WO1998014986A1 - Verfahren zum trennen zweier materialschichten voneinander und nach diesem verfahren hergestellte elektronische bauelemente - Google Patents

Verfahren zum trennen zweier materialschichten voneinander und nach diesem verfahren hergestellte elektronische bauelemente Download PDF

Info

Publication number
WO1998014986A1
WO1998014986A1 PCT/DE1997/002261 DE9702261W WO9814986A1 WO 1998014986 A1 WO1998014986 A1 WO 1998014986A1 DE 9702261 W DE9702261 W DE 9702261W WO 9814986 A1 WO9814986 A1 WO 9814986A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
layers
layer
substrate
semiconductor layer
Prior art date
Application number
PCT/DE1997/002261
Other languages
English (en)
French (fr)
Inventor
Michael K. Kelly
Oliver Ambacher
Martin Stutzmann
Martin S. Brandt
Roman Dimitrov
Robert Handschuh
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP51615098A priority Critical patent/JP4285776B2/ja
Priority to DE59712803T priority patent/DE59712803D1/de
Priority to EP97911125A priority patent/EP0931332B1/de
Publication of WO1998014986A1 publication Critical patent/WO1998014986A1/de
Priority to US09/283,907 priority patent/US6559075B1/en
Priority to US10/324,848 priority patent/US6740604B2/en
Priority to US10/673,962 priority patent/US6974758B2/en
Priority to US11/244,802 priority patent/US7341925B2/en
Priority to US12/075,599 priority patent/US7713840B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • H01L2221/68331Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding of passive members, e.g. die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68363Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving transfer directly from an origin substrate to a target substrate without use of an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0106Neodymium [Nd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/977Thinning or removal of substrate

Definitions

  • the invention relates to a method for separating two layers of material from one another, in particular for separating a semiconductor layer from a substrate. It also relates to electronic components manufactured using this method.
  • material layers are to be understood as meaning layers made from a single material as well as layer sequences or layer structures made from different materials.
  • the manufacture of products from semiconductors typically requires several process steps, including the processes necessary for the growth of semiconductor crystals and semiconductor layers, and for the locally selective removal and structuring of the layers.
  • Many components consist partly of layer sequences of dissimilar semiconductor materials that are grown epitaxially on a substrate in single crystal form.
  • etching methods are mostly used which remove the semiconductor layers from the semiconductor surface.
  • No. 4,448,636 describes a method for removing metal films from a substrate.
  • the metal film is heated by light.
  • An organic sacrificial layer between the substrate and the metal film is evaporated by the heat supplied and allows the metal layer to be removed.
  • the use of organic intermediate layers cannot be used, in particular, for the epitaxial growth of group III nitrides.
  • DE 35 08 469 C2 describes a method for structuring layer sequences applied to a transparent substrate, in which the layers to be structured are described is irradiated locally through a transparent substrate with laser radiation, which is absorbed in the layer to be structured.
  • the object of the present invention is to provide an improved method for separating two material layers from one another, in which no or only a slight destruction of the free surfaces of the semiconductor layers occurs.
  • a method for separating Group III nitride layers from sapphire or SiC substrates is to be developed.
  • a method for lateral structuring Ren of a semiconductor layer or layer sequence applied to a substrate, consisting of at least one group III nitride material is the subject of claim 2.
  • Advantageous further developments of this method are the subject of subclaims 3 to 15.
  • Components produced by this method are the subject of subclaims 16bis 18th
  • This process is an alternative to wet and dry chemical etching processes, such as those used in semiconductor technology for structuring and manufacturing individual layers and components. It differs from these essentially in that it acts directly on an internal area at the interface between the two layers and not on the free surface. Among other things, this allows the desired structuring depth to be realized directly instead of being determined, for example, by precisely specifying the etching duration and speed. In the method according to the invention, neither of the two material layers is destroyed. This leads to a new possibility of separating layer systems from one another or from the substrate. Freestanding components or layers have advantages in further process steps; they are suitable for. B.
  • the process enables the separation of layers of a layer-substrate system through the direct, very local effect on internal interfaces or areas close to the interface.
  • the method described here can be applied to material systems in which the interface to be separated can be reached with electromagnetic radiation, in particular with light, the radiation is absorbed by a material at this interface, and in which a material is located in the Near the interface can be decomposed by the absorption of light or light pulses.
  • the process is simplified if at least one decomposition product is gaseous.
  • Group III nitrides, oxidic materials and Si 3 N 4 are suitable as semiconductors for this process.
  • Optoelectronic components such as light-emitting diodes and semiconductor lasers and electronic components such as transistors, diodes and surface acoustic wave components are typically produced in large numbers on a single substrate.
  • the described method of light-induced structuring can be used here to separate the individual components.
  • the components can be separated from the substrate by decomposing a sacrificial layer which has to be introduced under or over the surface to be separated during the production process.
  • Thin InGaN layers are particularly suitable for this due to their comparatively small band gap and chemical stability.
  • Freestanding layer structures can also be used as optical waveguides and light couplers. If this is structured with a diffraction grating, the light can be coupled in through the grating. Layers of specific thickness can also be used as optical filters.
  • a lateral structuring of one of the material layers can be produced by means of irradiation through a mask, irradiation of coherent light beams combined with the interference pattern, holography, or by serial or simultaneous irradiation of different selected locations.
  • FIG. 1 shows a schematic illustration of a first exemplary embodiment
  • FIG. 2 shows a schematic representation of a second exemplary embodiment
  • FIG. 3 shows a schematic representation of a third exemplary embodiment
  • FIG. 4 shows a schematic illustration of a fourth exemplary embodiment
  • FIG. 5 shows a schematic representation of a fifth exemplary embodiment
  • FIG. 6 shows a schematic representation of a sixth exemplary embodiment
  • FIG. 7 shows a schematic representation of a seventh exemplary embodiment
  • FIG. 8 shows a schematic representation of an eighth exemplary embodiment
  • Figure 9 is a schematic representation of a ninth embodiment.
  • an interface of a layer system comprising a first 2 and a second semiconductor layer 4 is irradiated with a light beam 1 through the first semiconductor layer 2 and the light in the material of the second semiconductor layer 4 is strongly absorbed.
  • the first semiconductor layer 2 is transparent to the light beam 1.
  • Decomposition mechanisms can e.g. B. sublimation or chemical reactions. The decomposition can be initiated both thermally and photochemically.
  • the separation is particularly supported if gaseous products are formed during the decomposition.
  • the energy absorbed in the semiconductor layer 4 can diffuse into the semiconductor material 2 and for the decomposition to take place there.
  • the relative thickness of the two semiconductor materials can vary widely, and is not necessarily the same size, as shown in FIG. 1.
  • a widely used method of manufacturing semiconductor materials is growing on substrates. With regard to the method presented here, the distinction between substrate and semiconductor material is not relevant. One possibility is that the semiconductor layers 2, 4 have grown on a substrate and the separation takes place at the interface between the semiconductor layers 2, 4.
  • a semiconductor layer 4 is separated from a substrate 6.
  • the semiconductor layer 4 is irradiated with light 1 through the substrate 6 and the radiation energy is absorbed in the material of the semiconductor layer 4.
  • the substrate 6 absorbs the light energy.
  • the Decomposition it is not necessary that the Decomposition takes place in the absorbent part of the structure, the energy can possibly diffuse into the other part and cause the decomposition there.
  • the semiconductor layers 2, 4 can either be homogeneous layers made of a semiconductor or consist of layer sequences of different semiconductors, as indicated by the example of the semiconductor layer 4 in FIG. 3.
  • a concrete component can already be preprocessed or finished in these layer sequences, also in the form of an integrated electronic or optoelectronic circuit. All of these structures are to be understood as semiconductor layers in the sense of the application.
  • a particular one absorbent layer 8 are inserted between a first 2 and a second semiconductor layer 4 or between substrate 6 and semiconductor layer 4 (see FIG. 2).
  • Layer 8 can now itself be decomposed and then act as a sacrificial layer. However, it is also possible that the absorbed energy diffuses and leads to decomposition and separation in the vicinity of the layer 8.
  • the layer 8 can be selected so that it decomposes particularly easily, that is to say in turn acts as a sacrificial layer.
  • a particular advantage of the method described here is that the layer 8 can be crystalline and lattice-matched.
  • the electromagnetic radiation must be selected so that it can reach the interface to be separated and is sufficiently absorbed there. In the simplest case, this can be done by illuminating with a lamp, if necessary after filtering. If the available photon flow is not sufficient, the lighting can also be carried out with a suitable laser.
  • the heat can quickly diffuse away from the area to be decomposed due to the thermal conductivity of the materials. It may therefore be necessary to supply the light energy in the form of very short light pulses in order to still reach the temperature required for the decomposition.
  • the method described here can also be used for lateral structuring. This can be done by different approaches.
  • a focused light beam can be used to sequentially illuminate and disintegrate points of the material that are spatially separated.
  • an irradiation mask 10 can be used, through which selected areas of the sample can be removed.
  • irradiation by holographic methods e.g. illumination with an interference grating
  • interference effects are exploited by means of simultaneous irradiation with more than one coherent beam.
  • the part separated by the interface decomposition can be very thin or small and thus mechanically unstable and difficult to handle. It is possible to apply this part to a new carrier material 14 according to the exemplary embodiment in FIG. 7 before or after the separation, for example by means of adhesive 12. This is shown as an example in the case of fixation before the interface decomposition in FIG. 7. After the separation, a thin semiconductor layer 4 separated from the substrate 6 is then available on the carrier material 14.
  • the method according to the invention can be used particularly advantageously for the production of layer sequences 4 or entire component structures of electronic or optoelectronic components which are formed on non-conductive substrates.
  • layer sequences 4 or entire component structures can be detached from non-conductive substrates in accordance with the exemplary embodiment in FIG. 8. The now exposed, previously substrate-facing sides of the layer sequences 4 or component structures are now easily accessible for electrical contacts 18.
  • a preferred embodiment for semiconductor materials uses a material at the interface to be separated with a smaller band gap than all other layers or materials on one side of the interface.
  • a radiation wavelength is selected for the irradiation, at which the radiation can penetrate to the interface and which is absorbed by the material with a smaller band gap.
  • Decomposition may be inducible in this or an adjacent material.
  • This process is particularly suitable for layers or layer systems of group III nitrides, since this group of materials has some physical properties which are particularly advantageous for this method.
  • group Heating III-nitrides in a spatially limited and controlled manner through the absorption of individual light pulses above their decomposition temperature. At the temperatures generated by the absorption of light pulses, the decomposition of the nitrides and the formation of gaseous nitrogen begin (600 ° C - 1800 ° C, depending on the composition of the nitrides).
  • the melting temperatures of the group III nitrides are far above the decomposition temperatures so that layers and components are not impaired by melting when intense light pulses are absorbed.
  • these semiconductor materials are particularly suitable for optical processes because, depending on the wavelength of the light, they have a well-defined, sharp threshold, a direct band gap at which they change from transparent to completely absorbent. Furthermore, the wavelength at which absorption begins can be varied over a wide spectral range by the mixed crystals of the nitrides (InGaN and AlGaN) (band gaps: InN 1.9 eV, GaN 3.4 eV, A1N 6.2 eV).
  • Group III nitrides are often made on sapphire substrates that are transparent in the entire optical and ultraviolet range. This also makes it possible to illuminate the layers through the substrate.
  • the decomposition is activated thermally, it is important that the heat generated can be concentrated on the interface or the sacrificial layer, on the one hand to minimize the necessary irradiated intensity and on the other hand to exclude undesirable effects on the surrounding material. Since the amount of light generated by the thermal
  • Conductivity of the materials is quickly derived from the hot volume, the necessary temperature must be generated in a very short time. This can be achieved with short laser pulses.
  • the energy absorbed can be determined by the
  • a "Q-switched" pulsed Nd: YAG laser is suitable for structuring and decomposing Group III nitrides.
  • the third harmonic laser line of an Nd: YAG laser can be used as a specific version for the light-induced decomposition of the materials GaN and InGaN (band gaps between 1.9 and 3.4 eV).
  • This laser line is e.g. generated with the aid of a nonlinear optical crystal and has a wavelength of 355 nm (3.5 eV).
  • GaN and InGaN layers absorb these light pulses and can be decomposed.
  • AlGaN layers and the mostly used sapphire substrate are transparent for this wavelength. Freestanding GaN and InGaN layers can be created directly by decomposing the substrate-layer interface.
  • FIG. 7 shows schematically how a GaN layer 4 can be separated from a sapphire substrate 6 polished on both sides.
  • the interface between GaN and sapphire is illuminated through the substrate with a single laser pulse of wavelength 355 nm.
  • the laser radiation is absorbed near the interface to a depth of approximately 100 nm by the GaN, whereby the interface is heated. If temperatures of more than 850 ° C are reached, decomposition of the GaN begins with the formation of nitrogen gas.
  • the energy density is sufficient for complete decomposition at the boundary between substrate 6 and GaN layer 4, as a result of which the bond between substrate 6 and GaN layer 4 in the illuminated area is separated.
  • the sample can be glued to a support disk or film 14 with the layer side using a resin or wax 12 before illumination. If the GaN layer 4 is separated from the substrate 6 by the decomposition reaction, the sapphire substrate 6 can be lifted off and the GaN layer 4 remains on the carrier disk or film 14. return Now the wax or resin can be dissolved in acetone and the GaN layer remains as a free-standing layer.
  • GaN structures When GaN layers are structured by irradiating the interface through a sapphire substrate, GaN structures with non-vertical, that is to say inclined, side surfaces can be produced, which, as shown in FIG. 9, spread from the decomposition site.
  • This behavior can be used, for example, to produce structures 20 which are of a pointed or pyramid shape if the lateral width of the interference grating or of the mask is adapted to the layer thickness. This behavior also supports the production of free-standing layers.
  • Different components from group III nitrides can be structured by the described procedures.
  • the production of periodic grating and surface structures by means of illumination with an interference grating can advantageously be used for the production of Bragg reflectors and distributed feedback lasers based on Group III nitride.
  • Optical dispersion gratings which can possibly also be used for transmitted light, can also be achieved by varying the thickness of the layer by means of structuring with an interference grating. Because of their negative electron affinity, pyramidal structures made of A1N and AlGaN can be used as cold cathode emitters e.g. be used in flat screens.

Abstract

Verfahren zum Trennen zweier Materialschichten voneinander, derart, daß die zwei getrennten Materialschichten im wesentlichen vollständig erhalten bleiben, bei dem durch eine der beiden Materialschichten hindurch eine Grenzfläche zwischen den beiden Materialschichten, an der die Materialschichten getrennt werden sollen, oder ein Bereich in der Nähe dieser Grenzfläche mit elektromagnetischer Strahlung bestrahlt wird, die elektromagnetische Strahlung an der Grenzfläche oder in dem Bereich in der Nähe der Grenzfläche absorbiert wird und durch die Absorption eine Materialzersetzung an der Grenzfläche induziert wird.

Description

Be s ehre ibung
Verfahren zum Trennen zweier aterialschichten voneinander und nach diesem Verfahren hergestellte elektronische Bauele- mente
Die Erfindung bezieht sich auf ein Verfahren zum Trennen zweier Materialschichten voneinander, insbesondere zum Trennen einer Halbleiterschicht von einem Substrat. Weiterhin be- zieht sie sich auf nach diesem Verfahren hergestellte elektronische Bauelemente.
Unter Materialschichten sind hier sowohl Schichten aus einem einzigen Material als auch Schichtenfolgen oder Schichtstruk- turen aus verschiedenen Materialien zu verstehen.
Die Herstellung von Produkten aus Halbleitern, wie elektronische und optoelektronische Bauelemente, bedarf typischerweise mehrerer Prozeßschritte, einschließlich den zum Wachstum von Halbleiterkristallen und Halbleiterschichten notwendigen Prozessen, und zur örtlich selektiven Entfernung und Strukturierung der Schichten. Viele Bauelemente bestehen zum Teil aus Schichtfolgen von ungleichen Halbleitermaterialien, die in Einkristallform epitaktisch auf einem Substrat gewachsen wer- den.
Als Prozeßschritte für die Strukturierung von Halbleiterschichten oder die Trennung zweier Halbleiterschichten voneinander werden meist Ätzverfahren eingesetzt, die die Halb- leiterschichten von der Halbleiteroberfläche her abtragen.
Solche Prozesse verlaufen oft sehr langsam und benötigen korrosive Chemikalien. Darüberhinaus gibt es nicht für jedes der bekannten Halbleiter-Materialsysteme ein Ätzverfahren, das mit einem vertretbaren Aufwand eine Strukturierung entspre- chender Schichten ermöglicht. Insbesondere sind die Halbleitermaterialien Indium-, Gallium- und Aluminiumnitrid (InN, GaN und A1N) und ihre Mischkristalle oder Legierungen, die im folgenden Text mit „Gruppe III- Nitriden" zusammengefaßt werden, sehr schwierig chemisch zu ätzen. In diesen Materialsystemen steht derzeit kein zuverlässiges naßchemisches Ätzverfahren zur Verfügung. Es muß daher das technisch sehr aufwendige Verfahren des Reaktivionen-Ätzens (Trockenätzen) eingesetzt werden. Diese Methode erlaubt aber nur relativ geringe Ätzraten und benötigt gifti- ge und toxische Gase (z.B. Bortrichlorid) . Weil Ätzverfahren auf die Oberfläche wirken, ist es meist nötig, die Ätzrate und -dauer genau zu kontrollieren, um die gewünschte Tiefe zu erreichen.
Weiterhin sind für manche Halbleitermaterialien, zum Beispiel und insbesondere für die Gruppe III-Nitride, Volumenkristalle aus denselben oder gitterangepaßten Halbleitermaterialien nicht oder nur mit großem technischen Aufwand herstellbar. Substrate zum Aufwachsen derartiger Halbleiterschichten ste- hen daher nur sehr beschränkt zur Verfügung. Oftmals werden aus diesem Grund zum Wachstum dieser Halbleiterschichten als Ersatz Substrate aus anderen Materialien und mit unzureichenden Eigenschaften für nachfolgende Prozeßschritte oder für den Betrieb des Bauelements verwendet . Zum Wachstum von Grup- pe III-Nitrid-Schichten sind dies zum Beispiel Saphir- oder Siliziumkarbid-Substrate .
Diese „Ersatz "-Substrate bringen Probleme wie unpassende Atomgitterabstände und unterschiedliche thermische Ausdeh- nungskoeffizienten mit sich, die sich negativ auf die Materialqualität der auf ihnen gewachsenen Halbleiterschichten auswirken. Darüber hinaus sind manche Prozeßschritte, wie das bekannte Spalten von Halbleiterschichten zur Herstellung von Resonatorspiegeln von Laserdioden aus GaAs, mit diesen Substraten schwierig oder gar unmöglich. Um diese Probleme zu bewältigen sind bislang verschiedene zum Ätzen alternative Verfahren bekannt geworden, um Halbleiterschichten oder andere Schichten voneinander oder von einem störenden Substrat zu trennen.
In E. Yablonovitch et al . , Appl . Phys . Lett . 51, 2222 (1987), U.S. Patent 4,846,931, Thomas J. Gmitter and E. Yablonovitch, 11. Juli 1989 ist vorgeschlagen, im Materialsystem GaAs/AlAs beim Herstellungsprozeß der Bauelemente AlAs-Opferschichten zu implementieren, die naßchemisch aufgelöst werden können. Dies ermöglicht die Trennung von Schichten oder Strukturen vom Substrat. Diese Methode ist wegen der geringen lateralen Ätzgeschwindigkeit aber sehr zeitaufwendig. Für Gruppe III- Nitride gibt es darüberhinaus keine naßchemische Ätze.
Im US 4,448,636 ist eine Methode zur Entfernung von Metallfilmen von einem Substrat beschrieben. Hierbei wird der Metallfilm durch Licht erhitzt. Eine organische Opferschicht zwischen Substrat und Metallfilm wird durch die zugeführte Wärme verdampft und erlaubt die Entfernung der Metallschicht. Die Verwendung von organischen Zwischenschichten ist insbesondere beim epitaktischen Wachstum von Gruppe III -Nitriden nicht einsetzbar.
Eine vergleichbare Methode wurde zur Entfernung von Siliziumdioxid-Schichten von Galliumarsenid ist in Y.-F. Lu, Y. Aoya- gi, Jpn. J. Appl. Phys. 34, L1669 (1995) beschrieben. Auch in diesem Falle wird eine organische Zwischenschicht durch Lichtabsorption erhitzt und die Si02 Schicht abgehoben.
Aus Y.-F. Lu et al . , Jpn. J. Appl. Phys. 33, L324 (1994) ist weiterhin die Separation von Si02-Streifen von einer GaAs- Schicht mit Hilfe eines Excimer-Lasers bekannt.
In der DE 35 08 469 C2 ist ein Verfahren zum Strukturieren von auf einem transparenten Substrat aufgebrachten Schicht- folgen beschrieben, bei dem die zu strukturierenden Schichten lokal durch ein transparentes Substrat hindurch mit Laserstrahlung bestrahlt wird, die in der zu strukturierenden Schicht absorbiert wird.
Weiterhin ist die sogenannte Laser-Ablation auf viele Materialsysteme angewandt worden um Material zu entfernen. Jedoch wird bei dieser Methode immer die Oberfläche destruktiv abgetragen, eine Trennung in zwei weiter zu verwendende Teile ist nicht möglich.
Spezifisch für Gruppe III-Nitride ist in Leonard und Bedair, Appl. Phys. Lett. 68, 794 (1996), das Ätzen von GaN mit einem Laserpuls unter HCl-Gas beschrieben und auf eine photochemische Reaktion unter Beteiligung von Salzsäure zurückgeführt.
In Morimoto, J. Electrochem. Soc . 121, 1383 (1974) und Groh et al . , physica Status solidi (a) 26, 353 (1974)) ist die thermisch aktivierte Zersetzung von GaN beschrieben.
In Kelly et al . , Appl. Phys. Lett. 69 (12), 16. Sept. 1996, S. 1749-1751 ist gezeigt, daß Gruppe III-Nitride laserinduziert zu thermisch aktivierter Zersetzung gebracht werden können. Es handelt sich bei diesem Verfahren jedoch ebenfalls um ein auf die Oberfläche der Halbleiterschicht wirkendes Verfahren, das insbesondere auch zu der Zerstörung der Oberfläche führt .
Die Aufgabe der vorliegenden Erfindung besteht darin, ein verbessertes Verfahren zum Trennen zweier Materialschichten voneinander zur Verfügung zu stellen, bei dem keine oder nur eine geringfügige Zerstörung der freien Oberflächen der Halbleiterschichten auftritt. Es soll insbesondere ein Verfahren zum Trennen von Gruppe III-Nitrid-Schichten von Saphir- oder SiC-Substraten entwickelt werden.
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruches 1 gelöst. Ein Verfahren zum lateralen Strukturie- ren einer auf einem Substrat aufgebrachten Halbleiterschicht oder -schichtenfolge, bestehend aus mindestens einem Gruppe- III-Nitrid-Material ist Gegenstand des Anspruches 2. Vorteilhafte Weiterbildungen dieser Verfahrens sind Gegenstand der Unteransprüche 3 is 15 Bevorzugt nach diesem Verfahren hergestellte Bauelemente sind Gegenstand der Unteransprüche 16bis 18
Erfindungsgemäß ist bei dem Verfahren der eingangs genannten Art vorgesehen, daß durch eine der beiden Materialschichten hindurch die Grenzfläche oder ein Bereich in der Nähe der Grenzfläche zwischen den beiden Schichten mit elektromagnetischer Strahlung bestrahlt wird und daß eine Materialschicht an oder in der Nähe der Grenzfläche durch Absorption der Strahlung zersetzt wird.
Dieses Verfahren ist eine Alternative zu naß- und trockenchemischen Ätzprozessen, wie sie in der Halbleitertechnologie zur Strukturierung und Herstellung von einzelnen Schichten und Bauelementen eingesetzt werden. Es unterscheidet sich von diesen im Wesentlichen dadurch, daß es direkt auf einen internen Bereich an der Grenzfläche zwischen den beiden Schichten und nicht auf die freie Oberfläche wirkt. Dies erlaubt es unter anderem, die gewünschte Strukturierungstiefe direkt zu realisieren statt sie beispielsweise mittels genauer Vorgabe der Ätzdauer und -geschwindigkeit zu bestimmen. Bei dem erfindungsgemäßen Verfahren erfolgt auch keine Zerstörung einer der beiden Materialschichten. Dies führt zu einer neuen Möglichkeit, Schichtsysteme voneinander oder von dem Substrat zu lösen. Freistehende Bauelemente oder Schichten besitzen Vorteile bei weiteren Prozeßschritten; sie eignen sich z. B. als Substrate für die Homoepitaxie ohne die Probleme der Gitterfehlanpassung und der Differenzen in den thermischen Ausdehnungskoeffizienten, oder zur Herstellung von optischen Bau- elementen (Laserdioden) durch die Möglichkeit des Spaltens, unabhängig von der Substratspaltbarkeit . Der Transfer von Schichten, Schichtsystemen und Bauelementen aus Gruppe III- Nitrid-Materialien auf andere Substrate ermöglicht die Kompatibilität und Integration von Gruppe III-Nitriden mit anderen technologisch relevanten Halbleitersystemen wie Silizium.
Das Verfahren ermöglicht die Trennung von Schichten eines Schicht-Substrat-Systems durch die direkte, sehr lokale Wirkung auf interne Grenzflächen oder grenzflächennahe Bereiche. Allgemein kann das hier beschriebene Verfahren auf Material- Systeme angewendet werden, in denen die zu trennende Grenz- fläche mit elektromagnetischer Strahlung, insbesondere mit Licht erreichbar ist, die Strahlung von einem Material an dieser Grenzfläche absorbiert wird, und in denen sich ein Material in der Nähe der Grenzfläche durch die Absorption von Licht oder Lichtpulsen zersetzen läßt. Das Verfahren wird er- leichert, wenn mindestens ein Zersetzungsprodukt gasförmig ist. Als Halbleiter für diesen Prozeß eignen sich u.a. die Gruppe III-Nitride, oxidische Materialien, und Si3N4.
Optoelektronische Bauelemente wie Leuchtdioden und Halblei- terlaser und elektronische Bauelemente wie Transistoren, Dioden, Oberflächenwellen-Bauelemente werden typischerweise in großer Zahl auf einem einzelnen Substrat hergestellt. Hier kann das beschriebene Verfahren der lichtinduzierten Strukturierung zur Trennung der einzelnen Bauelemente verwendet wer- den. Die Separation der Bauelemente vom Substrat kann wie bereits erwähnt durch die Zersetzung einer Opferschicht erfolgen, die während des Fertigungsprozesses unter oder über die zu trennende Fläche eingebracht werden muß. Hierzu eignen sich dünne InGaN Schichten aufgrund ihrer vergleichsweise ge- ringen Bandlücke und chemischen Stabilität besonders.
Die Produktion freistehender Schichten und Schichtfolgen erlaubt den Transfer von Schichten aus Gruppe III-Nitriden auf andere Substrate (z.B. Silizium) die sich in ihren struktu- rellen, mechanischen und thermischen Eigenschaften stark von denen der Gruppe III-Nitride unterscheiden können. Die Verfahrensweise erlaubt die Kombination von Leuchtdioden und Halbleiterlasern aus Gruppe III-Nitriden mit konventionellen Trägermaterialien zur Herstellung flacher Bildschirme oder die Integration solcher Bauelemente in Schaltungen und integrierte Schaltkreise . Freistehende Schichtstrukturen können auch als optische Wellenleiter, und Lichtkoppler benutzt werden. Wenn dies mit einem Beugungsgitter strukturiert ist, kann das Licht durch das Gitter eingekoppelt werden. Schichten von spezifischer Dicke können auch als optische Filter angewendet werden.
Mittels Bestrahlung durch eine Maske, Bestrahlung mit dem Interferenzmuster zusammengebrachter kohärenter Lichtstrahlen, Holographie, oder durch serielle oder gleichzeitige Bestrahlung verschiedener ausgewählter Stellen kann eine laterale Strukturierung einer der Materialschichten erzeugt werden.
Wesentliche Schritte bei dem erfindungsgemäßen Verfahren sind:
(i) Identifizierung, Auswahl oder Herstellung einer zu tren- nenden Grenzfläche in dem gewünschten Schichtsystem, welche mit der zur Trennung zu benutzenden Strahlung erreichbar ist, (ii) Identifizierung eines Materials, oder Einbau eines Materials als Opferschicht an der Grenzfläche, das das eingestrahlte Licht absorbiert, oder (iii) Identifizierung oder Einbau eines Materials als Opferschicht in der Grenzflächennähe, das durch das absorbierte Licht oder der daraus resultierenden Energie zur Zersetzung gebracht werden kann und bei der Zersetzung ein gasförmiges Produkt in ausreichender Menge erzeugt und (iv) Beleuchtung mit Strahlung einer ausgewählten Wellenlänge und Intensität, so daß die Strahlung hauptsächlich von der zu trennenden Grenzfläche oder der Opferschicht absorbiert wird und dabei die Zersetzungsreaktion anregt, wobei im Falle transparenter Substrate die Grenzfläche oder Opferschicht auch durch das Substrat hindurch beleuchtet werden kann. Das erfindungsgemäße Verfahren ist insbesondere auch anwendbar zur Strukturierung von Halbleiterschichten, bestehend aus Gruppe III-Nitriden, die z. B. auf SiC- oder Saphir- Substraten aufgebracht sind.
Weitere Vorteile und vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens ergeben sich aus den im Folgenden in Verbindung mit den Figuren 1 bis 9 beschriebenen Ausführungs- beispielen. Es zeigen: Figur 1 eine schematische Darstellung eines ersten Ausfüh- rungsbeispieleε ,
Figur 2 eine schematische Darstellung eines zweiten Ausfüh- rungsbeispieles , Figur 3 eine schematische Darstellung eines dritten Ausfüh- rungsbeispieles,
Figur 4 eine schematische Darstellung eines vierten Ausführungsbeispieles ,
Figur 5 eine schematische Darstellung eines fünften Ausführungsbeispieles , Figur 6 eine schematische Darstellung eines sechsten Ausfüh- rungsbeispieles ,
Figur 7 eine schematische Darstellung eines siebten Ausführungsbeispieles , Figur 8 eine schematische Darstellung eines achten Ausfüh- rungsbeispieles und
Figur 9 eine schematische Darstellung eines neunten Ausführungsbeispieles .
Bei dem Ausführungsbeispiel von Figur 1 wird eine Grenzfläche eines Schichtsystems aus einer ersten 2 und einer zweiten Halbleiterschicht 4 mit einem Lichtstrahl 1 durch die erste Halbleiterschicht 2 hindurch bestrahlt und das Licht im Material der zweiten Halbleiterschicht 4 stark absorbiert. Die erste Halbleiterschicht 2 ist für den Lichtstrahl 1 durchläs- sig. In den Figuren sind gleiche oder gleichwirkende Bestandteile jeweils mit denselben Bezugszeichen versehen.
Die in der zweiten Halbleiterschicht 4 vorwiegend in der Nähe der Grenzfläche zwischen den beiden Halbleiterschichten 2,4 absorbierte Energie induziert z. B. eine Zersetzung des Halbleitermaterials der zweiten Halbleiterschicht 4 in diesem Bereich, so daß es zu einer Trennung der beiden Halbleiterschichten 2,4 kommt. Zersetzungsmechanismen können z. B. Sublimation oder chemische Reaktionen sein. Die Zersetzung kann dabei sowohl thermisch wie photochemisch initiiert werden.
Die Trennung wird besonders unterstützt, wenn bei der Zersetzung gasförmige Produkte entstehen.
Es ist jedoch auch möglich, daß die in der Halbleiterchicht 4 absorbierte Energie in das Halbleitermaterial 2 diffundiert und dort die Zersetzung stattfindet. Die relative Dicke der beiden Halbleitermaterialien kann dabei stark variieren, und ist nicht notwendigerweise, wie in der Figur 1 dargestellt, gleich groß.
Eine viel verwendete Methode Halbleitermaterialien herzustellen ist das Aufwachsen auf Substraten. Im Bezug auf das hier dargestellte Verfahren ist die Unterscheidung zwischen Substrat und Halbleitermaterial nicht relevant. Eine Möglich- keit ist, daß die Halbleiterschichten 2,4 auf einem Substrat gewachsen sind, und die Trennung an der Grenzfläche zwischen den Halbleiterschichten 2,4 stattfindet.
Bei dem Ausführungsbeispiel von Figur 2 wird eine Halbleiter- schicht 4 von einem Substrat 6 getrennt. Dazu erfolgt die Bestrahlung der Halbleiterschicht 4 mit Licht 1 durch das Substrat 6 hindurch und die Strahlungsenergie wird im Material der Halbleiterschicht 4 absorbiert. Je nach den Absorpti- onseigenschaften kann es jedoch auch möglich sein, die Grenz- fläche durch die Halbleiterschicht 4 hindurch zu beleuchten, so daß das Substrat 6 die Lichtenergie absorbiert . Wie oben bereits dargestellt ist es jedoch nicht notwendig, daß die Zersetzung in dem absorbierenden Teil der Struktur stattfindet, die Energie kann ggf. auch in den anderen Teil diffundieren und dort die Zersetzung bewirken.
Die Halbleiterschichten 2,4 können entweder jeweils homogene Schichten aus einem Halbleiter sein, oder aus Schichtfolgen verschiedener Halbleiter bestehen, wie am Beispiel der Halb- leiterschicht 4 in Figur 3 angedeutet. In diesen Schichtfolgen kann bereits ein konkretes Bauelement vor- oder fertig- prozessiert vorliegen, auch in Form eines integrierten elektronischen oder optoelektronischen Schaltkreises. Alle diese Strukturen sollen im Sinne der Anmeldung als Halbleiterschichten verstanden werden.
Um die Absorption des Lichtes an der zu trennenden Grenzfläche zu verbessern und gezielt zu beeinflussen, kann entsprechend dem vierten Ausführungsbeispiel gemäß Figur 4 zwischen eine erste 2 und eine zweite Halbleiterschicht 4 oder zwischen Substrat 6 und Halbleiterschicht 4 (man vgl. Figur 2) eine besonders absorbierende Schicht 8 eingefügt werden. Die absorbierende Schicht 8, z. B. eine Halbleiterschicht, besitzt beispielsweise eine optische Bandlücke, die kleiner ist, als die der umgebenden Materialien. Die Schicht 8 kann nun selbst zersetzt werden und dann als eine Opferschicht wirken. Es ist aber auch möglich, daß die absorbierte Energie diffundiert und in der Nähe der Schicht 8 zu einer Zersetzung und Trennung führt .
Möglich ist auch, daß die Energie in der Halbleiterschicht 4 absorbiert wird, diese jedoch zu stabil ist um zersetzt zu werden. In diesem Falle kann die Schicht 8 so gewählt werden, daß sie sich besonders einfach zersetzt, also wiederum als Opferschicht fungiert. Ein besonderer Vorteil des hier beschriebenen Verfahrens ist, daß die Schicht 8 kristallin und gitterangepaßt sein kann. Die elektromagnetische Strahlung muß so gewählt werden, daß es die zu trennende Grenzfläche erreichen kann und dort ausreichend absorbiert wird. Dies kann im einfachsten Fall durch Beleuchtung mit einer Lampe, ggf. nach Filterung, geschehen. Reicht der so zur Verfügung stehende Photonenfluß nicht aus, kann die Beleuchtung auch mit einem geeigneten Laser durchgeführt werden.
Besonders im Fall einer thermischen Zersetzung kann wegen der thermischen Leitfahigkiet der Materialien schnell die Wärme aus dem zu zersetzenden Bereich wegdiffundieren. Es kann deshalb notwendig sein, die Lichtenergie in Form sehr kurzer Lichtpulse zuzuführen, um trotzdem die für die Zersetzung notwendige Temperatur zu erreichen.
Das hier beschriebene Verfahren kann auch zur lateralen Strukturierung eingesetzt werden. Dies kann durch verschiedene Vorgehensweisen realisiert werden. Ein fokusierter Lichtstrahl kann benutzt werden, um sequentiell räumlich getrennte Punkte des Materials zu beleuchten und zur Zersetzung zu bringen. Wie bei dem Ausfuhrungsbeispiel von Figur 5 gezeigt, kann eine Bestrahlungsmaske 10 eingesetzt werden, durch die ausgewählte Flächen der Probe entfernt werden können.
Ebenso ist entsprechend dem Ausfuhrungsbeispiel von Figur 6 die Bestrahlung durch holographische Methoden (z.B. Beleuchtung mit einem Interferenzgitter) möglich, bei der Interferenzeffekte ausgenutzt werden mittels gleichtzeitiger Bestrahlung mit mehr als einem kohärenten Strahl .
Der durch die Grenzflächenzersetzung abgetrennte Teil kann sehr dünn oder klein sein und somit mechanisch instabil und schlecht zu handhaben. Es ist möglich, diesen Teil gemäß dem Ausführungsbeispiel von Figur 7 vor oder nach der Trennung z.B. mittels Klebstoff 12 auf ein neues Trägermaterial 14 aufzubringen. Dies ist für den Fall des Fixierens vor der Grenzflächenzersetzung in Figur 7 exemplarisch dargestellt. Nach der Trennung hat man dann eine vom Substrat 6 getrennte dünne Halbleiterschicht 4 auf dem Trägermaterial 14 zur Verfügung .
Besonders vorteilhaft kann das erfindungsgemäße Verfahren für die Herstellung von Schichtfolgen 4 oder ganzen Bauelementstrukturen elektronischer oder optoelektronischer Bauelemente eingesetzt werden, die auf nicht-leitenden Substraten ausgebildet werden. In diesen Fällen ist es häufig schwierig, zu- sätzlich zu dem jeweils an der substratabgewandten Seite der Schichtfolge 4 oder Bauelementstruktur angeordneten elektrischen Kontakt 16 an eine εubstratnah angeordnete Halbleiterschicht einen elektrischen Kontakt anzuordnen. Dazu sind meist komplizierte Ätzprozessen und die Bildung von Me- sastrukturen erforderlich. Mit dem hier beschriebenen Verfahren lassen sich gemäß dem Ausführungsbeispiel von Figur 8 Schichtfolgen 4 oder ganze BauelementStrukturen von nichtleitenden Substraten ablösen. Die nun freigelegten, vorher substratzugewandten Seiten der Schichtfolgen 4 oder Bauele- mentstrukturen sind nun für elektrische Kontakte 18 einfach zugänglich.
Die Realisierung dieses Verfahrens ist von dem Materialsystem abhängig. Eine bevorzugte Ausführungsform für Halbleitermate- rialien benutzt ein Material an der zu trennenden Grenzfläche mit kleinerer Bandlücke als alle anderen Schichten oder Materialien auf einer Seite der Grenzfläche. Zur Bestrahlung wird eine Strahlungswellenlänge ausgewählt, bei der die Strahlung bis zur Grenzfläche eindringen kann, und die von dem Material mit kleinerer Bandlücke absorbiert wird. Dadurch muß eine
Zersetzung in diesem oder einem benachbarten Material induzierbar sein.
Dieser Prozeß ist besonders für Schichten oder Schichtsysteme der Gruppe III-Nitride geeignet, da diese Materialgruppe einige für dieses Verfahren besondersn vorteilhafte physikalische Eigenschaften aufweist. Erstens ist es möglich, Gruppe III-Nitride durch die Absorption von einzelnen Lichtpulsen über ihre Zersetzungsstemperatur räumlich begrenzt und kontrolliert zu heizen. Bei den durch die Absorption von Lichtpulsen erzeugten Temperaturen setzt die Zersetzung der Nitri- de und die Bildung von gasförmigem Stickstoff ein (600°C - 1800°C, abhängig von der Zusammensetzung der Nitride) . Zweitens ist es für die beschriebene Verfahrensweise hilfreich, daß die Schmelztemperaturen der Gruppe III-Nitride weit über den Zersetzungstemperaturen liegen, so daß es bei der Absorp- tion intensiver Lichtpulse nicht zur Beeinträchtigung von Schichten und Bauelementen durch Schmelzen kommt. Drittens sind diese Halbleitermaterialien besonders für optische Prozesse geeignet, da sie in Abhängigkeit von der Wellenlänge des Lichts eine wohl definierte, scharfe Schwelle besitzen, eine direkte Bandlücke, an der sie von durchlässig zu vollständig absorbierend wechseln. Weiterhin läßt sich die Wellenlänge, bei der die Absorption einsetzt, durch die Mischkristalle der Nitride (InGaN und AlGaN) über einen weiten Spektralbereich variieren (Bandlücken: InN 1.9 eV, GaN 3.4 eV, A1N 6.2 eV) . Außerdem werden Gruppe III-Nitride oft auf Saphirsubstraten hergestellt, die im gesamten optischen und ultravioletten Bereich transparent sind. Dies macht auch eine Beleuchtung der Schichten durch das Substrat möglich.
Falls die Zersetzung thermisch aktiviert wird, ist es wichtig, daß die entstehende Wärme auf die Grenzfläche oder die Opferschicht konzentriert werden kann, einerseits um die nötige eingestrahlte Intensität zu minimieren, andererseits um unerwünschte Effekte auf das umgebende Material auszuschlie- ßen. Da die lichterzeugte Wärmemenge durch die thermische
Leitfähigkeit der Materialien schnell aus den heißen Volumen abgeleitet wird, muß die notwendige Temperatur in einer sehr kurzen Zeit erzeugt werden. Dies kann durch kurze Laserpulse realisiert werden. Für typische Wärmeleitfähigkeiten der Gruppe III-Nitride kann die absorbierte Energie durch die
Verwendung von Laserpulsen mit einer Dauer von 1 ns bis 10 ns auf die Eindringtiefe des absorbierten Lichts oder die Dicke der Opferschicht konzentriert werden. Für die Strukturierung und Zersetzung von Gruppe III-Nitriden eignet sich z.B. ein „Q-switched" gepulster Nd:YAG Laser.
Als spezifische Ausführung für die lichtinduzierte Zersetzung der Materialien GaN und InGaN (Bandlücken zwischen 1.9 und 3.4 eV) kann die dritte harmonische Laserlinie eines Nd:YAG Lasers verwendet werden. Diese Laserlinie wird z.B. mit Hilfe eines nichtlinearen optischen Kristalls erzeugt und besitzt eine Wellenlänge von 355 nm (3.5 eV) . GaN und InGaN Schichten absorbieren diese Lichtpulse und können zur Zersetzung gebracht werden. AlGaN Schichten und das meistens verwendete Saphirsubstrat sind für diese Wellenlänge transparent. Freistehende GaN und InGaN Schichten können direkt durch die Zer- setzung der Grenzfläche Substrat-Schicht erzeugt werden.
AlGaN- Schichten und -Bauelemente können durch die lichtinduzierte Zersetzung von dünnen GaN oder InGaN Opferschichten vom Substrat gelöst werden. In Figur 7 ist εchematisch gezeigt wie eine GaN-Schicht 4 von einem beidseitig polierten Saphir-Substrat 6 zu trennen ist. Die Grenzfläche zwischen GaN und Saphir wird durch das Substrat hindurch mit einem einzelnen Laserpuls der Wellenlänge 355 nm beleuchtet. Die Laserstrahlung wird nahe der Grenzfläche bis zu einer Tiefe von ungefähr 100 nm vom GaN absorbiert, wodurch die Grenzflä- ehe geheizt wird. Werden Temperaturen von mehr als 850°C erreicht, setzt die Zersetzung des GaN unter Bildung von Stickstoffgas ein. Für Pulsenergien über ungefähr 0,2 J/cm2 genügt die Energiedichte zur vollständigen Zersetzung an der Grenze zwischen Substrat 6 und GaN-Schicht 4, wodurch die Bindung zwischen dem Substrat 6 und der GaN-Schicht 4 in der beleuchteten Fläche getrennt wird. Um die freistehende Schicht zu stabilisieren kann die Probe vor der Beleuchtung mit der Schichtseite unter Verwendung eines Harzes oder Wachses 12 auf eine Trägerscheibe oder Folie 14 geklebt sein. Ist die GaN-Schicht 4 durch die Zersetzungsreaktion vom Substrat 6 getrennt, läßt sich das Saphir-Substrat 6 abheben und die GaN-Schicht 4 bleibt auf der Trägerscheibe oder Folie 14 zu- rück. Nun läßt sich das Wachs oder das Harz in Aceton lösen und die GaN-Schicht bleibt als freistehende Schicht zurück.
Bei der Strukturierung von GaN-Schichten mittels Bestrahlung der Grenzfläche durch ein Saphirsubstrat hindurch können GaN- Strukturen mit nicht vertikalen, also schrägen Seitenflächen erzeugt werden, die sich, wie in Figur 9 gezeigt vom Zersetzungsort ausbreiten. Dieses Verhalten kann beispielsweise zum Erzeugen spitz- oder pyramidformig ausgebildeter Strukturen 20 ausgenutzt werden, wenn die laterale Breite des Interferenzgitters oder der Maske an die Schichtdicke angepaßt ist. Dieses Verhalten unterstützt auch die Herstellung freistehender Schichten.
Verschiedene Bauelemente aus Gruppe III-Nitriden können durch die beschriebene Verfahrensweisen strukturiert werden. Die Fertigung von periodischen Strichgittern und Oberflächenstrukturen mittels Beleuchtung mit einem Interferenzgitter kann vorteilhaft zur Herstellung von Bragg-Reflektoren und Distributed Feedback Lasern auf Gruppe III-Nitrid-Basis genutzt werden. Auch optische Dispersionsgitter, die ggf. auch für transmittiertes Licht benutzt werden können, lassen sich durch eine Variation der Dicke der Schicht mittels Strukturierung mit einem Interferenzgitter erzielen. Pyramidale Strukturen aus A1N und AlGaN können wegen ihrer negativen Elektronenaffinität als Kaltkathodenemitter z.B. in flachen Bildschirmen eingesetzt werden.

Claims

Patentansprüche
1. Verfahren zum Trennen zweier Materialschichten voneinander, derart, daß die zwei getrennten Materialschichten im We- sentlichen vollständig erhalten bleiben, dadurch gekennzeichnet , daß durch eine der beiden Materialschichten hindurch eine Grenzfläche zwischen den beiden Materialschichten, an der die Materialschichten getrennt werden sollen, oder ein Bereich in der Nähe dieser Grenzfläche mit elektromagnetischer Strahlung bestrahlt wird, daß die elektromagnetische Strahlung an der Grenzfläche oder in dem Bereich in der Nähe der Grenzfläche absorbiert wird und daß durch die Absorption eine Material - Zersetzung an der Grenzfläche induziert wird.
2. Verfahren zum lateralen Strukturieren einer auf einem Substrat aufgebrachten Halbleiterschicht oder - schichtenfolge, bestehend aus mindestens einem Gruppe- III- Nitrid-Material , dadurch gekennzeichnet , daß durch das Substrat oder durch die Halbleiterschicht oder -schichtenfolge hindurch eine Grenzfläche zwischen Substrat und Halbleiterschicht oder -schichtenfolge, oder ein Bereich in der Nähe dieser Grenzfläche mit elektromagnetischer Strah- lung bestrahlt wird, daß die elektromagnetische Strahlung an der Grenzfläche oder in dem Bereich in der Nähe der Grenzfläche absorbiert wird und daß durch die Absorption eine Materialzersetzung an der Grenzfläche induziert wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet , daß an der Grenzfläche eine Opferschicht angeordnet wird, die die Strahlung absorbiert und zersetzt wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet , daß die Opferschicht so gewählt wird, daß ih- re optische Bandlücke kleiner als die Bandlücke einer der beiden Materialschichten ist.
5. Verfahren nach Anspruch 1, 2 oder 4, dadurch g e - kennzeichnet , daß die Energie der absorbierten Strahlung in Form von Wärme die Zersetzung und damit die Trennung der beiden Materialschichten induziert.
6. Verfahren nach Anspruch 1 und 4 oder 5 oder nach Anspruch 2 und 4 oder 5, dadurch gekennzeichnet , daß die
Strahlung in einem Teil einer der Materialschichten absorbiert wird und die Energie in Form von Wärme in eine temperaturempfindliche Opferschicht diffundiert, die dadurch zersetzt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet , daß die Energie der absorbierten Strahlung eine Zersetzung der Grenzfläche oder der Opferschicht induziert, die zu einer Gasentwicklung auf Grund von chemischen Reaktionen, Sublimation, oder sonstigem Austreten von Gasen führt .
8. Verfahren nach Anspruch 1 oder nach Anspruch 1 und einem der Ansprüche 3 bis 7, dadurch gekennzeichnet , daß eine der Materialschichten ein Substrat und die andere der Materialschichten eine Halbleiterschicht, eine Halbleiterschichtenfolge oder eine Halbleiterschichtstruktur ist und daß die elektromagnetische Strahlung durch das Substrat hindurch auf die Grenzfläche bzw. auf die Opferschicht fällt.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet , daß die Halbleiterschicht, Halbleiterschichtenfolge oder Bauelementstruktur zur mechanischen Stabilisierung an einem Trägermaterial angebracht wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet , daß die Bestrahlung der Grenzfläche, des Bereiches in der Nähe der Grenzfläche bzw. der Opferschicht in Form eines oder mehrerer Lichtpulse realisiert wird.
11. Verfahren nach einem der Anspruch 1 bis 10, dadurch gekennzeichnet , daß mit Hilfe zweier oder mehrerer kohärenter Laserstrahlen ein Interferenzmuster in der Bestrahlung realisiert wird, das zu einer erhöhten lokalen Lichtintensität führt.
12. Verfahren nach Anspruch 8 oder nach Anspruch 8 und einem der Ansprüche 9 bis 11, dadurch gekennzeichnet , daß die Halbleiterεchicht , die Halbleiterschichtenfolge oder die Halbleiterschichtstruktur oder ggf. die Opferschicht vollständig oder teilweise aus GaN, AIN, InN, oder ihren Mischkristallen, oder aus Schichtfolgen, Schichtstrukturen oder Bauelementstrukturen aus diesen Materialien bestehen.
13. Verfahren nach Anspruch 2 oder 12, dadurch g e - kennzeichnet , daß das Substrat im Wesentlichen aus
Saphir, LiA102, LiGa02, MgAl204, ScAlMg04 oder SiC besteht.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet , daß eine Schicht aus GaN oder Ir^-Ga^x N von einem Saphirsubstrat getrennt wird mittels Beleuchtung durch das Substrat mit der dritten Harmonischen eines Nd:YAG Lasers bei der Wellenlänge von 355 nm.
15. Verfahren nach Anspruch 14, dadurch gekenn- zeichnet , daß der Nd:YAG Laser mit Hilfe eines Q-
Switches gepulst wird.
16. Freistehende BauelementStrukturen, eingeschlossen Dioden, lichtemittierende Dioden (LEDs) , Halbleiterlaser, Transisto- ren, und Detektoren, dadurch gekennzeichnet , daß die Bauelementstrukturen während oder nach ihrer Herstellung mittels eines Verfahrens gemäß Anspruch 8 oder Ansprch 8 und einem der Ansprüche 9 bis 15 vom Substrat getrennt worden sind.
17. Halbleiterlaser nach Anspruch 16, dadurch ge- kennzeichnet , daß ein optischer Resonator des Halbleiterlasers durch Spalten der freistehenden Bauelementstruktur entlang kristallographischer Netzebenen der epitaktischen Schichten hergestellt wird.
18. Optische Bauelemente, eingeschlossen Beugungsgitter, Dünnschichtfilter, Lichtkoppler und Wellenleiter, dadurch gekennzeichnet , daß sie während oder nach ihrer Herstellung mittels eines Verfahrens gemäß Anspruch 1 oder gemäß Anspruch 1 und einem der Ansprüche 3 bis 15 vom Substrat ge- trennt worden sind.
PCT/DE1997/002261 1996-10-01 1997-10-01 Verfahren zum trennen zweier materialschichten voneinander und nach diesem verfahren hergestellte elektronische bauelemente WO1998014986A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP51615098A JP4285776B2 (ja) 1996-10-01 1997-10-01 基板から半導体層、半導体積層物又は半導体層構造体を分離する方法
DE59712803T DE59712803D1 (de) 1996-10-01 1997-10-01 Verfahren zum trennen zweier materialschichten voneinander
EP97911125A EP0931332B1 (de) 1996-10-01 1997-10-01 Verfahren zum trennen zweier materialschichten voneinander
US09/283,907 US6559075B1 (en) 1996-10-01 1999-04-01 Method of separating two layers of material from one another and electronic components produced using this process
US10/324,848 US6740604B2 (en) 1996-10-01 2002-12-20 Method of separating two layers of material from one another
US10/673,962 US6974758B2 (en) 1996-10-01 2003-09-29 Method of producing a light-emitting diode
US11/244,802 US7341925B2 (en) 1996-10-01 2005-10-06 Method for transferring a semiconductor body from a growth substrate to a support material
US12/075,599 US7713840B2 (en) 1996-10-01 2008-03-11 Electronic components produced by a method of separating two layers of material from one another

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19640594.7 1996-10-01
DE19640594.7A DE19640594B4 (de) 1996-10-01 1996-10-01 Bauelement

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/283,907 Continuation US6559075B1 (en) 1996-10-01 1999-04-01 Method of separating two layers of material from one another and electronic components produced using this process

Publications (1)

Publication Number Publication Date
WO1998014986A1 true WO1998014986A1 (de) 1998-04-09

Family

ID=7807639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/002261 WO1998014986A1 (de) 1996-10-01 1997-10-01 Verfahren zum trennen zweier materialschichten voneinander und nach diesem verfahren hergestellte elektronische bauelemente

Country Status (6)

Country Link
US (5) US6559075B1 (de)
EP (1) EP0931332B1 (de)
JP (1) JP4285776B2 (de)
DE (2) DE19640594B4 (de)
TW (1) TW409295B (de)
WO (1) WO1998014986A1 (de)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091632A (ja) * 1998-09-14 2000-03-31 Hewlett Packard Co <Hp> 応力緩和された積層構造を形成する方法
DE19849658A1 (de) * 1998-10-29 2000-05-04 Deutsch Zentr Luft & Raumfahrt Verfahren und Einrichtung zum Ablösen eines Ausschnittes einer Materialschicht
JP2000196197A (ja) * 1998-12-30 2000-07-14 Xerox Corp 成長基板が除去された窒化物レ―ザダイオ―ドの構造及び窒化物レ―ザダイオ―ドアレイ構造の製造方法
JP2000244068A (ja) * 1998-12-22 2000-09-08 Pioneer Electronic Corp 窒化物半導体レーザ及びその製造方法
US6176925B1 (en) * 1999-05-07 2001-01-23 Cbl Technologies, Inc. Detached and inverted epitaxial regrowth & methods
JP2003051611A (ja) * 2001-08-03 2003-02-21 Sony Corp 半導体素子の製造方法及び半導体素子
WO2003065420A2 (de) * 2002-01-31 2003-08-07 Osram Opto Semiconductors Gmbh Verfahren zur herstellung eines halbleiterbauelements
DE10243757A1 (de) * 2002-01-31 2004-04-01 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von Halbleiterchips
WO2004068572A3 (de) * 2003-01-31 2004-09-30 Osram Opto Semiconductors Gmbh Verfahren zur herstellung eines halbleiterbauelements
US6831302B2 (en) 2003-04-15 2004-12-14 Luminus Devices, Inc. Light emitting devices with improved extraction efficiency
US6861335B2 (en) 2001-11-13 2005-03-01 Matsushita Electric Industrial Co., Ltd. Method for fabricating a semiconductor device that includes light beam irradiation to separate a semiconductor layer from a single crystal substrate
WO2005071763A2 (de) 2004-01-26 2005-08-04 Osram Opto Semiconductors Gmbh Dünnfilm-led mit einer stromaufweitungsstruktur
US6927164B2 (en) 2001-08-03 2005-08-09 Sony Corporation Method of fabricating semiconductor device and semiconductor device
US7083993B2 (en) 2003-04-15 2006-08-01 Luminus Devices, Inc. Methods of making multi-layer light emitting devices
US7166871B2 (en) 2003-04-15 2007-01-23 Luminus Devices, Inc. Light emitting systems
US7170100B2 (en) 2005-01-21 2007-01-30 Luminus Devices, Inc. Packaging designs for LEDs
DE102005055293A1 (de) * 2005-08-05 2007-02-15 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von Halbleiterchips und Dünnfilm-Halbleiterchip
WO2007025499A1 (de) 2005-09-01 2007-03-08 Osram Opto Semiconductors Gmbh Verfahren zum lateralen zertrennen eines halbleiterwafers und optoelektronisches bauelement
WO2007037504A1 (ja) * 2005-09-29 2007-04-05 Sumitomo Chemical Company, Limited 3−5族窒化物半導体の製造方法及び発光素子の製造方法
US7211831B2 (en) 2003-04-15 2007-05-01 Luminus Devices, Inc. Light emitting device with patterned surfaces
DE102006007293A1 (de) * 2006-01-31 2007-08-02 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen eines Quasi-Substratwafers und ein unter Verwendung eines solchen Quasi-Substratwafers hergestellter Halbleiterkörper
US7329587B2 (en) 2003-06-24 2008-02-12 Osram Opto Semiconductors Gmbh Method for the production of semi-conductor chips
US7341880B2 (en) 2003-09-17 2008-03-11 Luminus Devices, Inc. Light emitting device processes
DE102007004304A1 (de) 2007-01-29 2008-07-31 Osram Opto Semiconductors Gmbh Dünnfilm-Leuchtdioden-Chip und Verfahren zur Herstellung eines Dünnfilm-Leuchtdioden-Chips
DE102007025092A1 (de) 2007-05-30 2008-12-04 Osram Opto Semiconductors Gmbh Lumineszenzdiodenchip
US7491565B2 (en) * 1999-02-05 2009-02-17 Philips Lumileds Lighting Company, Llc III-nitride light emitting devices fabricated by substrate removal
CN100464438C (zh) * 2000-04-26 2009-02-25 奥斯兰姆奥普托半导体有限责任公司 发光半导体元件的制造方法
US7524737B2 (en) 2004-12-23 2009-04-28 Osram Opto Semiconductors Gmbh Method of fabricating a semiconductor chip with a nitride compound semiconductor material
DE102008011809A1 (de) 2007-12-20 2009-06-25 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
DE102008013898A1 (de) 2007-12-14 2009-06-25 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement, Anordnung und Verfahren zur Herstellung eines optoelektronischen Bauelements
WO2009106028A1 (de) 2008-02-29 2009-09-03 Osram Opto Semiconductors Gmbh Optoelektronisches bauelement und verfahren zur herstellung eines optoelektronischen bauelements
DE102008006745B3 (de) * 2008-01-30 2009-10-08 Siltronic Ag Verfahren zur Herstellung einer Halbleiterstruktur
US7649266B2 (en) 2004-07-30 2010-01-19 Osram Opto Semiconductors Gmbh Method for producing semiconductor chips using thin film technology, and semiconductor chip using thin film technology
US7692207B2 (en) 2005-01-21 2010-04-06 Luminus Devices, Inc. Packaging designs for LEDs
US7897423B2 (en) 2004-04-29 2011-03-01 Osram Opto Semiconductors Gmbh Method for production of a radiation-emitting semiconductor chip
JP2011055003A (ja) * 1998-12-30 2011-03-17 Bluestone Innovations Holdings Lp 成長基板が除去された窒化物レーザダイオードの構造及び窒化物レーザダイオードアレイ構造の製造方法
DE102010048617A1 (de) 2010-10-15 2012-04-19 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer Halbleiterschichtenfolge, strahlungsemittierender Halbleiterchip und optoelektronisches Bauteil
WO2012147436A1 (ja) 2011-04-25 2012-11-01 住友電気工業株式会社 GaN系半導体デバイスの製造方法
US8530256B2 (en) 2011-03-11 2013-09-10 Stanley Electric Co., Ltd. Production process for semiconductor device
US8581279B2 (en) 2005-06-02 2013-11-12 Osram Opto Semiconductors Gmbh Light-emitting diode chip comprising a contact structure
TWI417159B (zh) * 2010-07-20 2013-12-01 Ushio Electric Inc Laser stripping method
US8664028B2 (en) 2011-03-11 2014-03-04 Stanley Electric Co., Ltd. Semiconductor device production process
US8728937B2 (en) 2004-07-30 2014-05-20 Osram Opto Semiconductors Gmbh Method for producing semiconductor chips using thin film technology
US8772808B2 (en) 2011-03-22 2014-07-08 Stanley Electric Co., Ltd. Semiconductor light emitting element and manufacturing method thereof
DE102013100711A1 (de) 2013-01-24 2014-07-24 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer Vielzahl optoelektronischer Bauelemente und optoelektronisches Bauelement
US8872330B2 (en) 2006-08-04 2014-10-28 Osram Opto Semiconductors Gmbh Thin-film semiconductor component and component assembly
US9219200B2 (en) 2003-04-15 2015-12-22 Luminus Devices, Inc. Large emission area light-emitting devices
WO2018029046A1 (en) 2016-08-12 2018-02-15 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic component and an optoelectronic component

Families Citing this family (191)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679152A (en) * 1994-01-27 1997-10-21 Advanced Technology Materials, Inc. Method of making a single crystals Ga*N article
US6958093B2 (en) * 1994-01-27 2005-10-25 Cree, Inc. Free-standing (Al, Ga, In)N and parting method for forming same
DE19640594B4 (de) * 1996-10-01 2016-08-04 Osram Gmbh Bauelement
US7319247B2 (en) * 2000-04-26 2008-01-15 Osram Gmbh Light emitting-diode chip and a method for producing same
WO2001082384A1 (de) * 2000-04-26 2001-11-01 Osram Opto Semiconductors Gmbh Strahlungsmittierendes halbleiterbauelement und herstellungsverfahren
DE10051465A1 (de) * 2000-10-17 2002-05-02 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Halbleiterbauelements auf GaN-Basis
TWI289944B (en) * 2000-05-26 2007-11-11 Osram Opto Semiconductors Gmbh Light-emitting-diode-element with a light-emitting-diode-chip
FR2840731B3 (fr) * 2002-06-11 2004-07-30 Soitec Silicon On Insulator Procede de fabrication d'un substrat comportant une couche utile en materiau semi-conducteur monocristallin de proprietes ameliorees
US8507361B2 (en) 2000-11-27 2013-08-13 Soitec Fabrication of substrates with a useful layer of monocrystalline semiconductor material
US6864158B2 (en) * 2001-01-29 2005-03-08 Matsushita Electric Industrial Co., Ltd. Method of manufacturing nitride semiconductor substrate
JP4595207B2 (ja) * 2001-01-29 2010-12-08 パナソニック株式会社 窒化物半導体基板の製造方法
EP1244139A2 (de) 2001-03-23 2002-09-25 Matsushita Electric Industrial Co., Ltd. Verfahren zur Herstellung eines Halbleiterfilms
JP2003007616A (ja) * 2001-03-23 2003-01-10 Matsushita Electric Ind Co Ltd 半導体膜の製造方法
US6723165B2 (en) 2001-04-13 2004-04-20 Matsushita Electric Industrial Co., Ltd. Method for fabricating Group III nitride semiconductor substrate
JP2002343717A (ja) * 2001-05-18 2002-11-29 Matsushita Electric Ind Co Ltd 半導体結晶の製造方法
JP4576755B2 (ja) * 2001-06-18 2010-11-10 パナソニック株式会社 半導体基板の製造方法及び装置
JP4035971B2 (ja) * 2001-09-03 2008-01-23 豊田合成株式会社 半導体結晶の製造方法
US6881261B2 (en) * 2001-11-13 2005-04-19 Matsushita Electric Industrial Co., Ltd. Method for fabricating semiconductor device
DE10203795B4 (de) * 2002-01-31 2021-12-09 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines Halbleiterbauelements
US7008839B2 (en) 2002-03-08 2006-03-07 Matsushita Electric Industrial Co., Ltd. Method for manufacturing semiconductor thin film
JP4015865B2 (ja) * 2002-03-22 2007-11-28 松下電器産業株式会社 半導体装置の製造方法
JP2004014938A (ja) * 2002-06-10 2004-01-15 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
US20040140474A1 (en) * 2002-06-25 2004-07-22 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device, method for fabricating the same and method for bonding the same
US6841802B2 (en) 2002-06-26 2005-01-11 Oriol, Inc. Thin film light emitting diode
US6750071B2 (en) * 2002-07-06 2004-06-15 Optical Communication Products, Inc. Method of self-aligning an oxide aperture with an annular intra-cavity contact in a long wavelength VCSEL
US20060180804A1 (en) * 2003-01-31 2006-08-17 Peter Stauss Thin-film semiconductor component and production method for said component
US7262550B2 (en) * 2003-04-15 2007-08-28 Luminus Devices, Inc. Light emitting diode utilizing a physical pattern
US7667238B2 (en) * 2003-04-15 2010-02-23 Luminus Devices, Inc. Light emitting devices for liquid crystal displays
US7105861B2 (en) * 2003-04-15 2006-09-12 Luminus Devices, Inc. Electronic device contact structures
US7084434B2 (en) * 2003-04-15 2006-08-01 Luminus Devices, Inc. Uniform color phosphor-coated light-emitting diode
US7521854B2 (en) * 2003-04-15 2009-04-21 Luminus Devices, Inc. Patterned light emitting devices and extraction efficiencies related to the same
US7274043B2 (en) * 2003-04-15 2007-09-25 Luminus Devices, Inc. Light emitting diode systems
US20040259279A1 (en) * 2003-04-15 2004-12-23 Erchak Alexei A. Light emitting device methods
US7074631B2 (en) * 2003-04-15 2006-07-11 Luminus Devices, Inc. Light emitting device methods
EP2264798B1 (de) * 2003-04-30 2020-10-14 Cree, Inc. Hochleistungs-Lichtemitter-Verkapselungen mit kompakter Optik
KR100483049B1 (ko) * 2003-06-03 2005-04-15 삼성전기주식회사 수직구조 질화갈륨계 발광다이오드의 제조방법
FR2856192B1 (fr) * 2003-06-11 2005-07-29 Soitec Silicon On Insulator Procede de realisation de structure heterogene et structure obtenue par un tel procede
KR100531178B1 (ko) * 2003-07-08 2005-11-28 재단법인서울대학교산학협력재단 중간 질화물 반도체 에피층의 금속상 전환을 이용한질화물 반도체 에피층 성장 방법
WO2005008740A2 (en) * 2003-07-14 2005-01-27 Allegis Technologies, Inc. Methods of processing of gallium nitride
US7456035B2 (en) 2003-07-29 2008-11-25 Lumination Llc Flip chip light emitting diode devices having thinned or removed substrates
JP2005064188A (ja) * 2003-08-11 2005-03-10 Sumitomo Electric Ind Ltd 基板の回収方法および再生方法、ならびに半導体ウエハの製造方法
US7052978B2 (en) * 2003-08-28 2006-05-30 Intel Corporation Arrangements incorporating laser-induced cleaving
DE10340409B4 (de) * 2003-09-02 2007-05-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Trägerwafer und Verfahren zum Bearbeiten eines Halbleiterwafers unter Verwendung eines Trägerwafers
US7344903B2 (en) * 2003-09-17 2008-03-18 Luminus Devices, Inc. Light emitting device processes
US6947224B2 (en) * 2003-09-19 2005-09-20 Agilent Technologies, Inc. Methods to make diffractive optical elements
FR2860248B1 (fr) * 2003-09-26 2006-02-17 Centre Nat Rech Scient Procede de realisation de substrats autosupportes de nitrures d'elements iii par hetero-epitaxie sur une couche sacrificielle
US7012279B2 (en) * 2003-10-21 2006-03-14 Lumileds Lighting U.S., Llc Photonic crystal light emitting device
US7323256B2 (en) 2003-11-13 2008-01-29 Cree, Inc. Large area, uniformly low dislocation density GaN substrate and process for making the same
US7450311B2 (en) 2003-12-12 2008-11-11 Luminus Devices, Inc. Optical display systems and methods
JP4954712B2 (ja) 2003-12-24 2012-06-20 ジーイー ライティング ソリューションズ エルエルシー 窒化物フリップチップからのサファイヤのレーザ・リフトオフ
US20050205883A1 (en) * 2004-03-19 2005-09-22 Wierer Jonathan J Jr Photonic crystal light emitting device
US7202141B2 (en) * 2004-03-29 2007-04-10 J.P. Sercel Associates, Inc. Method of separating layers of material
US7332365B2 (en) * 2004-05-18 2008-02-19 Cree, Inc. Method for fabricating group-III nitride devices and devices fabricated using method
US7791061B2 (en) * 2004-05-18 2010-09-07 Cree, Inc. External extraction light emitting diode based upon crystallographic faceted surfaces
US6956246B1 (en) * 2004-06-03 2005-10-18 Lumileds Lighting U.S., Llc Resonant cavity III-nitride light emitting devices fabricated by growth substrate removal
JP4771510B2 (ja) 2004-06-23 2011-09-14 キヤノン株式会社 半導体層の製造方法及び基板の製造方法
WO2006005062A2 (en) * 2004-06-30 2006-01-12 Cree, Inc. Chip-scale methods for packaging light emitting devices and chip-scale packaged light emitting devices
US7534633B2 (en) * 2004-07-02 2009-05-19 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
US20090023239A1 (en) * 2004-07-22 2009-01-22 Luminus Devices, Inc. Light emitting device processes
US7442964B2 (en) * 2004-08-04 2008-10-28 Philips Lumileds Lighting Company, Llc Photonic crystal light emitting device with multiple lattices
US20060038188A1 (en) * 2004-08-20 2006-02-23 Erchak Alexei A Light emitting diode systems
KR20070046174A (ko) * 2004-08-31 2007-05-02 스미또모 가가꾸 가부시키가이샤 금속 기판 위의 GaN계 발광 소자
US7259402B2 (en) * 2004-09-22 2007-08-21 Cree, Inc. High efficiency group III nitride-silicon carbide light emitting diode
US8174037B2 (en) * 2004-09-22 2012-05-08 Cree, Inc. High efficiency group III nitride LED with lenticular surface
US7737459B2 (en) * 2004-09-22 2010-06-15 Cree, Inc. High output group III nitride light emitting diodes
US8513686B2 (en) * 2004-09-22 2013-08-20 Cree, Inc. High output small area group III nitride LEDs
US20060073621A1 (en) * 2004-10-01 2006-04-06 Palo Alto Research Center Incorporated Group III-nitride based HEMT device with insulating GaN/AlGaN buffer layer
US8288942B2 (en) * 2004-12-28 2012-10-16 Cree, Inc. High efficacy white LED
US7932111B2 (en) 2005-02-23 2011-04-26 Cree, Inc. Substrate removal process for high light extraction LEDs
US20070045640A1 (en) 2005-08-23 2007-03-01 Erchak Alexei A Light emitting devices for liquid crystal displays
US7125734B2 (en) 2005-03-09 2006-10-24 Gelcore, Llc Increased light extraction from a nitride LED
JPWO2006104063A1 (ja) * 2005-03-28 2008-09-04 国立大学法人東京工業大学 窒化物系深紫外発光素子およびその製造方法
US8163575B2 (en) 2005-06-17 2012-04-24 Philips Lumileds Lighting Company Llc Grown photonic crystals in semiconductor light emitting devices
TWI422044B (zh) * 2005-06-30 2014-01-01 Cree Inc 封裝發光裝置之晶片尺度方法及經晶片尺度封裝之發光裝置
JP2007019318A (ja) * 2005-07-08 2007-01-25 Sumitomo Chemical Co Ltd 半導体発光素子、半導体発光素子用基板の製造方法及び半導体発光素子の製造方法
US8674375B2 (en) * 2005-07-21 2014-03-18 Cree, Inc. Roughened high refractive index layer/LED for high light extraction
US7608471B2 (en) * 2005-08-09 2009-10-27 Avago Technologies General Ip (Singapore) Pte. Ltd. Method and apparatus for integrating III-V semiconductor devices into silicon processes
DE102005041643A1 (de) * 2005-08-29 2007-03-01 Forschungsverbund Berlin E.V. Halbleitersubstrat sowie Verfahren und Maskenschicht zur Herstellung eines freistehenden Halbleitersubstrats mittels der Hydrid-Gasphasenepitaxie
DE102005052358A1 (de) * 2005-09-01 2007-03-15 Osram Opto Semiconductors Gmbh Verfahren zum lateralen Zertrennen eines Halbleiterwafers und optoelektronisches Bauelement
US20080099777A1 (en) * 2005-10-19 2008-05-01 Luminus Devices, Inc. Light-emitting devices and related systems
US20070093037A1 (en) * 2005-10-26 2007-04-26 Velox Semicondutor Corporation Vertical structure semiconductor devices and method of fabricating the same
JP2007158133A (ja) * 2005-12-06 2007-06-21 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子の製造方法
JP2009524247A (ja) * 2006-01-20 2009-06-25 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド ルミファー膜を空間的に分離することにより固体光発光素子におけるスペクトル内容をシフトすること
US8441179B2 (en) 2006-01-20 2013-05-14 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
JP2007221051A (ja) * 2006-02-20 2007-08-30 Sanyo Electric Co Ltd 窒化物系半導体素子の製造方法
DE102006061167A1 (de) 2006-04-25 2007-12-20 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement
DE102006033502A1 (de) * 2006-05-03 2007-11-15 Osram Opto Semiconductors Gmbh Strahlungsemittierender Halbleiterkörper mit Trägersubstrat und Verfahren zur Herstellung eines solchen
JP2009538536A (ja) 2006-05-26 2009-11-05 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド 固体発光デバイス、および、それを製造する方法
US8596819B2 (en) 2006-05-31 2013-12-03 Cree, Inc. Lighting device and method of lighting
US8698184B2 (en) 2011-01-21 2014-04-15 Cree, Inc. Light emitting diodes with low junction temperature and solid state backlight components including light emitting diodes with low junction temperature
WO2008024385A2 (en) * 2006-08-23 2008-02-28 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
TWI319893B (en) * 2006-08-31 2010-01-21 Nitride semiconductor substrate, method for forming a nitride semiconductor layer and method for separating the nitride semiconductor layer from the substrate
US8188573B2 (en) * 2006-08-31 2012-05-29 Industrial Technology Research Institute Nitride semiconductor structure
US20080121902A1 (en) * 2006-09-07 2008-05-29 Gelcore Llc Small footprint high power light emitting package with plurality of light emitting diode chips
US20100224890A1 (en) * 2006-09-18 2010-09-09 Cree, Inc. Light emitting diode chip with electrical insulation element
WO2008070607A1 (en) 2006-12-04 2008-06-12 Cree Led Lighting Solutions, Inc. Lighting assembly and lighting method
WO2008070604A1 (en) * 2006-12-04 2008-06-12 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US7727790B2 (en) * 2007-01-30 2010-06-01 Goldeneye, Inc. Method for fabricating light emitting diodes
US8110425B2 (en) 2007-03-20 2012-02-07 Luminus Devices, Inc. Laser liftoff structure and related methods
JP2007184644A (ja) * 2007-04-02 2007-07-19 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
US8163582B2 (en) * 2007-04-23 2012-04-24 Goldeneye, Inc. Method for fabricating a light emitting diode chip including etching by a laser beam
FR2915625B1 (fr) * 2007-04-27 2009-10-02 Soitec Silicon On Insulator Procede de transfert d'une couche epitaxiale
US8278190B2 (en) * 2007-05-30 2012-10-02 Luminus Devices, Inc. Methods of forming light-emitting structures
CN101743488B (zh) * 2007-07-17 2014-02-26 科锐公司 具有内部光学特性结构的光学元件及其制造方法
US7863635B2 (en) * 2007-08-07 2011-01-04 Cree, Inc. Semiconductor light emitting devices with applied wavelength conversion materials
US8617997B2 (en) * 2007-08-21 2013-12-31 Cree, Inc. Selective wet etching of gold-tin based solder
US11114594B2 (en) 2007-08-24 2021-09-07 Creeled, Inc. Light emitting device packages using light scattering particles of different size
US20090108269A1 (en) * 2007-10-26 2009-04-30 Led Lighting Fixtures, Inc. Illumination device having one or more lumiphors, and methods of fabricating same
US20090140279A1 (en) * 2007-12-03 2009-06-04 Goldeneye, Inc. Substrate-free light emitting diode chip
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages
JP5026946B2 (ja) * 2007-12-19 2012-09-19 古河電気工業株式会社 窒化物半導体単結晶基板製造方法
TWI411125B (zh) * 2008-03-05 2013-10-01 Advanced Optoelectronic Tech 三族氮化合物半導體發光元件之製造方法及其結構
TWI447783B (zh) * 2008-04-28 2014-08-01 Advanced Optoelectronic Tech 三族氮化合物半導體發光元件之製造方法及其結構
TWI407491B (zh) * 2008-05-09 2013-09-01 Advanced Optoelectronic Tech 分離半導體及其基板之方法
US9048169B2 (en) * 2008-05-23 2015-06-02 Soitec Formation of substantially pit free indium gallium nitride
CN102084460A (zh) * 2008-05-30 2011-06-01 奥塔装置公司 用于化学气相沉积反应器的方法和设备
JP2011522426A (ja) 2008-05-30 2011-07-28 アルタ デバイセズ,インコーポレイテッド エピタキシャルリフトオフ積層体及び方法
DE102008050538B4 (de) 2008-06-06 2022-10-06 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Bauelement und Verfahren zu dessen Herstellung
TW201003981A (en) * 2008-07-14 2010-01-16 Advanced Optoelectronic Tech Substrate structure and method of removing the substrate structure
KR100993088B1 (ko) * 2008-07-22 2010-11-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
WO2010015878A2 (en) * 2008-08-06 2010-02-11 S.O.I. Tec Silicon On Insulator Technologies Process for modifying a substrate
JP5567569B2 (ja) * 2008-08-27 2014-08-06 ソイテック 選択した格子定数または制御した格子定数を有する半導体材料の層を使用する半導体構造または半導体デバイスを製造する方法
US8236583B2 (en) 2008-09-10 2012-08-07 Tsmc Solid State Lighting Ltd. Method of separating light-emitting diode from a growth substrate
KR100902150B1 (ko) * 2008-09-23 2009-06-10 (주)큐엠씨 발광소자의 제조를 위한 장치 및 방법
CN102246273A (zh) * 2008-10-10 2011-11-16 奥塔装置公司 连续进给式化学气相沉积
CA2739327A1 (en) * 2008-10-10 2010-04-15 Alta Devices, Inc. Mesa etch method and composition for epitaxial lift off
KR100982993B1 (ko) * 2008-10-14 2010-09-17 삼성엘이디 주식회사 Ⅲ족 질화물 반도체의 표면 처리 방법, ⅲ족 질화물 반도체및 그의 제조 방법 및 ⅲ족 질화물 반도체 구조물
US8017415B2 (en) * 2008-11-05 2011-09-13 Goldeneye, Inc. Dual sided processing and devices based on freestanding nitride and zinc oxide films
CN101740331B (zh) * 2008-11-07 2012-01-25 东莞市中镓半导体科技有限公司 利用固体激光器无损剥离GaN与蓝宝石衬底的方法
KR20110099029A (ko) * 2008-12-08 2011-09-05 알타 디바이씨즈, 인크. 에피택셜 리프트 오프를 위한 다중 스택 증착
EP2359393B1 (de) * 2008-12-17 2019-05-29 Alta Devices, Inc. Vorrichtungen und verfahren zur epitaxialschichtanhebung auf bandbasis
CA2756857C (en) 2009-02-27 2015-08-11 Alta Devices, Inc. Tiled substrates for deposition and epitaxial lift off processes
KR101527261B1 (ko) 2009-04-03 2015-06-08 오스람 옵토 세미컨덕터스 게엠베하 광전 소자의 제조 방법, 광전 소자, 및 복수 개의 광전 소자를 포함하는 소자 장치
TWI405257B (zh) * 2009-04-08 2013-08-11 Advanced Optoelectronic Tech 分離基板與半導體層的方法
US8921876B2 (en) 2009-06-02 2014-12-30 Cree, Inc. Lighting devices with discrete lumiphor-bearing regions within or on a surface of remote elements
EP2454761A1 (de) 2009-07-17 2012-05-23 Soitec Bondingverfahren mit einer bondingschicht auf zink-, silikon- und sauerstoffbasis und entsprechende strukturen
US9293667B2 (en) 2010-08-19 2016-03-22 Soraa, Inc. System and method for selected pump LEDs with multiple phosphors
US8933644B2 (en) 2009-09-18 2015-01-13 Soraa, Inc. LED lamps with improved quality of light
US9834860B2 (en) * 2009-10-14 2017-12-05 Alta Devices, Inc. Method of high growth rate deposition for group III/V materials
US11393683B2 (en) 2009-10-14 2022-07-19 Utica Leaseco, Llc Methods for high growth rate deposition for forming different cells on a wafer
CN102741999B (zh) 2009-11-18 2015-07-15 Soitec公司 使用玻璃键合层制造半导体结构和器件的方法,和用所述方法形成的半导体结构和器件
TW201118946A (en) * 2009-11-24 2011-06-01 Chun-Yen Chang Method for manufacturing free-standing substrate and free-standing light-emitting device
WO2011069242A1 (en) * 2009-12-09 2011-06-16 Cooledge Lighting Inc. Semiconductor dice transfer-enabling apparatus and method for manufacturing transfer-enabling apparatus
US20110151588A1 (en) * 2009-12-17 2011-06-23 Cooledge Lighting, Inc. Method and magnetic transfer stamp for transferring semiconductor dice using magnetic transfer printing techniques
US8334152B2 (en) * 2009-12-18 2012-12-18 Cooledge Lighting, Inc. Method of manufacturing transferable elements incorporating radiation enabled lift off for allowing transfer from host substrate
US20110215348A1 (en) * 2010-02-03 2011-09-08 Soraa, Inc. Reflection Mode Package for Optical Devices Using Gallium and Nitrogen Containing Materials
US8740413B1 (en) 2010-02-03 2014-06-03 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
US8329482B2 (en) 2010-04-30 2012-12-11 Cree, Inc. White-emitting LED chips and method for making same
WO2011146015A1 (en) 2010-05-18 2011-11-24 Agency For Science, Technology And Research Method of forming a light emitting diode structure and a light emitting diode structure
JP2012015150A (ja) * 2010-06-29 2012-01-19 Ushio Inc レーザリフトオフ方法及びレーザリフトオフ装置
US8460765B2 (en) 2010-06-29 2013-06-11 Primestar Solar, Inc. Methods for forming selectively deposited thin films
JP4661989B1 (ja) * 2010-08-04 2011-03-30 ウシオ電機株式会社 レーザリフトオフ装置
WO2012033551A1 (en) * 2010-09-10 2012-03-15 Versatilis Llc Methods of fabricating optoelectronic devices using layers detached from semiconductor donors and devices made thereby
US11251164B2 (en) 2011-02-16 2022-02-15 Creeled, Inc. Multi-layer conversion material for down conversion in solid state lighting
WO2012114513A1 (ja) 2011-02-25 2012-08-30 学校法人名城大学 半導体装置の製造方法
DE102011012928A1 (de) * 2011-03-03 2012-09-06 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Dünnfilm-Halbleiterkörpers und Dünnfilm-Halbleiterkörper
JP5240318B2 (ja) * 2011-04-28 2013-07-17 ウシオ電機株式会社 レーザリフトオフ方法
DE102011122778B3 (de) 2011-11-24 2013-03-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer Lumineszenzkonversions-Leuchtdiode
JP6024239B2 (ja) * 2012-06-29 2016-11-09 株式会社豊田自動織機 半導体装置の製造方法
JP2014041964A (ja) * 2012-08-23 2014-03-06 Sharp Corp 窒化物半導体発光素子の製造方法および窒化物半導体発光素子
US8896008B2 (en) 2013-04-23 2014-11-25 Cree, Inc. Light emitting diodes having group III nitride surface features defined by a mask and crystal planes
DE102013016693A1 (de) 2013-10-08 2015-04-09 Siltectra Gmbh Herstellungsverfahren für Festkörperelemente mittels Laserbehandlung und temperaturinduzierten Spannungen
DE102014013107A1 (de) 2013-10-08 2015-04-09 Siltectra Gmbh Neuartiges Waferherstellungsverfahren
DE102014014486A1 (de) 2013-10-08 2015-04-09 Siltectra Gmbh Neuartiges Waferherstellungsverfahren
DE102014002600A1 (de) 2014-02-24 2015-08-27 Siltectra Gmbh Kombiniertes Waferherstellungsverfahren mit Laserbehandlung und temperaturinduzierten Spannungen
DE102014002909A1 (de) 2014-02-28 2015-09-03 Siltectra Gmbh Kombiniertes Waferherstellungsverfahren mit Erzeugung einer Ablöseebene und der Ablösung einer Festkörperschicht entlang der Ablöseebene
DE102014006328A1 (de) 2014-04-30 2015-11-05 Siltectra Gmbh Kombiniertes Festkörperherstellungsverfahren mit Laserbehandlung und temperaturinduzierten Spannungen zur Erzeugung dreidimensionaler Festkörper
DE102015103118A1 (de) 2014-10-06 2016-04-07 Siltectra Gmbh Splitting-Verfahren und Verwendung eines Materials in einem Splitting-Verfahren
DE102015004347A1 (de) 2015-04-02 2016-10-06 Siltectra Gmbh Erzeugung von physischen Modifikationen mittels LASER im Inneren eines Festkörpers
DE102015004603A1 (de) 2015-04-09 2016-10-13 Siltectra Gmbh Kombiniertes Waferherstellungsverfahren mit Laserbehandlung und temperaturinduzierten Spannungen
WO2016205751A1 (en) * 2015-06-19 2016-12-22 QMAT, Inc. Bond and release layer transfer process
CN109153037B (zh) * 2016-03-16 2022-09-30 Ncc纳诺责任有限公司 在基板上沉积功能材料的方法
DE102016105063A1 (de) * 2016-03-18 2017-09-21 Osram Opto Semiconductors Gmbh Diffraktives optisches Element, Verfahren zum Herstellen eines diffraktiven optischen Elements und Laserbauelement
DE102016105616A1 (de) 2016-03-24 2017-09-28 Siltectra Gmbh Polymer-Hybrid-Material, dessen Verwendung in einem Splitting-Verfahren und Verfahren zur Herstellung des Polymer-Hybrid-Materials
US10858495B2 (en) 2016-03-24 2020-12-08 Siltectra Gmbh Polymer hybrid material for use in a splitting method
DE102017103164A1 (de) 2017-02-16 2018-08-16 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip
DE102017106888A1 (de) * 2017-03-30 2018-10-04 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von Leuchtdiodenchips und Leuchtdiodenchip
DE102017121015A1 (de) 2017-09-12 2019-03-14 Rogers Germany Gmbh Adapterelement zum Anbinden eines Bauelements wie einer Laserdiode an einen Kühlkörper, ein System aus einer Laserdiode, einem Kühlkörper und einem Adapterelement und Verfahren zur Herstellung eines Adapterelements
DE102018002426A1 (de) 2018-03-26 2019-09-26 Azur Space Solar Power Gmbh Stapelförmiges III-V-Halbleiterzeug und Herstellungsverfahren
FR3079657B1 (fr) 2018-03-29 2024-03-15 Soitec Silicon On Insulator Structure composite demontable par application d'un flux lumineux, et procede de separation d'une telle structure
US10964664B2 (en) 2018-04-20 2021-03-30 Invensas Bonding Technologies, Inc. DBI to Si bonding for simplified handle wafer
US11177498B1 (en) 2018-10-15 2021-11-16 Ampcera Inc. Redox flow batteries, components for redox flow batteries and methods for manufacture thereof
US11819806B1 (en) 2018-10-15 2023-11-21 Ampcera Inc. Methods for manufacturing a solid state ionic conductive membrane on a macro porous support scaffold
US11600853B1 (en) 2019-05-14 2023-03-07 Ampcera Inc. Systems and methods for storing, transporting, and handling of solid-state electrolytes
JP7458910B2 (ja) 2020-06-18 2024-04-01 株式会社ディスコ デバイスの製造方法
FR3112238A1 (fr) 2020-07-06 2022-01-07 Saint-Gobain Lumilog Substrat semi-conducteur avec couche d’interface nitruree
JP2022134799A (ja) * 2021-03-04 2022-09-15 信越半導体株式会社 紫外線発光素子用エピタキシャルウェーハの製造方法、紫外線発光素子用基板の製造方法、紫外線発光素子用エピタキシャルウェーハ及び紫外線発光素子用基板
KR20230161413A (ko) * 2021-03-30 2023-11-27 에베 그룹 에. 탈너 게엠베하 기판으로부터 구조물을 분리하는 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448636A (en) * 1982-06-02 1984-05-15 Texas Instruments Incorporated Laser assisted lift-off
DE3508469A1 (de) * 1985-03-09 1986-09-11 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Verfahren zum strukturieren von auf einem transparenten substrat aufgebrachten schichtfolgen

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6413441A (de) * 1964-11-19 1966-05-20
US3808550A (en) * 1969-12-15 1974-04-30 Bell Telephone Labor Inc Apparatuses for trapping and accelerating neutral particles
JPS4825816A (de) 1971-08-11 1973-04-04
EP0266338A1 (de) * 1985-07-22 1988-05-11 Rippelton N.V. Anordnung für erntevorrichtung
EP0460710B1 (de) * 1987-01-31 1994-12-07 Toyoda Gosei Co., Ltd. Galliumnitridartige Halbleiterverbindung und daraus bestehende lichtemittierende Vorrichtung sowie Verfahren zu deren Herstellung
US4846931A (en) 1988-03-29 1989-07-11 Bell Communications Research, Inc. Method for lifting-off epitaxial films
US4883561A (en) * 1988-03-29 1989-11-28 Bell Communications Research, Inc. Lift-off and subsequent bonding of epitaxial films
US5465009A (en) * 1992-04-08 1995-11-07 Georgia Tech Research Corporation Processes and apparatus for lift-off and bonding of materials and devices
JP3350994B2 (ja) 1993-02-12 2002-11-25 住友電気工業株式会社 ダイヤモンド薄板の製造方法
FR2715501B1 (fr) * 1994-01-26 1996-04-05 Commissariat Energie Atomique Procédé de dépôt de lames semiconductrices sur un support.
US5561085A (en) * 1994-12-19 1996-10-01 Martin Marietta Corporation Structure for protecting air bridges on semiconductor chips from damage
US5985687A (en) * 1996-04-12 1999-11-16 The Regents Of The University Of California Method for making cleaved facets for lasers fabricated with gallium nitride and other noncubic materials
JP4619462B2 (ja) 1996-08-27 2011-01-26 セイコーエプソン株式会社 薄膜素子の転写方法
EP0858110B1 (de) 1996-08-27 2006-12-13 Seiko Epson Corporation Trennverfahren, verfahren zur übertragung eines dünnfilmbauelements, und unter verwendung des übertragungsverfahrens hergestelltes flüssigkristall-anzeigebauelement
DE19640594B4 (de) * 1996-10-01 2016-08-04 Osram Gmbh Bauelement
US6155909A (en) * 1997-05-12 2000-12-05 Silicon Genesis Corporation Controlled cleavage system using pressurized fluid
US5877070A (en) * 1997-05-31 1999-03-02 Max-Planck Society Method for the transfer of thin layers of monocrystalline material to a desirable substrate
US6071795A (en) 1998-01-23 2000-06-06 The Regents Of The University Of California Separation of thin films from transparent substrates by selective optical processing
US6113685A (en) 1998-09-14 2000-09-05 Hewlett-Packard Company Method for relieving stress in GaN devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448636A (en) * 1982-06-02 1984-05-15 Texas Instruments Incorporated Laser assisted lift-off
DE3508469A1 (de) * 1985-03-09 1986-09-11 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Verfahren zum strukturieren von auf einem transparenten substrat aufgebrachten schichtfolgen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KELLY M. K. ET AL: "Optical patterning of GaN films", APPLIED PHYSICS LETTERS, vol. 69, no. 12, 16 September 1996 (1996-09-16), USA, pages 1749 - 1751, XP002051249 *

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091632A (ja) * 1998-09-14 2000-03-31 Hewlett Packard Co <Hp> 応力緩和された積層構造を形成する方法
DE19849658A1 (de) * 1998-10-29 2000-05-04 Deutsch Zentr Luft & Raumfahrt Verfahren und Einrichtung zum Ablösen eines Ausschnittes einer Materialschicht
JP2000244068A (ja) * 1998-12-22 2000-09-08 Pioneer Electronic Corp 窒化物半導体レーザ及びその製造方法
JP2000196197A (ja) * 1998-12-30 2000-07-14 Xerox Corp 成長基板が除去された窒化物レ―ザダイオ―ドの構造及び窒化物レ―ザダイオ―ドアレイ構造の製造方法
JP2011055003A (ja) * 1998-12-30 2011-03-17 Bluestone Innovations Holdings Lp 成長基板が除去された窒化物レーザダイオードの構造及び窒化物レーザダイオードアレイ構造の製造方法
US7491565B2 (en) * 1999-02-05 2009-02-17 Philips Lumileds Lighting Company, Llc III-nitride light emitting devices fabricated by substrate removal
US6176925B1 (en) * 1999-05-07 2001-01-23 Cbl Technologies, Inc. Detached and inverted epitaxial regrowth & methods
CN100464438C (zh) * 2000-04-26 2009-02-25 奥斯兰姆奥普托半导体有限责任公司 发光半导体元件的制造方法
US6946686B2 (en) 2001-08-03 2005-09-20 Sony Corporation Method of fabricating semiconductor device and semiconductor device
JP2003051611A (ja) * 2001-08-03 2003-02-21 Sony Corp 半導体素子の製造方法及び半導体素子
US6927164B2 (en) 2001-08-03 2005-08-09 Sony Corporation Method of fabricating semiconductor device and semiconductor device
US7435994B2 (en) 2001-11-13 2008-10-14 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
US6861335B2 (en) 2001-11-13 2005-03-01 Matsushita Electric Industrial Co., Ltd. Method for fabricating a semiconductor device that includes light beam irradiation to separate a semiconductor layer from a single crystal substrate
US7153715B2 (en) 2001-11-13 2006-12-26 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
WO2003065420A3 (de) * 2002-01-31 2004-07-08 Osram Opto Semiconductors Gmbh Verfahren zur herstellung eines halbleiterbauelements
US7588998B2 (en) 2002-01-31 2009-09-15 Osram Opto Semiconductor Gmbh Method for producing a semiconductor element
WO2003065420A2 (de) * 2002-01-31 2003-08-07 Osram Opto Semiconductors Gmbh Verfahren zur herstellung eines halbleiterbauelements
US8575003B2 (en) 2002-01-31 2013-11-05 Osram Opto Semiconductors Gmbh Method for producing a semiconductor component
DE10243757A1 (de) * 2002-01-31 2004-04-01 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von Halbleiterchips
US8598014B2 (en) 2002-01-31 2013-12-03 Osram Opto Semiconductors Gmbh Method for producing a semiconductor element
US8524573B2 (en) 2003-01-31 2013-09-03 Osram Opto Semiconductors Gmbh Method for separating a semiconductor layer from a substrate by irradiating with laser pulses
EP2894678A1 (de) 2003-01-31 2015-07-15 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Halbleiterbauelements
WO2004068572A3 (de) * 2003-01-31 2004-09-30 Osram Opto Semiconductors Gmbh Verfahren zur herstellung eines halbleiterbauelements
US7211831B2 (en) 2003-04-15 2007-05-01 Luminus Devices, Inc. Light emitting device with patterned surfaces
US9219200B2 (en) 2003-04-15 2015-12-22 Luminus Devices, Inc. Large emission area light-emitting devices
US7083993B2 (en) 2003-04-15 2006-08-01 Luminus Devices, Inc. Methods of making multi-layer light emitting devices
US6831302B2 (en) 2003-04-15 2004-12-14 Luminus Devices, Inc. Light emitting devices with improved extraction efficiency
US7166871B2 (en) 2003-04-15 2007-01-23 Luminus Devices, Inc. Light emitting systems
US7329587B2 (en) 2003-06-24 2008-02-12 Osram Opto Semiconductors Gmbh Method for the production of semi-conductor chips
US7341880B2 (en) 2003-09-17 2008-03-11 Luminus Devices, Inc. Light emitting device processes
US8368092B2 (en) 2004-01-26 2013-02-05 Osram Opto Semiconductors Gmbh Thin film LED comprising a current-dispersing structure
WO2005071763A2 (de) 2004-01-26 2005-08-04 Osram Opto Semiconductors Gmbh Dünnfilm-led mit einer stromaufweitungsstruktur
DE112004002809B9 (de) 2004-04-29 2024-02-01 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zum Herstellen eines strahlungsemittierenden Halbleiterchips und durch dieses Verfahren hergestellter Halbleiterchip
DE112004002809B4 (de) 2004-04-29 2023-11-02 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zum Herstellen eines strahlungsemittierenden Halbleiterchips und durch dieses Verfahren hergestellter Halbleiterchip
US8273593B2 (en) 2004-04-29 2012-09-25 Osram Opto Semiconductors Gmbh Method for production of a radiation-emitting semiconductor chip
US7897423B2 (en) 2004-04-29 2011-03-01 Osram Opto Semiconductors Gmbh Method for production of a radiation-emitting semiconductor chip
US8728937B2 (en) 2004-07-30 2014-05-20 Osram Opto Semiconductors Gmbh Method for producing semiconductor chips using thin film technology
US7649266B2 (en) 2004-07-30 2010-01-19 Osram Opto Semiconductors Gmbh Method for producing semiconductor chips using thin film technology, and semiconductor chip using thin film technology
US7524737B2 (en) 2004-12-23 2009-04-28 Osram Opto Semiconductors Gmbh Method of fabricating a semiconductor chip with a nitride compound semiconductor material
US7170100B2 (en) 2005-01-21 2007-01-30 Luminus Devices, Inc. Packaging designs for LEDs
US7692207B2 (en) 2005-01-21 2010-04-06 Luminus Devices, Inc. Packaging designs for LEDs
US8581279B2 (en) 2005-06-02 2013-11-12 Osram Opto Semiconductors Gmbh Light-emitting diode chip comprising a contact structure
DE102005055293A1 (de) * 2005-08-05 2007-02-15 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von Halbleiterchips und Dünnfilm-Halbleiterchip
US8058147B2 (en) 2005-08-05 2011-11-15 Osram Opto Semiconductors Gmbh Method for producing semiconductor components and thin-film semiconductor component
US7943484B2 (en) 2005-09-01 2011-05-17 Osram Opto Semiconductors Gmbh Method for laterally cutting through a semiconductor wafer and optoelectronic component
WO2007025499A1 (de) 2005-09-01 2007-03-08 Osram Opto Semiconductors Gmbh Verfahren zum lateralen zertrennen eines halbleiterwafers und optoelektronisches bauelement
GB2444448A (en) * 2005-09-29 2008-06-04 Sumitomo Chemical Co Method for producing group 3-5 nitride semiconductor and method for manufacturing light-emitting device
WO2007037504A1 (ja) * 2005-09-29 2007-04-05 Sumitomo Chemical Company, Limited 3−5族窒化物半導体の製造方法及び発光素子の製造方法
US8691674B2 (en) 2005-09-29 2014-04-08 Sumitomo Chemical Company, Limited Method for producing group 3-5 nitride semiconductor and method for producing light-emitting device
US8012256B2 (en) 2006-01-31 2011-09-06 Osram Opto Semiconductor Gmbh Method of fabricating a quasi-substrate wafer and semiconductor body fabricated using such a quasi-substrate wafer
DE102006007293B4 (de) 2006-01-31 2023-04-06 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zum Herstellen eines Quasi-Substratwafers und ein unter Verwendung eines solchen Quasi-Substratwafers hergestellter Halbleiterkörper
DE102006007293A1 (de) * 2006-01-31 2007-08-02 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen eines Quasi-Substratwafers und ein unter Verwendung eines solchen Quasi-Substratwafers hergestellter Halbleiterkörper
US8872330B2 (en) 2006-08-04 2014-10-28 Osram Opto Semiconductors Gmbh Thin-film semiconductor component and component assembly
US9142720B2 (en) 2007-01-29 2015-09-22 Osram Opto Semiconductors Gmbh Thin-film light emitting diode chip and method for producing a thin-film light emitting diode chip
WO2008092774A1 (de) 2007-01-29 2008-08-07 Osram Opto Semiconductors Gmbh Dünnfilm-leuchtdioden-chip und verfahren zur herstellung eines dünnfilm-leuchtdioden-chips
DE102007004304A1 (de) 2007-01-29 2008-07-31 Osram Opto Semiconductors Gmbh Dünnfilm-Leuchtdioden-Chip und Verfahren zur Herstellung eines Dünnfilm-Leuchtdioden-Chips
US8405104B2 (en) 2007-05-30 2013-03-26 Osram Opto Semiconductors Gmbh Luminescent diode chip with luminescence conversion element and angular filter element
DE102007025092A1 (de) 2007-05-30 2008-12-04 Osram Opto Semiconductors Gmbh Lumineszenzdiodenchip
DE102008013898A1 (de) 2007-12-14 2009-06-25 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement, Anordnung und Verfahren zur Herstellung eines optoelektronischen Bauelements
US8476667B2 (en) 2007-12-20 2013-07-02 Osram Opto Semiconductors Gmbh Optoelectronic component
DE102008011809A1 (de) 2007-12-20 2009-06-25 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
DE102008006745B3 (de) * 2008-01-30 2009-10-08 Siltronic Ag Verfahren zur Herstellung einer Halbleiterstruktur
US8492243B2 (en) 2008-01-30 2013-07-23 Siltronic Ag Method for the production of a semiconductor structure
DE102008019268A1 (de) 2008-02-29 2009-09-03 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
US8711893B2 (en) 2008-02-29 2014-04-29 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing an optoelectronic component
WO2009106028A1 (de) 2008-02-29 2009-09-03 Osram Opto Semiconductors Gmbh Optoelektronisches bauelement und verfahren zur herstellung eines optoelektronischen bauelements
TWI417159B (zh) * 2010-07-20 2013-12-01 Ushio Electric Inc Laser stripping method
US9337388B2 (en) 2010-10-15 2016-05-10 Osram Opto Semiconductors Gmbh Method for producing a semiconductor layer sequence, radiation-emitting semiconductor chip and optoelectronic component
DE102010048617A1 (de) 2010-10-15 2012-04-19 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer Halbleiterschichtenfolge, strahlungsemittierender Halbleiterchip und optoelektronisches Bauteil
WO2012049031A1 (de) 2010-10-15 2012-04-19 Osram Opto Semiconductors Gmbh Verfahren zur herstellung einer halbleiterschichtenfolge, strahlungsemittierender halbleiterchip und optoelektronisches bauteil
US8664028B2 (en) 2011-03-11 2014-03-04 Stanley Electric Co., Ltd. Semiconductor device production process
US8530256B2 (en) 2011-03-11 2013-09-10 Stanley Electric Co., Ltd. Production process for semiconductor device
US8772808B2 (en) 2011-03-22 2014-07-08 Stanley Electric Co., Ltd. Semiconductor light emitting element and manufacturing method thereof
WO2012147436A1 (ja) 2011-04-25 2012-11-01 住友電気工業株式会社 GaN系半導体デバイスの製造方法
DE102013100711A1 (de) 2013-01-24 2014-07-24 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer Vielzahl optoelektronischer Bauelemente und optoelektronisches Bauelement
US9755114B2 (en) 2013-01-24 2017-09-05 Osram Opto Semiconductors Gmbh Method for producing a plurality of optoelectronic components and optoelectronic component
US10319789B2 (en) 2016-08-12 2019-06-11 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic component and an optoelectronic component
DE112017004049T5 (de) 2016-08-12 2019-04-25 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Bauelements und ein optoelektronisches Bauelement
WO2018029046A1 (en) 2016-08-12 2018-02-15 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic component and an optoelectronic component

Also Published As

Publication number Publication date
EP0931332A1 (de) 1999-07-28
JP2001501778A (ja) 2001-02-06
US7341925B2 (en) 2008-03-11
US7713840B2 (en) 2010-05-11
US6559075B1 (en) 2003-05-06
EP0931332B1 (de) 2007-01-24
DE19640594B4 (de) 2016-08-04
US20030104678A1 (en) 2003-06-05
US6974758B2 (en) 2005-12-13
DE59712803D1 (de) 2007-03-15
US6740604B2 (en) 2004-05-25
US20040072382A1 (en) 2004-04-15
DE19640594A1 (de) 1998-04-02
TW409295B (en) 2000-10-21
US20060040468A1 (en) 2006-02-23
JP4285776B2 (ja) 2009-06-24
US20080164571A1 (en) 2008-07-10

Similar Documents

Publication Publication Date Title
EP0931332B1 (de) Verfahren zum trennen zweier materialschichten voneinander
EP1770795B1 (de) Epitaxiesubstrat, Verfahren zu seiner Herstellung und Verfahren zur Herstellung eines Halbleiterchips
EP3055098B1 (de) Kombiniertes waferherstellungsverfahren mit laserbehandlung und temperaturinduzierten spannungen
DE69907349T2 (de) Verfahren zur Verminderung von Stress in GaN Bauelementen
DE102004030603A1 (de) Verfahren zum Herstellen von Halbleiterchips
DE10022879A1 (de) Nitrid-Halbleiterlaser und Verfahren zu dessen Herstellung
EP0903792A2 (de) Verfahren zum Herstellen einer Mehrzahl von Halbleiterkörpern
DE3635279A1 (de) Gasphasen-epitaxieverfahren fuer einen verbindungs-halbleiter-einkristall und einrichtung zur durchfuehrung des verfahrens
EP3253529B1 (de) Festkörperteilung mittels stoffumwandlung
WO2013045181A1 (de) Verfahren zur herstellung eines optoelektronischen halbleiterchips und optoelektronischer halbleiterchip
DE3231671C2 (de)
DE102015004603A1 (de) Kombiniertes Waferherstellungsverfahren mit Laserbehandlung und temperaturinduzierten Spannungen
DE112015003506T5 (de) Verfahren zur Herstellung von Wellenlängenkonvertern für Festkörper-Beleuchtungsanwendungen
EP3147068B1 (de) Neuartiges waferherstellungsverfahren
EP3137657B1 (de) Kombiniertes festkörperherstellungsverfahren mit laserbehandlung und temperaturinduzierten spannungen zur erzeugung dreidimensionaler festkörper
DE102019003331A1 (de) Halbleitersubstrat-herstellungssysteme und verwandte verfahren
DE2944118C2 (de)
EP3374232B1 (de) Konverter für leuchtvorrichtungen
EP4315406A1 (de) Verfahren zum trennen von strukturen von einem substrat
DE10303977A1 (de) Verfahren zur Herstellung eines Halbleiterbauelements

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997911125

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 516150

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09283907

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997911125

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997911125

Country of ref document: EP