WO1998013715A1 - Microscope generant une representation tridimensionnelle d'un objet - Google Patents

Microscope generant une representation tridimensionnelle d'un objet Download PDF

Info

Publication number
WO1998013715A1
WO1998013715A1 PCT/FR1997/001695 FR9701695W WO9813715A1 WO 1998013715 A1 WO1998013715 A1 WO 1998013715A1 FR 9701695 W FR9701695 W FR 9701695W WO 9813715 A1 WO9813715 A1 WO 9813715A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
image
microscope according
point
microscope
Prior art date
Application number
PCT/FR1997/001695
Other languages
English (en)
Other versions
WO1998013715B1 (fr
Inventor
Vincent Lauer
Original Assignee
Vincent Lauer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9611773A external-priority patent/FR2754069A1/fr
Priority claimed from FR9615255A external-priority patent/FR2754070A1/fr
Priority claimed from FR9707469A external-priority patent/FR2757278A1/fr
Application filed by Vincent Lauer filed Critical Vincent Lauer
Priority to EP97943004A priority Critical patent/EP0928433A1/fr
Priority to US09/254,869 priority patent/US6249349B1/en
Publication of WO1998013715A1 publication Critical patent/WO1998013715A1/fr
Publication of WO1998013715B1 publication Critical patent/WO1998013715B1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0866Digital holographic imaging, i.e. synthesizing holobjects from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/005Adaptation of holography to specific applications in microscopy, e.g. digital holographic microscope [DHM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • G03H2001/0454Arrangement for recovering hologram complex amplitude
    • G03H2001/0458Temporal or spatial phase shifting, e.g. parallel phase shifting method
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2226/00Electro-optic or electronic components relating to digital holography
    • G03H2226/11Electro-optic recording means, e.g. CCD, pyroelectric sensors

Definitions

  • Microscope generating a three-dimensional representation of an object
  • the object of the invention is a device for obtaining a three-dimensional representation of the object and a complete representation of the diffracted wave by the latter in various lighting conditions, all in digital form then allowing any mode representation and any type of analysis
  • This device includes an optical part allowing the generation of interference figures between a reference light wave and a light wave diffracted by the object observed, sensors making it possible to digitize these interference figures, actuators allowing to act on the optical svstemc, and a computer receiving the digitized interference figures controlling the actuators.
  • a solution to reconstruct the light wave in the observed object is to make it interfere with a reference wave, the following principle of holography After registering l_ ⁇ interference pattern, the computer can perform a calculation equivalent rebuild operation to the optical operation used in holography But digital recording of a hologram is usually impossible because the variations in brightness are made over distances of 1 order of the wavelength, much less than the pitch of existing optoelectronic sensors.
  • the reference wave used is an approximately sphe ⁇ quc wave and centered, actually or virtually, in one point close to the observed part of the object This allows to obtain figures of interference in when the intensity variations are done over higher characteristic distances, allowing digital recording and reconstruction by calculation equivalent to optical reconstruction
  • the direct calculation of the light wave in the object according to a method simulating holographic reconstruction leads to defects which are the general defects of holography, namely the presence of a parasitic image symmetrical to the real image by relative to the point of origin of the reference wave and gaps of the second order with respect to the exact value of wave 1 in an advantageous version of the invention, the complex value (magnitude and phase) of the broadcast wave by the object and arriving on the receiving surface is calculated This then makes it possible to calculate the light wave in the object by direct application of the principle of reverse return of light, without the approximations linked to the holography. According to an advantageous version of the invention, this value is calculated from several interference figures differing from each other by the phase difference between the reference wave and the wave illuminating the object.
  • the light wave from the ob j ct alone is then obtained by a simple, linear formula, from the three intensity records
  • the interference pattern produced can be directly recorded by sensors located near the object, or it is possible to interpose optical elements deforming the wave between the object and the receiving surface.
  • An advantageous version of the invention is forming an enlarged intermediate image of the object using a microscope objective This method makes it possible to spatially filter the intermediate image by interposing a diaphragm whose opening determines the size of the observed part of the object By decreasing the image size observed, the pixel size of the sensors required is decreased.
  • a system of lenses located behind the diaphragm and suitably sized then allows the interference pattern to be formed.
  • the reference wave can be superimposed on the wave coming from the object using a semi-transparent mirror interposed on the path of the light coming from the object
  • the optical system is such that when a plane wave coming from the object, the image formed on the sensor in the reference wave is punctual abscence This allows to obtain directly a frequency representation of the wave coming from the object, each point of the sensor corresponding to a single frequency, that is to say a single wave vector, of the light wave coming from the object
  • the three-dimensional representation obtained is presented as a complex quantity depending on the three spatial coordinates, corresponding to the light vibration at any point of the ob j and The result strongly depends on the lighting mode It is possible to use a parallel beam , spatially coherent.
  • the representation obtained is then very precise in a plane orthogonal to the direction of the light beam but has defects in the direction parallel to this beam.
  • use is made of lighting or the spatial coherence has been broken, c that is to say where the object is illuminated at any point in all directions This lighting is produced using a condenser forming in the plane of the object the image of a diffusing element illuminates by the laser beam. But the representation obtained is then grainy due to the temporal coherence of the lighting wave.
  • This phenomenon called "Speckle” poses a problem already known in holographic microscopy.
  • improves the performance of the j ob and using the wave diffracted by the object under several different lighting In particular, one can use multiple representations obtained by slightly moving the diffusing element between each picture. We can then average over all the representations obtained the intensity of Tonde at each point. This provides a satisfactory spatial representation of the object
  • FIG. 1 shows the preferred embodiment of the invention.
  • FIG. 2 shows an example of sizing relating to this embodiment.
  • FIG. 3 indicates a particular configuration used during the adjustment procedure for this embodiment.
  • Figure 4 relates to a variant of this embodiment differing by the user sample illumination.
  • 5 shows a mechanical support for holding the whole device to the vertical.
  • a laser (100) emits a ray which passes through a filter (101) and is then separated into light beams Fe and of reference Fr by a semi-reflecting plate (102).
  • the light beam then passes through a lens (103) then is reflected by a mirror (104) and will strike a diffusing element (105) itself fixed on a motorized positioner with two axes (106) which can move it in an orthogonal plane to the optical axis of the objective (1 10).
  • This condenser is itself fixed to a manual positioner an axis (108) which can move it in the direction of its optical axis.
  • the focal distance of the lens (103) must be chosen so that the area of (105) illuminated by the beam is large enough so that its image by the condenser covers at least the entire area to be observed.
  • This objective is a plane objective (which gives a plane image of a plane), with large aperture (for example 1.25), with immersion , and giving an enlarged image of the object at a finite distance.
  • This microscope objective is attached to a focusing device (111).
  • a diaphragm (112) is interposed allowing spatial filtering of the image. Behind this plane, an achromat (113) is positioned, the object focal plane of which must be merged with the image focal plane of the objective (1 10) A second achromat (115), the image focal plane of which is in the plane of a CCD sensor (116) forms in the plane of this CCD the image of the image focal plane of the objective (1 10).
  • the CCD (116) is integrated into a camera (117) outputting an analog video signal.
  • the reference beam first passes through a filter (1 18) then is reflected by a mirror (1 19) mounted on the mobile end of a piezoelectric translator (120) It then passes through a lens (121) which focuses the beam at a point
  • the divergent beam from this point is partially reflected by the semi-reflecting mirror (114), which superimposes it on the beam from the object cl makes it possible to record their interference on the CCD (1 16)
  • the point focusing the beam coming from the lens (121) must have its virtual image after reflection on the semi-transparent mirror (1 14) to the center of the image of the diaphragm (112) by one achromat (113) the piezoelectric translator (J20 ) modulates the phase of the reference beam
  • the plane of the object must be horizontal so that the optical oil necessary to use the objective and the immersion condenser does not flow optics of 1 set is therefore vertical
  • the camera (117) is mounted on a three-axis positioner in translation
  • the laser (100) is mounted on an angular positioner allowing its direction to be adjusted
  • the piezoelectric translator (120) is mounted on a positioner making it possible to adjust the direction of a axis orthogonal to the mirror plane (119) and to move the assembly (119) (120) in translation along this axis
  • the mirror (104) is molded on a positioner making it possible to adjust the direction of an axis orthogonal to the plane of the mirror Le adjustment of these positioners is in principle carried out once and for all and in a mass production version of the system they can be eliminated in favor of more careful manufacturing. However, in this version intended for small series.
  • the set is fixed on a support plate (500). the side of the plate opposite to the point of view of Fig 5 This plate is fixed to two triangular plates (501) and (502) themselves fixed to a square base (503)
  • the plates (500) (501) (502 ) (503) are made of rigid aluminum alloy AU4G, for example 20 mm thick.
  • the fixing of the plates can be done by screws and tapped holes, and must be made at a sufficient number of points to ensure perfect rigidity of the assembly This allows the system to be kept vertical while ensuring sufficient rigidity
  • the assembly is placed on an anti-vibration support constitutes, for example, a granite plate placed on truck air chambers which absorb vibrations
  • the assembly various elements on the plate (500), and in particular mirrors and semi-transparent mirrors, must be carried out in such a way as to ensure maximum rigidity of the assembly All the usual precautions must be taken in order to limit vibrations
  • the condenser is a bright field condenser with immersion opening 1.2 whose opening diaphragm has in the open position a diameter of 28 mm
  • the area of the diffusing element which is illuminated by the laser beam has a diameter D6 of about 1 cm.
  • the distance D5 between this diffusing element and the condenser is 100 mm
  • the microscope objective is a plane objective lOO with aperture 1.25, at a finite distance, forming the image at 160 mm from the neck of the objective, focal length approx.
  • La distance D4 between the lens neck and the diaphragm is 160 mm
  • Distance D3 between the diaphragm (1 12) and the achromat (1 13) is 20 mm
  • the achromat (1 13) has a focal length of 200 m and a diameter of 30 mm and its most curved face is oriented towards the scmi -transparent mirror (114)
  • the achromat (115) has the same characteristics and its most curved face is also oriented towards the mirror (1 14)
  • the distance D2 between the two achromats is 85 mm, allowing the insertion of a semi-transparent mirror (1 14) of sufficient dimensions
  • the distance between the achromat (1 15) and the CCD (1 16) is 200 mm
  • the lens (121) has a diameter of 4mn ⁇ and a focal length of 6 mm the distance D7 between this lens and the optical axis is about 70 mm the distance D8 between the achromat (1 12) and the center of the mirror semi- transparent (1 14).
  • the laser is a hey u -Neon wave length 633 nui has random polarization power of about 0.5 mW, 0.47 mm diameter beam from the sensor CCD is a square pixel sensor. the pixel surface being approximately 8.5 x 8.5 micrometers
  • the camera outputs a CCIR video signal and a pixel clock
  • the piezoelectric positioner (122) is a piezoelectric battery in the shape of a cylinder whose body is fixed and l he end moves 15 micrometers for an applied voltage of 100 Volts
  • the calculation system is for example a PC type computer.
  • the video signal acquisition card operating in real time, samples the signal on 8 bits and acquires images of 512x512 pixels sampled according to the clock pixel, therefore corresponding exactly to the CCD pixels
  • the piezoelectric positioner is controlled directly by a digital / analog conversion card outputting a signal for example between zero and I ' m ⁇ , with for example
  • V m ⁇ X 10 volts
  • An RC filter with a time constant of approximately 0.1 ms is interposed between the output of the conversion card and the terminals of the piezoelectric actuator
  • the positioner (106) is powered by stepper motors also controlled from the computer
  • the computer will move it along the two axes in steps of 0.2 mm for example
  • supp ⁇ mant (103) (105) (106 ) (107) (108) by inserting a mirror (300) returning the beam towards the lens, and using as a filter (118) a completely opaque element
  • the miron (300) is mounted on an angular positioner which must be adjusted so as to target the input of the objective (1 10) and to maximize the intensity of the image received on (1 16)
  • the position of (116) is then set in the a direction of the optical axis so that the image received on the sensor (1 16) is a point,
  • the image received on the sensor (116) can be displayed in real time on the screen of the computer
  • the reference beam must then be restored and the beam from the object must be removed by placing a cover behind the lens (1 10)
  • the direction of the laser (100) must be adjusted so that viscr the center of the mirror (120)
  • the position of the assembly (1 19) (120) must then be adjusted so that the beam from (120) actually passes through the lens (121)
  • These settings can be controlled simply using a piece of light-diffusing paper
  • the position of the unit (1 1) (120) must be refined so as to obtain the most intense and homogeneous lighting possible on the sensor (116)
  • the reference beam must then be supp ⁇ me again and the beam from the object must be restored, the object used then being a simple transparent blade
  • the position of (104) must be ieglec so as to target the diffusing element ( 105), then refined so that the image received on the sensor (1 16) is correctly centered.
  • the positioner (108) must be governed so that the image received on the sensor, which represents the frequencies from the object or also a clear granular wide disc as possible During a change of observed object, it may be necessary to change the setting (108) but of (104) is normally fixed once and for all
  • the values of optical density of the filters (101) and (118) must be constantly modified to have the most easily observable beam when it is observed with the naked eye or to have an optimal illumination of (1 16) when 1 image received on (1 16) is observed on the screen
  • the automatic gain adjustment on the camera can advantageously be used
  • the optical density values of the filters (1 1) and (1 18) must be chosen so that the reference beam and the beam coming from the object have close intensities when arriving at the CCD sensor, and that the interference pattern produced is as intense as possible without, however, the maximum value of the pixel recommended by the camera and the video digitization card being exceeded
  • the lighting is changed by moving the diffusing element (105) using the positioner (106) At each position of the positioner, a different light is chosen
  • the computer calculates the value complex (that is to say the complex number representing the phase and the intensity) of the light wave at any point of the object
  • the final image of the object is obtained by averaging the intensities thus obtained for a number sufficient to separate illumination intensity of the wave at a point is the edge of the corresponding complex value Module to obtain the complex value of the light wave at any point on the objel
  • I computer first calculates the complex value of the light wave coming from the object at any point of the CCD sensor This value is obtained from the recording of three interference patterns received on the sensor, the phase of the reference wave being offset by 120 degrees between each of these figures
  • I ⁇ P, ⁇ the intensity at a point P of the sensor of the interference figure produced by the wave coming from the object and the reference wave for a phase shift ⁇ radians of the reference wave
  • I re f
  • Each pixel P of the sensor corresponds to a pure frequency of the wave in the object If we note (/,./) the coordinates (distance in pixels) of a point of the sensor relative to the central point of the area of interest, the pure frequency to which the point of coordinates (', /) corresponds, expressed in a coordinate system whose third axis is orthogonal to the plane of the sensor is then worth, has a constant factor near
  • the computer generates the table S [i j] of complex numbers, for i and J varying from 0 to 51 1 by assigning to the elements of the table the following values
  • the computer generates the table H of complex numbers representing the frequency of dimensions 512x512x512. in initializing to zero and then browsing the set of indices i and j varying from 0 51 1 by performing the operation
  • the virtual point of origin of the reference wave is in the center, i.e. at the point of coordinates (256,256,256)
  • Table F 1 constitutes the representation bidnnensionnelle of the wave in the plane of the object passing through the point of origin of the virtual orthogonal wave el reference to the optical axis (cutting) a section in a plane orthogonal to the above can be generated by calculating d 'first the table S2 [ij] of dimensions 512 ⁇ 512 in 1 adding to 0 then by browsing all the indices (i, j) by performing
  • S [i, j] has the complex value of S2 i, - K 2 - (i - 256) " - (j - 256) C initially present
  • the microscope is focused so as to have the sharpest possible picture bidnnensionnelle
  • the above cycle is the simplest, but it can be optimized to take account overlaps between sensor exposure time and image transfer time
  • the light wave calculation can be done on the whole object or on a part of the object, pa r example a cut, as a function of time and available calculation capacity In the simplest case.
  • the computer generates and displays a simple section of the object
  • the movement of the positioner (106) is done as indicated above, in steps of 0.2 mm in both directions
  • the order in which these movements are carried out is indifferent provided that the N mm lights used to calculate the three-dimensional representation of the object are obtained from all distinct positions of the actuator (106), so as not to have the same lighting several times
  • the passage at each cycle by the values 0 and V m ⁇ of the voltage limits the hysteresis effect of the piezoelectric actuator by always having the same cycle
  • the calculation methods indicated above are not limiting
  • the computer can generate three-dimensional representations showing portions of object more or lefs ranges (sections, projections, together sections to a limited thickness) It may filter these represenialioiis limiting 'grainy image at the cost of less definition treatment effeclue esl needed (speed of the image taken and definition calculation time RECL or different) and ii computing capacity of the computer
  • a variant of this embodiment is to use a beam of light unidirectional This eliminates the need to perform an intensity niovcnnagc on plusieuis images because each point of the object is then illuminates with the same intensity movennage
  • the intensity n elanl not necessary, the three-dimensional representation also preserves usable phase information.
  • the images obtained are precise in the three dimensions only for certain particular types of objects, for example sub-microscopic particles included in glass. very precise in the plane orthogonal to the direction of the beam and has defects in the direction of the beam This lighting mode little! however be used in cases where one is satisfied with a two-dimensional image.
  • This lighting can be made as shown in Figure 4 similar to Figure 3 to this close that the reference beam is no longer blocked and that an additional lens (400) must be inserted between the mirror (300) and the sample (109) This lens must be positioned so that its focal point coincides with the sample and its focal distance must be such that the diffraction spot formed on crossing the sample has approximately the diameter of the area observed.
  • Another variant of this embodiment comprises an 'use only one interference pattern to generate a three dimensional representation
  • This variant is the digital equivalent of the optical holographic reconstruction
  • the piezoelectric actuator (120) n' is not used
  • l (P) the intensity of the interference pattern produced at a point P of the sensor by the wave coming from the object and the reference wave
  • the focusing point of the beam from the lens (121) must have its virtual image after reflection on the semi-transparent mirror (1 14) on the side of the image of one aperture (1 12) by one achromat ( 1 1). and not cenlrc as before the operation cvclc the microscope is modified in the sense that one image per esl used instead of three cycle or so nx laughed more action on the phase control svstemc
  • the image is affected by second order approximations with respect to the ratio of the diffracted wave by the object to 1 reference wave
  • the filters (1 1) and (1 18) must therefore be chosen so that the reference wave has a substantially greater intensity at the wave coming from the object entering the CCD. and not near intensities as before This choice must be refined so as to have in the three-dimensional representation the best compromise between bnnt and second order distortions
  • the operation and the calculation mode are the same as before
  • the generated three-dimensional representation includes the observed part of the object bounded by the diaphragm, and symmetrically with respect to virtual point of focusing of the beam from the lens (121)
  • the aperture must be small enough to be visible on the representation obtained and its symmetric the area of the object that can be observed thus is smaller than in the preferred embodiment of this three-dimensional representation is also affected by second order approximations with respect to the ratio of the wave diffracted by the object at the reference wave, and the wave diffracted by the object must be much lower than the reference wave to obtain a convincing result II follows that the result obtained is much noisier than in the preferred embodiment
  • the system is less sensitive to vibrations and allows images to be obtained more quickly
  • This microscope can be used instead of conventional transmission microscopes in the field of biology or micromeasurement.
  • the recording of the three-dimensional image is faster than with other methods, which facilitates the observation of samples.

Abstract

L'invention concerne un microscope qui comprend une partie optique permettant la génération de figures d'interférences entre une onde lumineuse de référence et une onde lumineuse diffractée par l'objet observé, des capteurs permettant de numériser ces figures d'interférences, des actionneurs permettant d'agir sur le système optique, et un ordinateur recevant les figures d'interférences numérisées, contrôlant les actionneurs, et doté de mémoire et de moyens de calcul lui permettant de calculer des images tridimensionnelles à partir des figures d'interférences, selon un principe analogue à l'holographie. La partie optique permet l'enregistrement sur une surface de capteurs (116) des figures d'interférences produites par un faisceau de référence Fr et un faisceau Fe traversant un échantillon (109). Les figures d'interférences peuvent différer entre elles par la phase de l'onde de référence contrôlée par l'actionneur piézoélectrique (120) ou la répartition spatiale de l'onde d'éclairage contrôlée par le positionneur (106). Ce microscope peut être utilisé en biologie ou en métrologie.

Description

Microscope générant une représentation tridimensionnelle d'un obiet
Domaine technique II s'agit d'un microscope optique générant une représentation en trois dimensions de l'objet observe
Technique antérieure
Les microscopes courants forment par un procède optique une image bidimensionnellc correspondant a une coupe aggrandic de l'objet observe Cette image peut le cas échéant être enregistrée par une caméra \ ideo afin de pouvoir être restituée ultérieurement
Il est possible de générer une image 1D en utilisanl un de ces microscopes et en faisant varier le réglage de focalisation A chaque réglage correspond un plan de coupe differenl et une image en trois dimensions peut être reconstituée a partir de ces plans de coupe Certains microscopes munis d'un dispositif de focalisation motorisé et d'un logiciel approprie effectuent cette opération automatiquement De tels microscopes sont décrits par exemple dans l'article « 4-D îmaging software observe living cells », par Charles Thomas et John W ite. paru dans l'exemplaire de décembre 1996 du journal « Scientific Computing World » publié par IOP publishing Ltd à Bristol. Grande-Bretagne
Il existe également des microscopes confocauv dans lesquels l'éclairage est focalise sur un point et l 'image tridimensionnelle est générée en balayant tous les points de l'obiet De tels microscopes sont décrits par exemple dans l'article « Under a Microscope Confocal Microscopv Casts New Light on the Dynamics of Life », par W Conard Holton, paru en février 1995 dans la revue « Photoiucs Spectra » publiée par Optical Publications Company a Pittsfield. Massachussets, Etats-Unis
Par ailleurs, il existe des microscopes înterférométriques utilisant deux ondes distinctes dont la superposition fournit une image Sur ces appareils, l image est toujours observée directement dans un plan qui est l'image géométrique de l'objet traversé par au moins une des deux ondes Ces dispositifs produisent des images bidimcnsionnclles semblables a celles produites par un microscope ordinaire a ceci près que les variations d'éclairement de l'image ne sont pas caractéristiques de l'absorptivité de l'échantillon mais des interférences entre les deux ondes dans un plan image de l 'objet Ces dispositifs ne permettent pas d'obtenir d'images en trois dimensions Ils sont décrits par exemple au chapitre III de l'ouvrage « Progress in Microscopy » par M Françon, paru en 1961 chez Pergamon Press. Oxford Grande-Bretagne
Le seul moyen permettant l'enregistrement rapide d'une image microscopique tridimensionnelle est la microscopie holographique Mais cette méthode ne permet pas l'enregistremenl direct de l'information sur forme numérique l'hologramme doit être enregistre sur un papier spécial puis l'image doit être reconstitué optiquement et observée par un microscope classique En effet le pas d'analyse pour un enregistrement holographique doit être inférieur a la longueur d'onde, ce qui est hors de portée des systèmes de conversion optique-numérique actuels Cette méthode est décrite par exemple dans l'article intitule « Holographie Microscopy », par M Pluta, paru en 1987 dans le volume 10 de la série « Advances in Optical and Electron Microscopy », chez Académie Press. Londres
Expose de l'invention
L'objet de l'invention est un dispositif permettant d'obtenir une représentation en trois dimensions de l'objet et une représentation complète de l'onde diffractee par celui-ci sous divers éclairages, le tout sous forme numérique autorisant ensuite tout mode de représentation et tout type d'analyse Ce dispositif comprend une partie optique permettant la génération de figures d'interférences entre une onde lumineuse de référence et une onde lumineuse diffractee par l'objet observe, des capteurs permettant de numériser ces figures d'interférences, des actionneurs permettant d'agir sur le svstemc optique, et un ordinateur recevant les figures d'interférence numérisées contrôlant les actionneurs. et dote de mémoire et de moyens de calcul lui permettant de calculei des images tridimensionnelles a partir des figures d'interférences Une solution permettant de reconstruire l'onde lumineuse dans l'objet observé est de la faire interférer avec une onde de référence, suivant le principe de l'holographie Après enregistrement de l_ι figure d'interférences, l'ordinateur peut effectuer par calcul une opération de reconstruction équivalente à l'opération optique utilisée en holographie Mais l'enregistrement numérique d'un hologramme est généralement impossible du fait que les variations de luminosité se font sur des distances de 1 ordre de la longueur d'onde, bien inférieures au pas des capteurs optoélectroniques existants Selon l'invention l'onde de référence utilisée est une onde approximativement spheπquc et centrée, réellement ou virtuellement, en un point proche de la partie observée de l'objet Ceci permet d'obtenir des figures d'interférences dans lesquelles les variations d'intensité se font sur des distances caractéristiques plus élevées, permettant un enregistrement numérique et une reconstruction par calcul équivalente à la reconstruction optique
Le calcul direct de l'onde lumineuse dans l'objet selon une méthode simulant la reconstruction holographique mène à des défauts qui sont les défauts généraux de l'holographie, à savoir la présen e d'une image parasite symétrique de l'image réelle par rapport au point d'origine de l'onde de référence et des écarts du second ordre par rapport à la valeur exacte de 1 onde Selon une version avantageuse de l'invention, la valeur complexe (amplitude et phase) de l'onde diffusée par l'objet et arrivant sur la surface de réception est calculée Ceci permet ensuite de calculer l'onde lumineuse dans l'objet par application directe du principe de retour inverse de la lumière, sans les approximations liées a l'holographie. Selon une version avantageuse de l'invention, celle valeur est calculée a partir de plusieurs figures d'interférences différant entre elles par la différence de phase entre l'onde de référence et l'onde éclairant l'objet Selon une version avantageuse de l'invention, elle est calculée à partir de trois figures d'interférence successives obtenues en faisant varier à chaque fois de 120 degrés la différence de phase entre l'onde éclairant l'objet et l'onde de référence L'onde lumineuse issue de l'objct seul est alors obtenue par une formule simple, linéaire, à partir des trois enregistrements d'intensité
La figure d'interférences produite peut être directement enregistrée par des capteurs situes à proximité de l'objet, ou on peut interposer des éléments optiques déformant l'onde entre l'objet et la surface de réception Une version avantageuse de l'invention est de former une image intermédiaire aggrandie de l'objet a l'aide d'un objectif de microscope Cette méthode permet de filtrer spatialement l'image intermédiaire par interposition d'un diaphragme dont l'ouverture déteπnine la taille de la partie observée de l'objet En diminuant la taille d'image observée, on diminue la taille en pixels des capteurs nécessaires Un système de lentilles situé derrière le diaphragme et convenablement dimensionnc permet alors de former sur un capteur la figure d'interférences L onde de référence peut être superposée a l'onde issue de l'objet en utilisant un miroir semi-transparent interpose sur le trajet de la lumière venant de l 'objet
A partir de la représentation complexe de l'onde lumineuse issue de l'objet et arrivant sur la surface de réception, il est possible de reconstituer point par point une représentation en trois dimensions de l'onde lumineuse dans l'obiet en la calculant par application du principe de retour inverse de la lumière Le calcul point par point sur une zone suffisamment importante de l'objet demanderait un temps de calcul beaucoup trop élevé Selon une version avantageuse de 1 invention, et afin d'effectuer cette opération en un temps de calcul raisonnable, la représentation fréquenticlle de 1 onde lumineuse est générée puis une transformée de Fouπer tridimensionnelle rapide inverse est effectuée pour retrouver une représentation tridimensionnelle classique Le système de calcul permettanl cette opération peut être constitue d'un simple processeur mais il est également possible, pour accélérer le traitement, d'incorporer des moyens dédies comme des "processeurs de FFT", spécialisés dans la transformée de Fouπer rapide, ou des Asics dédiés
Selon une version particulièrement avantageuse de l'invention, le système optique est tel que lorsqu'une onde plane vient de l'objet, l'image formée sur le capteur en l abscence d'onde de référence est ponctuelle Ceci permet d'obtenir directement une représentation frequentielle de l'onde provenant de l'objet, chaque point du capteur correspondant à une seule fréquence, c'est-à-dire un seul vecteur d'onde, de l'onde lumineuse provenant de l'objet
La représentation en trois dimensions obtenue se présente comme une grandeur complexe fonction des trois coordonnées spatiales, correspondant à la vibration lumineuse en tout point de l'objet Le résultat dépend fortement du mode d'éclairage II est possible d'utiliser un faisceau parallèle, cohérent spatialement. La représentation obtenue est alors très précise dans un plan orthogonal a la direction du faisceau d'éclairage mais présente des défauts dans la direction parallèle à ce faisceau Selon un mode avantageux de réalisation, on utilise un éclairage ou la cohérence spatiale a été rompue, c'est-à-dire ou l'objet est éclairé en tout point suivant toutes les directions Cet éclairage est réalisé à l'aide d'un condenseur formant dans le plan de l'objet l'image d'un élément diffusant éclaire par le faisceau laser. Mais la représentation obtenue est alors granuleuse du fait de la cohérence temporelle de l'onde d'éclairage. Ce phénomène appelé « Speckle » pose un problème déjà connu en microscopie holographique. Selon une version avantageuse de l'invention, on améliore la représentation de l'objet en utilisant l'onde diffractee par l'objet sous plusieurs éclairages différents En particulier, on peut utiliser plusieurs représentations obtenues en déplaçant légèrement l'élément diffusant entre chaque image. On peut alors moyenner sur l 'ensemble des représentations obtenues l'intensité de Tonde en chaque point. Ceci permet d'obtenir une représentation spatiale satisfaisante de l'objet
A partir de cette représentation, il est possible de générer tout type d'image en deux dimensions: coupes, projections, ...
Description sommaire des dessins:
La figure 1 représente le mode de réalisation préféré de l'invention. La figure 2 indique un exemple de dimensionnement relatif à ce mode de réalisation. La figure 3 indique une configuration particulière utilisée lors de la procédure de réglage pour ce mode de réalisation. La figure 4 concerne une variante de ce mode de réalisation en différant par le mode d'éclairage de l'échantillon. La figure 5 représente un support mécanique permettant de maintenir l'ensemble du dispositif à la verticale.
Meilleure manière de réaliser l'invention:
Un laser (100) émet un rayon qui traverse un filtre ( 101) puis est séparé en faisceaux d'éclairage Fe et de référence Fr par une lame semi-réfléchissante ( 102). Le faisceau d'éclairage traverse ensuite une lentille ( 103) puis est réfléchi par un miroir ( 104) et va frapper un élément diffusant ( 105) lui-même fixé sur un positionneur motorisé deux axes (106) pouvant le déplacer dans un plan orthogonal à l'axe optique de l'objectif ( 1 10). Le faisceau diffusé par
( 105) traverse ensuite on condenseur ( 107) qui forme dans le plan de l'objet ( 109) une image de (105).
Ce condenseur est lui-même fixé à un positionneur manuel un axe (108) pouvant le déplacer dans le sens de son axe optique. La distance focale de la lentille ( 103) doit être choisie de façon à ce que la zone de (105) éclairée par le faisceau soit suffisamment grande pour que son image par le condenseur couvre au moins toute la zone à observer.
L'onde issue de l'objet (109) traverse l'objectif de microscope ( 1 10) Cet objectif est un objectif plan (qui donne une image plane d'un plan), à grande ouverture (par exemple 1.25), à immersion, et foπnant une image aggrandie de l'objet à une distance finie. Cet objectif de microscope est fixé à un dispositif de focalisation (111).
Dans le plan ou l'objectif forme noπnalement l'image de l'objet à observer, on interpose un diaphragme (112) permettant un filtrage spatial de l'image. En arrière de ce plan on positionne un achromat (113) dont le plan focal objet doit être confondu avec le plan focal image de l'objectif (1 10) Un second achromat (115) dont le plan focal image est dans le plan d'un capteur CCD (116) forme dans le plan de ce CCD l'image du plan focal image de l'objectif (1 10). Le CCD ( 1 16) est intégré à une caméra (117) sortant un signal vidéo analogique. Le faisceau de référence traverse d'abord un filtre (1 18) puis est réfléchi par un miroir (1 19) monte sui l'extrémité mobile d'un translateur piézoélectrique (120) Il traverse ensuite une lentille ( 121) qui focalise le faisceau en un point Le faisceau divergent issu de ce point est réfléchi partiellement par le miroir semi-réfléchissant (114), ce qui le superpose au faisceau issu de l'objet cl permet d'enregistrer leurs interférences sur le CCD (1 16) Le point de focalisation du faisceau issu de la lentille (121) doit avoir son image virtuelle après réflexion sur le miroir semi-transparent (1 14) au centre de l'image du diaphragme (112) par 1 achromat (113) Le translateur piézoélectrique (J20) permet de moduler la phase du faisceau de référence Le plan de I objet doit être horizontal pour que l'huile optique nécessaire pour utiliser l'objectif et le condenseur a immersion ne coule pas
Figure imgf000007_0001
optique de 1 ensemble est donc vertical
La caméra (117) est montée sur un positionneur trois axes en translation Le laser (100) est monte sur un positionneur angulaire permettant un réglage de sa direction Le translateur piézoélectrique (120) est monte sur un positionneur permettant de régler la direction d'un axe orthogonal au plan miroir (119) et de déplacer l'ensemble (119)(120) en translation suivant cet axe Le miroir (104) est moule sur un positionneur permettant de régler la direction d'un axe orthogonal au plan du miroir Le réglage de ces positionneurs est en principe effectue une fois pour toutes et dans une version en grande série du système ils peuvent être supprimes au profit d'une fabrication plus soignée Néanmoins, dans cette version destinée a de petites séries. la solution la plus simple est d'utiliser des positionneurs classiques Ces positionneurs sont des systèmes connus, courants dans les montages optiques, que l'on pourra trouver par exemple au catalogue « Melles Griot » ou « Physik Instrumente » L'ensemble est fixé sur une plaque support (500). du cote de la plaque oppose au point de vue de la Fig 5 Cette plaque est fixée à deux plaques triangulaires (501 ) et (502) elles-mêmes fixées a une base carrée (503) Les plaques (500)(501)(502)(503) sont en alliage d'aluminium rigide AU4G par exemple d'épaisseur 20 mm La fixation des plaques peut se faire par des vis et des trous taraudes, et doit être faite en un nombre de points suffisant pour assurer une rigidité parfaite de l'ensemble Ceci permet de maintenir le système à la verticale en assurant une rigidité suffisante L'ensemble est pose sur un support anti vibratoire constitue par exemple d'une plaque en granit posée sur des chambres à air de camion qui amortissent les vibrations Le montage des divers éléments sur la plaque (500), et en particulier des miroirs et miroirs semi-transparents, doit être effectue de manière a assurer une rigidité maximale de l'ensemble Toutes les précautions usuelles doivent être pπses de manière a limiter les vibrations
Les précisions suivantes concernent un exemple particulier de dimensionnement pratique du disposifif Le condenseur est un condenseur fond clair à immersion d'ouverture 1,2 dont le diaphragme d'ouverture a en position ouverte un diamètre de 28 mm La zone de l'élément diffusant qui est éclairée par le faisceau laser a un diamètre D6 d'environ 1 cm. La distance D5 entre cet élément diffusant et le condenseur est de 100 mm L'objectif de microscope est un objectif plan lOO d'ouverture 1,25, a distance finie, formant l'image à 160 mm du col de l'objectif, de distance focale environ 1,8 mm La distance D4 entre le col de l'objectif et le diaphragme est de 160 mm La distance D3 entre le diaphragme (1 12) et l'achromat (1 13) est de 20 mm L'achromat ( 1 13) une distance focale de 200 m et un diamètre de 30 mm et sa face la plus bombée est orientée vers le miroir scmi -transparent (114) L'achromat (115) a les mêmes caractéristiques et sa face la plus bombée est également orientée vers le miroir (1 14) La distance D2 entre les deux achromats est de 85 mm, permettant d'insérer un miroir semi-transparent (1 14) de dimensions suffisantes La distance entre l'achromat ( 1 15) et le CCD ( 1 16) est de 200 mm La lentille (121 ) a un diamètre de 4mnι et une distance focale de 6mm La distance D7 entre cette lentille et l'axe optique est d'environ 70 mm La distance D8 entre l'achromat ( 1 12) et le centre du miroir semi-transparent (1 14). situe sur l'axe optique, est d'environ 45 mm Le laser est un laser hé u -neon de longueur d'onde 633 nui a polarisation aléatoire de puissance environ 0,5 mW, de diamètre de faisceau 0,47 mm Le capteur CCD est un capteur a pixels carres . la surface du pixel étant d'environ 8,5 x 8,5 micromètres La caméra sort un signal video CCIR et une horloge pixel Le positionneur piézoélectrique (122) est une pile' piézoélectrique en forme de cylindre dont le corp^ est fixe et l'extrémité se déplace de 15 micromètres pour une tension appliquée de 100 Volts Le système de calcul est par exemple un ordinateur type PC. doté de cartes d'acquisition et de commande appropriées et éventuellement de moyens de calcul .supplémentaires La carte d'acquisition du signal vidéo, fonctionnant en temps réel, échantillonne le signal sur 8 bits et acquiert des images de 512x512 pixels échantillonnés suivant l'horloge pixel, donc correspondant exactement aux pixels du CCD Le positionneur piézoélectrique est piloté directement par une carte de conversion digitale/analogique sortant un signal compris par exemple entre zéro et I ' m^ , avec par exemple
VmΛX = 10 volts Un filtre RC de constante de temps environ 0, 1 ms est interpose entre la sortie de la carte de conversion et les bornes de l'actionneur piézoélectrique Le positionneur ( 106) est motorise par des moteurs pas à pas également pilotés depuis l'ordinateur L'ordinateur le déplacera suivant les deux axes par pas de 0.2 mm par exemple Pour régler précisément la position de la caméra (1 17), on suppπme le faisceau de référence et on remplace l'éclairage normal par un faisceau cohérent parallèle à l'axe optique Ceci est fait comme indiqué figure 3, en suppπmant (103) (105)(106)(107)(108), en introduisant un miroir (300) renvoyant le faisceau vers l'objectif, et en utilisant comme filtre (118) un élément totalement opaque Le miron (300) est monté sur un positionneur angulaire qui doit être réglé de manière à viser l'entrée de l'objectif (1 10) et à maximiser l'intensité de l'image reçue sur (1 16) La position de ( 116) est alors réglée dans la direction de l'axe optique de manière à ce que l'image reçue sur le capteur (1 16) soit un point, puis dans le plan orthogonal à l'axe optique de manière à ce que ce point soit au centre de la zone d'intérêt de 512x512 pixels qui sera utilisée pour les calculs. Pour ce type d'opérations, l'image reçue sur le capteur (116) peut être affichée en temps réel sur l'écran de l'ordinateur Le faisceau de référence doit alors être rétabli et le faisceau issu de l'objet doit être supprime en interposant un cache derrière l'objectif ( 1 10) La direction du laser (100) doit être réglée de façon a viscr le centre du miroir (120) La position de l'ensemble (1 19)(120) doit ensuite être réglée de façon a ce que le faisceau issu de (120) traverse effectivement la lentille (121) Ces réglages peuvent être contrôles simplement à l'aide d'un morceau de papier diffusant la lumière La position de I ensemble (1 1 )(120) doit être affinée de manière a obtenir un éclairage le plus intense et le plus homogène possible sur le capteur (116)
Le faisceau de référence doit alors être a nouveau suppπme et le faisceau issu de l'objet doit être rétabli, l'objet utilise étant alors une simple lame transparente La position de ( 104) doit être ieglec de façon a viser l'élément diffusant (105), puis affinée pour que l'image reçue sur le capteur (1 16) soit correctement centrée Le positionneur (108) doit être régie de façon a ce que l'image reçue sur le capteur, qui représente les fréquences issues de l'objet, soit un disque clair granuleux aussi large que possible Lors d'un changement d'objet observé, il peut être nécessaire de modifier le réglage de (108) mais celui de ( 104) est normalement fixe une fois pour toutes
Au cours des opérations précédentes, les valeurs de densité optique des filtres (101) et (1 18) doivent être constamment modifiées pour avoir le faisceau le plus facilement observable lorsqu'il esi observe a l'oeil nu ou pour avoir un éclairage optimal de (1 16) lorsque 1 image reçue sur ( 1 16) est observée sur écran L'ajustement automatique de gain sur la caméra peut avantageusement être utilise
Lors du fonctionnement normal du microscope, les valeurs de densité optique des filtres (1 1 ) et (1 18) doivent être choisies de façon à ce que le faisceau de référence et le faisceau provenant de l'objet aient des intensités proches en arrivant sur le capteur CCD, et que la figure d'interférences produite soit la plus intense possible sans toutefois que la valeur maximale du pixel autonsee par la caméra et la carte de numérisation vidéo soit dépassée
La tension de commande de l 'actionneur piezoélectnque doit être calibrée Pour cela, on détermine la différence de tension AV correspondant a un décalage de 360 degrés de l'onde de référence Ceci est fait en utilisant une simple lame transparente comme échantillon, l'onde de référence et l'onde issue de l'objet étant présentes Si on note p la précision avec laquelle on souhaite obtenir le résultat, par exemple =0 01 Volts, l'ordinateur effectue alors, pour un indice / variant de
V 0 a • mwi- , une série de cycles du type suivant
P application d'une tension nulle à l'actionneur temps d'attente (10 ms) acquisition de la figure d'interférence application d'une tension Vl = / p à l'actionneur temps d'attente (10 ms) acquisition de la figure d'interférence application d'une tension VmiX à l'actionneur calcul de la corrélation entre les deux figures d'interférences stockage du résultat dans un tableau Corφ] Le tableau Corrf/ 1 contient alors la corrélation entre les figures d'interférences obtenues pour les tensions Vt = / p et celle obtenue pour une tension nulle L'ordinateur effectue alors un filtrage passe- bas adapie sur le contenu de ce tableau pour en éliminer le bruit Puis il détermine la valeur moyenne M de Corr[/] , puis détermine les valeurs de / vérifiant Corφ] ≤ M et Corφ -f l] M II calcule la différence d entre deux valeurs de / successives vérifiant cette condition La tension AV est alors
AV = p d
Lors du fonctionnement normal du microscope, l'éclairage est modifie en déplaçant l'élément diffusant (105) à l'aide du positionneur (106) A chaque position du positionneur, coirespond un éclairage différent Pour chaque éclairage, l'ordinateur calcule la valeur complexe (c'est-a-dire le nombre complexe représentant la phase et l 'intensité ) de l'onde lumineuse en tout point de l'objet L image finale de l'objet est obtenue en moyennant les intensités ainsi obtenues pour un nombre suffisant d' éclairages distincts L'intensité de l'onde en un point est le carre du module de la valeur complexe correspondante Pour obtenir la valeur complexe de l 'onde lumineuse en tout point de l'objel, I ordinateur calcule d'abord la valeur complexe de l'onde lumineuse issue de l'objet en tout point du capteur CCD Cette valeur est obtenue a partir de l'enregistrement de trois figures d interférences reçues sur le capteur, la phase de l'onde de référence étant décalée de 120 degrés entre chacune de ces figures On note I\P, θ) l'intensité en un point P du capteur de la figure d'interférences produite par l'onde issue de l'objet et l'onde de référence pour un décalage de phase θ radians de l'onde de référence On note I ref {f) l'intensité de l'onde de référence seule en ce point du capteur La valeur complexe de l'onde lumineuse issue de l'objet et reçue sur un pixel P du capteur CCD est donnée par
Figure imgf000010_0001
Chaque pixel P du capteur correspond à une fréquence pure de l'onde dans l'objet Si on note (/,./) les coordonnées (distance en pixels) d'un point du capteur par rapport au point central de la zone d'intérêt, la fréquence pure à laquelle correspond le point de coordonnées (', /) , exprimée dans un repère dont le troisième axe est orthogonal au plan du capteur vaut alors, a un facteur constant près
(l, J, k) avec k = -KJK - I - / " - C , ou K est une constante C est une constante nulle, mais on peut lui affecter une valeur non nulle de manière à translater la représentation fréquentielle, ce qui se traduit sur l'image par une modulation de phase n'affectant pas le résultat final L'ordinateur utilise cette formule pour générer une représentation fréquenUelle tridimensionnelle de l'onde lumineuse, pui; apphque une transformée de Founer inverse pour établir la représentation complexe de l'onde lumineuse dans l'objet observé Ceci se traduit de la manière suivante
- La valeur de l'intensité de l'onde de référence seule en chaque point est stockée dans un tableau de nombres réels Iref i,j], les coordonnées (i,j) étant prises par rapport au coin du capteur - La capture des trois images décalées en phase donne un tableau I d'entiers 8 bits, de dimensions 3x512x512 dans lequel I[a,ij] représente la valeur au pixel de coordonnées (i,j) de la figure d'interférences correspondant à un décalage de phase de a fois 120 degrés, les coordonnées (i,j) etanl maintenant prises par rapport au coin du capteur
- L ordinateur génère le tableau S[i j] de nombres complexes, pour i et J variant de 0 a 51 1 en affectant aux cléments du tableau les valeurs suivantes
- partie réelle de S[i,j] [ — (2l[(). ι,j] - l[l . 1. 1] - l[2. i. |])
6- /lrefïι. \]
-partie imaginaire de S[i,j] — - (l[l , ι, il - l[2, ι, il)
2 3Irellι, j ï
- L'ordinateur génère le tableau H de nombres complexes représentant les fréquences, de dimensions 512x512x512. en l'initialisant a zéro et en parcourant ensuite l'ensemble des indices i et j variant de 0 a 51 1 en effectuant l'opération
H^, j^K2 - (i - 256)2 - (j - 256)2 - c] = S[i,j]
- L'ordinateur effectue la transformée de Founer tridimensionnelle inverse du tableau H pour obtenir la répartition tridimensionnelle de l'onde dans l'objet observe, obtenant un tableau G de dimensions 512x512x512 Si le calcul de transformée tridimensionnelle inverse est fait de la manière la plus standard, une constante dans l'espace des fréquences donne dans la représentation spatiale un dirac centré sur le point de coordonnées (0,0,0) qui doit être ramené au point de coordonnées (256.256.256) pour centrer l'image correctement La représentation tridimensionnelle de l'onde dans l'objet observe s'obtient alors en générant le tableau F par F[ι, j. k] = G[(ι + 256)%512, 0 + 256)%512, (k + 256)%512]
, ou le signe % signifie « modulo » Dans cette représentation trisimensionnelle. le point d'origine virtuel de l'onde de référence se trouve au centre, c'est-à-dire au point de coordonnées (256.256,256)
La transformée tndimensionnelle inverse étant une opérauon longue, l'ordinateur peut se contenter, dans certains cas, par exemple l'opération de focalisation, de générer une image bidimensionnelle Une coupe dans le plan de l'objet peut être générée en effectuant la transfoπnée de Founer bidimensionnelle inverse du tableau S[i,j] qui donne un tableau Gl . suivie du calcul du tableau F 1 par Fl[ι, j] = Gl[(ι + 256)%512. (j + 256)%512] Le tableau F 1 constitue la représentation bidnnensionnelle de l'onde dans le plan de l'objet passant par le point d'origine virtuel de l'onde de référence el orthogonal à l'axe optique (coupe) Une coupe dans un plan orthogonal au précèdent peut être générée en calculant d'abord le tableau S2[ij] de dimensions 512\512 en 1 mitialisant a 0 puis en parcourant tous les indices (i,j) en effectuant
S2 .,/κ2 -(ι - 256)2 - (j - 256)2 - C + = S[ι,j]
_
( ce qui signifie en utilisant les notations du language informatique T ajouter la valeur complexe de
S[i, j] a la valeur complexe de S2 i, - K 2 - (i - 256)" - (j - 256) C initialement présente
dans le tableau )
La transformée de Founer bidnnensionnelle inverse du tableau S2 donne alors un tableau G2 dont on tire comme précédemment un tableau F2 par F2[ι, j] = G2[(ι + 256)%512, (j + 256)%5 12] Lt tableau F2 constitue la représentation bidnnensionnelle de 1 onde dans le plan de 1 objet passant pai le point d'origine virtuel de l'onde de référence, et parallèle a 1 axe des i et a l'axe optique
Pour déterminer K el C il est nécessaire d'effectuer une opération préalable de calibration A cet effet un micromètre objectif (règle graduée, avec une graduation tous les 10 micromètres, montée sur une lame de microscope) est utilisé Une image bidnnensionnelle de ce micromètre est réalisée par transformée de Founer bidnnensionnelle inverse du tableau S[i,j] Le diaphragme (1 12) est règle de façon à ce que son image soil clairement visible au centre de l'image bidnnensionnelle ainsi calculée S'il est trop ouvert, il sort de la zone observée et il se produit des phénomènes de repliement de spectre nuisant à la qualité de l'image. Le microscope est focalisé de manière a avoir l'image la plus nette possible L'image bidnnensionnelle est moyennée en intensité sur plusieurs éclairages pour limiter l 'aspect granuleux Si la distance entre deux graduations séparées par Dncl nuciometres est sur l'image ainsi obtenue de D pixels, si l'indice moyen dans l'échantillon est ri (en général '/ =1 5) et
si la longueur d'onde du laser est A ( λ =0.633 micromètres) alors on a K = ~- . ou bien n entendu Dreel et λ sont dans la même unité La valeur de ( utilisée sera alors C K-5 W Le cycle de fonctionnement normal du microscope, utilisé également lors de la procédure de calibration ci-dessus, est le suivant mise de l'actionneur piézoélectnque sous tension nulle temps d'attente (10 ms) r mise de l'actionneur piézoélectnque sous tension temps d'attente (10 ms) acquisition de la première figure d'interférences
V Ά mise de l'actionneur piézoélectnque sous tension tm
temps d'attente (10 ms) acquisition de la deuxième figure d'interférences y m,κ ΔΓ mise de l'actionneur piézoélectrique sous tension — '- — l
2 3 temps d attente ( 10 ms) acquisition de la troisième figure d interférences mise de 1 actionneur piézoélectrique sous tension Vm^ déplacement du positionneur (106) calcul de la l'onde lumineuse correspondante dans l'objet calcul de 1 intensité lumineuse dans l'obiet Ce cycle est répète NmιΛ, fois Apres Nnιm répétitions du cycle, l'ordinateur peut moyenner en chaque point les valeurs d'intensité obtenues pour les Nmm éclairages différents, puis générer la représentation tridimensionnelle de l'objet el afficher une image bidnnensionnelle dérivée de cette représentation II peut alors recommencer l'ensemble de l'opération Plus N est important, mieux la granulaπté de l'image est atténuée Le cycle ci-dessus est le plus simple, mais il peut être optimise pour tenir compte des recouvrements entre temps d'exposition des capteurs et temps de transfert de l'image Le calcul de Fonde lumineuse peut se faire sur l'objet entier ou sur une partie de l'objet, par exemple une coupe, en fonction du temps et de la capacité de calcul disponible Dans le cas le plus simple. l'ordinateur génère et affiche une simple coupe de l'objet Le déplacement du positionneur (106) se fait comme indiqué plus haut, par pas de 0,2 mm suivant les deux directions L'ordre dans lequel sont effectues ces déplacements est indifférent pourvu que les Nmm éclairages utilises pour calculer la représentaϋon tridimensionnelle de l'objet soient obtenus à partir de positions toutes distinctes de l'actionneur (106), pour ne pas avoir plusieurs fois le même éclairage Le passage a chaque cycle par les valeurs 0 et V de la tension permet de limiter l'effet de l'hystérésis de l'actionneur piézoélectrique en ayant toujours le même cycle
Avant d'obtenir une image, l'opérateur doit régler le dispositif de focalisation du microscope
Si ce réglage est fait à la main, il doit être fait pas à pas, l'opérateur lâchant le dispositif de focalisation pendant la prise d'image, de manière à ne pas induire de vibrations pendant la prise d'image Pour faciliter cette opération il peut être intéressant de motonser le dispositif de focalisation Le calcul d'une transformée de Founer à trois dimensions étant difficile à effectuer en temps réel, on peut également se contenter, pendant l'opération de focalisation, d'une image bidnnensionnelle obtenue en effectuant directemcnt la transformée de Founer du tableau S[ι,j] On peut également se contenter d'effectuer la transformée de Founer bidnnensionnelle de la partie centrale, par exemple une zone de 256x256 points du tableau S[i,j], ce qui génère une image moins sensible a la précision de la focalisation II est pai contre utile d'effectuer, même pendant cette opération de focalisation, un moyennage en intensité sui quelques images de la représentation bidnnensionnelle ainsi obtenue
Les méthodes de calcul indiquées ci-dessus ne sont pas limitatives L'ordinateur peut générer des représentations tridimensionnelles représentant des portions d'objet plus ou inoins étendues (coupes, projections, ensemble de coupes sur une épaisseur limitée ) Il peut filtrer ces represenialioiis limitant l'aspect granuleux de l'image au prix d'une moins bonne définition Le traitement effeclue esl fonction des besoins (rapidité de la prise d image et définition calcul en temps recl ou diffère) et de i.i capacité de calcul de l'ordinateur
Une variante de ce mode de réalisation consiste a utiliser un faisceau d'éclairage unidirectionnel Ceci supprime la nécessite d'effectuer un niovcnnagc en intensité sur plusieuis images car chaque point de l'objet est alors éclaire avec la même intensité Le movennage en intensité n elanl pas nécessaire, la représentation tridimensionnelle conserve également une information de phase utilisable Par contre, les images obtenues ne sont précises dans les trois dimensions que pour certains types particuliers d'objets, par exemple des particules subinicromclπques incluses dans du verre En gênerai l'image est très précise dans le plan orthogonal a la direction du faisceau et présente des défauts dans la direction du faisceau Ce mode d'éclairage peu! cependant être utilise dans les cas ou on se contente d'une image bidnnensionnelle. ou pour faciliter l'opération de focalisation du microscope ou encore pour certains lypes particuliers d'objets (localisation de défauts ponctuels dans un verre p<n exemple) Cet éclairage peut cire réalise comme indique sur la figure 4 analogue a la figure 3 a ceci près que le faisceau de référence n'est plus bloque et qu une lentille supplémentaire (400) doit être insérée entre le miroir (300) et l'échantillon ( 109) Cette lentille doit être positionnée de sorte que soi foyer coïncide avec l'échantillon et sa distance focale doit être telle que la tache de diffraction formée a la traversée de l'échantillon ait à peu près le diamètre de la zone observée On peut réaliser une vaπantc de cet éclairage en orientant différemment le faisceau, dont la direction peut ne pas être incluse dans le cône d'ouverture de l'objectif de microscope Dans ce dernier cas l'image bidnnensionnelle obtenue présente en général des défauts, mais pour certains types d'échantillons (défauts ponctuels dans un verre) le rapport signal sur bruit esl améliore et l'image tridimensionnelle est de bonne qualité Cette méthode est alors équivalente à de Fultramicroscopie. mais en version tndimensionnelle
Une autre variante de ce mode de réalisation consiste a n'utiliser qu'une seule figure d'interférences pour générer une représentation tridimensionnelle Cette variante est l' équivalent numérique de la reconstruction holographique optique Selon cette variante, l'actionneur piézoélectrique (120) n'est pas utilisé On note l(P) l'intensité de la figure d'interférences produite en un point P du capteur par l'onde issue de l'objet et l'onde de référence La fonction S(P) est I(P) - I (P) maintenant donnée par S(P) = , - - On noie ifi, j] la valeur au pixel (ι,j) de la figure
d'interférences produite, les coordonnées étant prises par rapport a un coin du capteur Les formules donnant Sfi l deviennent r _. partie réelle de S ι, l
Figure imgf000015_0001
partie imaginaire de Sli J 0
Le point de focalisation du faisceau issu de la lentille ( 121 ) doit avoir son image virtuelle après réflexion sur le miroir semi-transparent ( 1 14) sur le coté de l'image de 1 ouverture du diaphragme ( 1 12) par 1 achromat (1 1 ). et non au cenlrc comme précédemment Le cvclc de fonctionnement du microscope est modifie au sens ou une seule image par cycle esl utilisée au lieu de trois et ou il n x ri donc plus d action sur le svstemc de contrôle de phase L'image est affectée par des approximations du second ordre par rapport au rapport de l 'onde diffraclce par l'objet a 1 onde de référence En fonctionnement normal du microscope, les filtres (1 1 ) et ( 1 18) doivent donc être choisis de manière à ce que l'onde de référence ait une intensité nettement supérieure à l'onde issue de l'objet en arrivant sur le capteur CCD. et non des intensités proches comme précédemment Ce choix doit êtic affine de manière a avoir dans la représentation tridimensionnelle le meilleur compromis entre le bnnt et les distortions du second ordre Pour le reste, le fonctionnement et le mode de calcul sont les mêmes que précédemment
La représentation tridimensionnelle générée comprend la partie observée de l'objet délimitée par le diaphragme, et sa symétrique par rapport au point de focalisation virtuel du faisceau issu de la lentille (121) L'ouverture du diaphragme doit être suffisamment réduite pour être visible sur la représentation obtenue, ainsi que sa symétrique La zone de l'objet que l'on peut observer est donc plus réduite que dans le mode de réalisation préféré Cette représentation tridimensionnelle est également affectée par des approximations du second ordre par rapport au rapport de l'onde diffractee par l'objet à l'onde de référence, et l'onde diffractee par l'objet doit être nettement inférieure à l'onde de référence pour obtenir un résultat probant II s'ensuit que le résultat obtenu esl nettement plus bruite que dans le mode de réalisation préféré Par contre, le système est moins sensible aux vibrations et permet d'obtenir les images plus rapidement
D'autres modes de réalisation sont bien entendu possibles et la description ci-dessus n'est pas limitative
Possibilités d'application industrielle Cc microscope peut êlre utilisé au lieu de microscopes a transmission usuels dans le domaine de la biologie ou de la micromesure L'enregistrement de l'image tridimensionnelle est plus rapide qu'avec d'autres méthodes, ce qui facilite l'observation d'échantillons mobiles

Claims

REVENDI CATIONS
1- Microscope caractérisé par le fait qu'il numérise des figures d'interférences formées sur une surface de réception par la superposition d'une onde lumineuse de référence et d'une onde lumineuse diffractee par l'objet, et qu'il utilise ces enregistrements pour calculer une représentation tridimensionnelle de l'objet observé.
2. Microscope selon la revendication 1. caractérisé par le fait que l'onde de référence esl approximativement sphérique et centrée, réellement ou virtuellement, en un point proche de la zone observée de l'objet ou inclus dans celle-ci. 3 -Microscope suivant une des revendications 1 ou 2. caractérisé par le fait que la première étape du calcul consiste à calculer la valeur complexe de l'onde diffractee par l'objet et arrivant sur la surface de réception, et que cette valeur est obtenue à partir de plusieurs figures d'interférences différant par la différence de phase entre l'onde de référence et l'onde éclairant l'objet. 4-Microscope selon la revendication 3. caractérisé par le fait que la valeur complexe de l'onde diffractee par l'objet et arrivant sur la surface de réception est obtenue à partir de trois figures d'interférences, la différence de phase entre l'onde de référence et l'onde éclairant l'objet étant décalée de 120 degrés entre chaque figure. 5-Microscope selon une des revendications 1 à 4. caractérisé par le fait qu'une image intermédiaire est formée optiquement, puis filtrée spatialement par un diaphragme, et en ce que des lentilles sont utilisées pour former à partir de cette image intermédiaire une figure de diffraction sur la surface de réception.
6-Microscope selon une des revendications 1 à 5. caractérisé par le fait qu'il utilise la représentation complexe de l'onde diffractee sur la surface de réception pour calculer la valeur complexe de l'onde lumineuse en chaque point de l'objet observé.
7-Microscope selon une des revendications I à 6, caractérisé en ce que la transformation de Fourier rapide est utilisée pour obtenir rapidement la valeur complexe de l'onde lumineuse en chaque point de l'objet observé.
8-Microscope selon une des revendications 1 à 7, caractérisé par le fait qu'en l'abscencc d'onde de référence, une onde plane provenant de l'objet produit sur la surface de capteurs une image ponctuelle 9-Microscope selon une des revendications 1 à 8. caractérisé en ce que l'onde éclairant l'objet est obtenue par utilisation d'un condenseur formant sur l'objet l'image d'un élément diffusant éclairé par le faisceau laser
10-Microscope suivant une des revendications 1 à 9. caractérisé en ce que plusieurs représentations complexes d'ondes diffractées sur la surface de réception sont utilisées pour un objet donné, ces représentations différant entre elles par des modifications de l'onde éclairant l'objet.
11-Microscope selon les revendications 9 et 10, caractérisé en ce que les modifications de l'onde éclairant l'objet sont obtenues en déplaçant l'élément diffusant.
12-Microscope selon une de revendications 10 ou 11, caractérisé en ce que la représentation tridimensionnelle de l'objet observé est obtenue par moyennage en intensité des représentations tridimensionnelles complexes obtenues pour chaque modification de l'onde éclairant l'objet.
PCT/FR1997/001695 1996-09-27 1997-09-26 Microscope generant une representation tridimensionnelle d'un objet WO1998013715A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP97943004A EP0928433A1 (fr) 1996-09-27 1997-09-26 Microscope generant une representation tridimensionnelle d'un objet
US09/254,869 US6249349B1 (en) 1996-09-27 1997-09-26 Microscope generating a three-dimensional representation of an object

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
FR9611773A FR2754069A1 (fr) 1996-09-27 1996-09-27 Microscope enregistrant l'onde diffractee par l'objet observe et l'utilisant pour calculer une representation en trois dimensions de cet objet
FR96/11773 1996-09-27
FR96/15255 1996-12-12
FR9615255A FR2754070A1 (fr) 1996-09-27 1996-12-12 Microscope enregistrant l'onde diffractee par l'objet observe et l'utilisant pour carculer une representation en trois dimensions de cet objet
FR9707469A FR2757278A1 (fr) 1996-12-12 1997-06-17 Microscope enregistrant l'onde diffractee par l'objet observe et l'utilisant pour calculer une representation en trois dimensions de cet objet
FR97/07469 1997-06-17

Publications (2)

Publication Number Publication Date
WO1998013715A1 true WO1998013715A1 (fr) 1998-04-02
WO1998013715B1 WO1998013715B1 (fr) 1998-06-04

Family

ID=27253235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/001695 WO1998013715A1 (fr) 1996-09-27 1997-09-26 Microscope generant une representation tridimensionnelle d'un objet

Country Status (3)

Country Link
US (1) US6249349B1 (fr)
EP (1) EP0928433A1 (fr)
WO (1) WO1998013715A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053355A1 (fr) * 1998-04-15 1999-10-21 Vincent Lauer Microscope generant une representation tridimensionnelle d'un objet et images generees par ce microscope
FR2788139A1 (fr) * 1999-01-06 2000-07-07 Vincent Lauer Microscope generant une represantation tridimensionnelle d'un objet et images generees par ce microscope
WO2003002972A3 (fr) * 2001-06-29 2003-11-20 Univ Bruxelles Procede et dispositif destines a l'obtention par microscopie d'images en trois dimensions d'un echantillon
WO2013018024A1 (fr) 2011-07-29 2013-02-07 Ecole Polytechnique Federale De Lausanne (Epfl) Appareil et procédé pour la tomographie de phase quantitative au moyen de balayage linéaire avec détection cohérente et non cohérente

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021810A (ja) * 1999-07-07 2001-01-26 Nikon Corp 干渉顕微鏡
JP4241038B2 (ja) * 2000-10-30 2009-03-18 ザ ジェネラル ホスピタル コーポレーション 組織分析のための光学的な方法及びシステム
US9295391B1 (en) 2000-11-10 2016-03-29 The General Hospital Corporation Spectrally encoded miniature endoscopic imaging probe
EP2333523B1 (fr) * 2001-04-30 2020-04-08 The General Hospital Corporation Procédé et appareil permettant d'améliorer la clarté et la sensibilité de l'image en tomographie à cohérence optique au moyen d'une interaction permettant de contrôler les propriétés focales et la synchronisation de cohérence
US7865231B2 (en) 2001-05-01 2011-01-04 The General Hospital Corporation Method and apparatus for determination of atherosclerotic plaque type by measurement of tissue optical properties
EP3252538B1 (fr) * 2001-12-04 2019-02-06 Ecole Polytechnique Federale De Lausanne (Epfl) Appareil et procédé d'imagerie holographique numérique
WO2003060423A2 (fr) * 2002-01-11 2003-07-24 The General Hospital Corporation Appareil pour imagerie par tomographie a coherence optique a foyer en ligne axiale permettant d'ameliorer la resolution et la profondeur de champ
US7355716B2 (en) 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
KR100438212B1 (ko) * 2002-08-09 2004-07-01 학교법인고려중앙학원 전자현미경을 사용해서 물체의 3차원 공간 데이터를추출하는 방법 및 그 장치
EP2319405B1 (fr) * 2003-01-24 2013-09-18 The General Hospital Corporation Système et procédé pour identifier des tissus à l'aide d'interférométrie à faible cohérence
US8054468B2 (en) 2003-01-24 2011-11-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
WO2004088361A2 (fr) 2003-03-31 2004-10-14 The General Hospital Corporation Reduction de granularite dans la tomographie par coherence optique au moyen d'une composition angulaire par codage de longueur de trajet
KR101386971B1 (ko) * 2003-06-06 2014-04-18 더 제너럴 하스피탈 코포레이션 파장 동조 소스용 방법 및 장치
US7095930B2 (en) * 2003-07-17 2006-08-22 Draka Comteq B.V. Groove cable
US7733497B2 (en) 2003-10-27 2010-06-08 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
EP1687587B1 (fr) * 2003-11-28 2020-01-08 The General Hospital Corporation Procede et appareil d'imagerie codee de maniere spectrale tridimensionnelle
US7636157B2 (en) * 2004-04-30 2009-12-22 Ahura Corporation Method and apparatus for conducting Raman spectroscopy
US7499159B2 (en) * 2004-04-16 2009-03-03 Ahura Corporation Method and apparatus for conducting Raman spectroscopy using a remote optical probe
US7548311B2 (en) * 2005-04-29 2009-06-16 Ahura Corporation Method and apparatus for conducting Raman spectroscopy
AU2004320269B2 (en) * 2004-05-29 2011-07-21 The General Hospital Corporation Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (OCT) imaging
WO2006014392A1 (fr) 2004-07-02 2006-02-09 The General Hospital Corporation Sonde d'imagerie endoscopique comprenant des fibres double gaine
US8081316B2 (en) 2004-08-06 2011-12-20 The General Hospital Corporation Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography
WO2006024014A2 (fr) 2004-08-24 2006-03-02 The General Hospital Corporation Ensemble procede, systeme et logiciel pour la mesure de la contrainte mecanique et des proprietes elastiques d'un echantillon
US8208995B2 (en) 2004-08-24 2012-06-26 The General Hospital Corporation Method and apparatus for imaging of vessel segments
US20060088069A1 (en) * 2004-08-30 2006-04-27 Daryoosh Vakhshoori Uncooled, low profile, external cavity wavelength stabilized laser, and portable Raman analyzer utilizing the same
WO2006065267A1 (fr) * 2004-08-30 2006-06-22 Ahura Corporation Spectrometre de profil bas et analyseur de raman utilisant ce dernier
WO2006036434A2 (fr) * 2004-08-30 2006-04-06 Ahura Corporation L'utilisation de couplage sans espace entre un ensemble laser, un ensemble tete de sonde optique, un ensemble spectrometre et/ou d'autres elements optiques d'application optiques portables telles que des instruments raman
WO2006025876A2 (fr) * 2004-08-30 2006-03-09 Ahura Corporation Laser raman a longueur d'onde stabilisee et a cavite externe insensible a la temperature et/ou aux contraintes mecaniques externes et analyseur raman utilisant ledit laser
US7365859B2 (en) * 2004-09-10 2008-04-29 The General Hospital Corporation System and method for optical coherence imaging
EP2329759B1 (fr) 2004-09-29 2014-03-12 The General Hospital Corporation Système et procédé d'imagerie à cohérence optique
JP5175101B2 (ja) * 2004-10-29 2013-04-03 ザ ジェネラル ホスピタル コーポレイション 偏光感応性光コヒーレンストモグラフィを用いて偏光非解消の偏光パラメータを測定するジョーンズ行列に基づく解析を行うシステム及び方法
JP5623692B2 (ja) * 2004-11-02 2014-11-12 ザ ジェネラル ホスピタル コーポレイション 試料の画像形成のための光ファイバ回転装置、光学システム及び方法
US7995210B2 (en) 2004-11-24 2011-08-09 The General Hospital Corporation Devices and arrangements for performing coherence range imaging using a common path interferometer
JP2008521516A (ja) 2004-11-29 2008-06-26 ザ ジェネラル ホスピタル コーポレイション サンプル上の複数の地点を同時に照射し検出することによって光学画像生成を実行する構成、装置、内視鏡、カテーテル、及び方法
EP2325803A1 (fr) 2005-04-28 2011-05-25 The General Hospital Corporation Evaluation des informations de tomographie par cohérence optique pour une structure anatomique
EP1887926B1 (fr) * 2005-05-31 2014-07-30 The General Hospital Corporation Systeme et procede qui utilisent des techniques d'interferometrie d'heterodyne a codage spectral pour l'imagerie
ES2354287T3 (es) 2005-08-09 2011-03-11 The General Hospital Corporation Aparato y método para realizar una desmodulación en cuadratura por polarización en tomografía de coherencia óptica.
CN101365375B (zh) 2005-09-29 2013-09-11 通用医疗公司 用于经由谱编码进行光学成像的方法和设备
US7889348B2 (en) 2005-10-14 2011-02-15 The General Hospital Corporation Arrangements and methods for facilitating photoluminescence imaging
US7773645B2 (en) * 2005-11-08 2010-08-10 Ahura Scientific Inc. Uncooled external cavity laser operating over an extended temperature range
EP1971848B1 (fr) 2006-01-10 2019-12-04 The General Hospital Corporation Systèmes et procédés de génération de données basés sur une ou plusieurs technique(s) d'endoscopie spectralement codées
US20070223006A1 (en) * 2006-01-19 2007-09-27 The General Hospital Corporation Systems and methods for performing rapid fluorescence lifetime, excitation and emission spectral measurements
US8145018B2 (en) 2006-01-19 2012-03-27 The General Hospital Corporation Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and methods for producing one or more optical arrangements
PL1973466T3 (pl) 2006-01-19 2021-07-05 The General Hospital Corporation Balonowy cewnik do obrazowania
WO2007084959A1 (fr) * 2006-01-20 2007-07-26 The General Hospital Corporation Systemes et procedes utilises dans la microscopie a effet tunnel a miroirs
JP5524487B2 (ja) 2006-02-01 2014-06-18 ザ ジェネラル ホスピタル コーポレイション コンフォーマルレーザ治療手順を用いてサンプルの少なくとも一部分に電磁放射を放射する方法及びシステム。
WO2007149603A2 (fr) 2006-02-01 2007-12-27 The General Hospital Corporation Appareil destiné à appliquer une pluralité de rayonnements électromagnétiques à un échantillon
WO2007149601A2 (fr) * 2006-02-01 2007-12-27 The General Hospital Corporation Appareil destiné à commander au moins l'une d'au moins deux sections d'au moins une fibre
JP5519152B2 (ja) 2006-02-08 2014-06-11 ザ ジェネラル ホスピタル コーポレイション 光学顕微鏡法を用いて解剖学的サンプルに関わる情報を取得するための装置
EP1987318B1 (fr) 2006-02-24 2015-08-12 The General Hospital Corporation Procédés et systèmes destinés à réaliser une tomographie par cohérence optique dans le domaine de fourier avec résolution angulaire
WO2007109540A2 (fr) * 2006-03-17 2007-09-27 The General Hospital Corporation Appareil, procédé et support accessible par ordinateur pour l'identification de caractéristiques d'au moins une partie d'un vaisseau sanguin compris à l'intérieur d'un tissu au moyen d'une interférométrie faible cohérence à domaine spectral
JP5135324B2 (ja) * 2006-04-05 2013-02-06 ザ ジェネラル ホスピタル コーポレイション サンプルの偏光感応性光周波数領域画像形成のための方法、構成およびシステム
EP2517616A3 (fr) 2006-05-10 2013-03-06 The General Hospital Corporation Processus, agencements et systèmes pour fournir une imagerie de domaine de fréquence d'un échantillon
WO2007133964A2 (fr) * 2006-05-12 2007-11-22 The General Hospital Corporation Processus, agencements et systèmes pour produire une carte d'épaisseur de couche de fibres sur la base d'images de tomographie à cohérence optique
US7701571B2 (en) * 2006-08-22 2010-04-20 Ahura Scientific Inc. Raman spectrometry assembly
CN101589301B (zh) 2006-08-25 2012-11-07 通用医疗公司 利用体积测定过滤技术来增强光学相干断层成像的装置和方法
WO2008049118A2 (fr) 2006-10-19 2008-04-24 The General Hospital Corporation Dispositif et procédé d'obtention et de fourniture d'informations d'image associées à au moins une portion d' échantillon et permettant de réaliser une telle portion
US7911621B2 (en) 2007-01-19 2011-03-22 The General Hospital Corporation Apparatus and method for controlling ranging depth in optical frequency domain imaging
US20080206804A1 (en) * 2007-01-19 2008-08-28 The General Hospital Corporation Arrangements and methods for multidimensional multiplexed luminescence imaging and diagnosis
US7949019B2 (en) 2007-01-19 2011-05-24 The General Hospital Wavelength tuning source based on a rotatable reflector
EP2602651A3 (fr) 2007-03-23 2014-08-27 The General Hospital Corporation Procédés, agencements et appareil pour utiliser un laser à balayage de longueur d'ondes utilisant un balayage angulaire et des procédures de dispersion
US10534129B2 (en) 2007-03-30 2020-01-14 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
WO2008131082A1 (fr) 2007-04-17 2008-10-30 The General Hospital Corporation Appareil et procédés de mesure des vibrations à l'aide de techniques d'endoscopie spectralement codées
US8115919B2 (en) 2007-05-04 2012-02-14 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with a sample using optical microscopy
JP5917803B2 (ja) 2007-07-31 2016-05-18 ザ ジェネラル ホスピタル コーポレイション 高速ドップラー光周波数領域撮像法のためのビーム走査パターンを放射するシステムおよび方法
EP2191254B1 (fr) 2007-08-31 2017-07-19 The General Hospital Corporation Systeme et procede pour une microscopie par fluorescence a auto-interference, et support lisible par ordinateur associe à ceux-ci
US20090131801A1 (en) * 2007-10-12 2009-05-21 The General Hospital Corporation Systems and processes for optical imaging of luminal anatomic structures
WO2009059034A1 (fr) 2007-10-30 2009-05-07 The General Hospital Corporation Système et procédé permettant une détection de mode de gaine
JP5339535B2 (ja) * 2007-11-22 2013-11-13 国立大学法人京都工芸繊維大学 デジタルホログラフィ装置及び位相板アレイ
US11123047B2 (en) 2008-01-28 2021-09-21 The General Hospital Corporation Hybrid systems and methods for multi-modal acquisition of intravascular imaging data and counteracting the effects of signal absorption in blood
US9332942B2 (en) * 2008-01-28 2016-05-10 The General Hospital Corporation Systems, processes and computer-accessible medium for providing hybrid flourescence and optical coherence tomography imaging
EP2274572A4 (fr) 2008-05-07 2013-08-28 Gen Hospital Corp Système, procédé et support informatique permettant le suivi du mouvement des vaisseaux lors d'un examen en microscopie tridimensionnelle des artères coronaires
WO2009155536A2 (fr) 2008-06-20 2009-12-23 The General Hospital Corporation Coupleur fondu de fibres optiques et procédé associé
WO2010009136A2 (fr) 2008-07-14 2010-01-21 The General Hospital Corporation Appareil et procédés d'endoscopie couleur
JP5731394B2 (ja) 2008-12-10 2015-06-10 ザ ジェネラル ホスピタル コーポレイション 光サブサンプリングを通じて、光コヒーレンストモグラヒィーのイメージング深度範囲を伸ばすためのシステム、装置及び方法
WO2010085775A2 (fr) 2009-01-26 2010-07-29 The General Hospital Corporation Système, procédé et support accessible par ordinateur permettant de fournir une microscopie de super-résolution à large champ
CN102308444B (zh) 2009-02-04 2014-06-18 通用医疗公司 利用高速光学波长调谐源的设备和方法
US9351642B2 (en) 2009-03-12 2016-05-31 The General Hospital Corporation Non-contact optical system, computer-accessible medium and method for measurement at least one mechanical property of tissue using coherent speckle technique(s)
BR112012001042A2 (pt) 2009-07-14 2016-11-22 Gen Hospital Corp equipamento e método de medição do fluxo de fluído dentro de estrutura anatômica.
ES2831223T3 (es) 2010-03-05 2021-06-07 Massachusetts Gen Hospital Aparato para proporcionar radiación electromagnética a una muestra
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9557154B2 (en) 2010-05-25 2017-01-31 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
EP2575591A4 (fr) 2010-06-03 2017-09-13 The General Hospital Corporation Appareil et procédé pour dispositifs de structures d'imagerie, dans ou sur un ou plusieurs organes luminaux
US9510758B2 (en) 2010-10-27 2016-12-06 The General Hospital Corporation Apparatus, systems and methods for measuring blood pressure within at least one vessel
WO2012149175A1 (fr) 2011-04-29 2012-11-01 The General Hospital Corporation Moyens pour déterminer des propriétés physiques et/ou optiques résolues en profondeur de milieux de diffusion
WO2013013049A1 (fr) 2011-07-19 2013-01-24 The General Hospital Corporation Systèmes, procédés, appareils et supports accessibles par ordinateur permettant de produire une compensation de dispersion en mode polarisation dans la tomographie à cohérence optique
US10241028B2 (en) 2011-08-25 2019-03-26 The General Hospital Corporation Methods, systems, arrangements and computer-accessible medium for providing micro-optical coherence tomography procedures
EP2769491A4 (fr) 2011-10-18 2015-07-22 Gen Hospital Corp Appareil et procédés de production et/ou d'utilisation de retard(s) optique(s) de recirculation
WO2013148306A1 (fr) 2012-03-30 2013-10-03 The General Hospital Corporation Système d'imagerie, procédé et fixation distale permettant une endoscopie à champ de vision multidirectionnel
WO2013177154A1 (fr) 2012-05-21 2013-11-28 The General Hospital Corporation Appareil, dispositif et procédé pour microscopie par capsule
JP6227652B2 (ja) 2012-08-22 2017-11-08 ザ ジェネラル ホスピタル コーポレイション ソフトリソグラフィを用いてミニチュア内視鏡を製作するためのシステム、方法、およびコンピュータ・アクセス可能媒体
WO2014120791A1 (fr) 2013-01-29 2014-08-07 The General Hospital Corporation Appareil, systèmes et procédés pour donner des informations sur la valvule aortique
US11179028B2 (en) 2013-02-01 2021-11-23 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
JP6378311B2 (ja) 2013-03-15 2018-08-22 ザ ジェネラル ホスピタル コーポレイション 物体を特徴付ける方法とシステム
WO2014186353A1 (fr) 2013-05-13 2014-11-20 The General Hospital Corporation Détection de la phase et de l'amplitude d'une fluorescence auto-interférente
EP3021735A4 (fr) 2013-07-19 2017-04-19 The General Hospital Corporation Détermination de mouvement oculaire au moyen d'une imagerie de la rétine avec rétroaction d'un mouvement de l'oeil par imagerie de la rétine et fournir des informations en retour pour l'acquisition de signaux venant de la rétine
WO2015009932A1 (fr) 2013-07-19 2015-01-22 The General Hospital Corporation Appareil d'imagerie et procédé utilisant une endoscopie à champ de vision multidirectionnel
EP3025173B1 (fr) 2013-07-26 2021-07-07 The General Hospital Corporation Appareil avec dispositif laser utilisant de la dispersion optique pour applications en tomographie en cohérence optique dans le domaine de fourier
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
WO2015116986A2 (fr) 2014-01-31 2015-08-06 The General Hospital Corporation Système et procédé pour faciliter une imagerie volumétrique manuelle et/ou automatique avec un retour de tension ou d'effort en temps réel au moyen d'un dispositif d'imagerie amarré
WO2015153982A1 (fr) 2014-04-04 2015-10-08 The General Hospital Corporation Appareil et procédé de commande de la propagation et/ou de la transmission d'un rayonnement électromagnétique dans un ou des guides d'ondes flexibles
WO2016015052A1 (fr) 2014-07-25 2016-01-28 The General Hospital Corporation Appareil, dispositifs et procédés d'imagerie in vivo et de diagnostic
JP6762063B2 (ja) * 2015-01-13 2020-09-30 国立大学法人電気通信大学 光学測定装置及び光学測定方法
JP6786858B2 (ja) * 2015-06-19 2020-11-18 株式会社リコー エレクトロクロミック化合物及びエレクトロクロミック組成物
EP3502695A1 (fr) * 2017-12-22 2019-06-26 IMEC vzw Procédé et dispositif pour examiner et évaluer le cardiomyocyte

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867009A (en) * 1972-05-20 1975-02-18 Romuald Pawluczyk Holographic microscope with suppression of coherent noise
US4974920A (en) * 1989-04-17 1990-12-04 General Electric Company Electronic holographic apparatus
JPH06258999A (ja) * 1993-03-04 1994-09-16 Takashi Yabe 三次元物体の画像データ生成装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869593A (en) 1988-04-22 1989-09-26 Zygo Corporation Interferometric surface profiler
US5042949A (en) 1989-03-17 1991-08-27 Greenberg Jeffrey S Optical profiler for films and substrates
US5633714A (en) * 1994-12-19 1997-05-27 International Business Machines Corporation Preprocessing of image amplitude and phase data for CD and OL measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867009A (en) * 1972-05-20 1975-02-18 Romuald Pawluczyk Holographic microscope with suppression of coherent noise
US4974920A (en) * 1989-04-17 1990-12-04 General Electric Company Electronic holographic apparatus
JPH06258999A (ja) * 1993-03-04 1994-09-16 Takashi Yabe 三次元物体の画像データ生成装置

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
BELTRAME F ET AL: "Three Dimensional Imaging of Cells through Digital Holographic Microscopy", PROCEEDINGS OF ISMIII '84: IEEE COMPUTER SOCIETY INTERNATIONAL SYMPOSIUM ON MEDICAL IMAGES AND ICONS, 24 July 1984 (1984-07-24) - 27 July 1984 (1984-07-27), ARLINGTON, US, pages 232 - 235, XP002056887 *
BIANCO B ET AL: "Computer Simulation of 3-D Imaging in Holography: A Preliminary Study for Automated Holographic Microscopy", PROCEEDINGS OF ISMIII '82: FIRST IEEE COMPUTER SOCIETY INTERNATIONAL SYMPOSIUM ON MEDICAL IMAGING AND IMAGE INTERPRETATION, 26 October 1982 (1982-10-26) - 28 October 1982 (1982-10-28), BERLIN, DE, pages 32 - 35, XP002056886 *
FRANÇON M: "Progress in Microscopy, Chapter III: Interference Microscopy in Transmitted Light", 1961, PERGAMON PRESS, XP002055327 *
HARIHARAN P: "quasi-heterodyne hologram interferometry", OPTICAL ENGINEERING, vol. 24, no. 4, July 1985 (1985-07-01), BELLINGHAM US, pages 632 - 638, XP002055325 *
KARPOV V B: "Study of Biological Samples with a Laser Fourier Holographic Microscope", LASER PHYSICS, vol. 4, no. 3, May 1994 (1994-05-01) - June 1994 (1994-06-01), RUSSIA, pages 618 - 623, XP002056885 *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 657 (P - 1842) 13 December 1994 (1994-12-13) *
PLUTA M: "Holographic Microscopy", ADVANCES IN OPTICAL AND ELECTRON MICROSCOPY, ISBN 0-12-029910-0, vol. 10, 1987, ACADEMIC PRESS, LONDON, GB, pages 98 - 213, XP002055326 *
SCHNARS U: "DIRECT PHASE DETERMINATION IN HOLOGRAM INTERFEROMETRY WITH USE OF DIGITALLY RECORDERD HOLOGRAMS", JOURNAL OF THE OPTICAL SOCIETY OF AMERICA - A, vol. 11, no. 7, 1 July 1994 (1994-07-01), pages 2011 - 2015, XP000454775 *
TING-CHUNG POON ET AL: "THREE-DIMENSIONAL MICROSCOPY BY OPTICAL SCANNING HOLOGRAPHY", OPTICAL ENGINEERING, vol. 34, no. 5, 1 May 1995 (1995-05-01), BELLINGHAM, US, pages 1338 - 1343, XP000504997 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053355A1 (fr) * 1998-04-15 1999-10-21 Vincent Lauer Microscope generant une representation tridimensionnelle d'un objet et images generees par ce microscope
FR2788139A1 (fr) * 1999-01-06 2000-07-07 Vincent Lauer Microscope generant une represantation tridimensionnelle d'un objet et images generees par ce microscope
WO2003002972A3 (fr) * 2001-06-29 2003-11-20 Univ Bruxelles Procede et dispositif destines a l'obtention par microscopie d'images en trois dimensions d'un echantillon
US7009700B2 (en) 2001-06-29 2006-03-07 Universite Libre De Bruxelles Method and device for obtaining a sample with three-dimensional microscopy
US7463366B2 (en) 2001-06-29 2008-12-09 Universite Libre De Bruxelles Digital holographic microscope
WO2013018024A1 (fr) 2011-07-29 2013-02-07 Ecole Polytechnique Federale De Lausanne (Epfl) Appareil et procédé pour la tomographie de phase quantitative au moyen de balayage linéaire avec détection cohérente et non cohérente

Also Published As

Publication number Publication date
US6249349B1 (en) 2001-06-19
EP0928433A1 (fr) 1999-07-14

Similar Documents

Publication Publication Date Title
WO1998013715A1 (fr) Microscope generant une representation tridimensionnelle d&#39;un objet
EP1953580B1 (fr) Dispositif de balayage optique confocal
EP2420822B1 (fr) Dispositif destiné à l&#39;obtention par microscopie d&#39;images en trois dimensions d&#39;un échantillon
EP1071974B1 (fr) Microscope generant une representation tridimensionnelle d&#39;un objet et images generees par ce microscope
EP1332397B1 (fr) Microscope pour objets diffractants
EP2915009B1 (fr) Système d&#39;imagerie holographique auto-référencé
EP1524491A1 (fr) Appareil associant un interféromètre et un microscope
EP3201563A1 (fr) Methode et dispositif de microscope diffractive
EP2201420A2 (fr) Système d&#39;illumination structurée d&#39;un échantillon
EP0376837B1 (fr) Procédé et dispositif holographique en lumière incohérente
EP3602201B1 (fr) Dispositifs et methodes d&#39;imagerie optique par holographie numerique hors axe
WO2021260321A1 (fr) Procédé de mise au point pour système d&#39;imagerie holographique
FR2510292A1 (fr) Dispositif servant a explorer point par point un objet
FR2917844A1 (fr) Dispositif interferometrique
FR3081552A1 (fr) Dispositif et procede d&#39;observation d&#39;un echantillon fluorescent par imagerie defocalisee
FR2638858A1 (fr) Dispositif opto-mecanique de projection d&#39;images et d&#39;observation en trois dimensions
FR2777664A1 (fr) Microscope generant une representation tridimensionnelle d&#39;un objet et images generees par ce microscope
EP2486391A1 (fr) Procede et systeme d&#39;analyse structurelle d&#39;un objet par mesure de front d&#39;onde
FR3125893A1 (fr) Système d’éclairage, notamment à usage de microscopie
WO2023194263A1 (fr) Procédés d&#39;imagerie microscopique de fluorescence et dispositifs de correction de front d&#39;onde pour la mise en œuvre de tels procédés
EP0021982A1 (fr) Procédé et dispositif de traitement optique d&#39;objets par intercorrélation avec des anneaux
EP1321760A1 (fr) Procédé de mesure de la fluorescence issue de microéchantillons et dispositif associé
FR2777665A1 (fr) Microscope generant une image tridimensionnelle d&#39;un objet et images generees par ce microscope
Martinez-Leon et al. Short-coherence digital holography for the investigation of 3D microscopic samples
FR2754069A1 (fr) Microscope enregistrant l&#39;onde diffractee par l&#39;objet observe et l&#39;utilisant pour calculer une representation en trois dimensions de cet objet

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997943004

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998515353

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1997943004

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09254869

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 1997943004

Country of ref document: EP