number Publication Date
WO1998011553A1 true WO1998011553A1 (de) 1998-03-19

Family

ID=7805530

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/EP1997/005013 WO1998011553A1 (de) 1996-09-13 1997-09-13 Ram speicheranordnung
PCT/EP1997/005011 WO1998011505A1 (de) 1996-09-13 1997-09-13 Verfahren zum abgleich eines empfangsschwingkreises eines transponders in einem rfid system
PCT/EP1997/005012 WO1998011689A2 (de) 1996-09-13 1997-09-13 Verfahren zur kryptologischen authentifizierung in einem radiofrequenz-identifikations-system
PCT/EP1997/005010 WO1998011496A1 (de) 1996-09-13 1997-09-13 Verfahren zum übertragen von daten in einem radiofrequenz identifikations-system

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/EP1997/005011 WO1998011505A1 (de) 1996-09-13 1997-09-13 Verfahren zum abgleich eines empfangsschwingkreises eines transponders in einem rfid system
PCT/EP1997/005012 WO1998011689A2 (de) 1996-09-13 1997-09-13 Verfahren zur kryptologischen authentifizierung in einem radiofrequenz-identifikations-system
PCT/EP1997/005010 WO1998011496A1 (de) 1996-09-13 1997-09-13 Verfahren zum übertragen von daten in einem radiofrequenz identifikations-system

Country Status (7)

Country Link
US (3) US6272321B1 (de)
EP (3) EP0925548B1 (de)
JP (3) JP3890510B2 (de)
AU (4) AU4458297A (de)
DE (3) DE59703244D1 (de)
ES (3) ES2179369T3 (de)
WO (4) WO1998011553A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7617395B2 (en) 2004-11-26 2009-11-10 Sony Computer Entertainment Inc. Battery and authentication requesting device

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10187916A (ja) * 1996-12-27 1998-07-21 Rohm Co Ltd 非接触icカード通信システムにおける応答器
DE19910875A1 (de) * 1999-03-11 2000-09-21 Siemens Ag System zur berührungslosen, seriellen Übertragung von Daten aus insbesondere schnell bewegten, mobilen Datenträgern, und bevorzugte Verwendungen des Systems
FR2792136B1 (fr) 1999-04-07 2001-11-16 St Microelectronics Sa Transmission en duplex dans un systeme de transpondeurs electromagnetiques
US6650226B1 (en) 1999-04-07 2003-11-18 Stmicroelectronics S.A. Detection, by an electromagnetic transponder reader, of the distance separating it from a transponder
FR2792132B1 (fr) 1999-04-07 2001-11-02 St Microelectronics Sa Borne de lecture d'un transpondeur electromagnetique fonctionnant en couplage tres proche
FR2792135B1 (fr) * 1999-04-07 2001-11-02 St Microelectronics Sa Fonctionnement en complage tres proche d'un systeme a transpondeur electromagnetique
US7049935B1 (en) 1999-07-20 2006-05-23 Stmicroelectronics S.A. Sizing of an electromagnetic transponder system for a dedicated distant coupling operation
FR2796781A1 (fr) 1999-07-20 2001-01-26 St Microelectronics Sa Dimensionnement d'un systeme a transpondeur electromagnetique pour un fonctionnement en hyperproximite
SE515391C2 (sv) 1999-11-08 2001-07-23 Tagmaster Ab Identifieringsbricka och läsare med interferensskydd
FR2804557B1 (fr) * 2000-01-31 2003-06-27 St Microelectronics Sa Adaptation de la puissance d'emission d'un lecteur de transpondeur electromagnetique
EP1124206A1 (de) * 2000-02-08 2001-08-16 Infineon Technologies AG Verfahren und Anordnung zur gegenseitigen Authentifizierung zweier Datenverarbeitungseinheiten
FR2808942B1 (fr) * 2000-05-12 2002-08-16 St Microelectronics Sa Validation de la presence d'un transpondeur electromagnetique dans le champ d'un lecteur a demodulation de phase
FR2808941B1 (fr) 2000-05-12 2002-08-16 St Microelectronics Sa Validation de la presence d'un transpondeur electromagnetique dans le champ d'un lecteur a demodulation d'amplitude
FR2808945B1 (fr) 2000-05-12 2002-08-16 St Microelectronics Sa Evaluation du nombre de transpondeurs electromagnetiques dans le champ d'un lecteur
FR2808946A1 (fr) 2000-05-12 2001-11-16 St Microelectronics Sa Validation de la presence d'un transpondeur electromagnetique dans le champ d'un lecteur
FR2809235A1 (fr) * 2000-05-17 2001-11-23 St Microelectronics Sa Antenne de generation d'un champ electromagnetique pour transpondeur
FR2809251B1 (fr) * 2000-05-17 2003-08-15 St Microelectronics Sa Dispositif de production d'un champ electromagnetique pour transpondeur
FR2812986B1 (fr) * 2000-08-09 2002-10-31 St Microelectronics Sa Detection d'une signature electrique d'un transpondeur electromagnetique
US20030169169A1 (en) * 2000-08-17 2003-09-11 Luc Wuidart Antenna generating an electromagnetic field for transponder
US6734797B2 (en) * 2001-02-12 2004-05-11 Matrics, Inc. Identification tag utilizing charge pumps for voltage supply generation and data recovery
US6961000B2 (en) * 2001-07-05 2005-11-01 Amerasia International Technology, Inc. Smart tag data encoding method
US6994783B2 (en) * 2001-12-31 2006-02-07 Clark Joseph Use Water pollution trap with inlet basket
US7098808B2 (en) * 2002-09-30 2006-08-29 Aviation Communication & Surveillance Systems, Llc System having termination for data loading port
JP4705317B2 (ja) * 2003-04-16 2011-06-22 株式会社東海理化電機製作所 スイッチ装置、セキュリティシステム
US7515881B2 (en) * 2003-11-26 2009-04-07 Starkey Laboratories, Inc. Resonance frequency shift canceling in wireless hearing aids
TWI283524B (en) * 2004-04-09 2007-07-01 Lite On Technology Corp Method to control and manage an authentication mechanism using an active identification device
US7602274B2 (en) * 2004-04-23 2009-10-13 Microchip Technology Incorporated Dynamic configuration of a radio frequency transponder
KR20050104652A (ko) * 2004-04-29 2005-11-03 삼성에스디아이 주식회사 전자 방출 표시 장치 및 그 구동 방법
US7493619B1 (en) 2004-08-09 2009-02-17 The Mathworks, Inc. Methods for transmitting data between tasks of differing priority in a graphical modeling environment
JP4736398B2 (ja) * 2004-10-22 2011-07-27 日本電気株式会社 近接する端末間における認証方法、秘匿情報の配送方法、装置、システム、及び、プログラム
US7339476B2 (en) * 2004-11-10 2008-03-04 Rockwell Automation Technologies, Inc. Systems and methods that integrate radio frequency identification (RFID) technology with industrial controllers
US7551081B2 (en) 2004-11-10 2009-06-23 Rockwell Automation Technologies, Inc. Systems and methods that integrate radio frequency identification (RFID) technology with agent-based control systems
US7613927B2 (en) * 2004-11-12 2009-11-03 Raritan Americas, Inc. System for providing secure access to KVM switch and other server management systems
DE102005005812A1 (de) * 2005-02-09 2006-08-17 Atmel Germany Gmbh Schaltungsanordnung und Verfahren zur Spannungsversorgung eines Transponders
US7689195B2 (en) * 2005-02-22 2010-03-30 Broadcom Corporation Multi-protocol radio frequency identification transponder tranceiver
US7636044B1 (en) 2005-05-13 2009-12-22 Rockwell Automation Technologies, Inc. RFID tag programming, printing application, and supply chain/global registration architecture
US7616117B2 (en) 2005-07-19 2009-11-10 Rockwell Automation Technologies, Inc. Reconciliation mechanism using RFID and sensors
US7388491B2 (en) * 2005-07-20 2008-06-17 Rockwell Automation Technologies, Inc. Mobile RFID reader with integrated location awareness for material tracking and management
US7764191B2 (en) 2005-07-26 2010-07-27 Rockwell Automation Technologies, Inc. RFID tag data affecting automation controller with internal database
US8260948B2 (en) 2005-08-10 2012-09-04 Rockwell Automation Technologies, Inc. Enhanced controller utilizing RFID technology
US7510110B2 (en) * 2005-09-08 2009-03-31 Rockwell Automation Technologies, Inc. RFID architecture in an industrial controller environment
US7931197B2 (en) * 2005-09-20 2011-04-26 Rockwell Automation Technologies, Inc. RFID-based product manufacturing and lifecycle management
US7446662B1 (en) 2005-09-26 2008-11-04 Rockwell Automation Technologies, Inc. Intelligent RFID tag for magnetic field mapping
US8025227B2 (en) * 2005-09-30 2011-09-27 Rockwell Automation Technologies, Inc. Access to distributed databases via pointer stored in RFID tag
FR2906952B1 (fr) * 2006-10-05 2009-02-27 Inside Contactless Sa Procede d'authentification mutuelle entre une interface de communication et un processeur hote d'un chipset nfc.
US10224902B2 (en) 2006-11-18 2019-03-05 Rfmicron, Inc. Roll-to-roll production of RFID tags
US7586385B2 (en) * 2006-11-18 2009-09-08 Rfmicron, Inc. Method and apparatus for varying an impedance
US20080280560A1 (en) * 2007-05-09 2008-11-13 Micron Technology, Inc. Method and system of placing a rfid tag in a continuous transmission mode
DE102007051792B4 (de) * 2007-10-30 2012-01-12 Texas Instruments Deutschland Gmbh Selbstkalibrierender RFID-Transponder und Verfahren zur Selbstkalibrierung eines RFID-Transponders
CN101159639B (zh) * 2007-11-08 2010-05-12 西安西电捷通无线网络通信有限公司 一种单向接入认证方法
JP2009141729A (ja) * 2007-12-07 2009-06-25 Panasonic Corp 検波用回路装置および携帯機器
US20090160648A1 (en) * 2007-12-24 2009-06-25 Rfmicron, Inc. Method and apparatus for bulk calibrating RFID tags
KR101324351B1 (ko) * 2008-08-19 2013-11-01 엔엑스피 비 브이 암호 기반 메시지 인증 코드를 생성하는 방법
DE102009051201B4 (de) * 2009-10-29 2012-12-20 Siemens Aktiengesellschaft Authentifikation und Datenintegritätschutz eines Tokens
US8990564B2 (en) * 2010-07-08 2015-03-24 Certicom Corp. System and method for performing device authentication using key agreement
DE102010037944B4 (de) 2010-10-04 2018-03-08 Dr. Hahn Gmbh & Co. Kg Verfahren und Vorrichtung zur kontaktlosen Übertragung von elektrischer Energie und/oder elektrischen Signalen zwischen einer Wand und einem an dieser Wand befestigten Flügel
US9214274B2 (en) 2010-10-04 2015-12-15 Dr. Hahn Gmbh & Co. Kg Method and apparatus for transmitting signals between a wall and a leaf fastened to this wall using hinges around a hinge axis
DE102010043968A1 (de) 2010-11-16 2012-05-16 Aug. Winkhaus Gmbh & Co. Kg Verfahren zum Abgleich eines Empfangsschwingkreises eines Transponders in einem RFID-System
US9808730B2 (en) * 2011-10-31 2017-11-07 Traxxas Lp Multi-function electronic device-enabled transmit controller
DE102012015406A1 (de) * 2012-08-01 2014-02-06 Gantner Electronic Gmbh Verfahren und Vorrichtung zur Optimierung des RFID-Feldes einer Zugangskontrolleinrichtung
SI24189A (sl) 2012-09-05 2014-03-31 Ams R&D Analogni Polprevodniki, D.O.O. Postopek in vezje za uglasitev antenskega vezja aktivno oddajajoče nalepke
US10137860B2 (en) * 2016-11-17 2018-11-27 Ford Global Technologies, Llc Remote keyless entry message authentication
DE102018002157A1 (de) * 2018-03-16 2019-09-19 Zf Active Safety Gmbh Vorrichtung und Verfahren zur verschlüsselten Übertragung eines digitalen Steuersignals von einem Kraftfahrzeugschlüssel an ein Kraftfahrzeug

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0505653A1 (de) * 1991-03-29 1992-09-30 International Business Machines Corporation Kombinierte Abfühlverstärker und Verriegelungsschaltung für sehr schnelle ROM-Speicher

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3605091A (en) * 1969-09-18 1971-09-14 Bell Telephone Labor Inc Feedback error control arrangement
US5282249A (en) * 1989-11-14 1994-01-25 Michael Cohen System for controlling access to broadcast transmissions
FR2662320B1 (fr) * 1990-05-18 1994-05-13 Cemagref Dispositif de liaison sans contact pour relier des troncons de bus serie.
DE4114777A1 (de) * 1990-05-22 1992-02-06 Peter Elsner Verfahren und einrichtung zur nachrichtenumschluesselung
US5309516A (en) * 1990-12-07 1994-05-03 Hitachi, Ltd. Group cipher communication method and group cipher communication system
JP3100716B2 (ja) * 1991-01-04 2000-10-23 シーエスアイアール 識別装置
US5365589A (en) * 1992-02-07 1994-11-15 Gutowitz Howard A Method and apparatus for encryption, decryption and authentication using dynamical systems
US5313521A (en) * 1992-04-15 1994-05-17 Fujitsu Limited Key distribution protocol for file transfer in the local area network
NL9202069A (nl) * 1992-11-30 1994-06-16 Nedap Nv Identificatiesysteem met verbeterde identificatie-algorithme.
DE4317380C1 (de) * 1993-05-25 1994-08-18 Siemens Ag Verfahren zur Authentifikation zwischen zwei elektronischen Einrichtungen
US5491715A (en) * 1993-06-28 1996-02-13 Texas Instruments Deutschland Gmbh Automatic antenna tuning method and circuit
US5517194A (en) * 1994-02-10 1996-05-14 Racom Systems, Inc. Passive RF transponder and method
EP0683293A1 (de) * 1994-05-03 1995-11-22 TEMIC TELEFUNKEN microelectronic GmbH Verfahren zum Betrieb eines Datenübertragungssystems aus einem Transponder und einem Lesegerät
US5530702A (en) * 1994-05-31 1996-06-25 Ludwig Kipp System for storage and communication of information
US5550536A (en) * 1994-08-17 1996-08-27 Texas Instruments Deutschland Gmbh Circuit frequency following technique transponder resonant
JPH08101867A (ja) * 1994-09-30 1996-04-16 Fujitsu Ltd ソフトウェア利用許可システム
DE4438286C2 (de) * 1994-10-26 2002-09-12 Siemens Ag System zur kontaktlosen Energie- und Datenübertragung
DE4438287C1 (de) * 1994-10-26 1996-05-09 Siemens Ag System zur kontaktlosen Energie- und Datenübertragung
DE19502373C2 (de) 1995-01-26 1997-07-03 Telefunken Microelectron Verfahren zur Diebstahlsicherung motorangetriebener Kraftfahrzeuge
US5583819A (en) * 1995-01-27 1996-12-10 Single Chip Holdings, Inc. Apparatus and method of use of radiofrequency identification tags
US5673018A (en) * 1995-06-07 1997-09-30 Palomar Technologies Corporation Transponder system for reporting the distance traveled by a wheeled vehicle
JP3086887B2 (ja) * 1996-08-08 2000-09-11 株式会社ローレルインテリジェントシステムズ 情報伝達方法、情報発信方法、情報再生方法及び通信装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0505653A1 (de) * 1991-03-29 1992-09-30 International Business Machines Corporation Kombinierte Abfühlverstärker und Verriegelungsschaltung für sehr schnelle ROM-Speicher

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"NOVEL LOW VOLTAGE CMOS STATIC RAM", RESEARCH DISCLOSURE, no. 325, 1 May 1991 (1991-05-01), pages 358 - 360 COMPLEET, XP000229713 *
TAHITO AIDA ET AL: "A HIGH-SPEED LINE-MEMORY LSI FOR MULTIPLE APPLICATIONS", NHK LABORATORIES NOTE, no. 362, October 1988 (1988-10-01), pages 2 - 15, XP000047091 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7617395B2 (en) 2004-11-26 2009-11-10 Sony Computer Entertainment Inc. Battery and authentication requesting device
US7949872B2 (en) 2004-11-26 2011-05-24 Sony Computer Entertainment Inc. Battery and authentication requesting device

Also Published As

Publication number Publication date
AU4622897A (en) 1998-04-02
DE59706402D1 (de) 2002-03-21
ES2179369T3 (es) 2003-01-16
DE59707804D1 (de) 2002-08-29
US6426692B1 (en) 2002-07-30
EP0925551A1 (de) 1999-06-30
JP3867251B2 (ja) 2007-01-10
AU4458397A (en) 1998-04-02
EP0925548A1 (de) 1999-06-30
WO1998011505A1 (de) 1998-03-19
WO1998011689A2 (de) 1998-03-19
AU4702997A (en) 1998-04-02
JP2001500685A (ja) 2001-01-16
DE59703244D1 (de) 2001-05-03
ES2157089T3 (es) 2001-08-01
WO1998011689A3 (de) 1998-05-14
JP2001501391A (ja) 2001-01-30
WO1998011496A1 (de) 1998-03-19
AU4458297A (en) 1998-04-02
ES2172769T3 (es) 2002-10-01
JP3890510B2 (ja) 2007-03-07
EP0925548B1 (de) 2001-03-28
EP0925665B1 (de) 2002-02-13
EP0925551B1 (de) 2002-07-24
EP0925665A2 (de) 1999-06-30
JP2001501051A (ja) 2001-01-23
US6272321B1 (en) 2001-08-07
US6510517B1 (en) 2003-01-21

Similar Documents

Publication Publication Date Title
WO1998011553A1 (de) Ram speicheranordnung
DE3935364C1 (de)
DE69835161T2 (de) Informationskommunikationsvorrichtung
EP0602449B1 (de) IC-Karte
DE69838746T2 (de) Hybrid-datenträger und schaltung dafür mit vereinfachtem datenübertragungsmittel
EP0583690B1 (de) Chip-Karte mit Feldstärkedetektor
EP0940769B1 (de) Datenträger zum kontaktlosen Empfangen von amplitudenmodulierten Signalen
DE60303357T2 (de) Tragbares gerät mit terminalfunktion und datenträgerfunktion
EP0260221A2 (de) Verfahren zur kontaktlosen Informationsübertragung
DE4244555A1 (de) Integrierte Halbleiterschaltungsvorrichtung
DE102004007106B4 (de) Schaltungsanordnung, insbesondere zur Verwendung in RF-Transpondern oder Remote Sensoren
DE4104274C2 (de) Verfahren zur Regelung der Versorgungsspannung für eine Last
DE10259384B3 (de) Vorrichtung zur Ermittlung des Energiezustandes eines Energiespeichers eines mobilen Datenträgers
AT1470U1 (de) Laminierte karte und verfahren zu ihrer herstellung
EP0953936B1 (de) Datenträger sowohl für den kontaktlosen als auch den kontaktbehafteten Betrieb
DE2347968C3 (de) Assoziative Speicherzelle
DE60221625T2 (de) Integrierte Halbleiterschaltung
DE3921404C2 (de) Elektrisch löschbarer, programmierbarer Speicher mit freischwebendem Gate und Verfahren zum Auslesen desselben
CH628168A5 (de) Elektronische identifikationsvorrichtung zur abgabe einer die vorrichtung kennzeichnenden impulsserie.
EP1101192B1 (de) Datenträger mit regelung der leistungsaufnahme
DE60307273T2 (de) Datenträger welcher eine information in form einer spannung speichert
EP1639526B1 (de) Elektronisches bauelement für identifikationsmarken
DE19603087A1 (de) Vorrichtung und Verfahren zur Steuerung eines Taktsignals in einer Halbleiterschaltung
DE3914888A1 (de) Schaltungsanordnung zum erzeugen eines steuersignals in abhaengigkeit vom auftreten eines extremwerts einer sinusschwingung und anwendung einer solchen schaltungsanordnung
DE112020006439T5 (de) Verfahren und system zum zuverlässigen und sicheren speicherlöschen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR JP KR MX NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998513276

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase